From d71f925e53deac9fdcaedec6f3b35e247f8ed2be Mon Sep 17 00:00:00 2001 From: 5ced80d094cc8bbd195a6caf0e47db49 <5ced80d094cc8bbd195a6caf0e47db49@app-learninglab.inria.fr> Date: Mon, 25 Jan 2021 18:23:35 +0000 Subject: [PATCH] Modificaciones menores --- module2/exo1/toy_notebook_en.ipynb | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 9bb35ed..28a42fd 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -7,7 +7,7 @@ "hidePrompt": false }, "source": [ - "## 1. On the computation of $\\pi$\n", + "## 1 On the computation of $\\pi$\n", "\n", "### 1.1 Asking the maths library\n", "\n", @@ -30,7 +30,7 @@ } ], "source": [ - "from math import*\n", + "from math import *\n", "print(pi)" ] }, @@ -74,7 +74,7 @@ "source": [ "### 1.3 Using a surface fraction argument\n", "\n", - "A method that is easier to understand and does not make use of thesin function is based on thefact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\"](https://en.wikipedia.org/wiki/Monte_Carlo_method) [on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:" + "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { @@ -105,6 +105,7 @@ "y=np.random.uniform(size=N, low=0, high=1)\n", "accept=(x*x+y*y)<=1\n", "reject=np.logical_not(accept)\n", + "\n", "fig, ax=plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", @@ -115,7 +116,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting howmany times, on average, $X^2 + Y^2$ is smaller than 1:" + "| It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" ] }, { -- 2.18.1