diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 78e09b34a09fa815810cc6886f62a6e45dc76cc1..0b3ffbd99d9e79970834dcec0a593b062e98b585 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -4,8 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# On the computation of $\\pi$\n", - "\n", + "# On the computation of $\\pi$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" ] @@ -33,7 +38,7 @@ "metadata": {}, "source": [ "## Buffon's needle\n", - "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the _approximation_" + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -69,7 +74,7 @@ "source": [ "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the sin function is based on the \n", - "fact that if X ~ *U*(0,1) and Y ~ *U*(0,1), then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, {