Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
61cbc2a4c93a3237a08f8b8e6c523229
mooc-rr
Commits
9b7540a5
Commit
9b7540a5
authored
Jun 03, 2020
by
61cbc2a4c93a3237a08f8b8e6c523229
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
a
parent
b1eea8f0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
8 deletions
+50
-8
Untitled.ipynb
Projet Maman 3/Untitled.ipynb
+50
-8
No files found.
Projet Maman 3/Untitled.ipynb
View file @
9b7540a5
...
@@ -2,27 +2,34 @@
...
@@ -2,27 +2,34 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
4
,
"execution_count":
18
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"import numpy as np\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.pyplot as plt\n",
"from IPython.display import Markdown, display\n",
"from IPython.display import Markdown, display"
"\n",
"\n",
"donnees=pd.read_csv(\"results-survey669838(3).csv\")"
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
5
,
"execution_count": 2
9
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-0.17\n",
"0.83\n",
"1.83\n",
"2.83\n"
]
},
{
{
"data": {
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA
qIAAAJECAYAAADNHEZsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm4JGV5/vHvzTpswyKjgiCLoAYMouKOSnDfUNGguIG7v2hQY2LcxS0aTdTExAWjoggYdxE1GlFwX0ARUUBQQMRRQLYBN8Dn90fVYXqa7jMnyNQ7nv5+rutcp7uquvrpWu+ut6o6VYUkSZI0tHVaFyBJkqTZZBCVJElSEwZRSZIkNWEQlSRJUhMGUUmSJDVhEJUkSVITBtGBJXlHkpctYLhbJflekhVJDlnNsDdPckWSdRdYw45JKsl6C617bZHk0CQf6B+v9nP3/XcersLrvP8+SX5+PV53cJKvromaFvj+90hyxkDvdU6S+wzxXovVUMt5ksOTvGZNv8/Yey7osyV5cZL/GqKmtV2SJUn+N8n+rWv5UyT5bJKDWtehNWvBQTTJ8UkuSbLhmixoMZkUJqrqmVX16gW8/AXA8VW1WVX9+3wDVtXPqmrTqrqmf9/jkzz1+lf+52Ehn7vv/9M2FV5XH7p2vAHGc4PO4/6LyS5zz6vqK1V1qxtq/P+HOg5NcujQ7zufSV8mRr8Q3QDjX2XaL2D4tX45vyEt9LNV1T9V1aLf7i1EVf0OeDjwjCR7tq4Hrt8BkKp6YFW9r3990y/na4N+W1RJPjbW/bZ99+NHuiXJPyQ5M8lvk/wsyevHM1ySuyX5Yn/Q67Ikn0qy29gwS5O8pR/HFUnO6p9vPaHGHZJ8PMmFSS5I8qLVfa4FBdF+x3kPoID9FvIa/cl2AH7YughJ0p+fqrqyqu5fVScP8X4LbZFb7AZoabwQuFuSG410Owj48dhw/w48HXgisBnwQGBf4ENzAyS5K/B54JPAtsBOwPeBr821QiTZADgO2B14ALAUuBvwa+BOE+rbph/fjsDewD8mmTTcSlW12j/g5cDXgDcBx450vwvwS2DdkW6PAE7pH68DvBD4SV/0h4Ct+n7/AVwx8nc1cOiE994W+O3c6/putwMuAtbv3+OlwLnABcD7gc374fYBfj42vnOA+/SP7wScCFwO/Ap405TPvzVwLHApcDHwFWCdvt/c51sB/Ah4RN/9L4DfAdf0n+/SvvvhwGvmGy/wxf51v+tfe0vgwcD3+lrPG51W/QwvYD3gtWOv/Y8Jn+fa4fvnmwPvBpYD5wOvmZunwC7ACcBl/TT/73mWk72Br/ef5zzg4JHxv59uBTq3n19z0+9g4KvAvwCXAGcDDxwZ5079+68A/rdfbj6w0M/d99/lBqjjYOCnfR1nA4+bMg026ufxJf3y8A+MLIN0y9+OC6zna8Bb+2l/OnDvvt+0z3rrfhpdDJwBHDDyvocD/wl8uv8M3wJu0ff7cj+druzH92jG1h265fn4ft7+ENhvIeOeMo2e0H/eXwMvYdV18lD6ZXtunoy9dnR+zvu+802PCTU9CTitH89PgWf03Teh2/78kZXbqscCfwCu6p9///quR1Om/ZZ024UL6ZajY4HtVjPvb5DlfMJ0uR3w3X66/DfwQfrtV9//IcDJ/XLxdWCPKeMJ8Ga6bfRlwCnAbfp+xwNPHVvXvjryvPrpt7r9zaH024YJ7z/fNH0McOLY8M8Djukfb9hPr5/R7SfeAWw0MuzD+mlwOd2+4AFTavjHfrlYQbc8zq3Ph49N031Ydd3bHvhYX/uvGdmmA09j5XL7I+D2ffdtgY/2rzkHeN7Iaxa03+uHfQHd8vwL4Klcd/17O/AZuuX3Psy/n/pZ//q59eiu4/OM6+6bju/fd9r+dN55M/ZZDmbKNnVkmh1Dt704C3ja2DZuvnl0Tj9/TwF+P1f/2Pvvzsrt0a+AF/fdp+akCePYB/h5/zmf1Xdbt+/2crpWVIBd+2l1p7HXb9/Xt2///CvA2ya8z2eB9/ePn9rXu+m05WS+P7pl/aHzDrPAEZ0F/A1wB7qN701G+v0EuO/I8w8DL+wfPxf4JrBdv8C8Ezh6wvj3pFthbjfl/b84tlC8EXhH//jJfX07A5vSrbBHTFpYRhaYuZ3eN4An9I83Be4y5f1f18/49fu/ewDp+/11vwCvQ7cTuRLYZmTBH9+RXrtAr2a8x7Pqxnkf4C/799mjXzAePt/KO8/8HB/+E/282QS4MfBtVu6Ij6YLC+sAS4C9p4zz5nQbwwP7z3IjYM++3/vpviFt1r/3j4GnjEyjq+g2qOsC/49uozc3Hb5B9wVoQ+Ce/XtcJ4hO+9ysuuG8XnX00+Vy4Fb9sNsAu0+ZDq+nW7m3olvpT2VsGRwZdnX1XE23Q1yfbtm6jJVf5Fb5rH2N59EFqvWA29MFnt1HlruL6XZC6wFHAh+cNJ3G153+/c8CXgxsQPetesXI9Jh33GOfeTe6Hck9+3n6pv5z3mfCsAez+iA68X1XNz0mvNeDgVv08/tewG9YuVO/dlqMDH8oY6GH67keTZj2NwIeCWzcLxsfBj4x0n+VeX9DLecTpskGdEF2bhl8VP/aue3X7emC5Z37cR1Et33dcMK47g+cBGzRT+O/YOV2cpXPMz7fxz7bfPub68yThUzTvtsKYNeR4b8DPKZ//Ba6gLJV/9pPAa/r+92Jbr28bz9vbwbcesL734puedx2ZNs190XwcKaEnH66fp8uxG/CyLJDt+85H7hjP013oWtJW6ef1q+kW8d26efLg0e2qQvZ7z2ALvjv3k+jI7ju+ncZcHdWLtf7sMD91KR5Nj4MI8sGk7cHU+fNlO3JfNvUE4C39Z9jLpMs9MvCOXRfRrZnQhDua1sOPL8f/2bAnft+C8pJo+9Ld0TyW323BwGfowuMx/fdngmcO2UcJ9Blj43pwupfTRjmScDy/vEHgfdNGtfq/vrPew6rCbELGdHedBufrfvnp7Pqt6vXAO8ZmdhXAjv0z09j1W8c2/TjGl0Ql/WFPmaeGp4KfLF/HLoV+p798+OAvxlb4a+i2/mssrCMLDBzQfTLdCvr1quZBq+i27DvMt9w/bAnAw+bZ8W5doGeb7ysPky+BXjz6lbeKa+9dnjgJnTfkEa/4R8IfKl//H7gMPqjB/OM80XAxyd0X7cf/24j3Z7ByhXmYOCskX4b97XdlC7cXg1sMtL/KK5HEP0T69iE7ojPI5nybXvkdT9l5IgIXdPIdYLoAutZJSDQBZsnTPqsdBvVr4y9xzuBV4wsd/810u9BwOnj02nk+T6s3Bneg26HtM5I/6NZeeRy3nGP1fRyVg3Am9AdXby+QXTi+65ueixgPf4E8JzxaTHS/1BW3YFe7/VofNpP6L8ncMnI81Xm/Q21nE9433tOWAa/zsrt19uBV4+95gzgXhPGtS9dIL7L6HI0ZVleZb6PzfP59jerzJPVzN/xafoB4OX9413pgunGdPubK1n1SPtdgbNHlqk3L+D9dqEL7fcB1h/rdzjTg+hd6QLRpCNsn5tbRse635kurIzOtxcDh/ePF7rfew8joa7/DOPr3/tXM46p+6kp69EqwzBPEF3dvJlQy8FM2abSBchrgM1G+r1uZJpNnUf983OAJ88zHQ4Evjel32pz0pRl40y6vPNB4HGsGkRfCnxzyvt9EHgXXfAtJn9xegBwVf/4f4HXL2S9GhvHo+n2G9cZ//jfQs4RPQj4fFVd1D8/qu/GyPP9+xNg9we+W1Xn9v12AD6e5NIkl/YT/Bq6jTZJ1gc+AhxVVR/suz2uPxn2iiSf7cfzEeCuSbal2zgW3VEn6I5Gzr0f/eO5gLU6T6Fr9j49yXeSPGTKcG+kOyL0+SQ/TfLCuR5Jnpjk5JHPeBu6JveFmDrecUnunORL/QnAl9F941no+8xnB7pvh8tHPsM76Y7oQNc0E+DbSX6Y5MlTxrM93dGKcVuz8sjKnHPpjhzM+eXcg6r6Tf9wU7p5e0lVXTn22uvjetfRv/+j6ab58iSfTnLrKe+zLd0XpdXVu5B6zq9+jR7pv+2U8e0A3HluHvbz8XF0QXrOL0ce/4ZuGi/EtsB5VfXHeWpd6LhXmT79tP31AuuYZNr7LmR6XCvJA5N8M8nF/bAP4v+2ft1Q6xFJNk7yziTnJrmcLjhsscBz8P6U9W3ctkxeBufsADx/bBpvz4RltKq+SHdazX8Cv0pyWJKlC/g84+bb30y1gGl6FF1YgO7Ui0/002YZXSA9aeQz/k/fHaZv91ZRVWfRHfk6FLggyQf7/dnqbE93ZOvqKf0mvfcOdEcIT0tyepLT6Y6Az03vhe73xrdl500YZpVua3A/Ncnq5s0k07ap2wIXV9WKsX6j683qTJo+c+ZbTubNSfM4Ang28FfAx8f6XUQXaCfZpu9/Cd0pR5OGmxsGuu3ztHHN5znAC6rq9NUNOG8QTbIRcABwryS/TPJLusPat01yW4Cq+hHdDHsg3Qp81MgozqM7/2iLkb8lVXV+3/+tdN88Xzr3gqo6srqrJDetqgf23S6lO6H2gP49jh5ZmH5BNyPnzB1F+xXdt6WNRz7PuowspFV1ZlUdSLez+GfgI0k2GZ8OVbWiqp5fVTsDDwX+Lsm9k+xA983i2cCNqmoLuqbYzL10vuk7bbxTBj+Krgli+6ranK5JP1OGnfd9x5xHdwRl65F5tLSqdu9r/GVVPa2qtqU7svK2TL7C9zy6ps1xF9F9uxufR+dPGHbccmDLsXly83mGn+9z/yl1UFWfq6r70q2Qp9PN90mW0210Rt/j+tZzsyQZ6/+LuZLGxncecMLYurZpVf2/qR9q4X4BbJ9kdHux4Gk3ZpXpk2RjumbTScbX34khcooFT48+1HyU7lyzm/Tr8WeYfz2eNP1viPUIuuasW9E13S2l+/LNauqZ8yct52OWM3kZnHMe8NqxabxxVR09aWRV9e9VdQe6pt5b0p0/DWPzmSlfFvpxzLe/mc/qpunnga3TXWF+4Mh4L6I7R3j3kc+4eVXNBfdp271JtR9VVXvTzZui2+fA/J//PODmUy6Amfbe59E1q9565G+nqtq/r2NB+z26+b/dyPPtJwwzvizOt5+atNwueN5PeP3q5s0k07apvwC2SrLZWL+59WYhdc63Xs63nKwuJ01zBN0pk58Z+UI554t02+xVLhJKsj1dq8Rx/UGAb9Cd4jHuALrWZoAvAPefsozMZxtW7q/mtbojog+nS+a70TVl7El3bs9X6K7EmnMUcAjdyv3hke7vAF7bBzaSLEvysP7xM+jOxXrs2JGWaY7q3/ORrLrxORp4XpKdkmwK/BPdhQBX0zUFLUny4P7o60vpzsGgr+HxSZb1739p3/ma8TdO8pAku/QL8OX9MNfQNSsWXdMJSZ5Ed0R0zq+A7fqrzq5jnvFOshndN7bf9QvXY6cMN/e+C7qnYFUtp9sI/2u6WzSsk+QWSe7V1/jXSeY2Rpf0n3dSjUcC90lyQJL1ktwoyZ7V3VrpQ3TLwWb9svB3dE1hq6vtXLqT6l+ZZIMke9MF9v/z5/5T6khykyT79Svi7+nOcZw2nz4EvCjJlv10+9s/oZ4bA4ckWT/JX9Ote5+Z8lmPBW6Z5An98OsnuWOSv1jd55syvlHfotsQv6Af7z508+GDCxz3qI8AD0myd79evIrp26HvA7sn2TPJErqjSQv1f5keG9BtFy4Erk7yQOB+I/1/BdwoyeZj3XacC+d/4no0Pu03o9vBXppkK+AVY/WukeV8gm/Qfak/pF+n92fVq2TfBTyzPwqWJJv029rNxkfUT/s799vhK1l54Ql0pzPtn+6o5S50R+zmM21/M595p2m/v/gIXSvVVnTNkfT7hncBb05y4/6z3CzJ/fuXvht4Un9gYp2+33VaS9LdF3rf/kvP7/paRj//g5Js1X/Zeu7IS79NFwhf30/fJUnu3vf7L+Dvk9yhn