{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "\n", "url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", "data = pd.read_csv(url, skiprows=1)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8Y2d97/9+JFmStXmXx+NZPPuadYYsEwikSSBwSycplAZKk7b0sly4vdD21QL3drlQ7q/QUnrZQhOgLGULDZSQWxISspJ9Mkkms894Vs+Ml/EmW7L25/fHOUeWbXmTZS3W9/16+WX78TnSY/tIn/PdldYaQRAEQcjGVuoNCIIgCOWHiIMgCIIwBREHQRAEYQoiDoIgCMIURBwEQRCEKYg4CIIgCFMQcRAEQRCmIOIgCIIgTEHEQRAEQZiCo9QbyJfm5mbd0dFR6m0IgiBUFC+99NJFrXXLbMdVrDh0dHSwZ8+eUm9DEASholBKnZ7LceJWEgRBEKYg4iAIgiBMQcRBEARBmIKIgyAIgjAFEQdBEARhCiIOgiAIwhREHAQhi1RaJiMKAog4CEKGC8NjbPnrB3nl7FCptyIIJUfEQRBMzvRHiCfTHO0eKfVWBKHkiDgIgkkomgRgMBIv8U4EofSIOAiCSWgsAcCAiIMgiDgIgsVI1BCHoXCixDsRhNIj4iAIJpZbSSwHQRBxEIQMlltpSMRBEEQcBMEiZLqVBsIiDoIg4iAIJqExw600FJGYgyCIOAiCiWU5DEbipKVSWqhyRBwEwcQSh7SGETM4LQjVyqzioJRaqZR6TCl1SCl1QCn1P8z1RqXUw0qpY+bnhqxzPqGUOq6UOqKUekvW+g6l1Gvmz76olFLmuksp9SNz/XmlVEfhf1VBmJmRaBK7TQGSsSQIc7EcksCfaa23ANcAH1ZKbQU+DvxKa70B+JX5PebPbge2AbcAX1VK2c3Hugt4P7DB/LjFXH8fMKi1Xg98AfhsAX43QZgXobEEy+vdgFRJC8Ks4qC1vqC13mt+PQIcAtqB3cC3zcO+Ddxqfr0b+KHWOqa1PgkcB65SSrUBAa31s1prDXxn0jnWY/07cKNlVQhCMdBaE4om6WjyAjAoGUtClTOvmIPp7rkCeB5o1VpfAENAgKB5WDtwNuu0LnOt3fx68vqEc7TWSWAYaMrx/O9XSu1RSu3p6+ubz9YFYUYi8RSptGZVoweAQclYEqqcOYuDUsoH3Ad8VGsdmunQHGt6hvWZzpm4oPXdWuudWuudLS0ts21ZEOaMFYwWy0EQDOYkDkqpGgxh+J7W+ifmco/pKsL83GuudwErs05fAZw311fkWJ9wjlLKAdQBA/P9ZQQhX6wah7Z6Nw6bkpiDUPXMJVtJAd8ADmmt/ynrR/cDd5pf3wn8LGv9djMDaQ1G4PkF0/U0opS6xnzMOyadYz3WO4FHzbiEIBQFy3IIuGto8DpFHISqxzGHY64Dfh94TSn1irn2SeDvgXuVUu8DzgC/A6C1PqCUuhc4iJHp9GGtdco870PAt4Ba4BfmBxji812l1HEMi+H2Bf5egjAvrI6sgdoaGjw1DEpnVqHKmVUctNa/JndMAODGac75DPCZHOt7gO051qOY4iIIpcByKwXcDho8TqlzEKoeqZAWBLLcSrU1NHici9aZ9ZnOi9zz5IlFeWxBKCQiDoLAeLtuv9tBg9fJwCK5lb733Bm++OixRXlsQSgkIg6CgDHox11jw+Ww0+CpYSgSZzFyIk4PhBmNJRflsQWhkIg4CAKG5RBw1wDQ4HGSTGtGYoVtvqe15nR/BK0hHE/NfoIglBARB0HAiDn43UZ+RoPXCRR+lvRQJJHp9jo6Q9fXPacGeM89zxGJS2dYoXSIOAgCRkfWQK1lORifC52xdHogkvl6NJZbeGLJFH9x3z6e6ezn4PmZGhEIwuIi4iAITHIrmZZDoQvhTveHx59vGsvh60+d5ESfcdzJi+GcxwhCMRBxEASMN+txy8EUhwL3VzrTn2U55BCHswMRvvToMW7aEsRhUyIOQkkRcRAELMvBiDk0WuJQ4M6sE91KU8XhUw8cRKH437u3s6rRw6l+EQehdIg4CFWPMcshkbEc/G4HNrU4lkN7fS0w3q7D4tfHLvLwwR7+5MYNtNfXsqbZm3EvCUIpEHEQqp5oIk0ipTMxB5tNLUoLjdMDYbYtDwBTZ1S/cnYQgD/Y1QFAR7OX0/0R0mmphxBKg4iDUPWMt84YbzVWbxbCFYqxeIqeUIytpjhMdisNjyWorbFT6zQm6nY0exlLpOgZiRZsD4IwH0QchKrHcvH4TcsBoNHrZKCAbqUzZrxhTbMXr9M+JSA9PJagrnb8+dc2G0OHJCgtlAoRB6HqGc7qyGpR73EyVMCAtJXGurrJi8/tmOJWGopMFIcOEQehxIg4CFVPdkdWi0bP4lgOqxs9+FyOnG6lbHFoC7hxOWycEnEQSoSIg1D1WB1ZA1lupXpvDUORRMEa5J3ujxBwO6j31OB310zp2zQ8lpggTjaboqPJK5aDUDJEHISqx6pWzg5IN3qcxFPpvBvkfe7Bw/zNz/Znvj89EGF1kxelFH63Y0oqa2iS5QBGfELEQSgVIg5C1ZPLclhIlbTWmh++eJbvPHea472jAJzpD7OqyQNguJVmCUiDEXc4MxAhmUrPew+CsFBEHISqJxRN4HTYcNfYM2sL6a/U2RdmIBxHa7jnyRMkU2m6BsdY3WiIg989MeaQMC2UyeKwttlLIqU5PyTprELxEXEQKpK+kRgXhsfyOvflM4Nc+emHOTdknD8STU6wGmC8M2s+LTRePDUAwBs2NPPTl8/xytkhkmnN6ozlUDMhW8myXOpqJ450tzKWTlwcnfceBGGhiDgIFcnf3n+Aj3z/5bzO3dc1zEA4zsMHuoGJfZUsLMthIByb9+O/eGqAZp+Tv7t1O8l0mk89cBCAVY3Gm73PtBys6udhUxzqTVeWxRpJZxVKiIiDUJH0jcQ4m9XIbj50hww3zaNH+gAjIO2f5NJpr6/F6bBx4Nz8Zyq8eGqAnasbWd3k5W2XtLGvaxggYzlYQhQ2h/kMZSyHiXto9jnxuRySziqUBBEHoSAkU+mivomF40kujsZI5dF7qGfYEIfnTvQTiSdzWg7uGjs7VjXwdGf/vB67ezjK2YExdnY0APDBN64DwOmwsSzgBoyANIz3V7Ish8AkcVBK0dHs4YSIg1ACRByEgvDQgR7e9I+Ps8f0ty82kXiKtCavQrXuUBSnw0Y8mebZzv4JHVmzuW59E4cuhOgfnbtryYo3XLWmEYDt7XW8cWMLm5f5sdkUYLiVYLy/UmgaywFgTbNPWncLJUHEQSgIlqvmcw8eKVjh2EyEzTfWvpH5xwS6Q1HeuLEFj9POo4d7CY1NDUgD7FrfDMCzJ6a3HroGIxNqFl48NYDHaWdrWyCz9tXfu5Lv/NFVme+tHk6TLYec4tDk4dzgGLFkfvUWgpAvVS0O0USKp471lXobSwLr7veFUwM8fnTx/6YRszitN4+upT3DUVY2eHj9+mYeO9xrWg6OKcdd2l6H3+Xg6ePTi8N77nme937jBRJmLcKLpwa5clUDDvv4S8vrckwINo+7lYy/2XBkBnFo8ZLW5B1fEYR8qWpxeGDfBX7/Gy/knRIpjBOKJvA67axsrOUfHzqyqHMItNaZYO58LYeRaIJwPEVrwMUNm4OcH44ST6ZzWg4Ou42r1zbyTOfFnI8VT6Y5Oxjh1bNDfOnR4wyPJTjcHcrEG6bDP8mtZLXrdjqmvhxb/W7z9yzsbAlBmI2qFgerX3//qLzwFkpoLEm9x8nHbtrIgfMh/nP/hUV7rmgijeW56p2nOPSY7q9ldW5u2BTMrOeKOQDsWtfM6f4IXYNT79x7QlG0hha/iy8/eoyvP3UCreGqjsYZ95ARhyy3Ui6rIXtfk9ttCMJiU9XiYLkmQvLCWzBWUHf35e1sbPXxT788Sjy5OG0fLKsB5m85dA8bx7cG3Cyrc7PFjA1MzlayuM6MOzyTw7VkFdF9evc22htq+dKjx3HYFJevqp9xD7mylaYTB0tIQtGpM6cFYTGpanGw3mRCY/LCWyhWOqjdpvj4Wzdz4mKYO7/5QsafXkgisfHgbN88MolgPHBupZXesKkFIKdbCWBjq49mn4unc7iWLHfkhlY/X3jX5dgUbGuvw+PMLTQWXqcDpch0Zh0aS1DnmcZyMPdlxXQEoVhUtThYbzJiOSycUDSZcYH8xuZWvvC7l7Hn9AC/fdfTnOkvbDA1uy9RXyh/txLA2y9bToOnhnUtvpzHK6XYta6JZzr7p2RhWT2PltfVsrOjkS+/50o++dbNs+7BZlP4nOPN93J1ZLWwLIfJw4EEYbGpanEYtxxEHBaKYTmMv8HddsUK/u19V9MfjnPbV5/OvCkXgoj5f6urrZm/5TAcpa62JtNkb0tbgJf/+s2Zjqm5uG59E30jMY71TuxxdG5ojEavMzP3+W2XtHH12qY57cOX1bZ7JreSw27D67TLDYxQdKpaHMYtB7krWyihaCJzl2tx9dom/uW9O+gPx9l7erBgz2XNWOho9s4/5hCKZlxKc2XXOrPeYVK19IWhMdrq5vdYFtmdWWcSB+PYGrmBEYpOVYuDWA6FIZ3WjMaSOTN+rM6i/QUcuRkx31Q7mjyMxpIZS2Iu9ISitM7zDX1FQy31nhoOd49MWD8/FGV5fe28HsvCGhWaSKWJ5GjXnU2g1iGWg1B0qlocJFupMIzGk2idO+PHGppTyHnMluWwuskQnvlYDz2hKMsCrnk9n1KK9S0+Oie5lc4PjdGerzi4awhFkzNWR1sE3DUScxCKTlWLQzgm2UqFIDRN4zgwGs4F3I559SeaDctSWNNsxAnmKg7JVJq+kdi83UoA61p8dPaNi0MommAkllyYWymamJs41NbIDYxQdKpaHMRyKAyWuE6XDtrkcxXUrRSOTbQc5loId3E0TlpDMA9xWB/00R+OZ8aGXrAylfK0HPymW2ku4uB3O+QGRig6VS4OuWMOfSMx3vUvz+asihWmYolrrv5EAE1eZ0HdSpF4EpuClQ3zsxwm1zjMh/VBI9X1uGk9nDcL4JbX52c5+FwORqLJ8b5K09Q5gCG6cgMjFJtZxUEp9U2lVK9San/W2t8qpc4ppV4xP96W9bNPKKWOK6WOKKXekrW+Qyn1mvmzLyqllLnuUkr9yFx/XinVUdhfcXqsO9DJ/tz954Z54eQAD+7vLtZWKpqMW2kay6HR6yxoi5JwLIXX6aDR68RuU3Nuvtc9PLHGYT5kxMGMO5wftsQhT8vBXUMknsqI5mwB6ZFosijdbgXBYi6Ww7eAW3Ksf0Frfbn58Z8ASqmtwO3ANvOcryqlrKntdwHvBzaYH9Zjvg8Y1FqvB74AfDbP32VepNKasYTpVppkOVgukOdPFmc2QaVjpQJP9wbX5HMWNlspnsTjsmO3KZq8zjlbDlatRWselkN7fS0uh21cHIbGsNsUQX+eloMZvLcskNkC0qm0zrhBBaEYzCoOWusngbm+S+4Gfqi1jmmtTwLHgauUUm1AQGv9rDZuf74D3Jp1zrfNr/8duNGyKhYTSxhqa+yMxJITJopZc4NfPDWwqN1FlwqWuE6uc7Bo8roYjMQL9rcMxw3LASAYcM3LrVRjNwRlvthsirUtvixxMOol7Lb8LlW/2V/p3FzEwfyZuJaEYrKQmMNHlFL7TLeT1aO4HTibdUyXudZufj15fcI5WuskMAzkLDNVSr1fKbVHKbWnr29hMwOseIOVbTKa5Vqy7nKHIgmO9o5MPVmYgPWmZTWUm0yj10kqrTPB14USiRmWA0CLzzXngHTPcJSg352ZyDZf1gfHM5bOD43lHW+AcSHtGhzD47RTY5/+pZhpvidBaaGI5CsOdwHrgMuBC8DnzfVcrzo9w/pM50xd1PpurfVOrfXOlpaW+e14ElZ1tOV/zr4rGxiNZ3rrP39CXEuzERpL4nM5Jgy4yabJZ9ypF8q1NBpLZprbtfjnZzm0zrPGIZv1LT7ODY0xFk9xfngs73gDjLuVzg2NzWg1wHgsR9p2C8UkL3HQWvdorVNa6zRwD2DNQOwCVmYdugI4b66vyLE+4RyllAOoY+5urLyxqqMtcci+qx0Ix1nf4mN5nZvnT85vwHw1Eoompm15DYZbCShYrUMknsJr9jMK+t30h+MT3ILT0R2K5hWMtlgf9KG1EZTuHo7SVrcAcXDNQxzErSSUgLzEwYwhWNwGWJlM9wO3mxlIazACzy9orS8AI0qpa8x4wh3Az7LOudP8+p3Ao7oIaRlWcK8tl+UQidPkc3L12iZeODkgWSKzEBpLTDssBwy3EhSuSjocT+J1jVsOqbSe02P3DEfzCkZbWBlLz53oJ5HStC/IrWT8veLJ9Ix/OxivPBe3klBM5pLK+gPgWWCTUqpLKfU+4HNmWuo+4AbgYwBa6wPAvcBB4EHgw1prK8XiQ8DXMYLUncAvzPVvAE1KqePAnwIfL9QvNxNWdfQy8+4v+4U3EI7T6HVy9ZpGLo7G6ewLF2NLFctINDltGisU3q0UiY0HpFv8hlUym2vJGg+aT42DRUezB5uCJ8254wtxK2UH72ezHCwhEctBKCYzTyUBtNbvzrH8jRmO/wzwmRzre4DtOdajwO/Mto9Ck7EcArljDo1eZ6b98vMn+zN3jcJUQtHEjG0krP5Khap1CMfHA9JBUxx6R6JsJTDtOQtJY7VwOeysavTwgpniXAi3EkD9rOIgMx2E4lO1FdLjloMpDmbMIZZMMRJL0uR10tHkIeh3SVB6FoyYw/RvcFZ/JStFeCForc2Yw/wsh+zxoAthfdBHzBx/mm/TPQCP046VNDWb5eCuseNy2KR7sFBUqlYcLMuhNeBGqfFCrsGw8QJs8DpRSnHVmkaePzl1CpgwTmgsd7vubArVXymWTJNK6/FUVksczGC31pqxHMVi3aH8q6OzWWdakF6nfdp2IXNBKZWxHmYTB5Dme0LxqVpxsLKV/G4HPpcjc1fWb97dWoVSV69toicU43SBR10uFdJpzUiOQT+TaSpQCw1L1C3LweM0/n+9oRjRRIo7vvkCN3/hiSkFd4cuhHA5bAu62wcjnRWgrb6WhdZqWrGEmfoqjR8rzfeE4lK14hCJpbApcDlsExqbWVkvjWb65dVrGgF4qYCTzJYS4XiStJ6+r5JFY4Ga71nuQI/Tnllr8bs4NzTGB777Ek8du0jX4NiU4sW9Zwa5dEVdpn4lXyzLYSHBaAtLUOdkOUjzPaHIVK04hONJvE4HSinDZDfvysbFwbAc1jZ7cTpsHOmRSulcWO642VwsRn+lhcccMpZDVkC3xefi4YM9PHG0j4/csB6AF0+Ni3ksmeLAuRBXrmpgoViJCcsX6J6C8aD0bC456xgZZysUk6oVh0gslfFbB9zjYxgt14flVnLYbWwI+jh0IVSajZY5s3VktTD6KyUW3F/JcgdmWw7W2M+/u3U7f/bmjQT9LvacGk8i2H8uRDyV5ooCiEPAXcMHrl/L7svbZz94FnzzshwcjEhAuixJpNIkU+lSb6Pg5B9Rq3AsywGMu7KzA0ZMYTASx25TE16wm5b5+fWxiyXZZ7kz0xS4bLL7KzXk0fjOwmp7km05/MlvrOfWy5dz45ZWAF7X0cieLMvh5TPG11eurs/7ebP5xNu2FORxMjGHOYiD3y2WQ7nyJz94GZfDxj/ffkWpt1JQqtdyiGdbDuMzevvDcRo8NROas21ZFqB3JFbQgTVLhYxbaTbLIVMIN3fXktaaD373Je558kRmbTRHzGFDqz8jDAA7Oxo4NzSWaYe998wgKxpq826vvVhYbqXZ6hzAcNtJzKE8OXghlBkCtZSoWnEIZzVvC9SOZysNjMYzRVsWm5b5ATjcLa6lyYxbDrNlK1n9leYusM929vPggW6eOj5utVnddC2rLxev6zCSCPacHkRrzUunBwsSbyg0VkB6TjEHdw3xZJpoQmY6lBNaa3pCUYYiS0+4q9atFImnaDbvZgPumsxMB6t1RjabTXE40j3CrnXNRd9rOWN1Cp1LthLMr7/SXU90AtAbGp/0Fs4RkJ7M5mV+vE47e04NsGN1Az2hGFeuKoxLqZD81mXLqautmbFdt0V28z13jX2Wo4ViEYomiSbSmXGvS4mqFYdwPMkqlzGD2HrhjUaT9IdjGUvBosXvotHr5Ei3ZCxNxnIr+Wapc7CE+OIcxWH/uWGeOnaR2hr7hHkNEdOt5HVN/wbpsNu4YlUDL54a5HUdVryh/CyH7e11bG+vm9OxgawWGkH/LAcLRcNqyzISS5JIpeck9JXC0vlN5onRvG08WwmMu7JcloNSik2tfg6JOEwhNJaYdVgNkAlCD8zRrXTXE534XQ7ee80qBsJxYknDYgjHUygFbsfMd887Oxo43B3iiaN9uGtsbGmbvu9SJWBZZtJCo7zoybJqCzXMqlyoWnEIx7NjDsYLbzASZ2gskSmAy2Zzm5+j3SMyNnQSs/VVsqixG/2V5hKQPnUxzC9eu8DvXbOadWZFstU7KRJL4qmxzzrN7XUdjWgN979ynkvb6yv+js6K6UjGUnnRExq/npda3KGyXzF5kmnelpWtBHC6P4LW5JwxvHmZn7FEijMD0kYjG6Ov0ty8k81z7K9091MncNht/NF1HZlGeZZrKRxP4Zkh3mBx+cp67DZl1DcUKIW1lIjlUJ5MtByWVjZjVYpDpnlbVrYSGHeswBS3EsCmZYZb4rC4liYwV8sBzBYas7iVRmNJ7nupi9++op1gwJ1prGcFpSPxZMYdOBNel4Nty43/WTlmKs0Xy7qVtt3lRbY4iOWwBBhv3jbRcjhlNtfLZTlsbPWhFFUflH76+EU+ft++TJfaUHTmKXDZNHpnb6HxyMEeYsk079xhTJWdYjnEUhlRnw0rpXUpiIM/Ky4mlA89oSi1ZvbYoIhD5ZNp3japt82pfsNyyFXB63E6WN3oqfpah4cP9vDDF89mLKjQWHLG+dHZNPlcs6ay/vzV8yyvc2fe0Ju8Tuw2lblDi8STM2YqZfPBN67jnjt2ZqyPSqa2xo7DpsStVGb0hGJsNLMbhyLiVqp4Jrd99rscKDXuVsplOYBRDFftloP1AnjkYA8wP8uhyezMOl1QfygS58ljffzmZcszAWebTdHic9Ebyoo5zNFyaPG7uHlr6+wHVgCZBpFiOZQVPaEo61q82JRkKy0JMs3bzDtQm80YvGIFS6fr/bN5WYBT/eGcw2SqhSHzBfDIoR601oTGZp/lYNHodZLW448xmQf3d5NIad5+6fIJ68GAi56sbKW5Wg5LjYDbITGHMiKd1vSOxGirc1NXWyMxh6VApnlb1h2oFXcIuB3Tpj1uXuYnreFYb/VaD5Zf9dWuYU5cDM9ploOF1V9punGhP993no4mD9vbJ9YkBP3uTEA6u+1JteF314hbqYzoD8dJpTWtATcNHieD4laqfHK1fbZcI02+6f3Tm7LaaFQrw5F4pp3If7x8DphbbyAY7690MUfGUu9IlGc7+/mty5ZPmbAWDLgmpLLOJVtpKWI03xPLoVyw4mCtATd1nhpxKy0FMs3bXNmWg/F1rjRWi/YGY/pX93B02mOWOoORBFetaWRVo4ef7DXFYd6Ww1Rx+MVr3aQ1vP2y5VN+1up3MxCOE0+mzYB0dVoOAbEcyopscagXt9LSIBybmMoK43e/M4mDy2En4HZkhtlXG6m0JhRNUO9xcvPWVs6ZLbHnUwQH49XO2fz81fNsXuZnQ+vUxkHBgHHe+aExEild1eIgMYfywaqObg24qPc4GZIiuMonEp+Yygrjd7/TZSpZtPhdXKxScQiNJdAaGjw13JQ1P2HOloOZlto7MtHyiiZS7Dk9OG1mUaspDifNbDJPVbuVltbdaSXTHYqilHHTU1dbw1B4af1vqlIcLMuhtibbcjCEYrYpZc0+FxdHltYdwlyxAm4NHic7OxoyE8zmGnOw2RTNPmcmLdXCsiRWNnpynmcN6bHEYaZZDksZv7uGSDxFYgmOpKxEekNRmn0uauw2GjzOTGfWpUJVikMknqS2xo49q3nbfCyHanUrWSmodR5jBsENm1oA5lwEB2bm0SS3UneW7zbnOZMthypOZQVpoVEu9ISiGau23rP0el9V5S1YOKvpnsVcYg5gWQ5VKg5ZlgPAH79hLR6XY8rkvJlo8bumBPTHA3u5M8WavC7sNpWpYK9Wy2G8v1Ji1utUWHx6QkaNA4yLw9BYYsaMx0qiOi2HHLnyc8lWAuPNbSSWrMpxjYOmT9Waeby9vY7/c9sls7bPzibod02xHKzA3rJpLAe76Y460VflMYdMZ1axHMqBnlCUoHnNWi7WpdRCoyrFwWjBMPENpq3OSFNdYaarTkfLDBk3Sx3LrTQfS2EyQb+L/nCMZJZvtjcUxemwZV5guWgNuDk/bGRHVW22kvn3mRzQF4pPPJmmPxzP3NBYr4mllM5aleKQK1f+uvVNPPTR61k/ywzGZr857rIK4w5DkTg2xZzbZeSiJeBGaybMdbB8t5OL37IJ+l2YjWCr1nLYtjxAs8/JvzxxItMVVygNVtxxcsxBxKHCieSwHJRSU2ZH56LFZ9wpVKXlEElQV1szLzfSZIKZ+Qzjf7+eUIxWf26XUua8LJdTtVoOXpeDj928kRdODfBLs/GhUBqsuJmVRFFfa1oOSyggXZ3iEEvlHdQctxyWjm9xrgxG4gtyKUGWOGS5RnpGotNmKk0+D6rXcgD43Z0rWR/08fe/OLyk0iYrjd5JGXZ+twObkphDxWPMj87vDcbqD1S1loNnbjUN0xGcNLwHDCsiOE2mkkW2eFRr4z0Ah93GJ9+2mZMXw3z/+TOl3k7VMjnDzmZTS64za1WKQySeyjtX3umwUe+pqc6Yw9jCLYdms7+S5VYajSUZjSXnbDlMrk+pRm7YFGTXuib++ZGjUjFdIrpDMWrsasLrwWihsXT+H1UpDuFYckG58s0+V1VaDoPhRCaNNV9cDjv1nhr6Ro07L+sObLo0VgtLPKp1lkM2Sin+4pbNDEYS/Oe+C6XeTlXSG4oS9LsnxN8My0HcShVLMpV8epuKAAAgAElEQVQmlkwvyDXR4qvO/krDY0bTvYUS9I9PdrPEYTa3kmU5VLNLKZtL2+vwOu0cvFDdY2tLhREnm3jN1nvErVTRRMzitYXcgTZXYfO9eDLNaCyZSdlbCNktNHoznS1nthyafC5sqrqD0dnYbIotbQEOiTiUhHODYyyrm3jNNiyxzqyzioNS6ptKqV6l1P6stUal1MNKqWPm54asn31CKXVcKXVEKfWWrPUdSqnXzJ99UZlJ7Uopl1LqR+b680qpjsL+ihOxpsAt5A602eesOreSddE3FEQcxt1yPbP0VbKw2xQtflfVprHmwhCHkWlncguLw0A4zqn+CNvb6yasTw5Ip9O6outR5mI5fAu4ZdLax4Ffaa03AL8yv0cptRW4HdhmnvNVpZR1q3cX8H5gg/lhPeb7gEGt9XrgC8Bn8/1l5kI4M+gn/zvQFr+LcDyVaf1dDQxHrKZ7C3crtQQMcdBa0xOK4XXa8c3hTX9Vo0d6CmWxpS3AaCxJ1+BYqbdSVbx8ZhCAHasaJqzXe4x5G1b1/2cfOsytX3m66PsrFLOKg9b6SWBg0vJu4Nvm198Gbs1a/6HWOqa1PgkcB65SSrUBAa31s9qQ0u9MOsd6rH8HblQzlcoukMJYDua4yypq3W3Nji6M5eAmnkozFEnMqcbB4p9vv4K/u3X7gp9/qbB1uTFrW+IOxWXvmUEcNsWlK+onrFvJGsNjCbTWPPDqBfadG67YPmz5xhxatdYXAMzPQXO9HTibdVyXudZufj15fcI5WuskMAw05bmvWclYDgvwXbeYwdFqat09uSPrQhgvhIsZWR+zBKMt2utr5ywk1cCmVj82hcQdisxLpwfZujxA7aT3EGsWzNBYgs6+MOeGxtCaTMPISqPQAelcd/x6hvWZzpn64Eq9Xym1Rym1p6+vL68N5poCN1+s5nvVFJS2fKkzNcebKxlxHYnRE4rNmsYq5KbWaaej2SuWwwxcGB7jb+8/ULBq8mQqzatnh7lykksJsjuzJnjy6Pj70/G+0YI8d7HJVxx6TFcR5udec70LWJl13ArgvLm+Isf6hHOUUg6gjqluLAC01ndrrXdqrXe2tLTktfFc86Pny0yzkJcqmSlwBfD5Z7fQ6A7N3a0kTGWrZCzNyAOvXuBbz5ziaM9IQR7vcPcIY4kUV66eKg71mc6scZ481seKhlpsCo73Vpc43A/caX59J/CzrPXbzQykNRiB5xdM19OIUuoaM55wx6RzrMd6J/CoXsQQfyEshyZf9XVmHRpL4LCpBYmqhdVC42jPKPFkekJTPWF+bGkL0DU4JpXS03C42xCFyaNp82WvFYzOJQ6m5dATivHciX5u3BxkZaOHzgq1HGZ9h1RK/QB4E9CslOoC/gb4e+BepdT7gDPA7wBorQ8ope4FDgJJ4MNaaysa8yGMzKda4BfmB8A3gO8qpY5jWAy3F+Q3m4ZCWA7GzNiaqrIchiJx6j3OGdtqzxWfy4HHaWf/uWFg+glwwuxsbTOC0ocvjHDVmsYS76b8sCyGQs3AeOn0IK0BF8vrpt7QWPG4Rw71EE2kuX5jC12DY3RWqOUwqzhord89zY9unOb4zwCfybG+B5iSaqK1jmKKSzHwuRxsCPqmBJPmS8ukQjitdUHeOMuVoUiiIAVwFkG/i/3nLXEQyyFfMhlL54dFHCaRSuuMOPQU0HLYsboh52vd73agFDx5tI8au+KatU28cHKAp45fJJXWFdcTrOoqpN/1upU8/KdvxOVYmDg0+1yZtt2JVJqb/ukJ7nnyRCG2WJYY7boLKQ7uTJB7tlkOwvQE/S4avU4OXSiMT30pcWYgQixpBKLztRz2nxtm0BxM1TsS5ezAWM5gNIx3Zk2mNTtXN+J1OVjX4iOeTNM1GMnvlyghVScOhSK7+d6vDvXQ2Rfm5bODJd7V4mFYDoUrQGvJciXNNZVVmIpSii1tfg51S1B6MkfMv4nDpvKyHLoGI+z+ytPs/srTnOmPsPf0EEDOYLSFFXe4fqORMLMu6AMqMygt4pAn2W6l779glHacW8KVqkORhXdkzcbKWKr31OCukX5JC2FrW4DD3SMT5nILcKR7FKXgilX1E+aHzJXvPnsagFA0wTu+9gz//lIXTruNbaYrLxfWDdT1G5sBWN8i4lB1NPtcROIpjnSP8NQxw8d4bmjpDn4fjMQLksZqYdU6iEtp4WxpCxBPpjl5sTKLrRaLIz0hVjV6WN3kzUxumyuReJIfvHCGW7Yt48cfuBa7UjxyqIdLVtTN6JJu8jpp9rnYsswQkDpPDc0+V0VmLIk45In15vblx46jgHfuWMnF0VjFlsrPRDSRIpZMF6QAziJoioK4lBbOljZpo5GLI90jbGr102r28ppPg8L79p4jFE3yh9d1sKHVz48/eC2Xr6xn9+XLZzzvz9+yibvee+WEOQ/rg16xHKoJa6LZA/vO86ZNQV7XYfghzw+Vp2spHEuSyrN752ABW2dYWG4lyVRaOOuDPrxOO3tOLd2Y13yJJlKc6o+waZmfoN9NMq0ZmOMgnnRa862nT3JJe12mnmFlo4f/+PB13HFtx4znbmkL8LqOiVlj61p8HO8drbgOrSIOeWJVSWsN77lqFe31tQCcK0Nx0Fpz4+ef4EuPHpvzOd9//gyffuAgMN46o6CprAFLHMRyWCg1dhtXrWnk6c6Lpd5K2dDZN0oqrdm0zJ+5xnrm6Fp66vhFOvvC/OF1HQVJT18f9BGKJjPZjZWCiEOeWHe+ywJu3rSphfYGUxzKMCgdiafoDkX58Z6uOZvW33v+NN/49UmePNqXsRwKKQ7t9bV4nHY2tvoL9pjVzK51zZzoC9M9vHTjXvPhiFkZvanVT4vpwpxrUPpfnz5Js8/Ff7m0rSB7WVehQWkRhzxp9Dpp9Dq5Y9dqHHYbrQE3NlWelsOAmad9bmhsTum20UQq8+L6u/93MHPHU19bOLeS313Dsx+/kbdfOrMPV5gbu9YbjYyfEesBgCM9IzjtNjqavRnLYS5B6T2nBnj8SB+/f83qBddCWay30lkrLCgt4pAnDruNp/7iBj70xnWAYdovC7jL0nKwxAHg56/OPpD+SPcIybRm9+XLOdozminua/AWznIAI5PDVmFVo+XKlmUBGjw1PH28v9RbKQuOdI+wtsVLjd2WSR6Zrb9SLJniL+/bx4qGWv7r9WsKtpe2Ojcep73i2miIOCwAr8sxwSfZ3lBLVxlbDu31tTyw78Ks+fD7zJ5Hf/7mTVy9ppHXzO8LGZAWCovNprh2XRPPdF6suMDnYnC0e4TNywyXpcthp8FTQ88sVdJfeayTzr4wn7ntkgUNA5uMUop1Lb6KS2cVcSgg7fW1ZWk59Jvi8N5rVnNxNMbzJ3N2RM/wWtcQjV4nKxpq+eu3b0UpcDlsUqxW5uxa18yF4Sin+iuvVUMhGR5LcH44yqZl48VqQb97RsvhSPcIdz1+nNuuaOeNG/MbBzAT64M+jvVUVsaSiEMBaW+opTsULbtK1YGw8aJ4544VeJ12fv7q+RmPf+1ciEva61BKsW15HXde28HmtumrQoXy4Lr1RlXu08erO+5wzGy2t2mZL7MWDLjomSYgnU5r/vK+ffjdNfzVb25dlD3tWN1AdyjKK2eHFuXxFwMRhwLSXu8hldZ5leovJgPhBE67jWafk5u3tvKL/d3Ek7kFLJpIcbRnhEva6zJrf/P2rfz0Q7uKtV0hTzqaPCyvc1d9UPqIKQ7ZmXBBv5u+aQLSh7tHeOXsEB+7eSONBewCkM3uy5fjddr5t+fOLMrjLwYiDgUkk85aZnGHgXCMRq8xi+Htly1neCzBU8dyj1k9eCFEKq25ZMW4OCilJHBcASiluHZdM8929s+rGnipcbx3FI/TzvK62sxaa8BF7zRV0sd6DTGxClkXA7+7htuubOfn+85nuryWOyIOBSRTCFdmcYeB8HhfpDdsaKHR6+TTDxzkeO/UNs/WAJ5Ls8RBqByuW9/EYCRR1V1aO/vCrG3xTrihCfpdJNM6U7OTzfHeUWwK1jR7F3Vf771mNfFkmh+/dHZRn6dQiDgUkHKtku4Px2kyxcHpsHH37+9gNJbktq88w2OHeyccu69rmGafk2XS1qIiseIOz3ZWdkrrUCTOSJ6jTzt7RzOFZxZWm5ZcrbuP9YzS0eQtWF3DdGxeFuCqjka+9/yZirDsRBwKSK3TTpPXSVeZWQ6D4fgEX+rOjkZ+9pHXs6rJwx99+0X+7bnTmZ+91jWcCUYLlUdrwI3f5Si7a3C+fOC7L/Hxn7w27/PG4inODY1NEQerXUuudNbjfaOZQrXF5r3XruZ0f4SnKiBpQMShwLQ31Jal5TA50NZeX8u/f3AXb9rYwt/cf4CXTg8QiSc51jvCJSvqS7RToRA0+pwTCh8rka7BMV7NI7PHalu+tmWii8jqAtw3yXKIJ9Ocuhgumjjcsm0ZzT5nZlZEOSPiUGCMWofyyTOPJ9OMRJM5szBqnXb+77uvoL2+lo98/2WeOd5PWsOl7RJvqGQavZUvDqGxBF2DY0TiyXmdZxWaTbYcrCrpyc33TveHSaY1G1qLIw5Oh4137FjBo4d7GIuXd3t/EYcC015vWA7lUuxiBeCmS9ELuGv4ynuupH80zsd+9ArAhEwlofJo8jozhY+VSCqtGYkZotDZO78BRp19xvS3ycFld42dek/NlDRzqxnehmDxGkBuCPpJ6/znWhcLEYcC095QSzSRLps7t36zaV7TDPnbl6yo45Nv28xILEnQ75IZCxVOk9eVKXysREJj44HoYzky6maisy/MiobanNX8Qb9riuVwzBSHyW6oxcSyYvrKrB5qMoVrICIAsDwrY6nJV/pZBbNZDhZ37urgSM9oQdtyC6XBijlorSsysWAoSxyO9syvH1GuTCWL1oB7iuVwrHeUFQ21Be2lNBtBEYfqxEpnPT80xqVlENi13AuziYNSiv/vty8pxpaERabJ6ySR0oSiyYKOdi0Ww1nikKsWZzrSac2Ji6Ncu64p58+DfjedvROzhI73jrKhSMFoi0yX2DIXB3ErFZgVZpV0uaQSDowaF+BitQUQyg/rf10urs35YonDsoA74/aZCxdCUaKJ9LQuomDARd/oeJV0Kq3pLGIaq0Wjx4ndpsrechBxKDB1tTV4nfaySWcdCMdRCuql3XbVMC4O5f3mMx2WOOzsaODMQIRoYjyr55GDPXzuwcMMR6YWyFnzEqZ1K/ldJFLjVdJnByLEk+miBqPBaK/e7HNKQLraUErRVl/LhaHy+McPROI0mHcqQnXQ5DXcFv0VNrPYYth8835dRyNaTxyv+bmHDvPVxzu54fOP86MXJ1YaT5fGahE0Ey3ODBip5tbjri9SGuuEvfjdYjlUI0G/Yb6WAwPhOA0SZK4qGn1Lw620Y7XRCM96Ez/dH+ZozyjvvWYVa5u9/OV9r3Hnv76QEYjOvlECbgfNvtxW8tVrGvG5HHzp0ePAeKZSsd1KYMQdJOZQhQT9rrIxGftH45k7SaE6sNKWS1nrkE5rfvTimbwKvYbHErhrbGxs9eOwqUw66yOHjD5g73/DOn78wWv5xFs389Sxi9xvzifp7A2zLuibNkOryefiT25cz6OHe3nsSC/HekdoDbgIuIt/8xT0u8RyqEaCAWPqVDkUwg3kaJ0hLG3cNXa8TntJ3Uovnx3iL+97jZ++fG7e5w6PJaivdeJ02Oho9nLMTGd95GAPm1r9rGryoJTiv75hLdvbA/zDQ0eIJlJ09o2ytnlmK+APdq1hbbOXT//8IIcujBQ93mDR4ndxcTRGqowb8Ik4LAJBv4tYMk0oOr/S/8VgMBLPuBmE6sGodSjdnakVHN5zeuaRtLkYiiQyKbgbgj6O9Y4yFInzwqkBbtoazBxnsyk++dYtnBsa46uPd9I7EmNdcOZiNqfDxl/95lZOXAxz6EKoJC4lMN4j0rq8XX8iDovAeAVkaV1L6bRmMJKgUTKVqo5Gr6ukbqXOi4Y47D09OO9zh8eyxKHVz+n+MA8d6CaV1ty0pXXCsbvWN/OmTS18+dFjwPTB6Gxu2Bzkhk3GnOhSicN4rUN5uJ9zIeKwCFgdIGcaaF4MhscSpNJa3EpVSFOJm++d6DN6Ip3qj3BxnskZw2MJAlmWQ1rDPU+dpNnn4rIchaUff+tmLOfMXMQB4G/evo1LV9Rl5l8Um0pooSHisAhYveNLnY1g3Tk2iVup6ih1Z9YTfaO0mq+DlyZZD6+cHWI0Nr3LNTTBcjDe7I/3jnLTlmDOcbWblwV4146VeJ12VjV65rS/jmYv93/k9Ys+/W06Mi3ERRyqi2CZmIxWsU+DuJWqDqszaymSIhKpNGcGIvzmpctx2m0TXEtnByLc9tWnuevx49OePzyWyPT4WtPszdToTHYpZfPpW7fz4Eevx+mojLe0SmihURl/yQrD53JQW2MvuVvJylYRt1L10eRzEk+mCZdgZsDZgQiJlGbzMj/b2wMTLIefvnwOreHJo7knoSVSxp4ty8HlsLO6yYO7xsbrN0zvAnI6bKyco9VQDrhr7PjdjrK2HKTx3iKglCqLIpcBcStVLY2ZKukYPldxX+ZWvGFti4+dHY1865lTxJIpnHYbP9nbBcD+88MMhuM0TLpxsQrgshsGvuPKFYzFUznbcFcyLWVe6yCWwyJRDoVwViqjuJWqj1IWwp24aLWx8HLlqgbiyTT7z4XYe2aQU/0R3n3VSrSGZ0/0Tzk3lzh8+Ib1/PlbNhVn80Wk3AvhFiQOSqlTSqnXlFKvKKX2mGuNSqmHlVLHzM8NWcd/Qil1XCl1RCn1lqz1HebjHFdKfVFVYhP6SQQDpbcc+sNxvE77krvjEmYn03yvBIVwJ/rCNHmd1HucmRYYe08Pct/ec9TW2Pn4LVvwuRz8+vhU11IucViqtPjdJb+BnIlCWA43aK0v11rvNL//OPArrfUG4Ffm9yiltgK3A9uAW4CvKqWsd627gPcDG8yPWwqwr5IS9LunDDMvNoNhKYCrVkrZtruzbzTTNrvF72J1k4enOy/ywKvnuWX7Muo8NVyztomnc4mD2W21rgr6gS1py2EadgPfNr/+NnBr1voPtdYxrfVJ4DhwlVKqDQhorZ/VRmrFd7LOqVha/C5GYsmSDhHvD8czvmehurDiTCVxK/WFJ7Sx2LGqgceP9BGKJvntK9sBeP36Jk73Rzhrdki1qC7LwUU4niI8Q1pvKVmoOGjgl0qpl5RS7zfXWrXWFwDMz1a9eztwNuvcLnOt3fx68voUlFLvV0rtUUrt6evrW+DWF5dyGAU4EI7PODtaWLp4nA7cNbait9AYjiToD8cntLHY0WG4lpYF3OxaZ2QcWZlHk11L1SQO5fAeMRMLFYfrtNZXAm8FPqyUun6GY3PFEfQM61MXtb5ba71Ta72zpaVl/rstIlbv+FL6FI123SIO1UqT11X05ntW24xsy2Hn6kYAdl+xPFOzsK7FR2vAVdXikKmSLpP2/pNZUI6b1vq8+blXKfVT4CqgRynVprW+YLqMes3Du4CVWaevAM6b6ytyrFc0wRIXuWitDctBYg5VS5PPWXS30nga67jlsLHVx/+9/XLetGm8aZ5SiuvWN/PY4V7SaZ2pfB4eS+B12qmxL/1EynJpszMdef8HlFJepZTf+hp4M7AfuB+40zzsTuBn5tf3A7crpVxKqTUYgecXTNfTiFLqGjNL6Y6scyqWTAVkqDSWQyiaJJZMi1upiilFC43OvlEcNjWhIE0pxe7L26dYA69f38xgJMHBC6HMWnZH1qVOuTTonI6FWA6twE/NrFMH8H2t9YNKqReBe5VS7wPOAL8DoLU+oJS6FzgIJIEPa62taO2HgG8BtcAvzI+KptHjxGFTJbMcDpkvuE3LStOvXig9jV5nZhZCsTjRN8qqJs+c7vytpne/Pn6R7e11wMSme0ud+tqakr5HzEbe4qC1PgFclmO9H7hxmnM+A3wmx/oeYHu+eylHjCHipat12H9uGIBty+tK8vxC6TH6KxX3+jvRF55zZ9TWgJuVjbW8Zl6rMLHp3lLHZlNlXSW99B17JaSUhXAHzodYFnBnTFeh+mj0uogm0kTii5cqqbXmdH+YZCpNMpXmdH9kQrxhNja1Bjic5VYariJxgPKeJS29lRaRoN9F1+BYSZ77tXPDbG8PlOS5hfIg00JjNI6ncXFe6g8d6OaD/7YXr9POtvY64qk062YZ1ZnNljY/jx7uIZoweicNjcW5zFM91m7Q7+L8UHnGHMRyWERa/O6SmIyReJLOvlFxKVU5xSiEe2DfBRq9Tm67sp2hSByn3cYVq6YO5JmOTcv8pLUxrwHEcignxHJYRIJ+Y1RjIpUuamreoQshtCYT5BOqk/EWGovz5hNPpnniSB9vu6SNv7v1EoAJaalzYfMyw7o93D3ChlYf0US6ysTBzUA4RiqtMzUg5YJYDouINRHOGpPY2TfKQwe6OT80VrAhLL0jUd7+pV9zuHvcb7v/nPH1JSIOVU1Tpm334lgOL5wcYCSW5Oat40N45iMMAB1NHpwOG4cvhKqqAM4i6HeR1uVZJS2WwyKSPQqwwePkjm+8wLkhIwbR7HPyrp0r+YtbNi/oOR491Mtr54b5zrOn+T+3GXdv+88N0+xzZsY0CtWJ1XRxsWodHj7YjbvGtqA5zA67jY2tPo70jBAyxaFaUlmBzJjSzr5RltW5S7ybiYjlsIiMF8LF+PpTJzg3NMZn33EJn9q9jdaAmx+8cGbBz/FMp9ET/4FXzxNNGGUj+8+H2La8jiXQ+VxYAF6nHafDxtnByOwHzxOtNY8c6uUNG1qodS6sJfym1gCHu0cYMjuy1ldRyxdrRvbRnpES72QqIg6LiNVCY//5Yb76eCe3bFvG775uFXdc28HbLmljMJJYUNdWrTXPdPbTXl9LKJrkscO9RBMpjvWMSKaSgFKKm7e08r3nz3D/q4XtSHPwQohzQ2PcPMNc57mypc1P30iMExeN1hvV5FZq8bmo99RwtMjFinNBxGERafYZ4nDX450kU5pPvG3chdReXwvA+eH8U12P945ycTTGh29YT9Dv4r695zjaM0IyrdkumUoC8Pl3XcZVHY386Y9e4ZGDPQV73EcO9qIU/MaW4OwHz4JVxf/CyQGgusRBKcXGoJ9jYjlUF06HjUavk1gyzR++voPVTePFQW2mf/H8UP7iYLmU3rChmVuvaOfxI708dczocimZSgIYg+y/fudOti0P8N++v5fncozmzIeHD3Vz5aqGzA3QQrAylp4/aeytmsQBDNfS0Z6RgiWpFAoRh0WmNeCmyevkIzesn7C+3LQcLiygAObp4xdZ2VjLykYPt13RTjKt+doTnQTcDlY01C5o38LSwe+u4dt/dBVBv4t/fuTogh/v7ECE/edCE7KUFkKL30WT18nZAeNGKeCurjyZja1+QtFk2dU7VNd/oQR8avc2HDaF3z3xbmhZnRulyGQvzZdUWvPciX7eur0NgC1tATYv83O4e4Rd65okGC1MoN7j5JZty/jOc6cz1cjz4VjPCJ//5VEOdYc4Y05vK5Q4AGxu8/P08X78LgeOKmjXnU12ULo1UD4ZS9X1XygBr+to5IpVDVPWa+w2gn4XF/KMORw8HyIUTbJrfVNm7R1XGmMxxKUk5GLX+ibiyTR7Tw/O+9wfv9TFI4d62LY8wMdu2sj3/vjqOTfYmwubWg3XUjWlsVpsbDViLuUWlBbLoYS01dXm3VflmU4jtnDt2nFx2H3Fcv716ZO8cWN5T8kTSsPrOhqx2xTPdPaza561CZ29o6wP+vjq7+1YlL1tbjPeIKst3gBG4orRXr28gtIiDiVkeb2bw935XRBPd/azPujLjCMFo+jumU/k7JYuCPjdNVy6os68sdg0r3M7+0bZtogW6eZl1SsOABuCvrKrdRC3UglZXlfLhaHovLMU4sk0L54cYNe6ptkPFoQsrl3bxL6uYUZjc2/jHUumODMQKagbaTIbgn5sCuo91SkOG1v9HOsZLauMJRGHEtJWX8tYIpWpDJ0LF0dj/PXP9jOWSIk4CPNm17pmkmnNi6cG5nzO6f4IaQ3r5jGnYb7UOu3ctKWVHaunxueqgY2tPkZiSbpLNFY4F+JWKiHt9Watw/AYDbPMek6k0tzz1Am++lgnY4kUd167mpsKUJ0qVBc7VjfgtNt4trOfGzbNrYCt02ynvZiWA8Ddd+xc1McvZzZkBaXb6sojDV0shxJiXQRzCUr/08NH+dyDR7hmbRMPffR6/vfu7VWX8icsnFqnnStW1WcSGuZCZ58hDvOZ8CbMDytjqZyC0vLuUkIyhXCzpLPuPzfM3U+e4J07VvD1O3eyPri4d3DC0ubadU0cOB9ieI7uzM6+MO31tXic4mhYLBq9Tpp9To7kmaCyGIg4lJAmrxOn3TZjIVwyleYv79tHg8fJX/2XrUXcnbBU2bWuGa3huZNza6XR2TcqVkMR2BD0c7S3fGodRBxKiM2maKt3z9hC456nTnLgfIhP795GXZVmcgiF5fKV9bhrjLjDbGit6ewdXfR4g2AEpY+XUY8lEYcS01bnnrb53qmLYf75kaO8ZVsrb72krcg7E5YqToeNq9c08fiR3lnfiHpCMcLxFOvElbnobGj1E46n6BrMvxlnIRFxKDHL62q5MJzbcvj3l7pIpjWf2r29yLsSljo3bQlyqj9CZ194xuOsYPRiprEKBpevrAfg+ZNzTzNeTEQcSszy+lq6Q1FS6al3cM+f7Gd7e11ZNeMSlgY3mU3zHp5lxoMlDuvFrbTobG0L0Oxz8cTRvlJvBRBxKDlt9W5SaU3vyETrYSye4pWzQ1yzprFEOxOWMm11tWxvD/DIoVnEoXcUv8uRGXkrLB42m+KNG1t46lhfzpvFou+n1Buodqx01sm1Di+fGSSR0lyzVqqghcXhpi2t7D0zSOxRMB0AAAxTSURBVN8McwQ6+8KsDfqkBXyReOOmFoYiCV7tGir1VkQcSs3yTCHcxCDUcycHsCnY2VGd7QSExefmra1oDY8d7p32mM6+UYk3FJHrNzRjU/D4kdK7lkQcSsxys4XG5EK45070s2153ZQhQYJQKLa2BWivr+WXWXGHb/z6JH967ytE4klGY0kuDEcljbWI1HucXL6ynieOTC/YxULEocT43TX4XY4JbqVowow3rJV4g7B4KKW4aUuQXx/vYyye4ltPn+TTDxzkJ3vP8fvfeIFXzhiuDRGH4vLGjUH2nRumf7S0Y0NFHMqAtvqJtQ6vnB0inkxz9RqJNwiLy01bW4km0vzP/3iNv/35QW7e2sqX33MFr3UN84Hv7gFgfVDcSsXkTZta0BqeOjb3/leLgYhDGbC8fmKtw/MnBlAKXieZSsIic/WaJvwuBz/Ze45r1zbxpXdfwW9eupxv/MFO0hrsNsWqRhGHYnJJex2NXmfJU1pFHMqA9vpaOvtGOW72VXnuRD9blgWqdiqWUDycDhvvvnoVr1/fzD137sRdYwfgDRta+PEHr+Vz77gUp0PeJoqJzaa4fkMzTx7tIz0ppTWV1vzZva/y6tnFz2aS/3oZ8IfXrcHjdPC7//Isr5wdYu+ZQUlhFYrGJ9+2hX/746vxuSZ2Xd3eXsc7dqwo0a6qmzdtCtIfjvPMpP5X33v+NPft7ZqxWWehEHEoA9YHfdz7gWtwOWy862vPEkumuVqC0YJQtbx5WysrG2v5n//xGpG4MdK1fzTGPz50hNevb+at25ct+h5EHMqEtS0+7v3gtSyvd2O3Ka7qEHEQhGrF43TwD++8jDMDEf7+F4cB+OyDh4nEU/ztb20rSlGiTO8oI1Y0ePjpf7uOs4ORWceGCoKwtLlmbRN/uGsN33z6JK0BN/fu6eID168t2rAvsRzKjAavk0tX1Jd6G4IglAF/ccsm1jZ7+YeHjtAacPHfb9xQtOcuG3FQSt2ilDqilDqulPp4qfcjCIJQatw1dv7xXZfR4Knhf//WtilJA4tJWbiVlFJ24CvAzUAX8KJS6n6t9cHS7kwQBKG0XLmqgT3/62bstuI2PywXy+Eq4LjW+oTWOg78ENhd4j0JgiCUBcUWBigfcWgHzmZ932WuTUAp9X6l1B6l1J6+vtJ3LRQEQViqlIs45JLFKdMutNZ3a613aq13trS0FGFbgiAI1Um5iEMXsDLr+xXA+RLtRRAEoeopF3F4EdiglFqjlHICtwP3l3hPgiAIVUtZZCtprZNKqY8ADwF24Jta6wMl3pYgCELVUhbiAKC1/k/gP0u9D0EQBKF83EqCIAhCGaG0npIUVBEopcaA+bie6oDheT7NKuDMPM/J9/ny2V82892r7G+cfP7Psr9xZH/lv79mwBott1prPXu6p9a6Ij+Avnkef/diP8dCni+f/RXz77GU95fP/1n2J/ursP3tme9zVLJbab6jkH5ehOdYyPPls79sFvvvsZT3l8//WfY3juyv/Pc3byrZrbRHa72z0p+jUJT7Xst5f+W8N5D9LRTZX37PUcmWw91L5DkKRbnvtZz3V857A9nfQpH95fEcFWs5CIIgCItHJVsOgiAIwiIh4iAIgiBMQcTBRCk1OsvPH1dKlSyopZRaoZT6mVLqmFKqUyn1f80+VNMd/1GllKfIe5zxb1hqlFK3KaW0UmpzqfcyE+V4Lcr1t3Aq5fqzEHGoAJRSCvgJ8B9a6w3ARsAHfGaG0z4KFPXFWQG8G/g1RmPHOWNOKqxa5PorGBV1/Yk4ZKGUepNS6oGs77+slPqDEm7J4jeAqNb6XwG01ingY8AfKaW8Sql/VEq9ppTap5T670qpPwGWA48ppR4r5kaVUj6l1K+UUnvNPe021zuUUoeUUvcopQ4opX6plKot5r6A64D3Yb44zf/3k0qpnyqlDiqlvqaUspk/G1VKfUop9TxwbbH2mbXfcroW5forwL6ooOsPRBwqhW3AS9kLWusQRsn9HwNrgCu01pcC39NafxFjHsYNWusbirzXKHCb1vpK4Abg8+adJ8AG4Cta620YhT/vKOK+bgUe1FofBQaUUlea61cBfwZcAqwDfttc9wL7tdZXa61/XcR9liNy/S2cirv+RBwqA0WOyXjm+vXA17TWSQCt9UAxN5YDBfwfpdQ+4BGMca+t5s9Oaq1fMb9+Cego4r7ejTGbHPPzu82vX9DG7PIU8APg9eZ6CriviPsrZ+T6WzgVd/2VTcvuMiHJRMF0l2ojkzjApLscpVQAY3reCXK/cEvF7wEtwA6tdUIpdYrxv2Ms67gUUBSzXinVhOEa2a6U0hgzQzRGi/jJfzvr+6j5gi0V5XQtyvW3ACr0+hPLYRKnga1KKZdSqg64sdQbMvkV4FFK3QGZANXngW8BvwQ+qJRymD9rNM8ZAfzF3yp1QK/5wrwBWF2CPUzmncB3tNartdYdWuuVwEmMu7SrlDGB0Ab8LkbAsBwop2tRrr+FUYnXn4gDgHlhx7TWZ4F7gX3A94CXS7oxE22Usd8G/I5S6hhwFMO3+kng6xi+331KqVeB95in3Q38olgBQetviPF326mU2oNxF3e4GM8/C+8Gfjpp7T6Mv9WzwN8D+zFesJOPKyrleC3K9bdgKub6y0baZwBKqcuAe7TWV5V6L5VKJf4NlVJvAv5ca/2bpd6LRSX+HcuBSvy7leP1l03VWw5KqQ9iBIL+V6n3UqnI37AwyN8xP+TvtjiI5SAIgiBMoeotB0EQBGEqIg5CXiilViqlHjOrTg8opf6Hud6olHpYGT14HlZKNZjrTebxo0qpL096rN81q2sPKKU+V4rfR6gc8rj2blZKvWRWTL+klPqNrMfaYa4fV0p9MatgruoRcRDyJQn8mdZ6C3AN8GGl1Fbg48CvzB48vzK/ByO75a+AP89+EDMH/B+AG83K1ValVLmkEAvlyXyvvYvA27XWlwB3At/Neqy7gPdjVE9vAG4pzq9Q/og4CHmhtb6gtd5rfj0CHMKoRt0NfNs87NsYbQPQWofNNgDRSQ+1Fjiqte4zv3+E4rY1ECqMPK69l7XW5831A4DbrB9pAwJa62fNdN3vWOcIIg5CAVBKdQBXAM8DrVrrC2C8iIHgLKcfBzabjdEcGC/OlYu3W2Epkce19w7gZa11DENQurJ+1mWuCUj7DGGBmN0m7wM+qrUOzddlq7UeVEp9CPgRkAaewbAmBGFG5nvtKaW2AZ8F3mwt5ThM0jdNxHIQ8kYpVYPx4vye1von5nKPaa5jfu6d7XG01j83u09eCxwBji3WnoWlwXyvPaXUCozq4zu01p3mchewIuthV2B0kxUQcRDyxMzq+AZwSGv9T1k/uh8j6If5+WdzeKyg+bkB+G8YLRkEISfzvfaUUvXA/wM+obV+2jrYdD2NKKWuMR/zDuZwvVYLUgQn5IVS6vXAU8BrGO4gMHrtPI/RE2gVRs+d37HaOJsdMgOAE6Of/pu11geVUj8ALjMf41Naa6u1sSBMYb7XnlLqfwGfYKJF+matda8yxq1+C6ND6y+A/67lTREQcRAEQRByIG4lQRAEYQoiDoIgCMIURBwEQRCEKYg4CIIgCFMQcRAEQRCmIOIgCIuAUuqD1szlOR7foZTav5h7EoT5IO0zBKHAKKUcWuuvlXofgrAQRBwEIQdmQ7cHMQqrrgCOYlTQbgH+CfBhtIL+A631BaXU4xh9oa4D7ldK+YFRrfU/KqUuB74GeIBO4I/MnlI7gG8CEeDXxfvtBGF2xK0kCNOzCbhba30pEAI+DHwJeKfW2npj/0zW8fVa6zdqrT8/6XG+A/yl+TivAX9jrv8r8CdmTylBKCvEchCE6Tmb1Yvn3zBaNGwHHjY7gNqBC1nH/2jyAyil6jBE4wlz6dvAj3Osfxd4a+F/BUHIDxEHQZieyb1lRoADM9zph+fx2CrH4wvC/9/eHeImGARhGH6/pJj62p6AK3AQQgjhRqQ1YDgFBonrDep6hRaDHQSL2v6IpgmI95EjNuu+zGQz+zAcK0nDXpNcg2AKfAAv11qSUfsjYFBVHYHvJJNWmgOHqvoBjm2JHMDs/68v/Z2dgzTsE1gk2XDZ6PkO7IG3NhZ6AlZcvp68ZQGskzwDX8Cy1ZfANsmpnSs9DLeySr9or5V2VTW+81Wku3CsJEnq2DlIkjp2DpKkjuEgSeoYDpKkjuEgSeoYDpKkzhmPFH031bbKyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-100:].plot()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "weeks = [pd.Period(pd.Timestamp(y, 9, 1), 'W') for y in range(1991, sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "53\n", "52\n", "52\n", "52\n", "52\n", "53\n", "52\n", "52\n", "52\n", "52\n", "52\n", "53\n", "52\n", "52\n", "52\n", "52\n", "53\n", "52\n", "52\n", "52\n", "52\n", "52\n", "53\n", "52\n", "52\n", "52\n", "52\n", "52\n" ] } ], "source": [ "x = []\n", "y = []\n", "for week1, week2 in zip(weeks[:-1],\n", " weeks[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " print(len(one_year))\n", " \n", " x.append(week2.year)\n", " y.append(one_year.sum())\n", " \n", "serie = pd.Series(index=x, data=y)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "serie.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }