{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse de l'incidence de la grippe grâce aux données du réseau sentinelle"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"import urllib\n",
"import pandas as pd\n",
"from os import listdir\n",
"import isoweek\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fichier déjà téléchargé\n"
]
}
],
"source": [
"data_url = 'https://www.sentiweb.fr/datasets/incidence-PAY-7.csv'\n",
"filename = 'incidence-PAY-7.csv'\n",
"\n",
"curFiles = set(listdir())\n",
"\n",
"# téléchargement automatique du fichier\n",
"# si non présent dans le répertoire\n",
"if not(filename in curFiles):\n",
" print('Téléchargement du fichier')\n",
" urllib.request.urlretrieve(data_url, filename)\n",
"else:\n",
" print('Fichier déjà téléchargé')\n",
" \n",
"#print(listdir())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lecture et exploration du fichier\n",
"le fichier est lu avec pandas\n",
"\n",
"Nom de colonne | Libellé de colonne\n",
"--------------|---------------------\n",
"week | Semaine calendaire (ISO 8601)\n",
"indicator | Code de l'indicateur de surveillance\n",
"inc | Estimation de l'incidence de consultations en nombre de cas\n",
"inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation\n",
"inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation\n",
"inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
"inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
"inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
"geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/\n",
"geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis)\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202022 \n",
" 7 \n",
" 210 \n",
" 0 \n",
" 567 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 202021 \n",
" 7 \n",
" 600 \n",
" 28 \n",
" 1172 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 202020 \n",
" 7 \n",
" 832 \n",
" 19 \n",
" 1645 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 202019 \n",
" 7 \n",
" 310 \n",
" 0 \n",
" 753 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 202018 \n",
" 7 \n",
" 849 \n",
" 98 \n",
" 1600 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 202017 \n",
" 7 \n",
" 272 \n",
" 0 \n",
" 658 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 202016 \n",
" 7 \n",
" 758 \n",
" 78 \n",
" 1438 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 202015 \n",
" 7 \n",
" 1918 \n",
" 675 \n",
" 3161 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 202014 \n",
" 7 \n",
" 3879 \n",
" 2227 \n",
" 5531 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 202013 \n",
" 7 \n",
" 7326 \n",
" 5236 \n",
" 9416 \n",
" 11 \n",
" 8 \n",
" 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 202012 \n",
" 7 \n",
" 8123 \n",
" 5790 \n",
" 10456 \n",
" 12 \n",
" 8 \n",
" 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 202011 \n",
" 7 \n",
" 10198 \n",
" 7568 \n",
" 12828 \n",
" 15 \n",
" 11 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 202010 \n",
" 7 \n",
" 9011 \n",
" 6691 \n",
" 11331 \n",
" 14 \n",
" 10 \n",
" 18 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 202009 \n",
" 7 \n",
" 13631 \n",
" 10544 \n",
" 16718 \n",
" 21 \n",
" 16 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 202008 \n",
" 7 \n",
" 10424 \n",
" 7708 \n",
" 13140 \n",
" 16 \n",
" 12 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 202007 \n",
" 7 \n",
" 8959 \n",
" 6574 \n",
" 11344 \n",
" 14 \n",
" 10 \n",
" 18 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 202006 \n",
" 7 \n",
" 9264 \n",
" 6925 \n",
" 11603 \n",
" 14 \n",
" 10 \n",
" 18 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 202005 \n",
" 7 \n",
" 8505 \n",
" 6314 \n",
" 10696 \n",
" 13 \n",
" 10 \n",
" 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 202004 \n",
" 7 \n",
" 7991 \n",
" 5831 \n",
" 10151 \n",
" 12 \n",
" 9 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 202003 \n",
" 7 \n",
" 5968 \n",
" 4100 \n",
" 7836 \n",
" 9 \n",
" 6 \n",
" 12 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 202002 \n",
" 7 \n",
" 6534 \n",
" 4530 \n",
" 8538 \n",
" 10 \n",
" 7 \n",
" 13 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 202001 \n",
" 7 \n",
" 9835 \n",
" 7019 \n",
" 12651 \n",
" 15 \n",
" 11 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 201952 \n",
" 7 \n",
" 7941 \n",
" 5246 \n",
" 10636 \n",
" 12 \n",
" 8 \n",
" 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 201951 \n",
" 7 \n",
" 5823 \n",
" 3675 \n",
" 7971 \n",
" 9 \n",
" 6 \n",
" 12 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 201950 \n",
" 7 \n",
" 6424 \n",
" 4276 \n",
" 8572 \n",
" 10 \n",
" 7 \n",
" 13 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 201949 \n",
" 7 \n",
" 6621 \n",
" 4540 \n",
" 8702 \n",
" 10 \n",
" 7 \n",
" 13 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 201948 \n",
" 7 \n",
" 5542 \n",
" 3383 \n",
" 7701 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 201947 \n",
" 7 \n",
" 7536 \n",
" 5058 \n",
" 10014 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 201946 \n",
" 7 \n",
" 2638 \n",
" 1316 \n",
" 3960 \n",
" 4 \n",
" 2 \n",
" 6 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 201945 \n",
" 7 \n",
" 4492 \n",
" 2615 \n",
" 6369 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1509 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1510 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1511 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1512 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1513 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1514 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1515 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1516 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1517 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1518 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1519 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1520 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1521 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1522 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1523 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1524 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1525 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1526 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1527 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1528 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1529 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1530 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1531 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1532 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1533 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1534 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1535 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1536 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1537 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1538 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1539 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202022 7 210 0 567 0 0 \n",
"1 202021 7 600 28 1172 1 0 \n",
"2 202020 7 832 19 1645 1 0 \n",
"3 202019 7 310 0 753 0 0 \n",
"4 202018 7 849 98 1600 1 0 \n",
"5 202017 7 272 0 658 0 0 \n",
"6 202016 7 758 78 1438 1 0 \n",
"7 202015 7 1918 675 3161 3 1 \n",
"8 202014 7 3879 2227 5531 6 3 \n",
"9 202013 7 7326 5236 9416 11 8 \n",
"10 202012 7 8123 5790 10456 12 8 \n",
"11 202011 7 10198 7568 12828 15 11 \n",
"12 202010 7 9011 6691 11331 14 10 \n",
"13 202009 7 13631 10544 16718 21 16 \n",
"14 202008 7 10424 7708 13140 16 12 \n",
"15 202007 7 8959 6574 11344 14 10 \n",
"16 202006 7 9264 6925 11603 14 10 \n",
"17 202005 7 8505 6314 10696 13 10 \n",
"18 202004 7 7991 5831 10151 12 9 \n",
"19 202003 7 5968 4100 7836 9 6 \n",
"20 202002 7 6534 4530 8538 10 7 \n",
"21 202001 7 9835 7019 12651 15 11 \n",
"22 201952 7 7941 5246 10636 12 8 \n",
"23 201951 7 5823 3675 7971 9 6 \n",
"24 201950 7 6424 4276 8572 10 7 \n",
"25 201949 7 6621 4540 8702 10 7 \n",
"26 201948 7 5542 3383 7701 8 5 \n",
"27 201947 7 7536 5058 10014 11 7 \n",
"28 201946 7 2638 1316 3960 4 2 \n",
"29 201945 7 4492 2615 6369 7 4 \n",
"... ... ... ... ... ... ... ... \n",
"1509 199126 7 17608 11304 23912 31 20 \n",
"1510 199125 7 16169 10700 21638 28 18 \n",
"1511 199124 7 16171 10071 22271 28 17 \n",
"1512 199123 7 11947 7671 16223 21 13 \n",
"1513 199122 7 15452 9953 20951 27 17 \n",
"1514 199121 7 14903 8975 20831 26 16 \n",
"1515 199120 7 19053 12742 25364 34 23 \n",
"1516 199119 7 16739 11246 22232 29 19 \n",
"1517 199118 7 21385 13882 28888 38 25 \n",
"1518 199117 7 13462 8877 18047 24 16 \n",
"1519 199116 7 14857 10068 19646 26 18 \n",
"1520 199115 7 13975 9781 18169 25 18 \n",
"1521 199114 7 12265 7684 16846 22 14 \n",
"1522 199113 7 9567 6041 13093 17 11 \n",
"1523 199112 7 10864 7331 14397 19 13 \n",
"1524 199111 7 15574 11184 19964 27 19 \n",
"1525 199110 7 16643 11372 21914 29 20 \n",
"1526 199109 7 13741 8780 18702 24 15 \n",
"1527 199108 7 13289 8813 17765 23 15 \n",
"1528 199107 7 12337 8077 16597 22 15 \n",
"1529 199106 7 10877 7013 14741 19 12 \n",
"1530 199105 7 10442 6544 14340 18 11 \n",
"1531 199104 7 7913 4563 11263 14 8 \n",
"1532 199103 7 15387 10484 20290 27 18 \n",
"1533 199102 7 16277 11046 21508 29 20 \n",
"1534 199101 7 15565 10271 20859 27 18 \n",
"1535 199052 7 19375 13295 25455 34 23 \n",
"1536 199051 7 19080 13807 24353 34 25 \n",
"1537 199050 7 11079 6660 15498 20 12 \n",
"1538 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 1 FR France \n",
"1 2 FR France \n",
"2 2 FR France \n",
"3 1 FR France \n",
"4 2 FR France \n",
"5 1 FR France \n",
"6 2 FR France \n",
"7 5 FR France \n",
"8 9 FR France \n",
"9 14 FR France \n",
"10 16 FR France \n",
"11 19 FR France \n",
"12 18 FR France \n",
"13 26 FR France \n",
"14 20 FR France \n",
"15 18 FR France \n",
"16 18 FR France \n",
"17 16 FR France \n",
"18 15 FR France \n",
"19 12 FR France \n",
"20 13 FR France \n",
"21 19 FR France \n",
"22 16 FR France \n",
"23 12 FR France \n",
"24 13 FR France \n",
"25 13 FR France \n",
"26 11 FR France \n",
"27 15 FR France \n",
"28 6 FR France \n",
"29 10 FR France \n",
"... ... ... ... \n",
"1509 42 FR France \n",
"1510 38 FR France \n",
"1511 39 FR France \n",
"1512 29 FR France \n",
"1513 37 FR France \n",
"1514 36 FR France \n",
"1515 45 FR France \n",
"1516 39 FR France \n",
"1517 51 FR France \n",
"1518 32 FR France \n",
"1519 34 FR France \n",
"1520 32 FR France \n",
"1521 30 FR France \n",
"1522 23 FR France \n",
"1523 25 FR France \n",
"1524 35 FR France \n",
"1525 38 FR France \n",
"1526 33 FR France \n",
"1527 31 FR France \n",
"1528 29 FR France \n",
"1529 26 FR France \n",
"1530 25 FR France \n",
"1531 20 FR France \n",
"1532 36 FR France \n",
"1533 38 FR France \n",
"1534 36 FR France \n",
"1535 45 FR France \n",
"1536 43 FR France \n",
"1537 28 FR France \n",
"1538 5 FR France \n",
"\n",
"[1539 rows x 10 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rawdata = pd.read_csv(filename, skiprows=1)\n",
"rawdata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"nettoyage du fichier\n",
"\n",
"a priori il n'y a pas de lignes vides"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
"Index: []"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rawdata[rawdata.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Conversion de la colonne week en isoweek standard"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# conversion de la date en format isoweek bizarre, en format datetime\n",
"def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n",
" year = int(year_and_week_str[:4])\n",
" week = int(year_and_week_str[4:])\n",
" w = isoweek.Week(year, week)\n",
" return pd.Period(w.day(0), 'W')\n",
"\n",
"rawdata['period'] = [convert_week(yw) for yw in rawdata['week']]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" period \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202022 \n",
" 7 \n",
" 210 \n",
" 0 \n",
" 567 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" FR \n",
" France \n",
" 2020-05-25/2020-05-31 \n",
" \n",
" \n",
" 1 \n",
" 202021 \n",
" 7 \n",
" 600 \n",
" 28 \n",
" 1172 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" 2020-05-18/2020-05-24 \n",
" \n",
" \n",
" 2 \n",
" 202020 \n",
" 7 \n",
" 832 \n",
" 19 \n",
" 1645 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" 2020-05-11/2020-05-17 \n",
" \n",
" \n",
" 3 \n",
" 202019 \n",
" 7 \n",
" 310 \n",
" 0 \n",
" 753 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" FR \n",
" France \n",
" 2020-05-04/2020-05-10 \n",
" \n",
" \n",
" 4 \n",
" 202018 \n",
" 7 \n",
" 849 \n",
" 98 \n",
" 1600 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" 2020-04-27/2020-05-03 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
"0 202022 7 210 0 567 0 0 1 \n",
"1 202021 7 600 28 1172 1 0 2 \n",
"2 202020 7 832 19 1645 1 0 2 \n",
"3 202019 7 310 0 753 0 0 1 \n",
"4 202018 7 849 98 1600 1 0 2 \n",
"\n",
" geo_insee geo_name period \n",
"0 FR France 2020-05-25/2020-05-31 \n",
"1 FR France 2020-05-18/2020-05-24 \n",
"2 FR France 2020-05-11/2020-05-17 \n",
"3 FR France 2020-05-04/2020-05-10 \n",
"4 FR France 2020-04-27/2020-05-03 "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rawdata.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# classification par dates croissantes\n",
"sorted_data = rawdata.set_index('period').sort_index()\n",
"\n",
"# Vérification qu'il n'y a pas de rupture de date\n",
"periods = sorted_data.index\n",
"# construction de la liste des n-1 premiers, et n-1 derniers\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" period \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1990-12-03/1990-12-09 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-10/1990-12-16 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-17/1990-12-23 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-24/1990-12-30 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-31/1991-01-06 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-07/1991-01-13 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-14/1991-01-20 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-21/1991-01-27 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-28/1991-02-03 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-04/1991-02-10 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-11/1991-02-17 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-18/1991-02-24 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-25/1991-03-03 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-04/1991-03-10 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-11/1991-03-17 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-18/1991-03-24 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-25/1991-03-31 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-01/1991-04-07 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-08/1991-04-14 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-15/1991-04-21 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 \\\n",
"period \n",
"1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n",
"1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n",
"1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n",
"1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n",
"1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n",
"1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n",
"1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n",
"1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n",
"1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n",
"1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n",
"1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n",
"1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n",
"1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n",
"1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n",
"1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n",
"1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n",
"1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n",
"1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n",
"1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n",
"1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n",
"\n",
" inc100_low inc100_up geo_insee geo_name \n",
"period \n",
"1990-12-03/1990-12-09 0 5 FR France \n",
"1990-12-10/1990-12-16 12 28 FR France \n",
"1990-12-17/1990-12-23 25 43 FR France \n",
"1990-12-24/1990-12-30 23 45 FR France \n",
"1990-12-31/1991-01-06 18 36 FR France \n",
"1991-01-07/1991-01-13 20 38 FR France \n",
"1991-01-14/1991-01-20 18 36 FR France \n",
"1991-01-21/1991-01-27 8 20 FR France \n",
"1991-01-28/1991-02-03 11 25 FR France \n",
"1991-02-04/1991-02-10 12 26 FR France \n",
"1991-02-11/1991-02-17 15 29 FR France \n",
"1991-02-18/1991-02-24 15 31 FR France \n",
"1991-02-25/1991-03-03 15 33 FR France \n",
"1991-03-04/1991-03-10 20 38 FR France \n",
"1991-03-11/1991-03-17 19 35 FR France \n",
"1991-03-18/1991-03-24 13 25 FR France \n",
"1991-03-25/1991-03-31 11 23 FR France \n",
"1991-04-01/1991-04-07 14 30 FR France \n",
"1991-04-08/1991-04-14 18 32 FR France \n",
"1991-04-15/1991-04-21 18 34 FR France "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data[0:20]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd4ZGd97z/vdE1RL7urLdrmra677jZgG4NpMRATbBJMS4zBKeQmIZCEy01ySYAbSkgAY0owDjUYsElsAzYYt3VZr+3tRdqqlVZdM2ozmvLeP845o5FmJM1II81o5vd5nn0kvTrnzCvt0XzPryutNYIgCIKQiq3QGxAEQRCKDxEHQRAEIQ0RB0EQBCENEQdBEAQhDREHQRAEIQ0RB0EQBCENEQdBEAQhDREHQRAEIQ0RB0EQBCENR6E3MFfq6+t1S0tLobchCIKwpHjxxRd7tdYNsx23ZMWhpaWF3bt3F3obgiAISwql1KlsjhO3kiAIgpCGiIMgCIKQhoiDIAiCkIaIgyAIgpCGiIMgCIKQhoiDIAiCkIaIg1CyaK2JJ2TSoSDMBREHoWT58YvtXPnPjxGLJwq9FUFYcog4CCVLa/cw3UMRBseihd6KICw5RByEkiUUNkRhcHS8wDsRhKWHiINQsoTGYgD0j4jlIAi5IuIglCyW5TAgloMg5IyIg1CyhMxYw8CIiIMg5IqIg1CyDIUNt9LAqLiVBCFXRByEkkXcSoIwd0QchJJEa50SkBZxEIRcEXEQSpJILMG4WfwmqayCkDsiDkJJEkopfBPLQRByZ1ZxUEqtUkr9Ril1SCl1QCn1Z+Z6rVLqV0qpY+bHmpRzPq6UalVKHVFKvT5lfYdSap/5vS8ppZS57lZK/dBcf04p1ZL/H1UoJ6x4g92mGJSAtCDkTDaWQwz4C631FuAK4C6l1FbgY8BjWuuNwGPm15jfuxXYBtwEfEUpZTev9VXgDmCj+e8mc/0DwIDWegPwBeAzefjZhDImaMYbmqsr6Be3kiDkzKzioLXu1FrvMT8fAg4BzcDNwL3mYfcCbzU/vxn4gdY6orU+AbQClymllgOVWutdWmsNfGfKOda1fgzcYFkVgjAXLMthTZ2X4FhUurMKQo7kFHMw3T0XA88BTVrrTjAEBGg0D2sGzqSc1m6uNZufT12fdI7WOgYEgboMr3+HUmq3Ump3T09PLlsXygwr5rCmzovWEJTme4KQE1mLg1LKD9wPfERrHZrp0Axreob1mc6ZvKD1PVrrnVrrnQ0NDbNtWShjQmYBXEudD5CgtCDkSlbioJRyYgjDd7XWPzGXu0xXEebHbnO9HViVcvpKoMNcX5lhfdI5SikHUAX05/rDCILFkOlWWl3rBSSdVRByJZtsJQV8Eziktf58yrceBN5jfv4e4IGU9VvNDKS1GIHn503X05BS6grzmrdPOce61i3Ar824hCDMidBYDJfDxvKqCkAsB0HIFUcWx1wNvBvYp5R62Vz7G+DTwI+UUh8ATgPvANBaH1BK/Qg4iJHpdJfWOm6e9yHg20AF8LD5DwzxuU8p1YphMdw6z59LKHNC4SiVHifVXieApLMKQo7MKg5a66fIHBMAuGGacz4FfCrD+m5ge4b1MKa4CEI+CI1FqaxwUOtzAUg6qyDkiFRICyVJKByj0uPE67LjctgWrG33vz56jEcPdi3ItQWhkIg4CCVJaCxKwONAKUWN17kgnVkTCc1XHm/l53s7Zj9YEJYYIg5CSRIKR6msMOINNV7XgowK7R6KEIklGDbTZgWhlBBxEEqS0JjhVgJDHBYilfVU3wgwMVRIEEoJEQehJDEsByPfotbnWpCA9Kn+UQCGIjOLw//7xWE++uNX8v76grCQiDgIJUc4Gmc8lkhaDtVe54KkslqWw3Bk+mvvOT3AVx5v4+F955DSHWEpIeIglBxW0z0r5lDrM9xK+W6+d6rPtBymcSvF4gk+8bP9aG1YF73Dkk4rLB1EHISSw3qzrvQYbqUar4uEnjwAKB+cNt1Kw+FYRqvgP589xYGOEL+30+gac9K0NARhKSDiIJQclggks5V8xsd8p7NalkMsoYnEEpO+1x0K87lfHuXajfXcdd0GAE70iDgISwcRB6HkCCUth4lsJcivOARHowTHoqyp85qvOdkq+cKjR4nEEvzDzdtprq7AaVcc7xVxEJYOIg5CyWFZDlUVE24lgIE81jqc6jfe6LevqAJIq3U42DnE5etqWVvvw2G3sarWy0kRB2EJIeIglBzWU3zAMxGQhvz2VzppupS2rqgEYHhKOmtoLEqV6dYCWFfv44SIg7CEEHEQSo7Q2GS30kRn1vyJw2kzuGyJw9SMpeAUcVhb7+Nk3wgJGVcqLBFEHISSIxSO4rQrPE7j9va7HTjtKq8tNE71jdIYcNMYcAOTxUFrnSYOLfU+IrEEnaFw3vYgCAuJiINQcoTGjFkOxkwpzOZ7rrx2Zj3VP8qaOm/SOhlKCUiPjMeJJ3TSYgHDcgDJWBKWDiIOQskRCseSaawWNV5XXrOVTveNsrrWh99tBL1TYw6W+2pyzMEPwAmpdRCWCCIOQslhWA6T51jV+ObetjscjXPtZ3/Nj144k/z6XCjMmjovfvN1UrOVgslsqQlxaKp0U+G0i+UgLBlEHISSYyilXbeFYTnMLebwyplBzvSP8cVHjxKNJ5KV0WvqvDjtNjxO26Tme8EpRXhguLZazKC0ICwFRByEJU80nmB0fOLN2ZoCl0qNb+4xhxdO9gPQEQzz4MsdycroNXVGHMHvdk4KSIcyWA4Aa+u9ks4qLBlEHISi4NnjfXN+8/70w4d565efTvY3suZHp1LjdTI4Fp1TKunzJwfY2OhnU1OArz3RluzGuqbWqI4OeByTYg6Z3EpgBKVP948SjU9utSEIxYiIg1BwYvEE7/7mc/zHMyfndP7hcyGOdg3T2j0MmLMcploOXhfxhE6+cWdLPKHZc2qAy9bW8sFXr+No1zDfe+40AY8jmY0U8DgmZStZr1FtVmZbrK33E09o2gfGcv4ZBWGxEXEQCs5oNE40rjkXnNub5rmgUTvw68PdRGJxwtEEgSkB6U3LAgC83D6Y07UPdYYYjsS4bG0tb7lwBc3VFRzvHaGlzpdMlfW7HZMC0oOjUew2hc9ln3SttfWGpXGidzi3H1AQCoCIg5CR9oFRjpwbWpTXGo3EAWMm81zoChnn/eZI90S77ikunZ1ranHZbTzT2pvTta14w86WWpx2Gx+4Zi0Aq82Ge2BZDpPdSlUVE3UWFmutdNbe0Zz2IAiFQMRByMg/P3yYW+5+huACTFCbiuWv75mDOAxHYgxHYvjdDnafHOCs6bKZ6laqcNm5ZE01T7f25XT9F07201xdQXN1BQC3XraK5VUeLl5VnTzG73amxRymxhvAiHtUVTjFchCWBCIOQkb6hiMMhWPc/UTbgr+WlWk0F3GwXEo3X7SCWELz0L5OgLSANMDV6+s52Bmif5rAt9aaxw51EY7Gk18/f2KAS1tqksd4XQ6e+Oh1/OG165JrmWIOUy0XmEhnlYwlYSkg4iBkxGpe9x9Pn6B7gfsBjZhupd7hSM6jPLvMvb1h+3KqKpw8+EoHkG45AFy9sR6AZ9oyu5YOdIT4wL27+fufHwSM/km9wxEuXVs76TinffKfjZWtlJotlclyAFhb5+WkuJWEJYCIg5CRUDjKjjU1xOKaL/362IK+lmU5JDTTPtVPh2U5NNdU8KrzGug0v8705H5BcxUBt2Na15JV3Pb950/zywPneN6MN1zaUpvxeAu/20FCw+i4IXLBsSjV04hDQ8Cd888oCIVAxEHISGgsyvnNVbzz0lX84Pkzydz+hWDEfFMF6B7KzUo5Z1oOyyo9XL+5IbmeyXJw2G1cvq52WsuhY9CIV6xv8PGxn+zj4X2dVHudbGjwz7iHZAsNM+4wOIPlUOlxMhaNS62DUPSIOAhpJBKaoUiMSo+DP71hIw674jOPHE66TfLNaEowN9e4Q1coTKXHQYXLzqs2NmAlCGWKOQBctb6eU32jtA+ku3Y6BsN4XXa+9u4djERi/OZIDzvX1GKzqQxXmiCQ0pk1kdAzupUsi2bq/AdBKDZEHIQ0hsdjaG28kTVVevjwazbw0L5z/OkPXk4Ga/NJquWQqzicC4ZZVuUBoM7v5qJV1ThsigqnPePxV28w4w4ZXEsdg2OsqK5gQ2OAv3vTFgAuXzuzSwkgYHZmHQrHGB6PkdDp1dHJY00rI5RjMZ4gLDaZH6+EssZ647JcM39y/QYcdsVnHzlCx+AY97x7B3V+d95eL9VyyLXWoSsUpqnSk/z6vVe18OvD3Wk1BhbnNfmp97t5qrWX37t01aTvdQbHWG4KzR9csYaGgIdrzCD2TKS6lazU35ncSjAxylQQihWxHIQ0kmM2TdeMUooPv2YDX37XJew/G+QPvvl8Xl9vZDyOy2Ej4HbkbjmEwixLEYebL2rmX2+9eNrjlVJcvaGOZ9r60txkZwfDyXoGpRQ3bV+WnNcwE5Y1MBSOZezImoq1bv2OBaFYEXEQ0rCeaqcGdd90wXI+/JoNHOoM5dW9NBKJ4XPZaQi4cxKHWDxBz1Ak6VbKlqvW19E7HOF4Sr1BOBqndzjCClMcciE58CdFHFKnwKViCe6QWA5CkSPiIKQRmuHpt6nScCf15TEdc2Q8htflyFkceofHSWgmuZWyYevyKgCOdU20B7FSYuciDoEUV9F0HVktxK0kLBVEHIQ0QlZ/ogzpoFasoW94bn2QMjEaieN3G+KQSyprahprLqxvNOYwWF1cATrMpn8rcrRCgEmjQmcTh4mAtLiVhOJGxEFIY8JySPe31/qMNtR5txzcdhoDnpwsB+tpP1e3ktfloLm6YrI4DM7dcrDbFF6XfZJbaTpx8Lkc2JRYDkLxI+IgpGG9cWUKxtb7TXEYzp84jI7H8ZlupZHxOCOR7J6qrdYZubqVANY3+mntSRUHw3LIVWgsrM6swbEoDlMsMmGzKQIep6SyCkWPiIOQRmjMCBA77Om3h2U59I/kz600EonhddlpDBguq2yth3OhME67os7nmv3gKWxo8NPWPZKcDNcZHKPe78IzTX3EbPjdjqRbKVO77lQqKxxSBCcUPbOKg1LqW0qpbqXU/pS1/6OUOquUetn898aU731cKdWqlDqilHp9yvoOpdQ+83tfUuZfj1LKrZT6obn+nFKqJb8/opArQ+HMXUXBeBN0OWx5dSuNjsfxmTEHgJ4s4xldwTCNAc+sFcyZ2NDoZywaT8Yazg6G5+RSsvB7nAyZdQ5V02QqWVR6nOJWEoqebCyHbwM3ZVj/gtb6IvPfQwBKqa3ArcA285yvKKWsR7GvAncAG81/1jU/AAxorTcAXwA+M8efRcgTmcZsWihlPKnn161kWA6WOHSHsrccrOypXNnQaPRLsuIOHYNjrKiauzhUmm27p5vlMPlYpwSkhaJnVnHQWj8B9Gd5vZuBH2itI1rrE0ArcJlSajlQqbXepY3Ko+8Ab005517z8x8DN6iZbHJhwQmNxabtTQRQ53fltbPocCSGz+1IcStll7F0LhSec4xgfcNExpLWOtk6Y65Yo0KzEYeAxyGWg1D0zCfm8MdKqb2m28mahtIMnEk5pt1cazY/n7o+6RytdQwIAnWZXlApdYdSardSandPT888ti7MxEyWA0Ctz523VNZ4QhOOJvC67NR4XThsKie30lyC0WCk5NZ4nbT1DBMaizE6HmdF9dyuBYY4DGUpDpUVEpAWip+5isNXgfXARUAn8DlzPdMTv55hfaZz0he1vkdrvVNrvbOhoSHTIUIeCM0QcwAMt1KeLAdrloPf7cBmU9T73Vm5lYbCUUbG4znXOKSyodFPa/cwZ81MpflYDgGPc1JAeiaMmIO4lYTiZk7ioLXu0lrHtdYJ4OvAZea32oHUbmYrgQ5zfWWG9UnnKKUcQBXZu7GEBSA0ZrTrno58xhysATlel/F6DQF3VpaDlcY6V7cSTIhDRx7EwW9OgwuFs7EcjGNznXonCIvJnMTBjCFYvA2wMpkeBG41M5DWYgSen9dadwJDSqkrzHjC7cADKee8x/z8FuDXeqEGBwizkkjoGbOVAGr9LsaiccbG599fyapp8LmNvIWGQHaWw7mgccxc3UoA6xv8DIxG2d8RBJiXW8kSUz1Du+6JY43vD4v1IBQxs7acVEp9H3gNUK+Uagc+CbxGKXURhvvnJPBBAK31AaXUj4CDQAy4S2ttvYN8CCPzqQJ42PwH8E3gPqVUK4bFcGs+fjBhboyY8whmijnU+6z+ShFWurzzer2plkNjwM2+s8FZz5tr64xUrIylJ4724LSr5M81F1ILBrMJSIPhvpst7VUQCsWs4qC1vi3D8jdnOP5TwKcyrO8GtmdYDwPvmG0fwuKQ7Ks0Q7ZSsoXG8Dgra+YnDknLwTVhOfQNR4gnNPYZ6hfy5VYCePnMICtrvHOql7Dwe7IXB8sqC45FWTXjkYJQOKRCWpjE1EE/majzW1XS8487JC0H94TlkNCGVTIT54Jhqiqcc65oBlhRVUGF005Cz8+lBBOdWSF7t5KkswrFjIiDMImZ2nVb1Jnul948pLOOjKdbDjDRQuN4z3DG1+kMjs3LpQRGnyOrQ+t8gtEwxa00W4V0xcRwIEEoVspOHHa19fF/HjyQNgVMMJipXbdFPi0Hy61kWQ4NAeMNv3sowm8Od/P6Lz7BJ362f9I5Wmv2tgfZsjww79ff0GC4luZTHQ0TcQTIwXKQWgehiCk7cTjaNcS3nzmZDGgKk5mpXbeF12XHnaf+SiMRw61kWQ5WlfQDL53lg//5ItG45tnjk0d6nh0co3sowiVratIvmCNW3GG+lkOqOFRXzNwIcMKtJJaDULyUnThsXmY8bR4+NzTLkeWJ5QcPzGA55LO/klUEl1rnAPCzlztY3+Dnb964mYHRKG0p7bX3nB4E4JLV+RSH+bmoLLeSy27D45z5z8qfHPgjloNQvJShOFQCcLhTxCETlh88MEMRHBjtJ/LRtntkPI7LbsPlMG5Fj9NOvd/NpqYA3/3Dy3ntliYAXjg5kDxnz6kBKpz2pNDPh+s2N/J3b9rCVevr53Udn8uBUkasZrbWYHabIuCW/krFyv6zwbzOSF+qlJ04VHmdLK/ycORcqNBbKUpCY1G8LjvODLMcUqmdYwuN4Gh0kotoNGJMgUvlx3deyf0fvopan4u19T7qfC5eODlRNL/n9AAXrKzKOG8iV9wOO3947bqkOM0Vm03hdzmomsEdl0plhVMC0kVIcDTKW7/8NP+1+8zsB5c4ZScOAJuWBcStNA2zNd2zqPPn7lbafzbIzk/9iieO9SbXRswpcKm01PuSbhqlFDtbathtWg7haJyDHSF25CHekG/8HseswWiLgMchbqUipCM4RiyhJSZJmYrD5mWVtPUMMx5LFHorRcds7botjOZ7ubmVvvrbNqJxzbGuCWG2ZjnMxKUttZzuH6UrFGZve5BYQucl3pBvqr0uarOssq6skIE/xYhVXDk4Kv832dnAJcbmZQGicc3x3uFkDEIwyN5ycBOOJsw399lvoxO9Izy8rxMw0lQtRiLxZBrrdFzaUgvA7pMDnBkYBeDi1dWzvuZi889vPx+/O7uivEqPg45BeTotNqy+XoNi1ZWp5WDmxx8R11Ias7XrtkhtoZEN9zxxHIfdRo3XSXeKyT4SiSXTWKdj64pKKpx2XjjZz55TA7TUeanzz70P0kJx0apqNjRmFySXUaHFybmk5ZC/YVZLlbIUh3X1fhw2JXGHDMzWrtui3iyEyyYo3R0Kc/+L7dyyYyXrG/x0pXRdHRmPz2p5OO02Ll5dbYjD6YG81DcUGglIFyfiVpqgLMXB5bCxodHP4U7JWJpK9paD8eSeTTrrN58+QSyR4I5r19FU6aErZQzo6HgsK1fMzpZaDnSE6B0eL8p4Q65YM6cTMtOhqLAeXEQcylQcwMhYErfSZLTWhMayjDmYbqXeWdxKoXCU7z57mjeev5yWep8xzCeUW8wB4NKWCUEoCXGocJLQE72lhOLAshyCEnMoX3HYvKySjmCYoDwhJBkZjxuzHLLJVsqyv9JDezsZjsT4o2vXAcZwnqFILNlTaXR89pgDwMWra7DbFD6XnU15KH4rNBMzHUQciglLHIYjsbLPZixjcTCD0l3lbT188L7d/O8HjMZ22bTrtvC6HHicNvpm6cz64CsdrKv3ccHKKgCaKg13VPdQhERCM5pFzAGM9hQXr6rm8nV1M855WCpI873iIxZP0DscocY7MW+jnClfcVhu9Vgq77jD3vYgP33pLOOxRDJ7JpuYAxitu2cKSHeHwuw63sebL1yRbCnRaHVdDYUZM1sU+LJM//zGe3byhXdelNWxxY71O5agdPHQOzxOQpO0TINj5Z2xVLbisKzSQ6XHUfYZS4OjUYbCMZ4/0U9obPZ23anMViX90L5OtIbfuXBi5LhlOXQNRZL+9mwsBzCKzLKtQC52xHIoPiyXklX7NFDmLueyFQelFJuXV5Z1xlI4Gk8+vT96qCv5RjVb0z2LOp9rxpjDg690sGV55aTc/8bKCcthNJKb5VBKWHEdqXUoHqwaB8tyKPeMpbIVBzDiDke7hss2ndC6+ZWCXx3sytmtVOtzTxtzONM/yp7Tg7wlxWoAI4XT7bDRPRRhOJKb5VBKBMRyKDqs4szzmixxELdS2XJeU4DhSKxsm2wNmj7Vazc2cHZwjOdPGJ1PsymCA6MQrm9kPONUvf8xW2W85YIVk9aVUkatQyicnB89tfFeOSDZSsVHVyiC3aaS0wHFcihjlldNjKQsRwZGjJv/dy9pRin4n73GG/pMg35SqfW5iMQSjIyn975/8OUOLl5dzapab9r3GgNuukLhifnRZehWctpteF12hsStVDScC4VpDLiprHBgt6nkw1O5UtbiUO+fPMy+3LCyMTY0+rloVTVDkRgVTnvWsw2sqW3dUyyvtp5hDnaG0qwGi6ZKD91DkZSYQ/lZDmD2VxoTy6FY6AqFaaz0oJSiusIplkOhN1BIrDe33lly9UsVKxujxuvixq3GxLVsCuAskmmpU8R1/9kgANduzDxdrbHSTXcoNVup/CwHMH7XEpAuHrpCYZrM94Qqr4hDWYuDVeVbrpbDgBlwq/G6uNEcx5ltGisYb/KQLg5WSuCyqsxzmRsDHoYjseTvvRxjDiCdWYuNrlAkec/WeF3iVir0BgqJ22GnqsJZtpZDcDSKy2HD4zQaEbbUean25iAO07iVzgUjeF325DS3qVi1Did7RwDSxoSWC8Y0OHErFQPhaJzgWJQmM9Va3EplOuwnlXq/q2zFYWB0nBqvM1m9/KXbLkaRfWuKqgonLoctzfLqGgrTZPpuM2G5o070juCwKVx5mAW9FKmscHLcFEihsFjWbmOKW6ncC2TLXhwaAu6ydSsNjkap8bqSX1+wMrfpakopGvzuNLdSdyictA4yYX3vRO8IXpd9WhEpdSo9MtOhWLBadVtupeoKl9Q5FHoDhabe75617XSpMjganXc7isbKdHHtCkWS5nnmc4zv9Y2Ml22mEhipwIOj45wLlmedTTFhWQ7WfVvjdTIyHi/rzqxlLw7lbDkYbiXX7AfOQGPATXfK8B6ttZH1MYM4WFXSUL5prAC37FiJw2bjc788UuitlD1JcTBdntXSmVXEod7vZjgSYyxDIVepMzgWzSkAnYnGgGeSWyk4FiUSSyR9t5mwqqSBrGY5lCqrar289+oWfrynnQMdwUJvp6zpCoXxOG3JVO4q86GpnF1LZS8O5VrroLVmcHSc6jxYDoOjUSIxQ1yn+m6nw4o7lGNfpVTuum4DVRVO/umhQxnbkAiLwznTFWrFv6yZDoNiOZQvDVaVdJmJw8h4nGhcJ/8I5opV62C55qb6bqc9zzTfy7F1RipVFU7+7IaNPN3ax+NHegq9nbLFKICbuGerKyzLQcShbLEsh3KLO1jmcj7cSjBRCDfVdzvteWI5JPn9y9ewtt7HPz10qGw7BBea7lCYphRr1/q7GBC3Uvli9VcqN7eS9UQ0X7fSRH8l4/dniUTjDKmsIJZDKi6HjT+6dh3Huoc52Sd1D4uN1ppzKa0zICUgLZZD+WK10OgdKq8nhMGUvkrzYcKtZFgM54JhqiqceJwzv+lLzGEy1oztg2U8fKpQhMIxwtHEJFeo3y2dWcteHJx2GzVeJz3D5ZVrPpAnt1Kdz41NTXYrLZsl3gBIttIUNjb5cdgUh0QcFp0TZpX6qtqK5Jp0Zs1CHJRS31JKdSul9qes1SqlfqWUOmZ+rEn53seVUq1KqSNKqdenrO9QSu0zv/clZaYFKKXcSqkfmuvPKaVa8vsjzk69312GlkN+xMFuU9T73Um3UtdQZFaXEky0KSjnOodU3A47Gxr9HOwQcVhsXjw1AMDFq2smrVdP6cy6rz04qaan1MnGcvg2cNOUtY8Bj2mtNwKPmV+jlNoK3ApsM8/5ilLKejT8KnAHsNH8Z13zA8CA1noD8AXgM3P9YeZKQ8BddtlKyZhDxfzcSmD8/qw/mu5ZCuAsVtZ4WVVbwXnLArMeWy5sWV7Joc7y7udTCPacHqC5uiLtvq1O6cwaicW59Z5dfP6XRwuxxYIwqzhorZ8A+qcs3wzca35+L/DWlPUfaK0jWusTQCtwmVJqOVCptd6ljWTu70w5x7rWj4Eb1CI32zFaaJSXOAyMRvG5sh/sMxNGlXSERELTPRSZsa+SRYXLzpMfvZ7rNjXO+/VLhS3LA5wLhekfKS8rttDsOTXAJWtq0tZT3Uq7Tw4wMh7nSFf5iPdc3xmatNadAOZH6y+8GTiTcly7udZsfj51fdI5WusYEATqMr2oUuoOpdRupdTunp785YSXYwuNfBTAWVhV0r0jEeIJnVXMQUhn63IjKC1xh8WjY3CMzmCYHavTm06mDvx54qjxftPaPVw2xYr5DkhneuLXM6zPdE76otb3aK13aq13NjQ0zHGL6dT73YyOxxmJlE+HzMGxKDW++cUbLBor3fQNR+gcNNseizjMiS3LDRebiMP0fP6XR7jzvhfzdj0r3rBjTW3a92q8E51+s3PPAAAgAElEQVRZf2uKw1A4VjYPknMVhy7TVYT5sdtcbwdWpRy3Eugw11dmWJ90jlLKAVSR7sZaUMqxhcbA6Hhe4g1guJUSeiINM5uYg5BOnd9NU6VbgtIz8Njhbp470Ze36+05PYDHaWPz8vTYV3WF0Zm1fWCUw+eGkmNvW7uH8/b6xcxcxeFB4D3m5+8BHkhZv9XMQFqLEXh+3nQ9DSmlrjDjCbdPOce61i3Ar/Ui2231Vq1DGYlDcHT+TfcsGsyCtn3m7OhsYg5CZrYsr5Rah2mIJzTHuocZSOnlNV/2nBrgwpXVODMMnLL+Pn7+SicA7796LQBtPSIOACilvg/sAjYppdqVUh8APg3cqJQ6Btxofo3W+gDwI+Ag8Ahwl9ba+l/8EPANjCB1G/Cwuf5NoE4p1Qr8L8zMp8VkooVG+QQCB0bH8yYOVurq/rNBlJqoOhdyZ+vySlq7h/P25ldKnOwbSc5XyIdrZ2w8zoGOEDsyBKNhonvAAy+fpd7v5tXnNeB3O8rGcpg1yVxrfds037phmuM/BXwqw/puYHuG9TDwjtn2sZBMbb6XSGiebO3l2g312GylN6UskdAEx6Lzro62sGoWDncOUe93Z3wKE7Jjy/JKYglNa/cw21ZUFXo7RcWRlLGdXaEIK2u887re3vZBYgnNJaunEwfj4enwuSHefkkzNptifaOfVrEcyodanwuloNd8Gvn53g7e863neaq1t8A7WxiGwjESev59lSwsy2s8nhCX0jzZuqISQOIOGUgVh+5Q7sVoPUMRPvGz/ZzpHwXgxdNGMDpTGitMrgF69XlGAsyGBn/ZWA4iDoDDbqPW60paDt977jQAp8ybqNRIts6Y54hQC7fDnnzKmq0bqzAzLXU+PE6bFMNl4Mi5oeR9NnVueTZ87bdt3PfsKW65+xmOdg2x59Qg6+p91PoyPyRZr6UUXLPBCEavb/TRFYoQCpd+Ww0RB5OGgJveoQit3cM8d8JIljo7MFbgXS0M1gCTfKWywoRrSdJY54fdpti0rJKDnTIZbipHu4a4rKUWh00lW8Nny3Akxg9fOMPla2vRGt5x9y6eO943rdUAE+KwfUUVdabreUODH4DjPaXfPVfEwaTeb7TQ+P7zp3HYFLU+F2cHS1McJpru5cetBBMtuKUAbv5sNdtolEuxVTaEo3FO9o2weXkljQF3cuJgttz/YjtDkRh//YbN3P+hq6j2OhmKxKaNN4DRmbUh4OYN5y9Lrm1oNMShHFxL0vXMpCHg5ljbECd6R3jdtiYGRqKcHShNt9Jgnt1KMGE5SMxh/mxdUcn3nz9N+8AYq2rnF3QtFY51DZPQsHlZgIZKT04N8BIJzbefOclFq6qTYvBfd17JfbtO8eYLl097nlKKx//yNZPaz6+u9eK0q7IQB7EcTOr9LrpCEQZHo7zrsjU011QUreUwHkvwwxdOE40nsj4nOBolbk4Zy9csh1QaKi1xEMthvuw0XR3PHs9fsddSx+pptGlZgKbARBfgbHj8aDcnekd439UtybXGgIe/eN0mKj0zPyD5zLkOFg67jZY6n4hDOWHl5q+u9XLV+jqaqyvoHook86qLiafbevnr+/fx81c6Zj8YiMUTXP+5x/nkg0bX9YHRKEpBZV4tB0MUsmnXLczMpqYAdT4Xz7SJOFgcORfC5bCxptZLU46Ww388fZKmSjdvPH96KyEXNjT6OV4G6awiDiZWOuZtl63GZlM011SgNXQGi896SKbcZikObT0j9I2M893nTnOgI8jg6DiVHuekJ6L58qqN9dy4tYn1ZsBOmDs2m+LK9XU83dorcQeTw+eG2Njox2G30RhwZ10lfeTcEE8e6+X2K1vyVn+zodHPqf7RonxwzCciDiZXrKvjpm3LuPVSozXUympjKlQxZixZLZ2fPNbLQBbtnfe2DwLgdtj4x/8+yMBolJo8VUdbbGwK8PXbd846HlTIjqs31NM9FCmbVg2zcbRriE3m7A/LdTmba0lrzScf3E/A4+C2y1bnbS/rG/zEE7rk532LOJisqK7g7nfvoMbMeW6uMcShvQjjDpY4xBKah/efm/X4fWeD+Fx2Pv6GLTx7vJ/Hj3TnNVNJyD9Xrzfy6p9uFdfS4Og4XaEIm5oMcbDiW7PVOvzwhTM8e7yfv33jlmlrGeZCuWQsiThMw/KqCpQqTsuhb2ScZZUe1jX4snIt7W0Psr25it+/fDXnNfkZCsfy1ldJWBhW13lZWVPB0yVapZ8LVmV00nIIWJbD9HGHrlCYTz10iCvW1fLOS1dNe9xcWNfgA0QcyhaXw/BtFmPG0sDIOLU+F2+5YAXPnuib8Y8kGk9wqDPEBSurcNhtfOLNW4H8ZioJC8PV6+t59nhfMsusXLEylTYvM1qLWOnSMxXC/e8H9jMeS/Dpt19AvgdLel0Omqsr2H+2tAsVRRxmoLm6omgthzq/i7dcuAKt4b/3dk577LGuYSKxBOevNCZdXbuxgb96/SZu2bFy2nOE4uCqDXWEwjEOdJT2m9BsHD43RKXHkRSFGq8Lh01N61Z6/Eg3vzjQxZ/feB4t9b4F2dPrty3jN0e6c8qaWmqIOMxAc423KC2HftNy2NDoZ+vySn6+d3rX0r6zRjD6/OaJDp93XbeBq81eMULxcuV6Y1puuccdjpnBaMsCsNnUjFXSz7T14XLY+MA1axdsT79/xWqicc2PXjgz+8FLFBGHGWiurqAzOEaiyMz6/pHxpFvoLReu4KXTgxydZvD53vYgAY+DNVJpu+RoDHg4r8nPM23lHXdo6xlJBoEtZqqSPtY1xPoG/4K2jl/f4OeaDfV877nTxHIoRl1KiDjMQHNNBdG4nlMHyIUiEoszHIlRZ2ZfvO3iZqoqnLzza7syvonsOxvk/OaqkpxLUQ5ctb6eF072l+3wn/6RcfpHxtPqZ2aqkm7tGWZj48LX2/zBFWvoCIb59eHu2Q9egog4zECy1mGweHosDYwYrS9qzdGmy6o8/Oyuq6nzu3n3N5/nvl0nk4VT47EEhzuHOH+lDI1ZqlyxrpZwNLGkW3hrrfnK461z8s9blchp4lDpoSvD9UbHY7QPjKVZGgvBa7c0srzKw33Pnlrw1yoEIg4zkKx1KKKgdN+I8bRUl5K3vbbex08/fBWvPq+BTzxwgG8+dQIwCofG4wkuaK4uyF6F+bOsyrgHe4vIes2V9oExPvvIEX78YnvO57ZNIw6NATeDGaqkj/eMoDWLYjk47DbeddlqnjzWW5LtNEQcZqA5aTkUjzhYBXC1vsk9jAIeJ1+/fSev39bEpx8+zJ7TA+xtN7JcLhDLYcliPQT0Z1EJX6xYjR5bu3J/A23rGcHlsCUf1Cymq5I+1m1YWBubFqeNyzsvW4XDpviuOSCslBBxmAGf20G111lU6awT4pBexGa3KT57y4Usq/LwJ997iSeP9VDtdbJyyh+WsHSoM92HfUtZHMaMvR+bQ9FYW/cw6+p9aX3ApquSPtY1jMOmWFO3MCmsU2kMeLi0pZYXTw0syustJiIOs9BcXVytu6ezHCyqKpx8+V2X0D0U5uH95zi/uSrvRUDC4uF1OfA4bfSPLF23UtCcPNjaPZxz5t/x3pGMzRynq5Ju7R6mpd63oJlKU1lW5aFnCbv9pkPEYRaKrRCuf2Qcm5p5UM+Fq6r5mzduASbXNwhLkzqfm77hpWs5WOIwFo3n9KAVicU53T/K+oZ0K2C6KunW7sXJVEqlMeCmZyhSch10ZRLcLDTXVPCU2Tq5GJ7A+8wah9lSU997VQsBj5NrN0qx21Kn1uda0m4lSxzASJLIdrrd6b5R4gnN+gxv9pmqpCMxY5Tomy/Iz9yGbGkIuBmPJwiNxagqoZ5lYjnMQnN1BaPj8WRQrdD0D49n1WFSKcUtO1bKZLYSoNbnWtIB6eBoFOtZJpe4g5WptK4+XRwyVUmf6B0hoWGD2b11sbBmwZRaKw0Rh1mwgrnFEnfoHxlPthUXyoM6/xIXh7EodX43TZXutEr+aDwxrTumrceYl7Aug1sJ0qukj5nZUIvvVjIewEot7iDiMAvN1YYJXCy1Dv2j45NqHITSp87nond46fq0g2NRqiucbGwMTGpzHYsnuO5fHud3/v1pXjqdnu3T1j3M8ioPPndm7/fUKunW7mFsyqj7WUwmLAcRh7Kiqaq4TEar6Z5QPtT63ERiCUbHl2YLjeBYlKoKJxub/BzrmshYeuHkAO0DY7T1DPO2rzzDR3/8yqTJhm09wzOOnV1V6+VE30hylG9r9zCra72LPo3QmpsulkOZUedzY1OzjyRcDOIJzYBYDmXHUi+EGxw1xaExMClj6dFDXbgcNh7/q9fwwVet4yd7zvLH39+D1hqtNW09IxkzlSzee1ULAJ9++DBgFMBtaFzceANAwO3A7bAVzQNkvhBxmAW7TVHvdxfFf/zg6DhaI5ZDmVEMhXC/OdzNbfc8O6cOpJblcF7TxHhNrTWPHuri6vV1NAY8fPyNW/jbN23h6dY+Hj/aQ/dQhOFILGOmksWqWi8ffNU6Hni5g11tfZzoHVm0yuhUlFI0VrrFcihHGivdReFPtJ4cJSBdXtQmLYfC3YOPHupi1/G+OTUADI1FqfIalgMY6azHuoc51TfKa7c2JY/7/cvX0FLn5dMPHU4GrmdyKwF86DXrWV7l4c9/+DLRuGbDLMcvFA3+4niPyCciDlnQGPAUhVvJEoe6aaqjhdLE+v/uLWAh3HEzc+jFU/05nReLJxiKxKiqcFLlddIYcHOse5hfHewC4LVbJsTB5bDx0Zs2c6RriM/98igwuzh4XQ4+/sYtnDOL4QphOYDxHiGWQxnSGCiOp4KJ1hliOZQTVnv2QsYcjvcaWUa7c+whFArHAKOtC2AGpYf41cEuLlxZlVaH84bty7h4dTUvnxnE57InK6Fn4i0XLOeyllqUml1MFoqGInmPyCciDlnQGHDTNxIp+MQny+ds+aCF8sDnsuN22AomDkPhaLLYbE+O4mBVRyfFoTHAoXNDvHxmcJLVYKGU4m/N1i/rG/1ZdSVQSvGl2y7ma3+wY9q014WmMeAmOJbeQnwpI+KQBQ2VHrQufGfMZMzBK+JQTiilqPO5CtZf6USv4VK6cl0dHcEwHSkFoSd7R/jgfbsJhTN3ELDEodo7YTmMx4yHrBu3pYsDwM6WWj746nW8Y8fKrPe4rMrD67Yty/r4fGPVOpSSa0nEIQsarSKXAscd+kfGCbgduBzy31Zu1PpdBQtIW/GG37vUeLNObU/9radP8IsDXTx+pCfjuVMth/PM1hYrayrYNEObi4+/YQvvvrJl3ntfLEqx1kHeZbKgsUh6p/SPjCf9z0J5UetzF8xybesxKo9v2racCqc9KQ7jsQQPvtIBwFPHMovD4Kix5wm3kh+ljEB0MTSyzBcNfrOFeAmJg3RlzYLGyuL4j5fq6PKl3ueibQ7DcvLB8Z4RVtd6qXDZuWhVdVIcfn24m8HRKI0BN08dy9y5OGRaDpWmOFR7XXz7fZdxYYlNJxTLoUxp8BeHW6lvRKqjy5VCdmZt6xlmnZkFtLOlhoOdIUYiMe7f005DwM1d122gIxjmZN9o2rlT3UoArz6vgeoSi5vV+VwoVfgHyHwyL3FQSp1USu1TSr2slNptrtUqpX6llDpmfqxJOf7jSqlWpdQRpdTrU9Z3mNdpVUp9SRWZvely2KjxOovArRQRy6FMqfW7GIvGGR2PLerrJhKaE70jrDOb2V2ypoZ4QvP4kR5+c7ibt13czKvPawAyu5aCY1EqnHbcjsXtd7TYOOw26nwueoqgk0K+yIflcJ3W+iKt9U7z648Bj2mtNwKPmV+jlNoK3ApsA24CvqKUsu6YrwJ3ABvNfzflYV95pTHgKehTgdZa2nWXMZbFuNgZS2cHx4jEEsk2FpesNp71/vnhQ8QSmrdf0syaOi/N1cZQrKlYfZXKgYYSK4RbCLfSzcC95uf3Am9NWf+B1jqitT4BtAKXKaWWA5Va613a6En8nZRzioZCt9AYjsSIxrW4lcoUa2b4YruWjptprJblYPVIah8YY9uKSjYvq0QpxbUb63mmrS+tFsjqq1QOlFoh3HzFQQO/VEq9qJS6w1xr0lp3ApgfG831ZuBMyrnt5lqz+fnU9TSUUncopXYrpXb39GTOjlgoGgJuekKFMxknqqOldUY5UlegKmkrCL4upfJ4x5paAN5+yUQdwtUb6hkKx9h3Njjp/HISB2uWdKkwX3G4Wmt9CfAG4C6l1KtmODZTHEHPsJ6+qPU9WuudWuudDQ0Nue92HjQE3PQUcOBKsjpaLIeyJOlWWnTLYZhKj4P6lBTq121toqnSzc0XrUiuXbW+DoCnjk12LQXNpnvlQIMpDta8iqXOvMRBa91hfuwGfgpcBnSZriLMj93m4e3AqpTTVwId5vrKDOtFRWPAQzSuGSjQLOn+YemrVM4UqjPr8Z4R1jVMbmNx3eZGnvub11Lvn7Bi6/xutq2oTIs7lJvlEEtoBseKY978fJmzOCilfEqpgPU58DpgP/Ag8B7zsPcAD5ifPwjcqpRyK6XWYgSenzddT0NKqSvMLKXbU84pGgpdCHeq30gTXFFdUZDXFwqL3+3AZbctekDaSGPNbuzmNRvq2XN6gJHIREZVOYlDQ5EUy+aL+VgOTcBTSqlXgOeB/9FaPwJ8GrhRKXUMuNH8Gq31AeBHwEHgEeAurbXVpepDwDcwgtRtwMPz2NeCUOgWGvvPBmmqdCdvQKG8UEpR53ctqltpOBKjKxTJutPpVRvqicY1L50eBCAaN0ablos4NAaMYtlSiTvMuUJaa30cuDDDeh9wwzTnfAr4VIb13cD2ue5lMSh0lfT+s0G2ryitqlIhNxa7EO6E2VNpplGdqWxfUQnA4XMhrtlYn9Z0r9RpKJIebPlC2mdkSSHdSqPjMdp6hnnj+csX/bWF4qHWt/CWwxNHe/jlwXPsWFND75DxWuuytBzq/IZla02LGxxNr44uZaz3iJ5hEYeywud24HPZC/JUcKhziISG7c1iOZQzdT4XJ/tGFvQ1PvfLI7zSHuQ/nz0NgE3Bmjpv1udvXhbg8LkQMNE6o7JMxMHnduAt0HvEQiDikAONlYWpgDzQYeSOb2+uXPTXFoqHOr97QQPSXaEwr7QH+Ysbz+P6LY08d7wfv9uRU+uLzcsC3LvrFLF4Itl0r1wsBzBrHcRyKD+MCsiFdSsFR6O09gwlC43AiDfU+VwsmzJSUSgvan0uRsfjhKNxPM789yqy5jq/fvsyzmsKsG0OMa7NyyoZjyU42TcyEXMoI3FoCLjpLmCxbD6Rrqw5kDpLOhyN866vP8u7vv4s//zwIf5nb2demqJ9+fFWbrl7F2dTpm3tOxtiW3NVSfW/F3JnoQvhHj3UxZo6Lxsb5z6HedMyY4DP4XNDabMcyoEV1RW0D4zNfuASQMQhBxoDHrpDRpX0N548zjNtfQyORvnWUye463t7+NdHj837NZ481ovW8LOXzgKGCB3rGuJ8cSmVPclCuAVwLQ1HYjzT2seN8xzCs6HRj92mONw5RHDMeFgql5gDGMOMzg6OMRxZ3O65C4GIQw40VroZi8Zp6xnhK4+38Ybty3joz65l/9+/nvUNvuSs3bnSPzLOoU4jmPeTPe1orTnaNUQsoSWNVUgWQN5v3hv55ImjPYzHE7x2a+a5ztnicdpZV+/j8LkhgmNRfC47Tnv5vM1YY1CPdQ0VeCfzp3z+1/KAlar2sfv3EotrPv6GLQC4HXZW1XrpDM7P17irrQ+Ad+5cRVvPCHvbg+w/a4iFZCoJ21ZU8t6rWvj2Myf5Qh6s1FQePdhFtdfJzjU1sx88C5vMjKXgWLTkhvrMxoQ4FGZqXz4RccgBqwJy96kB3n/NWlanpPgtr6qgY3B+vsZn2nrxux389Rs243LY+MmedvZ3BKmqcLKyRtpmlDtKKf73m7fyjh0r+dJjx7jniba8XDcWT/DrI91cv7kRRx6e8rcsr6R9YIz2gdGycikBrKr14nbYOFoCloNkK+WANSe23u/mruvWT/pec7WHvpHxeWWS7Grr47K1tdT6XNy4tYkHX+lgWVUF25srJRgtAGCzKT79uxcwGo3zTw8dZtuKKq7eUD+va75wcoDB0Sivm6dLyWKzGZR++cwgF6+uzss1lwp2m2JDo5+jBZr3nU/EcsiBVTVeVtVW8Ik3byHgmfxEtLzKeLKfq2upMzjG8d6RZOvj372kmYHRKIc6QxJvECZhtyk+/3sXUuG0J9NPcyUcjbP7ZD/3PXuKL/zqKC6HjWs35qcNvpWxFIklyipTyeK8pkBJxBzEcsiBCpedJz96fcbvWcHCzsEx1tZn14smlWdajXjDVeuNp8BrNzZQZ7ZL2CbxBmEKboedS9fW8kxb+mjObLjzP1/k8SPGwKxKj4P3Xd2Cz52ft4Pm6goCbgdDkRjVFeUVcwDY2OTnpy+dJRSOUulZuuIolkOeWFFtxCPOzjHu8HRbL7U+V9Ikd9pt/I45TMVqaCYIqVy1vo6jXcNzqtrf2x7kdVubeOZj1/PKJ1+XTK7IB0qppPVQLoN+UtlUIkFpEYc8sazKEIe5uJW01uxq6+PKdXXYbBOxhT+5fiP/8o4Ls258JpQXlgty1/G+nM7rHxmnf2Scy9bWsqK6YkHiWZuXm+JQpm4lYMkHpUUc8oTbYafe755TxtLJvlE6g2GuNP/YLWp9Lm7ZsXKas4RyZ9uKKgIeB7tydC219RhPtOvnUQk9G5uXGdZuuWUrgeFWq3DaRRyECZqrPXNyKz2y/xzAvLNOhPLCblNcsa6OZ9pysxzazEyaDQtokW5ZbohDOc48t9kUG5v84lYSJlhRXZGTW+lo1xDv+4/n+cwjh7lgZRUtObRGFgQwXEun+kZpHxjN+py2nmHcDtuCjpy9ZHU1X7rtYm7Y0rhgr1HMbGwMiOUgTGAVwmXT2uAbTx7npi8+we5TA3z8DZv50QevlFoGIWes7LZdOVgPbT0jrK33Ybct3P2mlOJ3LlyRU7vvUuK8Jj/dQxGC5sCjpYiIQx5ZUe1hdDxOaGzmplsHO0J8+uHDXLepkd/+1XV88NXrF6QFs1D6nNfkp87nylEchhc03iDAeWa21tHupWs9iDjkEctMnynuEIsn+Ov791JV4eRf3nFhstOmIMwFpRRXrjfiDtlYrOFonDP9owsabxBKI2NJxCGPJAvhgtOLw7eePsG+s0H+/uZt1IgwCHngqvX1nAuFs+oKfKpvlIRe2EwlAVZUefC7HUs6KC3ikEdWmLUO06Wznuwd4XO/PMqNW5t40/nLF3NrQglj1Ts83Tp7SmsyjbUh9yp+IXuUMnssieUggNGQz2lXdEyTsfTZXxzGZbfxf9+6XYLPQt5YU+elpc7Lo4e6Zz3WSmNdVy+Ww0KzZXmA/WeDxBP5nb2xWIg45BGbTbGsypPRcognNE8e6+XNFy6nSWZBC3lEKcWNW5vY1dY36wSy1p5ho0jLJQkQC81V6+sJhWO8fGaw0FuZEyIOeWZFVQWdg+mWw6HOEEPhGJevrctwliDMjxu3LmM8nuCJoz0zHieZSovHtRvrsSn47ZHZLbpiRMQhz6yorsiYrfSs2f/m8nW1i70loQy4ZHU1NV7njC28EwlNW/eIxBsWiWqvi4tX1/D4LIJdrIg45JkV1R66QuE0P+NzJ/pZU+dNzn0QhHzisNu4fnMTvz7cTTSeyHjMuVCYsWic9ZLGumi85rwG9rYH6R3OvXNuoRFxyDPLqyqIJfSkNsqJhOb5E/1cvlasBmHhuHFrI8GxKLtPDiTX9rUH6R4y3JxWptIGcSstGq/eZAxQms3dV4yIOOSZZrPWoSOl1uHwuSGCY1GuWCfxBmHhuHZjAy6HLelaemR/Jzd/+Sne8m9PcaxrKJmpJJbD4rF9RRX1fhe/FXEQllen1zpMxBtEHISFw+d2cM2Gen516BxPHevlT7//Mtubq0hoeMfXdvHIgXNUehzU+6X4crGw2RSv2tjAE0d7llxKq4hDnpkYFzqRsfTciT5W1VYkrQpBWCheu6WJM/1jvP/eF1jX4OO+91/Oj++8koDHwbPH+1nf6Jcam0Xm1ZsaGBiNsrd9aaW0ijjkmUqPE7/bwal+o5VBIqF57kS/pLAKi8JrtzSiFCyv8vCd919GldfJmjofP77zKi5tqeG1W5oKvcWy41UbG7ApkjO7U4nE4uw+2Z+xL1b7wGhW/bIWChGHBeCKdbV8//kz/PSldo52DzE4KvEGYXForPTw/T+6gv+680oaU4otmyo9/NedV3HXdRsKuLvypMbn4sJV1Tyeod7hH//7ILfcvYtfHDg3af2nL7VzzWd+wx9950X6CpTpJOKwAPzrrRdz+dpa/tePXuHvHzwIIJlKwqJxxbo6GgNShV9MvOn85bzSHpwkAkfODfG9505jU/D3Pz/IiFnd3j8yzj/8/CCra708cayH13/xSX5zePEL6UQcFgCf28G33nsp129qZNfxPpqrK1hVK1PeBKFcuf3KFratqORvf7qPvuEIWmv+8b8P4nc7+PrtO+kMhvnio0cB+L//c5DhSIyv376Tn//xNdT7Xbzv2y/wn8+eWtQ9izgsEB6nnbvfvYP3X72WO1+zvtDbEQShgLgcNj73excSGovxdz/bz6OHunmqtZePvPY8btjSxK2XruJbT5/kG08e5yd7znLnq9ezaVmATcsCPPDHV3P95kY++eCBRa2XUIUMeMyHnTt36t27dxd6G4IgCFnz1cfb+Mwjhwl4HDQE3PziI6/CabcxMDLODZ//Lf0j46yt9/Hwn107aTrkcCTGLV99hrMDY/zkw1ex0RwmNBeUUi9qrXfOdlzRWA5KqZuUUkeUUq1KqY8Vej+CIAj55o5XrePi1dUMhWN84k1bcdqNt+Aan4tPvHkLboeNf3rb+Wljg/1uBxn3kB0AAAmTSURBVN9876W4nXbef+8LixKkLgrLQSllB44CNwLtwAvAbVrrg9OdI5aDIAhLke6hMHtODXDT9vSBX+FofMZ58i+fGeSdX9vFR2/azAeuWTun18/WcnDM6er55zKgVWt9HEAp9QPgZmBacRAEQViKNAY8GYUBmFEYAC5aVc0jH3kVLXULn+BSLG6lZuBMytft5toklFJ3KKV2K6V29/QsvV4lgiAI82VtvW9RqtyLRRwy/aRp/i6t9T1a651a650NDQ2LsC1BEITypFjEoR1YlfL1SqCjQHsRBEEoe4pFHF4ANiql1iqlXMCtwIMF3pMgCELZUhQBaa11TCn1x8AvADvwLa31gQJvSxAEoWwpCnEA0Fo/BDxU6H0IgiAIxeNWEgRBEIoIEQdBEAQhjaKokJ4LSqkxIJe4xGrg9DxesgoILuDxqcxlr7K/CXLd31xeS/Y3v9eS/eXntbI9vx7oNT9fo7WevRZAa70k/wE9C3l8hvPvWcjj57tX2d+87o2cX0v2J/sr5P5yPR/Ynet1l7JbKdeBrPMd4PrzBT4+lbnsVfY3Qa77m8tryf7m91qyv/y8Vj7Oz8hSdivt1lk0j5rr8YWk2Pcq+5sfsr/5IfvLnbnsaSlbDvcs8PGFpNj3KvubH7K/+SH7y52c97RkLQdBEARh4VjKloMgCIKwQIg4CIIgCGmUrDgopYZn+f7jSqmCBY2UUiuVUg8opY4ppdqUUv9qNh2c7viPKKUWfsLH5Nec8XdYaJRSb1NKaaXU5kLvZSaK8V6U+2/+LJX7b66UrDgUM8qY1PET4Gda643AeYAf+NQMp30EWNQ/ziXAbcBTGF18s8YcS1u2yP2XN0r6/itpcVBKvUYp9d8pX/+7Uuq9BdySxfVAWGv9HwBa6zjw58D7lVI+pdS/KKX2KaX2KqX+RCn1p8AK4DdKqd8s5kaVUn6l1GNKqT3mnm4211uUUoeUUl9XSh1QSv1SKVWxmPsCrgY+gPnHaf5/P6GU+qlS6qBS6m6llM383rBS6h+UUs8BVy7WPlP2W0z3otx/edgXS+j+mwslLQ5FzDbgxdQFrXUIo+T+D4G1wMVa6wuA72qtv4Qx/Og6rfV1i7zXMPA2rfUlwHXA59TEjMKNwJe11tswCn9+dxH39VbgEa31UaBfKXWJuX4Z8BfA+cB64O3mug/Yr7W+XGv91CLusxiR+2/+lPz9J+JQGBQZxqCa668C7tZaxwC01v2LubEMKOCflFJ7gUcxZns3md87obV+2fz8RaBlEfd1G/AD8/MfmF8DPK+1Pm4+DX8fuMZcjwP3L+L+ihm5/+ZPyd9/RTPPYYGIMVkAPYXayBQOMOUpRylViTEq9TiZ/3ALxe8DDcAOrXVUKXWSid9jJOW4OLAoZr1Sqg7DNbJdKaUxBkRpjHkgU3931tdh8w+2UBTTvSj33zxYovdfzpS65XAK2KqUciulqoAbCr0hk8cAr1LqdkgGqD4HfBv4JXCnUsphfq/WPGcICCz+VqkCus0/zOuANQXYw1RuAb6jtV6jtW7RWq8CTmA8pV2mjHGzNuCdGAHDYqCY7kW5/+bHUrz/cqYkxcG8sSNa6zPAj4C9wHeBlwq6MRNtlKW/DXiHUuoYcBTDt/o3wDcwfL97lVKvAO8yT7sHeHixAoLW7xDj97ZTKbUb4ynu8GK8/izcBvx0ytr9GL+rXcCngf0Yf7BTj1tUivFelPtv3iyZ+28+lGT7DKXUhcDXtdaXFXovS5Wl+DtUSr0G+Eut9ZsLvReLpfh7LAaW4u+tGO+/+VByloNS6k6MQNDfFXovSxX5HeYH+T3ODfm9FQclaTkIgiAI86PkLAdBEARh/og4CCilVimlfmNWnB5QSv2ZuV6rlPqVMvrv/EopVWOu15nHDyul/n3Ktd5pVtYeUEp9thA/j7C0mMP9d6NS6kWzYvpFpdT1KdfaYa63KqW+lFIwJ+SIiIMARg7+X2ittwBXAHcppbYCHwMeM/vvPGZ+DUZmyyeAv0y9iJn//f+AG8yq1SalVLGkDwvFS673Xy/wFq31+cB7gPtSrvVV4A6M6umNwE2L8yOUHiIOAlrrTq31HvPzIeAQRiXqzcC95mH3YrQMQGs9YrYACE+51DrgqNa6x/z6URa3pYGwBJnD/feS1rrDXD8AeMz6keVApdZ6l5mu+x3rHCF3RByESSilWoCLgeeAJq11Jxh/wEDjLKe3ApvNpmgOjD/MVQu3W6HUmMP997vAS1rrCIagtKd8r91cE+ZAqbfPEHLA7DR5P/ARrXUoV3et1npAKfUh4IdAAngGw5oQhFnJ9f5TSm0DPgO8zlrKcJikY84RsRwEAJRSTow/zO9qrX9iLneZpjrmx+7ZrqO1/rnZefJK4AhwbKH2LJQOud5/SqmVGNXHt2ut28zldmBlymVXYnSTFeaAiINgDX/5JnBIa/35lG89iBHww/z4QBbXajQ/1gAfxmjHIAjTkuv9p5SqBv4H+LjW+mnrYNP1NKSUusK85u1kcc8KmZEiOAGl1DXAk8A+DHcQGH12nsPoB7Qao9/OO6wWzmZ3zErAhdFL/3Va64NKqe8DF5rX+AettdXWWBAykuv9p5T6O+DjTLZKX6e17lbGuNVvY3RofRj4Ey1vcnNCxEEQBEFIQ9xKgiAIQhoiDoIgCEIaIg6CIAhCGiIOgiAIQhoiDoIgCEIaIg6CsAAope60ZjRneXyLUmr/Qu5JEHJB2mcIQp5RSjm01ncXeh+CMB9EHAQhA2YDuEcwCrEuBo5iVNxuAT4P+DFaR79Xa92plHoco5fU1cCDSqkAMKy1/hel1EXA3YAXaAPeb/ah2gF8CxgFnlq8n04QZkfcSoIwPZuAe7TWFwAh4C7g34BbtNbWG/unUo6v1lq/Wmv9uSnX+Q7w1+Z19gGfNNf/A/hTsw+VIBQVYjkIwvScSend858YLR22A78yO4bagc6U43849QJKqSoM0fituXQv8F8Z1u8D3pD/H0EQ5oaIgyBMz9TeMkPAgRme9EdyuLbKcH1BKBrErSQI07NaKWUJwW3As0CDtaaUcpozBaZFax0EBpRS15pL7wZ+q7UeBIJm0zmA38//9gVh7ojlIAjTcwh4j1LqaxgdQP8N+AXwJdMt5AC+iDGqcibeA9ytlPICx4H3mevvA76llBo1rysIRYN0ZRWEDJjZSv+ttd5e4K0IQkEQt5IgCIKQhlgOgiAIQhpiOQiCIAhpiDgIgiAIaYg4CIIgCGmIOAiCIAhpiDgIgiAIafx/PeAeWQQtmV4AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'][-100:].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les cas de varicelle semlent suivre une périodicité annuelle, avec un creux en septembre."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"# retrait de l'année 1990 qui en commence que le 3 Décembre\n",
"first_sept_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W') for y in range(1991, sorted_data.index[-1].year)]"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_sept_week[:-1],\n",
" first_sept_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Le maximum est de 842373 pour l'année 2009\n"
]
}
],
"source": [
"max_vari = yearly_incidence.max()\n",
"annee_max_vari = yearly_incidence.idxmax()\n",
"\n",
"print(\"Le maximum est de {} pour l'année {}\".format(max_vari, annee_max_vari))"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"hideOutput": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Le minimum est de 516689 pour l'année 2002\n"
]
}
],
"source": [
"min_vari = yearly_incidence.min()\n",
"annee_min_vari = yearly_incidence.idxmin()\n",
"\n",
"print(\"Le minimum est de {} pour l'année {}\".format(min_vari, annee_min_vari))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}