From 92eab7340ee9573a44a4bcdc4631ee480be26df9 Mon Sep 17 00:00:00 2001 From: 67a6b213193a2d0a60e6075e4092ba12 <67a6b213193a2d0a60e6075e4092ba12@app-learninglab.inria.fr> Date: Sun, 7 Jun 2020 17:16:43 +0000 Subject: [PATCH] new representation of the purchasing power --- module3/exo3/exercice.ipynb | 199 ++++++++++++++++++++++-------------- 1 file changed, 124 insertions(+), 75 deletions(-) diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 625da3c..5dd0877 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 1, "metadata": { "hideCode": false, "hidePrompt": false @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 2, "metadata": { "hideCode": false, "hidePrompt": false @@ -82,7 +82,7 @@ " '.ipynb_checkpoints']" ] }, - "execution_count": 139, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 3, "metadata": { "hideCode": false, "hidePrompt": false @@ -120,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 4, "metadata": { "hideCode": false, "hidePrompt": false @@ -196,7 +196,7 @@ "5 1585 41.5 5.15" ] }, - "execution_count": 141, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -224,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 5, "metadata": { "hideCode": false, "hidePrompt": false @@ -286,7 +286,7 @@ "53 1821 54.0 NaN" ] }, - "execution_count": 142, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -308,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 6, "metadata": { "hideCode": false, "hidePrompt": false @@ -370,12 +370,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "hideCode": false, "hidePrompt": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5,1,'Chart Showing at One View\\nthe Price of the Quarter of Wheat, and Wages of Labour\\nby the Week, from 1565 to 1821')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAH5CAYAAAB07OikAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYJFW9//H3B5YkCwsIKkhUkatwjagrBkCMKOo1rAlFRVEx53R/Ct5rvKIi6vWiqCCKBBOgKBgAQVDBRFBECQuChCUsuyDx+/ujaqQZZnY6zPb0Du/X8+zT3VV1Tp063dM7nzmnqlJVSJIkSZI0TCvNdAMkSZIkSXc9hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiXpLizJXkkOnul2jEmyQ5KLl/M+3pfky8tzH7NFkpckOXam2yFJmp0Mo5I0yyV5cZLTkixJcmmSY5I8djnt6+VJTppim62THJvk6iTXJDk9yc7Loz0TqaqPVNWrhrW/Md0G/7YPz0hyfZJ/JPnfJOssh/a8N8mJEyxfP8lNSbapqm9U1ZOne9+SJIFhVJJmtSRvAz4DfAS4J7Ap8AXgWcthX3O63PQo4Li2PfcA3gQsnu72rIiSvB34OPBOYB4wH9gMOC7JqtO8u68D2yXZYtzyFwJnVNWZ07w/SZLuwDAqSbNUknnAh4DXV9V3qmppVd1cVUdV1Ts7Nl01yUFJrktyVpJtO+p4T5K/tevOTvIfHetenuTkJJ9OchVwKPBF4NHtKOw1E7RpfWAL4EtVdVP77+SqOmncdm9Pcnk7kvuKzmNq23pFkguT/GeSldp1FyZ5ePt81ySV5IHt61cl+V77/F8jlEk2b7fbLcnCJFcmeX/H/tZIcmA7ivunJO9a1jTiJPsmuSjJ4nbE93Ht8qcC7wNe0PbNHyYouzawN/DGqvpR+15dACygCaS7drT/sGW8Zxsl+XbbR+cnedNEba2qi4GfAS8dt+plwIFtXXcY6U7yb0mOS3JVknOSLGiXb9GOco+9F19OcnlHuYOTvGWyfpMk3TUZRiVp9no0sDrw3Sm2eybwLWAd4Ejgcx3r/gY8jmaUbm/g4CQbdqx/FHAezQjnrsBrgVOqam5VTTS1dBHw17aeZye55wTb3Kvd372B3YHPJ1m3Xbdfu+4+wPY0wWksrJ4A7NA+f3zbru07Xp+wjD54LLAVsBPwgSQPaJd/ENi83d+T2mNclt8ADwHWA74JHJ5k9ar6Ec3o9KFt3zx4grLb0bxf3+lcWFVLgGPa/Y+Z8D1rw+BRwB9o+m8n4C1JnjJJew+kI4wm2apt/yHjN0yyJs2I9jdp3u8XAV9IsnVVnU8zuv3QdvPHAUs6+nGq/pck3QUZRiVp9ro7cGVV3TLFdidV1Q+r6laaqZv/CkpVdXhVXVJVt1XVocC5wCM7yl5SVftV1S1VdcNUDaqqAnYELgD2AS5NcmKSLTs2uxn4UDsy+ENgCbBVkpWBFwDvrarr2lHDfbg9TJ3A7eHzccBHO15vz7LD0N5VdUNV/YEmyI31wQLgI1V1dTuS+Nkpju/gqlrU9sc+wGo0Ibcb6zP5+3Vpu37MZO/ZI4ANqupD7ajzecCXaKbeTuS7wD2TbNe+fhlwTFVdMcG2zwAuqKqvtsf3W+DbwPPa9ScA2ye5V/v6iPb1FsDaNP0qSdK/GEYlafZaBKzfxbmc/+h4fj2w+liZJC9L8vt2CuY1wDbcMRRd1GujquriqnpDVd2XZvrpUuCgznaPC2TXA3Pb/a4KXNix7kKaEUBowtDj2jC0Ms204cck2ZxmNPX3y2jW+D6Y2z7fiDse4zKPt51e/Kck17b9NY879teyXMnk79eG7frJ2jv2nm0GbDT2frVteB/N+bl3UlXXA4cDL0sS4CW0U3QnsBnwqHF1v4RmJBtuH5l+PHAicDzNHwG2B35RVbct6+AlSXc9hlFJmr1OAf4JPLufwkk2oxlVewNw93ba7ZlAOjarccXGv16mqroI+DxNyJ3KlTSjppt1LNsU+Htb119pgtmbgBOr6jqa0LYHzUhiP2HoUmDjjtebTLZhe37ou2lGU9dt++tabu+vqfrmFOBG4Dnj6l0TeBrw0y7aexFwflWt0/Fvrapa1tWKD2zb/CRgLeDoZdR9wri651bV69r1J9CMSO/QPj8JeAxTj0pLku6iDKOSNEtV1bXAB2jOuXx2krslWSXJ05J8oosq1qQJUFcAtBcSmio0XgZsnEmu/Jpk3SR7J7lfkpXaCxq9Eji1i+O5FTgM+HCStdqw/Dag83YpJ9CE57Hwc/y41706DHhv2+57t3VNZi3gFpr+mpPkAzTTU8dcBmw+dpGf8dr3a29gvyRPbd+rzWlGLi+mmY47lV8Di5O8u7340spJtknyiGWU+QVwDbA/8K2qummS7Y4G7p/kpW3bVknyiLHzQqvqXOAGmvNqT6yqxe0xPxfDqCRpAoZRSZrFqupTNIHtP2lC0kU0gep7XZQ9m+aczFNoQsW/AydPUexnwFnAP5JcOcH6m2guCPQTmgvenEkzGvjyKQ+m8Uaaab3n0Yy8fRP4Ssf6E2hC4YmTvO7Vh2iC4Pltm49o2zuRH9NcaOgvNNOH/8kdp/Ue3j4uSvLbiSqoqk/QTKv9JE3//KqtY6eqmmy/neVvBXahuQjR+TSjyV+mmS48WZmimSa9GXecLj1+u+uAJ9Ocf3oJzajzx2nOix1zAs0064UdrwP8bqq2S5LuetL8HyRJkqaS5HXAC6tq+yk3liRJy+TIqCRJk0iyYZLHtFOKtwLeztS3ypEkSV2Y6gqLkiTdla0K/B+wBc15ld8CvjCjLZIkaZZwmq4kSZIkaeicpitJkiRJGjrDqKSRlGTzJJVk6KcTJNk0yZIkKw9xn/dMcmKS65Ls02WZC5I8cXm3bTZJ8rokl7Xv790HrGuHJBdPV9tGSfuzd7+ZbscwJNkqye/an703TWO9X0vy39NVnyTNRoZRSSNheQarNjTc1gaQ65Kc094zc0JVtbCq5ra3yRiWPWhuw7F2Vb19/Mrl/YttGu9Mcm6SG5IsTPKRye4XOk373CvJwVNvOW37WwX4FPDk9v1dNG79j5O8q+P1vdtQNtGyey3nth6f5FXLcx/9SPKiJGePW3bcJMveM9zW9e1dwPFVtVZVfXb8ylF9LyRpNjCMSrqruKSq5gJrA+8GvpTkgeM3momR2NZmwNk1cyfyf5YmEL+M5r6cTwOeSHPBnmk3Hf3cRx33BFanuQ/qRE4EOm/Z8njgzxMsO7eq/tHjvmeLE4AHJNkA/vUePBi427hlj6b/e7sO22ZM/pkYeTP4nSVJAzOMSppxSb4ObAoc1Y5evqtj9UvaUbork7y/o8xKSd6T5G9JFiU5LMl6U+2rGt8DrgYe2DEdePckC4GfjZ8inGS9JF9NckmSq5N8r6Mdz0jy+yTXJPllkgct4zi3S/KbJNe2j9u1y78G7Aa8qz3+J44rtwfwko71R3WsfkiSP7Z1Hppk9V7blmRLYE/gJVV1SlXdUlVnAc8Fnp5k+3a7O4wQJXl5kpM6Xu+b5KIki5OcnuRxHev2SnJEkoOTLAZeC7wPeEF7TH9ot5uX5IAklyb5e5L/Tjtdut3fyUk+neQqYK8JjmW1JJ9p36tL2uerJbk/cE672TVJfjZBV5wIPCbJ2P+NjwM+A2w7btkdQlaStye5vG3zKzqWr5bkk+3n97IkX0yyRrtu3SRHJ7mi/UwdnWTjdt2H2/18ru2bz030vo1rw32T/Kz9WbgyyTeSrNOx/oIk71jGZ+WdbfsvSfLKyfZTVZcA59GEcoCH0QS5E8YtWwk4ra177Of0uiRnJ/mPjv2unGSfts3nJ3nDuJ+9ZX0e7pfkhPZ4rkxy6DL655lJzmp/Fo5P8oB2+c+AHTv6+v5T9fW4eg9P8o+2DScm2XrcJuunGSW+rm3rZh1lJ/w+aNfdYaZIOmYRZILvrF7aLEmjxDAqacZV1UuBhcAu7fTJT3SsfiywFbAT8IGxXyKBNwHPphm12ogmXH5+qn2lCbH/AawDnNGxanvgAcBTJij2deBuwNbAPYBPt3U9DPgK8Brg7jS3ADkyyWoT7Hc94Ac0I5B3p5ku+oMkd6+qlwPfAD7RHv9PxvXP/uPW79KxegHwVJpbjzwIeHmvbaPp24ur6tfj9nsRcCrw5AnKTOQ3wEOA9YBvAod3Bh7gWcARNH1/APAR4ND2mB7cbnMgcAtwP+Ch7b47p0g+iiYM3QP48ARteD8wv23Hg4FHAv9ZVX+hef8A1qmqJ0xQ9tfAam05aMLVccBfxy3rDKP3AuYB9wZ2Bz6fZN123ceB+7dtuV+7zQfadSsBX6UZldsUuAH4HEBVvR/4BfCGtm/eMEFbxwvwUZqfhQcAm3DnsD7ZZ+WpwDuAJwFb0oyIL8uJ3B48H9+29aRxy06tqpva13+jCdfzgL2Bg5Ns2K57Nc0o/ENoQuyzx+1rWZ+H/wKOBdYFNgb2m6ixbcA8BHgLsAHwQ5o/fK3afg46+/ovUxz7eMfQ9Nk9gN/S/Jx2eknbzvWB34+tX9b3QQ/7XtZ3liStEAyjkkbd3lV1Q1X9AfgDt4eC1wDvr6qLq+pGml+8n5fJp6xtlOQamvMyPwi8tKrO6Vi/V1UtraobOgu1vzQ/DXhtVV1dVTdX1Qnt6lcD/1dVv6qqW6vqQOBGmjA03tNppnd+vR15PIRmCuguE2zbi89W1SVVdRVwFM0v9b22bX3g0knqv5TmF/gpVdXBVbWoPb59aILdVh2bnFJV36uq28b3MzQXcaLp67e078XlNMH/hR2bXVJV+7X7uFMdNL/8f6iqLq+qK2jCz0u7bP+NwK+Ax7dhYZ2qOo8mrIwteyDNKOCYm9v93VxVPwSWAFslCc178NaquqqqrqMJ3y9s97Woqr5dVde36z7MHacD96Sq/lpVx1XVje1xf2qC+ib7rCwAvlpVZ1bVUiYYcR6ncxT0cTT984txy/7VR1V1eLvf26rqUOBcmj8SjO173/bn+GrgY2Pluvg83EwT5jeqqn9W1b9G6cd5AfCDtn9uBj4JrAFsN8n2Xauqr1TVdR3fQQ9OMq9jkx9U1Ynt+vcDj06yCdPzfTDhd5YkrUg8z0DSqOs8N+96YG77fDPgu0lu61h/K815gX+foJ5LqmrjZeznokmWbwJc1f6iPN5mwG5J3tixbFWa0anxNgIuHLfsQprRskGM75+xfffStiuBDSdYTrv8b900JMnbaUatNgKK5vzc9Ts2mayPx2wGrAJc2mQ5oPmjaWe5qeoY388XMvExT2Zs1O8CmtE+2sdXtMsuqqrO+hdV1S0dr8c+oxvQjKaf3nEsAcammN6NJlg9lWZkD2CtJCv3c+GsJPegGWV7HM05vyvRzBboNNlnZSPg9I514z+n450IHNCOAM+nmd69JMmG7bLH0kxvHmvby4C3AZu3i+Zy++diIyZ/f6f6PLyLZtTx10muBvapqq9M0N47fCaq6rYkFzHgz147XfjDwPNp3u+x76L1gWvHH0/bR1e17ZmO74OpfhYkaeQ5MippVPR64Z6LgKdV1Tod/1avqomC6CD7vwhYr/P8u3HrPjyuDXdrRznGu4Tml+tOmzJxcO6lfZPppW0/AzZJ8sjOhe0IznxuH+VaShOwxtyrY9vH0VwYagGwblWtQ/MLeTq2H38M419fRDN6u35Hm9euqq2XUWa88f28abusWyfSBLqx6acAJwOP4c5TdJflSpqpt1t3HMu8ai6iBfB2mlHjR1XV2tw+qjjWX72+3x9tyzyorW9X7tj3y3IpzR9dxmy6rI3b0eJLaC54tbCqlrSrTmmXzaWZ3k17juSXgDcAd28/F2d2tO1Smim2YzrbsczPQ1X9o6peXVUb0cyU+EImvh3NHT4T7aj1JnT/szeZF9NMPX8izRTkzcd2MdHxJJlLM4X9kvFtanV+H0z6s9Zhpi52JknTxjAqaVRcBtynh+2/CHx47IIgSTZI8qzpblRVXUpzXtgX0lx0ZpUkY8HhS8BrkzwqjTWTPD3JWhNU9UPg/klenGROkhfQTPk8usum9No/XbetPU/ui8A3ksxPc1GZrYFvA78Exs5h/T3wnCR3a3/p372jmrVozu27ApiT5AM0I6NTHdPmaS8O1Pb1scA+SdZuz++9b9oLKHXpEOA/28/D+jTnaPZy+5hf0pzTuittGG1Hxa9ol3UVRqvqNpr34NPtqOXYbWHGzu9biyasXtNO//3guCru9H63F97Za5JdrkUzRfiaJPcG3tlNO1uHAS9P8sB2xHZ8WybyC5rRzl90LDupXXZax9TRNWlC0xXtMbwC2Gbcvt/c9s06NH/QAKb+PCR5ftqLPtGMAhfN7IiJju/pSXZKc3uft9OE3F92cZxj5iRZvePfKjR9fiOwiCY4fmSCcjsneWyaWyT9F/Cras7Fnur74PfAC9vvm22B5/XQVklaYRhGJY2Kj9KEiGuSvKOL7fcFjgSOTXIdzUjMo5ZT215Kc37an4HLaS6EQlWdRnNe4Odofhn+K+1FYcar5p6Wz6D5RXgRzRTDZ1TVlV224QCaq/9ek46r+U6ml7a13gB8mSa4XU8zenUh8Ow2WEEzrfQmmqB0IHe8WMuPaUL7X9py/2TqaYSHt4+Lkvy2ff4ymunEZ7ftPoLJpxBP5L9pruL6R5oLVP22XdaVqrqeZsrqajR9MOYXNBep6eV2Je+m6fdT01xB+Cfcfg7tZ2jOW7yS5rP7o3Fl96U5B/rqJGP3vtyEZpR2InvTXADoWpoL43yn20ZW1TFte37Wtrebq7OeQNMfnedp3qmPqupsYB+aUdPLgH8fdwxfogmcfwR+RxPSbuH2ULmsz8MjgF8lWULzXfDmqjp/guM7h+YPCfvR9PcuNBdLu2n8tsvwvzR/PBj791XgIJrP+t/b9p06Qblv0oT7q4CH05zT3M33wf8D7tse895tPZI066Rm7JZ2kqRRleRDNFc2fXxVXTPT7bmra0cAD6+qR890W5anJE8DvlhV46ewSpJmIcOoJGlCSd4A/LWqxo/aSdMizX1Xd6QZHb0nzdTwU6vqLTPaMEnSUBhGJUnSjGjPUT0B+Dea6a8/oJluu3hGGyZJGgrDqCRJkiRp6LyAkSRJkiRp6AyjkjTCklyQ5InLqe69kvRy25ORkKQmuZ9kN2X/O8mVSf4x3e2SJEm9MYxK0l1Akh2SXLyc6n50ksVJVu5Y9qVJln1xebShG0k2obmVxgOr6l4zsP9VkxzR/oGhkuwwbv1eSW5OsqTj3/h7jb45yflJlib5U5L7t8t3SHLbuLK7LaMtA/2RI8l/JTkjyS0T3fs0yRvbdi5OclqSx3as+2SSc5Ncl+TPSV42ruz+Sc5pj+fl/bZRkjT6DKOSpEGdBqxMc5/LMY8DLhm37PH0dp/O6bYZsKiqLp9oZZI5Q2jDSTT3vJxsZPbQqprb8e+8jva9CtgdeDowl+Y+lZ33qb1kXNkDl9MxQHM/0nfRXHDoDpI8CvgY8DxgHs09cr/b8YeJpTT3+pwH7Absm2S7jir+AOxJc49YSdIsZhiVpNH3iCRnJ7k6yVeTrA6Q5Mwku4xtlGSVdgrqQzoLJ1kTOAbYqGPUbKN29apJDmpHqc5Ksm1HuY2SfDvJFe0o15smalxV3QycShM2SXIPYFXg0HHL7k8bRpPMS3JAkkuT/L2dPts5ivrKduTv6iQ/TjLhfSeTPDbJRUl2XFYHtqOAx3X0wdeSbN6OUO6eZCHws3bbZ7Z9cU2S45M8oKOeC5K8M8kf29HJA5LcM8kxbR/+JMm6k/TTTVX1mao6Cbh1We2doP0rAR8E3lpVZ1fjb1V1VS/1tHV9HdgUOKrti3dNddwTHMuBVXUMcN0EqzcHzqqq06u5SuJBwPrAPdqyH6yqP1fVbVX1K+AXwL/un1pVn6+qnwL/7PXYJEkrFsOoJI2+lwBPAe5LE+j+s11+EM0o25idgUur6vedhatqKfA07jhydkm7+pnAt4B1gCOBz8G/ws9RNKNU9wZ2At6S5CmTtPFE2uDZPp7U/utcdn5VjU0VPhC4Bbgf8FDgycCr2n0/G3gf8BxgA5qwcsj4HbZtOQR4blX9fJJ2jfXBT8b1wcs7Vm8PPAB4Sjvt9RDgLe2+f0gT2lbt2P65wJNo3otdaIL++2gC10rAhKG9S7skuaoNha/rWL5x+2+bNnyfn2Tv9n0ac48kl7XrPt3+EeJOquqlwEJgl7YvPtHlcXfrGGDlJI9q/8DwSuD3TDAanOY+o48AzupjP5KkFZxhVJJG3+eq6qJ2FOzDwIva5QcDOydZu339UuDrPdZ9UlX9sKpubcs+uF3+CGCDqvpQO6J3HvAl4IWT1HMC8NgkoZmi+wvgFGB+x7ITAJLckyYYvqWqlrbTZj/dUfdrgI9W1Z+q6hbgI8BDxo2OPh/YH9i5qn7d4zGPt1fbjhuAFwA/qKrj2hHfTwJrAJ3TSPerqsuq6u/tcf6qqn5XVTcC36UJ1/04jCYUbwC8GvhAkrH3euP28cnAvwM70nwOdm+X/xl4CLAh8ATg4cCneth3N8fdreuAb9P8MeJGmhHdPWrie8l9keYPHj/uYz+SpBWcYVSSRt9FHc8vBDYCaEc3Twaem2QdmoD3jR7r7hytuh5YvT13cjOaKa3XjP2jGf275yT1nEpzHuM2NKOgv6iqJW3bx5aNnS+6GbAKcGlH3f9HO42zXb9vx7qrgNCM0I55C3BYVZ3R4/FOpLN/N6LpYwCq6rZ2fee+L+t4fsMEr+f204h2+u0lVXVrVf0S2JfmvMuxegE+UVXXVNUFNH22c1v2H23526rqfJrzOZ9H97o57m69imY0dGua6dq7Akd3TA0HIMn/0Hw2FkwSVCVJs9wwLtYgSRrMJh3PN6W5MNCYA2l++Z8DnNKO1k2k11/2L6KZVrtlNxtX1T+T/IbmojobVtWf21W/aJc9iNvD6EU0I2brtyOfE+37w1W1rGD9fOCAJH+vqs9008ZlNb/j+SU0I48AtKO6mwCT9evyVDQhHOAc4Ca6fx87y062vtN0HveDgaOq6i/t6x8luZRmlPWItv69af54sn1VLe5jH5KkWcCRUUkafa9PsnGS9WhGJw/tWPc9mivWvpnmHNLJXAbcPcm8Lvf5a2BxkncnWSPJykm2SfKIZZQ5kWbE8pcdy05ql/2jqv4GUFWXAscC+yRZO8lKSe6bZPu2zBeB9ybZGv51saPnj9vXJTTnsb4pyZ5jC9sL7+zV5TFO5DDg6Ul2SrIKza1gbhx3TH1LslraC1DRXDxq9Tb4keRZSdZN45E0555+H6Cqrqd539+VZK0kG9NM5T26LbtDkk3bspvQXM32+8toymVA521jejruNBfLWp3m94g57XGMXYDqN21d92nbM3Z+7Zlt2fcCLwaeVFWLJqh71bbuAKu0dfv7iiTNQn65S9Lo+yZNeDuv/fffYyva8xy/DWwBfGeyCtqRykOA89rprxtNtm27/a00F+d5CHA+zS1EvkxzO47JnEAz1fakjmUntcvG39LlZTRTOM8GrqYZMduw3fd3gY8D30qymCbEPG2CNi6kCaTvTnPbE2hG805e1rEtS1WdQzOtdD+aY96F5kI/N/Vb5zjn0Ey5vTfNeZI30ExLhuac2b/SnHN5EPDxcbdneQOwhCaIn0LzufhKu+5h7bKlNAHyTJZ9IaWPAv/Zfhbe0cdxf6lt+4uA97fPX9quO4jmoljHA4uBzwKv6Rgt/wjNCP+5uf3qzu/rqPvYtr7taM4LvoHbL4QlSZpF4mkakrRiS/IB4P5VteuUG89i7Wjh4VX16Ck3liRJM84wKkkrsHbq7u+Al1bV+NFHSZKkkeU0XUlaQSV5Nc3Ffo4xiEqSpBWNI6OSJEmSpKFzZFSSJEmSNHSGUUmSJEnS0M2Z6QYArLTSSrXGGmsMVMdtt93GSiv1n61X9PKj0IZbb72VlVdeeeoNl2MbZrr8KLRhpsuPQhs8BvtgVNow6PfibOgDj2E02jDT5UehDR7DaPSB34vTX/7666+vqloxBxmrasb/rbbaajWon//853fp8qPQhqOOOmqg8tPRhpkuPwptmOnyo9AGj8E+GJU2DPq9OBv6wGMYjTbMdPlRaIPHMBp94Pfi9JcHltYIZLp+/q2YCVqSJEmStEIzjEqSJEmShs4wKkmSJEkaOsOoJEmSJGnoDKOSJEmSpKEzjEqSJEmShs4wKkmSJEkaOsOoJEmSJGnoDKOSJEmSpKEzjEqSJEmShm7KMJrkK0kuT3Jmx7L1khyX5Nz2cd2Ode9N8tck5yR5yvJquCRJkiRp2UY5z3UzMvo14Knjlr0H+GlVbQn8tH1NkgcCLwS2bst8IcnK09ZaSZIkSVIvvsaI5rkpw2hVnQhcNW7xs4AD2+cHAs/uWP6tqrqxqs4H/go8cpraKkmSJEnqwSjnuVTV1BslmwNHV9U27etrqmqdjvVXV9W6ST4HnFpVB7fLDwCOqaojJqhzD2APgDlz5jz8uOOOG+hAlixZwty5c++y5UehDddeey3z5s3ru/x0tGGmy49CG2a6/Ci0wWOwD0alDYN+L86GPvAYRqMNM11+FNrgMYxGH/i9OP3ld9xxx5uAMzo22b+q9u8sszzy3LSoqin/AZsDZ3a8vmbc+qvbx88Du3YsPwB47lT1r7baajWon//853fp8qPQhqOOOmqg8tPRhpkuPwptmOnyo9AGj8E+GJU2DPq9OBv6wGMYjTbMdPlRaIPHMBp94Pfi9JcHltYM57l+//V7Nd3LkmwI0D5e3i6/GNikY7uNgUv63IckSZIkafqNRJ7rN4weCezWPt8N+H7H8hcmWS3JFsCWwK8Ha6IkSZIkaRqNRJ6bM9UGSQ4BdgDWT3Ix8EHgY8BhSXYHFgLPB6iqs5IcBpwN3AK8vqpuXU5tlyRJkqSeLFy4kD333LPv8gsWLJjG1ix/o5znpgyjVfWiSVbtNMn2HwY+PEijJEmSJEmDG+U81+80XUmSJEmS+mYYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSR7Oph7AAAgAElEQVRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQNnWFUkiRJkjR0hlFJkiRJ0tAZRiVJkiRJQ2cYlSRJkiQN3ZyZboAkSZIkdWPhwoXsueeeA9Uxf/78aWqNBjXQyGiStyY5K8mZSQ5JsnqS9ZIcl+Tc9nHd6WqsJEmSJKl7o5zZ+g6jSe4NvAnYtqq2AVYGXgi8B/hpVW0J/LR9LUmSJEkaolHPbIOeMzoHWCPJHOBuwCXAs4AD2/UHAs8ecB+SJEmSpP6MbGZLVfVfOHkz8GHgBuDYqnpJkmuqap2Oba6uqjsN+ybZA9gDYM6cOQ8/7rjj+m4HwJIlS5g7d+5dtvwotOHaa69l3rx5fZefjjbMdPlRaMNMlx+FNngM9sGotGHQ78XZ0Acew2i0YabLj0IbPIbR6INBvxcXLVrE0qVL+y4PsOaaaw5Ux3rrrTdS7+OOO+54E3BGxyb7V9X+Yy8GyWzLW98XMGrnFT8L2AK4Bjg8ya7dlm87aH+A1VdfvXbYYYd+mwLA8ccfzyB1rOjlR6ENRx999Ap/DLPhfZjp8qPQBo/BPhiVNgz6vTgb+sBjGI02zHT5UWiDxzAafTDo9+JBBx3Eqaee2nd5aC5gNEgdCxYsGLX38Zaq2naibQfNbMvbINN0nwicX1VXVNXNwHeA7YDLkmwI0D5ePngzJUmSJEk9GunMNkgYXQjMT3K3JAF2Av4EHAns1m6zG/D9wZooSZIkSerDSGe2vqfpVtWvkhwB/Ba4BfgdzbTbucBhSXanOfjnT0dDJUmSJK3YbrzxxoHuE+o9Qnsz6pmt7zAKUFUfBD44bvGNNIlbkiRJkjSDRjmzDXprF0mSJEmSemYYlSRJkiQN3UDTdCVJkiTprmThwoUDnfe6YMGCaWzNis2RUUmSJEnS0BlGJUmSJElDZxiVJEmSJPUsyZuTrJ3GAUl+m+TJ3ZY3jEqSJEmS+vHKqloMPBnYAHgF8LFuCxtGJUmSJEn9SPu4M/DVqvpDx7IpGUYlSZIkSf04PcmxNGH0x0nWAm7rtrC3dpEkSZIk9WN34CHAeVV1fZK700zV7YphVJIkSVJXBr3H5k477TSNrdEIeEj7eJ/kX7Nzr00yp6pumaqwYVSSJEmS1I8vAA8D/khzrug27fO7J3ltVR27rMKeMypJkiRJ6scFwEOratuqejjwUOBM4InAJ6YqbBiVJEmSJPXj36rqrLEXVXU2TTg9r5vCTtOVJEmSJPXjnCT/C3yrff0C4C9JVgNunqqwI6OSJEmSpH68HPgr8BbgrcB57bKbgR2nKuzIqCRJkiSpZ1V1A7BP+2+8JVOVN4xKkiRJknqW5DHAXsBmdGTLqrpPN+UNo5IkSZKkfhxAMz33dODWXgsbRiVJkiRJ/bi2qo7pt7BhVJIkSZLUj58n+R/gO8CNYwur6rfdFDaMSpIkSZL68aj2cduOZQU8oZvChlFJkiRJUs+qasrbtyyLYVSSJEmS1LUku1bVwUneNtH6qvpUN/UYRiVJkiRJvVizfVxrkEoMo5IkSZKkrlXV/7WPew9Sj2FUkiRJktS1JJ9d1vqqelM39RhGJUmSJEm9OH06KjGMSpIkSZK6VlUHTkc9hlFJkiRJUteSHEVzP9EJVdUzu6nHMCpJkiRJ6sUnp6MSw6gkSZIkqWtVdcJ01GMYlSRJkiR1LclhVbUgyRlMMF23qh7UTT2GUUmSJElSL97cPj5jkEoMo5IkSZKkrlXVpe3jhYPUs9L0NEeSJEmSdFeS5DlJzk1ybZLFSa5Lsrjb8o6MSpIkSZL68Qlgl6r6Uz+FHRmVJEmSJPXjsn6DKDgyKkmSJEnqQZLntE9PS3Io8D3gxrH1VfWdbuoxjEqSJEmSerFLx/PrgSd3vC7AMCpJkiRJml5V9YrpqMdzRiVJkiRJXUvy6iRbts+T5CvtFXX/mOSh3dZjGJUkSZIk9eLNwAXt8xcBDwbuA7wN+Gy3lRhGJUmSJEm9uKWqbm6fPwM4qKoWVdVPgDW7rcQwKkmSJEnqxW1JNkyyOrAT8JOOdWt0W4kXMJIkSZIk9eIDwGnAysCRVXUWQJLtgfO6rcQwKkmSJEnqWlUdnWQzYK2qurpj1WnAC7qtxzAqSZIkSepJVd0CXD1u2dJe6vCcUUmSJEnS0BlGJUmSJElD5zRdSZIkSVJfktwb2IyObFlVJ3ZT1jAqSZIkSepZko/TXLDobODWdnEBhlFJkiRJ0nLzbGCrqrqxn8KeMypJkiRJ6sd5wCr9FnZkVJIkSZLUj+uB3yf5KfCv0dGqelM3hQ2jkiRJkqR+HNn+64thVJIkSZLUs6o6cJDyhlFJkiRJUteSHFZVC5KcQXP13Duoqgd1U49hVP+ycOFC9txzz77L77zzztPYGkmSJEkj6s3t4zMGqcQwKkmSJEnqWlVd2j5eOEg93tpFkiRJkjR0hlFJkiRJ0tAZRiVJkiRJPUvy5m6WTcYwKkmSJEnqx24TLHt5t4W9gJEkSZIkqWtJXgS8GNgiyZEdq9YCFnVbj2FUkiRJktSLXwKXAusD+3Qsvw74Y7eVGEYlSZIkSV1rb+lyIfDoQerxnFFJkiRJUs+SzE/ymyRLktyU5NYki7stbxiVJEmSJPXjc8CLgHOBNYBXAft1W9hpupIkSZKkvlTVX5OsXFW3Al9N8stuyw40MppknSRHJPlzkj8leXSS9ZIcl+Tc9nHdQfYhSZIkSerPcs5s1ydZFfh9kk8keSuwZreFB52muy/wo6r6N+DBwJ+A9wA/raotgZ+2ryVJkiRJw7c8M9tLaTLlG4ClwCbAc7st3Pc03SRrA4+nvalpVd0E3JTkWcAO7WYHAscD7+53P5IkSZKk3i3vzFZVFyZZA9iwqvbutfwgI6P3Aa6gmRf8uyRfTrImcM+qurRt3KXAPQbYhyRJkiSpP8s1syXZBfg98KP29UOSHNl1+arqZ78k2RY4FXhMVf0qyb7AYuCNVbVOx3ZXV9Wd5iAn2QPYA2DOnDkPP+644/pqx5glS5Ywd+7cu2z56ahj0aJFLF26tO/y8+bNY968eX2Xh5nvx1F4H1b08qPQBo/BPhiVNlx77bUDfS/Ohj7wGEajDTNdfhTa4DFMTx8M+vvi2muvzeLFXd/5407WXHPNgfY/HXUMWn699dab1vdxxx13vAk4o2OT/atqfxg8s00lyenAE4Djq+qh7bI/VtWDuik/yNV0LwYurqpfta+PoJlrfFmSDavq0iQbApdPVLjtoP0BVl999dphhx0GaAocf/zxDFLHil5+Ouo46KCDOPXUU/suv/POO8/4Mcx0+VFow0yXH4U2eAz2wai04eijj77L94HHMBptmOnyo9AGj2F6+mDQ3xd32mmngcrPnz9/oPLTUceg5RcsWDDd7+MtVbXtJJsPlNm6cEtVXZukr8J9T9Otqn8AFyXZql20E3A2cCSwW7tsN+D7/e5DkiRJktSfIWS2M5O8GFg5yZZJ9gO6vrXLoPcZfSPwjfZyvucBr6AJuIcl2R1YCDx/wH1IkiRJkvqzPDPbG4H3AzcChwA/Bv6r28IDhdGq+j0w0ZDwToPUK0mSJEka3PLMbFV1PU0YfX8/5QcdGZUkSZIk3QUluT/wDmBzOrJlVT2hm/KGUUmSJElSPw4Hvgh8Gbi118KGUUmSJElSP26pqv/tt7BhVJIkSZLUtSTrtU+PSrIn8F2aixgBUFVXdVOPYVSSJEmS1IvTx71+Z8fzAu7TTSWGUUmSJElS16pqi+moxzAqSZIkSepakj8AJwG/BE6uqgv6qWel6WyUJEmSJGnWewnwB+BJwLFJ/p7k8CRvTfKobitxZFSSJEmS1LWqOhM4E9gfIMn6wAuBtwCfBFbuph7DqCRJkiSpa0lWBh4KbAc8Brgv8Hea+42e0m09hlFJkiRJUi8WA38CPg+8p6rO76cSw6gkSZIkqRevAh7dPr4iyW9oRkRPqaq/d1uJYVSSJEmS1LWqOgQ4BCDJ3YBH0kzX/WiSVatqs27qMYxKkiRJknqSZE3gUdx+3ugjgIuAk7utwzAqSZIkSepakt8BmwJj03P3AU6tqiW91GMYlSRJkiT1YjfgjKqqQSoxjEqSJEmSulZVf5yOelaajkokSZIkSeqFYVSSJEmS1LUkz28ftxikHqfpSpIkSdKQLFy4kD333HPCdV/4wheG3Jq+vRc4HPg28LB+KzGMSpIkSZJ6sSjJz4Etkhw5fmVVPbObSgyjkiRJkqRePJ1mRPTrNLd16YthVJIkSZLUtaq6CTg1yXZVdUWStZrF3mdU0gpuWedSdGPBggXT2BpJkiRN4p5JjgXWA5LkCmC3qjqzm8JeTVeSJEmS1I/9gbdV1WZVtSnw9nZZVwyjkiRJkqR+rFlVPx97UVXHA2t2W9hpupIkSZKkfpyX5P/RXMgIYFfg/G4LOzIqSZIkSerHK4ENgO+0/9YHXtFtYUdGJUmSJEk9q6qrgTf1W96RUUmSJEnS0BlGJUmSJElDZxiVJEmSJPUkycpJ3jpIHYZRSZIkSVJPqupW4FmD1OEFjCRJkiRJ/Tg5yeeAQ4GlYwur6rfdFDaMSpIkSZL6sV37+KGOZQU8oZvChlFJkiaxcOFC9txzz77L77zzztPYGkmSRktV7ThIec8ZlSRJkiT1LMk9kxyQ5Jj29QOT7N5tecOoJEmSJKkfXwN+DGzUvv4L8JZuCxtGJUmSJEn9WL+qDgNuA6iqW4Bbuy3sOaPTZNDzihYsWDCNrZEkSZKk5W5pkrvTXLSIJPOBa7stbBiVJEmSJPXjbcCRwH2TnAxsADy/28KGUUmSJElSP84Ctge2AgKcQw+ngnrOqCRJkiSpH6dU1S1VdVZVnVlVNwOndFvYkVFJkiRJUteS3Au4N7BGkofSjIoCrA3crdt6DKOSJEmSpF48BXg5sDGwD7eH0cXA+7qtxDAqSZIk3QUMevcHgPnz509Ta7Qiq6oDk3wdeFFVfaPfejxnVJIkSZLUk6q6DXjNIHU4MjqLDPrXLv/SJUmSZqvpGBX0vvDSnRyX5B3AocDSsYVVdVU3hQ2jkiRJkqR+vLJ9fH3HsgLu001hw6gkLQeD/gXev75LkqRRV1VbDFLeMCpJkiQNgX+o1GyUZBvggcDqY8uq6qBuyhpGJUmSJEk9S/JBYAeaMPpD4GnASUBXYdSr6UqSJEmS+vE8YCfgH1X1CuDBwGrdFjaMSpIkSZL6cUN7i5dbkqwNXE6XFy+CWTRN1zn4UsOfBUmSJA3JaUnWAb4EnA4sAX7dbeFZE0YlSZIkScNTVWMjIF9M8iNg7ar6Y7flDaOSJEmSpJ4lefxEy6rqxG7KG0YlSZIkSf14Z8fz1YFH0kzXfUI3hQ2jkiTNYp5HLk2fQX+e5s+fP42tkWZeVe3S+TrJJsAnui3v1XQlSZIkSdPhYmCbbjd2ZFSSJEmS1LMk+wHVvlwJeAjwh27LG0YlSZIkSf04reP5LcAhVXVyt4UNo5KkCXmuoaRR4vma0kg6HLhf+/ycqrqxl8KeMypJkiRJ6lqSVZJ8BrgI+CpwIHBekve06x/aTT2OjEqSJEmSerEPcDdg86q6DiDJ2sAnk/wv8FRgi6kqMYxKkiRJknqxM7BlVY1dvIiqWpzkdcCVwNO6qcQw2vI8BGn2GPTnGTzfUZI0evx9VSPkts4gOqaqbk1yRVWd2k0lnjMqSZIkSerF2UleNn5hkl2BP3VbiSOjI2I6RnL8a5ckSZKkIXg98J0krwROp7nX6COANYD/6LYSw6gkSZIkqWtV9XfgUUmeAGwNBDimqn7aSz0jEUarylFBSZIkSVqBVNXPgJ/1W37gc0aTrJzkd0mObl+vl+S4JOe2j+sOug9JkiRJUn9GNbNNx8jom2lOUl27ff0e4KdV9bH2pqfvAd49DfuRpKHxioWSJGkWGcnMNtDIaJKNgacDX+5Y/CzgwPb5gcCzB9mHJEmSJKk/yzuzJdksyRPb52skWavrshPcHqaXHR8BfBRYC3hHVT0jyTVVtU7HNldX1Z2GfZPsAewBMGfOnIcfcMABfbcDYM0112Tp0qV32fKj0IZ58+Yxb968vssDLFmyhLlz566w5UehDYsWLRrofVxvvfVmvA8GPYbZ8PM06PswHZ/lmf4sjcIxzPT34ij0wSi8jzP9veoxjEYfzPTP83TUsaKXn4461l57bRYvXjxj+5+OOpZn+U033XTK8uN/lnbcccebgDM6Ntm/qvYfezFIZptKklfTZLr1quq+SbYEvlhVO3VTvu9pukmeAVxeVacn2aHX8m0H7Q+w2mqr1amndnVf1EnNnz+fQepY0cuPQht23nlndthhh77LAxx//PED1THT5UehDQcddNBA7+OCBQtmvA8GPYbZ8PM06PswHZ/lmf4sjcIxzPT34ij0wSi8jzP9veoxjEYfzPTP83TUsaKXn446dtpppxX+GJZn+Ze97E637ryTCX6WbqmqbSfadtDM1oXXA48EfgVQVecmuUe3hQc5Z/QxwDOT7AysDqyd5GDgsiQbVtWlSTYELh9gH5IkSZKk/izvzHZjVd2UBIAkc2juOdqVvs8Zrar3VtXGVbU58ELgZ1W1K3AksFu72W7A9/vdhyRJkiSpP0PIbCckeR+wRpInAYcDR3VbeHncZ/RjwGFJdgcWAs9fDvuQNMK8Eq2k6TTod8qCBQumsTWSNCtMV2Z7D7A7zTmrrwF+yB0vlLRM0xJGq+p44Pj2+SKgqxNWJUmSJEnL3/LIbFV1G/Cl9l/PlsfIqCRJkiRplkvyGGAvYDOabBmgquo+3ZQ3jEqSJEmS+nEA8FbgdODWXgsbRiVJkiRJ/bi2qo7pt7BhVJIkSZLUtSQPa5/+PMn/AN8BbhxbX1W/7aYew6gkSZIkqRf7jHu9bcfzAp7QTSWGUUmSJElS16pqR4Ak96mq8zrXJenq4kVgGJWkWWnQ+zKC93uVJElTOgJ42LhlhwMP76awYVSSJEmS1LUk/wZsDcxL8pyOVWsDq3dbj2FUkiRJktSLrYBnAOsAu3Qsvw54dbeVGEYlSZIkSV2rqu8D30/y6Ko6pd96VprGNkmSJEmS7iIGCaJgGJUkSZIkzQCn6UqSJGmZpuMK3QsWLJim1kiaaUneXFX7JnlMVZ3cbz2OjEqSJEmSevGK9nG/QSpxZFSaZoP+9di/HGu28GdBkqRZ609JLgA2SPLHjuUBqqoe1E0lhlFJkiRJUteq6kVJ7gX8GHhmv/UYRiVJkiRJPamqfwAPTrIqcP928TlVdXO3dRhGJUmSJEk9S7I9cBBwAc0U3U2S7FZVJ3ZT3jAqSZIkSerHp4AnV9U5AEnuDxwCPLybwl5NV5IkSZLUj1XGgihAVf0FWKXbwo6MSpIkSZL6cVqSA4Cvt69fApzebWHDqCRJkiSpH68DXg+8ieac0ROBL3Rb2DCqkTLT9yUcdP8A8+fPn9E2zPT+p6MNkkbHTH8vS5JGV1XdSHPe6Kf6Ke85o5IkSZKkoTOMSpIkSZKGzjAqSZIkSepbkjX7Kec5o5pVZvp8S2m6+FkWeA73qJiO98FzZyXNRkm2A74MzAU2TfJg4DVV1dWXpiOjkiRJkqR+fBp4CrAIoKr+ADy+28KGUUmSJElSX6rqonGLbu22rNN0JUmSJEn9uKidqltJVqW53+ifui1sGJUkSZrlRuE89FFog6Rp91pgX+DewMXAscDruy1sGJUkSfr/7d15dFxnnebx51dV2qWSJWuxLUte5Ti2TJxO4jhhS5wQSIZhSwPp7mGZ6YaBpnsGzpw+DX166IaGOQzd080ydAZDMhACgQBhb4YdQiDeZMdJ7NiOndiJVNoXa5dKVe/8UbfKVVJ5U0lVJfn7OadO3e2993fLPtd58r73XgDAZXPO9Ur6k7m2555RAAAAAMBlM7Mvm9mypPkqM7v/UtvTMwoAAABgSfFHIlo2OqrlQ0OqHhnR8uFhVQ8Pa/nwsAaHh7WnoiLXJS4VL3HODcZnnHMDZnbtpTYmjAIAsEAmJye5Rw4AFkBBOKzqkZFEwKweHk4JnZWjo+cdAnry9Glp27ZslruU+cysyjk3IElmVq3LyJiEUQAAAAB5q3J0VBtDITWHQrr6Jz/RGzo6FBwfv2CbiPnUXr5c7ZW1aqusV3uwTu3BWk2VSS992Xrp2WezVP2S978k/d7MvuXNv1nSxy+1MWEUAAAAQN6oHh5Wsxc+N3Z0qO7s2VnbTPkC6gjWqD1Yp7bKuljYrIxNtwXr1FlRo2n/7KjTNHVG25eXE0bniXPuATM7IGmXJJP0Jufc0UttTxgFAAAAkBvOqfbs2Vj47OjQxlBIy0dGUjYZKSzRgYYt2te4Va0NV+vMspXqLq9S1OfPUdEws6Bzbsgbltsp6WtJ66qdc/2Xsh/CKAAAWDCZvltS4t5ZYElxTiv7+2PDbr3wuWxsLGWTs0Vl2te4VXsbW7SvsUVH6jcoQvDMN1+T9FpJrZJc0nLz5tdfyk4IowAAAAAWhEWjaujvjw25DYW05cGv6u7hoZRteksrtW/1Vu1t2qZ9jVt1rHatnPEGynzmnHutmZmkVzrnXpjrfgijAAAAAOaFLxpVY0+Pmjs61BwKaUNHh0qnplK26Syv1t7GWPDc07hNp5avlsxyVDHmyjnnzOw7kq6b6z4IowAAAADmxB+JaE13d+JhQxs6O1UcDqds0xas096mFu3xht2eWbaS8Ll07DGzG5xz++fSmDAKAAAA4JL4p6a0qb098aqVdV1dKoxEUrZ5rmpV4n7PfY0taq+sy1G1yIJbJb3HzE5LGpV3z6hz7iWX0pgwCgAAAOD8nNO206e168kntfELX5B/ejpl9YnlTdrb1BILoKu3qrtieY4KRQ7cmUljwigAAECey/SpxDyRGHNhzmn7c8/pNa2tauzrkyRFZTpSt157G2Phc3/jVvWXVua4UmSbmRVLeo+kjZKeknSfc276wq1mI4wCAAAASLBoVNedOqXXtLZq1cCApNhDhz5/4936dsttGiouz3GFyANflhSW9FvFeke3SPqvl7sTwijmzeTkJO+SAzBveD8llhJ6NrEY+CIR3fDss3rNwYOqP3tWktReUat7b3qzvrntdk0GCnNcIfLIFufcNkkys/sk7ZvLTgijAAAAwBXMH4lo5/HjevXBg6oZHpYknVm2Qv+68816pGWXwv6CHFeIPJR4ZLJzbtrm+HRkwigAAABwBQpMT+vmY8d0x6FDqh4ZkSSdqm7Q5256i7635RZFfP4cV4g8do2ZDXnTJqnEm48/TTd4KTshjAIAAABXkIJwWC87elSvOnxYy0ZHJcWeiPvZm9+qH21+maKEUFyEc25e/pIQRgEAwJLG/ZpATGBiQrcfOqTbDx9WcHxcknS0bp0+c/M9+smmm+TMl+MKcaUhjAIAAABLmC8a1SuOHNHrvvIVFXvDcZ9Y2azP3nyPfrFhhzTH+/2ATBFGAQAAgCVqbVeX7nn0UTX19kqSDjRcrc/efI9+s+4PCKHIOcIoAAAAsMSUTE7qDXv26KVHj8onqS1Yq4/c/p/1s403EkKRNwijAAAAwFLhnG48flxvevxxVUxMKOzz6/M3vFGfufkejRcW57o6IAVhFAAAAFgCVvb3655HH1VzR4ckaU9ji/72jj/XyZqmHFcGpEcYBQAAABaxwnBYdx04oF1PPqlANKre0kr9j1v/kx7ZuoshuchrhFEAAABgMXJO15w+rTc/9piqR0YUlenB7Xfqk698h4aKy3NdHXBRhFEAAABgkVk+NKS3PPaYtp05I0l6qn6D/vaOP9fhVVfluDLg0hFGAQAAgEUiEInotiee0J0HD6pwelpDhaX6p1e8TQ9ee5eiPn+uywMuC2EUAAAAWARWHD2qv3n4Ya0YHJQkfe/qV+pju/5UPeXVOa4MmBvCKAAAAJDHVvX16a4DB/QHzz0nSTpV3aAPv+q9+t3a7TmuDMgMYRQAAADIQ409PbqztVXbn39ekjQRKNT/vukt2r3jbk0FCnJcHZA5wigAAACQR9Z2denO1tbEw4kmAoV66JpX6/M77lZnsCbH1QHzhzAKAAAA5IENoZDuam3V1W1tkqSxgiI9uP0ufWHHm9RTXpXj6oD5RxgFAAAAcsU5bWpv112trdoUCkmSRgpK9OXrXqv7bniD+ksrc1wgsHAIowAAAEC2OaerX3xRd7W2akNnpyRpqKhM//e61+n+61+nsyUVOS4QWHiEUQAAACBbnNO2M2d0Z2ur1nZ3S5IGiiv0xRveoAeue62Gi8pyXCCQPYRRAAAAYIGZc2o6cEC3fOtbaurtlUnoTMYAABxeSURBVCT1llbqCzveqAe336XRotIcVwhkH2EUAAAAWCCVo6O64cQJ3XT8uFYODEiSusqr9fkdd+tr21+tiYLiHFcI5A5hFAAAAJhHheGwrnn+ed144oQ2t7XJ55wkqb2iVv9n5916+CV3aDJQmOMqgdybcxg1s0ZJD0haISkqabdz7tNmVi3pG5LWSjot6S3OuYHMSwUAAADykzmn5lBINx4/rmufe07F4bAkacoX0C+ad+iRll369frrFPYX5LhSXEnyPbNl0jM6Lem/OecOmlmFpFYz+5mkd0r6hXPuE2b2QUkflPTXmZcKAAAA5Jf6gQHdePy4djz7rKpHRhLLW1dt1iMtu/TDzS/nybjIpbzObHMOo865Dkkd3vSwmT0jqUHS6yXd4m32ZUm/FmEUAAAAS0TZ+LiuP3lSN544kXgiriS9WFmvR7bequ9svVWnqxtyWCEQk++ZzZw3hj2jnZitlfSopBZJLzjnliWtG3DOVaVp825J75akQCBw3X333ZdRDWVlZRodHb1i2+dDDcFgUENDQ3NuPx815Lp9PtSQ6/b5UAPnwG+QLzVkel1cCr8B55AfNeS6fT7UkGl7XzisDceOqeGXv9Tqw4fli0QkScOFJfrR5pfrkZZd2r96i5z55nwMLLwbqiZ0z0bl7d/Fpqami7YfGRlReXl5Yv7WW2+dkvRU0ia7nXO7Z7abS2ZbaBk/wMjMyiV9W9L7nXNDZnZJ7bwfaLckFRUVuT179mRUx86dO5XJPhZ7+3yo4bbbblv057AU/hxy3T4fauAc+A3ypYZMr4tL4TfgHPKjhly3z4caLre9RaNq6OtTcyik5o4ObWpvV+nUlCQpYj79av11emTrLv20eacmC4rmXBeyq6urS6Mry/P27+Lb3/72i7b/9a9/rVtuuSV50bRz7voLtZlrZltoGYVRMytQ7KS+6px7xFvcZWYrnXMdZrZSUvf59wAAAADkni8SUVNvrzZ64XNDR0cifMYdrVunb2/dpe9vuUU95VnvRALmJJ8zWyZP0zVJ90l6xjn3z0mrvi/pHZI+4X1/L6MKAQAAgHkWiES0prs71vMZCmldZ6eKp6dTtnmxsl57G1sSnxeqVuaoWmBu8j2zZdIz+lJJb5P0lJk94S37G8VO6GEz+1NJL0h6c2YlAgAAAJnxT05qU1ubmjs61BwKaW1Xlwq9+z7jTlU3aG9ji/Y1tmhf41aFgnU5qhaYN3md2TJ5mu5jks432Pi2ue4XAAAAyIhzqh4Z0bquLq3t6tL6zk417d4t/4zwebymSXsbt3kBdKt6yqtzVDCwMPI9s2X8ACMAAAAglwrCYTX19Gh9V1cigC4bG0vZJirT0/UbEsFz3+qtGiitzFHFACTCKAAAABYT51QzNKT1Xuhc19Wl1X198kejKZsNFpfr0KqrdHDVZh1atVmHV23ScFFZjooGkA5hFAAAAHnLH4loXVeXWn7wA23fv1/rurpUMTGRsk3EfDpSt16HVl2lQ6s262DDZj1ftUrKk9dXAEiPMAoAAID84ZxW9vfr6rY2bW5rU3MopKIZT7ntKV2mQw2bvfB5lZ5c0ayxwpIcFQxgrgijAAAAyKng6Kg2t7Xp6rY2XdXWNut+z2M1a7SnaZsONmzWwVWb1VZZT68nsAQQRgEAAJBVheGwmkMhbfZ6Pxv6+1PWd5dV6bdrt+uxtdfqsbXbecotsEQRRgEAALCgLBrV8lOn9JrWVm1ua9P6zk4Fkh44NFZQpD2N2/S7tdv127XbdaJmDT2fwBWAMAoAAIB5Y9Go6s6eVWNPj5p6e9XY06PG3l6VTk0ltomYT0+s3KTfej2fBxs2K+wvyGHVAHKBMAoAAIA58UWjWjEwkBI8V/f2qnjGA4ck6cyyFXps7Xb9du21+v2aazRUXJ6DigHkE8IoAAAALioQiWhlf7+aenoSvZ0NfX0qjERmbdteUasjKzbo6fpzn+6K5TmoGkA+I4wCAADgHOdUNTqqlX19WtXfr1X9/dr0ox/pj9vaUu7zjDuzbIWert+gI/Ub9NSKjTpSv0H9pZU5KBzAYkMYBQAAuEKVj40lAueq/n6tHBjQqv5+lSTd3xkXlelU9Wo95fV4HqnfqCP16xluC2DOCKMAAABLXMHoqNZ3dJwLnF6vZ8XERNrt+0qCOlG7Rsdr1uhE7RqdqGnSM7XrNFpUmuXKASxlhFEAAIBFrnhqStXDw6oeHtZy77t6ZCQxHRwfT9tuqLBUz9Y06XjtGp2oWZP47itbluUzAHAlIowCAADkM+dUNDysxp6eRLhMCZxDQymvTUlnPFCkZ2saY8Gz5lzw7Kio4X2eAHKGMAoAAJBD5pwqxsbOhcykHs34J92rUpKNB4rUHqxVe2Wd2irr1B6MfbcF69VeWavu8mo582XpjADg0hBGAQAAFpAvGlVZX582hkIpvZnVIyOJ+YI0r0dJNlRYOitotgfrvGX16i8J0sMJYNEhjAIAAMyBPxJRcHxcwdFRVY6NqXJsLHXa+64YG5PfuQvuq68kqPa0QTM2zRNrASxFhFEAAABJck7F4bDKJiZUOjmp8okJlU1MaPPQkOqPHk2Ey8rRUQXHxs77JNp0usqrY8Nog7GezPbKOrV5wTMUrNVYYckCnhgA5CfCKAAAWHICkYhKvTBZf+yYtj/33KyQGf+UTk7GpicnFYhGL/kYEfOpt2yZusuq1F1enfjuSZruLq9ST1mVwv6CBTxbAFicCKMAACBvWTSqopER1Q0OqnRiQuXx4JgmWJYmrbvYA3/OZ7SgWIPFFRosqdBASYUGS4LqLwmqu7xK3WVeuCyvVndZtfpKg4r6/PN8xgBw5SCMAgCAnAlEIqryHuST7rUly0ZGLnq/ZTphnz8RKpPD5UBJMDYdX+ctGyiu0NmSCk0GChfgLAEA6RBGAQDAgglMTmpFf38sZMafHpsUOINjY7rYC0eGisq8IFmhweKgBkvKY6GyON57WeFNBzVQEguVw4WlPF0WAPIcYRQAAGTMnFPN0JAaenu1uq9PDX19Wt3Xp+X33nvBdhHzqa1iudor69U28wE/lXXqqKjVVID7LQFgKSKMAgCAy1IUDmuVFzbj4XNVf7+Kw+FZ2075AmqvjIXMxGtLEq8wqVdnxXJFuO8SAK5IhFEAAJCecyrr7dW2559P6e2sOXs27dDazvJqPVO3Tsdq1+mZunU6WrdOz1c3EDYBAGkRRgEAgAqmp7Wqvz9lmG1DX59Kp6ZmbTvlC+hkTWMscHrB81jdOvWXVuagcgDAYkUYBQDgSuKcKkdHtTo+zLavT6t7e1V39qx8aZ5a21taqWe8wBn/nFq+mvdmAgAyRhgFAGCJCkQiqjpzRjceO5YyzLZ8YmLWttPm07M1jYkhtvFhtj1lVTyVFgCwIAijAAAsEYXhsNZ3dmpjR4eaQyGt7epSQTQ6a7vB4vJY4Ey6t/NkTRPv2AQAZBVhFACARap4clIbOjvVHAppY0eH1vT0yD8jfJ6qbpg1zLajoobeTgBAzhFGAQBYJMomJrSxo0MbQyE1h0Ja3deXcp9nxHw6vKJZextbtK+xRftXb9HZkoocVgwAwPkRRgEAyFPFZ8/q2lOn1OyFz4b+/pT1U76AnlzVrH2NW7W3cZtaG67WSFFpjqoFAODyEEYBAMgTy0ZGEkNum0MhrRgcTFk/6S/QoVVXaW/jNu1t3KqDDZs1UVCco2oBAMgMYRQAgFxwTsuHhxO9nhs7OlQ7NJSyyVhBkQ40bPF6Plv05MpNPGQIALBkEEYBAMgG51Q3OKhmr9ezORRS1ehoyiZDhaU6sHqL9ja1aN/qFj21YqOm/fxTDQBYmvgXDgCABWDRqIJnzugVTz8d6/kMhVQ5Pp6yzUBxhfY1btW+xhbtaWzRM3XrFPX5c1QxAADZRRgFAGAO/JGIqkZGVD08rOqRES0fGop9Dw+renhYVaOjs16z0lO2THtXt8R6PhtbdKKmSc58OToDAAByizAKAEAaBdPTCoZCuvqFF9KGzcrRUV0sRrYFa7V/daznc29ji56rbuD9ngAAeAijAIArUvHUVCJYxj/LvV7O6uFhBWcMqZ0pYj61ly9Xe2Wt2irr1R6sU3uwVu2VdWqrrFcoWMvDhgAAuADCKABg6XFO5RMTqn7+eW0/dSqlRzMeOkunpi64iylfQB3BGrVV1nlBMxYy2ytr1RasU2dFDQ8XAgAgA/wrCgBYNCwaVcX4uCrHxlQ5OqrKsTEFZ05734EZ92vONB4oSurJjIfNOrUFY4Gzp6yKhwkBALCACKMAgJwx51Q8NaWyiYnEp3xyUqUTE9rc3q4NJ06khMyK8XH5nLukfZ8tKlMoWJsSNNuDdYlhtP0lQe7fBAAghwijAIB5UTA9nRIqm/bvV+DIkdj85OS5dUnTpZOT8l9iuIzrLa1UT1mVusur1V1Wre7y2HRX0nxPWZUmC4oW6EwBAMB8IIwCACTn5ItGFYhG5Y9GVRCJKBgKaX1HxwXDZPJ0YSQyp0MPF5ZosCSogZIKDRZXaKAkqMGScg2UBFMDZ1m1esuWcZ8mAABLBP+iA8A88UWjKpieVuH0tEr7+1U9PCzzQp7fOVk0Kp9ziU/K/Ix1jYWFmjx1SoFIJPaJRuWfOR2NKhCJyD/jOxCJqObxx3V9X19iPnmd3wudgUgksR9/JHLR15RczKQ/EAuVxRUaLImFyoGSCp0trtBASewzWBLUYHG5Fzhj4ZNwCQDAlYn/AgCwuDgXC3gXCHWl/f1aPjSkgqSwNTN4zQxyMwPfmjNn1PTCCyqcnlbB9LQKIpHE9Kxvb50/+YE5X/6y/jDDU701w/aXa9p8CvsLFPYHNOkv0HBRaSIwxoNkukA5UFKhgeKgxguKuAcTAABcMsIosNTEe+LSfHxe2Eq3Lj48M94jF+/N8yW39UJf8v6S5+PLVh49qubOzvTHn3lcr57kdUUPPqg3TU2lDZyXdH/hAw9kHATnImI+TQQKNREoVNgfUMT8ivp8iphPEZ/f+/YpmvztTcfXx9dN+/ya8oJh2FegqUAgNu8LKOwPJNZN+QMK+wtS533xZee+E/vypuPrwv6Aprx98uRYAACQTYRR4FIl9bydN5RFIlr2wgta0919ricuElFBcu9b8ifN8lVHj2pTR0fanrtZwzFn9vJFIiq49169PcNTzXaP3OWKylJC3bkQ50/Mx8LX7CAW9gU0GShICmzJoS627bQvoPGCIk0EChPfE4EiTSSm48uLNF5QpElv/ZQ/QM8gAADAJSKMIu9ZPPQl3evmTwphyevqn3lGLWfOqDAcVqE3jDJ5SGXh9PQF15U//LBeNzERu38uuYfRq+FSvS7Dc27OsH3EYj1rYX8g9u2LfU/7Awr7/Jr2BTTtT7887I99R3x+hX1+RXz+2DYzPpH4frxevbDXZtrnSz1Ooo7A7Jq8Y4XT1BbvTYz3Hp7rYfTJWaZ3NwIAACDXCKNXsEAkolLvaZilExNadfiwtp0+fa6nb0YQSxmuOWMoqC8a1doXXlCN1/68Q0Qv8il56CG9cWIiNWRe5msfFlI85MXDWLqwdq6nrUBTgQJvSGSBJpPmzw2V9NYFClKGWyb31qUMr/TF9hHv4UtdH1/uZ7glAAAA8h5hdDFKegVD8lDPZS++qOb29kS4LJucVKn32oWUb2+6aHp61q5vz6Suw4cz7tE7n0mvZy15qGXKt9fbFh82Oe4NqYxPjxd48/H1SUMsk7efDBTOCJixnr9YTyE9cgAAAMB8yYswWuicagcHL+mVB+ZmvwLBolGt8fkUPnlS5m1jzsmkWfM+52JP4/Sm4+vWDgyo4vTpxFM6L/RtM2oxSSuOHtXGrq70x06a9p2nvqpHH9XOgYGL3xvo3X84H8I+f+JJmYPFFRorLE4Ml5w2L5D5/Zo279vnV8RiwywjPp+3POD1EvrSD7e8zCGa8R6+WA9jbDpiPu7DAwAAAJaYvAijV4XD+shDD2W2k5/+VK/MpP3vf6/rM6tgwXoF05k2X2y4pu/cMM3holINFlfobEmFBovLYyGzpCIpcJZ762KvYhgrKCbkAQAAAMiJvAijUz6/TgfrUl51cKHXIUTMf27a51fUTBGLDaGMmilqJifvO7Es9i1veXzeedvG9x9fHt9fbLkl1kXi+0uq1Xnrk6cTdSRqObef2dv45KTY/YS+dK9fSH3qJ/cEAgAAAFjs8iKMHl9Wr1vetTvXZQAAAAAAsoSnsQAAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIAAAAAso4wCgAAAADIugULo2b2GjM7bmYnzeyDC3UcAAAAAEB6+ZzLFiSMmplf0uck3Slpi6Q/MrMtC3EsAAAAAMBs+Z7LFqpndIekk86555xzU5K+Lun1C3QsAAAAAMBseZ3LAgu03wZJLybNt0m68bxbR6YVjJzN6IBlZWUaHR29YtvnQw3BigoNDQ/Puf181JDr9vlQQ67b50MNnAO/Qb7UkOl1cSn8BpxDftSQ6/b5UAPnkB+/Qa6vi8XRcUnlc26/CF1eLssyc87N/07N3izp1c65P/Pm3yZph3PuL5O2ebekd3uz10kay/CwfkmRK7h9PtRQKGkqg/bzUUOu2+dDDblunw81cA78BvlSQ6bXxaXwG3AO+VFDrtvnQw2cQ378BlwX5799iaSDSfO7nXO7pUvLZTnlnJv3j6SbJP0kaf5Dkj50ge13z8MxM9rHYm+fDzVI6lkC57AU/hz4DTgHfoM8qSHT6+IS+Q04hzyoIdft86EGziFvfgOui1lsf7m5LNufhbpndL+kZjNbZ2aFku6R9P0LbP+DeThmpvtY7O3zoYbBDNvPRw25bp8PNeS6fT7UwDnwG+RLDZleF5fCb8A55EcNuW6fDzVwDvnxG3BdzG77y81lWbUgw3QlyczukvQpxbqR73fOfXxBDoS8YWYHnHPX57oOAMgXXBcBIBXXxezL51y2UA8wknPu3yT920LtH3lpd64LAIA8w3URAFJxXcyyfM5lC9YzCgAAAADA+SzUPaMAAAAAAJwXYRQXZGb3m1m3mT09Y/lfmtlxMztiZp9MWv4hMzvprXt10vLrzOwpb91nzMyyeR4AMF/SXRfN7Btm9oT3OW1mTySt47oIYMk6zzVxu5nt8a6JB8xsR9I6rolIIIziYr4k6TXJC8zsVkmvl/QS59xWSf/kLd+i2BO6tnpt/tXM/F6zexV7r2yz90nZJwAsIl/SjGuYc+6tzrntzrntkr4t6RGJ6yKAK8KXNPv69UlJH/GuiR/25rkmYhbCKC7IOfeopP4Zi98r6RPOuUlvm25v+eslfd05N+mce17SSUk7zGylpKBz7nEXu0n5AUlvyM4ZAMD8Os91UZLk/Z/8t0h6yFvEdRHAknaea6KTFPSmKyWFvGmuiUhBGMVcbJL0cjPba2a/MbMbvOUNkl5M2q7NW9bgTc9cDgBLzcsldTnnnvXmuS4CuBK9X9I/mtmLio2g+5C3nGsiUhBGMRcBSVWSdkr6K0kPe70B6cb2uwssB4Cl5o90rldU4roI4Mr0XkkfcM41SvqApPu85VwTkYIwirlok/SIi9knKSqpxlvemLTdasWGZbR50zOXA8CSYWYBSW+S9I2kxVwXAVyJ3iHv3nlJ35QUf4AR10SkIIxiLr4raZckmdkmSYWSeiV9X9I9ZlZkZusUu/l8n3OuQ9Kwme30elDfLul7uSkdABbM7ZKOOeeSh5pxXQRwJQpJeqU3vUtS/NYFrolIEch1AchvZvaQpFsk1ZhZm6S/k3S/pPu9R3hPSXqHd7P5ETN7WNJRSdOS3ueci3i7eq9iT1srkfRj7wMAi06666Jz7j7FnhCZPERXzjmuiwCWtPP8t+K7JH3aGzEyodhTcrkmYhaLZQgAAAAAALKHYboAAAAAgKwjjAIAAAAAso4wCgAAAADIOsIoAAAAACDrCKMAAAAAgKwjjAIA5p2ZnTazp8zsCTM7kGb9HWb2uPc+OZmZ39v25uxXOzdmttHMnrjMNgEzG/SmG83sGxfZ/o1m9lcXWH+jmf3L5dQAAEC+4NUuAIB5Z2anJV3vnOu9wDZfl/Rz59wXzez9krY6596V4XEDzrnpTPZxGcfaKOlbzrntl9EmIKnXObds4SoDAGBxoGcUAJArH5D0ITPbKukvJP21JJlZvZk9YmYHzGyfme30lu/0elMPmdnvzKzZW/5nZvZ1M/uhpB+bWYOZPeb1tD6drrfVzG4ws9+YWauZ/djM6r3l7zGz/WZ22My+aWYl3vIVZvY9M3vSW3ejt6uAmd1nZke8/RSnOdYGM9trZvsl/X3S8kTPqneuVyWte8zMrvHO7VPesnu88zlsZr/ylt1uZt/1pmvM7Ptejb83sxZv+ce8Gn9jZs+Z2fsy+DMDAGDeEEYBAAvBSfqpF/benXYD5zokfUrS45I+5pzr91Z9RtInnXPXS3qLpC96y5+R9DLn3LWS/kHSx5J2d5OktznnXiXpP0j6gddjeY2kJ5OPa2ZFkj4t6W7n3HWSHvT2J0nfdM7d4Jy7RtIpSe/0ln9O0s+ccy+RdJ1XiyRdJelTzrmtksYlvSHNqX5W0qedczdI6kn7a0nf8M5VZrZa0nLn3OEZ2/ydpNu82t6YZh//IGmvV+PfS/pS0rpNkl4laaekj5qZ/zx1AACQNYFcFwAAWJJe6pwLmVmdpJ+Z2THn3KNptvucpE84576UtOx2SVd5t5NKUpXXQ7lM0gNmtiHNfn7qnBvwpvdL+rzXS/ndNKHuaklbJf3cO4ZfUpu37iVm9lHvWBWSfugtv0XSPZLkDQMe8s7tpHPuKW+bVklr09R2k6R/701/RdJH0mzzsKQfKBYo3+rNz/Q7xc7/m5IeSbP+ZZL+nVfjT83sS2ZW5q37oXNuSlK3mfVLqpXUmWYfAABkDT2jAIB555wLed/dkr4jacd5tosq1ouazCTtcM5t9z4NzrlxSR+X9BPnXItiPZDJQ2JHk/b5S8XCY4ekr5rZn6TZ/5NJ+9/mnLvTW/eApPc657Yp1vOafIx0D1mYTJqOKP3/5HXnaXtuA+fOSBoxsy2KhdF0DzZ6l2K9o2slHTazqjTndb75S6kTAICsIowCAOaVmZWZWUV8WtIdkp6+jF38XFLivkYziz8gqFJSuzf9zgscf42kTufcbsWGql47Y5OjkhrMbIe3faF336oklUnqNLMCSX+c1OZXkt7jbe83s+BlnM8eeUNwJc0Mxsm+IelDkoqcc0fTrF/vnNsj6b9LGpDUMGP9o/H9m9ntktqcc6MCACBPEUYBAPOtXtJjZnZY0j5JP3LO/b/LaP8+SS/1HsRzVLEeQUn6n5L+0cx+d5H2tynWc3hI0usVu2czwTk3KekPJf2zV+MhSfEHEn3Yq/lnioXWuL+Q9Goze0rSAUmbL+N8/oukD5jZPknlF9jum4oF4HRDdCXpX7zjP6XYU4hnBvwPS7rZzJ6U9FFJ//EyagQAIOt4tQsAAAAAIOvoGQUAAAAAZB1hFAAAAACQdYRRAAAAAEDWEUYBAAAAAFlHGAUAAAAAZB1hFAAAAACQdYRRAAAAAEDWEUYBAAAAAFn3/wEJm+0162OwvAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "from matplotlib.ticker import MultipleLocator\n", "from matplotlib.dates import DateFormatter\n", @@ -436,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 8, "metadata": { "hideCode": false, "hidePrompt": false @@ -448,7 +471,7 @@ "Text(0.5,1,'Chart Showing at One View\\nthe Price of the Quarter of Wheat, and Wages of Labour\\nby the Week, from 1565 to 1821')" ] }, - "execution_count": 161, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, @@ -514,6 +537,7 @@ "source": [ "## Représentation du pouvoir d'achat\n", "\n", + "### Le pouvoir d'achat en équivalent blé acheté\n", "Le pouvoir d'achat est définie ici comme la quantité de blé qu'un ouvrier peut acheter avec son salaire hebdomadaire. \n", "\n", "Le prix du blé par boisseau est converti en prix du blé par kg pour une représentation plus moderne.\n", @@ -524,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 9, "metadata": { "hideCode": false, "hidePrompt": false @@ -552,7 +576,7 @@ "dtype: float64" ] }, - "execution_count": 164, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -573,65 +597,33 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 15, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { - "ename": "NameError", - "evalue": "name 'DateFormatter' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0max31\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_minor_locator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mMultipleLocator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0max31\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_major_formatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDateFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'%Y'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0max31\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_minor_formatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDateFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'%y'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'DateFormatter' is not defined" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Error in callback (for post_execute):\n" - ] + "data": { + "text/plain": [ + "Text(0.5,1,\"Pouvoir d'achat d'un ouvrier\\n en équivalent masse de blé hebdomadaire\\n de 1565 à 1810\")" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" }, { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mflush_figures\u001b[0;34m()\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;31m# ignore the tracking, just draw and close all figures\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;31m# safely show traceback if in IPython, else raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 41\u001b[0m display(\n\u001b[1;32m 42\u001b[0m \u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_fetch_figure_metadata\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m )\n\u001b[1;32m 45\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 311\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 313\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 314\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 178\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 180\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 181\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 224\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 225\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 342\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 246\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 248\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 249\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0mFigureCanvasBase\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 132\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 133\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2210\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2211\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2212\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2213\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2214\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 517\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 518\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 519\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;31m# if toolbar:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0;31m# toolbar.set_cursor(cursors.WAIT)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 437\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 438\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 439\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1491\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1492\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1493\u001b[0;31m renderer, self, artists, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1494\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1495\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2633\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2634\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2635\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2637\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axis.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1200\u001b[0m \u001b[0;31m# the actual bbox\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1201\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1202\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_label_position\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1203\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1204\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axis.py\u001b[0m in \u001b[0;36m_update_label_position\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1915\u001b[0m \u001b[0;31m# use axes if spine doesn't exist\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1916\u001b[0m \u001b[0mspinebbox\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1917\u001b[0;31m \u001b[0mbbox\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmtransforms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbboxes\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mspinebbox\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1918\u001b[0m \u001b[0mbottom\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1919\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36munion\u001b[0;34m(bboxes)\u001b[0m\n\u001b[1;32m 748\u001b[0m \u001b[0mx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxmax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 749\u001b[0m \u001b[0my0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mymin\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 750\u001b[0;31m \u001b[0my1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mymax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 751\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mBbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mx1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 752\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 748\u001b[0m \u001b[0mx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxmax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 749\u001b[0m \u001b[0my0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mymin\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 750\u001b[0;31m \u001b[0my1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mymax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbbox\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mbboxes\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 751\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mBbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mx1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 752\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36mymax\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0mattr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mymax\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mtop\u001b[0m \u001b[0medge\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mbounding\u001b[0m \u001b[0mbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \"\"\"\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_points\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36mamax\u001b[0;34m(a, axis, out, keepdims, initial)\u001b[0m\n\u001b[1;32m 2332\u001b[0m \"\"\"\n\u001b[1;32m 2333\u001b[0m return _wrapreduction(a, np.maximum, 'max', axis, None, out, keepdims=keepdims,\n\u001b[0;32m-> 2334\u001b[0;31m initial=initial)\n\u001b[0m\u001b[1;32m 2335\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2336\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapreduction\u001b[0;34m(obj, ufunc, method, axis, dtype, out, **kwargs)\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mreduction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mpasskwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 83\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mufunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreduce\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mpasskwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 84\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAH5CAYAAADQhlB3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcJWV97/HPF0TBAQaUAcUFlM2guK+Jy4waA4rGGPfE66AJJl63SLziFlFjTLySGI37wqgsOkZUZFG8xsF9A8FBAaMogQFZAgzMIOjA7/5R1fHYznTXdFdNd8/5vF+v8+pzTtXz1LfqnOmZ3zxVT6WqkCRJkiRt/baZ6wCSJEmSpC3DAlCSJEmSxoQFoCRJkiSNCQtASZIkSRoTFoCSJEmSNCYsACVJkiRpTFgASpK2iCSvTvLBWfZRSfbtMdPyJF/rq7/5tr0tIcl7k7xurnNIkrq51VwHkCQNI8nPgT2Am4H1wKnAi6tq3Vzkqap/6LO/JCuAVVW1os9+N2P7S4Fjq+rOs+ijqir9pdryquqv5jqDJKk7RwAlaev2xKraEbg/8CDgtXOcZ6OS+B+SC1CSbWfR1s9ckuaABaAkjYGqWgOcBtwLIMmeSU5KcnWSnyT5y4l1k6xI8vcjr5cmuaR9fmSSfx/tO8m/JnlHh36PSnJs+3zv9nTO5yf5L+A/NpY7ySuSXJbk0iTP29T+JdknyX8k+e8kVyU5LskuI8vvkuTEJFe26/zbpPZvS3JNkp8lOWTk/cOSnJfk+iQXJnlB+/6i9njumWRd+9hzI7lu3x6P65J8B9hnin34eZLHTnO8npvkv9p9fM0UfS1O8tF2fy9K8tok20zud1Lft0ryzCTfm9TX3yQ5qX2+Isl7kpyaZD2wbCPfl0OTnJ3k2iTfSHLvSfv4yiQ/ANZbBErSlmcBKEljIMldgMcD32/fOgG4BNgTeCrwD0ke06GrE4DHJ9m57Xdb4OnA8TPs91HA7wF/tJHMBwN/C/whsB/w2NHlVbV85PTPAG9pt/t7wF2Ao0YyngxcBOwN3An4+EhXDwEuAHYD3gp8KMnEaZlXAIcCOwOHAf+S5P5VtR44BLi0qnZsH5duZP/eBdwI3BF4XvsY3YfNPf3z4cABwGOAv0vye5tY753AYuDuNMf4f7X5p3MScECS/Ubeeza/+XwnXr8Z2An4resZk9wf+DDwAuD2wPuAk5LcZmS1ZwFPAHapqg0dMkmSemQBKElbt88kuZbmH+pn0BRkd6EpJF5ZVTdW1dnAB4HnTNdZVV0EnAU8uX3r0cANVfWtGfZ7VFWtr6pfbmTZ04FjqurctuA6aopcP6mqL1bVTVV1JfDPNIUPwINpCsNXtNu6sapGC5eLquoDVXUz8BGaYm2Ptt9Tquqn1TgDOB14xBT78z/awvNPgb9rt3tu2/9svKGqfllV5wDnAPfZxHafAbyqqq6vqp8DR9Pt870B+CxNkUZbCN6DpjCc8Nmq+npV3VJVN07q4i+B91XVt6vq5qr6CHAT8NCRdd5RVRdv4jOXJA3MAlCStm5Prqpdqmqvqnph+4/uPYGrq+r6kfUuohkZ6+J42gKB3x4dmkm/F0+xbM9Jyy/a1IpJdk/y8SRrklwHHEszogfNaOBFU4w2/WLiSVsAAezY9ntIkm+1p7ReSzOKuttG+tiYJTSTrXXah45+MfL8homck+wG3HrStmbz+X5m5LjA1J/ZXsAR7emf17bH7C40n2WX9pKkgVkAStL4uRS4XZKdRt67K7Cmfb4euO3IsjtMav9JYGmSOwN/wm8KwOn63ZiaYtllNMXDaF+b8pa2r3tX1c7An9OcFgpNwXHXzb3erD1t8VPA24A9qmoXmplUJ/qdKjvAlcCGzdiH6Y57V1cBv6Ypxka32/XzPR3YLcl9aQrB4yctn2q/Lwbe3P6nw8TjtlV1Qsf2kqSBWQBK0pipqouBbwBvSbJ9O0nH84Hj2lXOprnO73ZJ7gC8bFL7K4FVwDHAz6rqvI79bq6VwPIkBya5LfD6KdbdCVgHXJvkTsArRpZ9h6aY/Mcki9psf9Bh+7cGbkNbyLWTwzxuZPnlwO2TLN5Y4/aU0hOBo5LcNsmBwHOn2N7ZwDOTbJfkgTTXUG62drsrgTcn2SnJXsDLaUZFJ7bzyCR3bbO/alL7DcC/A/8XuB3wxc3Y/AeAv0rykDQWJXnCpP8UkCTNIQtASRpPz6KZEOVS4NPA66tq4h/6H6O5vuznNKNBn9hI++NpJmWZPDo0Vb+bpapOA95OM0PoT9jETKGtN9Dc6mItcApN4TXRz83AE4F9gf+imaTmGR22fz3wEppi6hqa0yFPGll+Ps2kNxe2pzv+ziygwItoTtP8BbCCpmjelNfRzBJ6Tbs/k4/t5ngxzUjfhTTXfx5PMzkL7efxCeAHwJk0E+RMNvH5fnJzJmqpqu/RXAf4bzT78RNg+Ux3QpLUv1R5JoYkSZIkjQNHACVJkiRpTFgASpIkSdKYsACUJEmSpDFhAShJkiRJY8ICUJLmgST7JflBkrv11N+rk3ywh36OSnLs9GsqSSXZdwbtlif52hTLVyX5i428//QkX0yy/Sba7d1m2qz7H86kbZKlSS7Z3O30bXNyJ3lEkgu2RC5Jmk82+y8FSVK/2nuxfQB4alX9rI8+q+of+uinL0n2Bn4GbLc5txXQxiW5H809Fp9cVTfOdZ6FqKq+Chww1zkkaUuzAJSkOVZVa4Glc51DC0dVfR/4o7nOsbVKciv/o0LS1spTQCVpMyW5R3vq3dVJLkjy9JFlK5K8K8kpSa5P8u0k+0zR10OTfKO9kfg5SZaOLLtbkjPafr6Y5N8mTsfc2Cl3SX6e5LHt86NG1v18khdNWvecJE9pn/9rkouTXJfkzCSPmGHeVUnelOTrbebTk+zWLv5K+/PaJOuSPGwjfR+V5JNJjm3br06yf5JXJbmizfi4kfUPS3Jeu+6FSV4wsmy3JCe3Oa9O8tUk27TLXplkTdvugiSPad/fJsmRSX6a5L+TrExyuymOxSuSXJbk0iTPm7TsNkneluS/klye5L1JdthUX02TvDPJ2iTnT2TaxIrPa/f7miRfSLLXFP0C/Fmb46okrxnpp8v+Pq/dv8uSHDHSdof2u35Nkh8BD5qU8ffa78O1SX6Y5Ekjy1YkeXeS09rvwteT3CHJ29v+zk8zwjmx/kTG65P8KMmfjCzbtj3OVyW5EHjCpBxTfUd+689Q++fnlUl+AKxPcqskeyb5VJIrk/wsyUumOdaSNO9ZAErSZkiyCPgicDywO/As4N1J7jmy2rOANwC7Aj8B3ryJvu4EnAL8PXA74G+BTyVZ0q5yPHAmsBvwJuC5M4x9fJtpYrsHAnu12wb4LnDfNsPxwCezkevKOuQFeDZwGM2xuXW7DsAj25+7VNWOVfXNTWR9IvAxmmP3feALNH9X3Ql4I/C+kXWvAA4Fdm63+S9J7t8uOwK4BFgC7AG8GqgkBwAvAh5UVTvRjKL9vG3zEuDJwKOAPYFrgHdtLGSSg9t9+0NgP+Cxk1b5J2B/muO6b5v/7zaxzwAPAS6k+axfD5y4seIzyZPbfXlKu29fBU6Yol+Ah9Oc6vgY4O+S/F77fpf9Xdbu3+OAI9P+B0ObcZ/28UeMfDeTbAd8Djid5nvwYuC49thPeDrw2nZ/bwK+CZzVvv534J9H1v0p8AhgMc2fq2OT3LFd9pc034H7AQ8Enjop/1TfkY15Fk0RuQtwS7sf59B8fo8BXpbEkVdJC1tV+fDhw4ePjg/gGcBXJ733PuD17fMVwAdHlj0eOH8Tfb0S+Nik975A84/puwIbgEUjy44Hjm2fLwUumdT258Bj2+dHjay7E7Ae2Kt9/Wbgw1Ps4zXAfTbSzybzts9XAa8dWfZC4PPt872BAm41xXaPAr448vqJwDpg25H9KJoicmPtPwO8tH3+RuCzwL6T1tmXpih4LM31iKPLzgMeM/L6jsCvN5YZ+DDwjyOv92+z7QukPd77jCx/GPCzTeReDlwKZOS97wDPGTmuf9E+Pw14/sh62wA3THy2k/qdOOZ3ntTvM6fb35G29xhZ/lbgQ+3zC4GDR5YdTvt9pCnWfgFsM7L8BOCokT8jHxhZ9mLgvJHXBwHXTvE9ORv44/b5fwB/NbLscVN9zyZ9R5Yy8meI5s/P80ZePwT4r0ntXwUcs6lsPnz48LEQHo4AStLm2Qt4SHtq27VJrgX+DLjDyDq/GHl+A7DjFH09bVJfD6f5h/iewDVVtX5k/YtmEriqrqcZuXtm+9YzgeMmlic5oj1Nbm2bYTHNSMzm5J3Qdd835fKR578Erqqqm0deM9FnkkOSfKs9xfNammJ7Ivf/pRl9Pb099e9IgKr6CfAymmLziiQfT7LnyP59emTfzgNuphlBnGxP4OKR16OfzRLgtsCZI319vn1/U9ZUVU3qb8+NrLcX8K8j/V5NU3DeaYq+N/WZdNnfyfs4kWmq/d8TuLiqbpm0fDTj5M958uv/+d4k+V9Jzh7JeS9+8zlPlWO678jGjPa1F7DnpO/7q9n490GSFgwLQEnaPBcDZ1TVLiOPHavqr2fY18cm9bWoqv4RuAzYtT3ldMJdR56vpykygOZaKKYuME4AnpXm2rsdgC+37R5BM7L3dGDXqtoFWEtTVGxO3unU9Kt0l+Q2wKeAtwF7tLlPpc1dVddX1RFVdXeakcSXT1xXV1XHV9XDaf6BXzSna07s3yGT9m/7qlqzkQiXAXcZeT362VxFU8Tcc6SfxVU1VTF8pySjx/yuNKOCk10MvGBSxh2q6htT9L0pXfZ38j5OZJpq/y8F7pL2msuR5Rs7jlNqr2/8AM1pu7dvP+dz+c33c5M5pvuObMLo9/RimlHb0eOzU1U9fnP3Q5LmEwtASdo8JwP7J3lOku3ax4NGrqvaHMcCT0zyR+1kFtu3E1PcuaouAr4HvCHJrZM8nKaQmfBjYPskT2ivuXotcJsptnUqTcHzRuATI6MzO9GcanolcKskf0dzvdRm5e2wr1fSXFN19w7rdnFrmv29EtiQ5BCa0/8ASHJokn3bouo6mpGtm5MckOTRbXFwI02hNjHC+F7gzW3RQZIlSf54E9tfCSxPcmCS29JcEwdAe2w/QHO92e5tX3ea5tqx3YGXtN+npwG/R/OZTfZe4FUT15wmWdyuPxNd9vd1SW7bbu8w4BPt+yvbHLu2n/+LR9p8m+Y/KP5Puz9Lab67H59BxkU0RdmVbcbDaEYAJ6ykOW53TrIrcOTIsim/Ix18B7guzcQwO7Tf+XsledC0LSVpHrMAlKTN0J5O+Tia0ygvpTm97p+YuvjaVF8XA39Mc1rZlTQjDq/gN7+bn01zHdLVNAXGR0farqW5xu6DNCMr62kmPdnUtm4CTqS59u34kUVfoLmu7Mc0p8/dyG+fBrc5eafa1xtorj38ens63UOnazNNf9fTTGKykuaaxWcDJ42ssh/w/2iuIfwm8O6qWkXzOf0jzSjdL2gKr1e3bf617eP0JNcD36I5/hvb/mnA22muQftJ+3PUK9v3v5XkujbLVPec+3ab+Sqa4/TUqvrvjWz30zTft4+3/Z4LHDJFv1Ppsr9ntPvxJeBtVXV6+/4baL4vP6OZ7OVjIxl/BTypzXUV8G7gf1XV+ZsbsKp+BBxN8xleTnN94NdHVvkAzXf4HJpJZE4caTvdd2S6bd9MU7jel2Y/r6L587Z4c/dDkuaT/PYlB5Kk+SrJUTSTmvz5XGeRJEkLkyOAkiRJkjQmLAAlSZIkaUx4CqgkSZIkjQlHACVJkiRpTFgASpLmhSSrkvzFXOeYjSS3S/KfSe4711kkSdoYC0BJ0oKX5P1JLkhyS5Llk5YtT3JzknUjj6WT1nlmkvOSrE/y0ySPaN/fO0lNavu6TeWoqquBZwHvSXKraTLfMclJSS5tt7H3pOW3S/KJJFe1j+OS7DyyfJP73C7/myS/SLI2yYfbex9KksacBaAkaWtwDs19Ec/axPJvVtWOI49VEwuS/CHNvfUOA3YCHglcOKn9LiNt3zRVkKr6Hs29/PadJvMtwOeBP93E8r8HdgXuDuwD7AEcNbJ8k/vc3nT+SOAxwN5tH2+YJo8kaQxYAEqS5kSSP0xyfjtC9W9AJi1/Xjsqd02SLyTZa1N9VdW7qupLNDey31xvAN5YVd+qqluqak1VrZlBPyQ5LMl5wAnAqUleMEXmy6vq3cB3N7HK3YDPVNV1VbUW+DRwz5H2U+3zc4EPVdUPq+oa4E3A8pnskyRp62IBKEna4pLsBnwKeC2wG/BT4A9Glj8ZeDXwFGAJ8FWaomqm7teeRvnjJK+bOD0zybbAA4ElSX6S5JIk/5Zkh0ntL2qXHdNm35QrgEOBnWlGFP8lyf1nmPldwKFJdk2yK81I4Wkd296TZoRwwjnAHkluP8MskqSthAWgJGkuPB74UVX9e1X9Gng78IuR5S8A3lJV51XVBuAfgPtONQo4ha8A9wJ2pymingW8ol22B7Ad8FTgEcB9gfvRFKYAVwEPAvYCHkBziuhxm9pQVZ1SVT+txhnA6W2/M3EWcGvgv9vHzcC7O7bdEVg78nri+U4zzCJJ2kpYAEqS5sKewMUTL6q5Ke3FI8v3Av41ybVJrgWupjlF9E6bu6GqurCqftae3rkaeCNNwQfwy/bnO6vqsqq6CvhnmgKVqlpXVd+rqg1VdTnwIuBxo5OxjEpySJJvJbm6zf14mhHOmfgk8GOaom1nmlHSYzu2Xde2mTDx/PoZZpEkbSUsACVJc+Ey4C4TL5Jk9DVNMfiCqtpl5LFDVX2jh20X7fWG7fVxl7TvdW0Lk65XBGhn2fwU8DZgj6raBTh1Y+t2dB/gfVW1vqrWAe+lLUw7+GHbfrSvy6vqv2eYRZK0lbAAlCTNhVOAeyZ5Sns93kuAO4wsfy/wqiT3BEiyOMnTNtVZklsn2Z6m2NouyfZJtmmXHZJkj/b5PYDXAZ8daX4M8OIku7fX2r0MOLld/yFJDkiyTXv93DuAVe2kLJPdGrgNcCWwIckhwOOmOght5onbM9ymfT3hu8BfJNmhvSbxcEau65tqn4GPAs9PcmC7T68FVkyVRZI0HiwAJUlbXHuq5dOAf6S5vm0/4Osjyz9Nc2uGjye5DjgXOGSKLk+nOZ3z94H3t88f2S57DPCDJOtpRuROpLmmcMKbaIqtHwPnAd+nuY0DNLdP+DzNqZPnAjfRXEO4sX26nqaQXQlcAzwbOGnKA9HkXNc+P5/fnJIK8DyaWzhcAqxpsyzvss9V9XngrcCXgYvax+unySJJGgNpLruQJEmSJG3tHAGUJEmSpDFhAShJkiRJY8ICUJIkSZLGhAWgJEmSJI0JC0BJkiRJGhO3musAo3bZZZfad999Z9x+/fr1LFq0aFYZZtvHXLefDxnWrl3L4sWL52z7ffQx1+3nQ4a5bj8fMrgPHoO++vD34ty3nw8Z3AePwXzJMNftYe5/L25tn+OZZ555VVUt6dSwqubNY//996/Z+PKXvzyr9n30Mdft50OGz33uc3O6/T76mOv28yHDXLefDxncB49BX334e3Hu28+HDO6Dx2C+ZJjr9lVz/3txa/scge9Vx5rLU0AlSZIkaUxYAEqSJEnSmLAAlCRJkqQxYQEoSZIkSWPCAlCSJEmSxoQFoCRJkiSNCQtASZIkSRoTFoCSJEmSNCYsACVJkiRpTFgASpIkSdKYsACUJEmSpDFhAShJkiRJY8ICUJIkSZLGhAWgJEmSJI0JC0BJkiRJGhMWgJIkSZI0JiwAJUmSJGlM3GquA0iSJEnqbvWatSw/8pQZt19x8KIe02ihcQRQkiRJksaEBaAkSZIkjQkLQEmSJEkaExaAkiRJkjQmLAAlSZIkaUxYAEqSJEnSmLAAlCRJkqQx4X0AJUmSpDHifQTHmyOAkiRJkjQmLAAlSZIkaUx4CqgkSZK2iNmeegiefijNliOAkiRJkjQmLAAlSZIkaUxYAEqSJEnSmPAaQEmSpAXC6fslzZYjgJIkSZI0JiwAJUmSJGlMWABKkiRJ0piwAJQkSZKkMWEBKEmSJEljwllAJUmStoDZzuAJcMRBPYWRNLYcAZQkSZKkMWEBKEmSJEljwgJQkiRJksaEBaAkSZIkjQkngZEkSWNhtpOwrDh4UY9pJGluOAIoSZIkSWPCAlCSJEmSxoQFoCRJkiSNCQtASZIkSRoTFoCSJEmSNCYsACVJkiRpTFgASpIkSdKYsACUJEmSpDFhAShJkiRJY8ICUJIkSZLGhAWgJEmSJI0JC0BJkiRJGhMWgJIkSZI0JiwAJUmSJGlMWABKkiRJ0piwAJQkSZKkMWEBKEmSJEljwgJQkiRJksaEBaAkSZIkjYlbTbUwye069HFLVV3bUx5JkiQNZPWatSw/8pQZt19x8KIe00iaC1MWgMCl7SNTrLMtcNfeEkmSJEmSBjFdAXheVd1vqhWSfL/HPJIkSZKkgUx3DeDDOvTRZR1JkiRJ0hybcgSwqm6ceJ5kV+Auo22q6qzRdSRJkiRJ89d0p4ACkORNwHLgp0C1bxfw6GFiSZIkSZL61qkABJ4O7FNVvxoyjCRJkiRpOF3vA3gusMuQQSRJkiRJw+o6AvgW4PtJzgVumnizqp40SCpJkiRJUu+6FoAfAf4JWA3cMlwcSZIkSdJQuhaAV1XVO2aygSTbAt8D1lTVoTPpQ5IkSZI0e10LwDOTvAU4id8+BfSsDm1fCpwH7Lz58SRJkiRJfelaAN6v/fnQkfemvQ1EkjsDTwDeDLx8s9NJkiRJknrTqQCsqmUz7P/twP8Bdpphe0mSJElST1JV06+U7AH8A7BnVR2S5EDgYVX1oSnaHAo8vqpemGQp8LcbuwYwyeHA4QBLlix5wMqVK2e2J8C6devYcccdZ9y+jz7muv18yLB27VoWL148Z9vvo4+5bj8fMsx1+/mQwX3wGPTVh78X5749wBVXr+XyX868/d0WbzurDLPdPsAeOzCrPmbbfj4cg9lmmA/fxdn2MdvjONffA5j734vz4XPss/2yZcvOrKoHdmnXtQA8DTgGeE1V3SfJrYDvV9VBU7R5C/AcYAOwPc01gCdW1Z9vqs0BBxxQF1xwQZfcG7Vq1SqWLl064/Z99DHX7edDhpNPPplDD535fD9bwzFwHzwG8yXDXLefDxnmwz74e3Hu2wO887jPcvTqrle//K4VBy+aVYbZbh/giIM2zKqP2bafD8dgthnmw3dxtn3M9jjO9fcA5v734nz4HPtsn6RzAdj1RvC7VdVK2ltAVNUG4OapGlTVq6rqzlW1N/BM4D+mKv4kSZIkScPqWgCuT3J7molfSPJQYO1gqSRJkiRJves69vtymltA7JPk68AS4KldN1JVq4BVmxtOkiRJktSfrrOAnpXkUcABQIALqurXgyaTJEmSJPWqUwGY5GnA56vqh0leC9w/yd93vBG8JEmSpNbqNWtZfuQpM25/xCanYZSm1/UawNdV1fVJHg78EfAR4D3DxZIkSZIk9a1rATgx4+cTgPdU1WeBWw8TSZIkSZI0hK4F4Jok7wOeDpya5Dab0VaSJEmSNA90LeKeDnwBOLiqrgVuB7xisFSSJEmSpN5NOQlMku8BXwdOA06tqhsBquoy4LLh40mSJEmS+jLdCOBDgU8DS4Ezkpya5KVJ9h88mSRJkiSpV1OOAFbVBpobuK8CSHJH4BDg75PsB3yzql44cEZJkiRJUg863QdwQnvq54eBDyfZBnjYIKkkSZIkSb3reiP4zwE16e21wPeSnDlxbaAkSZIkaf7qOgJ4IbAEOKF9/QzgcmB/4APAc/qPJkmSpPlk9Zq1LD/ylBm3P+KgHsPMkdkeA9g6joMWrq4F4P2q6pEjrz+X5CtV9cgkPxwimCRJkiSpX13vA7gkyV0nXrTPl7Qvf9V7KkmSJElS77qOAB4BfC3JT4EAdwNemGQR8JGhwkmSJEmS+tOpAKyqU9vbPtyDpgA8v3m7bgLePmA+SZIkSVJPOp0CmuTDVXVTVZ1TVWcD2wKnDhtNkiRJktSnrtcArknyHoAkuwJfBI4dLJUkSZIkqXedCsCqeh1wXZL3AqcDR1fVMYMmkyRJkiT1asprAJM8ZeTld4DXtT8ryVOq6sQhw0mSpK3DbO+dtuLgRT2mkaTxNd0kME+c9Pr7wHbt+wVYAEqSJEnSAjFlAVhVh22pIJIkSZKkYU15DWCSw6froMs6kiRJkqS5N90poEcmuWqK5QFeCry/v0iSJEmSpCFMVwCewe9eBzjZF3vKIkmSNG/NdiKbIw7qMYwkzZDXAEqSJEnSmOh6I3hJkiRJ0gJnAShJkiRJY8ICUJIkSZLGRKcCMMkeST6U5LT29YFJnj9sNEmSJElSn7qOAK4AvgDs2b7+MfCyIQJJkiRJkobRtQDcrapWArcAVNUG4ObBUkmSJEmSete1AFyf5PZAASR5KLB2sFSSJEmSpN5NdyP4CS8HTgL2SfJ1YAnw1MFSSZIkSZJ6N20BmGQbYHvgUcABQIALqurXA2eTJEmSJPVo2gKwqm5JcnRVPQz44RbIJEmSJG3U6jVrWX7kKTNuv+LgRT2mkRaertcAnp7kT5Nk0DSSJEmSpMFszjWAi4ANSW6kOQ20qmrnwZJJkiRJknrVqQCsqp2GDiJJkiRJGtaUBWCSe1TV+Unuv7HlVXXWMLEkSZIkSX2bbgTw5cDhwNEbWVbAo3tPJEmSJEkaxJQFYFUd3v5ctmXiSJIkSZKG0nUSGJLcCziQ5p6AAFTVR4cIJUmSJEnqX6cCMMnrgaU0BeCpwCHA1wALQEmSJElaILreB/CpwGOAX1TVYcB9gNsMlkqSJEmS1LuuBeAvq+oWmvsA7gxcAdx9uFiSJEmSpL51vQbwe0l2AT4AnAmsA74zWCpJkiRpAKvXrGX5kafMuP0RB/UYRpoDXW8E/8L26XuTfB7Yuap+MFwsSZIkSVLfprsR/EZvAD+xzBvBS5IkSdLCMd0I4MQN4LcHHgicAwS4N/Bt4OHDRZMkSZIk9WnKSWCqall7E/iLgPtX1QOr6gHA/YCfbImAkiRJkqR+dJ0F9B5VtXriRVWdC9x3mEiSJEmAsdVSAAAfJUlEQVSSpCF0nQX0vCQfBI4FCvhz4LzBUkmSJEmSete1ADwM+Gvgpe3rrwDvGSSRJEmSJGkQXW8DcSPwL+1DkiRJkrQAdSoAk+wHvAU4kGZGUACq6u4D5ZIkSZIk9azrJDDH0JzyuQFYBnwU+NhQoSRJkiRJ/etaAO5QVV8CUlUXVdVRwKOHiyVJkiRJ6lvXSWBuTLIN8J9JXgSsAXYfLpYkSZIkqW9dRwBfBtwWeAnwAOA5wHOHCiVJkiRJ6l/XWUC/2z5dR3NLCEmSJEnSAtN1FtAHAq8B9hptU1X3HiiXJEmSJKlnXa8BPA54BbAauGW4OJIkSZKkoXQtAK+sqpMGTSJJkiRJGlTXAvD1ST4IfAm4aeLNqjpxkFSSJEmSpN51LQAPA+4BbMdvTgEtwAJQkiRJkhaIrgXgfarqoEGTSJIkSZIG1bUA/FaSA6vqR4OmkSRJkqRprF6zluVHnjLj9isOXtRjmoWlawH4cOC5SX5Gcw1ggPI2EJIkSZK0cHQtAA8eNIUkSZKkBWG2o28A//bwnsJos3UqAKvqoiT3AR7RvvXVqjpnuFiSJEmStlY3/Opm9p5FEXmEs5PM2DZdVkryUpqbwe/ePo5N8uIhg0mSJEmS+tX1FNDnAw+pqvUASf4J+CbwzqGCSZIkSZL61bUADHDzyOub2/ckSdIYmO01P56uJUnzQ9cC8Bjg20k+3b5+MvChYSJJkiRJkobQdRKYf06yiuZ2EAEOq6rvT9UmyfbAV4DbtNv596p6/eziSpIkSZJmasoCMMntRl7+vH38z7KqunqK5jcBj66qdUm2A76W5LSq+tYs8kqSJEmSZmi6EcAzgaIZ9bsrcE37fBfgv4C7baphVRWwrn25XfuoWeaVJEmSJM3QlLeBqKq7VdXdgS8AT6yq3arq9sChwInTdZ5k2yRnA1cAX6yqb/cRWpIkSZK0+dIM1E2zUnJmVT1g0nvfq6oHdtpIsgvwaeDFVXXupGWHA4cDLFmy5AErV67smv13rFu3jh133HHG7fvoY67bz4cMa9euZfHixXO2/T76mOv28yHDXLefDxncB49BX31sDb8Xr7h6LZf/cubb32MHZtX+bou3nfUxmOt9mG37+ZBhrtvPhwzuQz/H4M6L4JL1c5ehj98pc/3302j7ZcuWndm1Nus6C+hVSV4LHEtzGuefA//dNVxVXdtOInMwcO6kZe8H3g9wwAEH1NKlS7t2+ztWrVrFbNr30cdct58PGU4++eSxPwbug8dgvmSY6/bzIcN82Iet4ffiO4/7LEev7vrPht91xEEbZtV+xcGLZn0M5nofZtt+PmSY6/bzIYP70M8xeOuD5zZDH79T5vrvp5m2n/IU0BHPApbQjOJ9Bti9fW+TkixpR/5IsgPwWOD8zU4oSZIkSepF19tAXA28NMli4Jaqur5DszsCH0myLU2hubKqTp55VEmSJEnSbHQqAJM8CPgwsFP7ei3wvKo6c1NtquoHwP36CClJkiRJmr2uJ85+CHhhVX0VIMnDgWOAew8VTJIkSZLUr67XAF4/UfwBVNXXgC6ngUqSJEmS5okpRwCT3L99+p0k7wNOoJkF9BnAqmGjSZIkSZL6NN0poEdPev36kefT30BQkiRJkjRvTFkAVtWyLRVEkiRJkjSsTtcAJtkjyYeSnNa+PjDJ84eNJkmSJEnqU9dZQFfQzPr5mvb1j4FP0MwOKkmSNKjVa9ay/MhTZtXHEQf1FEaSFrCus4DuVlUrgVsAqmoDcPNgqSRJkiRJvetaAK5PcnvaiV+SPBRYO1gqSZIkSVLvup4C+nLgJGCfJF8HlgBPHSyVJEmSJKl3nQrAqjoryaOAA4AAF1TVrwdNJkmSJEnqVdcRQIAHA3u3be6fhKr66CCpJEmSJEm961QAJvkYsA9wNr+Z/KUAC0BJkiRJWiC6jgA+EDiwqmrIMJIkSZKk4XSdBfRc4A5DBpEkSZIkDWvKEcAkn6M51XMn4EdJvgPcNLG8qp40bDxJkiRJUl+mOwX0bVskhSRJkiRpcFMWgFV1xpYKIkmSJEkaVtdrACVJkiRJC5wFoCRJkiSNic4FYJIdkhwwZBhJkiRJ0nA2eQ1gksVVtbZ9/kSaCWFuDdwtyX2BNzoLqCRJw1u9Zi3LjzxlVn2sOHhRT2kkSQvZVCOAz0jyp+3zo4AHA9cCVNXZwN6DJpMkSZIk9WqTBWBVvR84sH25YWI0UJIkSZK0ME13G4g3tU/PTfJsYNsk+wEvAb4xdDhJkiRJUn+6TgLzYuCewE3ACcB1wMuGCiVJkiRJ6t+UI4ATquoG4DXtQ5IkSZK0AE1ZACb5HFCbWu4soJIkSZK0cEw3Avi2LZJCkiRJkraQcb69znSTwJwx8TzJrYF70IwIXlBVvxo4myRJkiSpR52uAUzyBOC9wE+B0NwM/gVVddqQ4SRJ2hrc8Kub2XsW/9N8xEE9hpEkjbVOBSBwNLCsqn4CkGQf4BTAAlCSJEmSFoiut4G4YqL4a10IXDFAHkmSJEnSQKabBfQp7dMfJjkVWElzDeDTgO8OnE2SJEmS1KPpTgF94sjzy4FHtc+vBHYdJJEkSZIkaRDTzQJ62JYKIkmSJEkaVtdrACVJkiRJC5wFoCRJkiSNCQtASZIkSRoTnQrAJHsk+VCS09rXByZ5/rDRJEmSJEl96joCuAL4ArBn+/rHwMuGCCRJkiRJGkbXAnC3qloJ3AJQVRuAmwdLJUmSJEnqXdcCcH2S29PcBJ4kDwXWDpZKkiRJktS76W4EP+HlwEnAPkm+DiwBnjpYKkmSWqvXrGX5kafMuP2Kgxf1mEaSpIWtUwFYVWcleRRwABDggqr69aDJJEmSJEm9mrIATPKUTSzaPwlVdeIAmSRJkiRJA5huBPCJ7c/dgd8H/qN9vQxYBVgASpIkSdICMWUBWFWHASQ5GTiwqi5rX98ReNfw8SRJkiRJfek6C+jeE8Vf63Jg/wHySJIkSZIG0nUW0FVJvgCcQHMriGcCXx4slSRJkiSpd11nAX1Rkj8BHtm+9f6q+vRwsSRJkiRJfes6Akhb8Fn0SZIkSdIC1fUaQEmSJEnSAmcBKEmSJEljonMBmGSHJAcMGUaSJEmSNJxOBWCSJwJnA59vX983yUlDBpMkSZIk9avrCOBRwIOBawGq6mxg72EiSZIkSZKG0LUA3FBVawdNIkmSJEkaVNfbQJyb5NnAtkn2A14CfGO4WJIkSZKkvnUdAXwxcE/gJuAE4DrgZUOFkiRJkiT1r9MIYFXdALwGeE2SbYFFVXXjoMkkSZIkSb3qOgvo8Ul2TrII+CFwQZJXDBtNkiRJktSnrqeAHlhV1wFPBk4F7go8Z7BUkiRJkqTedS0At0uyHU0B+Nmq+jVQw8WSJEmSJPWtawH4PuDnwCLgK0n2opkIRpIkSZK0QHSdBOYdwDtG3rooybJhIkmSJEmShtCpAEzyUuAY4Hrgg8D9gCOB04eLJkmS+rJ6zVqWH3nKjNsfcVCPYSRJc6brKaDPayeBeRywBDgM+MfBUkmSJEmSete1AEz78/HAMVV1zsh7kiRJkqQFoGsBeGaS02kKwC8k2Qm4ZbhYkiRJkqS+dboGEHg+cF/gwqq6IcntaU4DlSRJkiQtEF1nAb0lyc+A/ZNsP3AmSZIkSdIAus4C+hfAS4E7A2cDDwW+CTx6uGiSJEmSpD51vQbwpcCDgIuqahnNbSCuHCyVJEmSJKl3XQvAG6vqRoAkt6mq84EDhoslSZIkSepb1wLwkiS7AJ8Bvpjks8ClUzVIcpckX05yXpIftjeTlyRJkiTNka6TwPxJ+/SoJF8GFgOfn6bZBuCIqjqrvW3EmUm+WFU/mnlcSZIkSdJMdR0BJMmuSe4NXA9cAtxrqvWr6rKqOqt9fj1wHnCnWWSVJEmSJM1Cqmr6lZI3AcuBC/nNDeCrqjrNAppkb+ArwL2q6rpJyw4HDgdYsmTJA1auXNkx+u9at24dO+6444zb99HHXLefDxnWrl3L4sWL52z7ffQx1+3nQ4a5bj8fMrgP8+MYXHH1Wi7/5cy3f7fF2875Plxz7VouWT/z7e+xA7M6Bn30sdDbz4cM7oPHYL5kmOv2AHdexJz+XuxjH2b790uff0cvW7bszKp6YJd2XQvAC4CDqupXmxssyY7AGcCbq+rEqdY94IAD6oILLtjcTfyPVatWsXTp0hm376OPuW4/HzKcfPLJHHrooXO2/T76mOv28yHDXLefDxnch/lxDN553Gc5enWnKxY2asXBi+Z8H1ae+Fn+z3dmvg9HHLRhVsegjz4Wevv5kMF98BjMlwxz3R7grQ/eMKe/F/vYh9n+/dLn39FJOheAXU8BPRfYZXNDJdkO+BRw3HTFnyRJkiRpWF3L3rcA309yLnDTxJtV9aRNNUgS4EPAeVX1z7NKKUmSJEmata4F4EeAfwJW85trAKfzB8BzgNVJzm7fe3VVnbp5ESVJkiRJfehaAF5VVe/YnI6r6mtANj+SJEmSJGkIXQvAM5O8BTiJ3z4F9KxBUkmSJEmSete1ALxf+/OhI+8V0Ok2EJIkSZKkudepAKyqZUMHkSRJkiQNq+ttICRJkiRJC5wFoCRJkiSNCQtASZIkSRoTXSeBIcnvA3uPtqmqjw6QSZIkSZI0gE4FYJKPAfsAZwM3t28XYAEoSZIkSQtE1xHABwIHVlUNGUaSJEmSNJyuBeC5wB2AywbMIkmaZPWatSw/8pQZt19x8KIe00iSpIWuawG4G/CjJN8Bbpp4s6qeNEgqSZIkSVLvuhaARw0ZQpIkSZI0vE4FYFWdkWQvYL+q+n9JbgtsO2w0LVQ3/Opm9vaUNUmt2Z7GesRBPYaRJGnMdboPYJK/BP4deF/71p2AzwwVSpIkSZLUv643gv/fwB8A1wFU1X8Cuw8VSpIkSZLUv64F4E1V9auJF0luRXMfQEmSJEnSAtG1ADwjyauBHZL8IfBJ4HPDxZIkSZIk9a1rAXgkcCWwGngBcCrw2qFCSZIkSZL613UW0FuAD7QPSZIWjNnOQgrOTixJ2np0HQGUJEmSJC1wFoCSJEmSNCa63gfwaV3ekyRJkiTNX11HAF/V8T1JkiRJ0jw15SQwSQ4BHg/cKck7RhbtDGwYMpgkSZIkqV/TzQJ6KfA94EnAmSPvXw/8zVChJM292c6c6KyJkiRJ88+UBWBVnQOck+T4qvr1FsokSZIkSRpAp/sAAnsneQtwILD9xJtVdfdBUkmSJEmSete1ADwGeD3wL8Ay4DAgQ4WSJPXDU3klSdKorgXgDlX1pSSpqouAo5J8laYolDQA/+EuSZKkvnUtAG9Msg3wn0leBKwBdh8uliRJkiSpb13vA/gy4LbAS4AHAM8BnjtUKEmSJElS/zqNAFbVd9un62iu/5MkSZIkLTCdCsAk+wOvAPYabVNVjx4olzQrs71+7oiDNnj9nSRJkrY6Xa8B/CTwXuADwM3DxZEkSZIkDaVrAbihqt4zaBJJkiRJ0qCmLACT3K59+rkkLwQ+Ddw0sbyqrh4wmyRJkiSpR9ONAJ4JFL+56fsrRpYVcPchQkmSJEmS+jdlAVhVd9tSQSRJkiRJw+o6C+j/Bo6rqmvb17sCz6qqdw8ZTuNptjN4AhxxUE9hZmhr2AdJkiRtfbpOAvOXVfWuiRdVdU2SvwQsACVJW73Z/qfOWx/cYxhJkmZhm67rJZm4DpAk2wK3HiaSJEmSJGkIXUcAvwCsTPJemslf/gr4/GCpJEmSJEm961oAvhJ4AfDXNDOCng58cKhQkiRJkqT+dSoAq+oW4D3tQ5IkSZK0AHWdBXQ/4C3AgcD2E+9XlfcBlLRRfcyEuuLgRT2lmZmtYR8kSZJGdT0F9Bjg9cC/AMuAw/jNzeElSVspb2kiSdLWpessoDtU1ZeAVNVFVXUU8OjhYkmSJEmS+tZ1BPDGJNsA/5nkRcAaYPfhYkmSJEmS+tZ1BPBlwG2BlwAPAP4ceO5QoSRJkiRJ/es6C+h326fraK7/kyRJkiQtMFMWgEmOobnx+9qq+pstE0mS+jHbCUycvESSJG1tphsBXNH+/NXAOSRJkiRJA5uyAKyqM7ZUEEmSJEnSsKY7BXQ1zSmgG1VV9+49kSRJkiRpENOdAnpo+/N/tz8/1v78M+CGQRJJkiRJkgYx3SmgFwEk+YOq+oORRUcm+TrwxiHDSZIkSZL60/U+gIuSPHziRZLfBxYNE0mSJEmSNIRO9wEEng98OMli2ttCAM8bLJUkbSW8FYUkSZpPut4I/kzgPkl2BlJVa4eNJUmSJEnqW9cRQACq6rqhgkiSJEmShtX1GkBJkiRJ0gI3bQGYZJt20hdJkiRJ0gI27SmgVXVLkqOBh22BPJJ64uQjkiRJmqzrKaCnJ/nTJBk0jSRJkiRpMF0ngXk5zX3/NiS5EQhQVbXzYMkkSZIkSb3qehuInYYOIkmSJEka1pQFYJJ7VNX5Se6/seVVddYwsSRJkiRJfZtuBPDlwOHA0RtZVsCje08kSZIkSRrElAVgVR3e/ly2ZeJIkiRJkobS6RrAJNsBfw08sn1rFfC+qvr1QLkkSZIkST3rOgvoe4DtgHe3r5/TvvcXQ4SSJEmSJPWvawH4oKq6z8jr/0hyzhCBJEmSJEnD6FoA3pxkn6r6KUCSuwM3DxdrfK1es5blR54yqz5WHLyopzSSJEmStiZdC8BXAF9OciHNTeD3Ag4bLJUkSZIkqXddbwT/pST7AQfQFIDnV9VNfYf55a9vZu9ZjH458iVtXWY7In7EQT2GkSRJ2gp0nQX0HODjwMqJ00A7tvswcChwRVXda2YRt6zZ/oPTIlSSJEnSfLVNx/WeRHPN38ok303yt0nu2qHdCuDgmYaTJEmSJPWnUwFYVRdV1Vur6gHAs4F7Az/r0O4rwNWziyhJkiRJ6kOqqtuKyd7A04Fn0IwGfqKqju7Y7uRNnQKa5HDgcIDddlvygL97+wc65dmYuy3elh133HHG7QGuuHotl/9y5u1nm2G22+8jw7p162bV/ppr13LJ+hk3Z48dmPUxmG0fc91+PmSY6/bzIYP74DHoq487L8Lfi1vB5zjX7edDhrluPx8yuA/9HIO5/r3Yxz7M9b+5R9svW7bszKp6YJd2Xa8B/DbNjeA/CTytqi6cadDJqur9wPsB7nr3fevo1V0nJv1dKw5exNKlS2eV553HfZa5zDDb7feRYdWqVbNqv/LE2e3DEQdtmPUxmG0fc91+PmSY6/bzIYP74DHoq4+3Pnjh78NCbz8fMrgPHoP5kmGu28Pc/17sYx/m+t/cM23fda+fW1Xnb3bvkiRJkqR5o2sB+PQkv/NmVb2x3ziz08dN1LeGaeOdyVSSJEnSxnSdBXT9yONm4BBg7+kaJTkB+CZwQJJLkjx/hjklSZIkSbPU9UbwvzXZS5K3ASd1aPesGeaSJEmSJPWs6wjgZLcF7t5nEEmSJEnSsLrOAroamLhfxLbAEmBeXf8nSZIkSZpa10lgDh15vgG4vKo2DJBHkiRJkjSQrtcAXpTkPsAj2re+AvxgsFQL2Gxn4NwaZiGVJEmSND91ugYwyUuB44Dd28dxSV48ZDBJkiRJUr+6ngL6fOAhVbUeIMk/0dze4Z1DBZMkSZIk9avrLKD5/+3da6hlZRkH8P/DjGUURlQfwqyMlBi72MXBKKkkun3R7hp0o7QkBIMCJehCBKERFVQUOVkQahe7keWHwvpS2k0yI0sqcjK6YFlf0rKnD3sNbadxzjBz9qw95/39YDNrvXu/a73vOvDM+Z+11l5ZPP9vj7unNgAAAI4QB3oG8FNJrquqL03rZya5dDVDAgAAYBUO9EtgPlBV1yZ5RhZn/l7X3T9Z5cAAAADYXPsNgFV1dJI3JXlMkhuTfNTjHwAAAI5MG90D+OkkT80i/L0gyftXPiIAAABWYqNLQHd09+OTpKouTXL96ocEAADAKmx0BvBfexZc+gkAAHBk2+gM4BOr6u/TciW537ReSbq7j1np6AAAANg0+w2A3b3tcA0EAACA1TrQ5wAykBt/f0dee+HXD7r/xTs3cTAAAMCm2egeQAAAALYIARAAAGAQAiAAAMAgBEAAAIBBCIAAAACDEAABAAAGIQACAAAMQgAEAAAYhAAIAAAwCAEQAABgEAIgAADAIARAAACAQQiAAAAAgxAAAQAABiEAAgAADEIABAAAGIQACAAAMAgBEAAAYBACIAAAwCAEQAAAgEEIgAAAAIMQAAEAAAYhAAIAAAxCAAQAABiEAAgAADAIARAAAGAQAiAAAMAgBEAAAIBBCIAAAACDEAABAAAGIQACAAAMQgAEAAAYhAAIAAAwCAEQAABgEAIgAADAIARAAACAQQiAAAAAgxAAAQAABiEAAgAADEIABAAAGIQACAAAMAgBEAAAYBACIAAAwCAEQAAAgEEIgAAAAIMQAAEAAAYhAAIAAAxCAAQAABiEAAgAADAIARAAAGAQAiAAAMAgBEAAAIBBCIAAAACDEAABAAAGIQACAAAMQgAEAAAYhAAIAAAwCAEQAABgECsNgFX1/Kq6uapuqaoLV7kvAAAA9m9lAbCqtiX5SJIXJNmR5Oyq2rGq/QEAALB/qzwDuDPJLd396+6+K8kVSc5Y4f4AAADYj1UGwGOT3Lq0vntqAwAAYAbV3avZcNXLkjyvu98wrb8qyc7uPn+vz52b5Nxp9aQkNx3Cbh+Y5I5D6L8Z25i7/zqM4RFJfjfj/jdjG3P3X4cxzN1/HcZgDo7BZm1DXZy//zqMwRwcg3UZw9z9k/nr4lb7OT6yux96QL26eyWvJE9Lcs3S+kVJLtqgzycOcZ+H1H8dxrBF5vBnx8AcHIP1GMPc/ddhDGsyB3Vxa/wczcExMIfNOwaz1sWRf46rvAT0B0lOqKrjq+o+Sc5K8tUN+nztEPd5qP3XYQxbYQ5/m3n/m7GNufuvwxjm7r8OYzAHx2CztqEuzt9/HcZgDo7Buoxh7v7J/HVx2J/jyi4BTZKqemGSDybZlmRXd793ZTtjbVTVD7v7qXOPA2BdqIsA96Quzmf7Kjfe3VcnuXqV+2AtfWLuAQCsGXUR4J7UxZms9AwgAAAA62OV9wACAACwRgRANlRVu6rqT1X1s73az6+qm6vqpqq6eKn9oqq6ZXrveUvtT6mqG6f3PlxVdTjnAbBZ9lUXq+rKqrphev22qm5Yek9dBLa0e6mLJ1fV96e6+MOq2rn0nro4EwGQA3FZkucvN1TVs5OckeQJ3X1SkvdP7Tuy+MbXk6Y+H62qbVO3j2XxzMcTptc9tglwBLkse9Ww7n5Fd5/c3Scn+WKSqxJ1ERjGZfn/GnZxkndPdfEd07q6ODMBkA1193eT3L5X83lJ3tfdd06f+dPUfkaSK7r7zu7+TZJbkuysqoclOaa7v9eLG08/k+TMwzMDgM11L3UxSTL9tfrlSS6fmtRFYMu7l7rYSY6Zlh+Y5LZpWV2ckQDIwToxyWlVdV1VfaeqTpnaj01y69Lndk9tx07Le7cDbDWnJfljd/9qWlcXgVFdkOSSqro1i6vFLpra1cUZCYAcrO1JHpTk1CRvS/K56a/e+7pOu/fTDrDVnJ3/nf1L1EVgXOcleUt3H5fkLUkundrVxRkJgBys3Umu6oXrk/wnyUOm9uOWPvfwLE73756W924H2DKqanuSFye5cqlZXQRG9ZpM90Mn+XySPV8Coy7OSADkYH05yelJUlUnJrlPkr8k+WqSs6rqvlV1fBY3717f3X9I8o+qOnU6U/jqJF+ZZ+gAK/OcJL/o7uVLmNRFYFS3JXnmtHx6kj2XxquLM9o+9wBYf1V1eZJnJXlIVe1O8s4ku5Lsmr7q964kr5lu1r2pqj6X5OdJ/p3kzd1997Sp87L4hqj7JfnG9AI44uyrLnb3pVl8q93y5Z/pbnUR2PLu5ffFc5J8aLo64p9ZfLunujizWvzODgAAwFbnElAAAIBBCIAAAACDEAABAAAGIQACAAAMQgAEgENQVW+sqgfNPQ4AOBACIABDqaoXVVVX1WM3YVvvSHJ7d/91E4YGACvnMRAADGV69tTDknyru98183AA4LByBhCAYVTVA5I8Pcnrs3hoe6rqWVV1bVV9oap+UVWfraqa3vttVb27qn5cVTfuOWtYVfevql1V9YOq+klVnTG1b6uqS6b2n1bVG2eaKgDskwAIwEjOTPLN7v5lktur6slT+5OSXJBkR5JHZxES9/hLdz85yceSvHVqe3uSb3f3KUmeneSSqrp/FsHyjqn9lCTnVNXxq54UABwoARCAkZyd5Ipp+YppPUmu7+7d3f2fJDckedRSn6umf3+01P7cJBdW1Q1Jrk1ydJJHTO2vntqvS/LgJCesYiIAcDC2zz0AADgcqurBSU5P8riq6iTbknSSq5PcufTRu3PP/x/v3Ed7JXlJd9+81z4qyfndfc3mzwAADp0zgACM4qVJPtPdj+zuR3X3cUl+k+QZB7Gta5Kcv3Sv4JOW2s+rqqOm9hOnS0MBYC0IgACM4uwkX9qr7YtJXnkQ23pPkqOS/LSqfjatJ8knk/w8yY+n9o/H1TYArBGPgQAAABiEM4AAAACDEAABAAAGIQACAAAMQgAEAAAYhAAIAAAwCAEQAABgEAIgAADAIARAAACAQfwXdrvQeE0pyXIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -648,8 +640,8 @@ "ax31.xaxis.set_major_locator(MultipleLocator(100))\n", "ax31.xaxis.set_minor_locator(MultipleLocator(5))\n", "\n", - "ax31.xaxis.set_major_formatter(DateFormatter('%Y'))\n", - "ax31.xaxis.set_minor_formatter(DateFormatter('%y'))\n", + "# ax31.xaxis.set_major_formatter(DateFormatter('%Y'))\n", + "# ax31.xaxis.set_minor_formatter(DateFormatter('%y'))\n", "\n", "\n", "ax31.grid(True, which='both')\n", @@ -659,12 +651,69 @@ "\n", "ax31.set_title(\"Pouvoir d'achat d'un ouvrier\\n en équivalent masse de blé hebdomadaire\\n de 1565 à 1810\")\n", "\n", - "fig3.autofmt_xdate()" + "# fig3.autofmt_xdate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Le pouvoir d'achat représenté différemment\n", + "Le pouvoir d'achat est ici représenté différemment, pour faire apparaitre les variations des deux grandeurs qui ont servi à sa construction." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAHBCAYAAAD+RoNLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcZHdd7//3p/au3rfZZzIzySQhiRDIgAiXHSTg70cQQYkiy0Ujiyj+Hlfk6vVyucrVq9efigoYICJXDSBgiP6CIAjkigGSQEL2WTMzPVv3dE/vtZ7z+f3RS7pnenq6p6vr1PJ68jgPqk6dqvPppNNVn/p8z+dj7i4AAAAAQG2LRR0AAAAAAODiSN4AAAAAoA6QvAEAAABAHSB5AwAAAIA6QPIGAAAAAHWA5A0AAAAA6gDJGwAAFWJmt5nZoJk9fIHHzcw+bGYHzOyHZvasascIAKhfJG8AAFTOpyTduMzjr5K0Z3a7RdJHqxATAKBBkLwBAFAh7n63pJFlDrlJ0qd9xnckdZnZ5upEBwCodyRvAABUz1ZJxxbcH5jdBwDARSWqebK+vj7fuXNnNU8JAKgh999//xl37486jgjZEvt8yQPNbtHM0kq1trbecPXVV69nXABQNZV8L3jlS1p9eCSoxEvNu/+Hha+4+3JL4CNT1eRt586duu+++6p5SgBADTGzI1HHELEBSdsX3N8m6cRSB7r7rZJulaS9e/c6758AGkUl3wuGRwJ97ys7KvVykqT45v19FX3BCmLZJAAA1XOnpDfPdp18rqQxdz8ZdVAAUK9cUljh/9WyqlbeAABoZGZ2u6QXS+ozswFJH5CUlCR3/5ikuyS9WtIBSdOS3hZNpADQKFyB13bCVUkkbwAAVIi733yRx13Su6sUDgCgwZC8AQAAAKhLM8sml+z71JC45g0AAAAA6gCVNwAAAAB1q9abjFQSyRsAAACAuuRyBc6ySQAAAABADaHyBgAAAKBuNVPDEpI3AAAAAHXJJQVNlLyxbBIAAAAA6gDJGwAAAIC6Fcorul2Mmd1mZoNm9vCCfdeb2XfM7AEzu8/MnrPgsf9sZgfM7Akze+WC/TeY2UOzj33YzOxi5yZ5AwBckHtBnrtD4dhvKxz/A3np0ahDAgAgap+SdOM5+/5A0gfd/XpJ/3X2vszsGklvlHTt7HM+Ymbx2ed8VNItkvbMbue+5nm45g0AsCQvPSofeYukkuTTkmLy6b+Rp18k6/pjmfEWAgCIlktVHxXg7neb2c4lQumYvd0p6cTs7ZskfcbdC5IOm9kBSc8xsycldbj7PZJkZp+W9FpJX17u3LzzAgDO4+H0TOLmYwv2hpLyUuFb8ok/kXX8p6jCAwBg3jqM6O4zs/sW3L/V3W+9yHPeK+krZva/NLO68Xmz+7dK+s6C4wZm95Vmb5+7f1ksmwQAnMdz/yR56QKP5qXc32rmS0QAABrOGXffu2C7WOImSe+U9Gvuvl3Sr0n65Oz+pa5j82X2L4vkDQBwvtI9kqaXP6Z8tCqhAABwIS5XUOHtEr1F0hdnb/+9pLmGJQOSti84bptmllQOzN4+d/+ySN4AAOezVs19Keie0ODUzcqVrnjqcQ8ky0QTGwAAc1wKKrxdohOSXjR7+6WS9s/evlPSG80sbWa7NNOY5HvuflLShJk9d7bL5JslfeliJ+GaNwDAeazlNfL8P0k+rXLYrjO5NygRG1ZL8sDMAfGNUnzb8i8CAEADMrPbJb1YM9fGDUj6gKRflPSnNtPNK6+ZLpJy90fM7HOSHpVUlvRudw9mX+qdmulc2aKZRiXLNiuRSN4AAEtJPltKXCeVHlTgM82zErGJ2Qczso7f1grG0QAAsK5c69KwZPlzut98gYduuMDxH5L0oSX23yfputWcm2WTAIDzmJms5xNSy00Kwh5JUjxWlGJbZN0flqVfGHGEAAA0HypvAIAlmWVknb+rwE9L40NKdH9Q1rqHihsAoIaYgiUbNzYmkjcAwLLCMClJSqR3kbgBAGqKSwqrO6M7UiRvAIBldXd3q7OzU7EYK+0BAIgSyRsAYFlmpng8HnUYAAAsqZmWTfI1KgBgWSMjIxoaGoo6DAAAmh6VNwDAssbHx1Uul9Xf3x91KAAALOJqrsobyRsAYFlBECiR4O0CAFCbQm+e5I1lkwCAZZXLZa55AwCgBvBVKgBgWUEQkLwBAGoSyyYBAJjlPjM8h2WTAIBa5DIFTbSYkHdjAMAFmZmuueaa+SQOAABEh+QNAHBRZs2zJAUAUF9oWAIAgKR8Pq9jx46pUChEHQoAAE2PyhsA4IKKxaLGxsbU19cXdSgAAJyHhiUAAMwql8uSRLdJAECNMgXePIsJm+cnBQCsWhAEkug2CQBALeDdGABwQeVyWWamWIzv+gAAtcclhU1Uj2qenxQAsGpmplQqFXUYAABAVN4AAMvYtGmTNm3aFHUYAABcEA1LAAAAAKDGudOwBAAASdLAwIDOnDkTdRgAAEBU3gAAy5iYmKBZCQCgpoUsmwQANDt3VxAEzHgDANSsmSHdzfMlY/P8pACAVWHGGwAAtYV3ZADAkuaSNypvAIDaRcMSAADk7kqn01TeAACoEbwjAwCWlMlktGfPnqjDAADgglxS2ET1KJI3AAAAAHUr8ObpNtk8aSoAYFXOnj2rQ4cOKQzDqEMBAACi8gYAuIBCoaBcLiez5vlGEwBQX1zWVKMCSN4AAEuam/FG8gYAqGUh3SYBAM2uXC4zJgAAgBpC5Q0AsKQgCBgTAACoaS6xbBIAgHQ6TeUNAIAaQvIGAFjS1q1bow4BAIBluaypRgWQvAEAAACoW800pLt5flIAwIoFQaAnnnhCo6OjUYcCAABmUXkDAJynXC6rVCrJ3aMOBQCAC3KXAkYFAACaWRAEkkS3SQAAagjvygCA88wlb3SbBADUNlMoGpYAAJpYuVyWRPIGAKhtLpZNAgCaXCKRUHt7O8smAQCoIbwrAwDO097ervb29qjDAADgooImqkeRvAEAAACoSy5T2ERDupsnTQUArNixY8d06NChqMMAAAALUHkDAJxnrmEJAAC1rpmWTTbPTwoAWLFyuUynSQAAagyVNwDAeYIgoNMkAKDmuaSwiUYF8M4MAFjE3RUEAZU3AEAdMAVNNKS7edJUAMCKdXd3K5vNRh0GAABYgMobAGARM9OWLVuiDgMAgItqtmWTzfOTAgBWxN3l7lGHAQAAzkHlDQCwyOTkpI4cOaLdu3ezdBIAUPOa6Zo3kjcAwCJBEEgSDUsAADXP3Vg2CQBoXiRvAADUJipvAIBFyuWyJJI3AEB9CKi8AQCa1dyMN7PmuYagUszsRjN7wswOmNn7l3i808z+0cweNLNHzOxtUcQJAI3CJYWyim61jMobAGCR1tZWJRK8PayWmcUl/YWkV0gakHSvmd3p7o8uOOzdkh519//bzPolPWFmf+vuxQhCBgDUGd6dAQCLdHZ2Rh1CvXqOpAPufkiSzOwzkm6StDB5c0ntNlPWbJM0Iqlc7UABoHEYyyYXMrPbzGzQzB5esK/HzP7FzPbP/n/3+oYJAKiWcrmsMAyjDqMebZV0bMH9gdl9C/25pKdJOiHpIUm/6u5L/sM2s1vM7D4zu29oaGg94gUA1JmVpKmfknTjOfveL+nr7r5H0tdn7wMAGsDBgwd14sSJqMOoR0tdKHHutPNXSnpA0hZJ10v6czPrWOrF3P1Wd9/r7nv7+/srGykANAiXFLpVdKtlF03e3P1uzSzrWOgmSX89e/uvJb22wnEBACJSLpfpNHlpBiRtX3B/m2YqbAu9TdIXfcYBSYclXV2l+ACgIQWKVXSrZZca3UZ3PylJs/+/oXIhAQCiEoah3J2GJZfmXkl7zGyXmaUkvVHSneccc1TSyyTJzDZKukrSoapGCQCoW+v+7mxmt0i6RZJ27Nix3qcDAKwBM94unbuXzeyXJX1FUlzSbe7+iJm9Y/bxj0n6HUmfMrOHNLPM8jfc/UxkQQNAnXPV/lLHSrrU5O20mW1295NmtlnS4IUOdPdbJd0qSXv37j137T8AoIYEQSCJ5O1Suftdku46Z9/HFtw+IenHqx0XADSysMaXOlbSpf6kd0p6y+ztt0j6UmXCAQBEKZFIaOPGjcpkMlGHAgAAznHRypuZ3S7pxZL6zGxA0gck/b6kz5nZ2zWzfv8N6xkkAKA6ksmk6GwIAKgX7lLAssmnuPvNF3joZRWOBQAQsbkZb8lkUjNzpAEAQK1ongWiAICLGhkZ0b59+6IOAwCAFWumOW/0ggYAzAuCQLFYjKobAKAuzHSbbJ56VPP8pACAi2JANwAAtYvKGwBgXhAEDOgGANSVQM2zWoTKGwBgXhAEVN4AAKhRfL0KAJjX39/P9W4AgLrhUs03GakkkjcAwLyOjo6oQwAAYBVoWAIAaELurqmpKZXL5ahDAQCgZpnZbWY2aGYPL9j3WTN7YHZ70swemN2/08xyCx772ILn3GBmD5nZATP7sK1g6QuVNwCApJlOk4cPH9bmzZvV29sbdTgAAKxIWP2GJZ+S9OeSPj23w91/Zu62mf2RpLEFxx909+uXeJ2PSrpF0nck3SXpRklfXu7EJG8AAEkzzUok0W0SAFA33KWgyte8ufvdZrZzqcdmq2c/Lemly72GmW2W1OHu98ze/7Sk1+oiyRvLJgEAkp5K3ug2CQBocn1mdt+C7ZZVPPcFkk67+/4F+3aZ2Q/M7Ftm9oLZfVslDSw4ZmB237L4ehUAIEnz17pReQMA1JN1aFhyxt33XuJzb5Z0+4L7JyXtcPdhM7tB0h1mdq205FpPv9iL8w4NAJBE5Q0AgLUws4Sk10m6YW6fuxckFWZv329mByVdqZlK27YFT98m6cTFzsGySQCAJKmtrU3bt28neQMA1A2XKfTKbmvwckmPu/v8ckgz6zez+Ozt3ZL2SDrk7iclTZjZc2evk3uzpC9d7ARU3gAAkqRUKqVUKhV1GAAArEq1u02a2e2SXqyZa+MGJH3A3T8p6Y1avGRSkl4o6b+bWVlSIOkd7j4y+9g7NdO5skUzjUqWbVYikbwBQFNzdwXFe1Wcuk256ZxcWbV3Xq9U68/IYl1RhwcAQM1x95svsP+tS+z7gqQvXOD4+yRdt5pzk7wBQJNyLyl39t0qF74leV5npz6gIOxRKvY+FSb/RNmeTymR/tGowwQA4IJcWutSx7pC8gYATSo/9kGV89+UlJckhWGH4jY+c9+l6ZG3qK3/64olLtq5GACAyKxDt8ma1Tw/KQBgnoejKk1/VnOJmySF3q5YbHzBQSUVp26rfnAAAGBJJG8A0IRK+a9LtnjxRegditn4wqNUml5ymT4AALWhwp0ma30JJskbADQhD8ckL8/fLwVbFXpWyfjiETPuU9UODQAAXADXvAFAE4rFt0iWVBC0KB4bVTJ+XBvaf0vpxMOLjrN4X0QRAgBwca7qjwqIEpU3AGhC8fSLNZF7pU6M/pVypWdKkjLJH8osXHBURqnsWyOJDwCAlWLZJACgYZXLZR07dlpnp9+udPJhpeIHlzgqLot1KtX6xqrHBwAAlsaySQBoIlNTUxoYGFC5XNamTZvUls6rOFGQrEXynCSTrEWx+BZle/63LNYZdcgAAFwQc94AAHXJvaR8/msKyk/KYq3KZF6ueHzLomPy+bzMTLt371ZLS4ukX1K69WdUnP6iwvLjkrUqmXmV4qlny6x53gwBAKgHJG8A0ACmp76osbHflBTKPS8poTF9QJnMy9Ta9v+qVIqpra1NPT096u7uViz21Kp5i3Up3fYfI4sdAIC1oPIGAKgb09N3aGzs1+WeW7B3ZgzA+Pi4Tp56TPF4p6688krFYjEqagCAhuGq/SYjlUTyBgB1zL2ksdHfPCdxk9yTms69XYXC6xSPH9LmzeOKxa6OKEoAAFAJJG8AUMcK+W9qrso2xz2j8Yk/UhDsUTr9D8q2fEKl4jMlvSKKEAEAWFfNNOeN5A0A6lg5OCL30qJ9ZnklEw+oJfO/lUp9Z+a48pEowgMAYH0517wBAOpEzFplFpe7FARbJMUUjw8om/34ouPMstEECAAAKoYh3QBQx9KZV8i9rDDs0cTk72li8gNyP/dPe0bZ7E9HEh8AAOtpbs5bJbdaRuUNAOpYPN6ndPr1Ghx6kcKwSx3tvy6zcNExZgllW98UUYQAAKBSSN4AoI6FYaix8XcoCKbU3v7flUjsW/BoRmYJ9fbdrni8N7IYAQBYT7VeLaskkjcAqGNDQ0Oans5r27YdymR+WVOTCZXLh2WWVUv2DWrN3qxYvCfqMAEAWBfMeQMA1I3+/n61tLSoo6ND0kuUybwk6pAAAMA6IXkDgDp09uxZdXR0KB6PzyZuAAA0J2+iyhvdJgGgzgwPD+v48eMaHh6OOhQAAFBFVN4AoI6Mjo7q5MmTam9vV39/f9ThAAAQuVDNU3kjeQOAGuTucs/JLC2zuCRpYmJCx48fVzab1fbt22XWPG9WAAAsxZ1ukwCAiJSDMxoZ/4jGpv5GoeckSa2Zl6qn/b06dapN6XRal112mWIxVr0DANBsSN4AoEaUysd05PSrFYTjkkrz+6fyX9N04d/Uu+FP1JG9UfF4PLogAQCoMTQsAQBU3cDQWxWEZ7UwcfOwV0H+TQrDgoYnflWy09EFCABAzZmZ81bJrZaRvAFADcgVHlApeFJSOL/PvU3lqf+hsPA6Kdwk91BnJ/4qshgBAEC0SN4AoAZMF/6P3Ivz991jCqY+KIVbFW/9oCx+QlJRk/mvRhckAAA1yN0qutUykjcAqAUeSPKn7oc75cGPKJb5uGKJBxYcV656aAAAoDbQsAQAakA6dZ3MsnKflCR5cLkkKZb4/oKjYsqknxVBdAAA1CYXowIAAFXWmnmJYpZRMJu8WfxRxTIfk2LH548xS6un/ZaoQgQAoPb4zKy3ZsGySQCoAWZxben9qMxaZu7Hjyue/qLMwtnHW9TZerMyqWdEGSYAAIgQlTcAqBHZzPO1vf+zOjXy2yrkOxSLH5bFzsoso96O96qr7T9GHSIAADUnFMsmAQARaEnv1ZaeO7R//3719U+psyulTOrpMmMwNwAA53I115BukjcAqDH5fF6S1NnxdLWkWyKOBgAA1AqSNwCoMblcTpKUTqcjjgQAgFpnTdVtkoYlAFBj8vm8MpmMYjH+RAMAgKdQeQOAGuLuyuVyam9vjzoUAADqQjONCiB5A4Aas3v37qhDAACgbtCwBAAQCTPjWjcAALAkkjcAqCETExMqlUrq7u6WWfN8kwgAwKVwb67KG1fDA0ANOXv2rM6cOUPiBgAAzkPlDQBqSC6XU0sLs90AAFipZhoVQPIGADUiCAKVSiX19PREHQoAAHWjmbpNsmwSAGrE3HDuTCYTcSQAAKAWUXkDgBpRLBYliWWTAACsQjM1LCF5A4Aa0dPTo87OTsXj8ahDAQCgLrisqZI3lk0CQA0hcQMAABdC8gYANSAMQx05ckSTk5NRhwIAQF3xCm+1jOQNAGpAPp/XxMSEgiCIOhQAAFCjuOYNAGpAPp+XRLMSAABWxWlYAgCosnw+r1gspmQyGXUoAADUl1pf61hBLJsEgBqQy+WUyWRk1jzfHgIAgNUheQOAiLm7YrGYWltbow4Fa2RmN5rZE2Z2wMzef4FjXmxmD5jZI2b2rWrHCACNxt0qutUylk0CQMTMTLt27Yo6DKyRmcUl/YWkV0gakHSvmd3p7o8uOKZL0kck3ejuR81sQzTRAkDjcJZNAgCAVXqOpAPufsjdi5I+I+mmc475WUlfdPejkuTug1WOEQBQx0jeACBip0+f1qFDh+TN9NVhY9oq6diC+wOz+xa6UlK3mX3TzO43szdf6MXM7BYzu8/M7hsaGlqHcAGg/rmaa9kkyRsARGx6elruTrOS+rfUv8BzM/KEpBsk/YSkV0r6bTO7cqkXc/db3X2vu+/t7++vbKQAgLrENW8AECF3Vy6XU2dnZ9ShYO0GJG1fcH+bpBNLHHPG3ackTZnZ3ZKeIWlfdUIEgAbjkmq8WlZJVN4AIEKlUklhGDKcuzHcK2mPme0ys5SkN0q685xjviTpBWaWMLOspB+V9FiV4wSAhuJe2a2WUXkDgAjl83lJUiaTiTgSrJW7l83slyV9RVJc0m3u/oiZvWP28Y+5+2Nm9s+SfigplPQJd384uqgBAPWE5A0AIhSPx9XR0UHy1iDc/S5Jd52z72Pn3P9DSX9YzbgAoKHVeLWsktaUvJnZr0n6Bc38I3tI0tvcPV+JwACgGbS2tjKcGwAArMglX/NmZlsl/Yqkve5+nWaWiLyxUoEBQDMol8tRhwAAQB2r7JiARh8VkJDUYmYJSVmd31ULAHAB5XJZjz/+uIaHh6MOBQCA+uUV3mrYJSdv7n5c0v+SdFTSSUlj7v7Vc49jyCgALC2Xy0mS0ul0xJEAAIB6sJZlk92SbpK0S9IWSa1m9qZzj2PIKAAsjU6TAACskYtlkyv0ckmH3X3I3UuSvijpeZUJCwAaXz6fVzKZVCJB418AAC4ZyyZX5Kik55pZ1sxM0svEoFEAWLFcLkfVDQAArNglf93r7t81s89L+r6ksqQfSLq1UoEBQKPr7++n6gYAwJrV9lLHSlrTpwZ3/4CkD1QoFgBoKt3d3VGHAAAA6ghf+QJABAqFgtxd6XRaMyvPAQDAJanx69Qqaa1z3gAAl2BoaEiHDx+OOgwAAOofDUsAAOspn8+rpaWFqhsAAHXGzG4zs0Eze3jBvs+a2QOz25Nm9sCCx/6zmR0wsyfM7JUL9t9gZg/NPvZhW8GHApI3AKiyMAxVKBToNAkAwFq5JLfKbhf3KUk3LgrD/Wfc/Xp3v17SFzQzRk1mdo2kN0q6dvY5HzGz+OzTPirpFkl7ZrdFr7kUkjcAqLK5691aWlqiDgUAAKySu98taWSpx2arZz8t6fbZXTdJ+oy7F9z9sKQDkp5jZpsldbj7Pe7ukj4t6bUXOzcNSwCgyvL5vCRReQMAoAK8tq5Te4Gk0+6+f/b+VknfWfD4wOy+0uztc/cvi+QNAKqsvb1dl112mVKpVNShAABQ/yqfvPWZ2X0L7t/q7iudZ32znqq6SUsPofNl9i+L5A0AqiyRSKi9vT3qMAAAwNLOuPve1T7JzBKSXifphgW7ByRtX3B/m6QTs/u3LbF/WVzzBgBV5O46c+bM/NJJAACwRtVvWHIhL5f0uLsvXA55p6Q3mlnazHZppjHJ99z9pKQJM3vu7HVyb5b0pYudgOQNAKqoWCzq1KlTyuVyUYcCAEBDMK/sdtHzmd0u6R5JV5nZgJm9ffahN2rxkkm5+yOSPifpUUn/LOnd7h7MPvxOSZ/QTBOTg5K+fLFzs2wSAKqIZiUAANQ3d7/5AvvfeoH9H5L0oSX23yfputWcm+QNAKool8vJzJROp6MOBQCA+udaj4YlNYtlkwBQRblcTul0WrEYf34BAMDqUHkDgCoqFApqa2uLOgwAABrEmpuM1BWSNwCooiuvvFJhGEYdBgAAjaOJlk2SvAFAFcViMZZMAgCAS8InCACoktHRUZ08eVLuTfQVIQAA680rvNWwhkneCvmSfv83Pqv3/tzH9OT+01GHAwDnGRsb08TEhGZmcQIAgIogeas///pPDyieKutlP3mV/vSD/xB1OABwnnw+r5aWlqjDAAAAdaphrnnr39ylV139DEnSpm1DEUcDAIuVy2WVSiWGcwMAUEmupuo22TCVt73P36O5y0h+7YM/GW0wAHCOfD4vSVTeAADAJWuYypsktbe3KQgCpdLJqEMBgEWCIFAikaDyBgBAhVmNX6dWSQ2VvGUyGeYnAahJnZ2d6uzsjDoMAAAaTxMlbw2zbFKS3F2jo6NRhwEAAAAAFddQyRsA1KIwDLV//36NjY1FHQoAAKhjDbVscnh4OOoQAOA8+XxehUKB+W4AAGBNGip5A4BaNNdpkmYlAABUHg1L6pB7E/1bA1BXcrmc4vG4kkk64QIAUHHMeas/c8lbPB6POBIAWCyfzyuTybBsEgAArEnDVN7mRgRs2LAh4kgAYLGWlhalUqmowwAAoPG4mmpUQMMkb5LU0dGhWKxhiokAGsSWLVuiDgEAgMbVRMlbw2Q6iURCqVRKx48fjzoUAJgXhiHX5AIAgIpomOTN3bmeBEDNOX36tJ544gkSOAAA1ol5Zbda1jDJ2+TkpIaGhqIOAwAWyeVySiaTfLkEAADWrGGSt7mGJQBQK9xd+XxeLS0tUYcCAEDj8gpvNaxhGpaQvAGoNaVSSWEYMpwbAID1VOMJVyU1XOWtv7+fa0sA1IRcLidJJG8AAKAiGq7y1t/fz7UlAGpCOp1Wf38/yRsAAOukHpqMVFLDJG8tLS3q7OxUsVhUOp0mgQMQuUwmQ+IGAAAqpmGWTba1tSmdTuvAgQNRhwIAkqTp6WkFQRB1GAAANDa3ym41rGGSt4WDcLnmDUDUSqWSDh06pLNnz0YdCgAAjY1uk/Xn+PHjGhsbizoMAJAk5fN5STQrAQAAldMwyRujAgDUkrlOk8x4AwBgfdGwpA6RvAGoJfl8XslkUvF4POpQAABobCRv9ScMQyUSCW3cuJFOkwAil8/nqboBAICKaqjkLZvNqru7O+pQAEDbtm3jiyQAANYbc97qU09Pj6SZ1twtLS18aAIQqWw2G3UIAACgwTTMqIDe3l65uw4dOsT1bwAiNT09rbGxMcaWAABQDYwKqD/FYpGkDUBNGBkZ0eTkpDo7O6MOBQCAxlfjCVclNUTyFoah9u3bN9/VjW+7AUQpn88z3w0AAFRcQyybnEvWYrGG+HEA1LEwDEneAACoIvPKbrWsIbKdIAgkiXlKACJXKBQkMZwbAABUXsMsm5Skjo4O9ff3U4EDEJl8Pi9JVN4AAEDFNVTylslk1NHREXE0AJpZV1eXWltblUwmow4FAIDmUONLHSupIUpUyWRSmzZtUjwe18TEBF0nAUTGzJRKpZg1CQAAKq5hkre+vj4VCgUdOXJk/ho4AKgmd9fx48c1NTUVdSgAADSHCjcroWFJFZTLZRUKBUYEAIhUoVDQ2bNnVSwWow4FAIDm0URDuhsieRsfH9euXFHmAAAgAElEQVT+/ftVLpclMecNQDTmmpXQaRIAAKyHhmpYwqgAAFHK5/MyM6XT6ahDAQCgeTRR3aYhKm9zyRsjAgBEKZfLKZ1O06wEAACsi4apvJmZ2tvbddlllymRaIgfC0CdcXeWTAIAUEWm2m8yUkkNkeWEYahYLKZkMslsJQCR2b17N9fcAgBQbU301tsQyVtXV5ey2ayKxaJyuZza2tq4/g1AJFgyCQAA1ktDXCSWzWbV1dWl6elpHTt2bL7rJABUy5kzZ/Tkk09SeQMAoJqabM5bQ1Te5jq8AUBUpqamVCqV+FsEAEC11XjCVUkNUXk7ceKETpw4EXUYAJpYPp9XJpOJOgxEzMxuNLMnzOyAmb1/meOebWaBmb2+mvEBAOpbQyRvcw1L5rBsCUA1lctllUolkrcmZ2ZxSX8h6VWSrpF0s5ldc4Hj/qekr1Q3QgBoUF7hrYY1VPLGciUAUcjn85LEmAA8R9IBdz/k7kVJn5F00xLHvUfSFyQNVjM4AED9a6jkrbW1Vbt27VIqlYo6JABNprW1lcobtko6tuD+wOy+eWa2VdJPSvrYxV7MzG4xs/vM7L6hoaGKBgoAjYSGJXVmLnlLJBIM6AZQdW1tbWpra4s6DERvqeUf534M+BNJv+HuwcVWi7j7rZJulaS9e/fW+McJAIhQE/2FbIhMZ9u2bUomkyoWi5qamlJ7eztJHICqcXeWbUOaqbRtX3B/m6Rzu2ntlfSZ2d+XPkmvNrOyu99RnRABAPWsIZZNdnR0qKWlRblcTsePH1epVIo6JABNIggCPfrooxoeHo46FETvXkl7zGyXmaUkvVHSnQsPcPdd7r7T3XdK+rykd5G4AcAaVLpZSY1X8eq+PBWGoaamppTJZPjmG0DVFQoFubuSyWTUoSBi7l42s1/WTBfJuKTb3P0RM3vH7OMXvc4NALB6tX6dWiXVffJWKpV05MgRbd26VfF4fFXPPTo4qlv/6R6lkwm98zXPU19n6zpFCaBR5XI5SaJZCSRJ7n6XpLvO2bdk0ubub61GTACAxlH3yVsYhpK0aM7bSpSCQG/7g89odCKnWMz04MET+vx/e8t6hAiggeXzecXjcSpvAABEhcpb/ViYvM0N517JkO6xybymckV1t6VVDlyHT43QdADAquVyOZZtAwCAqmiY5C0ejyudTuuKK65Y0Zy3nvasLtvYrbe9aI8Gx3P63uFRPnwBWLWuri662wIAECGueasjCytv8Xh8xde9xWKmv3rfz+jQgX3a1tumm1/1wvUME0CD6uvrizoEAACaWxMlb3U/KqC1tVU7d+6cn/M2PDy84lEB2cxTFbpkYnXNTgCgVCqpVCqtaKk2AADAWq0peTOzLjP7vJk9bmaPmdmPVSqwlUokEmpra1M8HlehUNDJkyeZ8wagKs6cOaN9+/ZFHQYAAM2LOW+r8qeS/tndXz87kDRbgZhWJZ/Pq1AoqKOjY/6aNb4FB1ANNCsBAADVdMmVNzPrkPRCSZ+UJHcvuvtopQJbqbGxMR07dqzapwXQ5Nxd+XxeLS0tUYcCAEDTsnXYatlalk3uljQk6a/M7Adm9gkzq/qU6zAMFYvFLvmb787OTrW3t1c4KgCNrlgsKgxDhnMDABC1Jlo2uZbkLSHpWZI+6u7PlDQl6f3nHmRmt5jZfWZ239DQ0BpOt7S55O1S9ff3a8uWLRWMCEAzyOfzkkTlDQAAVM1akrcBSQPu/t3Z+5/XTDK3iLvf6u573X1vf3//Gk63tIXJWzab1ZVXXrmqD1OHDh3SmTNnKh4XgMaWzWa1bds2pdPpqEMBAKCpmVd2q2WXnLy5+ylJx8zsqtldL5P0aEWiWoWFyVssFlMqlVpVJS4MQw0PD69XeAAaVDKZVFdX15oq/wAAoAKaaNnkWrtNvkfS3852mjwk6W1rD2l1Nm3aNN9dslgsamxsTJ2dnUqlUhd5JgBcurNnz6q1tZW/NQAAoGrW9JWxuz8wuyTy6e7+Wnc/W6nAViqdTs83DCiVSjp9+rSKxWK1wwDQREqlko4fP66JiYmoQwEAAFWuvJnZbWY2aGYPn7P/PWb2hJk9YmZ/MLtvp5nlzOyB2e1jC46/wcweMrMDZvZhW0EHxrVW3iI3OjqqZDKp1tanGl2udM5btefBFYKyPvTv39TXjhxUd6ZFv/uCV+iZGzdXNQYAazfXrIROkwAANKVPSfpzSZ+e22FmL5F0k6Snu3vBzDYsOP6gu1+/xOt8VNItkr4j6S5JN0r68nInrvuLNU6fPq2zZ2cKfrU+KPe/3P01fe7xh3VickKPnBnUz/3j53RsvOqj8QCsUS6Xk0TyBgBA5CrcrGQlDUvc/W5JI+fsfqek33f3wuwxg8u9hpltltTh7vf4TEXp05Jee7Fz133ytpZRAWam/v7+RVW79fTlQ/tUCMr6s2c+X8/v3SiX698Gjlbl3AAqJ5/PK5VKKR6PRx0KAACo/LLJvrlRZ7PbLSuI4kpJLzCz75rZt8zs2Qse2zU7F/tbZvaC2X1bNdO9f87A7L5l1f2yybUkb+6utrY29fT0VDiqpbUkkkqbaVdru57e1asfjI0om0xW5dwAKieXyzHfDQCAxnXG3feu8jkJSd2Snivp2ZI+Z2a7JZ2UtMPdh83sBkl3mNm1kpZaMnjRul9dV97CMJS7zydvLS0tuvrqq1dcSQuCQIcPH9b4+Ph6hjnvt5/3Yu3ItkuSvj96RlvbO/TKXXuqcm4AlXP55Zdr06ZNUYcBAABUM3PeBiR90Wd8T1Ioqc/dC+4+LEnufr+kg5qp0g1I2rbg+dsknbjYSeq68jbXcGQueTMzJRKr/5FOnjyp3t7eisa2lNfseZq2J9PS5LR+7mlP1yuuulaZS4gXQLQu5e8MAABoaHdIeqmkb5rZlZJSks6YWb+kEXcPZitxeyQdcvcRM5sws+dK+q6kN0v6s4udpO4qb1PjOf3mT39YP//M39Q3vnCv9uzZo66uLkkz7btPnTo13wnuYqrdbVKStrTMVAWvy3aohSWTQN0ZHx/X4OBgJH8/AADAEqo/KuB2SfdIusrMBszs7ZJuk7R7dnzAZyS9ZbYRyQsl/dDMHpT0eUnvcPe5ZifvlPQJSQc0U5FbttOkVIeVt7//i69q9OyYXvD6H9GH/9Pf6Xmvvl7p9MyPUS6XdebMGWWz2RV1gYviw9dclTAMw6qfG8DajY2NaWpqShs2bLj4wQAAYN2tYanjJXH3my/w0JuWOPYLkr5wgde5T9J1qzl33SVv8URcL735Wbr6OZfp2196WKNjZ5VI9SqVSkUd2or09/erUChoamoq6lAArEAQTml46g6dzX1FQTiucPJXlUzGVQ42KhHvjjo8AADQROpu2eTr3/VyBcWZ2+/8vTdo5OywSqXSomNWWlGLx+ORJH3xeFxBEFT9vABWzr2so2d/Rw8c36tjox/SeP5uTRUelQc9yvm/6oHjz9WhM+9VEE5HHSoAAM2r0ksma/yqiLpL3lpaM3rhTc+SJD1t7y5JixuWrEY8Hldvb6+y2Wxlg7yAIAi0b98+TU1NzXfKBFB7Qi/picE3a3Dy7xR6TqHPJGgW7pQpriD2hFwFjUx/WY+euklBOBFxxAAANDGSt9o2PDwsSfPVq0ud8xYEgVKplHbs2FGx2JZTLBZVLBbV2dmpyy67rCrnBLB6R0b+i6aK35d7btF+C3vlKsjjhyRJroIK5SPaP/RLUYQJAACaTN1d87bQuclbOp3WNddcs+IKXLFY1JEjR7Rjxw51dHSsW5wLzydJ7e3tK2qoAhSDaZ3OP6ayF9WZ3KKeNEn/eisFZzQ8dYdchfMeC5P3KJ94g2ZGt8xwFTVV/IGmi48qm7qmipECAABT9RuWRKkuk7fu7m6Njo7OJ2kLl02uZunk3LLFo0eP6tprr131ssvVmkveYrGYxsfHlc1mmReFJRWCSX178C+1b/xritnM70joZXWmtuo/bHiXtrc+K+IIG9fg5O3LH2Dnd4oNvahT45/U7r4/WqeoAAAA6nTZpJkpFoupp6dHV1111XzyVi6XdeLECeVyuYu8woyF15xV4/qzYrGoeDyucrmso0ePrjhONJdCMKnPPfkuPT72VZW9oGI4pWI4pbIXNFw4pP9v4Le0f/ybUYfZsEamvrRk1U0eU2rq9xQrPW+JZwUazX113WMDAABL4Jq32jY1NaUgCOTuSiaT8xWzIAg0MjKiQmGJD141IJ1Oq7OzU/F4XJLoOIkl/Z/Tf66J0mmFKi35eNkL+trJ/6lcebTKkTWHIBw/f6dL8eL/pXjwIzJfukNt4HSdBAAgCuZe0a2W1WXyNne92B1/80197pNf1YkjZy7pdapdeevr69OWLVtI3nBBhWBS+ye+ecHEbaFHRu+qQkTNx+yc5MwTSuZ/RanCLQoS31OQ/PcLPC9ZhegAAEAzq8vkrbW1VZKUSLs27erQ+970l5f0OplMRu3t7ZLWP3lz9/lzkLzhQk7kHpq/xm05gRd0YOIbVYho5nd3KHevvn3yl/WlQz+mfzh4g/7x8Iv04Jk/1FRpoCoxVFNr6uma/9PoMaWm/4cSpR9XKXW7ii2/I1lxyee1JC6vXpAAAGBGk815q8tuGXNDudPZpIr5skaGJhQEC7q/rTARSyQS6u7uVhiGMjPliiV9/nsPaXy6oFdff5V2beipWMzFYlEHDhzQ9u3b1dHRoVgsRvKG85TDwpJ/NOKeUo9fo6HYAwuOXTqJqGw8Od1z6tc0kv+hAs9rLrhSOK5DY3+vw+Nf0LU979aerp9f91iqZVPHL2gs/w2FnpMsVJj4d5VT/6Awec8FnxOzVm3qeEcVowQAAHPoNlnjhoaGJEktrSlNjRf0mp9/nuLxmIJgdd0iS6WS3H1mzpuZ3vyRz+rQ4IiKQaC/vvt+fe5Xf047+7srEnOxWJS7z3eXvOyyy5RMsswKi3UkN8sXtKHfGD5HJlPGe7TTX6XH9Dc6HfueJKkztXVdY3EPdc/JX9Vw4YcK/fzrSF0luUuPjnxEcUtrd+dPr2s81dKaeqZSpdepqEcVJn6gcvqOiz7HlFB39pVViA4AADSzulw2OadvU6d2X71F7/it10iSUqmUrrvuOnV3ryzhmp6e1rFjx1QqlXR4cERPnhlVoRzIXcqXyrrrB49XLNa5MQGp1Mz1NK2trfO3gTkbMlcqm5j5/U15u/aEP6UNfoOOxP5FI/a4rg5vVm94rZLWout7fmpdYzk9/e8aKTyyZOK2UOB5PTT8xyqH9d89NQxDnTx5UjZ9sxKlGzUzPWZ5MctoT/8nFDv3WjkAAFAdTbRssi6Tt7kh16lUUtnWtQ+7PnDggDKJuIIw1Buecbne9fxrlYzH1ZGt3CDtYrGoWCw2f73b1NSUxseX6GqHpmZmen7/O5SwtC4Pf1IxJbU/9vdyK+uR2Cc1oQFdE75Nm+N7tS37zHWNZd/op1bRQdF0bOLL6xrPeiuXy3ryySc1MjKivr4+XbHzRUrEehSz1iWPj1mLYtaqPf2fUnvm2VWOFgAANKO6XDbp7jIzXX755YuubyuXyzp16pS6u7vnm5pc7HXmbOho1S+85Nm6LC1t6WzVN58c0ut/9EcqFnOxWFQqlZofazA8PKxCoaCOjo6KnQON4fKOFyg39f9Iw5t1xL6inM0sEw6soMcSf63rg/foqvBmraQqdKncXcP5H5y3P+atSoc7lIs9tuj0ged0fOpftKvzdesW03oqlUo6ePCggiDQtm3b1NXVJWmTnrH12xqZvksnxz6qfPnQTEdJLysZ36hN7b+kvrafVDzWHnX4AAA0Na55q3G5XE5BEKhUKi1aeujuGh0dVTabXXXy5u561yt+TA8//LAk6fb33Kx4rHKFyfb29kXni8fjNCzBktxdqYnLFCYDdXd1aGRym0IvqTO1Vc/seYM2JZ8hs9j8FwHrIfTiolUDce9Qd/lGdZVfrphaNBG7V6dTtyq0/PwxpXBq3eJZb4lEQp2dnerq6lJLS8v8/phl1Nf6OvW1vk5BOKUgnFQ8llXM2tb1nz8AAFgFkrfa1tXVpeHhYQ0MDKi/v3++3f9qLdeVspKJmyT19CzuXDmXvM1VEYE5ZqZNmzYpFovp6rZf1PM2/uKSx7m7zpw5o+7u7vlGOJUSs5RMMblCJcJ+7Sz8nkxJTcS/q6KdUGvwDLnKi56TjleuO2s1uLtOnz6t7u5updNpbd68ednj47FWxWMX/1IIAABgvdRl8tba2qrh4WFNT08rl8tdcvLW0dGhQqGg4eHhdZ3zFoahwjBUPB6fT9Ti8fj87DeSN8yZ+31YyXLaQqGgwcFBjY+Pa+fOnfPXU1ZCqVTS9sRbdbR8m8o2pJHEnZqIf0+l2ClJ0kjiS5K5Yp5VR/ACTSb+TTs7bqrY+ddbuVzWsWPHNDU1pUQioXQ6HXVIAADgUjjLJmvaY989oNGJs2rfNLO0abUfWL/8rUd059cf0tZNXfqVN79InZ2d881E1ksul9Phw4e1c+dOtbW1SXoq7nK5TNdJSJpJ3I4ePapsNqv+/v6LHp/JZLR9+3YdPXpUx44d044dO9b8e1wsFjU0NKTR0VG16EVKZP5eZRvTSPLOxQfO/pVsD56nDaU3qT14tnqTz13Tuasll8vp6NGjKpfL2rp164q70wIAAEStrpK3b33hu/rjd35cv/uv753ft/DDqpktqm6d69v3H9QffvxrisdNjx04pampaf3621+s7du3z79OX1+fhoeHKxr3uWMCpJmqXzabZdYb5o2Pj2tiYmI+wV+Jjo4Obd26VcePH9fx48e1bds2SdJQ/mGdyn1fQVhQNtGvy9pfqky884KvUywWNTg4qNHRUZmZuru71dfXp9LYq3Rk4o7ZAd3nG4t/TWahNpTeqkMHn9S2bdsuuRJeDdPT0zp8+LDi8bh27dqlbDYbdUgAAGCtqLzVpm985t/16ne/aNG+hclbIpHQ0572tAs+/76Hj6kchPrw+1+hr3/3iEbG8zpx4oQ6O5/6UNvZ2alMpnIjAqSnkreFiVoikaj4dUqoX0EQ6OTJk8pkMuddH3kx3d3dKpfLGhwc1LHR+3Xv6O8rH4yo7EVJoeKW0b1n/lQ7Wl+kH9v4PiUXXLc1t0zT3TU+Pq7e3l719fXN/64+o+99SsSyOjD6N5LZoplvccvKYjFdt+UN6oxfqWPHjunIkSPasmXLqn+GaslkMuru7taGDRv47w8AgAZgYtlkzXr2K5+hXDgpSZocmVJ7T9uqlok97fKNSqVmlitOThfV1zXzIfaJJ57Qrl27ZGYaGBjQli1bKhr3uWMCpJkP62fPnlVbW1vFk8XVKIehYmaKcd1dpAYHB1Uul7Vjx45Lugayr69Pk4nHdffwf1VwzlDtuarZkalvaeTofv3Ejo+rXIhpaGhmBMGOHTuUTqd11VVXnbcM2cx0Xe97dEXnz+rw+Bd0cuqbCjyvdLxHuzp+SlvaXqb47HDq3bt3a3BwsOYqb0EQ6PTp09q4caPi8XjF//sGAAColrpK3l799pfo+99+UJLUu6FXe66+YlGjkSAIdPz4cXV3dy/5AfIVz79aJwdnBmNv29SlFz5nj6YmRucbiri7CoWCpqamlM1mK9ZIZC55WygIAp06dUpbtmyJJHl7cPiE/tv9X9UPh08objG9cvtV+sANP66+DN30qq1UKmlkZEQ9PT2XvIwvH5zVt2cTt+7gOYopqeH4txcdE3pRQTGph/ffo2Rppptlb2/vfPVtuetHM4lePa3nFj2t55YLHhOLxbRp0yZJMxW9Y8eOqaOjY3ZmWjTy+byOHj2qUqmk9vb2mkssAQBABaxj48FaU1fJm5lpw2W9GhsbU6GcVz6fX5T4zC39utCMNzPTz73mBj3++OP6D8/aodaWlKYmnnp8bu7a4ODgihpGrFRvb+95FcK5D8phGFbsPCv1xOigfvbrf6tcUJIklT3UV449oQeHT+hffuKXlI7X1a9F3Usmk9q9e/eaGtfsG7tTkksu9YY/qo7wWpU1qbH4g/PH9AbP187yW1TWlHr7O7Whb0tFO1QuFIahyuWyBgYGNDk5qc2bN6/buS5kfHxcAwMDisViXN8GAEADa6Zlk+vXYnGdjI+Pz99+8sknVS4/NWtqrlK2XNv/uWSpWCyeN6R7vYZmd3V1ndf6fS6ZWxh/tXz44X9TIVh83rKHOluY1pePPl71eJrZ3L//lpaWNSU3+8bvUOBFyaRDiVs1bUe0u/yL6g9erNZwtyRpLPagBuKf12PpD2oy8+C6JlNzDUH6+/s1OjqqgwcPKpfLrdv5zjUyMqKjR48qnU7r8ssvJ3EDAAANoe5KLBs2bNDp06clXVriM5ewZTIZ9fb2KplM6sSJE5K0KHmr1Py1crmsUqmkdDq9ZGfMKCpv958ZUDjblicmaS6CqXJJ3x06qtfuuq7qMTW6idKIvj/yZT0w+hXlg0klYxld2/YSbRt/njZu2Ki+vr41vX4heOpLjdAK2p/8M11dep92lH9Wo7EHdTD2FyrbpE4nviopplxQ2Y6qSzEzbdy4Ua2trRoYGNCxY8e0Z8+eqsw1bGtrU29vrzZu3LiuY0AAAEDEXE3VbbLuPtWcO0x3tR/M5pK3np4eJRIJtba2qqurS4lEYl3a9k9NTengwYPzHScXisfj61btW05vemZZaVcirb+75tX6D50zDRySsbg2tXBNUKUdmvyBPrr/Fn1n+AuaLM90gcwF4/LRjIKwpKPBD9Z8jrgt/t0NbFJPJP9IhxIf16HEXy56LKa4Ela96yzb2tp0xRVXzDdjmVtSWWmFQkEnTpyQuyuVSmnz5s0kbgAAoKHU3SebqampRfcXfotvZkomk8t+YJtL3sxMk5OTmpyc1LZt25TJZNTV1bWo4UIlFAoznf+Wup5p165dkXS++8Wrf1Qt8aSuznYrG09ob/tGxSTFzfT63U+vejyNbDD/pD5/9HdV8vxs6/4Zfb5b2/RM7de39C/DH9W+8e+u6Tybs3s10yz3KWUb09n4vXJbnCiZxbQpe8OazrdaiURi/vrUwcFBHThw4Lz/ltdiYmJCBw8e1NjY2JJflAAAgMZlYWW3WlZ3yybPHaC9MHmLxWK66qqrVvQ6p0+fVmtrq8bGxtTb2zu/v729XalUSi7pz+6+R9/Yf1jbujr0m694sTZ1rHx48pxisahEIrFkQhnVgO6bdl6rB4aPKzU5k1i+tHu7vjR8SL/+rJdpa+uFBzlj9e4e/FuVfHEyEfO4nq7XakrD2qdvKPSyvn76k9rT/pxLXlJ4bffP6vjUPSpfYJj2Qh3J7epJX3FJ56mEzs5OjY+P6/Dhw+rv79eGDRvO+7lDL+vM9Dc1WviBysG4kvFu9bQ8Vz2ZH1t0rLtraGhIg4ODymQy2rFjx5oavwAAgDrURMsm6y55SyaTKpVmuiSeu4RyJVpaWpRMJtXS0iJp5jq3Rx55RNu3b9fo/9/efYdHdpWHH/+ee+9U9S6tpF1pra2u2OuOcQUbAzFgsCnGQEiMAwaSQCipEMMvkIQSQosBg6k2AdsYB+NujOu627ve3lRWWvU2fe49vz9GozojjaRRG72f59Fjza3nXt2V76tzzvv29wOJulc3/uEh/velnYRjcXZ1dPJCazv3feQD+GYZcKUqE5A0ODhIJBLJambLTCil+Py2S9m1by+xSAQDxc/Pu5rqsvnNuxIThe1h9g8/y+TfKIXU4KWQZ/kFzkiv2FCsl47wAWp8cwuqyj1bqc07m9bAE1PqvI1nKg9nV31mTufIFp/Px3HHHUd7eztdXV0EAgHq6upwu904Osbh/h/QPPgTHB3D1mO9cy2DP8cyCmgs+jB1he9CKUV7ezu9vb0UFRVRW1srwySFEEIIkdNW3JtOMkNeeXk5GzZsmLDOcRwOHz7MwMDAtMdQSqG1Hh0amfw+Go0SiUQYGhri/3buJW7bfOuSczmpopRAJMqrHZ2zbu90wdvw8DDd3d2zPmY2OI6DE41RMRKwqfjiz73LdYOxbkw19e8j/aqV+/kKnWrv6DKlFL3RtjmfSynFedWfpz7vXEzlRU36p20pL5byc/Ga/6DCe/ycz5MtpmlSV1dHXV0dkUgEx3GwnTDPtf85hwZuIub0TwjcAGwdJGIfY2/ff/BK1yfR2h4d6lxXVyeBmxBCCLFKKZ3dr+VsxfW8JRMddHd3k5+fT37+xKGMw8PDaeu8AQSDQaLRKIZhTKkRZ9s2sViMI0eOUOr34FKwJt/P9ads4RMPP0XeHIZj1dXVpU3JnkxYkq3MlrOhtaa8vJz8/HwCgcCipnFfLQxlMrnXzdQubGLE1OT7raYkHZktU7k4v+aL9IT3sLPvl7SHnsXRMbxmCZuLruS4wstxm8urCHuyjIZhGLzQ8RGigQIc0548fW8CK76BYH8Be8wvs7nsH6QMgBBCCCFWjRUbvAEcPXqUjRs3TtlmumQjyf1TZXm0bXu0V+7TF53HjX94GAC3aXJR03o2Vc5+WOHk4HK88YW6F7uAsWmaVFVVAYmyCcPDw4t6/tWgxF2DwcSf64n8GSWs5WH99QkBiq1j1Po2Z+W8Zd5NvK7m81k51mIwDIOByCsMBdopjdyI37icPs/XsY2jEzfUkBd/MwXR9xFXLbQNfoGGog/htaqXpuFCCCGEWHoayFKiwZVgxY0zamhoGP1+cla5THqvkoFdXl4e1dXVxNyJ4OqFA20Tgqhz16/ju+9+GyFH4/V5+frbL59171gkEmFwcDBtLbfkuZaiUHcoFBoNYKuqqqYMQRXzZyqL00rfNKFHrYxGAnRPCNwUBg15J1PgKl2CVi4PR/pvJmLspdfzbxhOKeWhr+CLXTDWcandFEc+TmH0/YTN7fT4/hGI0DL4yyVstRBCCCGWg9U0bHJFBW+27fDff/OzeR0jGbxVVFTwwIv7+dTN9yEQokMAACAASURBVPDAzhZuefB5DnQPjyYy0VqzsbKczY0NbGlomNOwxqGhIZqbm2cM3ha7ULfWmsOHD9Pe3g4kksAsds/fanF2+TsosMowsPDqIvIpp5uD47ZQuA0fl9Vcv2RtXGqOjtIZfBBwiFjP0+37O2LGfoqjH6Uw+hegFWXhf8Zrn8ug6xf0e76KVmEcorQN/e9SN18IIYQQYtGsqODtuQd3UFQzNmfHsacGPR6PB8tKPxp0fJ23x17aw0n1Zfz4T7t5sbmbL97xNKZ7bB5cIBCgu7t7zoFNcm5duv0LCgrYunXraMC4WKLRKLZtj84V0lpz7NgxBgcHF7Udq4HH9PPB9V+l1r+JKpXo3UwEbwqX8lLqXsMH13+NYvfqHfoXswdQauxXkWP00uu9kSHXL4maO0Bpgq576fN8hYD7jgm9ljFnIGs1GYUQQgixQuksfy1jK2rOm2EavO6q14x+Hu4PT0j2oZSacfhfMiNdc3Mzp6wtw2sZPLK7Db/bIhp38Pr8NDQ0YFkWoVCIQCDAwMAAFRUVs+59S2aaTLefUmrRE5VAImkLMBq8KaXo6+sjGo1SWFi46O3JdX6riGsbv8KB5j0EhkKsLdyMzzqdrUXnUevbvCTPwLKS6vqVw7D79tGPIetP6XZemDYJIYQQYkVQLP+hjtm0ooK3k1+3iT179vB/P3yaba/fxDP37eHAcz2872/fmPExioqK6O3txXEcGqtLaevu54tXnkV1sR/TUPjd5mhQkxzO2NnZSUlJyayLakej0QkZLSdzHIdjx45RUFAwbWKTbAsGgxiGMaFOns/nIxyeucCzmLuq0lqi+VFOKv3kUjdlWXEZRXOeaOw2iiX4FUIIIcSqsaKGTSZf0hxH85/X/5o/3v4KT977yoRtDh48SG9vb0bHKc33sb66lMJ8Px7LxDIMbNtmYGAA27YnzEVLFgbPlNaaWCyWtsZbUk9Pz2hP2GIJBoP4/f4JL71er3e03pZYGPn5+ZSWrt6kJOkYykVl3qXM9teRgYe6wqsXplFCCCGEWBm0zv7XMrZigrd4LM43PnITAKFAIsukx+vipLOaJmwXDAanDbT6+voYHh4eDVL8Hjeb160ZXR+NRmlpaSEWi00oJzCXjJBNTU3TvqwbhoFSKmXZgoVUV1dHZWXlhGXJHsJIJLKobVktwuEwwWBQ5melsa7o/RhqtnUUNXUFErwJIYQQYvVYMcHb/T/5Izsf3wVArHeAmtoirrrh9fzFP14xq+OMD+yS8+XGD20cn1zEsqzR5Cez7XlTSuHxeGbseUsW6l5MPp9vSmFjr9eLYRizvk6Rme7ubo4cObLUzVi2Cj3HU+G/AEOlH2Y8nqF81Bddi8eqnHljIYQQQuQ0KRWwDAUGgnQd7uULb/g6r9z3Cps2lvOej78ByzUxk2OyyHY6yXVFRUWsW7eOtWvX8uju5tH1D+88MPp9aWkpmzZtAmbf8xYMBunp6ZlxGOJiB29DQ0MMDAxMWe52u9myZYskLFkggUBgylBVMdEJFV+hxHv6jAGcoXxU513OhpK/XaSWCSGEEGJZW0XZJldM8Pb6a8+nqKKQyHAUl9vNuz77tjkdJ9nbVllZiWmaPHuwjS/8+iEOdg/yclsPf3hh7+h2kAgGGxoaKCkpmdV5BgcHaW9vn/FlfbqyBguhu7ubrq6uKcuXKvPlahCNRonFYuTl5c288SpmKDevqfouG0r+Fo9Zian8jP2KMjGUD5+1lq3ln2dr+Y3yvAohhBBi1Vkx2SaLygv50Z5v0n6gg8q15fjyU9dG8/l802aFTAZvWmt6eno43NZOOBbnH+96GoBT68tHt+3o6CAWi1FfX59xOwcjEb65/UnWomjIy2f70TbOrK1Lu33DHAuAz4XWmlAoRHFxccr1/f399Pb20tjYKC/GWRQIBAAkeMuAUiZri95HfeE19IafYiDyEnFnCJdRRIn3DIo8J8uzKYQQQogJlvtQx2xaMcEbgNvjYt3W6QOp9evXT7ve5XLhOA579uzBNE3qCn14XRbhWGJY5IHuQZ5qG2DLFjeRSIRYLEYwGCQajaYNepK01lz9m9s42NfDl19zBoeGhvjy04/xkyuu5PQ1qQO4xXwRDYfDOI4zZb5bkuM4owlfZpqrJzIXDAYxTXPashFiIqUUZb6zKfOdvdRNEUIIIcRypgFn9URvK2bYZLaUl5dTWlo6OiyytqyIjWvK8Xtc5HlcFOfncdXrThudi2YYBv39/bS3t8947GeOttEy2E/Ucajx+ekIBQnH43xz+5Np9xkYGKClpSVr1zedycW5J0sGF1LvLbtqamqkN1MIIYQQQszbiup5y8SBAwcoLCykoqIi7TbJYZNaa0zD4JaPXc2O5g7ijsPmmjIioSAxy0ysN00syxqt+2YY6ePdzmBieJzPNMl3ueiMhABoHx5Ou08kEmFgYIDa2tppj50NkUgEy7LSDitNBm+hUGhBEpe0Bnt5se8ICsW20kaqfEVZP8dyZBiG9LoJIYQQQiyU1dPxlnvBWyQSmTYzZEdHBz09PaMBnFIK0zA4uSFR6214eJijR4/S2NiI4zi4XK7RYCcej087nPDM2jrijkPEtrnq0QfQgNs0ecP6prT7JEsTJHv5FlJNTQ2VlZVpe4AMw8Dj8WS9560vGuBzL9zGi33NmMpAAXHtcHZ5Ezee/A7yXbkb2AwNDREMBqmoqFjwn68QQgghhMhtq+5tMhqNjn4ft23C0fR1zbxeL16vN+NabxX+PP7ldRfhMU1Mw8QwDDaVlfPRbWem3Wd88LbQlFIzZrcsKCiYNuHLbIXtGB984iae7z1M1IkTsqME7ShRJ86TXfu47umbsfX05RRWsoGBAXp7e2XIpBBCCCHEAllNdd5yrudtJsm5bo/uaOPWR/ZgOw5XvO5EPvWeCyeky9daj2aZTPZEZVLr7d0nnMQFtfUc6mjHV1TIKTW10764L1bwNjQ0RH9/PzU1NdMGcNXV1Vk97x+OvkRXZJB4igAtqm2aA9081rmH86u2ZPW8y4XUdxNCCCGEWGDT1HjONTnX85ZJke7uwQg/eeBVgpEYkZjN7x7byfZXm9Pu43a7aWpqoqCgIKM2eLSm0HY4vjz9EMUky7KwLGvaNmfD8PAwg4ODGQ/dy1Z7fnXkaUL2WI9luZlHiTlW5iFoR/nVke1ZOddyk6zvlp+fv9RNEUIIIYQQOSDngre8vDw8Hk/a9VprIrE4LsvgPRdsYtuGKrTWtHUNAEzoeduzZw+9vb2jCScyDXySvWiZFOD2+Xxs3rx5wV/wg8EgPp9vxmuwbZvdu3fT09OTlfP2R4MTPn+t9i38V+0VE5b1RtMndFnJpL6bEEIIIcTCW03DJnMueFu7di1lZWVp13u9XmrL8vjORy/i9aeuo7G6EA1sbawaXd/U1ITH4yEWi+E4ieF+fX199Pf3Z9SGeDyOYRjLJkGF4ziEw+G0JQLGSw7jzFbSklp/ybTrFYq1/vQ/r5XMtm1cLte0f0wQQuQWpdRlSqk9Sqn9SqnPplj/XqXUyyNfTyilTl6KdgohhFiZlkd0sYhqamoor6gct0Tx2WsuZvO6RPA2Oa17MgDr6+ujr68vo3PE4/HRIGgmWmuOHDmS8bHnIhQKobXOKHiDRACbreDtvY3n4jMTGToLjEQQ0xMf643zmhbvbsjNQszl5eVs3LhR5rsJsUoopUzg28Abga3Au5VSWydtdgg4X2t9EnAjcNPitlIIIXKMXoCvZSzngrcDBw5w7NixabdxWWOB1QfffCZvfu3xo5/j8Tjd3d1EIhFgLHizLGvGbJNJjuNkNGQSEsM0A4EAoVAoo+3nwnEcPB7PrIK3SCSSlXlv51Vu4uSStXgNC6+y2BPu4vs9TyfOY7h4XeVmTi5ZO+/zLDfJeyeBmxCryhnAfq31Qa11FLgVmDBOXGv9hNY6+de6p4C6RW6jEELkFAUorbP6tZzlXPAWi8WmzQp5+PBhOjo6Rj9PfrmOxWJ0dHQQDCZ6h5LBm8vlIh6PZxTQrFu3jvXr12fcZtM0FzTbZEFBARs2bMg4oPR6vYm5gSMB7HyYyuC/tr2P9zSeQ5A43+h5jA57iEKXj79ouoAvnfLOnAxw+vv72bdvX8YBvxAiJ9QCLeM+t44sS+dDwD3pViqlrlNKPauUerarqytLTRRCCLGSrbpSAdFodEIANnleWjKQUEpNqHnmcrlwHAfHcTIaEjmbgGQhg7e59AD5/X7KysqyFlS5DJMbNr2B65ou4sDRZuyBIBs2b8JjZa+e3HITCASIx+MZB8xCiJyQ6pdmyr/4KaUuJBG8vTbdwbTWNzEyrHLbtm3L+0/BQgixlHK3ZPAUq+7NUmuN1+ulsLCQsrKytIGYx+OhsnJsblzyJXym+Wxaa1pbWykqKqKwsDCjNi1k8BaNRjlw4AD19fUZlzpwu93U1NRkvS3dxzqxB0Z6NHP8NSQQCJCXl5eTvYpCiLRagfpxn+uAo5M3UkqdBPwAeKPWOjupfYUQYhVb7kMdsynnhk3C9DXKtNb4fD4qKyunDcL6gyH2dHQRiiaGvRUWFrJly5YZMwc6jsPAwADRaDTj9no8ntEevmwLBoM4jjPr4zuOk5Vhk+ONT4Ky0EXJl1KyvpuUCBBi1XkG2KCUalRKuYF3AXeN30AptRa4HXif1nrvErRRCCHECpZzwVtBQQE+ny/t+mRgFwgEaG5uTpso5E87d9PV2sIV376Fl1s7MAwjo+GSyfl2sxkut2bNGtauXZikHcFgEMMwZp2uvr29nYMHD2a1eHg0Gh29L8kSDLlI6rsJsTpprePADcC9wC7gV1rrnUqp65VS149s9s9AGfAdpdSLSqlnl6i5QgiRGyTb5MpWW1s7bZ23/Px84vE4hw4dYnBwcEpyk7tf3c9f3/cEO7r6KPa66Q2F+cuf30EkFqejo4PBwcFpz588XqalAhZaMBjE7/fPevie1+vFtu1pk7/MhuM4xOPx0cA6l3veXC4XxcXFUt9NiFVIa/17rfVGrfVxWusvjSz7ntb6eyPf/4XWukRrfcrI17albbEQQoiVJOeCt5nU19dTWlo6+nlyUPPUoWZaBwMYI4sjcZtY3KZjcJje3t7RXpV0kkHJbHreBgYG2L9/f9YDGtu2iUQiGZcIGC9Z6y5bJQySw0jz8/OpqKjA7XZn5bjLUX5+PnV1dTLfTQghhBBiwWnQWf5axnIuYcn+/fvx+/2sWbMmo+0nZ5usLSzgnVvWs7GsiJjjEHMcUFDs9xJ1uWZM/a61xjTNWQVvtm0TDoexbTurPXZaayoqKjJOVDJeMngLh8MZJ16ZSVFREXl5eROKoOca27axbTung1MhhBBCiOVELe94K6tyLnhLvjynorVm9+7dE3qiJveOvPf0k+lsbSZq2wRjcXwui2vOOIUin5feDAp1FxUVUVRUNKs2JwO2bPe8WZZFVVXVnPY1TRO32z0hych8eL1e6usTSdjmMi9wIWitOTC8m0e67uVY+CgKxfr8TVxQeRnV3syC/8kGBwdpa2ujqakpp4NUIYQQQgix+HIueJtuqJrWekqANLnnrSTPRycQcqArEuff3noplx2/EUjMZZpp2ORcLFTwFgqF8Hg8U64xU9XV1VnrCXQcZ7Qde/bsoaysjOrq6qwcey4Gon18e/+X6Y12EXHGsmoeC7ezvedRthaewvsbP4LLmF0PWiAQwDRNme8mhBBCCLFYlvlQx2zKueBtOsnMiR6Ph7y8PAoLC9MOb9uyrp5zx82Ng0RPkeM4aK3TBomdnZ3E4/GMh23CwgRvWmsOHTpEcXHxrNoyXraGSwI0NzejtaaxsXFB69plIhAf4j/3/DODsQEcJrbDwcbRNq8Ovsj/HPgqH2n6DIbKPPiV+m5CCCGEEItIg8rdJOZTrKqEJcngzeVyUV5enjJwS750p0qRX1VVxZYtW6Z9MQ8EArNO8mFZFn6/f849ZKmEw2Ecx5lTspIkx3EYGhqaVc26dMaXCVjq4O2e9jsYig9OCdzGi+kYhwL7eKn/mYyPK/XdhBBCCCHEQsq54K2wsDBtwDI+IOvs7OTgwYNp6421t7fT3Nw8YVkmvSm2bc96LpfL5WL9+vVzSiySTjAYBJhX8BaPxzly5AhDQ0PzaovWmmg0OhosG4axZMFb1InyZM8j2HrmEghRJ8IDx+7O+NhS300IIYQQYgmsomyTORe8VVdXp63zppSiuLgYSARvyQBnPNM02bJlC5ZlTQnWwpEIO/fv5+CxY2nPH4/HlzwRBySCN8uycLlccz6Gy+XCNM15Jy1JJnlJBm+maS5Zke4jgf0YKR77YkrxMTXoag0eJupk1vNYUFBAfX29zHcTQgghhBALIueCt8m01vzmruf42Kd/wb/++92g/OTn54+unxygKaUwTXM05X/Sjo5jXPWzW9HhMF9/5E+8/Se/oCcwMfjTWhOPx+eU5OPgwYN0dHTMer905lqcezylFF6vd97BW3LYZTJ4Ky0tnbaQ+kIK21OvxcLiaveHudS6cso6Q5lEUuyTimVZFBUVyXw3IYQQQojFpLP8tYwtfRdRlu3fvx+3283atWsB+OFPH+N/73yWcCSGUopnXzzCzd+8dnT7yS/ajuPQ2dmJbdujc9Bits0HfnU7w9FEVsICl8WrLW188v/u4cdXXTlhX6/XO6caX/F4PCtzyyARRNbX12cliPB6vfT29k6bpGUmlmVRXl4+2iOVzUQos5VvFaAn/atsMo4H4Gn7kSnbO9rGZ8489DQWizE4OEhRUdGy6HkVQgghhFgt1DIf6phNOdfzprWeMLftjv97nnAkMWyvtqaAL37uAnbuPjLtMbq7u4GxMgLPth4l7jjEHc1AJEqp10vccXiquZVgdKzum2maNDU1UTopS2UmspnEQymF3+/H5/PN+1herxetNZFIZOaNpzlGdXX1aFATj8cJhUIpk8IstHV5x2GpiUNJjzdOo8c5Rrtuxpr094zNhSdiGTMHY8PDw7S3t4/WsBNCCCGEECLb5h28KaVMpdQLSqnMMzssoCnDIEl8/uiHTufqtx6P22VmPA8xmezDGHfM3kiEEs9Yz1q2RshlM3gbHBxkcHAwK8cqKCigqalpXvO4otHohGvr6+vjwIEDSxK8Gcrgwqo34lKJn2G1qqPcqGKH8xyVag3vdd1AlaoFwG24uaTqLRkdV+q7CSGEEEIsEUlYMiufAHZl4TgL4uq3n47XY+FxmzTUJ5KVbN1cy5o1a2hqapqyfTL4q6ysHJ0bd1rdGjwjvUatwwFitoPLMDivYR2+cQlBhoaGOHDgwJyGP2YzeOvq6hrtPZwvy7Lwer3zGoLZ3NxMa2vr6OeFKkqeqYsr30Sdfx0u5aJa1RHSQfY7O+nVXWg0p5rn4jY8nFN2IRsKtmR0TKnvJoQQQgghFtq8JucopeqANwFfAv42Ky3KsmuuOovqyjxqKsbi1KJC/4zp3McX47YMg59efSUfvv0uvr1jF1prTq1dw3+86bIJ+0SjUUKh0Jxe4OebXGR8u0OhEOXl5fM+VtLg4CCxWGxOSUaSZQLG3+/xwdt8smHOlWVYfGzD3/PL5h/yQt9T7I3vIE5iuOOrznOcZp7Hm0vfyQW1l81wpIRkfbds3nMhhBBCCJEBDayiIt3zzazwDeDTQNoCZUqp64DrgNEkIgupqKhoQrZHpRRnnLqOlpaWCcsOHjyIaZqsW7cu5XG6u7vJz88f7X3bWFHOQ9d9kJaBAbyWReW4jJVJyZ6kuWSbzFb2xWSB8PnUd5tscHCQ4eHhObXRtm0cx5mQxCU5l3ApC3W7DDfXrP0wb6t9D0/3/In2cCuWsmj0b8ToMlhvb804mE5m45T6bkIIIYQQi0uhFz1hiVLqZuDNQKfW+oRxyz8G3ADEgf/TWn96ZPnngA8BNvBxrfW9I8tPA34M+IDfA5/QM8wrmnPwppRKNvg5pdQF6bbTWt8E3ASwbdu2Bb+zFRUVU5aNTyLh8/kwTTNljTdIBHZr166lubl5NMgYv67Usujs7KTE45nSaxSPxzEMY8p+iykbxbkn83q99Pf3E4vFZt1TNrlMAIwFt0tV6y157r1791JWVsYl1W+esO6Yc4yuri4ikUhGc9gKCwvZsmXLkv7chRBCCCHEovkx8C3gJ8kFSqkLgSuAk7TWEaVU5cjyrcC7gOOBNcADSqmNWmsb+C6JTq6nSARvlwH3THfi+bxtngv8mVLqMHArcJFS6mfzOF5WTM42CWPBW2FhIWvWrJkxlX8yqEjVg+Y4DsFgcLTw9OTzzDVN/ODgILt27ZpXVkdI9AK53e6spasPxqM82dsMwMf/dBvXPHIL97XtJp5h4JUqeHO73dTW1i5pco+BgQHi8XjKjJxlZWWsX79+Vu0zTVPmuwkhhBBCLIVFTliitX4U6J20+K+AL2utIyPbdI4svwK4VWsd0VofAvYDZyilaoBCrfWTI71tPwHeOtO55/yGr7X+HPA5gJGet09pra+Z6/GyJTkcsqGhYXRZLBbDsizq6+szOkZbWxtAyp6UZM9TqpTwbrd7TkMmk2zbnvdQwrq6uqwNR2we7uVdj/wYbM1Nx11KARYPdh9iR18H6wvK+Mn57yPfNX2A4/P5qKmpmdBjZ1kWJSUlWWnjXPX29uLxeFIOdbQsazT4nam+XTQapa2tjerq6qyUZhBCCCGEELO0PDJEbgTOU0p9CQiTiI2eAWpJ9KwltY4si418P3n5tHKumrDWmt6eYV58ZjsnvWYdg4EIbW3t+P0Wr+x5ki3HFXLf9nbecEYNALsPH2NzQ9WUY0DqnrfkS32qnrfq6uo5tzt53PkGXkqprPS6xR2Ha/74U3rDQRw0XbEgla7EUMygHWXvYCd/8/TtfP+17572OB6PJ2UPVjAYXLLU+sFgkFAoRE1NzbSBWXt7O47jUFub/t9RIBAgEAhIr5sQQgghRO4oV0o9O+7zTSNTwaZjASXAWcDpwK+UUuuBVC+JeprlM55k3rTWjwCPZONY8xGP2xw51M3gQIgffuspYiZor4uYbRP3GXz3i28E4N7te0eDtw/feBvf+tw7OLFpzZTjpXohH19oOpuykcQjWd+tpqZmXj2AAA+272EoFsYZeYY+cfABwnqsbVHH5qnOw7QE+qjPS9+LFggEcLlcU4aqHjp0iLKysnkFvHPV29uLYRgUFxfPuG1fXx8VFRVph9pKfTchhBBCiCW0MNkmu7XW22a5Tytw+8gQyO1KKQcoH1k+fvhfHXB0ZHldiuXTyqkMC396eBfhUJS8fDdNW8qJmopY3Ma2EkGYbSd+snHH4dt3vMjnf/Qk4Wic79z22ITjGIZBWVlZyuBNKUVeXt6U4EhrzZ49e+jp6ZlT27PR8zY0NMTQ0FBWEmf8rnkHgfhYvbrxgVuSBh46unfa4zQ3N9PV1TVl+eS6dlprdg0284MDv+fre37Dzw4/QHtobvdyJlVVVdTX188Y4JaXl6OUStn+JKnvJoQQQgghgDuBiwCUUhsBN9AN3AW8SynlUUo1AhuA7VrrdmBIKXWWSrxIXgv8dqaT5NSwyaGBEIYL1tQV8Rc3nM0/ff4BXB6LT37iHH5z7x5+eferXHPFCYSjNs/v7Rzdr384NOE4juNMG0Q1NjZOWWbbdsqhlJlK9gTNlEwlFdtx6AoHGAoMZ61e3HBsYuIUv+Hi4zWn8eRQG38cTJRdiDs2wXj6a07O4Ut1TeODtwPDR/nXHT+lM9xPxImiAUuZ/PTw/ZxY1Mg/HX8NRe6ppRnmyuVyZZQ10+VyUVJSQl9fH5WVlVP2kfpuQgghhBBLbwlKBfwSuIDE8MpW4F+Am4GblVI7gCjw/pFeuJ1KqV8Br5IoIfDRkUyTkEhy8mMSpQLuYYZMk5BjwduJp6zlZz96kIbjSgE4bn0p69eX4nab7NjdyWAwxsOvtiVGmI4EOB6Xyelbp9af6+/vp66ubsrydJLDKOc6XNEwjFmdDxJB23d3PMUPXt2OheLHJ1zMr48d4lyP4qzq+dXU21xcxfauI8R1orcy5MQod/m4qnwzjw22YqPxWS4aC0rTHiNVpsmkZPC2f+goH3/+vwnZ0Qnr49oGDS/1H+TDz36D75/+txS45lf+QGtNS0sLZWVlGddkKy8vp7e3l+7ubmpqaiass22bvLw8qe8mhBBCCLGUFjl401qnS/qQMnmj1vpLwJdSLH8WOGHqHunl1LDJxqYqLr70NO761Q4AzjytjrPOqOf5F9oJDkQxlSLPNlBK4fVYeNwWJ25Yw0evPg+AUDTGN+9/nL3dAzQPBLjrxV1Tyg5AooD3/v37JyxL9iLNN1nIDHX5Jmx3w6O/5VuvPEF/NEyDN1En/eGuZj7w4K94qHX/DEeY3nvWn4apxh4PDdzavYsadz4XFCUCQ0MpLlqzKe0xMgnevrDjlimB23hxbdMTGeQ7+++a45WMSc4JnE19uWRZg1QFyn0+H42NjXi93nm3TQghhBBCiJnkVM8bwJnnNrF731Fu+dFzbN1aidttEg0pHvztJwlHYgwOhyks8NLWOYjPa1FXWYxSCq01H7r5N7za3sm/XHgavcEQX79/O+39Q3z4gjMmnMNxHMLhMI7jjM4vS/a8zSd4O3DgAJZlsW7duhm33d7Zwh+PHiRsJ87rMgyOhAbZFxwg4tj83RO/Z/s7bsCc4/y3tfmlXNN0Or848CwhOzE08tnhDvaGenln+SaeGj7Kjae+CbeRvqdxuuCtoqKCg8PtdLcNztiWuLZ5+NiLfGzDW/FbmQdKYTtMX7QPB4cSVwk9PT24XC7y82c3BLOkpAStNQeHX+WJ7t9zLNKC4ziUuCrYVnYRJxSdiWXMrni5EEIIIYTIhsxqs+WKnAve9u49QEWFyS+eb+PNb9nMvr3d3H3Xy5x//glsPb6WPH8iK+DGdRUT9nup5wI/TQAAHXBJREFUpZ09x7qJxm02lBcBEIrF+f4ft/PB156G2xoLUsbXeksGJqZpUlBQMK/gTSmVccKSn+15gdC4+WZP9nfwZH/H6OdwPM4zna3zGj756RMvptzj5zu7HkMDGs0dvfv4TO2ZfPvkP+Oc+q3T7l9cXIzH40k5lNTv9/PY0VcJT9PrNp6pTF7o28+5FTP3LLcEW7in4x6e7X0WUyXOXUIJ7/G8B7Nk9sW0W4L7uOvwj1nvvIa9zstECZJPCWfE38r2tru5o+1/uLzm/ZxZdsmsjiuEEEIIIcRs5FzwFovGaVxfykc/dg7f+85TuNwmhqHo7Bxg6/Hp63U19/RPKLawu6sPSGSmHAyHKc8fm9c0vtZbMnjLz8+fdY/OZJZlEYlEZt4Q6AgOjST2MHhXdRN3dx2mf1x2SKWgJxycV3uUUnxo0zm8b8OZbO88TH8sRI23kBojj81FRTPuP11ikGg0ij86NahzYxHHHi1RkKTRBO2Z781DnQ9xW/NtxHUcB4eYTgS4J7pOJKZj/E/H/3C+cz5X1l2ZURB3cHgnPzr0//DrQuqNzfSpY7ysH6aKBgxl0OW0ECHE3Ud/xHC8n4ur3jHjMYUQQgghRJZopOdtJfN6XURjETwek87OAAAej0Xj+spp9zu+tgrHSfzg3/urB0e/z3O7KfVPTJQxvuctmwzDyLjnbWNxOR2D/Xyy4TU0+Yvoioa5t6d5dL2tNesKZq5jlgm3YfLa6uNmvV9/fz9erzflnLDBwUFOddZym+Em6IwFnW/IO4kL/cfzqa6foccFcAoodk0fHD/d8zS3Nd9GVE/tzetwOhjQAww7w9zfeT9+y8/lNZdPe7yhWB+3HP4yMR1hgC6O6FfZzJns4gmqVANhHWCARBmBmI7wSOft1PrWs7nw1GmPK4QQQgghsij7dd6WrZxKWALgco/0isUd/H4PbrfFh//qYtatmz6d+3GVZbzxpI343C5idqLfx+uy+Kc/uwjDmNhDk5w3NX44YEtLCwcPHpxX2y3Lyjh4u6Z+K1/b9Foq3T5uPPDMhMANoNpfwPGlVfNqz3SCwSCHDx9Om/xDa01raysDAwMp1yfnCuYbvgnLy80C3Mri7fkT5xkqFKeUpA8gHe3wsyM/Sxm4Abxsv8zT8acBiDpR7my7k5AdSrlt0lM992HrsQB9h34Ut/KyiTOpooFjHJ6wfUxHuf/YrdMeUwghhBBCiLnKuZ635FC4rVvr+I+vbqCyspDSssyGM37x7W/gwi3H8fuX91Dg9XD1GSexdc3UHjvTNGloaJiwbD413pKSKee11tMO6evp6cHuGyRswGd3P0FbaHh0naUMvJbFd85/64IXjh4eHqanp4eKioop66ZLVgJjJRU259fT0z+EPfInk3IzkTVzk3ssLb/HcPG2utfiMtI/ri/1v0RcT+0JVSg2m5vZZ+8jzth6Qxk83v04l1Slnqdma5sneu4hrsd+rn100Kr3copxEQA7ncem7Hcs3EpnuJVK7+zKPgghhBBCiLlZ7DpvSynngrfi4mKGh4dxuy3WbVgzq32VUlyytYlLtjbN+ry2bePxeGa933gFBQUUFBSkXZ8M6oqKinAch+PLy/l/pYV865Un2Nl7DLdh8uaGLVx/wlnU5c88J20+/H4/+fn5dHd3U1paOiUpSabB2/Xr38TOHc30xwLY2h4N3mqsEnzKjaM0mwvX8v7GN0zbnqd7nybshKcsP844jsvdl/PbyG/Z74yVT4g4EZ7seTJt8NYdOTqh1y3pFf0Iw/QR1sO0sS/Fnpp9wy9J8CaEEEIIsVgkeFu5iouLCYfDaRNlZEtzczOO44z2wMXj8XkXa9Za4zgOSqnRYYXJ5T09PQwODtLY2IhlWaO9XefXruf82vXzOu9cVVZWcvDgQXp6eqisnNhDmWnwlmd4+cEZn+Rb++7kme7d5Ble9kSPssm9ho2eGk6oauIDjZdiTVOSAGA4Ppxy+cnWyQw6gxxwDkxZF4gH0h4vbAcxUowq7uEoPfpo2v1sHSc8w3BMIYQQQggh5iLngrd4PE5ZWdmCB28wFqBorbFtO2VK/Ez1hoPcu3cnJxo+ftt/lPMbN3LOmnU4tk1bWxtDQ0MUFBTgOM68zpNNfr+fgoICuru7KSsrm9CuaDSKUipt6QS3201jYyMejwfLsvjH469hIDzE7vZDlBaWogfhM8ddRU1VdUZt8Zm+KcsKVSENZgOPxx6fkPwkyWumrxnnMbwp95mJoSw8KdoihBBCCCEWgAYc6Xlbsdra2ojFYjQ1zX7o42y4XC6GhxO9PVprSktL8U/KSpmppzta+OB9v6bBV8C/bzmLlzqP8rODO7miron3r9mAY9vU1NRQWlq64PPYZquqqopgMDilXZWVlZSUlKRtr2maU3oqi7wFnNl4EpD4Ofo8mRfkPq3kNF4ZeIWIM1ZO4ATzBLTW7LR3TtnepVxsK9mW9njlntkNuU0yMGjwb57TvkIIIYQQQkwn57JNAoTDYY4dO7ag57AsC8dxsG0bwzBYs2bNtPPV0hmKRvjg/b8hEI/RE03M2cq3XITjMc4vqKA/Gmb9+vWUlZUtu8ANwOv1UlpaOmGYJySCs1QlAsbr7+8nGByrRReNRkcTv9TW1lJcnHmpg9NKTkMxKYA0KjnkHGJID6Xc5/yK89MezzJcnFF6CeYs/75R7C6nzj/7sgpCCCGEEGIudGLOWza/lrGcDN4Ww/hab1pr9Bx/0HceeBVnZN/heCJwKXd5cYDP732Wj7z8KGaaeWPLSW9vL11dXQxEQ+zoa2PHkQP0DKUuE5B09OjRCaUEurq6OHBgbG6abdtpSxFM5jJcXFl3JW5j7F7dGb2Tu6N3T9nWbbi5qPIiClzTB9vnlF+OoTL/J+IyPFxc+c6MtxdCCCGEEFkgwdvKlXzZn9wTlG1er3d0WODg4CA7d+4kHJ6a7XAmL3V3EBoJ2oJ24r/nlyWG7HVEgoQcm85Q6mQcy0l7fw+tHe285f5v8ddP3QZDIb7y3N38w/N30hLoTbnP5KLk0Wh0NMFJJBJh165daevEpXJJ1SVcWnUpbsONSWL+XYyJJRw8hodtJdu4qv6qGY9X4q7g6rWfwKVmDp5dysOpxedzcvG5GbdXCCGEEEKI2ci5OW/JHrDFCN5qa2sBGBpKDMtLl5xjOmVeH6ZS2FrjAJ/e9STdkbEgMO7YFLjmV4JgoT3cvof/2HMP/1Z3EW8qauKp4VYA2qJDvNy8n/uOvsoPz72Wk0omps83TXNCz1o0Gh2dB+d2uzEMg1AoRElJScZteXvd29no30jsaIwHog9wiEMA2I5Nja+GN9W8iW0l2zIegnpC0ZlY6z7Frc3fwMEhOqkcgUu50WjOq3gLr6+6elkObRVCCCGEyGnLvLcsm3IueCsuLk6ZQGMhJIdLxuOJemBzyQJ5ZdMJ/PjV57HtxDF2DvVNWH9aZS1Fs0jcsdgODXXzqWd/TciO8ejQEV5fuJ7+eCLA6YgNY6MJxKP85eM/5d43fIJi91hSF9M0R3veHMchFouN9rwppfD5fBPmxGWqyq7iGMe4dsO19OgetNaUe8qp8lbN6Ro3F57KP279ITsHt/Onrt/RGz2Go23yrELOKL2EbaUXk2fNfr6jEEIIIYSYJ8k2ubIVFhYSDodnTJaRDbt376a4uHg0ff9cAsaNJeVc2XQCtx/YQSg+VhRaAX6XmxvPfn0WW5x9N+9/nOhI4Pnr3l2cV7CO95afiKM1XbGxwCvm2Pzm8PN8aONrR5eZpjmaoCRVXTi/309XVxeO42Tck6q1pq+vD7/fT1VBFVXMLWCbzDJcnFx8rgyLFEIIIYQQSyYn57yVlZXNOW3/bCSDD9u25zRkMulL57yev992AdX+fExlYCmDi+uP4663vI+NJeVZbHF2RZ04d7e8gj1SD60rHuSXPTvojYfoiQeJMzYkMuzE+enBpyfsX1NTw9q1a4FEApi6uroJPzefL1EvLRTKvOh1MBgkGo3OaqilEEIIIYRYqTRoJ7tfy1jO9bx1dHQQCoXYuHHjgg+ddLlcxONxSktLJyTemC2lFNduPZX3bXkNoXgMl2niMpZHIe7p9EemDmn8Xf9efte/F58x9dHqDk9MvDK+l800zSmlAfx+PzU1NRO2m0lfXx+GYVBUVJTxPkIIIYQQQqwEORe8BQIBbNsmGAxOKQKdbZZlEQwGZ1WPbDpKKfyu5V8WIMkyTDSpxxiHnPiUZcakYDoUChEIBCgrKyMcDqO1ntDzZlkWZWVlKY+vtebA8GHuPfZH2kPH0GiqPBVcUvpa1uSvWfCENUIIIYQQYpmQhCUrVzLb5GIkLEn2vEWjUSzLWnUBQ4nbT6HLR3cks1IGW4pqJnwOBAJ0dHRQUlJCZ2cnsViMpqamCdvEYjGCweCEnrT9w4f51r4f0RvtI+rERgPI/cOHebbvZQpd+XzkuPeztWjjPK9QCCGEEEIsa6ssYUnORRuLVSoAID8/n/Lycvbu3Ut3d/eCn2+5UUrxgaaz8Zoz/w3Ab7r4y3HJSmAsO6dt2xNqvI03ODhIS0sLw+EAETvKjoE9/OvOr9EePkbEiU7o+bvQfRZlFNEV6eHfdv83z/W+PM8rFEIIIYQQYvnI2eBtMXre8vPzKS0tBeZWJiAXXNVwGqXuPEyV/lFyGSbHFVRwQfXEnrBkgJ0ueDsW7uG+3kSSky+98H3e+fin+NedXyfiRKeco9qo4LWebawxE9klo06M/9r3A46GOuZ1fUIIIYQQYpnTOrtfy1jOBW/J4XWL0fOmtSYcTtQ0m0+2yZUs3+Xl56/7EHX+Yvzm1J4zv+lia1ENPzj3WqxJSViSAW8kEkFrPRq8aa25tflePvzMl/jfjgeJ6Tj1VgWmMXUeXdIpri3EdZwdsb2jy2JOnN+13Z+NyxRCCCGEEGLJ5VzEUVZWhsvlWpSesFgsxpEjR4DVG7wBVPkK+d3FH+WPx/bxo32Pc2i4B4Via3ENf77hHM4sb0zZE5r8GSVLASSDt18cuYfftD5ETCeCtbZ4N/VWJa6YQ6oOVQuLE12b2BU/QJjI6HIHh8d6tnNt4zvxmcu30LkQQgghhJiHZd5blk05F3EoFH5f3oL3vB3q6+Orjz/G9Q2NAHzy3nv58zPO4Iy6ugU973JlGSYX12zm4prNGe/j8XjYtGkTSikKCwvxer0cGm7jN60PEnFio9s1xzs527sVAwPN1NobW60mvMrDC7FXp7ZLWewbOsRJxVvmdmFCCCGEEGIZW/5DHbMpZ4ZNRqNxvvHFu7jzfx9l374D/M2f/5COtr4FOdfBvj6u+MXP+cP+/aPL/tTawgfuuJ2HDh5ckHPmIsMwcLlcWJZFXl4epmlyR9vDxJyJNfMei7zC1wZuxRkXuJkY+FWiiHen00OP08cRu23KOTSakJ15kW8hhBBCCCGWq5zpefvef97Dg79/iX+76W0A7H6lhU9d9yNuueuvMc3sxqhffvRRAtEoGjg8NERHKERopEj3PzxwP4//5XVTapqJMVprdgw0c+uRx6iK+shXHo4yyInV6/lT1wsTgjSAASeAoRx8QK1RzUmuTRzv2sC++GF+G36ADqeLnwTvTHs+rwyZFEIIIYTITRpwpo7MylU5Ebw5jsN9v3uBWNQet0wzPBhi54vNnHRaQ/bOpTUPHzo4mqDeZRhsHlekeygaZW9PN5vLK7J2zlzSEuzm7164hWPhASJ2jG9UvxO/4WZH+Cjf3HMXHiuWcl7bNvdWrsx7HQAxHWN3/CAvxXaNrh/WgZTnizs2x+WtW5BrEUIIIYQQy8AqGjaZE8GbdjR2PBFx//qW59h4fCJdvFKKUHBqWvl5nUtrnHEPyO9bWqjPzxv9bChFJG6n2nXVaw508aGnv00gHhmtzxZyovgNN132EGEnhhtI1WdZoHzsj7WwM76H3fEDRIml2GoihWJb6Unku/Jm3FYIIYQQQojlLieCN9MyOXlbIy89e4gnHzrIkw8l5p05jsPJ2xqyey7DYEtFBa92dQHwu5bmCesdrdlcXp7Vc+YCRzt84rkfTgjcEhKhWld8GK1VysAN4MHwCzwU1vjT9Myl4jJcXFF76bzaLYQQQgghlrlV1POWMwlLPvWFt1FdW4LP78af58Hrc/FP//4uvL6ptcfm6zPnvQ5vitIAPsvir04/Hc8qLhuQzjM9+xmIBScFbpBnJH4+XfYQGkXcSf9IahRh28zo36fbcPGBhqtozFs7r3YLIYQQQgixXORMlFFeWcjNd3yc3TtaCQ5HOP6UtQsSuAGct24dX730Mv7poQeJxOMYShHXmg9v28ZHzjhzQc650v388KOE7KlDWL2GC0j0vAGEbReWEUnbu2Zrk7Ct8JqJGnCTt/MaHgxlcN3693J2+bbsXYAQQgghhFiGNDirp+ctZ4I3SMxx23Ji/aKc640bN/KGpiZ2dnYStW2Or6zE53ItyrlXoj1DR1Mu/3j7bRQYXnrsRPAWcwzijoFlpC7IDWBrg0DchcdQFLgs8i0vGij3lHBZ9YWcUXoKlpFTj7YQQgghhEhFg9aSbVJkwDQMTqquXupmrAi2kzqJS0jHCNnjk48ohmIeClyRaQM4j+FhQ0E9XzjherymJ/sNFkIIIYQQYpmR4E0sinyXl4AdyXDrRACXbynW5ufRF+3HVCYKiGubSm8Z76y/hAsqT8NU5kI2WwghhBBCLHcybFKI7Lp8zWn8/PCjRJ14hnso/GYRPzj9s7SGOjkW7gGg0lvKWr/0dgohhBBCiBGrKNukBG9iUbyt7ix+fvjRjLf3GC7e03AeSinq/VXU+6sWsHVCCCGEEEIsfzlTKkAsbxXeQq6sP3s0u+R0DBRlnnzeUnv6IrRMCCGEEEKsWFqD42T3axmT4E0smhs2vpFLqk/Ca6YP4NyGRaW3iO+efj1+SxKRCCGEEEIIkSTDJsWiMZTB3x//Ds6p2MyPDz7MkUAXljJGy3ZbhsFVa8/l6rWvJd/lXdK2CiGEEEKIFULmvAmxMJRSXFh1IhdWncjh4U4OBzqJOTZlnnxOKm7AMiR7pBBCCCGEyJxe5kMds0mCN7FkGvIracivXOpmCCGEEEIIsSJI8CaEEEIIIYRYofSqGjYpCUuEEEIIIYQQYgWQnjchhBBCCCHEyqQBZ/X0vEnwJoQQQgghhFi59OpJWCLDJoUQQgghhBBiBZCeNyGEEEIIIcSKpAEtwyaFEEIIIYQQYpnTWoZNCiGEEGL2lFKXKaX2KKX2K6U+m2K9Ukp9c2T9y0qpU5einUIIIVYm6XkTQgghskApZQLfBl4PtALPKKXu0lq/Om6zNwIbRr7OBL478l8hhBBztJqGTUrPmxBCCJEdZwD7tdYHtdZR4FbgiknbXAH8RCc8BRQrpWoWu6FCCCFWJul5E0IIIbKjFmgZ97mVqb1qqbapBdoXtmlCCJHDVtGct0UN3p577rlupdSRLByqHOjOwnFyjdyX1OS+pCb3JT25N6ll476sy0ZDlimVYtnksTyZbJPYUKnrgOtGPkaUUjvm0baVajX+W1yN1wxy3avNpmwdaIi+ex/Qvy7P1vFGLNufyaIGb1rrimwcRyn1rNZ6WzaOlUvkvqQm9yU1uS/pyb1JTe7LjFqB+nGf64Cjc9gGAK31TcBNsHrv/Wq87tV4zSDXvdTtWGxKqWezdSyt9WXZOtZKIHPehBBCiOx4BtiglGpUSrmBdwF3TdrmLuDakayTZwEDWmsZMimEECIjMudNCCGEyAKtdVwpdQNwL2ACN2utdyqlrh9Z/z3g98DlwH4gCHxwqdorhBBi5VmpwdtNS92AZUruS2pyX1KT+5Ke3JvU5L7MQGv9exIB2vhl3xv3vQY+OodDr9Z7vxqvezVeM8h1rzar9brnTSX+PyKEEEIIIYQQYjmTOW9CCCGEEEIIsQKsqOBNKXVYKfWKUurFbGapWYmUUjcrpTrHp45WSpUqpe5XSu0b+W/JUrZxKaS5L59XSrWNPDcvKqUuX8o2LgWlVL1S6mGl1C6l1E6l1CdGlq/qZ2aa+7KqnxmllFcptV0p9dLIffnCyPJV/bwsNKXUZUqpPUqp/Uqpz6ZYr5RS3xxZ/7JS6tSlaGe2ZXDd7x253peVUk8opU5einZm20zXPW6705VStlLqHYvZvoWSyXUrpS4Y+d27Uyn1x8Vu40LI4DkvUkr9btzv3RU/HzbVO9mk9Tn5O22hrahhk0qpw8A2rfWyrb2wWJRSrwOGgZ9orU8YWfbvQK/W+ssjvxhKtNafWcp2LrY09+XzwLDW+j+Xsm1LSSlVA9RorZ9XShUAzwFvBT7AKn5mprkvV7GKnxmllALytNbDSikX8BjwCeDtrOLnZSEppUxgL/B6EuUEngHerbV+ddw2lwMfI5Hw5Ezgv7TWk4uArygZXvc5wC6tdZ9S6o3A51fDdY/b7n4gTCIBzq8Xu63ZlOHPuxh4ArhMa92slKrUWncuSYOzJMPr/nugSGv9GaVUBbAHqNZaR5eizdmQ6p1s0vqc+522GFZUz5sYo7V+FOidtPgK4JaR728h8RK6qqS5L6ue1rpda/38yPdDwC6gllX+zExzX1Y1nTA88tE18qVZ5c/LAjsD2K+1PjjysnYrifs93hUkXoK01vopoHjkDxAr2YzXrbV+QmvdN/LxKRK18Va6TH7ekHix/Q2wooOXcTK57vcAt2utmwFWeuA2IpPr1kDByB/P8km8y8QXt5nZlcE7WS7+TltwKy1408B9SqnnlFLXLXVjlqGqZL2gkf9WLnF7lpMbRrrkb17tQ72UUg3Aa4CnkWdm1KT7Aqv8mVFKmUqpF0m8NN6vtZbnZWHVAi3jPrcy9Q8JmWyz0sz2mj4E3LOgLVocM163UqoWeBvwPXJHJj/vjUCJUuqRkfe9axetdQsnk+v+FrAFOAq8AnxCa+0sTvOWTC7+TltwKy14O1drfSrwRuCjI92xQszku8BxwClAO/DVpW3O0lFK5ZP4K+5fa60Hl7o9y0WK+7Lqnxmtta21PoVEL8cZSqkpQ15EVqkUyybPa8hkm5Um42tSSl1IInjLhaG6mVz3N4DPaK3tRWjPYsnkui3gNOBNwKXAPymlNi50wxZYJtd9KfAisIbE/3u+pZQqXOiGLbFc/J224FZU8Ka1Pjry307gDhLd0GLMsWR388h/c2GowbxprY+NvIg6wPdZpc/NyNyl3wA/11rfPrJ41T8zqe6LPDNjtNb9wCPAZcjzspBagfpxn+tI/AV+ttusNBldk1LqJOAHwBVa655FattCyuS6twG3jsz3fwfwHaXUSh+qnOlz/getdWAkx8GjwEpPUpPJdX+QxHBRrbXeDxwCNi9S+5ZKLv5OW3ArJnhTSuWNJBRAKZUHvAFImb1mFbsLeP/I9+8HfruEbVk2Jo2ffhur8LkZGUP/QxKT/r82btWqfmbS3ZfV/swopSpGkgaglPIBlwC7WeXPywJ7BtiglGpUSrmBd5G43+PdBVw7kqHtLGAgOYx1BZvxupVSa4HbgfdprfcuQRsXwozXrbVu1Fo3aK0bgF8DH9Fa37n4Tc2qTJ7z3wLnKaUspZSfRCKLXYvczmzL5LqbgYsBlFJVwCbg4KK2cvHl4u+0BWctdQNmoQq4I/GuhQX8Qmv9h6Vt0tJRSv0SuAAoV0q1Av8CfBn4lVLqQyR+Cbxz6Vq4NNLclwuUUqeQ6Io/DHx4yRq4dM4F3ge8MjKPCeDvkWcm3X159yp/ZmqAW0YypBnAr7TWdyulnmR1Py8LRmsdV0rdANwLmCQyC+5USl0/sv57wO9JZGXbDwRJ/KV+Rcvwuv8ZKCPR8wQQ11pvW6o2Z0OG151zMrlurfUupdQfgJcBB/iB1npF/wEtw5/3jcCPlVKvkBhO+Bm9wrOrp3knc0Hu/k5bDCuqVIAQQgghhBBCrFYrZtikEEIIIYQQQqxmErwJIYQQQgghxAogwZsQQgghhBBCrAASvAkhhBBCCCHECiDBmxBCCCGEEEKsABK8CSGEEEIIIcQKIMGbEEIIIYQQQqwAErwJIYQQQgghxArw/wGDjgTXq2i7ZwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "converted_wheat = data['Wheat']/quarter_to_mass\n", + "purchasing_power = data['Wages']/(data['Wheat']/quarter_to_mass)\n", + "\n", + "fig4, ax4 = plt.subplots(1,2)\n", + "ax41 = ax4[0]\n", + "fig4.set_size_inches(2.54*6, 2.54*3)\n", + "\n", + "# ajout des marqueurs colorés en fonction de l'année\n", + "mypoints = ax41.scatter(data['Wages'], converted_wheat, c=data['Year'], s=(purchasing_power*3)**2)\n", + "fig4.colorbar(mypoints)\n", + "\n", + "# ajout d'une colonne vertébrale aux poitn pour aider à la lecture\n", + "ax41.plot(data['Wages'], converted_wheat, '--', color='lightgrey')\n", + "\n", + "# todo dans un autre graphique\n", + "# change size of subplots\n", + "# remove spine on the second one\n", + "# add in the second one the legend with the size of each dot for the puchasing power" ] }, { "cell_type": "code", - "execution_count": 160, + "execution_count": 11, "metadata": { "hideCode": false, "hidePrompt": false @@ -673,12 +722,12 @@ { "data": { "text/plain": [ - "52 NaN\n", - "53 NaN\n", + "49 3.132099\n", + "50 2.606061\n", "dtype: float64" ] }, - "execution_count": 160, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -689,7 +738,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 12, "metadata": { "hideCode": false, "hidePrompt": false @@ -1101,7 +1150,7 @@ "53 1821 54.0 NaN" ] }, - "execution_count": 63, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } -- 2.18.1