{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Essai des extensions Jupyter" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hideCode": false, "hideOutput": false, "hidePrompt": false }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,1,'Ma jolie fonction')" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VdW5x/HvC0mAMCVhhhDmMsoYQJyv2oraikNxBNFScWhrB+tQr9Va21tq+zj0turlooKIA46gt1URq50UDCTM8xQShoQhBAiEDO/9I4c2UpAkJyc7Oef3eR6fk7PPPnu9G5NfVtbeZy1zd0REJHo1CroAERGJLAW9iEiUU9CLiEQ5Bb2ISJRT0IuIRDkFvYhIlFPQS4NjZmeb2doq7jvDzH5R3fed4DjNzOwdM9tvZq/V5Bg1bLfGNYsco6CXiDKzLWZ21MzaHrc9y8zczLpX95ju/ld371tX7wv5JtABaOPu42t4jFMK/Zv0PvY8zJpFAAW91I3NwHXHnpjZaUCz4MqpkW7AOncvDboQkepS0EtdmAXcWOn5JOCFyjuY2aVmlmlmhWa2zcx+drKDmdl5ZpZT6Xl/M/vYzArMbKWZXVbF93U2szfMLN/MNpvZnSd538PAg8A1ZnbQzCabWSMze8DMtppZnpm9YGatQ/t3D/XMJ5lZtpntNrP/rHS8xmZ2v5ltNLMDZrbYzLqa2V9CuywNtXNNdc41NEz1BzP7v9BxF5pZr5P9O0rsUNBLXfgMaBUKqcbANcCLx+1ziIpfBknApcDtZnb5qQ5sZvHAO8AHQHvge8BsM/vS4Q4zaxR631KgC3AB8AMzu+j4fd39IeC/gFfdvYW7PwvcFPrvP4CeQAvg98e99Sygb+jYD5pZ/9D2H1HxF84lQCvgW0CRu58Ten1IqJ1Xa3Cu1wEPA8nABuCXX/bvILFBQS915Viv/qvAGiC38ovu/rG7L3f3cndfBrwMnFuF455ORchOdfej7v4R8C6VhopOYiTQzt1/HnrfJuB/gWureD43AI+5+yZ3Pwj8BLjWzOIq7fOwux9296VU/EIZEtr+beABd1/rFZa6+55aOtc33X1RaIhpNjC0iucjUSzu1LuI1IpZwF+AHhw3bANgZqOBqcAgIAFoAlTl7pbOwDZ3L6+0bSsVvfQv0w3obGYFlbY1Bv5ahTaPtbv1uDbjqLhge8zOSl8XURHSAF2BjVVs5/g2T3WuJ2tTYph69FIn3H0rFRdlLwHePMEuLwHzgK7u3hp4BrAqHHo70DU0FHNMGsf9xXAC24DN7p5U6b+W7n5JFdo81m6349osBXZV4b3bgJqMndf0XCXGKeilLk0Gznf3Qyd4rSWw192PmNko4PoqHnMhFeP795hZvJmdB3wDeOUU71sEFJrZvaF75Bub2SAzG1nFdl8GfmhmPcysBf8aw6/KXTnTgUfMrI9VGGxmbUKv7aJizP9EanquEuMU9FJn3H2ju2ec5OU7gJ+b2QEq7nCZU8VjHgUuAy4GdgNPATe6+5pTvK+MipAcSsVfGrupCODWVWkXeI5/DUdtBo5QcXG0Kh6j4vw+AAqBZ/nX7aY/A2aG7qq5+riaa3SuIqaFR6ShMbPzgenufrKer4hUoh69NESDqOhFi0gV6K4baVDM7Ekqhi8mBV2LSEOhoRsRkSinoRsRkShXL4Zu2rZt6927dw+6DBGRBmXx4sW73b3dqfarF0HfvXt3MjJOdtediIiciJltPfVeGroREYl6CnoRkSinoBcRiXIKehGRKKegFxGJcqcMejN7LrRU2opK21LMbL6ZrQ89Jld67SdmtsHM1p5otR4REalbVenRzwDGHrftPmCBu/cBFoSeY2YDqFihZ2DoPU+Flo4TEZGAnDLo3f0vwN7jNo8DZoa+nglcXmn7K+5e7O6bqVizclQt1SoiElVe+HQLf9+wO+Lt1HSMvoO77wAIPbYPbe9Cxeo5x+RwkiXdzGyKmWWYWUZ+fn4NyxARaZj+vDaPh+atZE7GtlPvHKbavhh7oqXfTjhrmrtPc/d0d09v1+6Un+AVEYkaG/MPcufLmfTv2IpfXXlaxNuradDvMrNOAKHHvND2HCoWPj4mlYp1LkVEBCg8UsItL2SQ0LgR024cQWJC5GeiqWnQz+Nf84FPAuZW2n6tmTUxsx5AHyrW5hQRiXll5c6dL2eSvaeIpyeMIDU5sU7aPeWvEjN7GTgPaGtmOcBDwFRgjplNBrKB8QDuvtLM5gCrgFLgO6G1OUVEYt5v3l/Lx2vz+eUVgxjVI6XO2j1l0Lv7dSd56YKT7P9L4JfhFCUiEm3mZuXyzCcbuWF0GjeM7lanbeuTsSIiEbYsp4B7Xl/GqB4pPPSNgXXevoJeRCSC8g4c4dZZi2nboglP3zCchLi6j916sfCIiEg0Ki4t4/YXl1BQVMLrt4+hTYsmgdShoBcRiQB358G3V7J46z7+cP1wBnZuHVgtGroREYmAFz7dyqsZ2/je+b25dHCnQGtR0IuI1LJ/bNjNz99dxYX9O/DDC78SdDkKehGR2pS9p4g7XlpCz7bNefyaITRqdKKZYeqWgl5EpJYcLC7llhcycIfpk9Jp2TQ+6JIABb2ISK0oL3fumpPF+rwD/P76YXRr0zzokv5JQS8iUgueXLCe91fu4j8vHcDZferXjLwKehGRMP1p+Q6eXLCeb45I5Vtndg+6nH+joBcRCcPqHYXc9dpShnZN4heXD8Is+Iuvx1PQi4jU0N5DR7nlhQxaNo1j2sQRNI2vn0tk65OxIiI1UFJWzh2zF5N3oJg5t46hfaumQZd0UurRi4jUwC/eXcVnm/Yy9crTGNo1KehyvpSCXkSkml5ZlM3MT7dyy9k9uHJ4atDlnJKCXkSkGj7fspefzl3B2X3act/F/YMup0oU9CIiVbS94DC3v7iY1OREfn/dcBrXg+kNqkIXY0VEquDw0TKmzMrgSEk5r0wZQevE+jG9QVUo6EVETsHdueeNZazcXsj0G9Pp3b5l0CVVi4ZuRERO4ZlPNvHO0u38+Gt9uaB/h6DLqTYFvYjIl/hozS4efX8N3xjSmTvO6xV0OTWioBcROYkNeQf4/stZDOjUikevGlwvpzeoCgW9iMgJ7D9cwi0vLKZJfCOm3ZhOs4T6Ob1BVehirIjIccrKnTtfziRnXxEv3XI6XZKaBV1SWBT0IiLH+fV7a/hkXT6/uvI0RnZPCbqcsGnoRkSkkrcyc5j2l01MPL0b141KC7qcWqGgFxEJWbqtgHvfWM7pPVN48BsDgi6n1ijoRUSAvMIjTJmVQbsWTXjqhhHEN46eeNQYvYjEvOLSMm59cTGFh0t54/YzSGmeEHRJtUpBLyIxzd154K0VZGYX8PQNwxnQuVXQJdW6sP42MbMfmtlKM1thZi+bWVMzSzGz+Wa2PvSYXFvFiojUtuf/voXXFudw5wV9uPi0TkGXExE1Dnoz6wLcCaS7+yCgMXAtcB+wwN37AAtCz0VE6p2/rd/NL/+4mq8N6MAPLugTdDkRE+7VhjigmZnFAYnAdmAcMDP0+kzg8jDbEBGpdVv3HOI7Ly2hV7vmPHbNUBo1kLnla6LGQe/uucBvgWxgB7Df3T8AOrj7jtA+O4D2J3q/mU0xswwzy8jPz69pGSIi1XawuJRbXsjADKbfOJIWTaL7cmU4QzfJVPTeewCdgeZmNqGq73f3ae6e7u7p7dq1q2kZIiLVUlJWzvdeWsLG/EP84frhpLVJDLqkiAtn6OZCYLO757t7CfAmcAawy8w6AYQe88IvU0QkfOXlzt2vLeXPa/N5ZNwgzuzdNuiS6kQ4QZ8NnG5miVYxd+cFwGpgHjAptM8kYG54JYqIhM/d+fm7q3g7azt3X9SX60dHx/QGVVHjgSl3X2hmrwNLgFIgE5gGtADmmNlkKn4ZjK+NQkVEwvG7BRuY8Y8tfPusHg12AZGaCusKhLs/BDx03OZiKnr3IiL1wsx/bOHxD9dx1fBU7r+kf4NdQKSmomcyBxGRE5iblctD81ZyYf8O/Pqq06L6NsqTUdCLSNT685o87pqzlNE9Uvj99cOIi6KJyqojNs9aRKJexpa93D57Mf06tWT6pHSaxjfcpQDDpaAXkaizekch35rxOZ1bN2PGzaNo2TQ+6JICpaAXkaiydc8hbnxuEYkJcbwweRRtWzQJuqTAKehFJGrkFR5h4rOLKCkrZ9bkUaQmR/+nXqtCQS8iUWF/UQk3PreI3QeLmXHzKPp0aBl0SfWGgl5EGryio6V8a+bnbMo/xLSJ6QztmhR0SfWKgl5EGrSjpeXc/uISMrP38eS1QzmrT2zMX1Md0T03p4hEtfJy58evLeWTdflMvfK0qF0hKlzq0YtIg+Tu/Oydlcxbup17x/bj2lGxM0lZdSnoRaRBevzD9bzw6VZuPacnt8fYJGXVpaAXkQbn+b9v5ncL1nN1eir3Xdwv6HLqPQW9iDQob2Xm8PA7q7hoYAf+64rTYm4myppQ0ItIg/HRml38+LVlnNGrDU9eG7uTlFWX/pVEpEFYtHkvt7+4hIGdWzHtxtiepKy6FPQiUu+t3L6fyTM+p0tyM56/aSQtmujO8OpQ0ItIvbZl9yEmPfc5LZvG8eLk0bTRJGXVpqAXkXprV+ERJjy7kHJ3Xpg8ms5JzYIuqUFS0ItIvVRQdJSJzy5k36GjzLh5JL3btwi6pAZLA10iUu8UHS3l5hmfs2V3ETNuHsngVE1SFg716EWkXjlaWs6tsxazdFsBv7tuGGf01iRl4VKPXkTqjbJy50dzsvjr+t08etVgxg7qGHRJUUE9ehGpF9ydB+eu4N1lO7j/kn5cPbJr0CVFDQW9iNQLj81fx+yF2dx2bi+mnKNJymqTgl5EAvfs3zbz3x9t4NqRXbl3bN+gy4k6CnoRCdQbi3N45N1VXDyoI7/UJGURoaAXkcDMX7WLe95Yxpm92/DEtUNp3EghHwkKehEJxGeb9vCdl5YwqHMr/mdiOk3iNElZpCjoRaTOrcjdzy0zM0hLSeT5m0dpkrIICyvozSzJzF43szVmttrMxphZipnNN7P1ocfk2ipWRBq+TfkHmfTcIlo1i2fW5FGkNE8IuqSoF26P/kngPXfvBwwBVgP3AQvcvQ+wIPRcRIQd+w8z8dlFAMyaPIpOrTVJWV2ocdCbWSvgHOBZAHc/6u4FwDhgZmi3mcDl4RYpIg3f1j2HGP/Mp+w/XMLMb42iZztNUlZXwunR9wTygefNLNPMpptZc6CDu+8ACD22P9GbzWyKmWWYWUZ+fn4YZYhIfbd25wG++cynHCou5aVbRjOoS+ugS4op4QR9HDAceNrdhwGHqMYwjbtPc/d0d09v165dGGWISH2Wta2Aa6Z9SiODObeO0UyUAQgn6HOAHHdfGHr+OhXBv8vMOgGEHvPCK1FEGqp/bNzNDf/7Ga2axvP6bWfQp0PLoEuKSTUOenffCWwzs2OfV74AWAXMAyaFtk0C5oZVoYg0SB+u2sVNz1es8/rabWPompIYdEkxK9ybV78HzDazBGATcDMVvzzmmNlkIBsYH2YbItLAzM3K5UdzljKocytm3DyKZN1CGaiwgt7ds4D0E7x0QTjHFZGGa9ZnW3lw7gpG90hh+qSR+jBUPaD/AyJSa576eAOPvreWC/u35/fXD6dpvKY1qA8U9CISNnfn1++t5ZlPNjJuaGd+O34I8Y01w0p9oaAXkbCUlzs/nbuC2QuzuWF0Go+MG0QjzUJZryjoRaTGSsrK+fFrS5mbtZ3bz+vFPRf11Xzy9ZCCXkRq5EhJGd+ZvYQFa/K4Z2xf7jivd9AlyUko6EWk2g4Wl/LtmZ+zcPNefnH5ICac3i3okuRLKOhFpFr2HTrKTc8vYsX2Qp64ZijjhnYJuiQ5BQW9iFTZrsIjTJi+kK17i/ifCSO4cECHoEuSKlDQi0iVbNtbxA3TF7LnYDEzbh7JGb3aBl2SVJGCXkROaf2uA0x4diHFpeXMvuV0hnbVDJQNiYJeRL7UspwCJj23iPjGjXh1yhj6dtQMlA2Ngl5ETuqzTXv49swMkpvH8+Lk0XRr0zzokqQGFPQickIfrdnF7S8uIS0lkVmTR9OxddOgS5IaUtCLyL+Zm5XLXXOWMiA0zXCKphlu0BT0IvIFsxdu5YG3VzCqewrTJ6XTsml80CVJmBT0IvJPz3yykal/WsP5/drz1A2aZjhaKOhFBHfnN++v5amPN/KNIZ157GpNMxxNFPQiMa683Hlw3gpe/Cyb60PTDDfWNMNRRUEvEsNKysq5+7WlvJ21nVvP7cl9Y/tpmuEopKAXiVFHSsr47kuZfLh6F3df1Jc7zuulkI9SCnqRGHSwuJRbZmbw6aY9PDJuIBPHdA+6JIkgBb1IjCkoOspNz3/O8tz9PH7NEK4Ylhp0SRJhCnqRGJJXeISJzy5i8+5DPH3DcL42sGPQJUkdUNCLxIhte4uY8OxC8g8U8/zNIzmzt6YZjhUKepEYsGp7Id+a8TmHS8qY/e3RDEtLDrokqUP6RIRIlHs7M5crn/47AK/eerpCPgapRy8SpUrKyvnVH9fw3N83M6pHCn+4fjjtWjYJuiwJgIJeJArtPljMd2YvYeHmvdx8Znfuv6S/pjSIYQp6kSizdFsBt724mL2Hjur2SQEU9CJRZc7n23hg7gratWjCG7efwaAurYMuSeoBBb1IFDhaWs7D76xk9sJszurdlv++bhjJWixEQsIOejNrDGQAue7+dTNLAV4FugNbgKvdfV+47YjIie0qPMLtLy5mSXYBt53bi7sv6qvZJ+ULauPqzPeB1ZWe3wcscPc+wILQcxGJgIwte/n6f/+NNTsP8Ifrh3Pfxf0U8vJvwgp6M0sFLgWmV9o8DpgZ+nomcHk4bYjIv3N3Zn26hWunfUbzhMa8dceZXDq4U9BlST0V7tDNE8A9QMtK2zq4+w4Ad99hZu1P9EYzmwJMAUhLSwuzDJHYcaSkjAfeXsHri3M4v197Hr9mKK2baV1XObka9+jN7OtAnrsvrsn73X2au6e7e3q7du1qWoZITMktOMz4Zz7l9cU53HlBH6bfmK6Ql1MKp0d/JnCZmV0CNAVamdmLwC4z6xTqzXcC8mqjUJFY94+Nu/nuS5mUlJbzvzem89UBHYIuSRqIGvfo3f0n7p7q7t2Ba4GP3H0CMA+YFNptEjA37CpFYpi7M/2vm5j47CJSmifw9nfPVMhLtUTiPvqpwBwzmwxkA+Mj0IZITCg6Wsq9byznnaXbGTuwI7+9eggtmujjL1I9tfId4+4fAx+Hvt4DXFAbxxWJZdl7ipgyK4O1uw5oTVcJi7oGIvXQx2vz+P4rWQA8f9NIzut7wpvXRKpEQS9Sj7g7T328kd9+sJa+HVoybWI6aW0Sgy5LGjgFvUg9cbC4lLvmZPH+yl1cNqQzU686jcQE/YhK+PRdJFIPbMw/yK2zFrN59yEeuLQ/k8/qofF4qTUKepGAzV+1ix+9mkV8XCNmTR7FGb20aLfULgW9SEDKy50nPlzH7z7awODU1jw9YQRdkpoFXZZEIQW9SAD2Hy7hB69k8ue1+Ywfkcojlw+iaXzjoMuSKKWgF6lja3ce4NZZGeQWHOaRywcxYXSaxuMlohT0InXo3WXbuef1ZTRvEsfLt5xOeveUoEuSGKCgF6kDpWXl/OaDtfzPJ5sY0S2Zp24YTodWTYMuS2KEgl4kwvYeOsqdL2fytw27mXB6Gg9+fSAJcbWxuJtI1SjoRSLoHxt2c/fry8g/WMyjVw3m6pFdgy5JYpCCXiQC9h8u4Vd/XM0rn2+je5tEXrt1DEO6JgVdlsQoBb1ILftg5U4eeHsFuw8Wc+u5PfnhhV/RrZMSKAW9SC3ZfbCYn81bybvLdtCvY0umT0pncKp68RI8Bb1ImNydt7NyefidVRQVl3HXV7/Cbef1Ir6xLrhK/aCgFwnD9oLD/Odby/nz2nyGpSXx6FWD6dOhZdBliXyBgl6kBsrLndmLspn6x9WUOzz0jQHcOKY7jRvpE65S/yjoRappU/5B7ntjOYu27OWs3m351ZWn0TVFi4NI/aWgF6mi0rJypv9tM4/PX0eTuEY8+s3BjB+RqnlqpN5T0ItUwarthdzzxlJW5BZy0cAOPDJuEO01hYE0EAp6kS9RXFrG7z/awNMfbyQpMZ6nbhjOxYM6qhcvDYqCXuQkFm/dy71vLGdD3kGuHN6Fn146gOTmCUGXJVJtCnqR4xwqLuU3769l5qdb6Ny6GTNuHsl5fdsHXZZIjSnoRSr56/p8fvLmcnL2HWbSmG7cPbYfLZrox0QaNn0HiwD7i0r4xf+t4rXFOfRs15zXbhvDSC0KIlFCQS8x770VO/np3BXsPXSUO87rxZ0X9NEkZBJVFPQSs/IOHOFn81byx+U7GdCpFc/fNJJBXVoHXZZIrVPQS8xxd95Ykssj767icEkZd1/Ulynn9NQkZBK1FPQSU3L2FXH/Wyv4y7p80rslM/WqwfRu3yLoskQiqsZBb2ZdgReAjkA5MM3dnzSzFOBVoDuwBbja3feFX6pIzZWXO7M+28qv31sDwMOXDWTi6d1opEnIJAaE06MvBe5y9yVm1hJYbGbzgZuABe4+1czuA+4D7g2/VJGa2Zh/kHtfX0bG1n2c85V2/NcVg0hN1iRkEjtqHPTuvgPYEfr6gJmtBroA44DzQrvNBD5GQS8BKCkrZ9pfNvHkgvU0i2/Mb8cP4arhXTR9gcScWhmjN7PuwDBgIdAh9EsAd99hZif8SKGZTQGmAKSlpdVGGSJAxcXW+at28dj8dazZeYBLTuvIzy4bSPuWmoRMYlPYQW9mLYA3gB+4e2FVe0vuPg2YBpCenu7h1iHi7ixYnccTC9axIreQ7m0SeWbCcMYO6hR0aSKBCivozSyeipCf7e5vhjbvMrNOod58JyAv3CJFvoy78/HafB7/cB3LcvaTlpLIb8cP4fKhnYnTLZMiYd11Y8CzwGp3f6zSS/OAScDU0OPcsCoUOQl355N1+Tzx4XqythWQmtyMR68azBXDu+ieeJFKwunRnwlMBJabWVZo2/1UBPwcM5sMZAPjwytR5Ivcnb9t2M3j89exJLuALknNmHrlaVw1IlUBL3IC4dx18zfgZAPyF9T0uCIn4+78Y+MeHp+/joyt++jUuim/vGIQ40d0JSFOAS9yMvpkrDQIn23aw2Pz17Fo8146tmrKI+MGcvXIrjSJ0+RjIqeioJd6bdHmvTw+fx2fbtpD+5ZNePiygVwzsqtmlxSpBgW91EsZW/by+Ifr+PuGPbRr2YQHvz6A60enKeBFakBBL/XKkux9PD5/HX9dv5u2LRJ44NL+3DC6G80SFPAiNaWgl3oha1sBj89fxyfr8klpnsBPLu7HxDHdSEzQt6hIuPRTJIFanrOfxz9cx0dr8khOjOfesf24cUw3mmudVpFao58mCcSK3P088eE6PlydR+tm8dx9UV8mndFdC3GLRIB+qqROrdpeyBMfruODVbto1TSOu776FW46szstm8YHXZpI1FLQS51Ys7OQJz9cz59W7KRl0zh+cGEfvnVWD1op4EUiTkEvEbVu1wGe/HA9/7d8By2axHHn+b2ZfFZPWicq4EXqioJeImJD3gGeXLCBd5dtJzG+Md/9j958++weJCUmBF2aSMxR0EutOVpazsdr83hzSS7vr9pJs/jG3HZuL245uycpzRXwIkFR0EtY3J0l2ft4KzOXd5ftoKCohDbNE7j1nF7ccnYP2rRoEnSJIjFPQS81snn3Id7KzOXtzFyy9xbRJK4RXxvYkSuHdeGsPm01XbBIPaKglyrbc7CYd5ft4K3MXLK2FWAGZ/Rqw/fO783YQR11i6RIPaWgly91pKSM+at28XZmLp+sy6e03OnXsSX3X9KPy4Z0oWNrLbgtUt8p6OXflJc7n23aw1uZufxpxU4OFpfSsVVTJp/dg8uHdqF/p1ZBlygi1aCgl39au/MAb2bmMC9rOzv2H6FFkzjGDqoYdx/dsw2NG51sQTERqc8U9DFuV+ER5mbl8lbmdlbvKKRxI+Pcr7Tj/kv6c2H/DpoeWCQKKOhj0MHiUt5bsZO3M3P5+8bduMPQrkk8fNlAvj64k26JFIkyCvoYUVpWzl837OatJbl8sGonR0rKSUtJ5Hvn9+HyoZ3p2a5F0CWKSIQo6KOYu7M8dz9vLsnl3WXb2X3wKEmJ8XxzRCpXDOvC8LRkzDTuLhLtFPRRaNveIuZm5fJmZi6b8g+RENeIC/u35/KhXTivb3sS4vRhJpFYoqCPAoeKS1mWs5/Mbfv485o8Pt+yD4DRPVKYcnZPLj6tE62b6cNMIrFKQd/AlJU7G/MPkpm9j6xtBWRmF7Bu1wHKveL1vh1acvdFfRk3tDOpyYnBFisi9YKCvp7LP1BM1rYCsrbtIzO7gGU5+zlYXApA62bxDOmaxEUDOzI0LYmhqUkka5ZIETmOgr4eOVJSxsrthaFgLyAzex85+w4DENfI6NepJVcM68LQrkkMS0uiR9vmupgqIqekoA+Iu7N1T9EXQn3VjkJKyirGYDq3bsqwtGQmjenOsLQkBnVpTdN4fXhJRKpPQV9H9h8uYWmlUM/aVsC+ohIAEhMaMzi1NZPP6smwtCSGdU2ifStNFiYitUNBHwGlZeWs2XngnxdLs7btY2P+IQDMoE/7Fnx1QAeGdk1mWFoSfdq3IE7zt4tIhCjoa6is3Ck8XELB4RL2FR1lR8ERluYUkJVdwLLcAo6UlAPQtkUCQ7smceXwVIZ2TWJwamvN2y4idSpiQW9mY4EngcbAdHefGqm2wlFe7hwoLqWg6CgFRRWhvf9wyT+/LigqqXjtcAn7ikrYX3SUfUUlFB4pwf2Lx0po3IiBXVpx/ahuDA0NwaQmN9MFUxEJVESC3swaA38AvgrkAJ+b2Tx3XxWJ9qDi4uaho2XsO1QR1F8I6aKKkC44/MVtBYdL2H+4hLJyP+lxWzaNIykxnuTEBFo3i6dbSiJJifEkJSaQ1Cye5ObxJDVLoF3LJvTp0IImcbpgKiL1S6R69KOADe6+CcDMXgHGAbUa9Ku2F3LnK5kUFJWw//DRf96xciLNExpXhHMotDuWzZg9AAAEAElEQVQlNSM5sSKkjwV3cmL8F0K8dbN4jZ2LSIMXqaDvAmyr9DwHGF15BzObAkwBSEtLq1EjLZvG0ad9i0oB/u/B3Tq0TfO7iEisilTQn2hQ+gvdbXefBkwDSE9PP3lX/Et0TUnk6QkjavJWEZGYEalubg7QtdLzVGB7hNoSEZEvEamg/xzoY2Y9zCwBuBaYF6G2RETkS0Rk6MbdS83su8D7VNxe+Zy7r4xEWyIi8uUidh+9u/8R+GOkji8iIlWjW1FERKKcgl5EJMop6EVEopyCXkQkypkfPzNXEEWY5QNbwzhEW2B3LZXTEMTa+YLOOVbonKunm7u3O9VO9SLow2VmGe6eHnQddSXWzhd0zrFC5xwZGroREYlyCnoRkSgXLUE/LegC6lisnS/onGOFzjkComKMXkRETi5aevQiInISCnoRkSjXoIPezMaa2Voz22Bm9wVdT6SZWVcz+7OZrTazlWb2/aBrqitm1tjMMs3s3aBrqQtmlmRmr5vZmtD/7zFB1xRJZvbD0Pf0CjN72cyaBl1TJJjZc2aWZ2YrKm1LMbP5ZrY+9Jhc2+022KCvtAD5xcAA4DozGxBsVRFXCtzl7v2B04HvxMA5H/N9YHXQRdShJ4H33L0fMIQoPncz6wLcCaS7+yAqpja/NtiqImYGMPa4bfcBC9y9D7Ag9LxWNdigp9IC5O5+FDi2AHnUcvcd7r4k9PUBKn74uwRbVeSZWSpwKTA96Frqgpm1As4BngVw96PuXhBsVREXBzQzszggkShdkc7d/wLsPW7zOGBm6OuZwOW13W5DDvoTLUAe9aF3jJl1B4YBC4OtpE48AdwDlAddSB3pCeQDz4eGq6abWfOgi4oUd88FfgtkAzuA/e7+QbBV1akO7r4DKjpzQPvabqAhB/0pFyCPVmbWAngD+IG7FwZdTySZ2deBPHdfHHQtdSgOGA487e7DgENE4M/5+iI0Jj0O6AF0Bpqb2YRgq4ouDTnoY3IBcjOLpyLkZ7v7m0HXUwfOBC4zsy1UDM+db2YvBltSxOUAOe5+7K+116kI/mh1IbDZ3fPdvQR4Ezgj4Jrq0i4z6wQQesyr7QYactDH3ALkZmZUjNuudvfHgq6nLrj7T9w91d27U/H/+CN3j+renrvvBLaZWd/QpguAVQGWFGnZwOlmlhj6Hr+AKL74fALzgEmhrycBc2u7gYitGRtpMboA+ZnARGC5mWWFtt0fWp9Xosv3gNmhTswm4OaA64kYd19oZq8DS6i4syyTKJ0KwcxeBs4D2ppZDvAQMBWYY2aTqfilN77W29UUCCIi0a0hD92IiEgVKOhFRKKcgl5EJMop6EVEopyCXkQkyinoRUSinIJeRCTK/T8+c5SOuGh+zAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "%matplotlib inline\n", "\n", "x = np.linspace(0,10,10)\n", "y = x**2\n", "\n", "plt.plot(x,y)\n", "plt.title('Ma jolie fonction')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }