From 55c6925c641ec1b572bc19da007d3b2d2d63813e Mon Sep 17 00:00:00 2001 From: 678362a9c2b5d46a6a161a762a6e18e0 <678362a9c2b5d46a6a161a762a6e18e0@app-learninglab.inria.fr> Date: Mon, 8 Mar 2021 16:54:39 +0000 Subject: [PATCH] add graphics --- module3/exo3/exercice.ipynb | 709 ++++++++++++++++++++---------------- 1 file changed, 401 insertions(+), 308 deletions(-) diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 4121b8e..a55d9ce 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -404,37 +404,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Enregistrons les lignes consernées dans un nouveau tableau en ajoutant la Chine (nous utiliserons les coordonnées de Beijing pour la longitude et latitude de la Chine, même si l'information ne sera pas réutilisée pour le moment plus tard) :" + "Enregistrons les lignes consernées dans un nouveau tableau en ajoutant la Chine et Hong-Kong. Profitons en pour définir la localisation comme index et supprimons les colonnes inutiles et trions le tableau." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [], - "source": [ - "data_list = []\n", - "# récupération des données pour tous les pays sauf la Chine\n", - "for country in countries:\n", - " data_list.append(raw_data[(raw_data['Province/State'].isnull()) & (raw_data['Country/Region']==country)].values.tolist()[0])\n", - "# récupération des données pour Hong-Kong\n", - "data_list.append(raw_data[(raw_data['Province/State'] == \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].values.tolist()[0])\n", - "# récupération des données pour le reste de la Chine en sommant les différentes colonnes\n", - "data_china = raw_data[(raw_data['Province/State'] != \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].sum().values.tolist()\n", - "# mise à jour des premières colonnes des données de la Chine avec les coordonées de Beijing et ajout à la liste\n", - "data_china[0] = pd.np.NaN\n", - "data_china[1] = \"China\"\n", - "data_china[2] = 40.1824\n", - "data_china[3] = 116.4142\n", - "data_list.append(data_china)\n", - "# création du nouveau tableau avec toutes les données des pays recherchés\n", - "data = pd.DataFrame(data_list, columns=raw_data.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, "outputs": [ { "data": { @@ -457,18 +433,17 @@ " \n", " \n", " \n", - " Province/State\n", - " Country/Region\n", - " Lat\n", - " Long\n", " 1/22/20\n", " 1/23/20\n", " 1/24/20\n", " 1/25/20\n", " 1/26/20\n", " 1/27/20\n", + " 1/28/20\n", + " 1/29/20\n", + " 1/30/20\n", + " 1/31/20\n", " ...\n", - " 2/23/21\n", " 2/24/21\n", " 2/25/21\n", " 2/26/21\n", @@ -478,15 +453,160 @@ " 3/2/21\n", " 3/3/21\n", " 3/4/21\n", + " Sum\n", + " \n", + " \n", + " Localisation\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " 0\n", - " NaN\n", - " Belgium\n", - " 50.833300\n", - " 4.469936\n", + " Hong-Kong\n", + " 0\n", + " 2\n", + " 2\n", + " 5\n", + " 8\n", + " 8\n", + " 8\n", + " 10\n", + " 10\n", + " 12\n", + " ...\n", + " 10913\n", + " 10926\n", + " 10950\n", + " 10983\n", + " 11005\n", + " 11019\n", + " 11032\n", + " 11046\n", + " 11055\n", + " 1659701\n", + " \n", + " \n", + " Korea, South\n", + " 1\n", + " 1\n", + " 2\n", + " 2\n", + " 3\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 11\n", + " ...\n", + " 88516\n", + " 88922\n", + " 89321\n", + " 89676\n", + " 90031\n", + " 90372\n", + " 90816\n", + " 91240\n", + " 91638\n", + " 10964482\n", + " \n", + " \n", + " China\n", + " 548\n", + " 641\n", + " 918\n", + " 1401\n", + " 2067\n", + " 2869\n", + " 5501\n", + " 6077\n", + " 8131\n", + " 9790\n", + " ...\n", + " 89919\n", + " 89925\n", + " 89935\n", + " 89941\n", + " 89960\n", + " 89971\n", + " 89981\n", + " 89991\n", + " 90000\n", + " 33057311\n", + " \n", + " \n", + " Japan\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 4\n", + " 4\n", + " 7\n", + " 7\n", + " 11\n", + " 15\n", + " ...\n", + " 427732\n", + " 428816\n", + " 429873\n", + " 431093\n", + " 432090\n", + " 432778\n", + " 433700\n", + " 434944\n", + " 436093\n", + " 41743265\n", + " \n", + " \n", + " Portugal\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 800586\n", + " 801746\n", + " 802773\n", + " 803844\n", + " 804562\n", + " 804956\n", + " 805647\n", + " 806626\n", + " 807456\n", + " 70635994\n", + " \n", + " \n", + " Belgium\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -494,7 +614,6 @@ " 0\n", " 0\n", " ...\n", - " 757696\n", " 760809\n", " 763885\n", " 766654\n", @@ -504,61 +623,38 @@ " 774344\n", " 777608\n", " 780251\n", + " 98653796\n", " \n", " \n", - " 1\n", - " NaN\n", - " France\n", - " 46.227600\n", - " 2.213700\n", + " Netherlands\n", + " 0\n", + " 0\n", + " 0\n", " 0\n", " 0\n", - " 2\n", - " 3\n", - " 3\n", - " 3\n", - " ...\n", - " 3608271\n", - " 3639501\n", - " 3664050\n", - " 3689034\n", - " 3712474\n", - " 3732426\n", - " 3736390\n", - " 3759247\n", - " 3785326\n", - " 3810605\n", - " \n", - " \n", - " 2\n", - " NaN\n", - " Germany\n", - " 51.165691\n", - " 10.451526\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 1\n", " ...\n", - " 2405263\n", - " 2416037\n", - " 2427069\n", - " 2436506\n", - " 2444177\n", - " 2450295\n", - " 2455569\n", - " 2462061\n", - " 2472913\n", - " 2484306\n", + " 1068960\n", + " 1073971\n", + " 1079084\n", + " 1084021\n", + " 1088690\n", + " 1092452\n", + " 1096433\n", + " 1101430\n", + " 1105544\n", + " 111703914\n", " \n", " \n", - " 3\n", - " NaN\n", - " Iran\n", - " 32.427908\n", - " 53.688046\n", + " Iran\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -566,7 +662,6 @@ " 0\n", " 0\n", " ...\n", - " 1590605\n", " 1598875\n", " 1607081\n", " 1615184\n", @@ -576,141 +671,69 @@ " 1648174\n", " 1656699\n", " 1665103\n", + " 208249840\n", " \n", " \n", - " 4\n", - " NaN\n", - " Italy\n", - " 41.871940\n", - " 12.567380\n", - " 0\n", + " Germany\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", - " ...\n", - " 2832162\n", - " 2848564\n", - " 2868435\n", - " 2888923\n", - " 2907825\n", - " 2925265\n", - " 2938371\n", - " 2955434\n", - " 2976274\n", - " 2999119\n", - " \n", - " \n", - " 5\n", - " NaN\n", - " Japan\n", - " 36.204824\n", - " 138.252924\n", - " 2\n", - " 2\n", - " 2\n", - " 2\n", + " 1\n", " 4\n", " 4\n", - " ...\n", - " 426828\n", - " 427732\n", - " 428816\n", - " 429873\n", - " 431093\n", - " 432090\n", - " 432778\n", - " 433700\n", - " 434944\n", - " 436093\n", - " \n", - " \n", - " 6\n", - " NaN\n", - " Korea, South\n", - " 35.907757\n", - " 127.766922\n", - " 1\n", - " 1\n", - " 2\n", - " 2\n", - " 3\n", " 4\n", + " 5\n", " ...\n", - " 88120\n", - " 88516\n", - " 88922\n", - " 89321\n", - " 89676\n", - " 90031\n", - " 90372\n", - " 90816\n", - " 91240\n", - " 91638\n", + " 2416037\n", + " 2427069\n", + " 2436506\n", + " 2444177\n", + " 2450295\n", + " 2455569\n", + " 2462061\n", + " 2472913\n", + " 2484306\n", + " 255393641\n", " \n", " \n", - " 7\n", - " NaN\n", - " Netherlands\n", - " 52.132600\n", - " 5.291300\n", + " Italy\n", + " 0\n", + " 0\n", + " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", + " 2\n", " ...\n", - " 1064598\n", - " 1068960\n", - " 1073971\n", - " 1079084\n", - " 1084021\n", - " 1088690\n", - " 1092452\n", - " 1096433\n", - " 1101430\n", - " 1105544\n", + " 2848564\n", + " 2868435\n", + " 2888923\n", + " 2907825\n", + " 2925265\n", + " 2938371\n", + " 2955434\n", + " 2976274\n", + " 2999119\n", + " 312517063\n", " \n", " \n", - " 8\n", - " NaN\n", - " Portugal\n", - " 39.399900\n", - " -8.224500\n", + " Spain\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", - " ...\n", - " 799106\n", - " 800586\n", - " 801746\n", - " 802773\n", - " 803844\n", - " 804562\n", - " 804956\n", - " 805647\n", - " 806626\n", - " 807456\n", - " \n", - " \n", - " 9\n", - " NaN\n", - " Spain\n", - " 40.463667\n", - " -3.749220\n", - " 0\n", - " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " ...\n", - " 3161432\n", " 3170644\n", " 3180212\n", " 3188553\n", @@ -720,21 +743,45 @@ " 3130184\n", " 3136321\n", " 3142358\n", + " 355880364\n", " \n", " \n", - " 10\n", - " NaN\n", - " United Kingdom\n", - " 55.378100\n", - " -3.436000\n", + " France\n", + " 0\n", + " 0\n", + " 2\n", + " 3\n", + " 3\n", + " 3\n", + " 4\n", + " 5\n", + " 5\n", + " 5\n", + " ...\n", + " 3639501\n", + " 3664050\n", + " 3689034\n", + " 3712474\n", + " 3732426\n", + " 3736390\n", + " 3759247\n", + " 3785326\n", + " 3810605\n", + " 404492379\n", + " \n", + " \n", + " United Kingdom\n", + " 0\n", + " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0\n", + " 0\n", + " 2\n", " ...\n", - " 4134639\n", " 4144577\n", " 4154562\n", " 4163085\n", @@ -744,21 +791,21 @@ " 4188400\n", " 4194785\n", " 4201358\n", + " 404528634\n", " \n", " \n", - " 11\n", - " NaN\n", - " US\n", - " 40.000000\n", - " -100.000000\n", + " US\n", " 1\n", " 1\n", " 2\n", " 2\n", " 5\n", " 5\n", + " 5\n", + " 6\n", + " 6\n", + " 8\n", " ...\n", - " 28234656\n", " 28309085\n", " 28386492\n", " 28463190\n", @@ -768,134 +815,115 @@ " 28694071\n", " 28759980\n", " 28827144\n", - " \n", - " \n", - " 12\n", - " Hong Kong\n", - " China\n", - " 22.300000\n", - " 114.200000\n", - " 0\n", - " 2\n", - " 2\n", - " 5\n", - " 8\n", - " 8\n", - " ...\n", - " 10896\n", - " 10913\n", - " 10926\n", - " 10950\n", - " 10983\n", - " 11005\n", - " 11019\n", - " 11032\n", - " 11046\n", - " 11055\n", - " \n", - " \n", - " 13\n", - " NaN\n", - " China\n", - " 40.182400\n", - " 116.414200\n", - " 548\n", - " 641\n", - " 918\n", - " 1401\n", - " 2067\n", - " 2869\n", - " ...\n", - " 89911\n", - " 89919\n", - " 89925\n", - " 89935\n", - " 89941\n", - " 89960\n", - " 89971\n", - " 89981\n", - " 89991\n", - " 90000\n", + " 3343145027\n", " \n", " \n", "\n", - "

14 rows × 412 columns

\n", + "

14 rows × 409 columns

\n", "" ], "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", - "0 NaN Belgium 50.833300 4.469936 0 0 \n", - "1 NaN France 46.227600 2.213700 0 0 \n", - "2 NaN Germany 51.165691 10.451526 0 0 \n", - "3 NaN Iran 32.427908 53.688046 0 0 \n", - "4 NaN Italy 41.871940 12.567380 0 0 \n", - "5 NaN Japan 36.204824 138.252924 2 2 \n", - "6 NaN Korea, South 35.907757 127.766922 1 1 \n", - "7 NaN Netherlands 52.132600 5.291300 0 0 \n", - "8 NaN Portugal 39.399900 -8.224500 0 0 \n", - "9 NaN Spain 40.463667 -3.749220 0 0 \n", - "10 NaN United Kingdom 55.378100 -3.436000 0 0 \n", - "11 NaN US 40.000000 -100.000000 1 1 \n", - "12 Hong Kong China 22.300000 114.200000 0 2 \n", - "13 NaN China 40.182400 116.414200 548 641 \n", + " 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 1/28/20 \\\n", + "Localisation \n", + "Hong-Kong 0 2 2 5 8 8 8 \n", + "Korea, South 1 1 2 2 3 4 4 \n", + "China 548 641 918 1401 2067 2869 5501 \n", + "Japan 2 2 2 2 4 4 7 \n", + "Portugal 0 0 0 0 0 0 0 \n", + "Belgium 0 0 0 0 0 0 0 \n", + "Netherlands 0 0 0 0 0 0 0 \n", + "Iran 0 0 0 0 0 0 0 \n", + "Germany 0 0 0 0 0 1 4 \n", + "Italy 0 0 0 0 0 0 0 \n", + "Spain 0 0 0 0 0 0 0 \n", + "France 0 0 2 3 3 3 4 \n", + "United Kingdom 0 0 0 0 0 0 0 \n", + "US 1 1 2 2 5 5 5 \n", "\n", - " 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/23/21 2/24/21 \\\n", - "0 0 0 0 0 ... 757696 760809 \n", - "1 2 3 3 3 ... 3608271 3639501 \n", - "2 0 0 0 1 ... 2405263 2416037 \n", - "3 0 0 0 0 ... 1590605 1598875 \n", - "4 0 0 0 0 ... 2832162 2848564 \n", - "5 2 2 4 4 ... 426828 427732 \n", - "6 2 2 3 4 ... 88120 88516 \n", - "7 0 0 0 0 ... 1064598 1068960 \n", - "8 0 0 0 0 ... 799106 800586 \n", - "9 0 0 0 0 ... 3161432 3170644 \n", - "10 0 0 0 0 ... 4134639 4144577 \n", - "11 2 2 5 5 ... 28234656 28309085 \n", - "12 2 5 8 8 ... 10896 10913 \n", - "13 918 1401 2067 2869 ... 89911 89919 \n", + " 1/29/20 1/30/20 1/31/20 ... 2/24/21 2/25/21 \\\n", + "Localisation ... \n", + "Hong-Kong 10 10 12 ... 10913 10926 \n", + "Korea, South 4 4 11 ... 88516 88922 \n", + "China 6077 8131 9790 ... 89919 89925 \n", + "Japan 7 11 15 ... 427732 428816 \n", + "Portugal 0 0 0 ... 800586 801746 \n", + "Belgium 0 0 0 ... 760809 763885 \n", + "Netherlands 0 0 0 ... 1068960 1073971 \n", + "Iran 0 0 0 ... 1598875 1607081 \n", + "Germany 4 4 5 ... 2416037 2427069 \n", + "Italy 0 0 2 ... 2848564 2868435 \n", + "Spain 0 0 0 ... 3170644 3180212 \n", + "France 5 5 5 ... 3639501 3664050 \n", + "United Kingdom 0 0 2 ... 4144577 4154562 \n", + "US 6 6 8 ... 28309085 28386492 \n", "\n", - " 2/25/21 2/26/21 2/27/21 2/28/21 3/1/21 3/2/21 3/3/21 \\\n", - "0 763885 766654 769414 771511 772294 774344 777608 \n", - "1 3664050 3689034 3712474 3732426 3736390 3759247 3785326 \n", - "2 2427069 2436506 2444177 2450295 2455569 2462061 2472913 \n", - "3 1607081 1615184 1623159 1631169 1639679 1648174 1656699 \n", - "4 2868435 2888923 2907825 2925265 2938371 2955434 2976274 \n", - "5 428816 429873 431093 432090 432778 433700 434944 \n", - "6 88922 89321 89676 90031 90372 90816 91240 \n", - "7 1073971 1079084 1084021 1088690 1092452 1096433 1101430 \n", - "8 801746 802773 803844 804562 804956 805647 806626 \n", - "9 3180212 3188553 3188553 3188553 3204531 3130184 3136321 \n", - "10 4154562 4163085 4170519 4176554 4182009 4188400 4194785 \n", - "11 28386492 28463190 28527344 28578548 28637313 28694071 28759980 \n", - "12 10926 10950 10983 11005 11019 11032 11046 \n", - "13 89925 89935 89941 89960 89971 89981 89991 \n", + " 2/26/21 2/27/21 2/28/21 3/1/21 3/2/21 3/3/21 \\\n", + "Localisation \n", + "Hong-Kong 10950 10983 11005 11019 11032 11046 \n", + "Korea, South 89321 89676 90031 90372 90816 91240 \n", + "China 89935 89941 89960 89971 89981 89991 \n", + "Japan 429873 431093 432090 432778 433700 434944 \n", + "Portugal 802773 803844 804562 804956 805647 806626 \n", + "Belgium 766654 769414 771511 772294 774344 777608 \n", + "Netherlands 1079084 1084021 1088690 1092452 1096433 1101430 \n", + "Iran 1615184 1623159 1631169 1639679 1648174 1656699 \n", + "Germany 2436506 2444177 2450295 2455569 2462061 2472913 \n", + "Italy 2888923 2907825 2925265 2938371 2955434 2976274 \n", + "Spain 3188553 3188553 3188553 3204531 3130184 3136321 \n", + "France 3689034 3712474 3732426 3736390 3759247 3785326 \n", + "United Kingdom 4163085 4170519 4176554 4182009 4188400 4194785 \n", + "US 28463190 28527344 28578548 28637313 28694071 28759980 \n", "\n", - " 3/4/21 \n", - "0 780251 \n", - "1 3810605 \n", - "2 2484306 \n", - "3 1665103 \n", - "4 2999119 \n", - "5 436093 \n", - "6 91638 \n", - "7 1105544 \n", - "8 807456 \n", - "9 3142358 \n", - "10 4201358 \n", - "11 28827144 \n", - "12 11055 \n", - "13 90000 \n", + " 3/4/21 Sum \n", + "Localisation \n", + "Hong-Kong 11055 1659701 \n", + "Korea, South 91638 10964482 \n", + "China 90000 33057311 \n", + "Japan 436093 41743265 \n", + "Portugal 807456 70635994 \n", + "Belgium 780251 98653796 \n", + "Netherlands 1105544 111703914 \n", + "Iran 1665103 208249840 \n", + "Germany 2484306 255393641 \n", + "Italy 2999119 312517063 \n", + "Spain 3142358 355880364 \n", + "France 3810605 404492379 \n", + "United Kingdom 4201358 404528634 \n", + "US 28827144 3343145027 \n", "\n", - "[14 rows x 412 columns]" + "[14 rows x 409 columns]" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "data_list = []\n", + "# récupération des données pour tous les pays sauf la Chine\n", + "for country in countries:\n", + " data_list.append(raw_data[(raw_data['Province/State'].isnull()) & (raw_data['Country/Region']==country)].values.tolist()[0])\n", + "# récupération des données pour Hong-Kong\n", + "data_hk = raw_data[(raw_data['Province/State'] == \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].values.tolist()[0]\n", + "data_hk[0] = pd.np.NaN\n", + "data_hk[1] = \"Hong-Kong\"\n", + "data_list.append(data_hk)\n", + "# récupération des données pour le reste de la Chine en sommant les différentes colonnes\n", + "data_china = raw_data[(raw_data['Province/State'] != \"Hong Kong\") & (raw_data['Country/Region']== \"China\")].sum().values.tolist()\n", + "# mise à jour des premières colonnes des données de la Chine et ajout à la liste\n", + "data_china[0] = pd.np.NaN\n", + "data_china[1] = \"China\"\n", + "data_list.append(data_china)\n", + "# création du nouveau tableau avec toutes les données des pays recherchés\n", + "data = pd.DataFrame(data_list, columns=raw_data.columns)\n", + "# suppression des colonnes inutilisées\n", + "data = data.drop(columns=['Province/State', 'Lat', 'Long'])\n", + "# chaangement de l'index\n", + "data = data.rename(columns={\"Country/Region\" : \"Localisation\"}).set_index(\"Localisation\")\n", + "# création d'une colonne correspondant à la somme des cas et tri en fonction de cette colonne\n", + "data[\"Sum\"] = data.sum(axis=1)\n", + "data = data.sort_values(by ='Sum')\n", "data" ] }, @@ -908,10 +936,75 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEWCAYAAAD/6zkuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm8nPPd//HXW0QsIVTQlHLUWi0iQu2CUq19uUurRGupblq9tbdbe1fwU3Sz76oRpRTlJlVVKrc1iURW+xZqKU0RiSVIPr8/vt9xLuPMOXNyzpmZM+f9fDzmMdf1vb7XdX3nmnPmM9/ruub7UURgZmbWzBardwPMzMx6moOdmZk1PQc7MzNreg52ZmbW9BzszMys6TnYmZlZ03OwMzOzpudgZ72epNGSQtKoLm5nXN7Ood3TstqTdLSkF/PrmCRpRJ6e1QBta8ltCUnL17s9XSXppPxadqp3WzpD0gqS5koaV++21JKDnXWKpK0l3Szp35LekfSUpHMkLVHvtlWrnQBwHXAW8HDtW9V1koYAZwAfBy4DrgKeJ72my+rYtKYj6WPAD4EZEXFHLtte0lRJb0h6W9ITkk6QpLJ1h+W/v9ULZWtLmpfLp7axvx9KeipPXyLp4Vz/35JukfSZQt2NJd2RA9pH/s4j4jVgNLC9pJ2776g0tsXr3QDrPSQdCPwe6AdMAx4AWoCjgP8B3q1b47pBRJxb7zZ00VqkL7D/iIjDCuU/aG8lSf0j4r0ebVnzOQRYBvhDoewTwKvABGAFYF9gFPAc8LtCvd1IQfI5AEn9SP9XA9rZ327An/P04XkffwA+D3wR2EjS2hHxDrA66QvPFGDbCtv7A/Bd4JvA3zp8tc0gIvzwo8MHsDTwbyCAK4DFCsvWApYARuTlswrLxuWyQ/P86Dw/BvgL8DZwG7AGcD3wJnA/sGau35ltjsrzO5P+0ecA7wHPAieWbe9Dj/LtAjvk6emF/W6fy2YWjslpwJO53Q8Ce3dwHA8GJgNzSR+MFxWW7UP6AjE3t/k8YPm8rKXQ3m+QPkBfA85o53WNLj9+Zds5CngRuLOs/HvAP4GXc3v3y/v7F3Bcob2LAz8CHsmv/2HgiMLyJYALcjufBI4s7GP5dv7OTgQeJf1tPF/aJvC1vI+5pC9WjwPfLqw7DLgbeAOYB8wEvlVYvicwMS9/Fvg1sHRetgJwLTAbeAd4pvjetNHO2/Pr2KqdOjflOieVlY8HTi3MnwC8lf+WAphaVn/Z/Hq/kOe3Kiwrvm/Dytbbm7L/nbL37q18nBav9+dLLR51b4AfveNBCiClf6r1KtQZUf7PReXAtDB/uLyQ518H7gBm5PnfL8I2R+X5Q0nfVi8inb57NS8/EFibdLoy8ofemcCZ5dsFlD8QA/h0Xn5env9xnv9Dnp9MCt7/yq9rRIXjc0Su/35+7b8H/p6XfTEvmw9cTvqgDuDWvLz4ofYccCWwIM/vVOF1fbX8+JVt59/Ab4FTysqfAv43T78DvJTbujA/1s3bOjXXeTS/B8/l+ZF5+YmF/VxGCqwdBbsr8/JX8zo3Ab/My34CjCUF0CtIH9YBbJmX35PnrwMuIQW+S/OyL+Rl/8rrTs7zv8vL/1+evz9v/xZS76vS/8Mruf4KZeVr52N/bX6fnwfWLixfKb9vW+f5zUhfyL5N+rtrK9jtRwpKA9pox7p5nQXAkLJlFYNdXj6dwt93sz/q3gA/escDOKjwQbVkhTojyv+5qByYbs/zo/L8S6RTcHvk+YcWYZuj8vxiwJeAn5KuYT2Ql19caZsVtntKabt5m//MHyqfyB9apQ+Zc/IHXGn9qyscn1IAO6ZQ1j8/35KXnZDnB+cPwcgfaC2F479ZrvN/ef7Ydo7Vh8rKtrNjoV6xfBvSN//S/r+d65QCxH+QvgzMzfOX5ddf6smMz/WfzPMH5/k9Cvv4SLDLr7m0fJM2jtESwP6kntAZwGO57vF5+QRae76fBfoD/fKyP+dlt+W2nk/rl66lgdPz/JnA5sDA0roV3svSsVm8rLx0vEuPK4BBheWHkIJ/v7zfx4Bb8rJDaTvYXQbc2EYbBgL35XV+0cbyjoJd6ctBxd5pMz18zc6q9Upheg3SP2k1+lUofyQ/v56fn4yIhZLm5vllFmGbJReQTpmVW6mD9cpdDhwPHEAKLKsAt0XEi5I2y3UWI137KFq7wvbWzM/jSwXReq2sJT8/kstnS5pNuvayBvBEYTtT8nPp2A2s8vWUu7dC+SMR8b6kN4FBtL7XxfdmcGG/Xy9bv/T6V83PpfUf76A9pePzbkSUXmPxGN0M7NLGeqX39YekIHYpKRjPA35GCowtuc7O+VEi4FOkILcxqYf1fdKXmGskHRwRC9vY5+ukY7As6TRtqa3jJC1Geu0Xk069vkPq1UO69vaXiFiQ/4bWBV6VNBZYrXQcJI2NiN3zzS1fJF0Tb220NJj0BWkzUi/2v9poY0eWK7yWpue7Ma1a99H6T/3T/A8NgKQ1JPUnXbeB9AFALlu3wvYWdDBf0pltlhyQnw8lBcYLSk0t21e7f/8R8Tipt7A+6ZQcpNOVALPy87vAShGhiBCp97FPhU0+k58/VyqQVPrCWdre+rl8RdKHKaTTqcV2vV+abK/9HYmI+RUWVfPezKb1vdmo8PoXA4bn8hfy83r5uaP3rXR8lpA0tFQoafH8U4VSoNsh7+cvpSr5eVJEbEy6/jaC1LM7LR/jWbnO0aW25vauFREzgVcjYlfS39nGwEOk08BbV2jr9Pz86UI7l4V0ATginiedRv3gded27ELrjSaldm9BCoIb5/nl8jzApqQvWbcU9rMG6YvKZsBpEXFk5K5atXJb1ia9h090UL0puGdnVYmINyV9j/Rh/zVgQ0kTSaf0dib9Qz5Ouo7yMUljSL2Slbu460XZ5sukHsnRpA+X8uDzj/y8mqRLgSci4vQK2xpDCk7bkno2NwBExL8k/RH4MjBB0t+AFXO9C0mnPsudRfq2/0tJW5FuwCgdv/NI3+CPl/Qp0ofc4sDfIuJxSS0dvOaaioiQdB7wY+Bvkm4m9fS2IPWCDyX99OF/gDMljSCdWm5vm7MlXUUKMndIupEUuJ4gnZKel/cxivTFq/z3bTfnOxufIr3/A0inDBcA5+b9/6Jw7DcivWdrAsdJ2pN0zfhdWnuCcyo0dyywI+mmpfty2Y05iDya271nLv9rft6aFExvza93HK0Bj/z7zt8B0yKiFOx3A6ZExIuFfd9H+rt5DlhK0pm5/KqImChpfeA40l2ZAIMljQZmR8SxuWxzYCnghugjd+K6Z2dVi4grSd+qbyH9I40kfbO9BHgrIubQeoffrqQPnfFtb63qfS7KNg8nfeBsQPpwuahsm7OAX5E+yA4j3XFYydW0/qTi+oh4q7DsMNIddAtJH+5bk25wuLXCa7mEdM1mOumDdw/g6bzsz6TA+RDputSg3O4D2tpWg/gp6fTZq6QvQDuSTllek5efQgru/fKyn1exzSOAk0k9x4NIH8pP5g/kkaQP+M1Ip96uK1t3HCkIHEQKEg8AB+Se1l9IX3qmkY79vqT37ay87oOkG0r2Jr1HL5N6gdNp2xhSr+grhbL/y/s/hHRDzGPAf5Ju5CG36b5Iv3OrVvEnByWfyM+rk065lh4b5PKPk47VDnl+mTy/f2EbpXZfQB+hTvZ+zcyMNIIKqee6c0TcXkX9h4Ax7ZxFKK+/MummqC0jYkKXGvvh7a5A+tLwYERs313bbXQOdmZmPSyPMPTfwOiIeLaj+nmddUk9+1Mq3CRjneBgZ2ZmTc/X7MzMrOn5bsw6GTx4cLS0tNS7GWZmvcrkyZNnR0RnfzPrYFcvLS0tTJo0qd7NMDPrVSRVdc2znE9jmplZ03OwMzOzpudgZ2ZmTc/BzszMmp6DnZmZNT0HOzMza3oOdmZm1vQc7MzMrOn5R+V1MuOFObQcV565w8ysuc06bbeOK/UA9+zMzKzpOdiZmVnTc7DrBEktkmaWlY2SdKykLSRNkDRV0iOSRtWpmWZmVsbX7LrP5cCXI2KapH7AevVukJmZJQ523Wdl4CWAiFgAPFzf5piZWYlPY3afM4DHJN0g6ZuSliyvIOlISZMkTVrw1pw6NNHMrG9ysOucqFQeEScBw4HbgK8Ct7ZR6eKIGB4Rw/stPagHm2lmZkUOdp3zb2CFsrKPAbMBIuKpiLgA2AnYWNKKNW6fmZm1wcGuEyJiHvCSpJ0AJH0M2BW4R9JukpSrrgMsAF6vT0vNzKzIN6h03iHAeZJ+nedPjIinJJ0CnCHpLeB94KB8o4qZmdWZg10nRcTDwA5tlB9Yh+aYmVkVHOzqZMNVBzGpTmPEmZn1Nb5mZ2ZmTc/BzszMmp5PY9ZJI6f4qVcKDjOznuKenZmZNb12g117o/x3sN5wSWfn6RGStupswyTNkjS4vXJJm0p6RtImkvaUdFxn91Nh3yMkje2ObZmZWf31yGnMiJgETMqzI4B5wH3duQ9JGwHXAQdExBRgCnBTd+7DzMyaQ5dOY0oaJ+l0SRMlPS5p21w+QtJYSS3AUcAxOc/btpJWknS9pAfyY+u8zoqSbpM0RdJFgCruGD4N3AgcHBET8/qHSjo3T4+WdLak+yQ9LWn/XL6YpPMlPZTbd0th2a6SHpV0D7Bv4TV+TNKNkqZLGp+DbKmHe3lu8yxJ+0r6haQZkm6V1L8rx9bMzLpPd1yzWzwiNgd+AJxQXBARs4ALgTMiYmhE3A2clec3A/YDLs3VTwDuiYhNSD201dvZ5/8C342Ie9qpMwTYBtgdOC2X7Qu0ABsChwNbAuQMBZcAewDbAh8vbOdEYEpEbAQcD4wpLFsL2A3YC/g9cGdEbAi8ncs/xFkPzMzqo6NgV3GU/8L0n/LzZFIg6cjngXMlTSUFteUkLQtsRwoYRMSfgdfa2cbtwOE5SWolN0bEwjziySq5bBvg2lz+T+DOXL4+8ExEPBERUWpHYZ0rcrv+DqwoqZSy4C8R8R4wA+hHa6aDGbRxLJz1wMysPjoKdu2O8p/Nz88LqO4a4GLAlrmnNzQiVo2IuXlZpeBa7rv5+fx26swvTKvsuS2V9t3WOqW68wEiYiHwXg6UAAvxzzrMzBpGu8GuvVH+O7GPucCyhfnbaA1WSBqaJ+8CDsplX+SjQbZoIfAVYD1JJ3WiLfcA++Vrd6uQbp4BeBRYU9Jaef4rhXWK7RoBzI6INzqxTzMzq7NqrtkdAvw0n3b8O3mU/07s42Zgn9INKsDRwPB8w8fDpBtYIF0b207Sg8AuwHPtbTQi5pOule0p6TtVtuV64HlgJnARMAGYExHvAEcCf843qDxbWGdUqb2ka38jq9yXmZk1CLWeeesbJA2MiHk5sepEYOt8/a6mBgxZJ4aMPLPWu62KR1Axs0YlaXJEDO/sen3xutJYScsDSwAn1yPQgbMemJnVUp8LdhExot5tMDOz2vLYmGZm1vT6XM+uUTjrgZlZ7bhnZ2ZmTa9pe3aSFpBGMinZOw9fZmZmfUzTBjvg7YgYWmmhpMUj4v1aNsjMzOqjT53GzJkRrpV0M3CbpIGS7pD0YM5WsFeu1yLpEUmX5AwJt0laKi9bW9Ltkqbl9dbK5T/KWRymSzqxji/TzMzKNHOwWyqP2jJV0g2F8i2BkRGxI/AOsE9EDAN2AH4tqTQW5jrAeRHxGeB1UoYGgCtz+cbAVqTh1HbJ9TcHhgKbStqup1+gmZlVpy+exvxbRLyapwX8PAemhcCqtGZIeCYipubpyUBLzs6wakTcAJCHGSMHu11ICWQBBpKC313FHUs6kjQsGf2WW6nrr9DMzKrSzMGukjcL0wcBKwGbRsR7kmYBS+ZlxawJC4ClqJw1QcCpEXFRezuOiIuBiyENF9b5ppuZ2aJo5tOY1RgEvJID3Q7AGu1VztkOnpe0N4CkAZKWBv4KfEPSwFy+qqSVe7jtZmZWpb4e7K4kZTSYROrlPVrFOgcDR+csCPcBH4+I24CrgPslzQCu48NpjczMrI76XNaDRuGsB2ZmneesB72Msx6YmdVOXz+NaWZmfYCDnZmZNT2fxqyTRsl64OtzZtYXuGdnZmZNz8HOzMyaXp8MdpJ+kgd4np7HzvzcImxjT0nH9UT7zMyse/W5a3aStgR2B4ZFxHxJg4ElOrudiLgJuKm722dmZt2vL/bshgCzI2I+QETMjogXJc2SdLqkifmxNoCkPSRNkDQlp/ZZJZcfKuncPD1a0tmS7pP0tKT96/bqzMzsI/pisLsN+KSkxyWdL2n7wrI3ImJz4FygNLzJPcAWEbEJcDXw4wrbHQJsQ+o1ntZWBUlHSpokadKCt+Z0x2sxM7Mq9LnTmBExT9KmwLakHHbXFK69/aHwfEaeXi3XGUI63flMhU3fGBELgYdLvb829u2sB2ZmddAXe3ZExIKIGBcRJwDfpTUxazEAlabPAc6NiA2Bb9KaAqhcMSVQpVRAZmZWB30u2ElaT9I6haKhwLN5+oDC8/15ehDwQp4e2fMtNDOz7tbnTmOSsoifI2l54H3gSVL28N2BAZImkL4EfCXXHwVcK+kFYDywZs1bbGZmXeIUP1nOUj48ImbXYn+NkuLHw4WZWW/iFD+9jFP8mJnVjoNdFhEt9W6DmZn1jD53g4qZmfU97tnVSb1S/PganZn1Re7ZmZlZ03OwK5A0Lz+3SPpqFfVbJM3s+ZaZmVlXONi1rQXoMNiZmVnv4GDXttOAbXOuu2NyD+5uSQ/mx1blK+TlQwvz90raqKatNjOzNjnYte044O6IGBoRZwCvADtHxDDSUGJnt7HOpcChAJLWBQZExPRiBWc9MDOrDwe76vQHLpE0A7gW2KCNOtcCu0vqD3wDGF1eISIujojhETG839KDerK9ZmZW4J8eVOcY4GVgY9IXhHfKK0TEW5L+BuwFfBno9HA2ZmbWMxzs2jYXWLYwPwh4PiIWShoJ9Kuw3qXAzaRToK/2cBvNzKxKPo3ZtunA+5KmSToGOB8YKWk8sC7wZlsrRcRk4A3gdzVrqZmZdcg9u4KIGJif3wN2KltcvLPyv3O9WcBnS4WSPkH6AnFbjzbUzMw6xcGum0g6BDgF+GFELOyovrMemJnVjoNdN4mIMcCYerfDzMw+ytfszMys6blnVye1yHrgDAdmZol7dmZm1vR6VbCTtIqkqyQ9LWmypPsl7VPvdpmZWWPrNcFOkoAbgbsi4lMRsSlwILBaletX+iG4mZk1uV4T7IAdgXcj4sJSQUQ8GxHnSOon6ZeSHpA0XdI3ASSNkHSnpKuAGTl7waOSLpU0U9KVkj6fMxQ8IWnzvN7mku6TNCU/r5fLD5X0J0m35vq/yOWHSTqj1C5JR0j6TS0PjpmZVdabgt1ngAcrLDsMmBMRmwGbAUdIWjMv2xz4SUSUBm9eGziL9CPx9Ul567YBjgWOz3UeBbaLiE2AnwE/L+xrKCnzwYbAAZI+CVwN7JkHgQb4Oh5FxcysYfTauzElnUcKUu8CzwIbSdo/Lx4ErJOXTYyIZwqrPhMRM/I2HgLuiIjIGQ1aCutfLmkdIEhZD0ruiIg5ef2HgTUi4h+S/k7KevAI0L+0j7I2HwkcCdBvuZW6fAzMzKw6valn9xAwrDQTEd8hDem1EiDgezn/3NCIWDMiSkN2lY9jOb8wvbAwv5DW4H8ycGdEfBbYA1iywvoLCuuU8tlV7NU5xY+ZWX30pmD3d2BJSd8qlC2dn/8KfKt0GlHSupKW6cK+BgEv5OlDq1khIiYAnySdFv1DF/ZtZmbdrNcEu4gIYG9ge0nPSJoIXA78F6lX9TDwoKSZwEV07RTtL4BTJd1L5XQ+bfkjcG9EvNaFfZuZWTdTiiHWHSSNBc6IiDs6qjtgyDoxZOSZPdoej6BiZs1G0uSI6HRy7F57g0ojkbQ8MBGYVk2gA2c9MDOrJQe7bhARr5OSupqZWQPqNdfszMzMFpV7dnXS3VkPfH3OzKwy9+zMzKzpOdiZmVnTc7Brg6R59W6DmZl1Hwe7KjlFkJlZ7+Vg147yFEG57MacOPahPLBzqe48SadImiZpvKRV6tZwMzP7EAe7jpWnCPpGThw7HDha0oq5fBlgfERsDNwFHFG+IUlHSpokadKCt+bUou1mZoaDXTXKUwQdLWkaMJ408PM6ufxdYGyenkxruqAPOOuBmVl9+Hd2HfsgRZCkEcDngS0j4i1J42hN//NetA40Wkz9Y2ZmdeaeXecMAl7LgW59YIt6N8jMzDrmYNc5twKLS5pOSvA6vs7tMTOzKvhUWxsiYmB+HgeMK5TPB77Y3jp5+jrguh5tpJmZVc3Brk6c4sfMrHZ8GtPMzJqeg52ZmTU9n8ask86k+HH6HjOzrnHPzszMml5Ng52kkPTrwvyxkkZ1sM4ISVsV5kdL2r+L7ZglaXBXtlHYljMkmJk1uFr37OYD+3Yy0IwAtuqoUjWUuDdrZtbH1PqD/33gYuCY8gWSVpJ0vaQH8mNrSS3AUcAxkqZK2jZX307SfZKeLvbyJP0orztd0om5rEXSI5LOBx4kjWdZ3G+nshhIWlPS/Xk/JxfqD5F0V27nzEJbzcyszurRyzkPOEhS+UjIZwFnRMRmwH7ApRExC7gwlw+NiLtz3SHANsDuwGkAknYhDcq8OTAU2FTSdrn+esCYiNgkIp4t229nsxicBVyQ2/nPwna+Cvw1IoYCGwNTy1+4sx6YmdVHze/GjIg3JI0BjgbeLiz6PLCBpNL8cpKWrbCZGyNiIfBwIW/cLvkxJc8PJAW/54BnI6LS0F5HS9onT5eyGPybj2Yx2DlPb00KxgBXAKfn6QeAyyT1z+37SLCLiItJPVsGDFknypebmVnPqNdPD84knVL8XaFsMVI2gWIApBD8iuYXqxSeT42Ii8rWb6GQuaBs2QgWLYvBRwJVRNyVe5K7AVdI+mVEjGlrv2ZmVlt1uVkjIl4F/ggcVii+DfhuaUbS0Dw5F6jUwyv6K/ANSQPz+qtKWrmDdRYli8G9wIF5+qBCe9cAXomIS4DfAsOq2JaZmdVAPe9M/DVQvCvzaGB4vrnkYdKNKQA3A/uU3aDyERFxG3AVcL+kGaSBmDsKkouSxeD7wHckPUAKliUjgKmSppBOc55VxbbMzKwG1HqmzmppwJB1YsjIM6uq6xFUzMwSSZMjYnhn1/NwYXXirAdmZrXjH1ibmVnTc7AzM7Om59OYdVJt1gNfrzMz6zr37MzMrOn16mAnaUH+ScI0SQ8WsyO0s06HWQokXSppg+5ppZmZ1VtvP435dh6LEklfAE4Ftu/qRiPi8K5uw8zMGkev7tmVWQ54rTTTVgaEIkmLSTo/ZzsYK+mWUgYFSeMkDc/T8wrr7C9pdJ4eLekCSXfm7AvbS7osZ1gY3cOv1czMOqG39+yWkjSVNJ7lEGBH+EgGBAE3SdouIu4qrLsv0AJsCKwMPAJc1sn9r5D3uSdppJetgcOBByQNbWswaDMzq73e3rN7O6f+WR/YFRijNHJ0MQPCg8D6pOBXtA1wbUQsjIh/Ancuwv5vzoNFzwBejogZORvDQ6RA+iFO8WNmVh+9vWf3gYi4P2dAX4kKGRDKtJlOoa1NF6aXLFtWyr6wkA9nYlhIG8fWKX7MzOqjt/fsPpCzFvQj5aKrJgPCPcB++drdKqSBnNvysqRPS1oM2KdCHTMza2C9vWdXumYHqac2MiIWALdJ+jQpAwLAPOBrwCuFda8HdgJmAo8DE4C2zi0eR0ri+o9cd2APvA4zM+tBfTrrgaSBETFP0orARGDrfP2ux1Wb9cAjqJiZtXLWg0UzVtLywBLAybUKdOCsB2ZmtdSng11EjKh3G8zMrOc1zQ0qZmZmlfTpnl09tZf1wNfpzMy6l3t2ZmbW9BzszMys6fXqYFdI8TNT0rWSlu7k+sf3ULtaJM3siW2bmVnn9epgR+vYmJ8F3gWOqmYlJYsBPRLszMyssfT2YFd0N7A2gKQf5t7eTEk/yGUtOf3O+aTBoX9LHoFF0pXlvTFJx0oalac3y6mC7pf0y1K9vM7dOXFsVcljzcys9poi2ElaHPgiMEPSpsDXgc8BWwBHSNokV10PGBMRm0TE12ntGR7UwS5+BxwVEVsCCwrlrwA7R8Qw4ADg7A7a6awHZmZ10NuDXWlszEnAc6Te2jbADRHxZkTMA/4EbJvrPxsR4zuzgzzCyrIRcV8uuqqwuD9wiaQZwLXABu1tKyIujojhETG839KDOtMMMzPrgt7+O7u3I2JosSDns6vkzXaWvc+Hg38pnU972zsGeBnYOK/7Tjt1zcysTnp7z64tdwF7S1pa0jKktDx3V6j7nqT+efplYGVJK0oaAOwOEBGvAXMlbZHrHVhYfxDwUk7YejApxZCZmTWYpgt2EfEgMJqUxWACcGlETKlQ/WJguqQrI+I94KS8zljg0UK9w4CLJd1P6umVLridD4yUNB5Yl/Z7jmZmVid9OsVPtUqpgPL0ccCQiPh+V7bZXoofDxdmZtY2p/jpWbtJ+m/S8XoWOLSrG3SKHzOz2nGwq0JEXANcU+92mJnZonGwq5PyrAc+dWlm1nOa7gYVMzOzcg52ZmbW9PpksJM0r95tMDOz2umTwc7MzPqWPhvsJA2UdEfOVjBD0l65vEXSo5Iuz5kOrivlyZP0M0kP5GwKF5eGJpM0TtLpkiZKelzStu3t28zMaqvPBjvSOJb75IwFOwC/LoyruR5wcURsBLwBfDuXnxsRm+X8eUuRhxTLFo+IzYEfACe0tUNnPTAzq4++HOwE/FzSdOB2YFVglbzsHxFxb57+PSmTAsAOkibkLAc7Ap8pbO9P+Xky0NLWDp31wMysPvry7+wOAlYCNo2I9yTNojXTQfkYaiFpSdJYmMMj4h85seuShTrz8/MC+vZxNTNrOH25ZzcIeCUHuh2ANQrLVpe0ZZ7+CnAPrYFttqSBwP61a6qZmXVFnwt2Oav5fOBKYLikSaReXjHLwSOkbAbTgY8BF0TE68AlwAzgRuCBmjbczMwWWV883fYZ4KmImA1sWb5QUguwMCKOKl8WET8FftpG+YjC9GwqXLMzM7P66FPBTtJRwNGkOybrylkPzMxqp08Fu4i4ELiwgzqzgM/sCynpAAAND0lEQVTWpEFmZlYTfe6anZmZ9T19qmfXSJzix8ysdtyzMzOzptfngp2kj0u6WtJTkh6WdEsexmtshfqXStqg1u00M7Pu06dOY+axL28ALo+IA3PZUGCPSutExOE1ap6ZmfWQvtaz2wF4L9+VCUBETAXuBgbmDAePSrqyLKPB8Dw9T9IpkqZJGi9plVy+Rx4zc4qk20vlZmbWGPpasPssaaDmtmxC+v3dBsCngK3bqLMMMD4iNgbuAo7I5fcAW0TEJsDVwI+7s9FmZtY1feo0ZgcmRsTzAJKmkkZBuaeszrtA6dreZGDnPL0acI2kIcASwDNt7UDSkcCRAP2WW6k7225mZu3oaz27h4BNKyybX5iulLngvYiINuqcQ8p1tyHwTT6cDeEDTvFjZlYffS3Y/R0YIKl0+hFJmwHbd3G7g4AX8vTILm7LzMy6WZ8KdrlXtg+wc/7pwUPAKODFLm56FHCtpLuB2V3clpmZdTO1npWzWhowZJ0YMvLMD+Y9goqZWcckTY6I4Z1dzzeo1ImzHpiZ1U6fOo1pZmZ9k4OdmZk1PQe7Opnxwpx6N8HMrM9wsDMzs6bnYGdmZk2vx4OdpHmF6S9JekLS6j293wpt+YakGZKmS5opaa9F3M5QSV8qzI+SdGz3tdTMzLpTzX56IGkn0rBau0TEc1Wus3hEvN9N+18N+AkwLCLmSBoILOoAlUOB4cAt3dE2MzPrWTU5jSlpW+ASYLeIeCqXrSHpjtzLuqPU25M0WtJvJN0JnC5pGUmXSXogp9DZK9drkXS3pAfzY6sOmrEyMBeYBxAR8yLimbytoTllz3RJN0haIZcX0/sMljRL0hLAScABkqZKOiBvf4Nc/2lJR3fj4TMzsy6qRbAbAPwvsHdEPFooPxcYExEbAVcCZxeWrQt8PiL+k9Qb+3tEbEbKR/dLScsArwA7R8Qw4ICy9dsyDXgZeEbS7yQVE7aOAf4rt2UGcEKljUTEu8DPgGsiYmhEXJMXrQ98AdgcOEFS//J1c0b0SZImLXjLd2OamdVKLYLde8B9wGFl5VsCV+XpK4BtCsuujYgFeXoX4LicdmccKaPA6kB/4BJJM4BrSXnoKsrb2xXYH3gcOCNfaxsELB8R/5erXg5s19kXCfw5IuZHxGxSIP5IAldnPTAzq49aBLuFwJeBzSQd30694iCdbxamBeyXe1FDI2L1iHgEOIbUU9uYdP1siY4aEsnEiDgVOBDYr4NV3qf1GLWZtqegmhRBZmZWBzW5ZhcRbwG7AwdJKvXw7iMFHICD+Gii1JK/At+TJABJm+TyQcBLEbEQOBjoV1pB0qPlG5H0CUnDCkVDgWcjYg7wWr6uSN5WqZc3i9b8d/sX1p0LLFvxBZuZWUOpWe8jIl6VtCtwl6TZwNHAZZJ+BPwL+HqFVU8GzgSm54A3ixQ4zweul/QfwJ3k3qCkwaTeYLn+wK8kfQJ4J+/zqLxsJHChpKWBpwtt+RXwR0kHk3LhldxJ66nVUzt1IMzMrOaaLsWPpN2BT0VERzes1NWAIevE/JeeqHczzMx6Faf4ySJibL3bUI0NV/UNKmZmteLhwszMrOk52NWJsx6YmdWOg52ZmTU9BzszM2t6DRHsipkR8vyhks7t4X22SJpZmD8ij7G5Qk/u18zMaq/p7sZcFPl3dN8DdoyI1+rdHjMz614N0bNrTwfZEc6WdF/ONLB/Ll9M0vmSHpI0VtItpWUVtv9l4DhS6qHZuay9LAinS5oo6fHSqCuSlpb0x1z/GkkTStkSzMys/hol2C2V0+VMzaOSnFRY1l52hCGkAaR3B07LZfsCLcCGwOGkAacrWSNvf5eI+GehvL0sCItHxObADwrl3wZey/VPpnWIsQ9x1gMzs/polGD3dmGg56GkFDol7WVHuDEiFkbEw7RmGdiGlDVhYQ5gd7az338Bz5EGqgagiiwIf8rPk0lBtbTPqwEiYiYwva2dOeuBmVl9NEqw64zi+GbFTAMqe/4QSZ8r9B73zMVvAV8EjpJ0UJX7L+2zmNmgzX2amVlj6A3BrtrsCCX3APvla3erACMAImJCofd4U6lyRPyLlOfu55K+0EEWhPb2+WUASRuQTqGamVmD6A13Y1abHaHkemAnYCYpSesEoN0LZBHxTO7t3SJpXypnQajkfOBySdOBKaTTmL4oZ2bWIJou6wGApIERMU/SisBEYOuyG1C6e3/9gP4R8Y6ktYA7gHUj4t1K6zjrgZlZ5znrwYeNlbQ8KXv5yT0Z6LKlgTsl9Sddv/tWe4EOnPXAzKyWmjLYRcSIGu9vLuDf1ZmZNajecIOKmZlZlzjYmZlZ03OwMzOzpudgZ2ZmTc/BzszMmp6DnZmZNT0HOzMza3oOdmZm1vSacriw3kDSXOCxerejCwYDs+vdiC5w++unN7cd3P56GgwsExErdXbFphxBpZd4bFHGd2sUkia5/fXTm9vfm9sObn895ba3LMq6Po1pZmZNz8HOzMyanoNd/Vxc7wZ0kdtfX725/b257eD219Mit903qJiZWdNzz87MzJqeg52ZmTU9B7seJmlXSY9JelLScW0sl6Sz8/LpkobVo52VVNH+EZLmSJqaHz+rRzvbIukySa9ImllheaMf+47a38jH/pOS7pT0iKSHJH2/jToNe/yrbH9DHn9JS0qaKGlabvuJbdRp5GNfTfs7f+wjwo8eegD9gKeATwFLANOADcrqfAn4CyBgC2BCvdvdyfaPAMbWu60V2r8dMAyYWWF5wx77KtvfyMd+CDAsTy8LPN7L/varaX9DHv98PAfm6f7ABGCLXnTsq2l/p4+9e3Y9a3PgyYh4OiLeBa4G9iqrsxcwJpLxwPKShtS6oRVU0/6GFRF3Aa+2U6WRj3017W9YEfFSRDyYp+cCjwCrllVr2ONfZfsbUj6e8/Js//wovxOxkY99Ne3vNAe7nrUq8I/C/PN89B+mmjr1Um3btsynHP4i6TO1aVq3aORjX62GP/aSWoBNSN/Qi3rF8W+n/dCgx19SP0lTgVeAv0VErzr2VbQfOnnsHex6ltooK/+GUk2deqmmbQ8Ca0TExsA5wI093qru08jHvhoNf+wlDQSuB34QEW+UL25jlYY6/h20v2GPf0QsiIihwGrA5pI+W1aloY99Fe3v9LF3sOtZzwOfLMyvBry4CHXqpcO2RcQbpVMOEXEL0F/S4No1sUsa+dh3qNGPvaT+pEBxZUT8qY0qDX38O2p/ox9/gIh4HRgH7Fq2qKGPfUml9i/KsXew61kPAOtIWlPSEsCBwE1ldW4CDsl3R20BzImIl2rd0Ao6bL+kj0tSnt6c9Df175q3dNE08rHvUCMf+9yu3wKPRMRvKlRr2ONfTfsb9fhLWknS8nl6KeDzwKNl1Rr52HfY/kU59s560IMi4n1J3wX+Srqz8bKIeEjSUXn5hcAtpDujngTeAr5er/aWq7L9+wPfkvQ+8DZwYOTbpepN0h9Id20NlvQ8cALpYnfDH3uoqv0Ne+yBrYGDgRn52gvA8cDq0CuOfzXtb9TjPwS4XFI/UhD4Y0SM7S2fO1TX/k4few8XZmZmTc+nMc3MrOk52JmZWdNzsDMzs6bnYGdmZk3Pwc7MzGpCHQxuXlZ3DUl35IGqx0larSv7drAzM7NaGc1Hf+Beya9I43duBJwEnNqVHTvYmZlZTbQ1uLmktSTdKmmypLslrZ8XbQDckafvpIuD0DvYmTU5SYfkU0HTJF0haQ9JEyRNkXS7pFVyve3Vmh9siqRlc/mPJD2Qt3FiLltG0p/zNmdKOqCer9F6tYuB70XEpsCxwPm5fBqwX57eB1hW0oqLuhOPoGLWxPJo8D8Bto6I2ZI+Rhrwd4uICEmHAz8G/pP0QfOdiLg3D4D8jqRdgHVI6Z4E3CRpO2Al4MWI2C3vZ1DNX5z1evnvbCvg2jz6F8CA/HwscK6kQ4G7gBeA9xd1Xw52Zs1tR+C6iJgNEBGvStoQuEYpf9kSwDO57r3AbyRdCfwpIp7PwW4XYEquM5AU/O4GfiXpdFISzbtr95KsiSwGvJ4zHHxIRLwI7AsfBMX9ImJOV3ZkZs1LfDR1yznAuRGxIfBNYEmAiDgNOBxYChifr50IODUihubH2hHx24h4HNgUmAGcKulnNXo91kRy2qRnJP0HpAG4JW2cpwdLKsWo/wYu68q+HOzMmtsdwJdL1zryacxBpFNCACNLFSWtFREzIuJ0YBKwPmkQ8G/kb9ZIWlXSypI+AbwVEb8n3TU3rGavyHqtPLj5/cB6kp6XdBhwEHCYpGnAQ7TeiDICeEzS48AqwCld2rcHgjZrbpJGAj8CFpBOR94AnEEKeOOBzSJihKRzgB1yvYeBQyNivqTvk3p8APOArwFrA78EFgLvAd+KiEm1e1VmneNgZ2ZmTc+nMc3MrOk52JmZWdNzsDMzs6bnYGdmZk3Pwc7MzJqeg52ZmTU9BzszM2t6/x/xhl7OmRx/AwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# récupération des valeurs à afficher\n", + "total = data[\"Sum\"].tolist()\n", + "names = data.index.tolist()\n", + "y_pos = pd.np.arange(len(names))\n", + "\n", + "# création du graphique\n", + "fig, ax = plt.subplots()\n", + "ax.barh(y_pos, total, align='center')\n", + "ax.set_yticks(y_pos)\n", + "ax.set_yticklabels(names)\n", + "ax.set_xlabel('cases')\n", + "ax.set_title(f'Cumulative confirmed cases ({data.columns[-2]})' , fontweight =\"bold\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEaCAYAAACSFRnbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcHFW5//HPlwBhCYYdIwqDrKJIgIDsBBCUy6IsV1BEkE3cuOBFLxe9EuCHgFxlFRUQQ1iUTbgQESJIZA0hgZCExbAFZCcCgbAESJ7fH+c0UzTds2Rmumeqv+/Xa17ddepU1anq5elTVXMeRQRmZmZlslCzG2BmZtbbHNzMzKx0HNzMzKx0HNzMzKx0HNzMzKx0HNzMzKx0HNysyySNlhSSRvVwPePzeg7onZY1nqTDJT2b92OSpJH5+cx+0La23JaQtHSz29NTko7P+7J9s9vSHZKWkfS6pPFdqLuWpHclXZSn338N+7yhfaC73xWS1pY0T9Lo3mqDg1s/JWkLSddJ+pektyU9JuksSYs2u21d1cEX/pXAGcCDjW9Vz0kaBpwGfBS4ALgUeJq0Txc0sWmlI2lZ4AfAtIi4OZdtI2mKpNckvSXpEUnHSlLVshvm998qhbI1JM3J5VNqbO8Hkh7Lz8+T9GCu/y9J10v6dKHu+pJuzgHsQ+/ziHgFGA1sI2mHTnb1OGBh0vuq5UTEP4Drgf0krd0b63Rw64ck7QP8HdgF+CdwEfA4cBiwRBOb1isi4uyIOCIiJja7LQtoddJn5+mIOCgifhkRj+Z9Or7eQpIWaVwTS+MbwJLAHwplHwNezmXXAasBo4ADqpbdmRQUnwKQNAi4GBjcwfZ2Bv6cnx8MvJa38xqwE3CjpMXy/FVIP3Du62B9lXZ/q14FSSsCewKPRMS9Hayr7P5A+lwd0itriwj/9aM/UvD6FxCkoLZQYd7qwKLAyDx/ZmHe+Fx2QJ4enafHAH8B3gLGAasCVwFvAHcBq+X63VnnqDy9A+mDPRt4F3gSOK5qfR/4q14vsG1+PrWw3W1y2fTCMTkZeDS3+17gy50cx/2AycDrpC/C3xbm7Q7ck+c9CfwKWDrPayu090DgKeAV4LQO9mt09fGrWs9hwLPALVXl3weeB17I7d0zb+8l4OhCexcGfgg8lPf/QeCQwvxFgV/ndj4KHFrYxtIdvM+OAx4mvTeerqwT+HrexuvAO8AM4DuFZTcEbiN94c8BpgPfLszfDZiY5z8J/AJYIs9bBrgCmAW8DTxRfG1qtPOmvB+bd1Dn2lzn+KryCcBJheljgTfzeymAKVX1l8r7+4U8vXlhXvF127BquS9T9dmpeu3ezMdp4Trt/3pe/txa26squwJ4Lr/WtwCfK8z/GOkz/gZwR359P7SfhfoCfkb6AT03vxdvBJbL85cFzgQey6/V48Aued5RwCN5W3OB+4G9CuseTeG7IpcdmOvNycseUzwmwMp5mYd75bu0N1biv977IwWMyodo7Tp1RlZ/mKgfiObnD8QzefpV4GZgWp6+eAHWOSpPHwD8Ffgt6XTcy3n+PsAapNOPQfqSOx04vXq9+QP2ZJ7+VJ7/qzz9ozz9hzw9mRSsX8r7NbLO8Tkk138v7/vFwN/yvJ3yvLnAhaQv5gBuyPPbCsf/KeASYF6e3r7Ofn2t+vhVredfwO+AE6vKHwP+Lz9/m/SldXHet/nAWnldJ+U6D+fX4Kk8vX+ef1xhOxeQAmlnwe2SPP/lvMy1wKl53o+BsaSAeRHpyzmAzfL82/P0lcB5pEB3fp73hTzvpbzs5Dz9+zz//+Xpu/L6ryf1rup9Hl7M9ZepKl8jH/sr8uv8NLBGYf4K+XXbIk9vTPoB9h3S+65WcNuT9MU7uEY71srLzAOGVc2rG9zy/KkU3t815v88zz+yUPb++yRPL0kKLkE6q3NVfv4GsHrV5+of+djPrbWfhW18vtJu4Bzg8vzeaSP1oG7N858Gzif90Di88Bn9U368PL8GbwNtdb4rvkX7Z2o06b0cwLFVbXotly/R4+/SRn1p+6+LLwjsS/sX02J16oys/jBRPxDdlKdH5enn8ht31zz9wAKss/KGXQj4N+AnpGsF91D4BVprnXXWe2JlvXmdz5O+RD5G+pKqfKmcRfpCqyz/xzrHpxKwil8Wi+TH64sfKmB50pdekL7A2grHf+Nc5+95+qgOjtUHyqrWs12hXrF8S9Iv+8r2v5PrVALCv5OC/+t5+oK8/5WeyoRc/9E8vV+e3rWwjQ8Ft7zPlfkb1DhGiwJ7kXo6p5G+LAM4Js+/m/ae7WeARYBBed6f87xxua3n0P4jawnglDx9OrAJMKSybJ3XsnJsFq4qrxzvyt9FwNDC/G+Qgv2gvN1/ANfneQdQO7hdAFxTow1DgDvzMj+vMb+z4Fb5MVCz90n6gRDAwbXeJ3n6K7T/IFIuuzqX/Qz4eOFYrJrnn1FrPwvbqPzQuykfzxXz+20hYESe9xaFYF54jyyZj/EJ+T3yXK7/tTrfFQ/Q/oPodNKPuACer2rT07n8Yz39Ll0Y629eLDxflfSh7IpBdcofyo+v5sdHI2K+pNfz9JILsM6KX5NOgVVboZPlql1IOkWxNymQrASMi4hnJW2c6ywEfK9quTXqrG+1/DihUhAR7+anbfnxoVw+S9Is0rWTVUmnSyoq11Iqx25IF/en2h11yh+KiPckvQEMpf21Lr42yxe2+82q5Sv7v3J+rCw/o5P2VI7POxHx/vWiwjG6DtixxnKV1/UHpKB1PunLcA7wU9KXXFuus0P+qxDwSdIX2/qkHtR/kH60XCZpv4iYX2Obr5KOwVKkU3GVto6XtBBp388lndp7m/brNTsDf4mIefk9tBbwsqSxpEAAsJqksRGxS74ZZSfgf4obl7Q86QfRxqQg9F812tiZjxT2pZZK+VIdrKMtP/6jEu1IvR9I79vKe+CtiHgyP+/shq1xpNdxP9IpTkg/UL9E+3vkqYh4rrJARLybb2qbQPphU63eZ7/S/j2ryleSNCQi5uTpzo5Vl/mGkv7nTto/xD/JH2AAJK2ab0p4IxctlcsXIX14a5nXyXRFd9ZZsXd+PIAUCH9daWrVtjp8n0XEDFJvYB3SKTZIpx8hnTKBdC1khYhQRIjUu9i9ziqfyI+fqxRIqvyQq6xvnVy+HOnLE9Lp0WK73qs87aj9nYmIuXVmdeW1mUX7a/PZwv5Xfl1DOuUMULnLrLPXrXJ8FpU0vFIoaeH8rwOVwLZt3s5fKlXy46SIWJ90/Wwkqed2cj7GM3Odwyttze1dPSKmAy9HxBdJ77P1Sb/ovwZsUaetU/PjpwrtXApSlyYiniadFn1/v3M7dqT9xpBKuzclBb318/RH8jTARqQfVdcXtrMq6YfJxsDJEXFoIbB0SW7LGqTX8JE61T60jzXMzI9rFe4KrbzeT9L+HlhcUiV4r9NJ8waRfjAunds4hrSvB9P+HllF0ker9mddUmCbB6xJeo9UAukH7lit0f7dqt4Xn6wENkkrk94XMyLizU7a3in33PqZiHhD0vdJb7SvA+tJmkg6RbcD6QM4g3QdZFlJY0i9jhV7uOkFWecLpB7H4aQvk+pg88/8+HFJ55PuBjulzrrGkILRVqSey9UAEfGSpMtJp2XulvRXYLlc7zekU5nVziD9mj9V0uakUyuV4/cr0i/0YyR9kvSltjDw14iYIamtk31uqIgISb8CfgT8VdJ1pJ7cpqRe7gGkf0X4H+B0SSNJp4o7WucsSZeSgsrNkq4hBapHSKeY5+RtjCL90Kr+/7Lr8p2Hj5Fe/8GkU4DzgLPz9n9eOPafJb1mqwFHS9qNdM33Hdp/0c+u09yxwHakm4zuzGXX5C/Zh3O7d8vlN+bHLUhfkjfk/R1P4UtX6f8rfw/cHxGV4L4zcF9EPFvY9p2k981TpKBxei6/NCImSloHOJp01yTA8vn/tGZFxFG5bBNgceDqQs+42jjS6deRdeZDCtQzSTeV3ZLPNuxOOr4XRMTTkv5OOk7jJE2i/cdnPZuTTh/eRbr2WvmB8Srppq3bSJ+zeyTdQOod/oX02ZxPCo6/JJ32XbOTbZ1N6iVeLOlq2n+cvVjY720K+9pzPT2v6b+++QO2zi/yy6QLw4/lN8iief5+pF9rL5J6THdR+/pY5SaOI/L0+Dw9kg9fN+rqOkfl6a1Ip/feIl0HOi3Pv6awzlNJX5BB+92P44vrzWXL0n4B/PdVx2II6aaKR0innp4lfcA27eD4Ve6WnMOH75b898K8p0hBcpk8r43CtY5cdk3Vftc6dh8oq7We6nLa79B8NU+PrHV8SD2jH5F+Hb9F+lFxA7BTnj+YdFPPq6Rf3N+v3kaN47MEcDzpVObbfPBuyT1IvYE3SEGgcvNJ5b10DO13bs4h3Rm5fWHdXyadtpqd2zQROCLP25XUS381b3cG8P0OXsfl8jaKd9P+NL8X3srbuJ90qrRyLernwK0drPMAqq5F5TZW320Zdf4qr8vIOvOL74uzctkOnXzeKzdNbdjB+/CTpGtWz+fjN558k0+evzIfvFuyclfo3XW2uSbphrAXST80niV97gcXPpNnkm5kmZsfd83zvpPbMZt0HXV83lbldR7NBz8zAg4CpuTXcxbphpWvF9pzHekH0jq98R1aeTOYmfVLko4n9Ux3iIibulD/AWBM1D9LUF1/RdIX9WYRcXePGvvB9S5D+vF0b0Rs00ndtUinaC+LiK8v4PaGRsTswvRvSdfEL46I/RZknY2S9/8hUlv375V1OriZWVnkmx3+Gxgd7TdWdLbMWqRTeCdG7ZtaBgRJR5BuBvk76RRwJUhuERET6i5YUg5uZmYlIGkn0jWwNtKpyenACZGHLWs1Dm5mZlY6/lcAMzMrHQc3MzMrHf+fW5Msv/zy0dbW1uxmmJkNKJMnT54VEZ2OguTg1iRtbW1MmjSp2c0wMxtQJHXpLlifljQzs9JxcDMzs9JxcDMzs9JxcDMzs9JxcDMzs9JxcDMzs9JxcDMzs9Lx/7k1ybRnZtN2dO/k5DMzG0hmnrxz55V6yD03MzMrHQc3MzMrHQe3bpDUJml6VdkoSUdJ2lTS3ZKmSHpI0qgmNdPMrOX5mlvvuRD4SkTcL2kQsHazG2Rm1qoc3HrPisBzABExD3iwuc0xM2tdPi3Ze04D/iHpaknfkrRYdQVJh0qaJGnSvDdnN6GJZmatwcGte6JeeUQcD4wAxgFfA26oUenciBgRESMGLTG0D5tpZtbaHNy651/AMlVlywKzACLisYj4NbA9sL6k5RrcPjMzw8GtWyJiDvCcpO0BJC0LfBG4XdLOkpSrrgnMA15tTkvNzFqbbyjpvm8Av5L0izx9XEQ8JulE4DRJbwLvAfvmG0vMzKzBHNy6KSIeBLatUb5PE5pjZmY1OLg1yXorD2VSA8ZXMzNrRb7mZmZmpePgZmZmpePTkk3ilDdmA0cjUrRY73LPzczMSqfD4NbRKPidLDdC0pn5+UhJm3e3YZJmSlq+o3JJG0l6QtIGknaTdHR3t1Nn2yMlje2NdZmZWeP1yWnJiJgETMqTI4E5wJ29uQ1JnwWuBPaOiPuA+4Bre3MbZmY2MPXotKSk8ZJOkTRR0gxJW+XykZLGSmoDDgOOzHnOtpK0gqSrJN2T/7bIyywnaZyk+yT9FlDdDcOngGuA/SJiYl7+AEln5+ejJZ0p6U5Jj0vaK5cvJOkcSQ/k9l1fmPdFSQ9Luh3Yo7CPy0q6RtJUSRNyUK30YC/MbZ4paQ9JP5c0TdINkhbpybE1M7MF1xvX3BaOiE2AI4BjizMiYibwG+C0iBgeEbcBZ+TpjYE9gfNz9WOB2yNiA1IPbJUOtvl/wPci4vYO6gwDtgR2AU7OZXsAbcB6wMHAZgB5BP/zgF2BrYCPFtZzHHBfRHwWOAYYU5i3OrAz8CXgYuCWiFgPeCuXf4CzApiZNUZnwa3uKPiF53/Kj5NJgaMznwfOljSFFMQ+ImkpYGtSgCAi/gy80sE6bgIOzklB67kmIubnEUVWymVbAlfk8ueBW3L5OsATEfFIRESlHYVlLsrt+huwnKTKkP5/iYh3gWnAINozAUyjxrFwVgAzs8boLLh1OAp+Njc/zqNr1/AWAjbLPbnhEbFyRLye59ULptW+lx/P6aDO3MJzVT3WUm/btZap1J0LEBHzgXdzYASYj//NwsysaToMbh2Ngt+NbbwOLFWYHkd7cELS8Pz0VmDfXLYTHw6qRfOBrwJrSzq+G225HdgzX3tbiXSzC8DDwGqSVs/TXy0sU2zXSGBWRLzWjW2amVmDdeWa2zeAn+TTiH8jj4LfjW1cB+xeuaEEOBwYkW/QeJB0wwmka1tbS7oX2BF4qqOVRsRc0rWu3SR9t4ttuQp4GpgO/Ba4G5gdEW8DhwJ/zjeUPFlYZlSlvaRrd/t3cVtmZtYkaj+T1hokDYmIOTmR6ERgi3z9raEGD1szhu1/eqM3a2YLwCOU9B+SJkfEiM7qteJ1obGSlgYWBU5oRmADZwUwM+tLLRfcImJks9tgZmZ9y2NLmplZ6bRcz62/cFYAs4HD19wGHvfczMysdErbc5M0jzRSSMWX83BgZmZWcqUNbsBbETG83kxJC0fEe41skJmZNUZLnZbMmQOukHQdME7SEEk3S7o3j+b/pVyvTdJDks7LGQTGSVo8z1tD0k2S7s/LrZ7Lf5izHEyVdFwTd9PMrOWVObgtnkdFmSLp6kL5ZsD+EbEd8Dawe0RsCGwL/EJSZSzJNYFfRcSngVdJGQwALsnl6wObk4Yn2zHX3wQYDmwkaeu+3kEzM6utFU9L/jUiXs7PBfwsB6L5wMq0ZxB4IiKm5OeTgbacvWDliLgaIA/bRQ5uO5ISpgIMIQW7W4sblnQoaZgvBn1khZ7voZmZ1VTm4FbPG4Xn+wIrABtFxLuSZgKL5XnFrALzgMWpn1VAwEkR8duONhwR5wLnQhp+q/tNNzOzrijzacmuGAq8mAPbtsCqHVXO2QCelvRlAEmDJS0B3AgcKGlILl9Z0op93HYzM6uj1YPbJaQR/yeRenEPd2GZ/YDDc5aAO4GPRsQ44FLgLknTgCv5YJofMzNroJbLCtBfOCuA2cDhEUr6j65mBWj1npuZmZVQK95Q0i845Y2ZWd9xz83MzErHPbcmcVYAs/7H19bKwz03MzMrHQc3MzMrnZYMbpJ+nAdEnprHnvzcAqxjN0lH90X7zMysZ1rumpukzYBdgA0jYq6k5YFFu7ueiLgWuLa322dmZj3Xij23YcCsiJgLEBGzIuJZSTMlnSJpYv5bA0DSrpLulnRfTnWzUi4/QNLZ+floSWdKulPS45L2atremZlZSwa3ccAnJM2QdI6kbQrzXouITYCzgcrwIbcDm0bEBsAfgR/VWe8wYEtSr/DkWhUkHSppkqRJ896c3Rv7YmZmNbTcacmImCNpI2ArUg63ywrXzv5QeDwtP/94rjOMdPryiTqrviYi5gMPVnp3NbbtrABmZg3Qij03ImJeRIyPiGOB79GeiLQYcCrPzwLOjoj1gG/RnhKnWjFFTr3UOGZm1gAtF9wkrS1pzULRcODJ/HzvwuNd+flQ4Jn8fP++b6GZmfVUy52WJGXJPkvS0sB7wKOk7Ni7AIMl3U0K+l/N9UcBV0h6BpgArNbwFpuZWbc45U2Ws3CPiIhZjdieU96Y9T8efqv/62rKm1bsufULzgpgZtZ3HNyyiGhrdhvMzKx3tNwNJWZmVn7uuTWJU96YNZevr5Wbe25mZlY6Dm4FkubkxzZJX+tC/TZJ0/u+ZWZm1h0ObrW1AZ0GNzMz658c3Go7Gdgq53o7MvfQbpN0b/7bvHqBPH94YfoOSZ9taKvNzAxwcKvnaOC2iBgeEacBLwI7RMSGpKG5zqyxzPnAAQCS1gIGR8TUYgVnBTAzawwHt65ZBDhP0jTgCmDdGnWuAHaRtAhwIDC6ukJEnBsRIyJixKAlhvZle83MWpr/FaBrjgReANYn/SB4u7pCRLwp6a/Al4CvAJ0OD2NmZn3Dwa2214GlCtNDgacjYr6k/YFBdZY7H7iOdErz5T5uo5mZ1eHTkrVNBd6TdL+kI4FzgP0lTQDWAt6otVBETAZeA37fsJaamdmHuOdWEBFD8uO7wPZVs4t3Pv53rjcT+EylUNLHSD8YxvVpQ83MrEMObr1E0jeAE4EfRMT8zuo7K4CZWd9xcOslETEGGNPsdpiZma+5mZlZCbnn1iTOCmDWtzzqf2tzz83MzEpnQAU3SStJulTS45ImS7pL0u7NbpeZmfUvAya4SRJwDXBrRHwyIjYC9gE+3sXl6/3jtZmZlcyACW7AdsA7EfGbSkFEPBkRZ0kaJOlUSfdImirpWwCSRkq6RdKlwLQ8uv/Dks6XNF3SJZI+n0fwf0TSJnm5TSTdKem+/Lh2Lj9A0p8k3ZDr/zyXHyTptEq7JB0i6ZeNPDhmZtZuIAW3TwP31pl3EDA7IjYGNgYOkbRanrcJ8OOIqAx2vAZwBumfstch5W3bEjgKOCbXeRjYOiI2AH4K/KywreGkzADrAXtL+gTwR2C3PGgywDfxKCVmZk0zYO+WlPQrUlB6B3gS+KykvfLsocCaed7EiHiisOgTETEtr+MB4OaIiDzif1th+QslrQkEKStAxc0RMTsv/yCwakT8U9LfSFkBHgIWqWyjqs2HAocCDPrICj0+BmZmVttA6rk9AGxYmYiI75KGyFoBEPD9nH9teESsFhGVIbCqx4GcW3g+vzA9n/ZgfwJwS0R8BtgVWKzO8vMKy1TyudXttTnljZlZYwyk4PY3YDFJ3y6ULZEfbwS+XTktKGktSUv2YFtDgWfy8wO6skBE3A18gnSa8w892LaZmfXQgAluERHAl4FtJD0haSJwIfBfpF7Tg8C9kqYDv6Vnp1x/Dpwk6Q7qp7ep5XLgjoh4pQfbNjOzHlKKGdYbJI0FTouImzurO3jYmjFs/9Mb0Cqz1uQRSspJ0uSI6DQZ9IDpufVnkpaWNAN4qyuBzczM+taAvVuyP4mIV0lJTLvMKW/MzPqOe25mZlY67rk1ibMCmPWMr6lZR9xzMzOz0nFwMzOz0nFwq0HSnGa3wczMFpyDWxc5ZY6Z2cDh4NaB6pQ5ueyanCj1gTwQcqXuHEknSrpf0gRJKzWt4WZmLc7BrXPVKXMOzIlSRwCHS1ouly8JTIiI9YFbgUOqVyTpUEmTJE2a9+bsRrTdzKwlObh1rjplzuGS7gcmkAZKXjOXvwOMzc8n054+533OCmBm1hj+P7fOvZ8yR9JI4PPAZhHxpqTxtKfDeTfaB+ospsIxM7MGc8+te4YCr+TAtg6wabMbZGZmH+bg1j03AAtLmkpKaDqhye0xM7MafOqshogYkh/HA+ML5XOBnTpaJj+/EriyTxtpZmZ1Obg1ibMCmJn1HZ+WNDOz0nFwMzOz0vFpySZxyhsrM6ejsWZzz83MzEqnocFNUkj6RWH6KEmjOllmpKTNC9OjJe3Vw3bMlLR8T9ZRWJczCJiZ9TON7rnNBfboZmAZCWzeWaWuUOLeqplZyTX6i/494FzgyOoZklaQdJWke/LfFpLagMOAIyVNkbRVrr61pDslPV7sxUn6YV52qqTjclmbpIcknQPcSxoPsrjdbo3yL2k1SXfl7ZxQqD9M0q25ndMLbTUzswZrRi/mV8C+kqpHDj4DOC0iNgb2BM6PiJnAb3L58Ii4LdcdBmwJ7AKcDCBpR9IgxpsAw4GNJG2d668NjImIDSLiyartdneU/zOAX+d2Pl9Yz9eAGyNiOLA+MKV6x50VwMysMRp+t2REvCZpDHA48FZh1ueBdSVVpj8iaak6q7kmIuYDDxbypu2Y/+7L00NIwe4p4MmIqDdU1uGSds/PK6P8/4sPj/K/Q36+BSn4AlwEnJKf3wNcIGmR3L4PBbeIOJfUc2XwsDWjer6ZmfWOZv0rwOmkU4S/L5QtRBptvxjwKAS7ornFKoXHkyLit1XLt1EY2b9q3kgWbJT/DwWmiLg19xR3Bi6SdGpEjKm1XTMz61tNubkiIl4GLgcOKhSPA75XmZA0PD99HajXgyu6EThQ0pC8/MqSVuxkmQUZ5f8OYJ/8fN9Ce1cFXoyI84DfARt2YV1mZtYHmnnn4C+A4l2ThwMj8s0gD5JuJAG4Dti96oaSD4mIccClwF2SppEGLu4sKC7IKP//AXxX0j2k4FgxEpgi6T7SacszurAuMzPrA2o/82aNNHjYmjFs/9Ob3QyzPuERSqyvSJocESM6q+fht5rEWQHMzPqO/6HZzMxKx8HNzMxKx6clm8RZAawsfH3N+iP33MzMrHQGdHCTNC//i8D9ku4tZg/oYJlOR/GXdL6kdXunlWZm1mgD/bTkW3ksRyR9ATgJ2KanK42Ig3u6DjMza54B3XOr8hHglcpErQwBRZIWknROzgYwVtL1lQwDksZLGpGfzykss5ek0fn5aEm/lnRLzk6wjaQLcgaC0X28r2Zm1oGB3nNbXNIU0niQw4Dt4EMZAgRcK2nriLi1sOweQBuwHrAi8BBwQTe3v0ze5m6kkVS2AA4G7pE0vNbgyWZm1vcGes/trZwKZx3gi8AYpZGWixkC7gXWIQW7oi2BKyJifkQ8D9yyANu/Lg+uPA14ISKm5WwFD5AC5wc45Y2ZWWMM9J7b+yLirpzhewXqZAioUjPdQK1VF54vVjWvkp1gPh/MVDCfGsfWKW/MzBpjoPfc3pdH9R9EysXWlQwBtwN75mtvK5EGPq7lBUmfkrQQsHudOmZm1o8M9J5b5ZobpJ7Y/hExDxgn6VOkDAEAc4CvAy8Wlr0K2B6YDswA7gZqnSs8mpS09J+57pA+2A8zM+tFLZ0VQNKQiJgjaTlgIrBFvv7W55wVwMrCI5RYIzkrQNeMlbQ0sChwQqMCGzgrgJlZX2rp4BYRI5vdBjMz632luaHEzMysoqV7bs3krADWH/n6mZWFe25mZlY6Dm5mZlY6Azq4FVLeTJd0haQlurn8MX3UrjZJ0/ti3WZm1rkBHdxoH1vyM8A7wGFdWUjJQkCfBDczM2uugR7cim4D1gCQ9IPcm5su6Yhc1pbT0ZxDGkz5d+QRTiRdUt0Z3DpNAAAOq0lEQVTbknSUpFH5+cY5dc5dkk6t1MvL3JYTpXYpWaqZmfW9UgQ3SQsDOwHTJG0EfBP4HLApcIikDXLVtYExEbFBRHyT9p7fvp1s4vfAYRGxGTCvUP4isENEbAjsDZzZSTudFcDMrAEGenCrjC05CXiK1BvbErg6It6IiDnAn4Ctcv0nI2JCdzaQRzBZKiLuzEWXFmYvApwnaRpwBbBuR+uKiHMjYkREjBi0xNDuNMPMzLphoP+f21sRMbxYkPO51fNGB/Pe44PBvpLepqP1HQm8AKyfl327g7pmZtYgA73nVsutwJclLSFpSVKamtvq1H1X0iL5+QvAipKWkzQY2AUgIl4BXpe0aa63T2H5ocBzOUHpfqSUO2Zm1mSlC24RcS8wmjTK/93A+RFxX53q5wJTJV0SEe8Cx+dlxgIPF+odBJwr6S5ST65ywewcYH9JE4C16LhnaGZmDdLSKW+6qpIaJz8/GhgWEf/Rk3U65Y31Rx5+y/o7p7zpXTtL+m/S8XoSOKCnK3TKGzOzvuPg1gURcRlwWbPbYWZmXVO6a25mZmbuuTWJU95YT/n6mFl97rmZmVnptGRwkzSn2W0wM7O+05LBzczMyq1lg5ukIZJuzqP5T5P0pVzeJulhSRfmTABXVvLESfqppHtytoFzK0N9SRov6RRJEyXNkLRVR9s2M7O+1bLBjTQO5O55RP9tgV8UxqVcGzg3Ij4LvAZ8J5efHREb5/xxi5OH6MoWjohNgCOAY2tt0FkBzMwao5WDm4CfSZoK3ASsDKyU5/0zIu7Izy8mZRoA2FbS3TkLwHbApwvr+1N+nAy01dqgswKYmTVGK/8rwL7ACsBGEfGupJm0ZwKoHpMsJC1GGktyRET8MycyXaxQZ25+nEdrH1czs6Zr5Z7bUODFHNi2BVYtzFtF0mb5+VeB22kPZLMkDQH2alxTzcysO1ouuOWs3XOBS4ARkiaRenHFLAAPkUb7nwosC/w6Il4FzgOmAdcA9zS04WZm1mWtePrs08BjETEL2Kx6pqQ2YH5EHFY9LyJ+AvykRvnIwvNZ1LnmZmZmjdFSwU3SYcDhpDsam8pZAczM+k5LBbeI+A3wm07qzAQ+05AGmZlZn2i5a25mZlZ+LdVz60+cFcDq8Wj/Zj3nnpuZmZVOywU3SR+V9EdJj0l6UNL1eVissXXqny9p3Ua308zMFlxLnZbMY0deDVwYEfvksuHArvWWiYiDG9Q8MzPrJa3Wc9sWeDffNQlAREwBbgOG5AwAD0u6pGrE/xH5+RxJJ0q6X9IESSvl8l3zmJP3SbqpUm5mZs3RasHtM6SBjWvZgPT/b+sCnwS2qFFnSWBCRKwP3AockstvBzaNiA2APwI/6s1Gm5lZ97TUaclOTIyIpwEkTSGNMnJ7VZ13gMq1ucnADvn5x4HLJA0DFgWeqLUBSYcChwIM+sgKvdl2MzMraLWe2wPARnXmzS08rzey/7sRETXqnEXK9bYe8C0+mC3gfU55Y2bWGK0W3P4GDJZUOZ2IpI2BbXq43qHAM/n5/j1cl5mZ9VBLBbfc69od2CH/K8ADwCjg2R6uehRwhaTbgFk9XJeZmfWQ2s+yWSMNHrZmDNv/9GY3w/ohj1BiVp+kyRExorN6vqGkSZwVwMys77TUaUkzM2sNDm5mZlY6Pi3ZJM4K0Di+hmXWetxzMzOz0nFwMzOz0unz4CZpTuH5v0l6RNIqfb3dOm05UNI0SVMlTZf0pQVcz3BJ/1aYHiXpqN5rqZmZ9UTDrrlJ2p40TNWOEfFUF5dZOCLe66Xtfxz4MbBhRMyWNARY0AEehwMjgOt7o21mZta7GnJaUtJWwHnAzhHxWC5bVdLNuRd1c6U3J2m0pF9KugU4RdKSki6QdE9OKfOlXK9N0m2S7s1/m3fSjBWB14E5ABExJyKeyOsanlPYTJV0taRlcnkx3c3ykmZKWhQ4Hthb0hRJe+f1r5vrPy7p8F48fGZm1k2NCG6Dgf8DvhwRDxfKzwbGRMRngUuAMwvz1gI+HxH/Sept/S0iNiblYztV0pLAi8AOEbEhsHfV8rXcD7wAPCHp95KKCUrHAP+V2zINOLbeSiLiHeCnwGURMTwiLsuz1gG+AGwCHCtpkeplc8bvSZImzXtzdifNNTOzBdWI4PYucCdwUFX5ZsCl+flFwJaFeVdExLz8fEfg6JyGZjxpxP1VgEWA8yRNA64g5WGrK6/vi8BewAzgtHytbCiwdET8PVe9ENi6uzsJ/Dki5kbELFLg/VDCUmcFMDNrjEYEt/nAV4CNJR3TQb3iIJdvFJ4L2DP3koZHxCoR8RBwJKkntj7p+teinTUkkokRcRKwD7BnJ4u8R/sxqpnGpqArKXPMzKwBGnLNLSLeBHYB9pVU6cHdSQowAPvy4cSgFTcC35ckAEkb5PKhwHMRMR/YDxhUWUDSw9UrkfQxSRsWioYDT0bEbOCVfF2QvK5KL24m7fnf9ios+zqwVN0dNjOzpmpY7yIiXpb0ReBWSbOAw4ELJP0QeAn4Zp1FTwBOB6bmADeTFCjPAa6S9O/ALeTenqTlSb29aosA/yvpY8DbeZuH5Xn7A7+RtATweKEt/wtcLmk/Ui64iltoP1V6UrcOhJmZ9bnSpbyRtAvwyYjo7AaTpnLKm8bx8Ftm5dGyKW8iYmyz29AVTnljZtZ3PPyWmZmVjoObmZmVTulOSw4UPU154+tIZmb1uedmZmal0y+CWzFzQJ4+QNLZfbzNNknTC9OH5DEql+nL7ZqZWd/zaUkg/x/b94HtIuKVZrfHzMx6pl/03DrSSfaAMyXdmUfi3yuXLyTpHEkPSBor6frKvDrr/wpwNCkVz6xc1lGWgFMkTZQ0ozKqiaQlJF2e618m6e5KNgEzM2u8/hLcFs/pY6bkUT+OL8zrKHvAMNKAy7sAJ+eyPYA2YD3gYNIAzfWsmte/Y0Q8XyjvKEvAwhGxCXBEofw7wCu5/gm0D9n1Ac4KYGbWGP0luL1VGBh5OCmlTEVH2QOuiYj5EfEg7aPwb0nKKjA/B6xbOtjuS8BTpIGdAehCloA/5cfJpCBa2eYfASJiOjC11sacFcDMrDH6S3DrjuJ4YcWR+FX1+AGSPlfoHe6Wi98EdgIOk7RvF7df2WZx5P+a2zQzs+YYCMGtq9kDKm4H9szX3lYCRgJExN2F3uG1lcoR8RIpz9vPJH2hkywBHW3zKwCS1iWdEjUzsyYZCHdLdjV7QMVVwPbAdFJS0ruBDi9wRcQTuTd3vaQ9qJ8loJ5zgAslTQXuI52W9EU1M7MmKV1WAABJQyJijqTlgInAFlU3jPT29gYBi0TE25JWB24G1oqId+ot09OsAB6hxMxaUctmBcjGSlqalJ37hL4MbNkSwC2SFiFdf/t2R4ENnBXAzKwvlTK4RcTIBm/vdcD/12Zm1k8MhBtKzMzMusXBzczMSsfBzczMSsfBzczMSsfBzczMSsfBzczMSsfBzczMSsfBzczMSqeUw28NBJJeAp7so9UPpWdjW3Z3+a7U76hOvXldLa9Vb3lgVidt6i0+3gPreHd3Hc0+3rXKWvl4rxoRK3S6lojwX8n+gHMbuXxX6ndUp968rpbXqgdM8vH28e6NdTT7eNd5DVr6eHflz6cly+m6Bi/flfod1ak3r6vlPd3fnvLxbqze2H531tHs493VNvSV/ni8O+XTklZKkiZFF0YOt97h491YPt6dc8/NyurcZjegxfh4N5aPdyfcczMzs9Jxz83MzErHwc3MzErHwc3MzEqnlJm4zYokbQXsS3q/rxsRmze5SaUmaRXgbNI/Gc+IiJOb3KRSk7QuMAr4F3BzRFzZ3Bb1D+652YAk6QJJL0qaXlX+RUn/kPSopKMBIuK2iDgMGAtc2Iz2DnTdOd7AWsCfI+JAYN2GN7YEunm8dwLOiohvA99oeGP7Kd8taQOSpK2BOcCYiPhMLhsEzAB2AJ4G7gG+GhEP5vmXAwdHxGvNafXA1Z3jDbwAXAkEcFFE/L4pjR7Aunm8ZwHHAm8Cm0fEFk1pdD/jnpsNSBFxK/ByVfEmwKMR8XhEvAP8EfgSvH+qbLYD24Lp5vH+JnBsRGwH7NzYlpZDd453RLwYEd8FjqZx4032ew5uViYrA/8sTD+dywAOAtyD6F31jvcNwOGSfgPMbEK7yqrm8ZbUJulcYAxwalNa1g/5hhIrE9UoC4CIOLbBbWkFNY93REwH9mp0Y1pAveM9Ezi0wW3p99xzszJ5GvhEYfrjwLNNaksr8PFuLB/vbnBwszK5B1hT0mqSFgX2Aa5tcpvKzMe7sXy8u8HBzQYkSX8A7gLWlvS0pIMi4j3ge8CNwEPA5RHxQDPbWRY+3o3l491z/lcAMzMrHffczMysdBzczMysdBzczMysdBzczMysdBzczMysdBzczMysdBzczMysdBzczMysdBzczEpO0jckTZV0v6SLJO0q6W5J90m6SdJKud42kqbkv/skLZXLfyjpnryO43LZkpL+nNc5XdLezdxHs2rOCmBWYpI+DfwY2CIiZklalpQpYdOICEkHAz8C/hM4CvhuRNwhaQjwtqQdgTVJucQEXJsTaa4APBsRO+ftDG34zpl1wD03s3LbDrgyImYBRMTLpNHkb5Q0Dfgh8Olc9w7gl5IOB5bOYxnumP/uA+4F1iEFu2nA5yWdImmriJjdyJ0y64yDm1m5iZzTruAs4OyIWA/4FrAYQEScDBwMLA5MkLROXv6kiBie/9aIiN9FxAxgI1KQO0nSTxu0P2Zd4uBmVm43A1+RtBxAPi05FHgmz9+/UlHS6hExLSJOASaRemk3Agfm05RIWlnSipI+BrwZERcD/wts2LA9MusCX3MzK7GIeEDSicDfJc0jnV4cBVwh6RlgArBarn6EpG2BecCDwF8iYq6kTwF3SQKYA3wdWAM4VdJ84F3g2w3cLbNOOeWNmZmVjk9LmplZ6Ti4mZlZ6Ti4mZlZ6Ti4mZlZ6Ti4mZlZ6Ti4mZlZ6Ti4mZlZ6Ti4mZlZ6fx/TE1guJYvnVEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# création du graphique avec une échèle logarithmique\n", + "fig, ax = plt.subplots()\n", + "ax.barh(y_pos, total, align='center')\n", + "ax.set_yticks(y_pos)\n", + "ax.set_yticklabels(names)\n", + "ax.set_xlabel('cases')\n", + "ax.set_title(f'Cumulative confirmed cases ({data.columns[-2]}) (log scale)' , fontweight =\"bold\")\n", + "plt.xscale(value=\"log\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Comme vous pouvez le constater les États Unis comptent beaucoup plus de cas que tous les autres pays, ce qui rend le premier graphe difficile à analyser. Le second nous permet de mieux nuancer les différences sur les autres pays." + ] } ], "metadata": { -- 2.18.1