From 37d32bfad42aa46a6284a6ff47cdded71fde5946 Mon Sep 17 00:00:00 2001 From: 5ced80d094cc8bbd195a6caf0e47db49 <5ced80d094cc8bbd195a6caf0e47db49@app-learninglab.inria.fr> Date: Mon, 25 Jan 2021 18:42:31 +0000 Subject: [PATCH] =?UTF-8?q?Correcci=C3=B3n=20luego=20de=20comparaci=C3=B3n?= =?UTF-8?q?=202?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_notebook_en.ipynb | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 6012e44..3ca66cf 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -7,14 +7,14 @@ "hidePrompt": false }, "source": [ - "## On the computation of $\\pi$" + "# On the computation of $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Asking the maths library\n", + "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" ] }, @@ -42,13 +42,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Buffon's needle\n", - "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -57,7 +57,7 @@ "3.128911138923655" ] }, - "execution_count": 5, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -75,8 +75,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { @@ -98,7 +98,7 @@ } ], "source": [ - "%matplotlib inline\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", @@ -106,7 +106,7 @@ "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "\n", - "accept = (x*x+y*y) <=1\n", + "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "\n", "fig, ax = plt.subplots(1)\n", -- 2.18.1