/679PP72/3nfHGSjZKsm+Q2Se7Y17Kg/R7dcvSkJH+R7gvjy1czjWH+/dSFdEfgRpfdk4F7prsn9OZ0p3hNs8r+dAHzZpKJ29SqOo/utJPX9dN4D7rl8MiROqfNo4U4Frhpkucm2bBfN+/c95uak+ZTVWfTZaiXTOj34368Rya5S78M7E73hfsLVfWFftAXAgclOaSvact09wm+K93pG9AF3vOAjya5db+c36hfvh40T4l3omt5WL2av43/f4B/ndD9ALrmnbnzOG5Ot4B9emy4deg2gmfQHfn8CfBPtfLcj7md+tzfi+epZaN+HD+c8B4v7yfUhXQb3C1H+h9MtyJfAPw9q54j+oG++xV0VwI/fMp7P69/3ZV05968bKTfa+kumLiI7sKLE1h5TssGdFf0XgxcVGPnmqxmvMez6nlTj6I7ErCCbqGeePV4rTxP5sd0O7x/n/B5xoffnO58r5/Tnbz9PVaeqP8Gum+FV/Tz7+nzzKN70IWWuSsmD+q7b9lP6wv77i9n7CresfGMnoe0M90XnyuY56r5aZ97bFzXqw66b3ZzVzxf2s+b3aZMg43pzge8lAlXzY8Nu7p6vtZ/3sv6z3W/kddO+qy3olve5q6u/SIrLxg7nPnPcXom3XpyKd36Pd5/95FpcO3dIRYy7gmf+yC6q1yvc9X8hGFfQrdunQc8fmx+ru4zTZ0eE97nWXQ7ukvpNrzjV4e/px/HpXTNeDeiu/r8ErrmYbie69GEab8t3TJ2RT+Pn8EAy/mU6bJX/znmrpr/77Hp8gC6C3su7T/Dhxk5z25kuHvTXVF8RT8/j6S/gIGu6fbz/Xt8je4Lx8RzRPvn0/Y3hzL9YqV5p+nI9quA/xx77RK6Axw/pdu2nQYcMtL/Ef1nW0F3qtX9J7z/HnQBcQXd/uBYVl64tKSfrpf343keqy7HN6c7Z/nX/bT795F+z6Tbv15B1xp3u5HPezTdfvoSuoth/k/7vX7YF/Xj+AXdhW1Fd7QTxta/vtvU/VTf/1V0y+Wl9BdJ0Z2ucWk/7Z4GU88RnbQ/nXfejNV2MPNvU7fra76Ybh195tgyMN88Oocp27CRYW5Dd5Txkn6azl1kNzUnTRjHPkzfn1x7jujIeP+xn66/pdsWvAFYMva6vVm5blzeT+PbjA2zOd35vuexchv2JrqW4Gmf94fAPvNNk7m/uSuTJUmSJupbE06luyvCpHNW12pJDqYLtXu3rkWr8ic+JUnSdSR5RH9a1JZ055N+6s8xhGrtZhCVJEmTPIOuKf0ndOeR3hAXP0qrsGlekiRJTXhEVJIkSU0YRCVJktTEpJvkSmudrbfeunbcccfWZUjSn5WTTjrpoqqa79eGpKYMovqzsOOOO3LiiSe2LkOS/qwkub4/iywNwqZ5SZIkNWEQlSRJUhMGUUmSJDVhEJUkSVITBlFJkiQ1YRCVJElSEwZRSZIkNWEQlSRJUhPe0F66Ae34wk+3LmHROOf1D25dgiRpDfOIqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCIao1Jsn2SLyU5LckPkzyn775Vkv9Ncmb/f8vWtUqSpOEZRLUmXQ08v6r+ArgL8KwkuwEvBI6rql2B4/rnkiRpxhhEtcZU1fKq+m7/eAVwGnAz4GHA+/rB3gc8vE2FkiSpJYOoBpFkR+B2wLeAm1TVcujCKnDjKa95epITk5x44YUXDlWqJEkaiEFUa1ySTYGPAs+tqssX+rqqOqyq9qqqvZYtW7bmCpQkSU0YRLVGJVmfLoQeWVUf6zv/Ksk2ff9tgAta1SdJktoxiGqNSRLg3cBpVfWmkV7HAAf1jw8CPjl0bZIkqb31WhegRe3uwBOAHyQ5ue/2YuD1wIeSPAX4GfDXjeqTJEkNGUS1xlTVV4FM6X3vIWuRJElrH5vmJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEJUmS1IRBVJIkSU0YRCVJktSEQVSSJElNGEQlSZLUhEFUkiRJTRhEtcYkeU+SC5KcOtLt0CTnJzm5/3tQyxolSVI7BlGtSYcDD5jQ/c1VtWf/95mBa5IkSWsJg6jWmKr6MnBx6zokSdLaySCqFp6d5JS+6X7LaQMleXqSE5OceOGFFw5ZnyRJGoBBVEN7O3ALYE9gOfCv0wasqsOqaq+q2mvZsmVD1SdJkgZiENWgqupXVXVNVf0ReBdwp9Y1SZKkNgyiGlSSbUaePgI4ddqwkiRpcVuvdQFavJIcDewDbJ3k58ArgH2S7AkUcA7wjGYFSpKkpgyiWmOq6sAJnd89eCGSJGmtZNO8JEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOoJEmSmjCISpIkqQmDqCRJkpowiEqSJKkJg6gkSZKaMIhKkiSpCYOo1pgk70lyQZJTR7ptleR/k5zZ/9+yZY2SJKkdg6jWpMOBB4x1eyFwXFXtChzXP5ckSTPIIKo1pqq+DFw81vlhwPv6x+8DHj5oUZIkaa1hENXQblJVywH6/zeeNmCSpyc5McmJF1544WAFSpKkYRhEtdaqqsOqaq+q2mvZsmWty5EkSTcwg6iG9qsk2wD0/y9oXI8kSWrEIKqhHQMc1D8+CPhkw1okSVJDBlGtMUmOBr4B3CrJz5M8BXg9cN8kZwL37Z9LkqQZtF7rArR4VdWBU3rde9BCJEnSWskjopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCbWa12AZlOSc4AVwDXA1VW1V9uKJEnS0Ayiaumvquqi1kVIkqQ2bJqXJElSEx4RVSsFfD5JAe+sqsPGB0jydODpADe/+c0HLk9aZA7dvHUFi8uhl7WuQFoUPCKqVu5eVbcHHgg8K8k9xweoqsOqaq+q2mvZsmXDVyhJktYog6iaqKpf9P8vAD4O3KltRZIkaWgGUQ0uySZJNpt7DNwPOLVtVZIkaWieI6oWbgJ8PAl0y+BRVfU/bUuSJElDM4hqcFX1U+C2reuQJElt2TQvSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiAqSZKkJgyikiRJasIgKkmSpCYMopIkSWrCICpJkqQmDKKSJElqwiCqJpI8IMkZSc5K8sLW9UiSpOEZRDW4JOsC/wk8ENgNODDJbm2rkiRJQzOIqoU7AWdV1U+r6g/AB4GHNa5JkiQNbL3WBWgm3Qw4b+T5z4E7jw+U5OnA0/unVyQ5Y4DaZsXWwEWti5hP/rl1BWpkrV82AXhlWlewUDu0LkCaj0FULUzagtd1OlQdBhy25suZPUlOrKq9WtchjXPZlGaLTfNq4efA9iPPtwN+0agWSZLUiEFULXwH2DXJTkk2AB4DHNO4JkmSNDCb5jW4qro6ybOBzwHrAu+pqh82LmvWeMqD1lYum9IMSdV1Ts2TJEmS1jib5iVJktSEQVSSJElNGESlGZBkw4V0kyRpSF6sJM2GbwC3X0A3aTBJtqO7a8Y9gG2B3wKnAp8GPltVf2xYnqQBGESlRSzJTel+yWqjJLdj5Y8JLAU2blaYZl6S99Itm8cC/wxcACwBbgk8AHhJkhdW1ZfbVSlpTfOqeWkRS3IQcDCwF3DiSK8VwOFV9bEWdUlJblNVp87TfwPg5lV11oBlSRqYQVSaAUkeWVUfbV2HNEmSjehC5xmta5E0LIOotIgleXxVfSDJ84HrrOxV9aYGZUnXSrIf8EZgg6raKcmewKuqar/GpUkagOeISovbJv3/TZtWIU33CuBOwPEAVXVykh0b1iNpQAZRaRGrqnf2/1/ZuhZpiqur6rIkqx9S0qJjEJVmQJIlwFOA3emuTAagqp7crCipc2qSxwLrJtkVOAT4euOaJA3EG9pLs+EI4KbA/YETgO3orpyXWvtbui9IvweOAi4Dntu0IkmD8WIlaQYk+V5V3S7JKVW1R5L1gc9V1b6ta5MkzS6PiEqz4ar+/6VJbgNsDuzYrhzNuiSHJfnLKf02SfLkJI8bui5Jw/IcUWk2HJZkS+ClwDF0V9G/rG1JmnFvA17Wh9FTgQtO5qUZAAAZI0lEQVTpzl/ele6Xv94DHNmuPElDsGleWsSSPKeq/i3J3avqa63rkcYl2ZTul7+2ofut+dO8sb00Owyi0iKW5OSq2jPJd6vq9q3rkcbNfVlaXTdJi5NBVFrEkhwN3BVYBvxktBdQVbVHk8Kk3qQvSXMX17WqSdJwPEdUWsSq6sAkNwU+B/iTiVprJDkQeCywU5JjRnptBvy6TVWShmYQlRa5qvolcNvWdUhjvg4sB7YG/nWk+wrglCYVSRqcTfOSJElqwiOikqTBJflqVe2dZAUwekRk7vzlpY1KkzQgj4hKkiSpCY+ISjMgyTLgH4Hd6G4aDoA/8am1RZIbs+qy+bOG5UgaiD/xKc2GI4HTgJ2AVwLnAN9pWZAEkGS/JGcCZwMn0C2bn21alKTBGESlRSzJM5I8AbhRVb0buKqqTqiqJwN3aVyeBPBqumXxx1W1E3BvwF8Bk2aEQVRapJL8LbBeVR0BXNV3Xp7kwUluB2zXrjrpWldV1a+BdZKsU1VfAvZsXZSkYXiOqLR4vaOq5gLoa5JsDjwfeCuwFHhes8qklS7tf2/+y8CRSS4Arm5ck6SBeNW8JGlwSTasqt8n2QT4Hd1tmx4HbA4c2R8llbTIGUQlSYOb+435JEdU1RNa1yOpDZvmJUktbJDkIOBuSfYf71lVH2tQk6SBGUSlGZBkp6o6e3XdpAE9k64pfgvgoWP9CjCISjPApnlpBsw1g451O6mq7tCqJgkgyVP6W4tJmkEeEZUWsSS3BnYHNh9r/lzKyK/YSA1dnmSzqlqR5KXA7YFXV9X3Whcmac0ziEqL262Ah3Dd5s8VwNOaVCSt6mVV9eEkewP3B/4FeAdw57ZlSRqCTfPSDEhy16r6Rus6pHFJvldVt0vyOuAHVXXUXLfWtUla8wyi0gxI8l66C0BW0f/Up9RMkmOB84H7AHcAfgt8u6pu27QwSYOwaV6aDceOPF4CPAL4RaNapFEHAA8A/qWqLk2yDfAPjWuSNBCPiEozKMk6wBeqat/WtWg2JVlaVZcn2WpS/6q6eOiaJA3PI6LSbNoVuHnrIjTTjqK7kO4kutNGMtKvgJ1bFCVpWB4RlWZAkhWs3NkX8EvgRVX10aaFSZJmmkFUktRMkuOq6t6r6yZpcbJpXpoRSfYD7tk/Pb6qjp1veGlNSrIE2BjYOsmWrGyaXwps26wwSYMyiEozIMnrgTsCR/adnpPk7lX1ooZlabY9A3guXeg8iZVB9HLgP1sVJWlYNs1LMyDJKcCeVfXH/vm6wPeqao+2lWnWJfnbqnpr6zokteERUWl2bAHM3RJn85aFSHOq6q1JbgPsRneP27nu729XlaShGESl2fA64HtJvkTXBHpP4MVtS5IgySuAfeiC6GeABwJfBQyi0gywaV6aEf0v1tyRLoh+q6p+2bgkiSQ/AG5Ld6rIbZPcBPivqnpo49IkDWCd1gVIWvP62+Esr6pjquqTVfXLJMe1rksCftufu3x1kqXABXgze2lm2DQvLWLeIkd/Bk5MsgXwLrqr568Avt22JElDsWleWsSSPIeVt8g5n1VvkfOuqvqPVrVJ45LsCCytqlMalyJpIAZRaQZ4ixytrZLcHTi5qq5M8njg9sC/VdW5jUuTNACDqCSpmf4et7cF9gCOAN4N7F9V92pamKRBeLGSJKmlq6s7IvIwuiOh/wZs1rgmSQPxYiVJUksrkrwIeDxwz/5Xv9ZvXJOkgXhEVJpBSbZJsmHrOiTg0cDvgaf097a9GfDGtiVJGorniEozKMkXgFsAH62qv29djyRpNhlEpRmVJMBuVfXD1rVIkmaTQVRaxJIsrarLk2w1qX9VXTx0TZIkzTGISotYkmOr6iFJzgaKlTe0B6iq8qcUtdbof/1re29oL80Og6gkqZkkxwP70d3F5WTgQuCEqvq7lnVJGoa3b5JmQJJ7TupeVV8euhZpzOb96SNPBd5bVa/ob3IvaQYYRKXZ8A8jj5cAdwJOAvZtU450rfWSbAMcALykdTGShmUQlWZAVT109HmS7YE3NCpHGvUq4HPAV6vqO0l2Bs5sXJOkgXiOqDSD+ls3nVJVf9m6FknS7PKIqDQDkryV7qp56H5RbU/g++0q0qxL8oKqesPYsnmtqjqkQVmSBmYQlWbDiSOPrwaOrqqvtSpGAk7r/58471CSFjWb5qUZkGQJsAvdkaefVNXvGpckSZJBVFrMkqwH/BPwZOBcumb57YD3Ai+pqqsalieR5EtMbpr3jg7SDLBpXlrc3ghsBuxUVSug+9lP4F/6v+c0rE0C+PuRx0uAR9KdPiJpBnhEVFrEkpwJ3LLGVvQk6wKnV9WubSqTpktyQlXdq3UdktY8j4hKi1uNh9C+4zVJ/Baq5pJsNfJ0HeAOwE0blSNpYAZRaXH7UZInVtX7RzsmeTxweqOapFEn0Z0jGrom+bOBpzStSNJgbJqXFrEkNwM+BvyWlTv8OwIbAY+oqvMblidJmnEGUWkGJNkX2J3uqNMPq+q4xiVJACT5a+B/qmpFkpcCtwdeU1XfbVyapAEYRCVJzSQ5par2SLI38Dq6uzm8uKru3Lg0SQNYp3UBkqSZdk3//8HA26vqk8AGDeuRNCCDqCSppfOTvBM4APhMkg1x3yTNDJvmJUnNJNkYeADwg6o6M8k2wF9W1ecblyZpAAZRSZIkNWHzhyRJkpowiEqSJKkJg6gkSZKaMIhKkppJsn+SM5NcluTyJCuSXN66LknD8GIlSVIzSc4CHlpVp7WuRdLwPCIqSWrpV4ZQaXZ5RFSS1EySfwNuCnwC+P1c96r6WLOiJA1mvdYFSJJm2lLgN8D9RroVYBCVZoBHRCVJktSE54hKkppJcsskxyU5tX++R5KXtq5L0jAMopKklt4FvAi4CqCqTgEe07QiSYMxiEqSWtq4qr491u3qJpVIGpxBVJLU0kVJbkF3gRJJHgUsb1uSpKF4sZIkqZkkOwOHAXcDLgHOBh5XVec2LUzSIAyikqTmkmwCrFNVK1rXImk4BlFJ0uCSPLF/+Nuq+nDTYiQ14w3tJUkt7NT/v6JpFZKa8oioJEmSmvCIqCRpcEleUFVvSPJW+ivmRxRwMfCBqvrJ8NVJGopBVJLUwmn9/xOn9L8R3e/N33aYciS1YBCVJA2uqj7V/3/ftGGSXDlcRZJa8BxRSZIkNeEvK0mSJKkJg6gkqZkkd19IN0mLk03zkqRmkny3qm6/um6SFicvVpIkDS7JXel+X35Zkr8b6bUUWLdNVZKGZhCVJLWwAbAp3X5os5HulwOPalKRpMHZNC9JaibJDlV1bpJNqsrbNUkzxouVJEktbZvkR/Q3uE9y2yRva1yTpIEYRCVJLb0FuD/wa4Cq+j5wz6YVSRqMQVSS1FRVnTfW6ZomhUganBcrSZJaOi/J3YBKsgFwCCt/h17SIufFSpKkZpJsDfwbcB8gwOeB51TVr5sWJmkQBlFJkiQ14TmikiRJasIgKkmSpCYMopIkSWrCICpJaibJTZK8O8ln++e7JXlK67okDcMgKklq6XDgc8C2/fMfA89tVo2kQRlEJUktbV1VHwL+CFBVV+MN7aWZYRCVJLV0ZZIbAQWQ5C7AZW1LkjQUf1lJktTS3wHHALdI8jVgGfCotiVJGoo3tJckNZVkPeBWdL+sdEZVXdW4JEkDMYhKkppJ8sRJ3avq/UPXIml4Ns1Lklq648jjJcC9ge8CBlFpBnhEVJK01kiyOXBEVe3XuhZJa55XzUuS1ia/AXZtXYSkYdg0L0lqJsmn6G/dRHdwZDfgQ+0qkjQkm+YlSc0kudfI06uBc6vq563qkTQsg6gkqakkOwC7VtUXkmwErFdVK1rXJWnN8xxRSVIzSZ4GfAR4Z99pO+AT7SqSNCSDqCSppWcBdwcuB6iqM4EbN61I0mAMopKkln5fVX+Ye9L/ypLnjEkzwiAqSWrphCQvBjZKcl/gw8CnGtckaSBerCRJaibJOsBTgPvR/db854D/KndO0kwwiEqSJKkJm+YlSZLUhEFUkiRJTRhEJUmS1IS/NS9JGlySt1TVc8d+a/5aVbVfg7IkDcwgKklq4Yj+/780rUJSU141L0mSpCY8IipJaibJrsDrgN2AJXPdq2rnZkVJGowXK0mSWnov8HbgauCvgPezstle0iJnEJUktbRRVR1Hd6rYuVV1KLBv45okDcSmeUlSS7/rf+bzzCTPBs4Hbty4JkkD8WIlSVIzSe4InAZsAbwaWAq8saq+2bQwSYMwiEqSJKkJm+YlSYNL8l66G9lfVlXPa12PpDYMopKkFg7v//+hZRGS2rJpXpIkSU14RFSSNLgkP2DCb8wDAaqq9hi4JEkNeERUkjS4JDvM17+qzh2qFkntGEQlSZLUhL+sJEmSpCYMopIkSWrCICpJWisk2TKJFylJM8QgKklqJsnxSZYm2Qr4PvDeJG9qXZekYRhEJUktbV5VlwP7A++tqjsA92lck6SBGEQlSS2tl2Qb4ADg2NbFSBqWQVSS1NKrgM8BZ1XVd5LsDJzZuCZJA/E+opIkSWrCn/iUJA0uyQuq6g1J3sqEn/qsqkMalCVpYAZRSVILp/X/T2xahaSmbJqXJElSEx4RlSQ1k2QZ8I/AbsCSue5VtW+zoiQNxqvmJUktHUnXTL8T8ErgHOA7LQuSNByb5iVJzSQ5qarukOSUqtqj73ZCVd2rdW2S1jyb5iVJLV3V/1+e5MHAL4DtGtYjaUAGUUlSS69JsjnwfOCtwFLgeW1LkjQUm+YlSZLUhEdEJUnNJNkJ+FtgR0b2SVW1X6uaJA3HICpJaukTwLuBTwF/bFyLpIHZNC9JaibJt6rqzq3rkNSGQVSS1EySxwK7Ap8Hfj/Xvaq+26woSYOxaV6S1NJfAk8A9mVl03z1zyUtch4RlSQ1k+R0YI+q+kPrWiQNz5/4lCS19H1gi9ZFSGrDpnlJUks3AU5P8h1WPUfU2zdJM8AgKklq6RWtC5DUjueISpIkqQnPEZUkSVITBlFJkiQ1YRCVJElSE16sJEkaXJIf0N24/jq9gKqqPQYuSVIDXqwkSRpckh3m619V5w5Vi6R2DKKSJElqwnNEJUnNJLlLku8kuSLJH5Jck+Ty1nVJGoZBVJLU0n8ABwJnAhsBTwXe2rQiSYPxYiVJUlNVdVaSdavqGuC9Sb7euiZJwzCISpJa+k2SDYCTk7wBWA5s0rgmSQOxaV6S1NITgHWBZwNXAtsDj2xakaTBeNW8JEmSmrBpXpI0uCQfqqoDpt3Y3hvaS7PBI6KSpMEl2aaqlk+7sb03tJdmg+eISpIGV1XL+4d/U1Xnjv4Bf9OyNknDMYhKklq674RuDxy8CklNeI6oJGlwSf4f3ZHPnZOcMtJrM+BrbaqSNDTPEZUkDS7J5sCWwOuAF470WlFVF7epStLQDKKSpMElWVpVlyfZalJ/w6g0GwyikqTBJTm2qh6S5Gy62zdlpHdV1c6NSpM0IIOoJEmSmvBiJUlSU0luBuzAyD6pqr7criJJQzGISpKaSfLPwKOBHwHX9J0LMIhKM8CmeUlSM0nOAPaoqt+3rkXS8LyhvSSppZ8C67cuQlIbNs1Lklr6DXBykuOAa4+KVtUh7UqSNBSDqCSppWP6P0kzyHNEJUmS1IRHRCVJg0vyoao6IMkP6K6SX0VV7dGgLEkD84ioJGlwSbapquVJdpjUv6rOHbomScMziEqSJKkJb98kSZKkJgyikiRJasIgKklqJslzFtJN0uJkEJUktXTQhG4HD12EpDa8fZMkaXBJDgQeC+yUZPSG9psBv25TlaShGUQlSS18HVgObA3860j3FcApTSqSNDhv3yRJkqQmPCIqSWomyQpW/rLSBsD6wJVVtbRdVZKGYhCVJDVTVZuNPk/ycOBOjcqRNDCb5iVJa5Uk36yqu7SuQ9Ka5xFRSVIzSfYfeboOsBcrm+olLXIGUUlSSw8deXw1cA7wsDalSBqaTfOSJElqwl9WkiQ1k2TnJJ9KcmGSC5J8MsnOreuSNAyDqCSppaOADwHbANsCHwaOblqRpMEYRCVJLaWqjqiqq/u/D+DFStLM8GIlSdLgkmzVP/xSkhcCH6QLoI8GPt2sMEmD8mIlSdLgkpxNFzwzoXdVleeJSjPAICpJkqQmPEdUkiRJTRhEJUmS1IRBVJIkSU141bwkqakkNwN2YGSfVFVfbleRpKEYRCVJzST5Z7pbNv0IuKbvXIBBVJoBXjUvSWomyRnAHlX1+9a1SBqe54hKklr6KbB+6yIktWHTvCSppd8AJyc5Drj2qGhVHdKuJElDMYhKklo6pv+TNIM8R1SS1FSSDYBb9k/PqKqrWtYjaTgGUUlSM0n2Ad4HnEP3u/PbAwd5+yZpNhhEJUnNJDkJeGxVndE/vyVwdFXdoW1lkobgVfOSpJbWnwuhAFX1Y7yKXpoZXqwkSWrpxCTvBo7onz8OOKlhPZIGZNO8JKmZJBsCzwL2pjtH9MvA27zBvTQbDKKSJElqwnNEJUnNJHlIku8luTjJ5UlWJLm8dV2ShuERUUlSM0nOAvYHflDukKSZ4xFRSVJL5wGnGkKl2eQRUUlSM0nuCLwaOIFVf2v+Tc2KkjQYb98kSWrptcAVwBJgg8a1SBqYQVSS1NJWVXW/1kVIasNzRCVJLX0hiUFUmlGeIypJaibJCmATuvNDr6K7qX1V1dKmhUkahEFUkiRJTdg0L0mSpCYMopIkSWrCICpJkqQmDKKSpGaS3CLJhv3jfZIckmSL1nVJGoZBVJLU0keBa5LsArwb2Ak4qm1JkoZiEJUktfTHqroaeATwlqp6HrBN45okDcQgKklq6aokBwIHAcf23dZvWI+kARlEJUktPQm4K/Daqjo7yU7ABxrXJGkg3tBekiRJTazXugBJ0uxKsivwOmA3YMlc96rauVlRkgZj07wkqaX3Am8Hrgb+Cng/cETTiiQNxiAqSWppo6o6ju5UsXOr6lBg38Y1SRqITfOSpJZ+l2Qd4MwkzwbOB27cuCZJA/FiJUlSM0nuCJwGbAG8GtgceENVfbNpYZIGYRCVJDWXZClQVbWidS2ShuM5opKkZpLsleQHwCnAD5J8P8kdWtclaRgeEZUkNZPkFOBZVfWV/vnewNuqao+2lUkagkdEJUktrZgLoQBV9VXA5nlpRnhEVJLUTJI3AxsDRwMFPBq4BPgoQFV9t111ktY0g6gkqZkkX5qnd1WV9xSVFjGDqCRJkprwHFFJkiQ1YRCVJElSEwZRSVIzSTZcSDdJi5NBVJLU0jcW2E3SIrRe6wIkSbMnyU2BmwEbJbkdkL7XUrrbOUmaAQZRSVIL9wcOBrYD3jTSfQXw4hYFSRqet2+SJDWT5JFV9dHWdUhqwyAqSRpcksdX1QeSPJ/uF5VWUVVvmvAySYuMTfOSpBY26f9v2rQKSU15RFSSJElNeERUktRMkiXAU4DdgSVz3avqyc2KkjQY7yMqSWrpCOCmdFfRn0B3Ff2KphVJGoxN85KkZpJ8r6pul+SUqtojyfrA56pq39a1SVrzPCIqSWrpqv7/pUluA2wO7NiuHElD8hxRSVJLhyXZEngpcAzdVfQva1uSpKHYNC9JaibJTlV19uq6SVqcbJqXJLU06VeVPjJ4FZKasGlekjS4JLemu2XT5kn2H+m1lJHbOEla3AyikqQWbgU8BNgCeOhI9xXA05pUJGlwniMqSWomyV2r6hut65DUhueISpJa+nWS45KcCpBkjyQvbV2UpGEYRCVJg0ryzP4cUYB3AS+iv59oVZ0CPKZVbZKGZRCVJA3tA3ThE2Djqvr2WP+rB65HUiMGUUnSoKrqCuCp/dOLktwCKIAkjwKWt6pN0rC8WEmS1EySnYHDgLsBlwBnA4+rqnObFiZpEAZRSVJzSTYB1qmqFa1rkTQcg6gkaXBJntg//G1VfbhpMZKa8Yb2kqQWdur/ewRUmmEeEZUkSVITHhGVJDWTZBndT3ruyMg+qaqe3KomScMxiEqSWvok8BXgC8A1jWuRNDCb5iVJzSQ5uar2bF2HpDa8ob0kqaVjkzyodRGS2vCIqCSpmSQrgE2A39P93nyAqqqlTQuTNAiDqCRJkpqwaV6SJElNGEQlSZLUhEFUkiRJTRhEJUlNJdk7yZP6x8uS7LS610haHLxYSZLUTJJXAHsBt6qqWybZFvhwVd29cWmSBuARUUlSS48A9gOuBKiqXwCbNa1I0mAMopKklv5QXdNcASTZpHE9kgZkEJUktfShJO8EtkjyNLrfnH9X45okDcRzRCX9//buUKXCIIgC8Jki+gS33mA0mgWDdp/BF/JNzCLYTGoRjEbBLhgsY/CCeBHjP8HvaztbTjywuyyMqqqTJKf5+lXpqruvhyMBC1FEAVhcVe0nWXX37db8KMlLdz/PJAOW5GgegAkXSd5+mb9v9oB/QBEFYMK6ux+3h919n2S9fBxggiIKwITdP/b2FksBjFJEAZhwt3kl/0NVnSd5GMgDDPBYCYDFVdUqyWWSj3wXz8MkO0nOuvt1KhuwHEUUgDFVdZzkYLN86u6byTzAshRRAABGuCMKAMAIRRQAgBGKKAAAIxRRAABGKKIAAIz4BAOlwNog4DA
uAAAAAElFTkSuQmCC\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA
X4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE3ZJREFUeJzt3X+s3XWd5/HnS35kdxGis9xioWDdDSEtuJZyUyG4pOBgoJBhhrq7bdDBFdNhFoyE2WTZ3cTZ/UddV1xwMTKdhYhoYJwoDoECEnHDQPx1QdCytUOHdMKlhF41AzROlOJ7/7iHyfV6bu/hnNOec/k8H8nJ/f74fM/nfT/Ai+/9nO/5flNVSJLa8aZRFyBJOrQMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYZoM/yYlJvp1kR5Knknyss/3fdNZ/nWRy1HVK0rCl1S9wJVkOLK+qx5McDTwG/D5QwK+BPwP+Y1VNjbBMSRq6sQz+Y489tlauXHlI+9y1axfLli3jmGOOAWDnzp2sWLGCo4466pDWIUn9eOyxx35aVRO9tD38YBfTj5UrVzI1dehOtHfv3s0555zD1NTUPwb/+vXr+cxnPsPkpLM9ksZfkr/rtW2zc/yv2bdvHxs3buSGG274x9CXpDeypoP/lVdeYePGjVx22WVceumloy5Hkg6JZoO/qrjiiitYtWoV11577ajLkaRDZizn+A+FRx99lNtvv513vvOdrFmzBoBPfOIT/PKXv+SjH/0oMzMzXHTRRaxZs4YHHnhgxNVK0vCM5VU9k5OTdSg/3JWkpS7JY1XV09UozU71SFKrDH5JaozBL0mNMfglqTFvuKt6Vl5378j63v2pi0bWtyT1yjN+SWqMwS9JjTH4JakxBr8kNcbgl6TGLBr8B3hE4e8keTDJ052fb13g+AuS7EyyK8l1w/4FJEmvTy9n/PuBP6mqVcCZwFVJVgPXAd+qqpOBb3XWf0OSw4DPAxcCq4HNnWMlSSOyaPBX1fNV9Xhn+WVgB3ACcAlwW6fZbcw+r3a+dcCuqnqmqn4F3Nk5TpI0Iq9rjj/JSuB04HvAcVX1PMz+zwFY1uWQE4Bn56xPd7ZJkkak5+BP8mbga8A1VfVSr4d12db1PtBJtiSZSjI1MzPTa1mSpNepp+BPcgSzof+Vqvp6Z/MLSZZ39i8H9nY5dBo4cc76CmBPtz6qamtVTVbV5MRETw+KlyT1oZeregLcAuyoqs/O2XU3cHln+XLgr7oc/gPg5CTvSHIksKlznCRpRHo54z8b+CBwXpInOq8NwKeA85M8DZzfWSfJ8Um2AVTVfuBq4AFmPxT+alU9dRB+D0lSjxa9O2dVPUL3uXqA93ZpvwfYMGd9G7Ct3wIlScPlN3clqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY1Z9EEsSW4FLgb2VtVpnW1/AZzSafIW4O+rak2XY3cDLwOvAvuranJIdUuS+rRo8ANfBG4CvvTahqr6d68tJ7keePEAx59bVT/tt0BJ0nD18ujFh5Os7Lav8yD2fwucN9yyJEkHy6Bz/P8aeKGqnl5gfwHfTPJYki0HeqMkW5JMJZmamZkZsCxJ0kIGDf7NwB0H2H92Va0FLgSuSnLOQg2ramtVTVbV5MTExIBlSZIW0nfwJzkcuBT4i4XaVNWezs+9wF3Aun77kyQNxyBn/L8L/KSqprvtTHJUkqNfWwbeB2wfoD9J0hAsGvxJ7gC+A5ySZDrJFZ1dm5g3zZPk+CTbOqvHAY8keRL4PnBvVd0/vNIlSf3o5aqezQts/1CXbXuADZ3lZ4B3DVifJGnI/OauJDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjenlQSy3JtmbZPucbf8tyXNJnui8Nixw7AVJdibZleS6YRYuSepPL2f8XwQu6LL9f1XVms5r2/ydSQ4DPs/sg9ZXA5uTrB6kWEnS4BYN/qp6GPh5H++9DthVVc9U1a+AO4FL+ngfSdIQDTLHf3WSH3Wmgt7aZf8JwLNz1qc72yRJI9Rv8H8B+JfAGuB54PoubdJlWy30hkm2JJlKMjUzM9NnWZKkxfQV/FX1QlW9WlW/Bv6c2Wmd+aaBE+esrwD2HOA9t1bVZFVNTkxM9FOWJKkHfQV/kuVzVv8A2N6l2Q+Ak5O8I8mRwCbg7n76kyQNz+GLNUhyB7AeODbJNPCnwPoka5idutkN/FGn7fHA/6mqDVW1P8nVwAPAYcCtVfXUQfktJEk9WzT4q2pzl823LNB2D7Bhzvo24Lcu9ZQkjY7f3JWkxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbR4E9ya5K9SbbP2fY/k/wkyY+S3JXkLQscuzvJj5M8kWRqmIVLkvrTyxn/F4EL5m17EDitqv4V8DfAfz7A8edW1ZqqmuyvREnSMC0a/FX1MPDzedu+WVX7O6vfBVYchNokSQfBMOb4Pwzct8C+Ar6Z5LEkW4bQlyRpQIs+bP1AkvxXYD/wlQWanF1Ve5IsAx5M8pPOXxDd3msLsAXgpJNOGqQsSdIB9H3Gn+Ry4GLgsqqqbm2qak/n517gLmDdQu9XVVurarKqJicmJvotS5K0iL6CP8kFwH8Cfq+qfrFAm6OSHP3aMvA+YHu3tpKkQ6eXyznvAL4DnJJkOskVwE3A0cxO3zyR5OZO2+OTbOscehzwSJInge8D91bV/Qflt5Ak9WzROf6q2txl8y0LtN0DbOgsPwO8a6DqJElD5zd3JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mN6eUJXLcm2Ztk+5xtv5PkwSRPd36+dYFjL0iyM8muJNcNs3BJUn96OeP/InDBvG3XAd+qqpOBb3XWf0OSw4DPAxcCq4HNSVYPVK0kaWCLBn9VPQz8fN7mS4DbOsu3Ab/f5dB1wK6qeqaqfgXc2TlOkjRC/c7xH1dVzwN0fi7r0uYE4Nk569OdbV0l2ZJkKsnUzMxMn2VJkhZzMD/cTZdttVDjqtpaVZNVNTkxMXEQy5KktvUb/C8kWQ7Q+bm3S5tp4MQ56yuAPX32J0kakn6D/27g8s7y5cBfdWnzA+DkJO9IciSwqXOcJGmEermc8w7gO8ApSaaTXAF8Cjg/ydPA+Z11khyfZBtAVe0HrgYeAHYAX62qpw7OryFJ6tXhizWoqs0L7Hpvl7Z7gA1z1rcB2/quTpI0dH5zV5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMb0HfxJTknyxJzXS0mumddmfZIX57T5+OAlS5IGseiDWBZSVTuBNQBJDgOeA+7q0vSvq+rifvuRJA3XsKZ63gv8bVX93ZDeT5J0kAwr+DcBdyyw76wkTya5L8mpQ+pPktSngYM/yZHA7wF/2WX348Dbq+pdwP8GvnGA99mSZCrJ1MzMzKBlSZIWMIwz/guBx6vqhfk7quqlqtrXWd4GHJHk2G5vUlVbq2qyqiYnJiaGUJYkqZthBP9mFpjmSfK2JOksr+v097Mh9ClJ6lPfV/UAJPlnwPnAH83ZdiVAVd0MvB/44yT7gX8ANlVVDdKnJGkwAwV/Vf0C+Ofztt08Z/km4KZB+pAkDZff3JWkxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWag4E+yO8mPkzyRZKrL/iT5XJJdSX6UZO0g/UmSBjeMM/5zq2pNVU122XchcHLntQX4whD60xvAq6++yumnn87FF1886lKk5hzsqZ5LgC/VrO8Cb0my/CD3qSXgxhtvZNWqVaMuQ2rSoMFfwDeTPJZkS5f9JwDPzlmf7mz7LUm2JJlKMjUzMzNgWRpn09PT3HvvvXzkIx8ZdSlSkwYN/rOrai2zUzpXJTln3v50Oaa6vVFVba2qyaqanJiYGLAsjbNrrrmGT3/607zpTV5bII3CQP/lVdWezs+9wF3AunlNpoET56yvAPYM0qeWtnvuuYdly5ZxxhlnjLoUqVl9B3+So5Ic/doy8D5g+7xmdwN/2Lm650zgxap6vu9qteQ9+uij3H333axcuZJNmzbx0EMP8YEPfGDUZUlNGeSM/zjgkSRPAt8H7q2q+5NcmeTKTpttwDPALuDPgf8wULVa8j75yU8yPT3N7t27ufPOOznvvPP48pe/POqypKYc3u+BVfUM8K4u22+es1zAVf32IUkavr6DXxrU+vXrWb9+/ajLkJrjZRWS1BiDX5IaY/BLUmOc41ffVl5378j63v2pi0bWt7TUecYvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS29Qzz77LOeeey6rVq3i1FNP5cYbbxx1SRoTXscvvUEdfvjhXH/99axdu5aXX36ZM844g/PPP5/Vq1ePujSNmGf80hvU8uXLWbt2LQBHH300q1at4rnnnhtxVRoHBr/UgN27d/PDH/6Qd7/73aMuRWNgkCdwnZjk20l2JHkqyce6tFmf5MUkT3ReHx+sXEmv1759+9i4cSM33HADxxxzzKjL0RgYZI5/P/AnVfV45xGMjyV5sKr+37x2f11VFw/Qj6Q+vfLKK2zcuJHLLruMSy+9dNTlaEz0fcZfVc9X1eOd5ZeBHcAJwypM0mCqiiuuuIJVq1Zx7bXXjrocjZGhzPEnWQmcDnyvy+6zkjyZ5L4kpw6jP0mLe/TRR7n99tt56KGHWLNmDWvWrGHbtm2jLktjYODLOZO8GfgacE1VvTRv9+PA26tqX5INwDeAkxd4ny3AFoCTTjpp0LKk5r3nPe9h9rHX0m8a6Iw/yRHMhv5Xqurr8/dX1UtVta+zvA04Ismx3d6rqrZW1WRVTU5MTAxSliTpAAa5qifALcCOqvrsAm3e1mlHknWd/n7Wb5+SNK4+/OEPs2zZMk477bRRl7KoQc74zwY+CJw353LNDUmuTHJlp837ge1JngQ+B2wq//aU9Ab0oQ99iPvvv3/UZfSk7zn+qnoEyCJtbgJu6rcPSVoqzjnnHHbv3j3qMnrivXqkJcDnG2uYvGWDJDXG4Jekxhj8ktQYg1+ShmDz5s2cddZZ7Ny5kxUrVnDLLbeMuqQF+eGuJA3BHXfcMeoSeuYZvyQ1xuCXpMYY/JLUGINfkhrjh7uSNEcL35L2jF+SGmPwS1JjDH5JaozBL0mNMfglqTGDPnP3giQ7k+xKcl2X/Unyuc7+HyVZO0h/kqTBDfLM3cOAzwMXAquBzUlWz2t2IXBy57UF+EK//UmShmOQM/51wK6qeqaqfgXcCVwyr80lwJdq1neBtyRZPkCfkqQBDRL8JwDPzlmf7mx7vW0kSYfQIN/c7fag9eqjzWzDZAuz00EA+5LsHKC2fh0L/LTfg/M/hljJ6zNQ3SPiWB9afdftWL9uoxrrt/facJDgnwZOnLO+AtjTRxsAqmorsHWAegaWZKqqJkdZQz+WYt1LsWaw7kNpKdYMS6PuQaZ6fgCcnOQdSY4ENgF3z2tzN/CHnat7zgRerKrnB+hTkjSgvs/4q2p/kquBB4DDgFur6qkkV3b23wxsAzYAu4BfAP9+8JIlSYMY6O6cVbWN2XCfu+3mOcsFXDVIH4fYSKeaBrAU616KNYN1H0pLsWZYAnVnNpslSa3wlg2S1Jgmg38p3mqih5rXJ3kxyROd18dHUed8SW5NsjfJ9gX2j+NYL1bz2I11khOTfDvJjiRPJflYlzbjONa91D1W453knyT5fpInOzX/9y5txm6sf0NVNfVi9oPovwX+BXAk8CSwel6bDcB9zH4P4Uzge0ug5vXAPaMe3y61nwOsBbYvsH+sxrrHmsdurIHlwNrO8tHA34z7v9evo+6xGu/O+L25s3wE8D3gzHEf67mvFs/4l+KtJnqpeSxV1cPAzw/QZNzGupeax05VPV9Vj3eWXwZ28Nvfkh/Hse6l7rHSGb99ndUjOq/5H5aO3VjP1WLwL8VbTfRaz1mdPz/vS3LqoSltYOM21r0a27FOshI4ndkz0bnGeqwPUDeM2XgnOSzJE8Be4MGqWlJj3eLD1od6q4lDpJd6HgfeXlX7kmwAvsHsXVHH3biNdS/GdqyTvBn4GnBNVb00f3eXQ8ZirBepe+zGu6peBdYkeQtwV5LTqmruZ0JjO9bQ5hn/UG81cYgsWk9VvfTan581+/2KI5Ice+hK7Nu4jfWixnWskxzBbHh+paq+3qXJWI71YnWP63gDVNXfA/8XuGDerrEc69e0GPxL8VYTi9ac5G1J0llex+w/258d8kpfv3Eb60WN41h36rkF2FFVn12g2diNdS91j9t4J5nonOmT5J8Cvwv8ZF6zsRvruZqb6qkleKuJHmt+P/DHSfYD/wBsqs7lBaOU5A5mr8o4Nsk08KfMfhg2lmMNPdU8jmN9NvBB4MeduWeA/wKcBOM71vRW97iN93Lgtsw+jOpNwFer6p5xzpD5/OauJDWmxakeSWqawS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmP+PwOyBVczXgL
uAAAAAElFTkSuQmCC\n",
"text/plain": [
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
"<Figure size 432x288 with 1 Axes>"
]
]
...
@@ -38,7 +45,42 @@
...
@@ -38,7 +45,42 @@
" tableau_colonne = donnees.loc[:,colonne].value_counts().sort_values(ascending=False)\n",
" tableau_colonne = donnees.loc[:,colonne].value_counts().sort_values(ascending=False)\n",
" tableau_colonne.plot(kind=\"bar\")\n",
" tableau_colonne.plot(kind=\"bar\")\n",
" plt.title(colonne)\n",
" plt.title(colonne)\n",
" plt.show()"
" plt.show()\n",
" \n",
"def histogramme2(colonne):\n",
" tableau_colonne = donnees.loc[:,colonne].value_counts().sort_values(ascending=False)\n",
" x = np.arange(len(tableau_colonne.values))\n",
" fig,ax = plt.subplots()\n",
" rects=ax.bar(x,tableau_colonne.values,0.34)\n",
" for rect in rects:\n",
" print(rect.get_x())\n",
" height = rect.get_height()\n",
" ax.annotate('{}'.format(height),\n",
" xy=(rect.get_x()+0.34/2, height),\n",
" xytext=(0, 3),\n",
" textcoords=\"offset points\",\n",
" ha='center', va='bottom')\n",
" plt.show()\n",
" \n",
"histogramme2(\"Dans quelle mesure avez-vous apprécié les éléments suivants du cours ? (1= pas satisfait ; 4= très satisfait) [Vidéos de cours]\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def autolabel(graphs):\n",
" for rect in graphs:\n",
" height = rect.get_height()\n",
" ax.annotate('{}'.format(height),\n",
" xy=(rect.get_x(), height),\n",
" xytext=(0, 3),\n",
" textcoords=\"offset points\",\n",
" ha='center', va='bottom')\n",
"\n",
"donnees=pd.read_csv(\"results-survey669838(3).csv\")"
]
]
},
},
{
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment