Version 3

parent 99b77860
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -121,6 +121,61 @@ ...@@ -121,6 +121,61 @@
"plt.grid(axis=\"x\")\n", "plt.grid(axis=\"x\")\n",
"plt.show()" "plt.show()"
] ]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAHICAYAAAAV7wD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XFXh/vHPmWSyNS1LgTLsyjIgW0tbdgFBFBRFB1SQTb5fEVcUBRdEx++PRRQGKSCLsqmgBWEQAQGRfYdCN1q4LdBCS2+LbZM0TTNZJvf3xx0gbdM2ySxn7r3P+/Xqq+1k5s4TSvLk3HvuOcbzPERERGT4YrYDiIiIBJ3KVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIpUazuAiHwo67i1wAigDugD8kBvv997U8mEZy+hiAzEeJ6+LkVKLeu4cWBbYDtgeyABbAJs3O/3jYGN8MuziQ9LdEM81i7ZbmAZsLTw678D/PmDx1LJxMoSfJoiUqAyFRmGrOOOwi/J98uy/5+3wy/Par6M0gG8CcwF5vT/PZVMvGczmEgQqUxF1iPruAbYCRi7xq+tbOYqszbWLtnXgFdTyUSPzWAi1UplKlKQddwGYE9WL829gGabuapIJzAVeOH9X6lkYr7VRCJVQmUqkZV13M2Bw4DDgY8DuwI1NjMF0Hv4xfri+7+nkok2u5FEKk9lKpGRddyN8MvzE/gFugdgbGYKIQ9wgCeBB4H/pJKJdruRRMpPZSqhlXXcEfgjzsPxC3QcGnlWWg/wDPAA8EAqmZhpOY9IWahMJVSyjrsNcByQAg4A4nYTyRoWAg/hl+vDqWRiheU8IiWhMpXAyzru9sDxhV/7oVO3QdELPAv8C7gjlUzMs5xHZNhUphJIWcf9KH55fgmYYDmOlMZzwK34xbrUdhiRoVCZSmBkHXdn/PI8Hv/6p4RTD/6p4FuBf6aSiU7LeUQ2SGVaIcaYlZ7nlex+RWPM14B/e563qFTHrEaFez+/BJwJHGQ5jlReO5AFbgMeSSUTfZbziAxIZVohZSjTx4FzPM+bMoTX1Hqe11uqDOWUddxd8Qv0VGBTy3GkOrjAZOCGVDIx23YYkf5UphVijFkJHINfgMcUHrsamOJ53i3GmPnA7fi3cAB8FVgCzAB28TyvxxgzqvD3c4GbgXfxV6U5APgYcDn+aj1Lga95nucWSvdZ/FHdPz3Py1Tg0x2WrOPW4c/EPRM41HIcqW4PA5OAf2kXHakG1bwQdxSt8DxvX+Bq4ArP89qBx4HPFj5+AnCX53l/B6YAJ3meNxZ/VuRVwPGe540HbgIu6nfcjT3PO7RaizTruDtnHfdS/B8O/oqKVDbsSOA+wMk67veyjqslH8Uq7WdaXf7W7/ffFf58A/Bj4B/A6cAZA7wuib+az8PGGPAXJnD7ffz2coQtVtZxPwP8EH9RBd3OIsOxM3AlcEHWcW8CrtItNmKDyrSyeln9bEDDGh/31vyz53nPGGN2MMYcCtR4nvfqAMc1wCzP8w5Yx/t2DDdwqRV2YUkBP0czcqV0NgLOBr6fddx7gUmpZOIxy5kkQnSat7LeBj5mjKk3xmwEHLHGx7/S7/fn+j3+Z/zR6s39HmsHRhb+7ACbG2MOADDGxI0xu5c6fDGyjluTddyTgVeBO1GRSnnEgGOBR7OOOz3ruCdnHVdLSErZaWRaAcaYWqDL87wFxpg78CcRzcXfzqq/emPMC/jfEE7s9/htwIV8eBoY4BbgOmPM+xOQjgeuLJR0LXAFMKsMn86QFCYVnQb8BNjRchyJlr2AvwDnZx33AuBvurVGykWzeSvAGLM38MfC5KJ1PWc+MMHzvLVWfjHGHA8c63neKeVLWVpZx20Evo4/83hby3FEAF4HLgAmq1Sl1FSmZWaM+SZwFvADz/P+vZ7nzWeAMjXGXAUcDXzG87w55cxaCoUS/S7wI2CM5TgiA5kN/CKVTGRtB5HwUJlKyWQd90TgEmA721lEBuEF4GeaqCSloDKVomUdd3/8W3n2t51FZBgexi/Vl20HkeBSmcqwZR13W/yR6InoPlEJNg9/Ut9PUsnEfy1nkQBSmcqQZR13BP7s3HOARstxREqpBf8e6Os1SUmGQmUqg1ZYcOFU4GJgK8txRMppCvDtVDLxku0gEgwqUxmUwnXRq9BG3BIdfcAfgfNSycRy22GkuqlMZb0KC4hfDHwHrZgl0bQU+Clwk3aokXVRmco6ZR33KOB6dKuLCPhLfH47lUxMsx1Eqo/KVNaSddzR+MsRnmw7i0iVyePvG3x+Kpnoth1GqofKVFaTddwvANeh1YtE1mc6cHIqmRhoFyeJIJWpAJB13I3xJxhpNCoyODngZ/jbvekbacSpTOX9a6M3AFvbziISQP8BvpZKJt61HUTsUZlGWNZx6/Gv/3zbdhaRgGsBvplKJu6wHUTsUJlGVNZxPwL8HRhvO4tIiNwKfCeVTKywHUQqS/cNRlDWcY8FXkFFKlJqJwMzso57iO0gUlkamUZI1nFrgV/jr6krIuXTB/wylUxcZDuIVIbKNCKyjrsVMBn4uO0sIhFyJ/7kpA7bQaS8VKYRkHXcI4C/AlvYziISQTOBL6SSibdsB5HyUZmGWNZxY8D5QBpdHxexaTlwQiqZeNh2ECkPlWlIFRZhmAx82nYWEQH8pQh/mkomLrMdREpPZRpCWcfdDvgXsLvtLCKylr8CX08lE522g0jpqExDJuu444D7gYTtLCKyTlPxr6O+YzuIlIauo4VI1nGPBp5ERSpS7cYBL2cdV7PrQ0JlGhJZxz0D+CfQbDuLiAzKZsBDWcf9nO0gUjyVaQhkHfci4A9Are0sIjIkjUA267in2A4ixdE10wDLOm4dcBNwku0sIlIUD/hhKpm4wnYQGR6VaUAVbn3JAp+wnUVESuaiVDJxvu0QMnQq0wDKOu6W+Hso6tYXkfC5Dn/nmT7bQWTwVKYBUyjSR4HdbGcRkbK5AzgllUx02w4ig6MyDRAVqUik/BtIaZH8YFCZBoSKVCSSngeOTiUTrbaDyPqpTAMg67hjgMdQkYpE0XPAkRqhVjfdZ1rlVKQikXcAcE/WcettB5F1U5lWMRWpiBQcAdyRdVwtzFKlVKZVSkUqImv4PPDnwj7FUmX0j1KFso67BSpSEVnbifj3oUqVUZlWmazjjsDfi1RFKiIDOSPruBnbIWR1KtMqknXcGmAyMN52FhGpaj/MOu6vbIeQD6lMq8uVwDG2Q4hIIKSzjvtD2yHEp/tMq0TWcc8BLrWdQ0QC57RUMvFn2yGiTmVaBbKO+yXgdsDYziIigdMFfCKVTDxnO0iUqUwtyzrugcAjQIPtLCISWEuAialkYoHtIFGlMrUo67g74y8VNtp2FhEJvKnAwalkYpXtIFGkCUiWZB13c+ABVKQiUhrjgD9lHVeXiyxQmVqQddwG4J/AjraziEioHA/80naIKFKZ2nElsL/tECISSums4x5vO0TU6JpphWUd92TgL7ZziEiorQIOSiUT02wHiQqVaQVlHfdjwIvACNtZRCT0FuDP8F1iO0gU6DRvhRTW3L0TFamIVMa2wF3atq0yVKaVcx1avF5EKusgIG07RBToNG8FZB33DOAPtnOISCT14a+Q9KTtIGGmMi2zrOOOxV+YQSsciYgtC4C9UslEq+0gYaXTvGWUddxRwN9RkYqIXdsC19sOEWYq0/K6CdjJdggREeDLWcc93XaIsNJp3jLJOu430E+CIlJdVgLjUsnEG7aDhI3KtAyyjrst8CowynYWEZE1vIS/oEOP7SBhotO85XE9KlIRqU4Tgf9nO0TYaGRaYlnHPQ24xXYOEZH16AM+mUomHrMdJCxUpiWUddwtgdnAJraziIhswALgY6lkYqXtIGGg07yldS0qUhEJhm2Bi2yHCAuNTEsk67hfASbbziEiMgR9wAGpZOJF20GCTmVaAlnH3Qz/9O7mtrOIiAzRDGB8KpnotR0kyLSbQGlchYp0WDpWtHHN+efwztzXMcbwnYsup76xkevTPyW3qoPNt96GH1z2e5qaR6712qlPPcZNF/2Cvr4+jjj+RFLf+B4Af7nsQl558jE+stvunPWbKwF4/J47WdnWyjGnfr2in59IAOwFnANcYjtIkOmaaZGyjnsscILtHEF100W/ZNzHD+OqB54i84//sM2OO3PN+edw8o/O43f3Psp+Rx7NPTdeu9br8vk8f/x/5/HzP97GFfc9ztP338OCN+bQ0b4CZ+oUfvfPR+jL53nbeY2uXCeP330HR514moXPUCQQfpl13I/YDhFkKtMiZB23Cbjado6gWrWyndlTnueI478KQLyujhGjNmLRvDf52MT9Adj7wEN4/t/3r/XaN2ZMZcvtdmDLbbcnXlfHwZ85lpceeYiYidHb04PneXR35aiJ13LPjdfymVP+h9p4vKKfn0iANAKTbIcIMpVpcc4FtrEdIqiWLHibUZuO5uqfnc05XzySa87/EblVq9hu5yQvPfoQAM8+eB9L3UVrvXb5ksVsltjqg79vumWCZUtcGpub2f9Tn+GcLx7JFltvx4jmUbwxcxr7HnFUxT4vkYD6XNZxj7EdIqhUpsOUddyt8MtUhinfm+et2TP59ImnctndD1Pf2MTdf7yab198OQ/edgvnpj5NrmMltfG6tV7rsfbEOWMMAF/4+nfI/OM/fO2naf525W854axz+c/fb+OyH5zJnddeUe5PSyTIJmUdV7tcDYPKdPguAkbYDhFko7dMMHpMgl323geAAz59DG/Nnsk2H92ZX940mUuzD3HwZ7/Altttv/ZrxyRWG7EuX+yy6RZbrvact2bPBGCrHXbk8Xvu5Jwrruedua+zaP5bZfysRALto8BPbYcIIpXpMGQddxxwqu0cQbfJ5luwWWIr3n3L38Bi5nNPsc2OO9O2bCkAfX193HndJD51wilrvXanPcfivj2PJQvfoae7m6f/dQ8TDv/Uas+ZPOlSTvjeueR7e+jL5wEwJkZ3rrPMn5lIoP2ksFmHDIFujRmeDPpBpCT+9/wLmXTud+np6WHMttvx3Yt/x+P33MmDt90CwH6fOprDU/5k6eVLFnPNL87h/D/cSk1tLV//xUVc8L9fpa8vz+HHncB2Oyc/OO4L/3mAnfbcm03H+KPV5NjxnP25w9k+uRs77Lp7pT9NkSBpANKA7iMbAi3aMESFW2H+YTuHiEgZ5fHX7Z1jO0hQaHQ1BFnHjQO/tZ1DRKTMaoALbIcIEpXp0Hwb2MV2CBGRCvhSYX6IDILKdJCyjrsJ8EvbOUREKsQAF9sOERQq08H7ObCp7RAiIhV0VNZxP247RBCoTAch67ibA9+ynUNExIJf2w4QBCrTwfkR0GQ7hIiIBQdlHfeztkNUO90aswFZxx0NzAeaLUcREbFlGrBPKplQYayDRqYb9gNUpCISbWOBr9gOUc1UpuuRddyNgO/ZziEiUgV+YjtANVOZrt+3gY1shxARqQJjs457mO0Q1Uplug5Zx60HzrKdQ0SkipxtO0C1Upmu26nAlht8lohIdByTddydbIeoRirTAWQdNwacYzuHiEiViQHftx2iGqlMB3YsWoNXRGQgp2cdd2PbIaqNynRgP7AdQESkSo0AzrAdotpo0YY1ZB03CbxuO4eISBVbAHw0lUz02g5SLTQyXZt2lxcRWb9tgeNsh6gmKtN+Cpt/n2o7h4hIAOg2mX5Upqs7FtjCdggRkQDYL+u4+9kOUS1UpqvTKV4RkcH7mu0A1UITkAqyjrs98Bb6AUNEZLCWA4lUMtFtO4htKo4P/Q/67yEiMhSbAp+xHaIaqDz4YMWj/7GdQ0QkgE6xHaAaqEx9RwHb2A4hIhJAn9WKSCrT92k1DxGR4akHvmw7hG2RL9Os424KHGM7h4hIgJ1sO4BtkS9T4HNAre0QIiIBdnDWcXewHcImlSl8wXYAEZGAM8BJtkPYFOkyzTpuE/Bp2zlEREIg0qd6I12mwKeARtshRERCYNes4463HcKWqJfpF20HEBEJkc/bDmBLZMs067i1aBaviEgpHWU7gC2RLVPgEPylsEREpDQmZB13M9shbIhymeoUr4hIacWI6KTOKJfpsbYDiIiE0NG2A9gQyS3Yso47AXjJdg4RkRBaCoxJJRN9toNUUlRHppGdcSYiUmabARNsh6i0qJbpYbYDiIiEWORO9UauTLOOWw/sazuHiEiIqUwjYF/8LYNERKQ8JkbtFpkolukhtgOIiIRcDH+51siIYpl+3HYAEZEIOMx2gEqKVJlmHbcGONB2DhGRCIjU3JRIlSkwFhhpO4SISATsXtjmMhKiVqa6XioiUhm1wD62Q1RK1MpU10tFRConMqd6VaYiIlIu+9kOUCmRKdOs4+6Gv8yViIhUhkamITTedgARkYjZIeu4m9sOUQlRKtPdbQcQEYmgSIxOo1Sme9gOICISQZG4bhqlMtXIVESk8jQyDYus444AdrCdQ0QkgiKxt2kkyhTYDTC2Q4iIRNDorONuajtEuUWlTHWKV0TEnp1sByg3lamIiJSbyjQkVKYiIvaoTENCZSoiYo/KNOiyjtsMbGc7h4hIhO1oO0C5hb5MgV3RTF4REZs0Mg2BrW0HEBGJuC2yjjvSdohyikKZbmU7gIiIhHt0GoUyTdgOICIiKtOgU5mKiNinMg04lamIiH3b2g5QTipTERGphFCvz6syFRGRSlCZBlXWcWPAFrZziIiIyjTItgBqbIcQERGVaZDpFK+ISHVQmQaYylREpDqMyjpuaM8Uhr1MR9sOICIigL9G+ia2Q5RL2Mu0wXYAERH5QGhP9apMRUSkUlSmAVVvO4CIiHxAZRpQKlMRkeqha6YBpTIVEakeTbYDlIvKVEREKkW3xgSUJiCJiFQPlWlAaWQqIlI9VKYBpTIVEakeoS3TWtsBykxlKoHn9eV7R7a3LrKdQ6RYXizWG9ZVXlWmIlWu17z+7CceeOAQ2zlESqCeCRnbGcoi7Kd5PdsBRIr13mhnlO0MIiXSZztAuYS9TDtsBxApRlftMqevtnesB6tsZxEpAZVpQOkbkARa68ipSwA8w0rbWURKQGUaUBqZSmD1mZ727trl+wB4Mf2/LKGQsx2gXFSmIlVqRdPsaRiaAfIx02k7j0gJhPYMS9jLVKd5JbBWNr0x5v0/99aaLptZREqk3XaAcgl7mWpkKoGUq1s80zP5Xd7/e2/cdNvMI1IiGpkGlEamEkgtzdNW9P97d12sx1YWkRLSyDSgNDKVwMmbruW9NSsm9H+sqz4W2lmQEikamQaUylQCp6155kzM6qt3ddXHtACJhIFGpgGl07wSKB6e19Ewb4c1H881hv1LVSJCI9OACu0/nIRTZ/2CqRhv+7Ueb6wJ+9eqhF8ejUwDa6ntACJD0do8c8BZu7nGWNg3pZDwey+ezoT22n/Yy1TbVklg9MY63HysY+JAH+tsqIlXOo9Iibm2A5RTqMs0lUzkgBbbOUQGo7V5+hzMwJsn5xpj2k5Qgk5lGnCh/geUcPDo6+2sf3eXdX28szHWUMk8ImUQ6u/FUShTneqVqtfRMG8Kxkus6+NdDbGmSuYRKYNQfy9WmYpUgbYRs+rW9/Gu+lhzpbKIlIlGpgH3ju0AIuvTU7Pi7b5Ybtz6ntNdpzKVwFOZBtx82wFE1qe1eep8DGZ9z/FipsbTil4SbKE+SxiFMn3bdgCRdfHI53J1S/Yc1HONFiGRQHvDdoByikKZzrcdQGRd2pvmvIxh08E814tpeUwJrKXxdCbUtylGoUzfAbRIuFSlFU2vjxrsc/Mx01nOLCJlNMd2gHILfZmmkolu4F3bOUTW1FW7bI4X6xnUKV6A3lqTK2cekTJSmYbETNsBRNbUOnLakqE8vyceG3DdXpEAmGs7QLlFpUxn2A4g0l+f6VnZXbts7FBe01NnesuVR6TMNDINiem2A4j0t6Jp9isYRg7lNV31sdDuuCGhpzINCZWpVJWVTW9sOdTX5BpUphJIHjrNGxoOoMkbUhVy8cUzPZNf56L263xdQ2y9CzuIVKk58XQm9DPRI1GmqWQiD8yynUMEoHXktBXDeV2usSYSX68SOi/bDlAJUfri1KlesS5vupb31KyYMJzX5hpjtaXOI1IBr9gOUAlRKlPN6BXr2ppnzsQwrI2+Oxtr4qXOI1IBGpmGjEamYpWH53U0zNthuK/vbIwNq4RFLPLQyDR0VKZiVWf9wlcw3vbDfX2uIdZQyjwiFfBGPJ0Z1hyBoIlMmaaSiRZgge0cEl2tzTOKWnShqyHWVKosIhUSiVEpRKhMC16yHUCiqTe2anE+1jG+mGN01ddog3AJmkhcL4XoleljtgNINLU2T3sdQ1GzcbvqzZBWTBKpAs/YDlApUSvTR20HkOjx6Mt31r+bLPpAxsQ86ChBJJFK6CBCZwMjVaapZGI2MKSdOkSK1dEwbwrGS5TiWJ5hZSmOI1IBz8bTmR7bISolUmVa8LjtABItbSNmlWyxhb6YRqYSGE/YDlBJUSxTneqViumpWfF2Xyy3T6mO11djQr/GqYTG47YDVFIUy1STkKRiWpunzsdQsgXqe2tMV6mOJVJGq4AXbYeopMiVaSqZmAsstJ1Dws8j35WrW7JHKY/ZE491l/J4ImXyXJSul0IEy7RAo1Mpu/amOVMwjC7lMbvrTFELP4hUyOO2A1SaylSkTFY0vT6q1MfsrtcG4RIID9gOUGlRLVNNQpKy6q5dPteL9exZ6uPmGmJeqY8pUmKLiNAygu+LZJmmkom3gTdt55Dwahk51S3HcXMNkfySlWC5L57ORO6Hvih/Zd5tO4CEU5/pWdldu2xcOY6da6yJ8tesBMO9tgPYEOUvzL/bDiDhtKLptVcwlGUd3c7GWMkWgBApg1XAI7ZD2BDZMk0lEy8Cb9vOIeGzsmnumHIdu7OxJl6uY4uUwH/i6UwkFxaJbJkW3GU7gIRLLr54pmfyxS9qv67jN8bqy3VskRKI5CleUJnqVK+UVOvI6SvKefxcQ6yhnMcXKUIfcL/tELZEvUxfABbYDiHhkDddLT01bUVtAL4huYaaEeU8vkgRnoynM2WZxR4EkS7TVDLhAXfaziHh0NY8cwaGso4cu+tjzeU8vkgR/mo7gE2RLtMClakUzcPzOhrmb1/u9+mqNypTqUbdRPx7qcoUnkML30uROusXTsX07VD2NzIm5qENwqXqPBBPZ1psh7Ap8mVaONWrWb1SlNbmGRXbzcUzKlOpOrfZDmBb5Mu0QLN6Zdh6Y6sW52MdEyr1fn0xVlXqvUQGoZ0I3xLzPpUpkEomngFet51Dgqm1efrrGCq2MlFfjYnkTfFStbLxdCZnO4RtKtMPXW87gASPR1++s35h2RZpGEhvrYn8Ny6pKn+xHaAaqEw/9CdAP/HLkHQ0zJuC8RKVfM+eeKynku8nsh5z0ZaWgMr0A6lkogWYbDuHBEvbiFkVX3i+u870Vvo9Rdbh+ihutzYQlenqrrMdQIKjp2bF232x3D6Vft/uulhfpd9TZAA54GbbIaqFyrSfwk4ykdshXoantXnaPAym0u+ba1CZSlX4ezydWW47RLVQma7tWtsBpPp55LtydYv3tPHeucaaihe4yAD0vbIflena/ga02Q4h1a29ae4UDKNtvHdnQ0xft2Lb9Hg685ztENVEX5RrSCUTHWiqt2zAiqbXRtp671xjrOKTnmxa0NbOkbfcwZ5X38Lev/8TVz2/+pWYy5+ZQt2vLmdpx8CT8c/4x0Ns/dtrGfv7P632+M8efpJ9rvkzp2cf+OCxW6fPXuv4MiDNL1mDynRgOn0h69Rdu3yuF+vZy9b7dzbVxG29tw21McNvP3UoM7/7NZ7++olc++I0Zr+3DPCL9pG33ma7jdb9s82pY3fnvpNTqz3Wluvi+QUur3z7VPKex8wl/6Wzp4e/TJvFNyfuXdbPJwSWowHHWlSmA0glE7OBJ2znkOrU0jzV6p6NUdsgPDGymXFbjQFgZH0du24+mkXt/vLE5zz4OBcfech654F9fIdt2KRx9f9kMWPozufxPI/Onl7isRoyz0zhO/uNI15TU75PJhyujqczHbZDVBuV6bpdYjuAVJ8+07OyO75snM0MUSvT/ua3tDHdfY99t96Se19/k61HNbP3lpsP+Tgj6+v44m47M/G6W/nIJhuxUUMdUxYt4fO77lSG1KGyCrjKdohqFKlrL0ORSiYezDrui8C+trNI9VjR9NorGA6xmSHXUNNk8/1tWdnVzVfuuJfLjjqM2liMS556gX+dctywj3fOwRM55+CJAJx5z79Jf+JAbnp5Jg+/+TZ7jtmM8w7dv1TRw+TGeDqz1HaIaqSR6fpdYDuAVJeVTXPH2M7Q1RAbYTtDpfXk83zljns5cc/d+OLHdubNllbmt7Qx4dq/sPPvbmDhinb2u/5WFrcP/ezjVPc9AHYZvQm3Tp/N3758DLPeW8bcZZHennMgvUDGdohqpZHpeqSSifuyjvsKUPFVbqT65OJLXvVMfg/bObrrzEgPPEPlF4ywwfM8vnHPv9l1s035wYHjAdhzzOa8++NvffCcnX93A8994yQ2G9E45OP/36PPcM3njqQnnyfv+SvjxQys6tGqjWu4PZ7OvG07RLXSyHTDNDoVAFpHTmu1nQEAY2JAZCaAPPvOIm6b8RqPzVvAhGv/woRr/8IDc95a5/MXrVjJ52/NfvD3k++8n0NunMyPI6IRAAAYfklEQVScZS18JPMHbn5l5gcfu+e1Nxi/9ZZsNaqZjRsb2H+bBOOu+RPGmGFdiw2539gOUM2M52mN4vXJOq4BpgKaLx9hedPVsmizexoxVMXkn29e9c7imMeWtnNIZNwXT2c+ZztENdPIdANSyYQHXGg7h9jV1jxzRrUUKUBfLDojU7HOA35hO0S1U5kOzl3ALNshxA4Pz+tomL+97Rz95Wu0QbhUzB3xdGaa7RDVTmU6CIXR6UW2c4gdnfULp2H6drCdo798remynUEioReNSgdFZTp4twOO7RBSea0jZlRdcfXEY922M0gk3BJPZ+baDhEEKtNBSiUTfcAvbeeQyuqNrVqcr+mYYDvHmrrrTI/tDBJ6OeD/bIcICpXpEKSSiTuAp2znkMppbZ7uYKrvfuyuem0QLmV3TTydWWg7RFCoTIfu+4C+kUWAR1++s37hLrZzDKSrQV+6UlbtwK9thwgSfUUOUSqZmArcaDuHlF9Hw/wpGC9hO8dAcg3a2UTK6gKtwTs0KtPh+TnQZjuElFfbiFertrE6G2P62pVycYArbIcIGn1BDkMqmfgvujAfaj017e/0xXLjbedYl87Gmqq7jiuh8f14OqMJbkOkMh2+q4HXbYeQ8mhtnvrWenectizXGKuznUFC6Z/xdOYh2yGCSGU6TKlkogc423YOKT2PfFeubvGetnOsT64hVm87g4RODn1PGzaVaRFSycSDwP22c0hptTfNfRnDaNs51qezsaZq1gmW0MjE05l1b8cj66UyLd7ZgK4vhMiKpteabWfYkChuEC5ltQC42HaIIFOZFimVTMwFLredQ0qju3b5XC/Ws5ftHBvSVa8ylZL6TjydWWU7RJCpTEvjV8BrtkNI8Vqap7q2MwxGd51p9vytsUSK9dd4OnOv7RBBpzItgVQykQNOA/K2s8jw9dHb0R1fNtZ2jkExJgastB1DAu894CzbIcJAZVoiqWTiJeA3tnPI8K0YMfsVDKNs5xgsz2iDcCna9+LpzDLbIcJAZVpa/wfMsB1Chmdl09wtbGcYir6YylSKcnc8nbnDdoiwUJmWUCqZ6MY/3avZvQGTiy+Z5Zl80naOocjXmJztDBJYLcC3bYcIE5VpiaWSiWnAhbZzyNC0Nk9rsZ1hqHprVaYybGfH05nFtkOEicq0PC4GXrYdQgYnb7paemrbqm4D8A3picd0BkSG4854OvMn2yHCRmVaBqlkohf/dG+X7SyyYW3Nr87AMKQVhVa1reLm027m4v0u5uL9Lmbei/NW/3jrKm485UZ+c/BvuPyTl+PO9u+4Wbl0JZOOnsQlB17CjPs/vLx+w0k30OYObSOinjrTO6QXiMA7wBm2Q4SRyrRMUsnELCBtO4esn4fndTTM226or7v7Z3ez6xG7ct4L5/Hjp37MmOSY1T7+8OUPs/UeW/OTp3/CSdecRPa8LAAv3/Uy+56wLz946Ac8dtVjALz64Ktss9c2bJTYaEgZuupjuhVLhiIPnBRPZ1ptBwkjlWl5XQY8ZTuErFtn/btTMX0fGcprcityvPnsm+x/yv4A1NbV0rRR02rPWeIsYZdDdwFgzC5jWP7Octrfa6cmXkN3rpve7l5MzJDvzfPEdU9w+PcOH3L2XENMizbIUFwQT2eeth0irFSmZZRKJvLACfg3RksVahsxvXuor1n69lKaN2vmr9/9K5ceeimTz5pMV8fqZ/S32mMrpt87HYC3X36blgUttC5qZfzx43Eedbj+S9dz1E+O4ukbn2biVyZS1zT0HdVyDTVVu0WcVJ2n0MTIslKZllkqmVgEfBXos51FVtcbW7Wkt6ZjyBOP+nr7WDh9IQedfhDnPnEudU11PHLFI6s955Pf/ySdrZ389pDf8tQfn2LrvbYmVhujcVQj37j9G/zo0R+xzd7bMPuh2ez9ub2Z/P3J3HzazWtde12fXGOsZqjZJZJa8E/v6rJAGalMKyCVTDyCv6CDVJG25umvYagd6us23mpjNtpqI3aYsAMAex+7NwtnLFztOQ2jGvjq77/Kj5/8MSddexIrl65k9Har7+r20G8f4sgfHckrd73CtmO35cSrTuT+Cwe/o19nY43KVAbjf+PpzALbIcJOZVo5FwL/th1CfB59+VX1C4e1SMOoMaPYZOtNWDJ3CQBznpiz1gSkVW2r6O32J9s+/+fn2fHAHWkY9eGE4f+++V/aFrex00E70d3ZjTEGDPTkBn+3S2djLD6c/BIpl8TTmbtth4iCIf9ULsOTSib6so57EjAF2N52nqjraJj/Msbbd7ivT/0mxa1n3kpvdy+jdxjNV6/+Ks/c/AwAB51+EEucJdz27duI1cTYMrklJ1x5wmqvv//C+/ns+Z8FYJ/j9uHGk2/kyeuf5OifHT3oDLnGmDYIl/V5EPi57RBRYTxPEwIrKeu444BngEbbWaLs3dH/nNJXkwvcQg39bfZe95tfnrx4R9s5pCq9CUyMpzOBW9krqHSat8JSycRU4Bu2c0RZT037O32x3HjbOYrV1RBr2vCzJIJWAl9QkVaWytSCVDJxKzDJdo6oam2eOg9D4G8r6aqPjbCdQarS1+LpzKu2Q0SNytSec4DHbIeIGo98d65u8e62c5RCd50Z6YGu00h/F8fTmbtsh4gilaklhfV7jwNm2c4SJe1Nc1/CsJntHCVhjME/pScCcDfwC9shokplalEqmWgBjgIWbui5UhrtTa+NtJ2hlDyjDcIFgGfxF2bQ4jCWqEwtSyUTC/ELVZMFyqy7dvncvljPXrZzlFJfTGUqzAE+H09nOm0HiTKVaRUo7DBzLKDNnsuopXmaaztDqeVrjL6BRtsS4Kh4OrPMdpCoU5lWiVQy8RRaw7ds+ujt6I4vHWs7R6n11hrtmRtdHcAx8XRm8As6S9moTKtIKpm4G/iu7RxhtGLE7FcwjLKdo9R64rHBrz8oYdILfDmezkyxHUR8KtMqk0omrgUusp0jbFY2zd3cdoZy6K4zKtPo8YAz4+nMv2wHkQ+pTKtQKpk4H7jRdo6wyMWXzPJMflfbOcqhuz6mywLR84N4OnOT7RCyOpVp9ToTuNd2iDBobZ7WajtDueQatAtbxPw8ns5caTuErE1lWqVSyUQeOB74p+0sQZY3Xa09tW372M5RLrkGfQlHyEXxdOZi2yFkYPpKrGKpZKIbv1DvtJ0lqNpGvDodE94dejqbYvoajobfxNOZ822HkHXTF2KVSyUTPcAJwN9sZwmijsZ529nOUE65xhptEB5+l8bTmZ/aDiHrpzINgMIp35OBP9nOEiSr6hdOxfR9xHaOcupsiKlMw+3SeDrzY9shZMNUpgGRSib6gNOBP9rOEhRtI2aEfkWpXGOs3nYGKZufq0iDQ2UaIKlkwsOf5ft721mqXW9s1ZLempUTbecot1xjTWivB0eYB3xHk42CRWUaMKlkwkslE98FLredpZq1Nc94HUOt7RzlltMG4WHTC5waT2eusR1EhkZlGlCpZOJHwCW2c1Qjj778qvoFO9vOUQndKtMwyQHHxdOZW20HkaFTmQZYKpn4GXA2Whx/NR0N81/GeFvZzlEJ3XWm2fNPC0qwtQNHx9OZkt9XbozJG2OmGWNeNcbca4zZuPB4zBhzZeHxmcaYl4wxHyl87LxhvM8OxphXC3+eYIyJ1OISKtOASyUTVwBfAFbazlIt2ka8Gp3/r40x+N+IJbhc4BPxdObxMh2/0/O8sZ7n7QEsB75TePwrwFbAXp7n7Ql8EXh/tbAhl2l/nudN8TzvrGKOETTR+aYTYqlk4l7g48BC21ls66lpX9AXy4V2xaOBeEYbhAfYNGDfeDrzcoXe7zlg68KfE4DreV4fgOd5Cz3PazHGXAI0Fkazt/UfcQIYY84xxvyq8Ofxxpjpxpjn+LCkMcYcZoy5r/DnTY0x/zDGzDDGPG+M2asyn2plqUxDIpVMTAP2BSr1RVmVWpunvYmJ1v/XfTFW2c4gw3If8PF4OlORH4KNMTXAEXy4ROkdwOcKpZkxxowD8Dzvp3w4mj1pA4e9GTjL87wD1vOc/wOmep63F/6I989FfSJVKlLfdMIulUy4wCHA3baz2OCR787VuXvYzlFp+RrTaTuDDNkVwLHxdKYSl2cajTHTgGXApsDD4I9EgSTwM/x5F48YY44Y7EGNMRsBG3ue90Thob+s46kHv/8xz/MeBUYXXhsqKtOQSSUTq4DjgEttZ6m09sY3pmDYzHaOSuutNaFfnCJEeoFvxdOZs+PpTKUmDnZ6njcW2B6oo9/pWM/zujzPe8DzvHOBi/HnX6ypl9W7oqHwu2Fwk9/MAI+FbtKcyjSECvei/hg4A4jM5tHtI16L5G0iPfFYZP6NA64V+Gw8nbnOxpt7ntcGnAWcY4yJG2P2McZsBf7MXmAv4O3C03uMMe8vVbkE2MIYM9oYUw8cUzheK9BmjDm48Lx1nRJ+8v2PGWMOA5Z6nreitJ+dfSrTEEslEzcAR+HP4Au17tqWN/pi3XvbzmFDd30sbzuDbNBUYHw8nfm3zRCe500FpuNvnrEFcG9hctEM/BHo1YWn/gGYYYy5zfO8HuD/AS/gX+d9vd8hTwd+X5iAtK7LDb8CJhhjZuDfG39aST+pKmE8L3SjbVlD1nG3xd915iDbWcplycaPPtFdt/RQ2zls+Hx2yRPbLOyK5OceEDcA34unMzodH2IamUZAKplYABwG/JoQXqvoo7ejO750nO0ctuQaa0L3bxoSncDp8XTmDBVp+KlMIyKVTPSmkonz8E/7vmc7TymtGPHaKxhG2c5hS64hNtAED7HrTeCAeDpzi+0gUhkq04hJJRP/BvYGHrGdpVRWNs6J3Aze/jobYzW2M8hq/oF/fXS67SBSOSrTCEolE4uBTwG/BAI9eSUXf2+WF8vvZjuHTbnGmtDvjhMQHcCZ8XTmi/F0ps12GKkslWlEpZKJvlQycQFwOPCu7TzD1do8rcV2Bts6G2PxDT9LyuwFYFw8nfmD7SBih8o04lLJxJPAWOB+21mGKm+6WntqW8fbzmFbZ0NNw4afJWXSC6SBg+LpzFzbYcQenR4SUsnEUuCYrOOeCvwOf8mxqrdixKvTMUT+lpCuxpjK1I45wCnxdOZF20HEPo1M5QOpZOLPwG7AZNtZBmNl47ztbGeoBjltEF5pHnAN/mldFakAGpnKGlLJxHvAiVnHvRW4FtjWcqQBrapfOA3TN9Z2jmrQ1aAyraBZ+JOMnrEdRKqLRqYyoFQycT+wO/B7/B0lqkrbiBnaKaWgJ26avSr8NwqZHHA+/mhURSpr0chU1imVTLQD38067l+BPwIfsxwJgHys873empUTbOeoGsYYoB2iu3BFmT2GPxrVBCNZJ41MZYNSycSzwDj8TX67LcehtXn6bAy6HaQfz9BhO0MILcNfDvBwFalsiMpUBiWVTHSnkolf4Zfqg7ZyePTlV9Uv2MXW+1ervphRmZZOL/7ljaSWA5TB0mleGZJUMjEbODrruJ/E34C8opOAOhrefhnj7VvJ9wyCfA252kCvZVU1HgR+GE9nXrMdRIJFI1MZllQy8R9gPPA1YGGl3nfFiJn6f3YAvbWmy3aGgJsNHB1PZ45Wkcpw6BuTDFthScI/AbsA5wEryvl+PTXtC/Kx3D7lfI+g6onHrF/LDqhlwHeBvePpjLXLFxJ8Os0rRUslE53Ar7OOewP+4vlnQuknCLU2T3sTU533vdrWXR/rtZ0hYNqBK4HL4ulMq+0wEnwqUymZVDLxX+B7Wce9ErgESJXq2B757lydu0epjhc2XfUx3Wc6OB3A1cCl8XRmme0wEh4qUym5VDIxFzgu67gTgZ8CX6DISwrtjW9MwXBgKfKFUVeDrthsQCf+EoC/iacz/7UdRsJHZSplk0omXsIv1SRwLnAKUDecY7WPeE1L5q1HTmW6LjngeuCSeDqz2HYYCS+VqZRdKplwgK9nHfeXwNn411RHDvb13bUtb/TFuvcuV74w6GyMqU1Xtwx/JPr7eDqzxHYYCT+VqVRMKplYBJybddyLgO8AZwFbbOh1Lc1T3wV2KnO8QOtsrNGKUL65+NsI3hJPZ7R+s1SM8TzPdgaJqKzjNgD/A5wDfGSg5/TR2/Hu5tk8RuvOrs9Oczpe+dSDy6J829DTwGXAvfF0RpOxpOI0MhVrUslEDrgm67jX409SOhP4JGDef077iNdewfBxSxEDo7Ohpt52BgtywN/xT+W+YDuMRJvKVKxLJRN54C7grqzjfhQ4AzgdGNPeOGczq+ECItcYa7CdoYJm4u9idGs8nWmxHUYEdJpXqlTWceM9NSs+u3j0g2cCn0Krda1Xc3vv4lNvXrSl7Rxl1AHcDvwxns48bzuMyJpUplL1JrVM2ho4FX+0urPlOFUp3t238ozrFjbbzlFiHvAscCvw13g6U9blKkWKoTKVQJnUMml/4EvAccD2luNUD8/zvnXVAs+EYwT/MjAZuD2eziywHUZkMFSmEliTWiZNBI7HL9YdLcex7ltXvtNmYCPbOYZpFn6BTo6nM2/YDiMyVCpTCYVJLZPG4Rfr8fi72ETON696Z1HMYyvbOQYpDzwP3A/8M57OzLKcR6QoKlMJnUktk3YHPg0cCRwCNNlNVBnf+P2CN2rzXjUvbrEMf/Pt+4GH4unMcst5REpGZSqhNqllUj1wIP6M4COBcYTjuuJa/ve6Ba/Wd3vVtLNOLzAFeBS/QF+IpzN5u5FEykNlKpEyqWXSaOAI/GI9CNiVfotEBNlpN747ZURHfoLFCDngReAJ4EnguXg602Exj0jFqEwl0ia1TNoImAjs1+/XBtcLrkZf/fOi5zZu7T2ggm+5CJiKf+3zCeDFeDrTVcH3F6kaKlORNUxqmbQDfqnuC0wAdgdG28w0GMdPXvzUFu91l2vpxfnAK/1/aTcWkQ+pTEUGYVLLpC3xS3V3YDcgiT9reGubufr73N3vPbHtgtyhRRyiG3gTmIO/+8qcwq8ZWrZPZP20Nq/IIHx/k+8vBhYDj/R/fFLLpGb8Ut0Ov1gH+jXovVuLkWuIbegn4xb8U7Nu4dciYCEfFuc7miAkMjwamYqU2aSWSSPxSzWBv6jCKPyC7f97/z/Xs+FJUR7Qib9mbQfQMfH51vkTX1xRB7QWfrUBSyiUZzydyZX2MxOR96lMRUREihTK++1EREQqSWUqIiJSJJWpiIhIkVSmIiIiRVKZioiIFEllKiIiUiSVqYiISJFUpiIiIkVSmYqIiBRJZSpWGGO2McbcY4yZa4x50xgzyRhTN8RjPG6MeccYY/o99g9jzMohHucWY8zxQ3mNiEh/KlOpuEL5ZYF/eJ63M/5C8c3ARWs8bzAbMbTib/KNMWZj/PVvRUQqSrvGiA2HAznP824G8Dwvb4w5G5hnjJkHfAJoAEYYYz4JXA0cCszD/wHwJs/z7iwcazJwAvA0kMIv6d3hg9L+LXA0/sLwF3qed3vh8asKOebRb1F5Y8x44HL8cl8KfM3zPLdc/yFEJBw0MhUbdgde7v+A53krgHfwf8A7ADjN87zD8QtyB2BP4OuFj/X3CHCIMaYGv1Rv7/exFDAW2Bv4JHCpMSYBfBF/P9I9gTOAAwGMMXH8kj3e87zxwE2sMVoWERmIRqZig8EfKa7r8Yc9z1teeOxg4O+e5/UBi40xj63xmjz+qPQrQKPnefP7XUI9GPib53l5YIkx5glgInBIv8cXGWMeLTw/CewBPFw4Rg3+9mUiIuulMhUbZgHH9X/AGDMK2Ba/HDv6f2gQx5sM3A38ao3H1/fadZX5LM/z1hz9ioisl07zig2PAE3GmFMBCqdoM8AtwKo1nvs0cJwxJmaMGQMcNsDxngJ+DfxtjcefBL5ijKkxxmyOPyJ9sfD4CYXHE/jXaAEcYHNjzAGFXHFjzO5FfaYiEgkqU6k4z9+R/ovAl4wxc4E5QA44b4Cn3wUsBF4FrgdeANrWPJ7neZd5nrd0jdfeDcwApgOPAj/2PG9x4fG5wEzgWuCJwnG6geOB3xhjpgPTKFxPFRFZH+N/XxOpXsaYZs/zVhpjRuOPLA8qlKKISFXQNVMJgvsK95DWAReoSEWk2mhkKiIiUiRdMxURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKZLKVEREpEgqUxERkSKpTEVERIqkMhURESmSylRERKRIKlMREZEiqUxFRESKpDIVEREpkspURESkSCpTERGRIqlMRUREiqQyFRERKdL/Bw2HV+CSVr+3AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 576x576 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"##Quel(s) parcour(s) avez-vous suivi ? [Jupyter]\tQuel(s) parcour(s) avez-vous suivi ? [RStudio]\tQuel(s) parcour(s) avez-vous suivi ? [Org-mode]\n",
"\n",
"Jupyter=donnees.loc[donnees.loc[:,\"Quel(s) parcour(s) avez-vous suivi ? [Jupyter]\"]==\"Oui\",\"Quel(s) parcour(s) avez-vous suivi ? [Jupyter]\"].count()\n",
"OrgMode=donnees.loc[donnees.loc[:,\"Quel(s) parcour(s) avez-vous suivi ? [Org-mode]\"]==\"Oui\",\"Quel(s) parcour(s) avez-vous suivi ? [Org-mode]\"].count()\n",
"RStudio=donnees.loc[donnees.loc[:,\"Quel(s) parcour(s) avez-vous suivi ? [RStudio]\"]==\"Oui\",\"Quel(s) parcour(s) avez-vous suivi ? [RStudio]\"].count()\n",
"\n",
"plt.figure(figsize=(8,8))\n",
"plt.pie([Jupyter,OrgMode,RStudio],colors = ['lightblue', 'lightgreen', 'salmon', 'blanchedalmond'],labels=[\"Jupyter\",\"OrgMode\",\"RStudio\"],autopct='%1.1f%%')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Très peu de pré-requis, l\\'essentiel est bien mis en valeur dans les vidéos comme \"sommaire de luxe\", et le choix est laissé grâce aux docs complémentaires d\\'approfondir les outils qui nous paraissent utiles.', 'Bonne qualité des vidéos, exercices abordables', '- très utile, très pratique. Abord des points non abordés lors des études et pourtant indispensables au métier de chercheur.', 'Bonne présentation des outils', \"Comprendre l'intérêt de se poser la question de la reproductibilité. Avoir des idées de solutions pour être outillé. Mettre en pratique et pouvoir vérifier que l'on a bien compris.\", 'Beaucoup de détails mais cours très accessible ', 'La possibilité de suivre plusieurs parcours avec plusieurs langages est très appréciable.\\nDe nombreuses ressources sont disponibles pour ceux qui voudraient aller plus loin sur les sujets de son choix.', 'Très bonne pédagogie, aspect très pratiques', 'Vidéos très bien réalisées. Cours clair et bien structuré. Supports de cours fournis. Exercices intéressant et abordables mêmes avec un niveau relativement faible en programmation/statistiques.', 'Accessibilité. Explications détaillées. Réactivité.', \"Obtention d'une vision synthétique du sujet\", 'Le sujet abordé']\n"
]
}
],
"source": [
"def commentaires(colonne):\n",
" liste_commentaires=list(donnees.loc[:,colonne].dropna())\n",
" print(liste_commentaires)\n",
"commentaires(\"Quels sont, selon vous, les points positifs de ce cours ?\")"
]
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment