From 55c6925c641ec1b572bc19da007d3b2d2d63813e Mon Sep 17 00:00:00 2001
From: 678362a9c2b5d46a6a161a762a6e18e0
<678362a9c2b5d46a6a161a762a6e18e0@app-learninglab.inria.fr>
Date: Mon, 8 Mar 2021 16:54:39 +0000
Subject: [PATCH] add graphics
---
module3/exo3/exercice.ipynb | 709 ++++++++++++++++++++----------------
1 file changed, 401 insertions(+), 308 deletions(-)
diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb
index 4121b8e..a55d9ce 100644
--- a/module3/exo3/exercice.ipynb
+++ b/module3/exo3/exercice.ipynb
@@ -404,37 +404,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Enregistrons les lignes consernées dans un nouveau tableau en ajoutant la Chine (nous utiliserons les coordonnées de Beijing pour la longitude et latitude de la Chine, même si l'information ne sera pas réutilisée pour le moment plus tard) :"
+ "Enregistrons les lignes consernées dans un nouveau tableau en ajoutant la Chine et Hong-Kong. Profitons en pour définir la localisation comme index et supprimons les colonnes inutiles et trions le tableau."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
- "outputs": [],
- "source": [
- "data_list = []\n",
- "# récupération des données pour tous les pays sauf la Chine\n",
- "for country in countries:\n",
- " data_list.append(raw_data[(raw_data['Province/State'].isnull()) & (raw_data['Country/Region']==country)].values.tolist()[0])\n",
- "# récupération des données pour Hong-Kong\n",
- "data_list.append(raw_data[(raw_data['Province/State'] == \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].values.tolist()[0])\n",
- "# récupération des données pour le reste de la Chine en sommant les différentes colonnes\n",
- "data_china = raw_data[(raw_data['Province/State'] != \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].sum().values.tolist()\n",
- "# mise à jour des premières colonnes des données de la Chine avec les coordonées de Beijing et ajout à la liste\n",
- "data_china[0] = pd.np.NaN\n",
- "data_china[1] = \"China\"\n",
- "data_china[2] = 40.1824\n",
- "data_china[3] = 116.4142\n",
- "data_list.append(data_china)\n",
- "# création du nouveau tableau avec toutes les données des pays recherchés\n",
- "data = pd.DataFrame(data_list, columns=raw_data.columns)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
"outputs": [
{
"data": {
@@ -457,18 +433,17 @@
" \n",
" \n",
" \n",
+ " \n",
- " Province/State \n",
- " Country/Region \n",
- " Lat \n",
- " Long \n",
" 1/22/20 \n",
" 1/23/20 \n",
" 1/24/20 \n",
" 1/25/20 \n",
" 1/26/20 \n",
" 1/27/20 \n",
+ " 1/28/20 \n",
+ " 1/29/20 \n",
+ " 1/30/20 \n",
+ " 1/31/20 \n",
" ... \n",
- " 2/23/21 \n",
" 2/24/21 \n",
" 2/25/21 \n",
" 2/26/21 \n",
@@ -478,15 +453,160 @@
" 3/2/21 \n",
" 3/3/21 \n",
" 3/4/21 \n",
+ " Sum \n",
+ " \n",
+ " \n",
" \n",
" Localisation \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
"
14 rows × 412 columns
\n", + "14 rows × 409 columns
\n", "" ], "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", - "0 NaN Belgium 50.833300 4.469936 0 0 \n", - "1 NaN France 46.227600 2.213700 0 0 \n", - "2 NaN Germany 51.165691 10.451526 0 0 \n", - "3 NaN Iran 32.427908 53.688046 0 0 \n", - "4 NaN Italy 41.871940 12.567380 0 0 \n", - "5 NaN Japan 36.204824 138.252924 2 2 \n", - "6 NaN Korea, South 35.907757 127.766922 1 1 \n", - "7 NaN Netherlands 52.132600 5.291300 0 0 \n", - "8 NaN Portugal 39.399900 -8.224500 0 0 \n", - "9 NaN Spain 40.463667 -3.749220 0 0 \n", - "10 NaN United Kingdom 55.378100 -3.436000 0 0 \n", - "11 NaN US 40.000000 -100.000000 1 1 \n", - "12 Hong Kong China 22.300000 114.200000 0 2 \n", - "13 NaN China 40.182400 116.414200 548 641 \n", + " 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 1/28/20 \\\n", + "Localisation \n", + "Hong-Kong 0 2 2 5 8 8 8 \n", + "Korea, South 1 1 2 2 3 4 4 \n", + "China 548 641 918 1401 2067 2869 5501 \n", + "Japan 2 2 2 2 4 4 7 \n", + "Portugal 0 0 0 0 0 0 0 \n", + "Belgium 0 0 0 0 0 0 0 \n", + "Netherlands 0 0 0 0 0 0 0 \n", + "Iran 0 0 0 0 0 0 0 \n", + "Germany 0 0 0 0 0 1 4 \n", + "Italy 0 0 0 0 0 0 0 \n", + "Spain 0 0 0 0 0 0 0 \n", + "France 0 0 2 3 3 3 4 \n", + "United Kingdom 0 0 0 0 0 0 0 \n", + "US 1 1 2 2 5 5 5 \n", "\n", - " 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/23/21 2/24/21 \\\n", - "0 0 0 0 0 ... 757696 760809 \n", - "1 2 3 3 3 ... 3608271 3639501 \n", - "2 0 0 0 1 ... 2405263 2416037 \n", - "3 0 0 0 0 ... 1590605 1598875 \n", - "4 0 0 0 0 ... 2832162 2848564 \n", - "5 2 2 4 4 ... 426828 427732 \n", - "6 2 2 3 4 ... 88120 88516 \n", - "7 0 0 0 0 ... 1064598 1068960 \n", - "8 0 0 0 0 ... 799106 800586 \n", - "9 0 0 0 0 ... 3161432 3170644 \n", - "10 0 0 0 0 ... 4134639 4144577 \n", - "11 2 2 5 5 ... 28234656 28309085 \n", - "12 2 5 8 8 ... 10896 10913 \n", - "13 918 1401 2067 2869 ... 89911 89919 \n", + " 1/29/20 1/30/20 1/31/20 ... 2/24/21 2/25/21 \\\n", + "Localisation ... \n", + "Hong-Kong 10 10 12 ... 10913 10926 \n", + "Korea, South 4 4 11 ... 88516 88922 \n", + "China 6077 8131 9790 ... 89919 89925 \n", + "Japan 7 11 15 ... 427732 428816 \n", + "Portugal 0 0 0 ... 800586 801746 \n", + "Belgium 0 0 0 ... 760809 763885 \n", + "Netherlands 0 0 0 ... 1068960 1073971 \n", + "Iran 0 0 0 ... 1598875 1607081 \n", + "Germany 4 4 5 ... 2416037 2427069 \n", + "Italy 0 0 2 ... 2848564 2868435 \n", + "Spain 0 0 0 ... 3170644 3180212 \n", + "France 5 5 5 ... 3639501 3664050 \n", + "United Kingdom 0 0 2 ... 4144577 4154562 \n", + "US 6 6 8 ... 28309085 28386492 \n", "\n", - " 2/25/21 2/26/21 2/27/21 2/28/21 3/1/21 3/2/21 3/3/21 \\\n", - "0 763885 766654 769414 771511 772294 774344 777608 \n", - "1 3664050 3689034 3712474 3732426 3736390 3759247 3785326 \n", - "2 2427069 2436506 2444177 2450295 2455569 2462061 2472913 \n", - "3 1607081 1615184 1623159 1631169 1639679 1648174 1656699 \n", - "4 2868435 2888923 2907825 2925265 2938371 2955434 2976274 \n", - "5 428816 429873 431093 432090 432778 433700 434944 \n", - "6 88922 89321 89676 90031 90372 90816 91240 \n", - "7 1073971 1079084 1084021 1088690 1092452 1096433 1101430 \n", - "8 801746 802773 803844 804562 804956 805647 806626 \n", - "9 3180212 3188553 3188553 3188553 3204531 3130184 3136321 \n", - "10 4154562 4163085 4170519 4176554 4182009 4188400 4194785 \n", - "11 28386492 28463190 28527344 28578548 28637313 28694071 28759980 \n", - "12 10926 10950 10983 11005 11019 11032 11046 \n", - "13 89925 89935 89941 89960 89971 89981 89991 \n", + " 2/26/21 2/27/21 2/28/21 3/1/21 3/2/21 3/3/21 \\\n", + "Localisation \n", + "Hong-Kong 10950 10983 11005 11019 11032 11046 \n", + "Korea, South 89321 89676 90031 90372 90816 91240 \n", + "China 89935 89941 89960 89971 89981 89991 \n", + "Japan 429873 431093 432090 432778 433700 434944 \n", + "Portugal 802773 803844 804562 804956 805647 806626 \n", + "Belgium 766654 769414 771511 772294 774344 777608 \n", + "Netherlands 1079084 1084021 1088690 1092452 1096433 1101430 \n", + "Iran 1615184 1623159 1631169 1639679 1648174 1656699 \n", + "Germany 2436506 2444177 2450295 2455569 2462061 2472913 \n", + "Italy 2888923 2907825 2925265 2938371 2955434 2976274 \n", + "Spain 3188553 3188553 3188553 3204531 3130184 3136321 \n", + "France 3689034 3712474 3732426 3736390 3759247 3785326 \n", + "United Kingdom 4163085 4170519 4176554 4182009 4188400 4194785 \n", + "US 28463190 28527344 28578548 28637313 28694071 28759980 \n", "\n", - " 3/4/21 \n", - "0 780251 \n", - "1 3810605 \n", - "2 2484306 \n", - "3 1665103 \n", - "4 2999119 \n", - "5 436093 \n", - "6 91638 \n", - "7 1105544 \n", - "8 807456 \n", - "9 3142358 \n", - "10 4201358 \n", - "11 28827144 \n", - "12 11055 \n", - "13 90000 \n", + " 3/4/21 Sum \n", + "Localisation \n", + "Hong-Kong 11055 1659701 \n", + "Korea, South 91638 10964482 \n", + "China 90000 33057311 \n", + "Japan 436093 41743265 \n", + "Portugal 807456 70635994 \n", + "Belgium 780251 98653796 \n", + "Netherlands 1105544 111703914 \n", + "Iran 1665103 208249840 \n", + "Germany 2484306 255393641 \n", + "Italy 2999119 312517063 \n", + "Spain 3142358 355880364 \n", + "France 3810605 404492379 \n", + "United Kingdom 4201358 404528634 \n", + "US 28827144 3343145027 \n", "\n", - "[14 rows x 412 columns]" + "[14 rows x 409 columns]" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "data_list = []\n", + "# récupération des données pour tous les pays sauf la Chine\n", + "for country in countries:\n", + " data_list.append(raw_data[(raw_data['Province/State'].isnull()) & (raw_data['Country/Region']==country)].values.tolist()[0])\n", + "# récupération des données pour Hong-Kong\n", + "data_hk = raw_data[(raw_data['Province/State'] == \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].values.tolist()[0]\n", + "data_hk[0] = pd.np.NaN\n", + "data_hk[1] = \"Hong-Kong\"\n", + "data_list.append(data_hk)\n", + "# récupération des données pour le reste de la Chine en sommant les différentes colonnes\n", + "data_china = raw_data[(raw_data['Province/State'] != \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].sum().values.tolist()\n", + "# mise à jour des premières colonnes des données de la Chine et ajout à la liste\n", + "data_china[0] = pd.np.NaN\n", + "data_china[1] = \"China\"\n", + "data_list.append(data_china)\n", + "# création du nouveau tableau avec toutes les données des pays recherchés\n", + "data = pd.DataFrame(data_list, columns=raw_data.columns)\n", + "# suppression des colonnes inutilisées\n", + "data = data.drop(columns=['Province/State', 'Lat', 'Long'])\n", + "# chaangement de l'index\n", + "data = data.rename(columns={\"Country/Region\" : \"Localisation\"}).set_index(\"Localisation\")\n", + "# création d'une colonne correspondant à la somme des cas et tri en fonction de cette colonne\n", + "data[\"Sum\"] = data.sum(axis=1)\n", + "data = data.sort_values(by ='Sum')\n", "data" ] }, @@ -908,10 +936,75 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEWCAYAAAD/6zkuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm8nPPd//HXW0QsIVTQlHLUWi0iQu2CUq19uUurRGupblq9tbdbe1fwU3Sz76oRpRTlJlVVKrc1iURW+xZqKU0RiSVIPr8/vt9xLuPMOXNyzpmZM+f9fDzmMdf1vb7XdX3nmnPmM9/ruub7UURgZmbWzBardwPMzMx6moOdmZk1PQc7MzNreg52ZmbW9BzszMys6TnYmZlZ03OwMzOzpudgZ72epNGSQtKoLm5nXN7Ood3TstqTdLSkF/PrmCRpRJ6e1QBta8ltCUnL17s9XSXppPxadqp3WzpD0gqS5koaV++21JKDnXWKpK0l3Szp35LekfSUpHMkLVHvtlWrnQBwHXAW8HDtW9V1koYAZwAfBy4DrgKeJ72my+rYtKYj6WPAD4EZEXFHLtte0lRJb0h6W9ITkk6QpLJ1h+W/v9ULZWtLmpfLp7axvx9KeipPXyLp4Vz/35JukfSZQt2NJd2RA9pH/s4j4jVgNLC9pJ2776g0tsXr3QDrPSQdCPwe6AdMAx4AWoCjgP8B3q1b47pBRJxb7zZ00VqkL7D/iIjDCuU/aG8lSf0j4r0ebVnzOQRYBvhDoewTwKvABGAFYF9gFPAc8LtCvd1IQfI5AEn9SP9XA9rZ327An/P04XkffwA+D3wR2EjS2hHxDrA66QvPFGDbCtv7A/Bd4JvA3zp8tc0gIvzwo8MHsDTwbyCAK4DFCsvWApYARuTlswrLxuWyQ/P86Dw/BvgL8DZwG7AGcD3wJnA/sGau35ltjsrzO5P+0ecA7wHPAieWbe9Dj/LtAjvk6emF/W6fy2YWjslpwJO53Q8Ce3dwHA8GJgNzSR+MFxWW7UP6AjE3t/k8YPm8rKXQ3m+QPkBfA85o53WNLj9+Zds5CngRuLOs/HvAP4GXc3v3y/v7F3Bcob2LAz8CHsmv/2HgiMLyJYALcjufBI4s7GP5dv7OTgQeJf1tPF/aJvC1vI+5pC9WjwPfLqw7DLgbeAOYB8wEvlVYvicwMS9/Fvg1sHRetgJwLTAbeAd4pvjetNHO2/Pr2KqdOjflOieVlY8HTi3MnwC8lf+WAphaVn/Z/Hq/kOe3Kiwrvm/Dytbbm7L/nbL37q18nBav9+dLLR51b4AfveNBCiClf6r1KtQZUf7PReXAtDB/uLyQ518H7gBm5PnfL8I2R+X5Q0nfVi8inb57NS8/EFibdLoy8ofemcCZ5dsFlD8QA/h0Xn5env9xnv9Dnp9MCt7/yq9rRIXjc0Su/35+7b8H/p6XfTEvmw9cTvqgDuDWvLz4ofYccCWwIM/vVOF1fbX8+JVt59/Ab4FTysqfAv43T78DvJTbujA/1s3bOjXXeTS/B8/l+ZF5+YmF/VxGCqwdBbsr8/JX8zo3Ab/My34CjCUF0CtIH9YBbJmX35PnrwMuIQW+S/OyL+Rl/8rrTs7zv8vL/1+evz9v/xZS76vS/8Mruf4KZeVr52N/bX6fnwfWLixfKb9vW+f5zUhfyL5N+rtrK9jtRwpKA9pox7p5nQXAkLJlFYNdXj6dwt93sz/q3gA/escDOKjwQbVkhTojyv+5qByYbs/zo/L8S6RTcHvk+YcWYZuj8vxiwJeAn5KuYT2Ql19caZsVtntKabt5m//MHyqfyB9apQ+Zc/IHXGn9qyscn1IAO6ZQ1j8/35KXnZDnB+cPwcgfaC2F479ZrvN/ef7Ydo7Vh8rKtrNjoV6xfBvSN//S/r+d65QCxH+QvgzMzfOX5ddf6smMz/WfzPMH5/k9Cvv4SLDLr7m0fJM2jtESwP6kntAZwGO57vF5+QRae76fBfoD/fKyP+dlt+W2nk/rl66lgdPz/JnA5sDA0roV3svSsVm8rLx0vEuPK4BBheWHkIJ/v7zfx4Bb8rJDaTvYXQbc2EYbBgL35XV+0cbyjoJd6ctBxd5pMz18zc6q9Upheg3SP2k1+lUofyQ/v56fn4yIhZLm5vllFmGbJReQTpmVW6mD9cpdDhwPHEAKLKsAt0XEi5I2y3UWI137KFq7wvbWzM/jSwXReq2sJT8/kstnS5pNuvayBvBEYTtT8nPp2A2s8vWUu7dC+SMR8b6kN4FBtL7XxfdmcGG/Xy9bv/T6V83PpfUf76A9pePzbkSUXmPxGN0M7NLGeqX39YekIHYpKRjPA35GCowtuc7O+VEi4FOkILcxqYf1fdKXmGskHRwRC9vY5+ukY7As6TRtqa3jJC1Geu0Xk069vkPq1UO69vaXiFiQ/4bWBV6VNBZYrXQcJI2NiN3zzS1fJF0Tb220NJj0BWkzUi/2v9poY0eWK7yWpue7Ma1a99H6T/3T/A8NgKQ1JPUnXbeB9AFALlu3wvYWdDBf0pltlhyQnw8lBcYLSk0t21e7f/8R8Tipt7A+6ZQcpNOVALPy87vAShGhiBCp97FPhU0+k58/VyqQVPrCWdre+rl8RdKHKaTTqcV2vV+abK/9HYmI+RUWVfPezKb1vdmo8PoXA4bn8hfy83r5uaP3rXR8lpA0tFQoafH8U4VSoNsh7+cvpSr5eVJEbEy6/jaC1LM7LR/jWbnO0aW25vauFREzgVcjYlfS39nGwEOk08BbV2jr9Pz86UI7l4V0ATginiedRv3gded27ELrjSaldm9BCoIb5/nl8jzApqQvWbcU9rMG6YvKZsBpEXFk5K5atXJb1ia9h090UL0puGdnVYmINyV9j/Rh/zVgQ0kTSaf0dib9Qz5Ouo7yMUljSL2Slbu460XZ5sukHsnRpA+X8uDzj/y8mqRLgSci4vQK2xpDCk7bkno2NwBExL8k/RH4MjBB0t+AFXO9C0mnPsudRfq2/0tJW5FuwCgdv/NI3+CPl/Qp0ofc4sDfIuJxSS0dvOaaioiQdB7wY+Bvkm4m9fS2IPWCDyX99OF/gDMljSCdWm5vm7MlXUUKMndIupEUuJ4gnZKel/cxivTFq/z3bTfnOxufIr3/A0inDBcA5+b9/6Jw7DcivWdrAsdJ2pN0zfhdWnuCcyo0dyywI+mmpfty2Y05iDya271nLv9rft6aFExvza93HK0Bj/z7zt8B0yKiFOx3A6ZExIuFfd9H+rt5DlhK0pm5/KqImChpfeA40l2ZAIMljQZmR8SxuWxzYCnghugjd+K6Z2dVi4grSd+qbyH9I40kfbO9BHgrIubQeoffrqQPnfFtb63qfS7KNg8nfeBsQPpwuahsm7OAX5E+yA4j3XFYydW0/qTi+oh4q7DsMNIddAtJH+5bk25wuLXCa7mEdM1mOumDdw/g6bzsz6TA+RDputSg3O4D2tpWg/gp6fTZq6QvQDuSTllek5efQgru/fKyn1exzSOAk0k9x4NIH8pP5g/kkaQP+M1Ip96uK1t3HCkIHEQKEg8AB+Se1l9IX3qmkY79vqT37ay87oOkG0r2Jr1HL5N6gdNp2xhSr+grhbL/y/s/hHRDzGPAf5Ju5CG36b5Iv3OrVvEnByWfyM+rk065lh4b5PKPk47VDnl+mTy/f2EbpXZfQB+hTvZ+zcyMNIIKqee6c0TcXkX9h4Ax7ZxFKK+/MummqC0jYkKXGvvh7a5A+tLwYERs313bbXQOdmZmPSyPMPTfwOiIeLaj+nmddUk9+1Mq3CRjneBgZ2ZmTc/X7MzMrOn5bsw6GTx4cLS0tNS7GWZmvcrkyZNnR0RnfzPrYFcvLS0tTJo0qd7NMDPrVSRVdc2znE9jmplZ03OwMzOzpudgZ2ZmTc/BzszMmp6DnZmZNT0HOzMza3oOdmZm1vQc7MzMrOn5R+V1MuOFObQcV565w8ysuc06bbeOK/UA9+zMzKzpOdiZmVnTc7DrBEktkmaWlY2SdKykLSRNkDRV0iOSRtWpmWZmVsbX7LrP5cCXI2KapH7AevVukJmZJQ523Wdl4CWAiFgAPFzf5piZWYlPY3afM4DHJN0g6ZuSliyvIOlISZMkTVrw1pw6NNHMrG9ysOucqFQeEScBw4HbgK8Ct7ZR6eKIGB4Rw/stPagHm2lmZkUOdp3zb2CFsrKPAbMBIuKpiLgA2AnYWNKKNW6fmZm1wcGuEyJiHvCSpJ0AJH0M2BW4R9JukpSrrgMsAF6vT0vNzKzIN6h03iHAeZJ+nedPjIinJJ0CnCHpLeB94KB8o4qZmdWZg10nRcTDwA5tlB9Yh+aYmVkVHOzqZMNVBzGpTmPEmZn1Nb5mZ2ZmTc/BzszMmp5PY9ZJI6f4qVcKDjOznuKenZmZNb12g117o/x3sN5wSWfn6RGStupswyTNkjS4vXJJm0p6RtImkvaUdFxn91Nh3yMkje2ObZmZWf31yGnMiJgETMqzI4B5wH3duQ9JGwHXAQdExBRgCnBTd+7DzMyaQ5dOY0oaJ+l0SRMlPS5p21w+QtJYSS3AUcAxOc/btpJWknS9pAfyY+u8zoqSbpM0RdJFgCruGD4N3AgcHBET8/qHSjo3T4+WdLak+yQ9LWn/XL6YpPMlPZTbd0th2a6SHpV0D7Bv4TV+TNKNkqZLGp+DbKmHe3lu8yxJ+0r6haQZkm6V1L8rx9bMzLpPd1yzWzwiNgd+AJxQXBARs4ALgTMiYmhE3A2clec3A/YDLs3VTwDuiYhNSD201dvZ5/8C342Ie9qpMwTYBtgdOC2X7Qu0ABsChwNbAuQMBZcAewDbAh8vbOdEYEpEbAQcD4wpLFsL2A3YC/g9cGdEbAi8ncs/xFkPzMzqo6NgV3GU/8L0n/LzZFIg6cjngXMlTSUFteUkLQtsRwoYRMSfgdfa2cbtwOE5SWolN0bEwjziySq5bBvg2lz+T+DOXL4+8ExEPBERUWpHYZ0rcrv+DqwoqZSy4C8R8R4wA+hHa6aDGbRxLJz1wMysPjoKdu2O8p/Nz88LqO4a4GLAlrmnNzQiVo2IuXlZpeBa7rv5+fx26swvTKvsuS2V9t3WOqW68wEiYiHwXg6UAAvxzzrMzBpGu8GuvVH+O7GPucCyhfnbaA1WSBqaJ+8CDsplX+SjQbZoIfAVYD1JJ3WiLfcA++Vrd6uQbp4BeBRYU9Jaef4rhXWK7RoBzI6INzqxTzMzq7NqrtkdAvw0n3b8O3mU/07s42Zgn9INKsDRwPB8w8fDpBtYIF0b207Sg8AuwHPtbTQi5pOule0p6TtVtuV64HlgJnARMAGYExHvAEcCf843qDxbWGdUqb2ka38jq9yXmZk1CLWeeesbJA2MiHk5sepEYOt8/a6mBgxZJ4aMPLPWu62KR1Axs0YlaXJEDO/sen3xutJYScsDSwAn1yPQgbMemJnVUp8LdhExot5tMDOz2vLYmGZm1vT6XM+uUTjrgZlZ7bhnZ2ZmTa9pe3aSFpBGMinZOw9fZmZmfUzTBjvg7YgYWmmhpMUj4v1aNsjMzOqjT53GzJkRrpV0M3CbpIGS7pD0YM5WsFeu1yLpEUmX5AwJt0laKi9bW9Ltkqbl9dbK5T/KWRymSzqxji/TzMzKNHOwWyqP2jJV0g2F8i2BkRGxI/AOsE9EDAN2AH4tqTQW5jrAeRHxGeB1UoYGgCtz+cbAVqTh1HbJ9TcHhgKbStqup1+gmZlVpy+exvxbRLyapwX8PAemhcCqtGZIeCYipubpyUBLzs6wakTcAJCHGSMHu11ICWQBBpKC313FHUs6kjQsGf2WW6nrr9DMzKrSzMGukjcL0wcBKwGbRsR7kmYBS+ZlxawJC4ClqJw1QcCpEXFRezuOiIuBiyENF9b5ppuZ2aJo5tOY1RgEvJID3Q7AGu1VztkOnpe0N4CkAZKWBv4KfEPSwFy+qqSVe7jtZmZWpb4e7K4kZTSYROrlPVrFOgcDR+csCPcBH4+I24CrgPslzQCu48NpjczMrI76XNaDRuGsB2ZmneesB72Msx6YmdVOXz+NaWZmfYCDnZmZNT2fxqyTRsl64OtzZtYXuGdnZmZNz8HOzMyaXp8MdpJ+kgd4np7HzvzcImxjT0nH9UT7zMyse/W5a3aStgR2B4ZFxHxJg4ElOrudiLgJuKm722dmZt2vL/bshgCzI2I+QETMjogXJc2SdLqkifmxNoCkPSRNkDQlp/ZZJZcfKuncPD1a0tmS7pP0tKT96/bqzMzsI/pisLsN+KSkxyWdL2n7wrI3ImJz4FygNLzJPcAWEbEJcDXw4wrbHQJsQ+o1ntZWBUlHSpokadKCt+Z0x2sxM7Mq9LnTmBExT9KmwLakHHbXFK69/aHwfEaeXi3XGUI63flMhU3fGBELgYdLvb829u2sB2ZmddAXe3ZExIKIGBcRJwDfpTUxazEAlabPAc6NiA2Bb9KaAqhcMSVQpVRAZmZWB30u2ElaT9I6haKhwLN5+oDC8/15ehDwQp4e2fMtNDOz7tbnTmOSsoifI2l54H3gSVL28N2BAZImkL4EfCXXHwVcK+kFYDywZs1bbGZmXeIUP1nOUj48ImbXYn+NkuLHw4WZWW/iFD+9jFP8mJnVjoNdFhEt9W6DmZn1jD53g4qZmfU97tnVSb1S/PganZn1Re7ZmZlZ03OwK5A0Lz+3SPpqFfVbJM3s+ZaZmVlXONi1rQXoMNiZmVnv4GDXttOAbXOuu2NyD+5uSQ/mx1blK+TlQwvz90raqKatNjOzNjnYte044O6IGBoRZwCvADtHxDDSUGJnt7HOpcChAJLWBQZExPRiBWc9MDOrDwe76vQHLpE0A7gW2KCNOtcCu0vqD3wDGF1eISIujojhETG839KDerK9ZmZW4J8eVOcY4GVgY9IXhHfKK0TEW5L+BuwFfBno9HA2ZmbWMxzs2jYXWLYwPwh4PiIWShoJ9Kuw3qXAzaRToK/2cBvNzKxKPo3ZtunA+5KmSToGOB8YKWk8sC7wZlsrRcRk4A3gdzVrqZmZdcg9u4KIGJif3wN2KltcvLPyv3O9WcBnS4WSPkH6AnFbjzbUzMw6xcGum0g6BDgF+GFELOyovrMemJnVjoNdN4mIMcCYerfDzMw+ytfszMys6blnVye1yHrgDAdmZol7dmZm1vR6VbCTtIqkqyQ9LWmypPsl7VPvdpmZWWPrNcFOkoAbgbsi4lMRsSlwILBaletX+iG4mZk1uV4T7IAdgXcj4sJSQUQ8GxHnSOon6ZeSHpA0XdI3ASSNkHSnpKuAGTl7waOSLpU0U9KVkj6fMxQ8IWnzvN7mku6TNCU/r5fLD5X0J0m35vq/yOWHSTqj1C5JR0j6TS0PjpmZVdabgt1ngAcrLDsMmBMRmwGbAUdIWjMv2xz4SUSUBm9eGziL9CPx9Ul567YBjgWOz3UeBbaLiE2AnwE/L+xrKCnzwYbAAZI+CVwN7JkHgQb4Oh5FxcysYfTauzElnUcKUu8CzwIbSdo/Lx4ErJOXTYyIZwqrPhMRM/I2HgLuiIjIGQ1aCutfLmkdIEhZD0ruiIg5ef2HgTUi4h+S/k7KevAI0L+0j7I2HwkcCdBvuZW6fAzMzKw6valn9xAwrDQTEd8hDem1EiDgezn/3NCIWDMiSkN2lY9jOb8wvbAwv5DW4H8ycGdEfBbYA1iywvoLCuuU8tlV7NU5xY+ZWX30pmD3d2BJSd8qlC2dn/8KfKt0GlHSupKW6cK+BgEv5OlDq1khIiYAnySdFv1DF/ZtZmbdrNcEu4gIYG9ge0nPSJoIXA78F6lX9TDwoKSZwEV07RTtL4BTJd1L5XQ+bfkjcG9EvNaFfZuZWTdTiiHWHSSNBc6IiDs6qjtgyDoxZOSZPdoej6BiZs1G0uSI6HRy7F57g0ojkbQ8MBGYVk2gA2c9MDOrJQe7bhARr5OSupqZWQPqNdfszMzMFpV7dnXS3VkPfH3OzKwy9+zMzKzpOdiZmVnTc7Brg6R59W6DmZl1Hwe7KjlFkJlZ7+Vg147yFEG57MacOPahPLBzqe48SadImiZpvKRV6tZwMzP7EAe7jpWnCPpGThw7HDha0oq5fBlgfERsDNwFHFG+IUlHSpokadKCt+bUou1mZoaDXTXKUwQdLWkaMJ408PM6ufxdYGyenkxruqAPOOuBmVl9+Hd2HfsgRZCkEcDngS0j4i1J42hN//NetA40Wkz9Y2ZmdeaeXecMAl7LgW59YIt6N8jMzDrmYNc5twKLS5pOSvA6vs7tMTOzKvhUWxsiYmB+HgeMK5TPB77Y3jp5+jrguh5tpJmZVc3Brk6c4sfMrHZ8GtPMzJqeg52ZmTU9n8ask86k+HH6HjOzrnHPzszMml5Ng52kkPTrwvyxkkZ1sM4ISVsV5kdL2r+L7ZglaXBXtlHYljMkmJk1uFr37OYD+3Yy0IwAtuqoUjWUuDdrZtbH1PqD/33gYuCY8gWSVpJ0vaQH8mNrSS3AUcAxkqZK2jZX307SfZKeLvbyJP0orztd0om5rEXSI5LOBx4kjWdZ3G+nshhIWlPS/Xk/JxfqD5F0V27nzEJbzcyszurRyzkPOEhS+UjIZwFnRMRmwH7ApRExC7gwlw+NiLtz3SHANsDuwGkAknYhDcq8OTAU2FTSdrn+esCYiNgkIp4t229nsxicBVyQ2/nPwna+Cvw1IoYCGwNTy1+4sx6YmdVHze/GjIg3JI0BjgbeLiz6PLCBpNL8cpKWrbCZGyNiIfBwIW/cLvkxJc8PJAW/54BnI6LS0F5HS9onT5eyGPybj2Yx2DlPb00KxgBXAKfn6QeAyyT1z+37SLCLiItJPVsGDFknypebmVnPqNdPD84knVL8XaFsMVI2gWIApBD8iuYXqxSeT42Ii8rWb6GQuaBs2QgWLYvBRwJVRNyVe5K7AVdI+mVEjGlrv2ZmVlt1uVkjIl4F/ggcVii+DfhuaUbS0Dw5F6jUwyv6K/ANSQPz+qtKWrmDdRYli8G9wIF5+qBCe9cAXomIS4DfAsOq2JaZmdVAPe9M/DVQvCvzaGB4vrnkYdKNKQA3A/uU3aDyERFxG3AVcL+kGaSBmDsKkouSxeD7wHckPUAKliUjgKmSppBOc55VxbbMzKwG1HqmzmppwJB1YsjIM6uq6xFUzMwSSZMjYnhn1/NwYXXirAdmZrXjH1ibmVnTc7AzM7Om59OYdVJt1gNfrzMz6zr37MzMrOn16mAnaUH+ScI0SQ8WsyO0s06HWQokXSppg+5ppZmZ1VtvP435dh6LEklfAE4Ftu/qRiPi8K5uw8zMGkev7tmVWQ54rTTTVgaEIkmLSTo/ZzsYK+mWUgYFSeMkDc/T8wrr7C9pdJ4eLekCSXfm7AvbS7osZ1gY3cOv1czMOqG39+yWkjSVNJ7lEGBH+EgGBAE3SdouIu4qrLsv0AJsCKwMPAJc1sn9r5D3uSdppJetgcOBByQNbWswaDMzq73e3rN7O6f+WR/YFRijNHJ0MQPCg8D6pOBXtA1wbUQsjIh/Ancuwv5vzoNFzwBejogZORvDQ6RA+iFO8WNmVh+9vWf3gYi4P2dAX4kKGRDKtJlOoa1NF6aXLFtWyr6wkA9nYlhIG8fWKX7MzOqjt/fsPpCzFvQj5aKrJgPCPcB++drdKqSBnNvysqRPS1oM2KdCHTMza2C9vWdXumYHqac2MiIWALdJ+jQpAwLAPOBrwCuFda8HdgJmAo8DE4C2zi0eR0ri+o9cd2APvA4zM+tBfTrrgaSBETFP0orARGDrfP2ux1Wb9cAjqJiZtXLWg0UzVtLywBLAybUKdOCsB2ZmtdSng11EjKh3G8zMrOc1zQ0qZmZmlfTpnl09tZf1wNfpzMy6l3t2ZmbW9BzszMys6fXqYFdI8TNT0rWSlu7k+sf3ULtaJM3siW2bmVnn9epgR+vYmJ8F3gWOqmYlJYsBPRLszMyssfT2YFd0N7A2gKQf5t7eTEk/yGUtOf3O+aTBoX9LHoFF0pXlvTFJx0oalac3y6mC7pf0y1K9vM7dOXFsVcljzcys9poi2ElaHPgiMEPSpsDXgc8BWwBHSNokV10PGBMRm0TE12ntGR7UwS5+BxwVEVsCCwrlrwA7R8Qw4ADg7A7a6awHZmZ10NuDXWlszEnAc6Te2jbADRHxZkTMA/4EbJvrPxsR4zuzgzzCyrIRcV8uuqqwuD9wiaQZwLXABu1tKyIujojhETG839KDOtMMMzPrgt7+O7u3I2JosSDns6vkzXaWvc+Hg38pnU972zsGeBnYOK/7Tjt1zcysTnp7z64tdwF7S1pa0jKktDx3V6j7nqT+efplYGVJK0oaAOwOEBGvAXMlbZHrHVhYfxDwUk7YejApxZCZmTWYpgt2EfEgMJqUxWACcGlETKlQ/WJguqQrI+I94KS8zljg0UK9w4CLJd1P6umVLridD4yUNB5Yl/Z7jmZmVid9OsVPtUqpgPL0ccCQiPh+V7bZXoofDxdmZtY2p/jpWbtJ+m/S8XoWOLSrG3SKHzOz2nGwq0JEXANcU+92mJnZonGwq5PyrAc+dWlm1nOa7gYVMzOzcg52ZmbW9PpksJM0r95tMDOz2umTwc7MzPqWPhvsJA2UdEfOVjBD0l65vEXSo5Iuz5kOrivlyZP0M0kP5GwKF5eGJpM0TtLpkiZKelzStu3t28zMaqvPBjvSOJb75IwFOwC/LoyruR5wcURsBLwBfDuXnxsRm+X8eUuRhxTLFo+IzYEfACe0tUNnPTAzq4++HOwE/FzSdOB2YFVglbzsHxFxb57+PSmTAsAOkibkLAc7Ap8pbO9P+Xky0NLWDp31wMysPvry7+wOAlYCNo2I9yTNojXTQfkYaiFpSdJYmMMj4h85seuShTrz8/MC+vZxNTNrOH25ZzcIeCUHuh2ANQrLVpe0ZZ7+CnAPrYFttqSBwP61a6qZmXVFnwt2Oav5fOBKYLikSaReXjHLwSOkbAbTgY8BF0TE68AlwAzgRuCBmjbczMwWWV883fYZ4KmImA1sWb5QUguwMCKOKl8WET8FftpG+YjC9GwqXLMzM7P66FPBTtJRwNGkOybrylkPzMxqp08Fu4i4ELiwgzqzgM/sCynpAAAND0lEQVTWpEFmZlYTfe6anZmZ9T19qmfXSJzix8ysdtyzMzOzptfngp2kj0u6WtJTkh6WdEsexmtshfqXStqg1u00M7Pu06dOY+axL28ALo+IA3PZUGCPSutExOE1ap6ZmfWQvtaz2wF4L9+VCUBETAXuBgbmDAePSrqyLKPB8Dw9T9IpkqZJGi9plVy+Rx4zc4qk20vlZmbWGPpasPssaaDmtmxC+v3dBsCngK3bqLMMMD4iNgbuAo7I5fcAW0TEJsDVwI+7s9FmZtY1feo0ZgcmRsTzAJKmkkZBuaeszrtA6dreZGDnPL0acI2kIcASwDNt7UDSkcCRAP2WW6k7225mZu3oaz27h4BNKyybX5iulLngvYiINuqcQ8p1tyHwTT6cDeEDTvFjZlYffS3Y/R0YIKl0+hFJmwHbd3G7g4AX8vTILm7LzMy6WZ8KdrlXtg+wc/7pwUPAKODFLm56FHCtpLuB2V3clpmZdTO1npWzWhowZJ0YMvLMD+Y9goqZWcckTY6I4Z1dzzeo1ImzHpiZ1U6fOo1pZmZ9k4OdmZk1PQe7Opnxwpx6N8HMrM9wsDMzs6bnYGdmZk2vx4OdpHmF6S9JekLS6j293wpt+YakGZKmS5opaa9F3M5QSV8qzI+SdGz3tdTMzLpTzX56IGkn0rBau0TEc1Wus3hEvN9N+18N+AkwLCLmSBoILOoAlUOB4cAt3dE2MzPrWTU5jSlpW+ASYLeIeCqXrSHpjtzLuqPU25M0WtJvJN0JnC5pGUmXSXogp9DZK9drkXS3pAfzY6sOmrEyMBeYBxAR8yLimbytoTllz3RJN0haIZcX0/sMljRL0hLAScABkqZKOiBvf4Nc/2lJR3fj4TMzsy6qRbAbAPwvsHdEPFooPxcYExEbAVcCZxeWrQt8PiL+k9Qb+3tEbEbKR/dLScsArwA7R8Qw4ICy9dsyDXgZeEbS7yQVE7aOAf4rt2UGcEKljUTEu8DPgGsiYmhEXJMXrQ98AdgcOEFS//J1c0b0SZImLXjLd2OamdVKLYLde8B9wGFl5VsCV+XpK4BtCsuujYgFeXoX4LicdmccKaPA6kB/4BJJM4BrSXnoKsrb2xXYH3gcOCNfaxsELB8R/5erXg5s19kXCfw5IuZHxGxSIP5IAldnPTAzq49aBLuFwJeBzSQd30694iCdbxamBeyXe1FDI2L1iHgEOIbUU9uYdP1siY4aEsnEiDgVOBDYr4NV3qf1GLWZtqegmhRBZmZWBzW5ZhcRbwG7AwdJKvXw7iMFHICD+Gii1JK/At+TJABJm+TyQcBLEbEQOBjoV1pB0qPlG5H0CUnDCkVDgWcjYg7wWr6uSN5WqZc3i9b8d/sX1p0LLFvxBZuZWUOpWe8jIl6VtCtwl6TZwNHAZZJ+BPwL+HqFVU8GzgSm54A3ixQ4zweul/QfwJ3k3qCkwaTeYLn+wK8kfQJ4J+/zqLxsJHChpKWBpwtt+RXwR0kHk3LhldxJ66nVUzt1IMzMrOaaLsWPpN2BT0VERzes1NWAIevE/JeeqHczzMx6Faf4ySJibL3bUI0NV/UNKmZmteLhwszMrOk52NWJsx6YmdWOg52ZmTU9BzszM2t6DRHsipkR8vyhks7t4X22SJpZmD8ij7G5Qk/u18zMaq/p7sZcFPl3dN8DdoyI1+rdHjMz614N0bNrTwfZEc6WdF/ONLB/Ll9M0vmSHpI0VtItpWUVtv9l4DhS6qHZuay9LAinS5oo6fHSqCuSlpb0x1z/GkkTStkSzMys/hol2C2V0+VMzaOSnFRY1l52hCGkAaR3B07LZfsCLcCGwOGkAacrWSNvf5eI+GehvL0sCItHxObADwrl3wZey/VPpnWIsQ9x1gMzs/polGD3dmGg56GkFDol7WVHuDEiFkbEw7RmGdiGlDVhYQ5gd7az338Bz5EGqgagiiwIf8rPk0lBtbTPqwEiYiYwva2dOeuBmVl9NEqw64zi+GbFTAMqe/4QSZ8r9B73zMVvAV8EjpJ0UJX7L+2zmNmgzX2amVlj6A3BrtrsCCX3APvla3erACMAImJCofd4U6lyRPyLlOfu55K+0EEWhPb2+WUASRuQTqGamVmD6A13Y1abHaHkemAnYCYpSesEoN0LZBHxTO7t3SJpXypnQajkfOBySdOBKaTTmL4oZ2bWIJou6wGApIERMU/SisBEYOuyG1C6e3/9gP4R8Y6ktYA7gHUj4t1K6zjrgZlZ5znrwYeNlbQ8KXv5yT0Z6LKlgTsl9Sddv/tWe4EOnPXAzKyWmjLYRcSIGu9vLuDf1ZmZNajecIOKmZlZlzjYmZlZ03OwMzOzpudgZ2ZmTc/BzszMmp6DnZmZNT0HOzMza3oOdmZm1vSacriw3kDSXOCxerejCwYDs+vdiC5w++unN7cd3P56GgwsExErdXbFphxBpZd4bFHGd2sUkia5/fXTm9vfm9sObn895ba3LMq6Po1pZmZNz8HOzMyanoNd/Vxc7wZ0kdtfX725/b257eD219Mit903qJiZWdNzz87MzJqeg52ZmTU9B7seJmlXSY9JelLScW0sl6Sz8/LpkobVo52VVNH+EZLmSJqaHz+rRzvbIukySa9ImllheaMf+47a38jH/pOS7pT0iKSHJH2/jToNe/yrbH9DHn9JS0qaKGlabvuJbdRp5GNfTfs7f+wjwo8eegD9gKeATwFLANOADcrqfAn4CyBgC2BCvdvdyfaPAMbWu60V2r8dMAyYWWF5wx77KtvfyMd+CDAsTy8LPN7L/varaX9DHv98PAfm6f7ABGCLXnTsq2l/p4+9e3Y9a3PgyYh4OiLeBa4G9iqrsxcwJpLxwPKShtS6oRVU0/6GFRF3Aa+2U6WRj3017W9YEfFSRDyYp+cCjwCrllVr2ONfZfsbUj6e8/Js//wovxOxkY99Ne3vNAe7nrUq8I/C/PN89B+mmjr1Um3btsynHP4i6TO1aVq3aORjX62GP/aSWoBNSN/Qi3rF8W+n/dCgx19SP0lTgVeAv0VErzr2VbQfOnnsHex6ltooK/+GUk2deqmmbQ8Ca0TExsA5wI093qru08jHvhoNf+wlDQSuB34QEW+UL25jlYY6/h20v2GPf0QsiIihwGrA5pI+W1aloY99Fe3v9LF3sOtZzwOfLMyvBry4CHXqpcO2RcQbpVMOEXEL0F/S4No1sUsa+dh3qNGPvaT+pEBxZUT8qY0qDX38O2p/ox9/gIh4HRgH7Fq2qKGPfUml9i/KsXew61kPAOtIWlPSEsCBwE1ldW4CDsl3R20BzImIl2rd0Ao6bL+kj0tSnt6c9Df175q3dNE08rHvUCMf+9yu3wKPRMRvKlRr2ONfTfsb9fhLWknS8nl6KeDzwKNl1Rr52HfY/kU59s560IMi4n1J3wX+Srqz8bKIeEjSUXn5hcAtpDujngTeAr5er/aWq7L9+wPfkvQ+8DZwYOTbpepN0h9Id20NlvQ8cALpYnfDH3uoqv0Ne+yBrYGDgRn52gvA8cDq0CuOfzXtb9TjPwS4XFI/UhD4Y0SM7S2fO1TX/k4few8XZmZmTc+nMc3MrOk52JmZWdNzsDMzs6bnYGdmZk3Pwc7MzGpCHQxuXlZ3DUl35IGqx0larSv7drAzM7NaGc1Hf+Beya9I43duBJwEnNqVHTvYmZlZTbQ1uLmktSTdKmmypLslrZ8XbQDckafvpIuD0DvYmTU5SYfkU0HTJF0haQ9JEyRNkXS7pFVyve3Vmh9siqRlc/mPJD2Qt3FiLltG0p/zNmdKOqCer9F6tYuB70XEpsCxwPm5fBqwX57eB1hW0oqLuhOPoGLWxPJo8D8Bto6I2ZI+Rhrwd4uICEmHAz8G/pP0QfOdiLg3D4D8jqRdgHVI6Z4E3CRpO2Al4MWI2C3vZ1DNX5z1evnvbCvg2jz6F8CA/HwscK6kQ4G7gBeA9xd1Xw52Zs1tR+C6iJgNEBGvStoQuEYpf9kSwDO57r3AbyRdCfwpIp7PwW4XYEquM5AU/O4GfiXpdFISzbtr95KsiSwGvJ4zHHxIRLwI7AsfBMX9ImJOV3ZkZs1LfDR1yznAuRGxIfBNYEmAiDgNOBxYChifr50IODUihubH2hHx24h4HNgUmAGcKulnNXo91kRy2qRnJP0HpAG4JW2cpwdLKsWo/wYu68q+HOzMmtsdwJdL1zryacxBpFNCACNLFSWtFREzIuJ0YBKwPmkQ8G/kb9ZIWlXSypI+AbwVEb8n3TU3rGavyHqtPLj5/cB6kp6XdBhwEHCYpGnAQ7TeiDICeEzS48AqwCld2rcHgjZrbpJGAj8CFpBOR94AnEEKeOOBzSJihKRzgB1yvYeBQyNivqTvk3p8APOArwFrA78EFgLvAd+KiEm1e1VmneNgZ2ZmTc+nMc3MrOk52JmZWdNzsDMzs6bnYGdmZk3Pwc7MzJqeg52ZmTU9BzszM2t6/x/xhl7OmRx/AwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "