correct typos

parent 83245996
...@@ -339,40 +339,17 @@ ...@@ -339,40 +339,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 116, "execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0,0.5,'Price of the Quarter of Wheat in Shillings')"
]
},
"execution_count": 116,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "outputs": [],
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAH5CAYAAAB07OikAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYJFW9//H3B5YkCwsIKkhUkatwjagrBkCMKOo1rAlFRVEx53R/Ct5rvKIi6vWiqCCKBBOgKBgAQVDBRFBECQuChCUsuyDx+/ujaqQZZnY6zPb0Du/X8+zT3VV1Tp063dM7nzmnqlJVSJIkSZI0TCvNdAMkSZIkSXc9hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiXpLizJXkkOnul2jEmyQ5KLl/M+3pfky8tzH7NFkpckOXam2yFJmp0Mo5I0yyV5cZLTkixJcmmSY5I8djnt6+VJTppim62THJvk6iTXJDk9yc7Loz0TqaqPVNWrhrW/Md0G/7YPz0hyfZJ/JPnfJOssh/a8N8mJEyxfP8lNSbapqm9U1ZOne9+SJIFhVJJmtSRvAz4DfAS4J7Ap8AXgWcthX3O63PQo4Li2PfcA3gQsnu72rIiSvB34OPBOYB4wH9gMOC7JqtO8u68D2yXZYtzyFwJnVNWZ07w/SZLuwDAqSbNUknnAh4DXV9V3qmppVd1cVUdV1Ts7Nl01yUFJrktyVpJtO+p4T5K/tevOTvIfHetenuTkJJ9OchVwKPBF4NHtKOw1E7RpfWAL4EtVdVP77+SqOmncdm9Pcnk7kvuKzmNq23pFkguT/GeSldp1FyZ5ePt81ySV5IHt61cl+V77/F8jlEk2b7fbLcnCJFcmeX/H/tZIcmA7ivunJO9a1jTiJPsmuSjJ4nbE93Ht8qcC7wNe0PbNHyYouzawN/DGqvpR+15dACygCaS7drT/sGW8Zxsl+XbbR+cnedNEba2qi4GfAS8dt+plwIFtXXcY6U7yb0mOS3JVknOSLGiXb9GOco+9F19OcnlHuYOTvGWyfpMk3TUZRiVp9no0sDrw3Sm2eybwLWAd4Ejgcx3r/gY8jmaUbm/g4CQbdqx/FHAezQjnrsBrgVOqam5VTTS1dBHw17aeZye55wTb3Kvd372B3YHPJ1m3Xbdfu+4+wPY0wWksrJ4A7NA+f3zbru07Xp+wjD54LLAVsBPwgSQPaJd/ENi83d+T2mNclt8ADwHWA74JHJ5k9ar6Ec3o9KFt3zx4grLb0bxf3+lcWFVLgGPa/Y+Z8D1rw+BRwB9o+m8n4C1JnjJJew+kI4wm2apt/yHjN0yyJs2I9jdp3u8XAV9IsnVVnU8zuv3QdvPHAUs6+nGq/pck3QUZRiVp9ro7cGVV3TLFdidV1Q+r6laaqZv/CkpVdXhVXVJVt1XVocC5wCM7yl5SVftV1S1VdcNUDaqqAnYELgD2AS5NcmKSLTs2uxn4UDsy+ENgCbBVkpWBFwDvrarr2lHDfbg9TJ3A7eHzccBHO15vz7LD0N5VdUNV/YEmyI31wQLgI1V1dTuS+Nkpju/gqlrU9sc+wGo0Ibcb6zP5+3Vpu37MZO/ZI4ANqupD7ajzecCXaKbeTuS7wD2TbNe+fhlwTFVdMcG2zwAuqKqvtsf3W+DbwPPa9ScA2ye5V/v6iPb1FsDaNP0qSdK/GEYlafZaBKzfxbmc/+h4fj2w+liZJC9L8vt2CuY1wDbcMRRd1GujquriqnpDVd2XZvrpUuCgznaPC2TXA3Pb/a4KXNix7kKaEUBowtDj2jC0Ms204cck2ZxmNPX3y2jW+D6Y2z7fiDse4zKPt51e/Kck17b9NY879teyXMnk79eG7frJ2jv2nm0GbDT2frVteB/N+bl3UlXXA4cDL0sS4CW0U3QnsBnwqHF1v4RmJBtuH5l+PHAicDzNHwG2B35RVbct6+AlSXc9hlFJmr1OAf4JPLufwkk2oxlVewNw93ba7ZlAOjarccXGv16mqroI+DxNyJ3KlTSjppt1LNsU+Htb119pgtmbgBOr6jqa0LYHzUhiP2HoUmDjjtebTLZhe37ou2lGU9dt++tabu+vqfrmFOBG4Dnj6l0TeBrw0y7aexFwflWt0/Fvrapa1tWKD2zb/CRgLeDoZdR9wri651bV69r1J9CMSO/QPj8JeAxTj0pLku6iDKOSNEtV1bXAB2jOuXx2krslWSXJ05J8oosq1qQJUFcAtBcSmio0XgZsnEmu/Jpk3SR7J7lfkpXaCxq9Eji1i+O5FTgM+HCStdqw/Dag83YpJ9CE57Hwc/y41706DHhv2+57t3VNZi3gFpr+mpPkAzTTU8dcBmw+dpGf8dr3a29gvyRPbd+rzWlGLi+mmY47lV8Di5O8u7340spJtknyiGWU+QVwDbA/8K2qummS7Y4G7p/kpW3bVknyiLHzQqvqXOAGmvNqT6yqxe0xPxfDqCRpAoZRSZrFqupTNIHtP2lC0kU0gep7XZQ9m+aczFNoQsW/AydPUexnwFnAP5JcOcH6m2guCPQTmgvenEkzGvjyKQ+m8Uaaab3n0Yy8fRP4Ssf6E2hC4YmTvO7Vh2iC4Pltm49o2zuRH9NcaOgvNNOH/8kdp/Ue3j4uSvLbiSqoqk/QTKv9JE3//KqtY6eqmmy/neVvBXahuQjR+TSjyV+mmS48WZmimSa9GXecLj1+u+uAJ9Ocf3oJzajzx2nOix1zAs0064UdrwP8bqq2S5LuetL8HyRJkqaS5HXAC6tq+yk3liRJy+TIqCRJk0iyYZLHtFOKtwLeztS3ypEkSV2Y6gqLkiTdla0K/B+wBc15ld8CvjCjLZIkaZZwmq4kSZIkaeicpitJkiRJGjrDqKSRlGTzJJVk6KcTJNk0yZIkKw9xn/dMcmKS65Ls02WZC5I8cXm3bTZJ8rokl7Xv790HrGuHJBdPV9tGSfuzd7+ZbscwJNkqye/an703TWO9X0vy39NVnyTNRoZRSSNheQarNjTc1gaQ65Kc094zc0JVtbCq5ra3yRiWPWhuw7F2Vb19/Mrl/YttGu9Mcm6SG5IsTPKRye4XOk373CvJwVNvOW37WwX4FPDk9v1dNG79j5O8q+P1vdtQNtGyey3nth6f5FXLcx/9SPKiJGePW3bcJMveM9zW9e1dwPFVtVZVfXb8ylF9LyRpNjCMSrqruKSq5gJrA+8GvpTkgeM3momR2NZmwNk1cyfyf5YmEL+M5r6cTwOeSHPBnmk3Hf3cRx33BFanuQ/qRE4EOm/Z8njgzxMsO7eq/tHjvmeLE4AHJNkA/vUePBi427hlj6b/e7sO22ZM/pkYeTP4nSVJAzOMSppxSb4ObAoc1Y5evqtj9UvaUbork7y/o8xKSd6T5G9JFiU5LMl6U+2rGt8DrgYe2DEdePckC4GfjZ8inGS9JF9NckmSq5N8r6Mdz0jy+yTXJPllkgct4zi3S/KbJNe2j9u1y78G7Aa8qz3+J44rtwfwko71R3WsfkiSP7Z1Hppk9V7blmRLYE/gJVV1SlXdUlVnAc8Fnp5k+3a7O4wQJXl5kpM6Xu+b5KIki5OcnuRxHev2SnJEkoOTLAZeC7wPeEF7TH9ot5uX5IAklyb5e5L/Tjtdut3fyUk+neQqYK8JjmW1JJ9p36tL2uerJbk/cE672TVJfjZBV5wIPCbJ2P+NjwM+A2w7btkdQlaStye5vG3zKzqWr5bkk+3n97IkX0yyRrtu3SRHJ7mi/UwdnWTjdt2H2/18ru2bz030vo1rw32T/Kz9WbgyyTeSrNOx/oIk71jGZ+WdbfsvSfLKyfZTVZcA59GEcoCH0QS5E8YtWwk4ra177Of0uiRnJ/mPjv2unGSfts3nJ3nDuJ+9ZX0e7pfkhPZ4rkxy6DL655lJzmp/Fo5P8oB2+c+AHTv6+v5T9fW4eg9P8o+2DScm2XrcJuunGSW+rm3rZh1lJ/w+aNfdYaZIOmYRZILvrF7aLEmjxDAqacZV1UuBhcAu7fTJT3SsfiywFbAT8IGxXyKBNwHPphm12ogmXH5+qn2lCbH/AawDnNGxanvgAcBTJij2deBuwNbAPYBPt3U9DPgK8Brg7jS3ADkyyWoT7Hc94Ac0I5B3p5ku+oMkd6+qlwPfAD7RHv9PxvXP/uPW79KxegHwVJpbjzwIeHmvbaPp24ur6tfj9nsRcCrw5AnKTOQ3wEOA9YBvAod3Bh7gWcARNH1/APAR4ND2mB7cbnMgcAtwP+Ch7b47p0g+iiYM3QP48ARteD8wv23Hg4FHAv9ZVX+hef8A1qmqJ0xQ9tfAam05aMLVccBfxy3rDKP3AuYB9wZ2Bz6fZN123ceB+7dtuV+7zQfadSsBX6UZldsUuAH4HEBVvR/4BfCGtm/eMEFbxwvwUZqfhQcAm3DnsD7ZZ+WpwDuAJwFb0oyIL8uJ3B48H9+29aRxy06tqpva13+jCdfzgL2Bg5Ns2K57Nc0o/ENoQuyzx+1rWZ+H/wKOBdYFNgb2m6ixbcA8BHgLsAHwQ5o/fK3afg46+/ovUxz7eMfQ9Nk9gN/S/Jx2eknbzvWB34+tX9b3QQ/7XtZ3liStEAyjkkbd3lV1Q1X9AfgDt4eC1wDvr6qLq+pGml+8n5fJp6xtlOQamvMyPwi8tKrO6Vi/V1UtraobOgu1vzQ/DXhtVV1dVTdX1Qnt6lcD/1dVv6qqW6vqQOBGmjA03tNppnd+vR15PIRmCuguE2zbi89W1SVVdRVwFM0v9b22bX3g0knqv5TmF/gpVdXBVbWoPb59aILdVh2bnFJV36uq28b3MzQXcaLp67e078XlNMH/hR2bXVJV+7X7uFMdNL/8f6iqLq+qK2jCz0u7bP+NwK+Ax7dhYZ2qOo8mrIwteyDNKOCYm9v93VxVPwSWAFslCc178NaquqqqrqMJ3y9s97Woqr5dVde36z7MHacD96Sq/lpVx1XVje1xf2qC+ib7rCwAvlpVZ1bVUiYYcR6ncxT0cTT984txy/7VR1V1eLvf26rqUOBcmj8SjO173/bn+GrgY2Pluvg83EwT5jeqqn9W1b9G6cd5AfCDtn9uBj4JrAFsN8n2Xauqr1TVdR3fQQ9OMq9jkx9U1Ynt+vcDj06yCdPzfTDhd5YkrUg8z0DSqOs8N+96YG77fDPgu0lu61h/K815gX+foJ5LqmrjZeznokmWbwJc1f6iPN5mwG5J3tixbFWa0anxNgIuHLfsQprRskGM75+xfffStiuBDSdYTrv8b900JMnbaUatNgKK5vzc9Ts2mayPx2wGrAJc2mQ5oPmjaWe5qeoY388XMvExT2Zs1O8CmtE+2sdXtMsuqqrO+hdV1S0dr8c+oxvQjKaf3nEsAcammN6NJlg9lWZkD2CtJCv3c+GsJPegGWV7HM05vyvRzBboNNlnZSPg9I514z+n450IHNCOAM+nmd69JMmG7bLH0kxvHmvby4C3AZu3i+Zy++diIyZ/f6f6PLyLZtTx10muBvapqq9M0N47fCaq6rYkFzHgz147XfjDwPNp3u+x76L1gWvHH0/bR1e17ZmO74OpfhYkaeQ5MippVPR64Z6LgKdV1Tod/1avqomC6CD7vwhYr/P8u3HrPjyuDXdrRznGu4Tml+tOmzJxcO6lfZPppW0/AzZJ8sjOhe0IznxuH+VaShOwxtyrY9vH0VwYagGwblWtQ/MLeTq2H38M419fRDN6u35Hm9euqq2XUWa88f28abusWyfSBLqx6acAJwOP4c5TdJflSpqpt1t3HMu8ai6iBfB2mlHjR1XV2tw+qjjWX72+3x9tyzyorW9X7tj3y3IpzR9dxmy6rI3b0eJLaC54tbCqlrSrTmmXzaWZ3k17juSXgDcAd28/F2d2tO1Smim2YzrbsczPQ1X9o6peXVUb0cyU+EImvh3NHT4T7aj1JnT/szeZF9NMPX8izRTkzcd2MdHxJJlLM4X9kvFtanV+H0z6s9Zhpi52JknTxjAqaVRcBtynh+2/CHx47IIgSTZI8qzpblRVXUpzXtgX0lx0ZpUkY8HhS8BrkzwqjTWTPD3JWhNU9UPg/klenGROkhfQTPk8usum9No/XbetPU/ui8A3ksxPc1GZrYFvA78Exs5h/T3wnCR3a3/p372jmrVozu27ApiT5AM0I6NTHdPmaS8O1Pb1scA+SdZuz++9b9oLKHXpEOA/28/D+jTnaPZy+5hf0pzTuittGG1Hxa9ol3UVRqvqNpr34NPtqOXYbWHGzu9biyasXtNO//3guCru9H63F97Za5JdrkUzRfiaJPcG3tlNO1uHAS9P8sB2xHZ8WybyC5rRzl90LDupXXZax9TRNWlC0xXtMbwC2Gbcvt/c9s06NH/QAKb+PCR5ftqLPtGMAhfN7IiJju/pSXZKc3uft9OE3F92cZxj5iRZvePfKjR9fiOwiCY4fmSCcjsneWyaWyT9F/Cras7Fnur74PfAC9vvm22B5/XQVklaYRhGJY2Kj9KEiGuSvKOL7fcFjgSOTXIdzUjMo5ZT215Kc37an4HLaS6EQlWdRnNe4Odofhn+K+1FYcar5p6Wz6D5RXgRzRTDZ1TVlV224QCaq/9ek46r+U6ml7a13gB8mSa4XU8zenUh8Ow2WEEzrfQmmqB0IHe8WMuPaUL7X9py/2TqaYSHt4+Lkvy2ff4ymunEZ7ftPoLJpxBP5L9pruL6R5oLVP22XdaVqrqeZsrqajR9MOYXNBep6eV2Je+m6fdT01xB+Cfcfg7tZ2jOW7yS5rP7o3Fl96U5B/rqJGP3vtyEZpR2InvTXADoWpoL43yn20ZW1TFte37Wtrebq7OeQNMfnedp3qmPqupsYB+aUdPLgH8fdwxfogmcfwR+RxPSbuH2ULmsz8MjgF8lWULzXfDmqjp/guM7h+YPCfvR9PcuNBdLu2n8tsvwvzR/PBj791XgIJrP+t/b9p06Qblv0oT7q4CH05zT3M33wf8D7tse895tPZI066Rm7JZ2kqRRleRDNFc2fXxVXTPT7bmra0cAD6+qR890W5anJE8DvlhV46ewSpJmIcOoJGlCSd4A/LWqxo/aSdMizX1Xd6QZHb0nzdTwU6vqLTPaMEnSUBhGJUnSjGjPUT0B+Dea6a8/oJluu3hGGyZJGgrDqCRJkiRp6LyAkSRJkiRp6AyjkjTCklyQ5InLqe69kvRy25ORkKQmuZ9kN2X/O8mVSf4x3e2SJEm9MYxK0l1Akh2SXLyc6n50ksVJVu5Y9qVJln1xebShG0k2obmVxgOr6l4zsP9VkxzR/oGhkuwwbv1eSW5OsqTj3/h7jb45yflJlib5U5L7t8t3SHLbuLK7LaMtA/2RI8l/JTkjyS0T3fs0yRvbdi5OclqSx3as+2SSc5Ncl+TPSV42ruz+Sc5pj+fl/bZRkjT6DKOSpEGdBqxMc5/LMY8DLhm37PH0dp/O6bYZsKiqLp9oZZI5Q2jDSTT3vJxsZPbQqprb8e+8jva9CtgdeDowl+Y+lZ33qb1kXNkDl9MxQHM/0nfRXHDoDpI8CvgY8DxgHs09cr/b8YeJpTT3+pwH7Absm2S7jir+AOxJc49YSdIsZhiVpNH3iCRnJ7k6yVeTrA6Q5Mwku4xtlGSVdgrqQzoLJ1kTOAbYqGPUbKN29apJDmpHqc5Ksm1HuY2SfDvJFe0o15smalxV3QycShM2SXIPYFXg0HHL7k8bRpPMS3JAkkuT/L2dPts5ivrKduTv6iQ/TjLhfSeTPDbJRUl2XFYHtqOAx3X0wdeSbN6OUO6eZCHws3bbZ7Z9cU2S45M8oKOeC5K8M8kf29HJA5LcM8kxbR/+JMm6k/TTTVX1mao6Cbh1We2doP0rAR8E3lpVZ1fjb1V1VS/1tHV9HdgUOKrti3dNddwTHMuBVXUMcN0EqzcHzqqq06u5SuJBwPrAPdqyH6yqP1fVbVX1K+AXwL/un1pVn6+qnwL/7PXYJEkrFsOoJI2+lwBPAe5LE+j+s11+EM0o25idgUur6vedhatqKfA07jhydkm7+pnAt4B1gCOBz8G/ws9RNKNU9wZ2At6S5CmTtPFE2uDZPp7U/utcdn5VjU0VPhC4Bbgf8FDgycCr2n0/G3gf8BxgA5qwcsj4HbZtOQR4blX9fJJ2jfXBT8b1wcs7Vm8PPAB4Sjvt9RDgLe2+f0gT2lbt2P65wJNo3otdaIL++2gC10rAhKG9S7skuaoNha/rWL5x+2+bNnyfn2Tv9n0ac48kl7XrPt3+EeJOquqlwEJgl7YvPtHlcXfrGGDlJI9q/8DwSuD3TDAanOY+o48AzupjP5KkFZxhVJJG3+eq6qJ2FOzDwIva5QcDOydZu339UuDrPdZ9UlX9sKpubcs+uF3+CGCDqvpQO6J3HvAl4IWT1HMC8NgkoZmi+wvgFGB+x7ITAJLckyYYvqWqlrbTZj/dUfdrgI9W1Z+q6hbgI8BDxo2OPh/YH9i5qn7d4zGPt1fbjhuAFwA/qKrj2hHfTwJrAJ3TSPerqsuq6u/tcf6qqn5XVTcC36UJ1/04jCYUbwC8GvhAkrH3euP28cnAvwM70nwOdm+X/xl4CLAh8ATg4cCneth3N8fdreuAb9P8MeJGmhHdPWrie8l9keYPHj/uYz+SpBWcYVSSRt9FHc8vBDYCaEc3Twaem2QdmoD3jR7r7hytuh5YvT13cjOaKa3XjP2jGf275yT1nEpzHuM2NKOgv6iqJW3bx5aNnS+6GbAKcGlH3f9HO42zXb9vx7qrgNCM0I55C3BYVZ3R4/FOpLN/N6LpYwCq6rZ2fee+L+t4fsMEr+f204h2+u0lVXVrVf0S2JfmvMuxegE+UVXXVNUFNH22c1v2H23526rqfJrzOZ9H97o57m69imY0dGua6dq7Akd3TA0HIMn/0Hw2FkwSVCVJs9wwLtYgSRrMJh3PN6W5MNCYA2l++Z8DnNKO1k2k11/2L6KZVrtlNxtX1T+T/IbmojobVtWf21W/aJc9iNvD6EU0I2brtyOfE+37w1W1rGD9fOCAJH+vqs9008ZlNb/j+SU0I48AtKO6mwCT9evyVDQhHOAc4Ca6fx87y062vtN0HveDgaOq6i/t6x8luZRmlPWItv69af54sn1VLe5jH5KkWcCRUUkafa9PsnGS9WhGJw/tWPc9mivWvpnmHNLJXAbcPcm8Lvf5a2BxkncnWSPJykm2SfKIZZQ5kWbE8pcdy05ql/2jqv4GUFWXAscC+yRZO8lKSe6bZPu2zBeB9ybZGv51saPnj9vXJTTnsb4pyZ5jC9sL7+zV5TFO5DDg6Ul2SrIKza1gbhx3TH1LslraC1DRXDxq9Tb4keRZSdZN45E0555+H6Cqrqd539+VZK0kG9NM5T26LbtDkk3bspvQXM32+8toymVA521jejruNBfLWp3m94g57XGMXYDqN21d92nbM3Z+7Zlt2fcCLwaeVFWLJqh71bbuAKu0dfv7iiTNQn65S9Lo+yZNeDuv/fffYyva8xy/DWwBfGeyCtqRykOA89rprxtNtm27/a00F+d5CHA+zS1EvkxzO47JnEAz1fakjmUntcvG39LlZTRTOM8GrqYZMduw3fd3gY8D30qymCbEPG2CNi6kCaTvTnPbE2hG805e1rEtS1WdQzOtdD+aY96F5kI/N/Vb5zjn0Ey5vTfNeZI30ExLhuac2b/SnHN5EPDxcbdneQOwhCaIn0LzufhKu+5h7bKlNAHyTJZ9IaWPAv/Zfhbe0cdxf6lt+4uA97fPX9quO4jmoljHA4uBzwKv6Rgt/wjNCP+5uf3qzu/rqPvYtr7taM4LvoHbL4QlSZpF4mkakrRiS/IB4P5VteuUG89i7Wjh4VX16Ck3liRJM84wKkkrsHbq7u+Al1bV+NFHSZKkkeU0XUlaQSV5Nc3Ffo4xiEqSpBWNI6OSJEmSpKFzZFSSJEmSNHSGUUmSJEnS0M2Z6QYArLTSSrXGGmsMVMdtt93GSiv1n61X9PKj0IZbb72VlVdeeeoNl2MbZrr8KLRhpsuPQhs8BvtgVNow6PfibOgDj2E02jDT5UehDR7DaPSB34vTX/7666+vqloxBxmrasb/rbbaajWon//853fp8qPQhqOOOmqg8tPRhpkuPwptmOnyo9AGj8E+GJU2DPq9OBv6wGMYjTbMdPlRaIPHMBp94Pfi9JcHltYIZLp+/q2YCVqSJEmStEIzjEqSJEmShs4wKkmSJEkaOsOoJEmSJGnoDKOSJEmSpKEzjEqSJEmShs4wKkmSJEkaOsOoJEmSJGnoDKOSJEmSpKEzjEqSJEmShm7KMJrkK0kuT3Jmx7L1khyX5Nz2cd2Ode9N8tck5yR5yvJquCRJkiRp2UY5z3UzMvo14Knjlr0H+GlVbQn8tH1NkgcCLwS2bst8IcnK09ZaSZIkSVIvvsaI5rkpw2hVnQhcNW7xs4AD2+cHAs/uWP6tqrqxqs4H/go8cpraKkmSJEnqwSjnuVTV1BslmwNHV9U27etrqmqdjvVXV9W6ST4HnFpVB7fLDwCOqaojJqhzD2APgDlz5jz8uOOOG+hAlixZwty5c++y5UehDddeey3z5s3ru/x0tGGmy49CG2a6/Ci0wWOwD0alDYN+L86GPvAYRqMNM11+FNrgMYxGH/i9OP3ld9xxx5uAMzo22b+q9u8sszzy3LSoqin/AZsDZ3a8vmbc+qvbx88Du3YsPwB47lT1r7baajWon//853fp8qPQhqOOOmqg8tPRhpkuPwptmOnyo9AGj8E+GJU2DPq9OBv6wGMYjTbMdPlRaIPHMBp94Pfi9JcHltYM57l+//V7Nd3LkmwI0D5e3i6/GNikY7uNgUv63IckSZIkafqNRJ7rN4weCezWPt8N+H7H8hcmWS3JFsCWwK8Ha6IkSZIkaRqNRJ6bM9UGSQ4BdgDWT3Ix8EHgY8BhSXYHFgLPB6iqs5IcBpwN3AK8vqpuXU5tlyRJkqSeLFy4kD333LPv8gsWLJjG1ix/o5znpgyjVfWiSVbtNMn2HwY+PEijJEmSJEmDG+U81+80XUmSJEmS+mYYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSR7Oph7AAAgAElEQVRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQN3ZyZboAkSZIkdWPhwoXsueeeA9Uxf/78aWqNBjXQyGiStyY5K8mZSQ5JsnqS9ZIcl+Tc9nHd6WqsJEmSJKl7o5zZ+g6jSe4NvAnYtqq2AVYGXgi8B/hpVW0J/LR9LUmSJEkaolHPbIOeMzoHWCPJHOBuwCXAs4AD2/UHAs8ecB+SJEmSpP6MbGZLVfVfOHkz8GHgBuDYqnpJkmuqap2Oba6uqjsN+ybZA9gDYM6cOQ8/7rjj+m4HwJIlS5g7d+5dtvwotOHaa69l3rx5fZefjjbMdPlRaMNMlx+FNngM9sGotGHQ78XZ0Acew2i0YabLj0IbPIbR6INBvxcXLVrE0qVL+y4PsOaaaw5Ux3rrrTdS7+OOO+54E3BGxyb7V9X+Yy8GyWzLW98XMGrnFT8L2AK4Bjg8ya7dlm87aH+A1VdfvXbYYYd+mwLA8ccfzyB1rOjlR6ENRx999Ap/DLPhfZjp8qPQBo/BPhiVNgz6vTgb+sBjGI02zHT5UWiDxzAafTDo9+JBBx3Eqaee2nd5aC5gNEgdCxYsGLX38Zaq2naibQfNbMvbINN0nwicX1VXVNXNwHeA7YDLkmwI0D5ePngzJUmSJEk9GunMNkgYXQjMT3K3JAF2Av4EHAns1m6zG/D9wZooSZIkSerDSGe2vqfpVtWvkhwB/Ba4BfgdzbTbucBhSXanOfjnT0dDJUmSJK3YbrzxxoHuE+o9Qnsz6pmt7zAKUFUfBD44bvGNNIlbkiRJkjSDRjmzDXprF0mSJEmSemYYlSRJkiQN3UDTdCVJkiTprmThwoUDnfe6YMGCaWzNis2RUUmSJEnS0BlGJUmSJElDZxiVJEmSJPUsyZuTrJ3GAUl+m+TJ3ZY3jEqSJEmS+vHKqloMPBnYAHgF8LFuCxtGJUmSJEn9SPu4M/DVqvpDx7IpGUYlSZIkSf04PcmxNGH0x0nWAm7rtrC3dpEkSZIk9WN34CHAeVV1fZK700zV7YphVJIkSVJXBr3H5k477TSNrdEIeEj7eJ/kX7Nzr00yp6pumaqwYVSSJEmS1I8vAA8D/khzrug27fO7J3ltVR27rMKeMypJkiRJ6scFwEOratuqejjwUOBM4InAJ6YqbBiVJEmSJPXj36rqrLEXVXU2TTg9r5vCTtOVJEmSJPXjnCT/C3yrff0C4C9JVgNunqqwI6OSJEmSpH68HPgr8BbgrcB57bKbgR2nKuzIqCRJkiSpZ1V1A7BP+2+8JVOVN4xKkiRJknqW5DHAXsBmdGTLqrpPN+UNo5IkSZKkfhxAMz33dODWXgsbRiVJkiRJ/bi2qo7pt7BhVJIkSZLUj58n+R/gO8CNYwur6rfdFDaMSpIkSZL68aj2cduOZQU8oZvChlFJkiRJUs+qasrbtyyLYVSSJEmS1LUku1bVwUneNtH6qvpUN/UYRiVJkiRJvVizfVxrkEoMo5IkSZKkrlXV/7WPew9Sj2FUkiRJktS1JJ9d1vqqelM39RhGJUmSJEm9OH06KjGMSpIkSZK6VlUHTkc9hlFJkiRJUteSHEVzP9EJVdUzu6nHMCpJkiRJ6sUnp6MSw6gkSZIkqWtVdcJ01GMYlSRJkiR1LclhVbUgyRlMMF23qh7UTT2GUUmSJElSL97cPj5jkEoMo5IkSZKkrlXVpe3jhYPUs9L0NEeSJEmSdFeS5DlJzk1ybZLFSa5Lsrjb8o6MSpIkSZL68Qlgl6r6Uz+FHRmVJEmSJPXjsn6DKDgyKkmSJEnqQZLntE9PS3Io8D3gxrH1VfWdbuoxjEqSJEmSerFLx/PrgSd3vC7AMCpJkiRJml5V9YrpqMdzRiVJkiRJXUvy6iRbts+T5CvtFXX/mOSh3dZjGJUkSZIk9eLNwAXt8xcBDwbuA7wN+Gy3lRhGJUmSJEm9uKWqbm6fPwM4qKoWVdVPgDW7rcQwKkmSJEnqxW1JNkyyOrAT8JOOdWt0W4kXMJIkSZIk9eIDwGnAysCRVXUWQJLtgfO6rcQwKkmSJEnqWlUdnWQzYK2qurpj1WnAC7qtxzAqSZIkSepJVd0CXD1u2dJe6vCcUUmSJEnS0BlGJUmSJElD5zRdSZIkSVJfktwb2IyObFlVJ3ZT1jAqSZIkSepZko/TXLDobODWdnEBhlFJkiRJ0nLzbGCrqrqxn8KeMypJkiRJ6sd5wCr9FnZkVJIkSZLUj+uB3yf5KfCv0dGqelM3hQ2jkiRJkqR+HNn+64thVJIkSZLUs6o6cJDyhlFJkiRJUteSHFZVC5KcQXP13Duoqgd1U49hVP+ycOFC9txzz77L77zzztPYGkmSJEkj6s3t4zMGqcQwKkmSJEnqWlVd2j5eOEg93tpFkiRJkjR0hlFJkiRJ0tAZRiVJkiRJPUvy5m6WTcYwKkmSJEnqx24TLHt5t4W9gJEkSZIkqWtJXgS8GNgiyZEdq9YCFnVbj2FUkiRJktSLXwKXAusD+3Qsvw74Y7eVGEYlSZIkSV1rb+lyIfDoQerxnFFJkiRJUs+SzE/ymyRLktyU5NYki7stbxiVJEmSJPXjc8CLgHOBNYBXAft1W9hpupIkSZKkvlTVX5OsXFW3Al9N8stuyw40MppknSRHJPlzkj8leXSS9ZIcl+Tc9nHdQfYhSZIkSerPcs5s1ydZFfh9kk8keSuwZreFB52muy/wo6r6N+DBwJ+A9wA/raotgZ+2ryVJkiRJw7c8M9tLaTLlG4ClwCbAc7st3Pc03SRrA4+nvalpVd0E3JTkWcAO7WYHAscD7+53P5IkSZKk3i3vzFZVFyZZA9iwqvbutfwgI6P3Aa6gmRf8uyRfTrImcM+qurRt3KXAPQbYhyRJkiSpP8s1syXZBfg98KP29UOSHNl1+arqZ78k2RY4FXhMVf0qyb7AYuCNVbVOx3ZXV9Wd5iAn2QPYA2DOnDkPP+644/pqx5glS5Ywd+7cu2z56ahj0aJFLF26tO/y8+bNY968eX2Xh5nvx1F4H1b08qPQBo/BPhiVNlx77bUDfS/Ohj7wGEajDTNdfhTa4DFMTx8M+vvi2muvzeLFXd/5407WXHPNgfY/HXUMWn699dab1vdxxx13vAk4o2OT/atqfxg8s00lyenAE4Djq+qh7bI/VtWDuik/yNV0LwYurqpfta+PoJlrfFmSDavq0iQbApdPVLjtoP0BVl999dphhx0GaAocf/zxDFLHil5+Ouo46KCDOPXUU/suv/POO8/4Mcx0+VFow0yXH4U2eAz2wai04eijj77L94HHMBptmOnyo9AGj2F6+mDQ3xd32mmngcrPnz9/oPLTUceg5RcsWDDd7+MtVbXtJJsPlNm6cEtVXZukr8J9T9Otqn8AFyXZql20E3A2cCSwW7tsN+D7/e5DkiRJktSfIWS2M5O8GFg5yZZJ9gO6vrXLoPcZfSPwjfZyvucBr6AJuIcl2R1YCDx/wH1IkiRJkvqzPDPbG4H3AzcChwA/Bv6r28IDhdGq+j0w0ZDwToPUK0mSJEka3PLMbFV1PU0YfX8/5QcdGZUkSZIk3QUluT/wDmBzOrJlVT2hm/KGUUmSJElSPw4Hvgh8Gbi118KGUUmSJElSP26pqv/tt7BhVJIkSZLUtSTrtU+PSrIn8F2aixgBUFVXdVOPYVSSJEmS1IvTx71+Z8fzAu7TTSWGUUmSJElS16pqi+moxzAqSZIkSepakj8AJwG/BE6uqgv6qWel6WyUJEmSJGnWewnwB+BJwLFJ/p7k8CRvTfKobitxZFSSJEmS1LWqOhM4E9gfIMn6wAuBtwCfBFbuph7DqCRJkiSpa0lWBh4KbAc8Brgv8Hea+42e0m09hlFJkiRJUi8WA38CPg+8p6rO76cSw6gkSZIkqRevAh7dPr4iyW9oRkRPqaq/d1uJYVSSJEmS1LWqOgQ4BCDJ3YBH0kzX/WiSVatqs27qMYxKkiRJknqSZE3gUdx+3ugjgIuAk7utwzAqSZIkSepakt8BmwJj03P3AU6tqiW91GMYlSRJkiT1YjfgjKqqQSoxjEqSJEmSulZVf5yOelaajkokSZIkSeqFYVSSJEmS1LUkz28ftxikHqfpSpIkSdKQLFy4kD333HPCdV/4wheG3Jq+vRc4HPg28LB+KzGMSpIkSZJ6sSjJz4Etkhw5fmVVPbObSgyjkiRJkqRePJ1mRPTrNLd16YthVJIkSZLUtaq6CTg1yXZVdUWStZrF3mdU0gpuWedSdGPBggXT2BpJkiRN4p5JjgXWA5LkCmC3qjqzm8JeTVeSJEmS1I/9gbdV1WZVtSnw9nZZVwyjkiRJkqR+rFlVPx97UVXHA2t2W9hpupIkSZKkfpyX5P/RXMgIYFfg/G4LOzIqSZIkSerHK4ENgO+0/9YHXtFtYUdGJUmSJEk9q6qrgTf1W96RUUmSJEnS0BlGJUmSJElDZxiVJEmSJPUkycpJ3jpIHYZRSZIkSVJPqupW4FmD1OEFjCRJkiRJ/Tg5yeeAQ4GlYwur6rfdFDaMSpIkSZL6sV37+KGOZQU8oZvChlFJkiaxcOFC9txzz77L77zzztPYGkmSRktV7ThIec8ZlSRJkiT1LMk9kxyQ5Jj29QOT7N5tecOoJEmSJKkfXwN+DGzUvv4L8JZuCxtGJUmSJEn9WL+qDgNuA6iqW4Bbuy3sOaPTZNDzihYsWDCNrZEkSZKk5W5pkrvTXLSIJPOBa7stbBiVJEmSJPXjbcCRwH2TnAxsADy/28KGUUmSJElSP84Ctge2AgKcQw+ngnrOqCRJkiSpH6dU1S1VdVZVnVlVNwOndFvYkVFJkiRJUteS3Au4N7BGkofSjIoCrA3crdt6DKOSJEmSpF48BXg5sDGwD7eH0cXA+7qtxDAqSZIk3QUMevcHgPnz509Ta7Qiq6oDk3wdeFFVfaPfejxnVJIkSZLUk6q6DXjNIHU4MjqLDPrXLv/SJUmSZqvpGBX0vvDSnRyX5B3AocDSsYVVdVU3hQ2jkiRJkqR+vLJ9fH3HsgLu001hw6gkLQeD/gXev75LkqRRV1VbDFLeMCpJkiQNgX+o1GyUZBvggcDqY8uq6qBuyhpGJUmSJEk9S/JBYAeaMPpD4GnASUBXYdSr6UqSJEmS+vE8YCfgH1X1CuDBwGrdFjaMSpIkSZL6cUN7i5dbkqwNXE6XFy+CWTRN1zn4UsOfBUmSJA3JaUnWAb4EnA4sAX7dbeFZE0YlSZIkScNTVWMjIF9M8iNg7ar6Y7flDaOSJEmSpJ4lefxEy6rqxG7KG0YlSZIkSf14Z8fz1YFH0kzXfUI3hQ2jkiTNYp5HLk2fQX+e5s+fP42tkWZeVe3S+TrJJsAnui3v1XQlSZIkSdPhYmCbbjd2ZFSSJEmS1LMk+wHVvlwJeAjwh27LG0YlSZIkSf04reP5LcAhVXVyt4UNo5KkCXmuoaRR4vma0kg6HLhf+/ycqrqxl8KeMypJkiRJ6lqSVZJ8BrgI+CpwIHBekve06x/aTT2OjEqSJEmSerEPcDdg86q6DiDJ2sAnk/wv8FRgi6kqMYxKkiRJknqxM7BlVY1dvIiqWpzkdcCVwNO6qcQw2vI8BGn2GPTnGTzfUZI0evx9VSPkts4gOqaqbk1yRVWd2k0lnjMqSZIkSerF2UleNn5hkl2BP3VbiSOjI2I6RnL8a5ckSZKkIXg98J0krwROp7nX6COANYD/6LYSw6gkSZIkqWtV9XfgUUmeAGwNBDimqn7aSz0jEUarylFBSZIkSVqBVNXPgJ/1W37gc0aTrJzkd0mObl+vl+S4JOe2j+sOug9JkiRJUn9GNbNNx8jom2lOUl27ff0e4KdV9bH2pqfvAd49DfuRpKHxioWSJGkWGcnMNtDIaJKNgacDX+5Y/CzgwPb5gcCzB9mHJEmSJKk/yzuzJdksyRPb52skWavrshPcHqaXHR8BfBRYC3hHVT0jyTVVtU7HNldX1Z2GfZPsAewBMGfOnIcfcMABfbcDYM0112Tp0qV32fKj0IZ58+Yxb968vssDLFmyhLlz566w5UehDYsWLRrofVxvvfVmvA8GPYbZ8PM06PswHZ/lmf4sjcIxzPT34ij0wSi8jzP9veoxjEYfzPTP83TUsaKXn4461l57bRYvXjxj+5+OOpZn+U033XTK8uN/lnbcccebgDM6Ntm/qvYfezFIZptKklfTZLr1quq+SbYEvlhVO3VTvu9pukmeAVxeVacn2aHX8m0H7Q+w2mqr1amndnVf1EnNnz+fQepY0cuPQht23nlndthhh77LAxx//PED1THT5UehDQcddNBA7+OCBQtmvA8GPYbZ8PM06PswHZ/lmf4sjcIxzPT34ij0wSi8jzP9veoxjEYfzPTP83TUsaKXn446dtpppxX+GJZn+Ze97E637ryTCX6WbqmqbSfadtDM1oXXA48EfgVQVecmuUe3hQc5Z/QxwDOT7AysDqyd5GDgsiQbVtWlSTYELh9gH5IkSZKk/izvzHZjVd2UBIAkc2juOdqVvs8Zrar3VtXGVbU58ELgZ1W1K3AksFu72W7A9/vdhyRJkiSpP0PIbCckeR+wRpInAYcDR3VbeHncZ/RjwGFJdgcWAs9fDvuQNMK8Eq2k6TTod8qCBQumsTWSNCtMV2Z7D7A7zTmrrwF+yB0vlLRM0xJGq+p44Pj2+SKgqxNWJUmSJEnL3/LIbFV1G/Cl9l/PlsfIqCRJkiRplkvyGGAvYDOabBmgquo+3ZQ3jEqSJEmS+nEA8FbgdODWXgsbRiVJkiRJ/bi2qo7pt7BhVJIkSZLUtSQPa5/+PMn/AN8BbhxbX1W/7aYew6gkSZIkqRf7jHu9bcfzAp7QTSWGUUmSJElS16pqR4Ak96mq8zrXJenq4kVgGJWkWWnQ+zKC93uVJElTOgJ42LhlhwMP76awYVSSJEmS1LUk/wZsDcxL8pyOVWsDq3dbj2FUkiRJktSLrYBnAOsAu3Qsvw54dbeVGEYlSZIkSV2rqu8D30/y6Ko6pd96VprGNkmSJEmS7iIGCaJgGJUkSZIkzQCn6UqSJGmZpuMK3QsWLJim1kiaaUneXFX7JnlMVZ3cbz2OjEqSJEmSevGK9nG/QSpxZFSaZoP+9di/HGu28GdBkqRZ609JLgA2SPLHjuUBqqoe1E0lhlFJkiRJUteq6kVJ7gX8GHhmv/UYRiVJkiRJPamqfwAPTrIqcP928TlVdXO3dRhGJUmSJEk9S7I9cBBwAc0U3U2S7FZVJ3ZT3jAqSZIkSerHp4AnV9U5AEnuDxwCPLybwl5NV5IkSZLUj1XGgihAVf0FWKXbwo6MSpIkSZL6cVqSA4Cvt69fApzebWHDqCRJkiSpH68DXg+8ieac0ROBL3Rb2DCqkTLT9yUcdP8A8+fPn9E2zPT+p6MNkkbHTH8vS5JGV1XdSHPe6Kf6Ke85o5IkSZKkoTOMSpIkSZKGzjAqSZIkSepbkjX7Kec5o5pVZvp8S2m6+FkWeA73qJiO98FzZyXNRkm2A74MzAU2TfJg4DVV1dWXpiOjkiRJkqR+fBp4CrAIoKr+ADy+28KGUUmSJElSX6rqonGLbu22rNN0JUmSJEn9uKidqltJVqW53+ifui1sGJUkSZrlRuE89FFog6Rp91pgX+DewMXAscDruy1sGJUkSfr/7d15dFxnnebx51dV2qWSJWuxLUte5Ti2TJxO4jhhS5wQSIZhSwPp7mGZ6YaBpnsGzpw+DX166IaGOQzd080ydAZDMhACgQBhb4YdQiDeZMdJ7NiOndiJVNoXa5dKVe/8UbfKVVJ5U0lVJfn7OadO3e2993fLPtd58r73XgDAZXPO9Ur6k7m2555RAAAAAMBlM7Mvm9mypPkqM7v/UtvTMwoAAABgSfFHIlo2OqrlQ0OqHhnR8uFhVQ8Pa/nwsAaHh7WnoiLXJS4VL3HODcZnnHMDZnbtpTYmjAIAsEAmJye5Rw4AFkBBOKzqkZFEwKweHk4JnZWjo+cdAnry9Glp27ZslruU+cysyjk3IElmVq3LyJiEUQAAAAB5q3J0VBtDITWHQrr6Jz/RGzo6FBwfv2CbiPnUXr5c7ZW1aqusV3uwTu3BWk2VSS992Xrp2WezVP2S978k/d7MvuXNv1nSxy+1MWEUAAAAQN6oHh5Wsxc+N3Z0qO7s2VnbTPkC6gjWqD1Yp7bKuljYrIxNtwXr1FlRo2n/7KjTNHVG25eXE0bniXPuATM7IGmXJJP0Jufc0UttTxgFAAAAkBvOqfbs2Vj47OjQxlBIy0dGUjYZKSzRgYYt2te4Va0NV+vMspXqLq9S1OfPUdEws6Bzbsgbltsp6WtJ66qdc/2Xsh/CKAAAWDCZvltS4t5ZYElxTiv7+2PDbr3wuWxsLGWTs0Vl2te4VXsbW7SvsUVH6jcoQvDMN1+T9FpJrZJc0nLz5tdfyk4IowAAAAAWhEWjaujvjw25DYW05cGv6u7hoZRteksrtW/1Vu1t2qZ9jVt1rHatnPEGynzmnHutmZmkVzrnXpjrfgijAAAAAOaFLxpVY0+Pmjs61BwKaUNHh0qnplK26Syv1t7GWPDc07hNp5avlsxyVDHmyjnnzOw7kq6b6z4IowAAAADmxB+JaE13d+JhQxs6O1UcDqds0xas096mFu3xht2eWbaS8Ll07DGzG5xz++fSmDAKAAAA4JL4p6a0qb098aqVdV1dKoxEUrZ5rmpV4n7PfY0taq+sy1G1yIJbJb3HzE5LGpV3z6hz7iWX0pgwCgAAAOD8nNO206e168kntfELX5B/ejpl9YnlTdrb1BILoKu3qrtieY4KRQ7cmUljwigAAECey/SpxDyRGHNhzmn7c8/pNa2tauzrkyRFZTpSt157G2Phc3/jVvWXVua4UmSbmRVLeo+kjZKeknSfc276wq1mI4wCAAAASLBoVNedOqXXtLZq1cCApNhDhz5/4936dsttGiouz3GFyANflhSW9FvFeke3SPqvl7sTwijmzeTkJO+SAzBveD8llhJ6NrEY+CIR3fDss3rNwYOqP3tWktReUat7b3qzvrntdk0GCnNcIfLIFufcNkkys/sk7ZvLTgijAAAAwBXMH4lo5/HjevXBg6oZHpYknVm2Qv+68816pGWXwv6CHFeIPJR4ZLJzbtrm+HRkwigAAABwBQpMT+vmY8d0x6FDqh4ZkSSdqm7Q5256i7635RZFfP4cV4g8do2ZDXnTJqnEm48/TTd4KTshjAIAAABXkIJwWC87elSvOnxYy0ZHJcWeiPvZm9+qH21+maKEUFyEc25e/pIQRgEAwJLG/ZpATGBiQrcfOqTbDx9WcHxcknS0bp0+c/M9+smmm+TMl+MKcaUhjAIAAABLmC8a1SuOHNHrvvIVFXvDcZ9Y2azP3nyPfrFhhzTH+/2ATBFGAQAAgCVqbVeX7nn0UTX19kqSDjRcrc/efI9+s+4PCKHIOcIoAAAAsMSUTE7qDXv26KVHj8onqS1Yq4/c/p/1s403EkKRNwijAAAAwFLhnG48flxvevxxVUxMKOzz6/M3vFGfufkejRcW57o6IAVhFAAAAFgCVvb3655HH1VzR4ckaU9ji/72jj/XyZqmHFcGpEcYBQAAABaxwnBYdx04oF1PPqlANKre0kr9j1v/kx7ZuoshuchrhFEAAABgMXJO15w+rTc/9piqR0YUlenB7Xfqk698h4aKy3NdHXBRhFEAAABgkVk+NKS3PPaYtp05I0l6qn6D/vaOP9fhVVfluDLg0hFGAQAAgEUiEInotiee0J0HD6pwelpDhaX6p1e8TQ9ee5eiPn+uywMuC2EUAAAAWARWHD2qv3n4Ya0YHJQkfe/qV+pju/5UPeXVOa4MmBvCKAAAAJDHVvX16a4DB/QHzz0nSTpV3aAPv+q9+t3a7TmuDMgMYRQAAADIQ409PbqztVXbn39ekjQRKNT/vukt2r3jbk0FCnJcHZA5wigAAACQR9Z2denO1tbEw4kmAoV66JpX6/M77lZnsCbH1QHzhzAKAAAA5IENoZDuam3V1W1tkqSxgiI9uP0ufWHHm9RTXpXj6oD5RxgFAAAAcsU5bWpv112trdoUCkmSRgpK9OXrXqv7bniD+ksrc1wgsHAIowAAAEC2OaerX3xRd7W2akNnpyRpqKhM//e61+n+61+nsyUVOS4QWHiEUQAAACBbnNO2M2d0Z2ur1nZ3S5IGiiv0xRveoAeue62Gi8pyXCCQPYRRAAAAYIGZc2o6cEC3fOtbaurtlUnoTMYAABxeSURBVCT1llbqCzveqAe336XRotIcVwhkH2EUAAAAWCCVo6O64cQJ3XT8uFYODEiSusqr9fkdd+tr21+tiYLiHFcI5A5hFAAAAJhHheGwrnn+ed144oQ2t7XJ55wkqb2iVv9n5916+CV3aDJQmOMqgdybcxg1s0ZJD0haISkqabdz7tNmVi3pG5LWSjot6S3OuYHMSwUAAADykzmn5lBINx4/rmufe07F4bAkacoX0C+ad+iRll369frrFPYX5LhSXEnyPbNl0jM6Lem/OecOmlmFpFYz+5mkd0r6hXPuE2b2QUkflPTXmZcKAAAA5Jf6gQHdePy4djz7rKpHRhLLW1dt1iMtu/TDzS/nybjIpbzObHMOo865Dkkd3vSwmT0jqUHS6yXd4m32ZUm/FmEUAAAAS0TZ+LiuP3lSN544kXgiriS9WFmvR7bequ9svVWnqxtyWCEQk++ZzZw3hj2jnZitlfSopBZJLzjnliWtG3DOVaVp825J75akQCBw3X333ZdRDWVlZRodHb1i2+dDDcFgUENDQ3NuPx815Lp9PtSQ6/b5UAPnwG+QLzVkel1cCr8B55AfNeS6fT7UkGl7XzisDceOqeGXv9Tqw4fli0QkScOFJfrR5pfrkZZd2r96i5z55nwMLLwbqiZ0z0bl7d/Fpqami7YfGRlReXl5Yv7WW2+dkvRU0ia7nXO7Z7abS2ZbaBk/wMjMyiV9W9L7nXNDZnZJ7bwfaLckFRUVuT179mRUx86dO5XJPhZ7+3yo4bbbblv057AU/hxy3T4fauAc+A3ypYZMr4tL4TfgHPKjhly3z4caLre9RaNq6OtTcyik5o4ObWpvV+nUlCQpYj79av11emTrLv20eacmC4rmXBeyq6urS6Mry/P27+Lb3/72i7b/9a9/rVtuuSV50bRz7voLtZlrZltoGYVRMytQ7KS+6px7xFvcZWYrnXMdZrZSUvf59wAAAADkni8SUVNvrzZ64XNDR0cifMYdrVunb2/dpe9vuUU95VnvRALmJJ8zWyZP0zVJ90l6xjn3z0mrvi/pHZI+4X1/L6MKAQAAgHkWiES0prs71vMZCmldZ6eKp6dTtnmxsl57G1sSnxeqVuaoWmBu8j2zZdIz+lJJb5P0lJk94S37G8VO6GEz+1NJL0h6c2YlAgAAAJnxT05qU1ubmjs61BwKaW1Xlwq9+z7jTlU3aG9ji/Y1tmhf41aFgnU5qhaYN3md2TJ5mu5jks432Pi2ue4XAAAAyIhzqh4Z0bquLq3t6tL6zk417d4t/4zwebymSXsbt3kBdKt6yqtzVDCwMPI9s2X8ACMAAAAglwrCYTX19Gh9V1cigC4bG0vZJirT0/UbEsFz3+qtGiitzFHFACTCKAAAABYT51QzNKT1Xuhc19Wl1X198kejKZsNFpfr0KqrdHDVZh1atVmHV23ScFFZjooGkA5hFAAAAHnLH4loXVeXWn7wA23fv1/rurpUMTGRsk3EfDpSt16HVl2lQ6s262DDZj1ftUrKk9dXAEiPMAoAAID84ZxW9vfr6rY2bW5rU3MopKIZT7ntKV2mQw2bvfB5lZ5c0ayxwpIcFQxgrgijAAAAyKng6Kg2t7Xp6rY2XdXWNut+z2M1a7SnaZsONmzWwVWb1VZZT68nsAQQRgEAAJBVheGwmkMhbfZ6Pxv6+1PWd5dV6bdrt+uxtdfqsbXbecotsEQRRgEAALCgLBrV8lOn9JrWVm1ua9P6zk4Fkh44NFZQpD2N2/S7tdv127XbdaJmDT2fwBWAMAoAAIB5Y9Go6s6eVWNPj5p6e9XY06PG3l6VTk0ltomYT0+s3KTfej2fBxs2K+wvyGHVAHKBMAoAAIA58UWjWjEwkBI8V/f2qnjGA4ck6cyyFXps7Xb9du21+v2aazRUXJ6DigHkE8IoAAAALioQiWhlf7+aenoSvZ0NfX0qjERmbdteUasjKzbo6fpzn+6K5TmoGkA+I4wCAADgHOdUNTqqlX19WtXfr1X9/dr0ox/pj9vaUu7zjDuzbIWert+gI/Ub9NSKjTpSv0H9pZU5KBzAYkMYBQAAuEKVj40lAueq/n6tHBjQqv5+lSTd3xkXlelU9Wo95fV4HqnfqCP16xluC2DOCKMAAABLXMHoqNZ3dJwLnF6vZ8XERNrt+0qCOlG7Rsdr1uhE7RqdqGnSM7XrNFpUmuXKASxlhFEAAIBFrnhqStXDw6oeHtZy77t6ZCQxHRwfT9tuqLBUz9Y06XjtGp2oWZP47itbluUzAHAlIowCAADkM+dUNDysxp6eRLhMCZxDQymvTUlnPFCkZ2saY8Gz5lzw7Kio4X2eAHKGMAoAAJBD5pwqxsbOhcykHs34J92rUpKNB4rUHqxVe2Wd2irr1B6MfbcF69VeWavu8mo582XpjADg0hBGAQAAFpAvGlVZX582hkIpvZnVIyOJ+YI0r0dJNlRYOitotgfrvGX16i8J0sMJYNEhjAIAAMyBPxJRcHxcwdFRVY6NqXJsLHXa+64YG5PfuQvuq68kqPa0QTM2zRNrASxFhFEAAABJck7F4bDKJiZUOjmp8okJlU1MaPPQkOqPHk2Ey8rRUQXHxs77JNp0usqrY8Nog7GezPbKOrV5wTMUrNVYYckCnhgA5CfCKAAAWHICkYhKvTBZf+yYtj/33KyQGf+UTk7GpicnFYhGL/kYEfOpt2yZusuq1F1enfjuSZruLq9ST1mVwv6CBTxbAFicCKMAACBvWTSqopER1Q0OqnRiQuXx4JgmWJYmrbvYA3/OZ7SgWIPFFRosqdBASYUGS4LqLwmqu7xK3WVeuCyvVndZtfpKg4r6/PN8xgBw5SCMAgCAnAlEIqryHuST7rUly0ZGLnq/ZTphnz8RKpPD5UBJMDYdX+ctGyiu0NmSCk0GChfgLAEA6RBGAQDAgglMTmpFf38sZMafHpsUOINjY7rYC0eGisq8IFmhweKgBkvKY6GyON57WeFNBzVQEguVw4WlPF0WAPIcYRQAAGTMnFPN0JAaenu1uq9PDX19Wt3Xp+X33nvBdhHzqa1iudor69U28wE/lXXqqKjVVID7LQFgKSKMAgCAy1IUDmuVFzbj4XNVf7+Kw+FZ2075AmqvjIXMxGtLEq8wqVdnxXJFuO8SAK5IhFEAAJCecyrr7dW2559P6e2sOXs27dDazvJqPVO3Tsdq1+mZunU6WrdOz1c3EDYBAGkRRgEAgAqmp7Wqvz9lmG1DX59Kp6ZmbTvlC+hkTWMscHrB81jdOvWXVuagcgDAYkUYBQDgSuKcKkdHtTo+zLavT6t7e1V39qx8aZ5a21taqWe8wBn/nFq+mvdmAgAyRhgFAGCJCkQiqjpzRjceO5YyzLZ8YmLWttPm07M1jYkhtvFhtj1lVTyVFgCwIAijAAAsEYXhsNZ3dmpjR4eaQyGt7epSQTQ6a7vB4vJY4Ey6t/NkTRPv2AQAZBVhFACARap4clIbOjvVHAppY0eH1vT0yD8jfJ6qbpg1zLajoobeTgBAzhFGAQBYJMomJrSxo0MbQyE1h0Ja3deXcp9nxHw6vKJZextbtK+xRftXb9HZkoocVgwAwPkRRgEAyFPFZ8/q2lOn1OyFz4b+/pT1U76AnlzVrH2NW7W3cZtaG67WSFFpjqoFAODyEEYBAMgTy0ZGEkNum0MhrRgcTFk/6S/QoVVXaW/jNu1t3KqDDZs1UVCco2oBAMgMYRQAgFxwTsuHhxO9nhs7OlQ7NJSyyVhBkQ40bPF6Plv05MpNPGQIALBkEEYBAMgG51Q3OKhmr9ezORRS1ehoyiZDhaU6sHqL9ja1aN/qFj21YqOm/fxTDQBYmvgXDgCABWDRqIJnzugVTz8d6/kMhVQ5Pp6yzUBxhfY1btW+xhbtaWzRM3XrFPX5c1QxAADZRRgFAGAO/JGIqkZGVD08rOqRES0fGop9Dw+renhYVaOjs16z0lO2THtXt8R6PhtbdKKmSc58OToDAAByizAKAEAaBdPTCoZCuvqFF9KGzcrRUV0sRrYFa7V/daznc29ji56rbuD9ngAAeAijAIArUvHUVCJYxj/LvV7O6uFhBWcMqZ0pYj61ly9Xe2Wt2irr1R6sU3uwVu2VdWqrrFcoWMvDhgAAuADCKABg6XFO5RMTqn7+eW0/dSqlRzMeOkunpi64iylfQB3BGrVV1nlBMxYy2ytr1RasU2dFDQ8XAgAgA/wrCgBYNCwaVcX4uCrHxlQ5OqrKsTEFZ05734EZ92vONB4oSurJjIfNOrUFY4Gzp6yKhwkBALCACKMAgJwx51Q8NaWyiYnEp3xyUqUTE9rc3q4NJ06khMyK8XH5nLukfZ8tKlMoWJsSNNuDdYlhtP0lQe7fBAAghwijAIB5UTA9nRIqm/bvV+DIkdj85OS5dUnTpZOT8l9iuIzrLa1UT1mVusur1V1Wre7y2HRX0nxPWZUmC4oW6EwBAMB8IIwCACTn5ItGFYhG5Y9GVRCJKBgKaX1HxwXDZPJ0YSQyp0MPF5ZosCSogZIKDRZXaKAkqMGScg2UBFMDZ1m1esuWcZ8mAABLBP+iA8A88UWjKpieVuH0tEr7+1U9PCzzQp7fOVk0Kp9ziU/K/Ix1jYWFmjx1SoFIJPaJRuWfOR2NKhCJyD/jOxCJqObxx3V9X19iPnmd3wudgUgksR9/JHLR15RczKQ/EAuVxRUaLImFyoGSCp0trtBASewzWBLUYHG5Fzhj4ZNwCQDAlYn/AgCwuDgXC3gXCHWl/f1aPjSkgqSwNTN4zQxyMwPfmjNn1PTCCyqcnlbB9LQKIpHE9Kxvb50/+YE5X/6y/jDDU701w/aXa9p8CvsLFPYHNOkv0HBRaSIwxoNkukA5UFKhgeKgxguKuAcTAABcMsIosNTEe+LSfHxe2Eq3Lj48M94jF+/N8yW39UJf8v6S5+PLVh49qubOzvTHn3lcr57kdUUPPqg3TU2lDZyXdH/hAw9kHATnImI+TQQKNREoVNgfUMT8ivp8iphPEZ/f+/YpmvztTcfXx9dN+/ya8oJh2FegqUAgNu8LKOwPJNZN+QMK+wtS533xZee+E/vypuPrwv6Aprx98uRYAACQTYRR4FIl9bydN5RFIlr2wgta0919ricuElFBcu9b8ifN8lVHj2pTR0fanrtZwzFn9vJFIiq49169PcNTzXaP3OWKylJC3bkQ50/Mx8LX7CAW9gU0GShICmzJoS627bQvoPGCIk0EChPfE4EiTSSm48uLNF5QpElv/ZQ/QM8gAADAJSKMIu9ZPPQl3evmTwphyevqn3lGLWfOqDAcVqE3jDJ5SGXh9PQF15U//LBeNzERu38uuYfRq+FSvS7Dc27OsH3EYj1rYX8g9u2LfU/7Awr7/Jr2BTTtT7887I99R3x+hX1+RXz+2DYzPpH4frxevbDXZtrnSz1Ooo7A7Jq8Y4XT1BbvTYz3Hp7rYfTJWaZ3NwIAACDXCKNXsEAkolLvaZilExNadfiwtp0+fa6nb0YQSxmuOWMoqC8a1doXXlCN1/68Q0Qv8il56CG9cWIiNWRe5msfFlI85MXDWLqwdq6nrUBTgQJvSGSBJpPmzw2V9NYFClKGWyb31qUMr/TF9hHv4UtdH1/uZ7glAAAA8h5hdDFKegVD8lDPZS++qOb29kS4LJucVKn32oWUb2+6aHp61q5vz6Suw4cz7tE7n0mvZy15qGXKt9fbFh82Oe4NqYxPjxd48/H1SUMsk7efDBTOCJixnr9YTyE9cgAAAMB8yYswWuicagcHL+mVB+ZmvwLBolGt8fkUPnlS5m1jzsmkWfM+52JP4/Sm4+vWDgyo4vTpxFM6L/RtM2oxSSuOHtXGrq70x06a9p2nvqpHH9XOgYGL3xvo3X84H8I+f+JJmYPFFRorLE4Ml5w2L5D5/Zo279vnV8RiwywjPp+3POD1EvrSD7e8zCGa8R6+WA9jbDpiPu7DAwAAAJaYvAijV4XD+shDD2W2k5/+VK/MpP3vf6/rM6tgwXoF05k2X2y4pu/cMM3holINFlfobEmFBovLYyGzpCIpcJZ762KvYhgrKCbkAQAAAMiJvAijUz6/TgfrUl51cKHXIUTMf27a51fUTBGLDaGMmilqJifvO7Es9i1veXzeedvG9x9fHt9fbLkl1kXi+0uq1Xnrk6cTdSRqObef2dv45KTY/YS+dK9fSH3qJ/cEAgAAAFjs8iKMHl9Wr1vetTvXZQAAAAAAsoSnsQAAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIugULo2b2GjM7bmYnzeyDC3UcAAAAAEB6+ZzLFiSMmplf0uck3Slpi6Q/MrMtC3EsAAAAAMBs+Z7LFqpndIekk86555xzU5K+Lun1C3QsAAAAAMBseZ3LAgu03wZJLybNt0m68bxbR6YVjJzN6IBlZWUaHR29YtvnQw3BigoNDQ/Puf181JDr9vlQQ67b50MNnAO/Qb7UkOl1cSn8BpxDftSQ6/b5UAPnkB+/Qa6vi8XRcUnlc26/CF1eLssyc87N/07N3izp1c65P/Pm3yZph3PuL5O2ebekd3uz10kay/CwfkmRK7h9PtRQKGkqg/bzUUOu2+dDDblunw81cA78BvlSQ6bXxaXwG3AO+VFDrtvnQw2cQ378BlwX5799iaSDSfO7nXO7pUvLZTnlnJv3j6SbJP0kaf5Dkj50ge13z8MxM9rHYm+fDzVI6lkC57AU/hz4DTgHfoM8qSHT6+IS+Q04hzyoIdft86EGziFvfgOui1lsf7m5LNufhbpndL+kZjNbZ2aFku6R9P0LbP+DeThmpvtY7O3zoYbBDNvPRw25bp8PNeS6fT7UwDnwG+RLDZleF5fCb8A55EcNuW6fDzVwDvnxG3BdzG77y81lWbUgw3QlyczukvQpxbqR73fOfXxBDoS8YWYHnHPX57oOAMgXXBcBIBXXxezL51y2UA8wknPu3yT920LtH3lpd64LAIA8w3URAFJxXcyyfM5lC9YzCgAAAADA+SzUPaMAAAAAAJwXYRQXZGb3m1m3mT09Y/lfmtlxMztiZp9MWv4hMzvprXt10vLrzOwpb91nzMyyeR4AMF/SXRfN7Btm9oT3OW1mTySt47oIYMk6zzVxu5nt8a6JB8xsR9I6rolIIIziYr4k6TXJC8zsVkmvl/QS59xWSf/kLd+i2BO6tnpt/tXM/F6zexV7r2yz90nZJwAsIl/SjGuYc+6tzrntzrntkr4t6RGJ6yKAK8KXNPv69UlJH/GuiR/25rkmYhbCKC7IOfeopP4Zi98r6RPOuUlvm25v+eslfd05N+mce17SSUk7zGylpKBz7nEXu0n5AUlvyM4ZAMD8Os91UZLk/Z/8t0h6yFvEdRHAknaea6KTFPSmKyWFvGmuiUhBGMVcbJL0cjPba2a/MbMbvOUNkl5M2q7NW9bgTc9cDgBLzcsldTnnnvXmuS4CuBK9X9I/mtmLio2g+5C3nGsiUhBGMRcBSVWSdkr6K0kPe70B6cb2uwssB4Cl5o90rldU4roI4Mr0XkkfcM41SvqApPu85VwTkYIwirlok/SIi9knKSqpxlvemLTdasWGZbR50zOXA8CSYWYBSW+S9I2kxVwXAVyJ3iHv3nlJ35QUf4AR10SkIIxiLr4raZckmdkmSYWSeiV9X9I9ZlZkZusUu/l8n3OuQ9Kwme30elDfLul7uSkdABbM7ZKOOeeSh5pxXQRwJQpJeqU3vUtS/NYFrolIEch1AchvZvaQpFsk1ZhZm6S/k3S/pPu9R3hPSXqHd7P5ETN7WNJRSdOS3ueci3i7eq9iT1srkfRj7wMAi06666Jz7j7FnhCZPERXzjmuiwCWtPP8t+K7JH3aGzEyodhTcrkmYhaLZQgAAAAAALKHYboAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIA5p2ZnTazp8zsCTM7kGb9HWb2uPc+OZmZ39v25uxXOzdmttHMnrjMNgEzG/SmG83sGxfZ/o1m9lcXWH+jmf3L5dQAAEC+4NUuAIB5Z2anJV3vnOu9wDZfl/Rz59wXzez9krY6596V4XEDzrnpTPZxGcfaKOlbzrntl9EmIKnXObds4SoDAGBxoGcUAJArH5D0ITPbKukvJP21JJlZvZk9YmYHzGyfme30lu/0elMPmdnvzKzZW/5nZvZ1M/uhpB+bWYOZPeb1tD6drrfVzG4ws9+YWauZ/djM6r3l7zGz/WZ22My+aWYl3vIVZvY9M3vSW3ejt6uAmd1nZke8/RSnOdYGM9trZvsl/X3S8kTPqneuVyWte8zMrvHO7VPesnu88zlsZr/ylt1uZt/1pmvM7Ptejb83sxZv+ce8Gn9jZs+Z2fsy+DMDAGDeEEYBAAvBSfqpF/benXYD5zokfUrS45I+5pzr91Z9RtInnXPXS3qLpC96y5+R9DLn3LWS/kHSx5J2d5OktznnXiXpP0j6gddjeY2kJ5OPa2ZFkj4t6W7n3HWSHvT2J0nfdM7d4Jy7RtIpSe/0ln9O0s+ccy+RdJ1XiyRdJelTzrmtksYlvSHNqX5W0qedczdI6kn7a0nf8M5VZrZa0nLn3OEZ2/ydpNu82t6YZh//IGmvV+PfS/pS0rpNkl4laaekj5qZ/zx1AACQNYFcFwAAWJJe6pwLmVmdpJ+Z2THn3KNptvucpE84576UtOx2SVd5t5NKUpXXQ7lM0gNmtiHNfn7qnBvwpvdL+rzXS/ndNKHuaklbJf3cO4ZfUpu37iVm9lHvWBWSfugtv0XSPZLkDQMe8s7tpHPuKW+bVklr09R2k6R/701/RdJH0mzzsKQfKBYo3+rNz/Q7xc7/m5IeSbP+ZZL+nVfjT83sS2ZW5q37oXNuSlK3mfVLqpXUmWYfAABkDT2jAIB555wLed/dkr4jacd5tosq1ouazCTtcM5t9z4NzrlxSR+X9BPnXItiPZDJQ2JHk/b5S8XCY4ekr5rZn6TZ/5NJ+9/mnLvTW/eApPc657Yp1vOafIx0D1mYTJqOKP3/5HXnaXtuA+fOSBoxsy2KhdF0DzZ6l2K9o2slHTazqjTndb75S6kTAICsIowCAOaVmZWZWUV8WtIdkp6+jF38XFLivkYziz8gqFJSuzf9zgscf42kTufcbsWGql47Y5OjkhrMbIe3faF336oklUnqNLMCSX+c1OZXkt7jbe83s+BlnM8eeUNwJc0Mxsm+IelDkoqcc0fTrF/vnNsj6b9LGpDUMGP9o/H9m9ntktqcc6MCACBPEUYBAPOtXtJjZnZY0j5JP3LO/b/LaP8+SS/1HsRzVLEeQUn6n5L+0cx+d5H2tynWc3hI0usVu2czwTk3KekPJf2zV+MhSfEHEn3Yq/lnioXWuL+Q9Goze0rSAUmbL+N8/oukD5jZPknlF9jum4oF4HRDdCXpX7zjP6XYU4hnBvwPS7rZzJ6U9FFJ//EyagQAIOt4tQsAAAAAIOvoGQUAAAAAZB1hFAAAAACQdYRRAAAAAEDWEUYBAAAAAFlHGAUAAAAAZB1hFAAAAACQdYRRAAAAAEDWEUYBAAAAAFn3/wEJm+0162OwvAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1097.28x548.64 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [ "source": [
"from matplotlib.ticker import MultipleLocator\n", "from matplotlib.ticker import MultipleLocator\n",
"\n", "\n",
"# représentation des salaires en courbe rouge avec l'aire sous la courbe bleu\n",
"fig1, ax1 = plt.subplots(1,1)\n", "fig1, ax1 = plt.subplots(1,1)\n",
"\n", "\n",
"fig1.set_size_inches(2.54*6, 2.54*3)\n", "fig1.set_size_inches(2.54*6, 2.54*3)\n",
"\n", "\n",
"# === représentation du prix du blé === #\n",
"ax1.bar(rawdata['Year'][:-2], rawdata['Wheat'][:-2], align='edge', width=5, color='dimgrey')\n", "ax1.bar(rawdata['Year'][:-2], rawdata['Wheat'][:-2], align='edge', width=5, color='dimgrey')\n",
"ax1.bar(rawdata['Year'][-2:], rawdata['Wheat'][-2:], align='edge', width=1, color='dimgrey')\n", "ax1.bar(rawdata['Year'][-2:], rawdata['Wheat'][-2:], align='edge', width=1, color='dimgrey')\n",
"\n", "\n",
...@@ -383,6 +360,14 @@ ...@@ -383,6 +360,14 @@
"ax1.xaxis.set_major_locator(MultipleLocator(100))\n", "ax1.xaxis.set_major_locator(MultipleLocator(100))\n",
"ax1.xaxis.set_minor_locator(MultipleLocator(5))\n", "ax1.xaxis.set_minor_locator(MultipleLocator(5))\n",
"\n", "\n",
"ax1.grid(True, which='both')\n",
"\n",
"# les marges de l'axe x sont diminuées\n",
"ax1.set_xlim([int(rawdata['Year'][0:1]), int(rawdata['Year'][-1:]+5)])\n",
"\n",
"ax1.set_xlabel('5 Years each division')\n",
"\n",
"# === représentation du salaire === #\n",
"# l'axe 2 partage l'axe x de l'axe 1\n", "# l'axe 2 partage l'axe x de l'axe 1\n",
"ax2 = ax1.twinx()\n", "ax2 = ax1.twinx()\n",
"ax2.fill_between(rawdata['Year'], rawdata['Wages'])\n", "ax2.fill_between(rawdata['Year'], rawdata['Wages'])\n",
...@@ -392,17 +377,12 @@ ...@@ -392,17 +377,12 @@
"myylim = ax1.get_ylim()\n", "myylim = ax1.get_ylim()\n",
"ax2.set_ylim(myylim)\n", "ax2.set_ylim(myylim)\n",
"\n", "\n",
"# les marges de l'axe x sont diminuées\n", "ax2.set_ylabel('Price of the Quarter of Wheat in Shillings')\n",
"ax1.set_xlim([int(rawdata['Year'][0:1]), int(rawdata['Year'][-1:]+5)])\n",
"\n",
"ax1.grid(True, which='both')\n",
"\n", "\n",
"ax1.set_title(\"\"\"Chart Showing at One View\n", "ax1.set_title(\"\"\"Chart Showing at One View\n",
"the Price of the Quarter of Wheat, and Wages of Labour\n", "the Price of the Quarter of Wheat, and Wages of Labour\n",
"by the Week, from 1565 to 1821\"\"\")\n", "by the Week, from 1565 to 1821\"\"\")\n",
"\n", "\n"
"ax1.set_xlabel('5 Years each division')\n",
"ax2.set_ylabel('Price of the Quarter of Wheat in Shillings')"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment