Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
6406ae78c31cf18a1ad5806543fbce60
mooc-rr
Commits
854ded2e
Commit
854ded2e
authored
Jul 20, 2020
by
6406ae78c31cf18a1ad5806543fbce60
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Un premier essai avec Jupyter
parent
79a29342
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
192 additions
and
3 deletions
+192
-3
Untitled.ipynb
module2/exo1/Untitled.ipynb
+6
-0
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+186
-3
No files found.
module2/exo1/Untitled.ipynb
0 → 100644
View file @
854ded2e
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
module2/exo1/toy_notebook_fr.ipynb
View file @
854ded2e
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Titre"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"2+2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
}
],
"source": [
"x=10\n",
"print (x)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20\n"
]
}
],
"source": [
"x=x+10\n",
"print (x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Petit exemple de completion"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"mu, sigma = 100, 15"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[122.8665573 89.67368321 126.63359557 ... 109.75392981 119.32850616\n",
" 110.36906345]\n"
]
}
],
"source": [
"x = np.random.normal(loc=mu, scale=sigma, size=10000)\n",
"print (x)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<function matplotlib.pyplot.show(*args, **kw)>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEGpJREFUeJzt3X3MnXV9x/H3Z1QZPhDLKAzbZmWmLgOSoXQdm9miso1OFot/mNRs0mUsNQQXXdxD0WS6P5qg8yFhGSx1MsqmkEZxNAE2kZgZEwRvGEILNlSpcENHb2c22Zagrd/9cX5NjuW092Pv07u/9ys5Odf5Xr/rXL9v7rafXg/n3KkqJEn9+qlxT0CSNF4GgSR1ziCQpM4ZBJLUOYNAkjpnEEhS5wwCSeqcQSBJnTMIJKlzy8Y9gemcffbZtWbNmnFPQ5KWlIceeuh7VbViJmNP+iBYs2YNExMT456GJC0pSb4707GeGpKkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM6d9J8slqazZutdY9nv/uuvGMt+pYXmEYEkdc4gkKTOGQSS1DmDQJI6ZxBIUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUuWmDIMnqJF9J8kSSPUne1+ofSfJskkfa421D21yXZF+SvUkuH6pfkuSxtu6GJDkxbUmSZmomv7z+EPCBqno4yauBh5Lc29Z9qqo+Pjw4yQXAJuBC4LXAl5O8vqoOAzcBW4CvA3cDG4B7FqYVSdJcTHtEUFUHqurhtvwC8ASw8jibbARur6oXq+opYB+wPsl5wJlVdX9VFXArcOW8O5AkzcusrhEkWQO8AXigld6b5NEkNydZ3morgWeGNptstZVt+ei6JGmMZhwESV4FfAF4f1X9gMFpntcBFwMHgE8cGTpi8zpOfdS+tiSZSDIxNTU10ylKkuZgRkGQ5GUMQuCzVXUHQFU9X1WHq+rHwKeB9W34JLB6aPNVwHOtvmpE/SWqantVrauqdStWrJhNP5KkWZr2YnG7s+czwBNV9cmh+nlVdaC9fAewuy3vAj6X5JMMLhavBR6sqsNJXkhyKYNTS1cBf7NwrUiLa83Wu8a27/3XXzG2fevUM5O7ht4EvBt4LMkjrfZB4F1JLmZwemc/8B6AqtqTZCfwOIM7jq5tdwwBXAPcApzB4G4h7xiSpDGbNgiq6muMPr9/93G22QZsG1GfAC6azQQlSSeWnyyWpM4ZBJLUOYNAkjpnEEhS5wwCSeqcQSBJnTMIJKlzBoEkdc4gkKTOGQSS1DmDQJI6ZxBIUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUOYNAkjpnEEhS56YNgiSrk3wlyRNJ9iR5X6ufleTeJE+25+VD21yXZF+SvUkuH6pfkuSxtu6GJDkxbUmSZmomRwSHgA9U1S8ClwLXJrkA2ArcV1Vrgfvaa9q6TcCFwAbgxiSntfe6CdgCrG2PDQvYiyRpDqYNgqo6UFUPt+UXgCeAlcBGYEcbtgO4si1vBG6vqher6ilgH7A+yXnAmVV1f1UVcOvQNpKkMZnVNYIka4A3AA8A51bVARiEBXBOG7YSeGZos8lWW9mWj66P2s+WJBNJJqampmYzRUnSLM04CJK8CvgC8P6q+sHxho6o1XHqLy1Wba+qdVW1bsWKFTOdoiRpDmYUBElexiAEPltVd7Ty8+10D+35YKtPAquHNl8FPNfqq0bUJUljNJO7hgJ8Bniiqj45tGoXsLktbwbuHKpvSnJ6kvMZXBR+sJ0+eiHJpe09rxraRpI0JstmMOZNwLuBx5I80mofBK4Hdia5GngaeCdAVe1JshN4nMEdR9dW1eG23TXALcAZwD3tIUkao2mDoKq+xujz+wCXHWObbcC2EfUJ4KLZTFCSdGL5yWJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUuZl8jkCa1pqtd417CpLmyCMCSeqcQSBJnTMIJKlzBoEkdc4gkKTOGQSS1DmDQJI6ZxBIUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1btogSHJzkoNJdg/VPpLk2SSPtMfbhtZdl2Rfkr1JLh+qX5LksbbuhiRZ+HYkSbM1kyOCW4ANI+qfqqqL2+NugCQXAJuAC9s2NyY5rY2/CdgCrG2PUe8pSVpk0wZBVX0V+P4M328jcHtVvVhVTwH7gPVJzgPOrKr7q6qAW4Er5zppSdLCmc81gvcmebSdOlreaiuBZ4bGTLbayrZ8dF2SNGZzDYKbgNcBFwMHgE+0+qjz/nWc+khJtiSZSDIxNTU1xylKkmZiTkFQVc9X1eGq+jHwaWB9WzUJrB4augp4rtVXjagf6/23V9W6qlq3YsWKuUxRkjRDcwqCds7/iHcAR+4o2gVsSnJ6kvMZXBR+sKoOAC8kubTdLXQVcOc85i1JWiDLphuQ5DbgzcDZSSaBDwNvTnIxg9M7+4H3AFTVniQ7gceBQ8C1VXW4vdU1DO5AOgO4pz0kSWM2bRBU1btGlD9znPHbgG0j6hPARbOanSTphPOTxZLUOYNAkjpnEEhS5wwCSerctBeLJZ181my9ayz73X/9FWPZr04sjwgkqXMGgSR1ziCQpM4ZBJLUOYNAkjpnEEhS5wwCSeqcQSBJnTMIJKlzBoEkdc4gkKTOGQSS1DmDQJI6ZxBIUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6ty0QZDk5iQHk+weqp2V5N4kT7bn5UPrrkuyL8neJJcP1S9J8lhbd0OSLHw7kqTZmskRwS3AhqNqW4H7qmotcF97TZILgE3AhW2bG5Oc1ra5CdgCrG2Po99TkjQG0wZBVX0V+P5R5Y3Ajra8A7hyqH57Vb1YVU8B+4D1Sc4Dzqyq+6uqgFuHtpEkjdFcrxGcW1UHANrzOa2+EnhmaNxkq61sy0fXJUljttAXi0ed96/j1Ee/SbIlyUSSiampqQWbnCTppeYaBM+30z2054OtPgmsHhq3Cniu1VeNqI9UVdural1VrVuxYsUcpyhJmom5BsEuYHNb3gzcOVTflOT0JOczuCj8YDt99EKSS9vdQlcNbSNJGqNl0w1IchvwZuDsJJPAh4HrgZ1JrgaeBt4JUFV7kuwEHgcOAddW1eH2VtcwuAPpDOCe9pAkjdm0QVBV7zrGqsuOMX4bsG1EfQK4aFazkySdcH6yWJI6ZxBIUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUuWl/MY2WljVb7xr3FCQtMR4RSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUOYNAkjpnEEhS5wwCSeqcQSBJnZtXECTZn+SxJI8kmWi1s5Lcm+TJ9rx8aPx1SfYl2Zvk8vlOXpI0fwtxRPCWqrq4qta111uB+6pqLXBfe02SC4BNwIXABuDGJKctwP4lSfNwIk4NbQR2tOUdwJVD9dur6sWqegrYB6w/AfuXJM3CfIOggC8leSjJllY7t6oOALTnc1p9JfDM0LaTrfYSSbYkmUgyMTU1Nc8pSpKOZ76/j+BNVfVcknOAe5N86zhjM6JWowZW1XZgO8C6detGjpG0+Mb1+y72X3/FWPbbi3kdEVTVc+35IPBFBqd6nk9yHkB7PtiGTwKrhzZfBTw3n/1LkuZvzkGQ5JVJXn1kGfhtYDewC9jchm0G7mzLu4BNSU5Pcj6wFnhwrvuXJC2M+ZwaOhf4YpIj7/O5qvqXJN8Adia5GngaeCdAVe1JshN4HDgEXFtVh+c1e0nSvM05CKrqO8Avjaj/J3DZMbbZBmyb6z4lSQvPTxZLUucMAknqnEEgSZ0zCCSpcwaBJHXOIJCkzhkEktQ5g0CSOmcQSFLnDAJJ6pxBIEmdMwgkqXMGgSR1ziCQpM4ZBJLUOYNAkjpnEEhS5wwCSeqcQSBJnZvPL6/XMazZete4pyBJM+YRgSR1ziCQpM4ZBJLUOYNAkjrnxWJJJ71x3oCx//orxrbvxeIRgSR1ziCQpM4tehAk2ZBkb5J9SbYu9v4lST9pUa8RJDkN+Fvgt4BJ4BtJdlXV4ydif36wS5Kmt9hHBOuBfVX1nar6IXA7sHGR5yBJGrLYdw2tBJ4Zej0J/Moiz0GSZmxcZxYW826lxQ6CjKjVSwYlW4At7eX/JNl7Qme1OM4GvjfuSZxA9re02d9JJh+d1fBR/f3cTDde7CCYBFYPvV4FPHf0oKraDmxfrEkthiQTVbVu3PM4UexvabO/pW2+/S32NYJvAGuTnJ/k5cAmYNciz0GSNGRRjwiq6lCS9wL/CpwG3FxVexZzDpKkn7ToXzFRVXcDdy/2fk8Cp9SprhHsb2mzv6VtXv2l6iXXaiVJHfErJiSpcwbBCZDkNUk+n+RbSZ5I8qtJzkpyb5In2/Pycc9zrpL8SZI9SXYnuS3JTy/l/pLcnORgkt1DtWP2k+S69hUpe5NcPp5Zz9wx+vvr9ufz0SRfTPKaoXVLvr+hdX+apJKcPVRbUv3BsXtM8setjz1JPjZUn12PVeVjgR/ADuCP2vLLgdcAHwO2ttpW4KPjnucce1sJPAWc0V7vBP5gKfcH/AbwRmD3UG1kP8AFwDeB04HzgW8Dp427hzn099vAsrb80VOtv1ZfzeDGlO8CZy/V/o7zM3wL8GXg9Pb6nLn26BHBAktyJoMf2mcAquqHVfVfDL5KY0cbtgO4cjwzXBDLgDOSLANeweCzIEu2v6r6KvD9o8rH6mcjcHtVvVhVTwH7GHx1yklrVH9V9aWqOtRefp3BZ3rgFOmv+RTw5/zkh1aXXH9wzB6vAa6vqhfbmIOtPuseDYKF9/PAFPAPSf49yd8neSVwblUdAGjP54xzknNVVc8CHweeBg4A/11VX+IU6W/IsfoZ9TUpKxd5bgvtD4F72vIp0V+StwPPVtU3j1p1SvTXvB749SQPJPm3JL/c6rPu0SBYeMsYHMLdVFVvAP6XwamFU0I7V76RwSHna4FXJvn98c5qUc3oa1KWiiQfAg4Bnz1SGjFsSfWX5BXAh4C/HLV6RG1J9TdkGbAcuBT4M2BnkjCHHg2ChTcJTFbVA+315xkEw/NJzgNozwePsf3J7jeBp6pqqqp+BNwB/BqnTn9HHKufGX1NylKQZDPwu8DvVTu5zKnR3+sY/Eflm0n2M+jh4SQ/y6nR3xGTwB018CDwYwbfOTTrHg2CBVZV/wE8k+QXWuky4HEGX6WxudU2A3eOYXoL4Wng0iSvaP/7uAx4glOnvyOO1c8uYFOS05OcD6wFHhzD/OYlyQbgL4C3V9X/Da1a8v1V1WNVdU5VramqNQz+YXxj+7u55Psb8s/AWwGSvJ7BjSnfYy49jvtq+Kn4AC4GJoBH2w9rOfAzwH3Ak+35rHHPcx79/RXwLWA38I8M7k5Ysv0BtzG43vEjBv9oXH28fhicdvg2sBf4nXHPf4797WNwHvmR9vi7U6m/o9bvp901tBT7O87P8OXAP7W/hw8Db51rj36yWJI656khSeqcQSBJnTMIJKlzBoEkdc4gkKTOGQSS1DmDQJI6ZxBIUuf+H+SS+FwX3o1EAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plt.hist(x)\n",
"plt.show"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utilisation d'autres langages"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%R\n",
"plot(cars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +200,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment