{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "# Título del documento" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hideCode": true, "hidePrompt": true }, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x=10\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "x=x+10\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pequeño ejemplo" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "mu, sigma = 100, 15" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "x=np.random.normal(loc=mu,scale=sigma,size=10000)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAElJJREFUeJzt3X+s3fdd3/Hni6SEtBDVmZ3Mta3Zq9yxJKIu8Txv1abSwGIIqsMflVwNYmmRjKIUCoING6QBf1jKNqBbtCWToVmc0dWyoF2sNmE1hq1CSmNuQhrHSU084iW39uILFSNskofd9/44H2vn4xzfe33v9b3nxs+HdHS+5/39fM/385Z/vO75fr/ne1NVSJJ00bct9QQkSePFYJAkdQwGSVLHYJAkdQwGSVLHYJAkdQwGSVLHYJAkdQwGSVLn+qWewExWrlxZ69evX+ppSNKy8txzz/1pVa2ay7ZjHwzr169nYmJiqachSctKkv8x1209lCRJ6hgMkqSOwSBJ6hgMkqSOwSBJ6hgMkqSOwSBJ6hgMkqSOwSBJ6oz9N5+lcbV+95eWbN+nHrpnyfatd74ZPzEk+Y4kR5N8LcnxJL/c6jcnOZzk1fa8YmibPUlOJjmR5O6h+p1JjrV1DyfJ1WlLkjRXszmUdA74aFV9ENgEbEuyFdgNHKmqjcCR9poktwE7gNuBbcAjSa5r7/UosAvY2B7bFrAXSdICmDEYauAv28t3tUcB24H9rb4fuLctbwcOVNW5qnoNOAlsSbIauKmqnqmqAp4Y2kaSNCZmdfI5yXVJXgDOAoer6lng1qo6A9Ceb2nD1wBvDG0+2Wpr2vKldUnSGJlVMFTVharaBKxl8NP/HdMMH3XeoKapv/0Nkl1JJpJMTE1NzWaKkqQFckWXq1bVnwP/lcG5gTfb4SHa89k2bBJYN7TZWuB0q68dUR+1n31VtbmqNq9aNaffMyFJmqPZXJW0Ksl72/KNwPcDXwcOATvbsJ3Ak235ELAjyQ1JNjA4yXy0HW56K8nWdjXSfUPbSJLGxGy+x7Aa2N+uLPo24GBVfTHJM8DBJPcDrwMfB6iq40kOAi8D54EHq+pCe68HgMeBG4Gn20OSNEZmDIaqehH40Ij6nwF3XWabvcDeEfUJYLrzE5KkJeYtMSRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJnRmDIcm6JL+f5JUkx5N8qtV/Kck3krzQHj80tM2eJCeTnEhy91D9ziTH2rqHk+TqtCVJmqvrZzHmPPAzVfV8ku8CnktyuK37dFX9yvDgJLcBO4DbgfcBv5vkA1V1AXgU2AV8FXgK2AY8vTCtSJIWwoyfGKrqTFU935bfAl4B1kyzyXbgQFWdq6rXgJPAliSrgZuq6pmqKuAJ4N55dyBJWlBXdI4hyXrgQ8CzrfTJJC8meSzJilZbA7wxtNlkq61py5fWJUljZNbBkOQ7gd8Gfqqq/oLBYaH3A5uAM8CvXhw6YvOapj5qX7uSTCSZmJqamu0UJUkLYFbBkORdDELhs1X1eYCqerOqLlTVt4BfB7a04ZPAuqHN1wKnW33tiPrbVNW+qtpcVZtXrVp1Jf1IkuZpNlclBfgM8EpV/dpQffXQsB8BXmrLh4AdSW5IsgHYCBytqjPAW0m2tve8D3hygfqQJC2Q2VyV9GHgx4BjSV5otZ8HPpFkE4PDQaeAHweoquNJDgIvM7ii6cF2RRLAA8DjwI0MrkbyiiRJGjMzBkNV/QGjzw88Nc02e4G9I+oTwB1XMkFJ0uKazScGaayt3/2lpZ6C9I7iLTEkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLUMRgkSR2DQZLU8Vd7SsvQUv0601MP3bMk+9Xi8hODJKljMEiSOgaDJKljMEiSOgaDJKkzYzAkWZfk95O8kuR4kk+1+s1JDid5tT2vGNpmT5KTSU4kuXuofmeSY23dw0lyddqSJM3VbD4xnAd+pqr+NrAVeDDJbcBu4EhVbQSOtNe0dTuA24FtwCNJrmvv9SiwC9jYHtsWsBdJ0gKYMRiq6kxVPd+W3wJeAdYA24H9bdh+4N62vB04UFXnquo14CSwJclq4KaqeqaqCnhiaBtJ0pi4onMMSdYDHwKeBW6tqjMwCA/gljZsDfDG0GaTrbamLV9aH7WfXUkmkkxMTU1dyRQlSfM062BI8p3AbwM/VVV/Md3QEbWapv72YtW+qtpcVZtXrVo12ylKkhbArIIhybsYhMJnq+rzrfxmOzxEez7b6pPAuqHN1wKnW33tiLokaYzM5qqkAJ8BXqmqXxtadQjY2ZZ3Ak8O1XckuSHJBgYnmY+2w01vJdna3vO+oW0kSWNiNjfR+zDwY8CxJC+02s8DDwEHk9wPvA58HKCqjic5CLzM4IqmB6vqQtvuAeBx4Ebg6faQJI2RGYOhqv6A0ecHAO66zDZ7gb0j6hPAHVcyQUnS4vKbz5KkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSerMGAxJHktyNslLQ7VfSvKNJC+0xw8NrduT5GSSE0nuHqrfmeRYW/dwkix8O5Kk+ZrNJ4bHgW0j6p+uqk3t8RRAktuAHcDtbZtHklzXxj8K7AI2tseo95QkLbEZg6GqvgJ8c5bvtx04UFXnquo14CSwJclq4KaqeqaqCngCuHeuk5YkXT3zOcfwySQvtkNNK1ptDfDG0JjJVlvTli+tS5LGzFyD4VHg/cAm4Azwq60+6rxBTVMfKcmuJBNJJqampuY4RUnSXMwpGKrqzaq6UFXfAn4d2NJWTQLrhoauBU63+toR9cu9/76q2lxVm1etWjWXKUqS5mhOwdDOGVz0I8DFK5YOATuS3JBkA4OTzEer6gzwVpKt7Wqk+4An5zFvSdJVcv1MA5J8DvgIsDLJJPCLwEeSbGJwOOgU8OMAVXU8yUHgZeA88GBVXWhv9QCDK5xuBJ5uD0nSmJkxGKrqEyPKn5lm/F5g74j6BHDHFc1OkrTo/OazJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKljMEiSOgaDJKkzYzAkeSzJ2SQvDdVuTnI4yavtecXQuj1JTiY5keTuofqdSY61dQ8nycK3I0mar+tnMeZx4N8CTwzVdgNHquqhJLvb659LchuwA7gdeB/wu0k+UFUXgEeBXcBXgaeAbcDTC9WIltb63V9a6ilIWiAzfmKoqq8A37ykvB3Y35b3A/cO1Q9U1bmqeg04CWxJshq4qaqeqapiEDL3IkkaO3M9x3BrVZ0BaM+3tPoa4I2hcZOttqYtX1qXJI2ZhT75POq8QU1TH/0mya4kE0kmpqamFmxykqSZzTUY3myHh2jPZ1t9Elg3NG4tcLrV146oj1RV+6pqc1VtXrVq1RynKEmai7kGwyFgZ1veCTw5VN+R5IYkG4CNwNF2uOmtJFvb1Uj3DW0jSRojM16VlORzwEeAlUkmgV8EHgIOJrkfeB34OEBVHU9yEHgZOA882K5IAniAwRVONzK4GskrkiRpDM0YDFX1icusuusy4/cCe0fUJ4A7rmh2kqRF5zefJUkdg0GS1DEYJEkdg0GS1DEYJEmd2dxET5KApbtZ4qmH7lmS/V6r/MQgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSeoYDJKkjsEgSerMKxiSnEpyLMkLSSZa7eYkh5O82p5XDI3fk+RkkhNJ7p7v5CVJC28hPjF8X1VtqqrN7fVu4EhVbQSOtNckuQ3YAdwObAMeSXLdAuxfkrSArsahpO3A/ra8H7h3qH6gqs5V1WvASWDLVdi/JGke5hsMBXw5yXNJdrXarVV1BqA939Lqa4A3hradbLW3SbIryUSSiampqXlOUZJ0Ja6f5/YfrqrTSW4BDif5+jRjM6JWowZW1T5gH8DmzZtHjpEkXR3z+sRQVafb81ngCwwODb2ZZDVAez7bhk8C64Y2Xwucns/+JUkLb87BkOQ9Sb7r4jLwj4CXgEPAzjZsJ/BkWz4E7EhyQ5INwEbg6Fz3L0m6OuZzKOlW4AtJLr7Pf6qq30nyh8DBJPcDrwMfB6iq40kOAi8D54EHq+rCvGYvSVpwcw6GqvoT4IMj6n8G3HWZbfYCe+e6T0nS1ec3nyVJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJHYNBktQxGCRJnfn+BjeNmfW7v7TUU5C0zPmJQZLU8RODpLG3lJ+ETz10z5Lte6n4iUGS1DEYJEkdg0GS1DEYJEkdg0GS1DEYJEkdg0GS1DEYJEmdRQ+GJNuSnEhyMsnuxd6/JGl6ixoMSa4D/h3wg8BtwCeS3LaYc5AkTW+xb4mxBThZVX8CkOQAsB14eZHncVV5IztJy9liB8Ma4I2h15PA313kOUjSrC3VD3pLeY+mxQ6GjKjV2wYlu4Bd7eVfJjlxVWc1sBL400XYz2J4J/UC76x+7GU8jV0v+Rdz3vRiL39jrm+w2MEwCawber0WOH3poKraB+xbrEkBJJmoqs2Luc+r5Z3UC7yz+rGX8WQvvcW+KukPgY1JNiT5dmAHcGiR5yBJmsaifmKoqvNJPgn8F+A64LGqOr6Yc5AkTW/Rf1FPVT0FPLXY+52FRT10dZW9k3qBd1Y/9jKe7GVIqt527leSdA3zlhiSpM41GwxJrkvyR0m+2F7fnORwklfb84qlnuNsJXlvkt9K8vUkryT5e8u1nyQ/neR4kpeSfC7JdyyXXpI8luRskpeGapede5I97dYwJ5LcvTSzvrzL9POv2t+zF5N8Icl7h9aNbT+jehla97NJKsnKodqy6yXJT7T5Hk/yL4fqV9zLNRsMwKeAV4Ze7waOVNVG4Eh7vVz8G+B3quq7gQ8y6GvZ9ZNkDfCTwOaquoPBBQo7WD69PA5su6Q2cu7tVjA7gNvbNo+0W8aMk8d5ez+HgTuq6nuAPwb2wLLo53He3gtJ1gE/ALw+VFt2vST5PgZ3kfieqrod+JVWn1Mv12QwJFkL3AP8xlB5O7C/Le8H7l3sec1FkpuAfwh8BqCq/m9V/TnLtB8GF0TcmOR64N0MvueyLHqpqq8A37ykfLm5bwcOVNW5qnoNOMngljFjY1Q/VfXlqjrfXn6VwXeRYMz7ucyfDcCngX9G/0Xb5djLA8BDVXWujTnb6nPq5ZoMBuBfM/jL8K2h2q1VdQagPd+yFBObg78JTAH/oR0a+40k72EZ9lNV32Dwk87rwBngf1XVl1mGvQy53NxH3R5mzSLPbb7+CfB0W152/ST5GPCNqvraJauWXS/AB4B/kOTZJP8tyd9p9Tn1cs0FQ5IfBs5W1XNLPZcFcj3wvcCjVfUh4H8zvodaptWOv28HNgDvA96T5EeXdlZXzaxuDzOukvwCcB747MXSiGFj20+SdwO/APzzUatH1Ma2l+Z6YAWwFfinwMEkYY69XHPBAHwY+FiSU8AB4KNJfhN4M8lqgPZ89vJvMVYmgcmqera9/i0GQbEc+/l+4LWqmqqqvwI+D/x9lmcvF11u7rO6Pcw4SrIT+GHgH9f/v959ufXzfgY/gHyt/V+wFng+yV9n+fUCgzl/vgaOMjgaspI59nLNBUNV7amqtVW1nsFJmd+rqh9lcGuOnW3YTuDJJZriFamq/wm8keRvtdJdDG5jvhz7eR3YmuTd7aeduxicSF+OvVx0ubkfAnYkuSHJBmAjcHQJ5ndFkmwDfg74WFX9n6FVy6qfqjpWVbdU1fr2f8Ek8L3t39Oy6qX5z8BHAZJ8APh2BjfSm1svVXXNPoCPAF9sy3+NwVUjr7bnm5d6flfQxyZgAnix/QVZsVz7AX4Z+DrwEvAfgRuWSy/A5xicG/krBv/R3D/d3BkcyvjvwAngB5d6/rPs5ySDY9YvtMe/Xw79jOrlkvWngJXLtZcWBL/Z/t08D3x0Pr34zWdJUueaO5QkSZqewSBJ6hgMkqSOwSBJ6hgMkqSOwSBJ6hgMkqSOwSBJ6vw/hKwfgRUCFQMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Usando otros lenguajes" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "plot(cars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": true, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }