{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Titre du document" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x=10\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "x = x+10\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## petit exemple de completion " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "\n", "import numpy as np\n", "mu, sigma = 100, 15" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "x= np.random.normal(loc=mu, scale=sigma, size=10000)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEOtJREFUeJzt3X+s3XV9x/Hna6AMfxDLWhDbZu1M3QZEUbqOjWxB2UYdxuIfJiVTmoyshuDUxf1oNZnujyZs88c0GSxVGGU6mkZxNAIq65YZEwQvDIGCHZ10cG1HrzObbEuYwHt/nC/hWM7t/X3PPf08H8nJ+Z739/M93887F/q653u+3+9NVSFJatNPDHsCkqThMQQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTt52BOYyvLly2vNmjXDnoYkjZR77733+1W1YqpxSz4E1qxZw9jY2LCnIUkjJcm/TWech4MkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhS/6KYWkqa7bdNpT9Hrrm0qHsV5pPfhKQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDpvxD80lWAzcBrwaeA3ZW1aeSfBT4HWCiG/qhqrq922Y7cCXwLPC+qvpqVz8fuBE4FbgdeH9V1Xw2JC2WYf2Be/CP3Gv+TBkCwDPAB6vqviSvBO5Ncme37pNV9bH+wUnOBjYD5wCvAf4+yeuq6lngOmAr8E16IbARuGN+WpEkzdSUh4Oq6khV3dctPwU8Aqw8ziabgN1V9XRVPQYcBDYkOQs4raru6n77vwm4bM4dSJJmbUbfCSRZA7wRuLsrvTfJA0luSLKsq60EnujbbLyrreyWj61LkoZk2iGQ5BXAF4EPVNUP6R3aeS1wHnAE+PjzQwdsXsepD9rX1iRjScYmJiYGDZEkzYNphUCSl9ALgM9X1S0AVfVkVT1bVc8BnwE2dMPHgdV9m68CDnf1VQPqL1JVO6tqfVWtX7FixUz6kSTNwJQhkCTA9cAjVfWJvvpZfcPeATzULe8FNic5JclaYB1wT1UdAZ5KckH3nlcAt85TH5KkWZjO2UEXAu8GHkxyf1f7EHB5kvPoHdI5BLwHoKr2J9kDPEzvzKKruzODAK7ihVNE78AzgyRpqKYMgar6BoOP599+nG12ADsG1MeAc2cyQUnSwvGKYUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDVsyhBIsjrJPyZ5JMn+JO/v6qcnuTPJo93zsr5ttic5mORAkkv66ucnebBb9+kkWZi2JEnTMZ1PAs8AH6yqnwcuAK5OcjawDdhXVeuAfd1runWbgXOAjcC1SU7q3us6YCuwrntsnMdeJEkzNGUIVNWRqrqvW34KeARYCWwCdnXDdgGXdcubgN1V9XRVPQYcBDYkOQs4raruqqoCburbRpI0BDP6TiDJGuCNwN3AmVV1BHpBAZzRDVsJPNG32XhXW9ktH1sftJ+tScaSjE1MTMxkipKkGZh2CCR5BfBF4ANV9cPjDR1Qq+PUX1ys2llV66tq/YoVK6Y7RUnSDE0rBJK8hF4AfL6qbunKT3aHeOiej3b1cWB13+argMNdfdWAuiRpSKZzdlCA64FHquoTfav2Alu65S3ArX31zUlOSbKW3hfA93SHjJ5KckH3nlf0bSNJGoKTpzHmQuDdwINJ7u9qHwKuAfYkuRJ4HHgnQFXtT7IHeJjemUVXV9Wz3XZXATcCpwJ3dA9J0pBMGQJV9Q0GH88HuHiSbXYAOwbUx4BzZzJBjYY1224b9hQkzYJXDEtSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDZsyBJLckORokof6ah9N8r0k93eP3+xbtz3JwSQHklzSVz8/yYPduk8nyfy3I0maiel8ErgR2Dig/smqOq973A6Q5GxgM3BOt821SU7qxl8HbAXWdY9B7ylJWkRThkBVfR34wTTfbxOwu6qerqrHgIPAhiRnAadV1V1VVcBNwGWznbQkaX7M5TuB9yZ5oDtctKyrrQSe6Bsz3tVWdsvH1iVJQzTbELgOeC1wHnAE+HhXH3Scv45THyjJ1iRjScYmJiZmOUVJ0lRmFQJV9WRVPVtVzwGfATZ0q8aB1X1DVwGHu/qqAfXJ3n9nVa2vqvUrVqyYzRQlSdMwqxDojvE/7x3A82cO7QU2JzklyVp6XwDfU1VHgKeSXNCdFXQFcOsc5i1JmgcnTzUgyc3ARcDyJOPAR4CLkpxH75DOIeA9AFW1P8ke4GHgGeDqqnq2e6ur6J1pdCpwR/eQJA3RlCFQVZcPKF9/nPE7gB0D6mPAuTOanSRpQXnFsCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhU14sJmnpWbPttqHs99A1lw5lv1o4fhKQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwKUMgyQ1JjiZ5qK92epI7kzzaPS/rW7c9ycEkB5Jc0lc/P8mD3bpPJ8n8tyNJmonpfBK4Edh4TG0bsK+q1gH7utckORvYDJzTbXNtkpO6ba4DtgLrusex7ylJWmRThkBVfR34wTHlTcCubnkXcFlffXdVPV1VjwEHgQ1JzgJOq6q7qqqAm/q2kSQNyWy/Ezizqo4AdM9ndPWVwBN948a72spu+di6JGmI5vuL4UHH+es49cFvkmxNMpZkbGJiYt4mJ0n6cbMNgSe7Qzx0z0e7+jiwum/cKuBwV181oD5QVe2sqvVVtX7FihWznKIkaSqzDYG9wJZueQtwa199c5JTkqyl9wXwPd0ho6eSXNCdFXRF3zaSpCE5eaoBSW4GLgKWJxkHPgJcA+xJciXwOPBOgKran2QP8DDwDHB1VT3bvdVV9M40OhW4o3tIkoZoyhCoqssnWXXxJON3ADsG1MeAc2c0O0nSgvKKYUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSw6b8ozIaLWu23TbsKUgaIX4SkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGjanEEhyKMmDSe5PMtbVTk9yZ5JHu+dlfeO3JzmY5ECSS+Y6eUnS3MzHJ4E3V9V5VbW+e70N2FdV64B93WuSnA1sBs4BNgLXJjlpHvYvSZqlhTgctAnY1S3vAi7rq++uqqer6jHgILBhAfYvSZqmuYZAAV9Lcm+SrV3tzKo6AtA9n9HVVwJP9G073tVeJMnWJGNJxiYmJuY4RUnSZOb69wQurKrDSc4A7kzyneOMzYBaDRpYVTuBnQDr168fOEaSNHdz+iRQVYe756PAl+gd3nkyyVkA3fPRbvg4sLpv81XA4bnsX5I0N7MOgSQvT/LK55eB3wAeAvYCW7phW4Bbu+W9wOYkpyRZC6wD7pnt/iVJczeXw0FnAl9K8vz7/G1VfSXJt4A9Sa4EHgfeCVBV+5PsAR4GngGurqpn5zR7SdKczDoEquq7wBsG1P8DuHiSbXYAO2a7T0nS/PKKYUlqmCEgSQ0zBCSpYYaAJDVsrheLSWrImm23DWW/h665dCj7bYGfBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSw7yV9AIY1u12JWmm/CQgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGuYpopKWvGGedn3omkuHtu/FsOifBJJsTHIgycEk2xZ7/5KkFyxqCCQ5CfhL4K3A2cDlSc5ezDlIkl6w2IeDNgAHq+q7AEl2A5uAhxdiZ165K0nHt9ghsBJ4ou/1OPCLizwHSZq2Yf0yuVjfRSx2CGRArV40KNkKbAWWA/+d5MBCT2yRLQe+P+xJzLMTsSc4Mfs6EXuCE6yv/Ckwt55+ejqDFjsExoHVfa9XAYePHVRVO4GdScaqas0izW3RdH2tH/Y85tOJ2BOcmH2diD3BidnXYvS02GcHfQtYl2RtkpcCm4G9izwHSVJnUT8JVNUzSd4LfBU4CbihqvYv5hwkSS9Y9IvFqup24PZpDt+5kHMZohOxrxOxJzgx+zoRe4ITs68F7ylVL/peVpLUCO8dJEkNW1IhkOSkJP+c5Mvd69OT3Jnk0e552bDnOFNJXpXkC0m+k+SRJL806n0l+b0k+5M8lOTmJD85ij0luSHJ0SQP9dUm7SPJ9u52JweSXDKcWU9tkr7+vPtv8IEkX0ryqr51S76vQT31rfv9JJVkeV9tyfcEk/eV5He7ue9P8md99Xnva0mFAPB+4JG+19uAfVW1DtjXvR41nwK+UlU/B7yBXn8j21eSlcD7gPVVdS69L/g3M5o93QhsPKY2sI/u9iabgXO6ba7tboOyFN3Ii/u6Ezi3ql4P/AuwHUaqrxt5cU8kWQ38OvB4X21UeoIBfSV5M707Kby+qs4BPtbVF6SvJRMCSVYBlwKf7StvAnZ1y7uAyxZ7XnOR5DTgV4HrAarq/6rqPxnxvuidUHBqkpOBl9G71mPkeqqqrwM/OKY8WR+bgN1V9XRVPQYcpHcblCVnUF9V9bWqeqZ7+U161+jAiPQ1yc8K4JPAH/LjF52ORE8waV9XAddU1dPdmKNdfUH6WjIhAPwFvR/mc321M6vqCED3fMYwJjYHPwNMAH/dHeb6bJKXM8J9VdX36P1m8jhwBPivqvoaI9zTMSbrY9AtT1Yu8tzmy28Dd3TLI9tXkrcD36uqbx+zamR76rwO+JUkdyf5pyS/0NUXpK8lEQJJ3gYcrap7hz2XeXYy8Cbguqp6I/A/jMZhkkl1x8g3AWuB1wAvT/Ku4c5qUUzrlidLXZIPA88An3++NGDYku8rycuADwN/PGj1gNqS76nPycAy4ALgD4A9ScIC9bUkQgC4EHh7kkPAbuAtST4HPJnkLIDu+ejkb7EkjQPjVXV39/oL9EJhlPv6NeCxqpqoqh8BtwC/zGj31G+yPqZ1y5OlLMkW4G3Ab9UL54aPal+vpfeLyLe7fzdWAfcleTWj29PzxoFbquceekdHlrNAfS2JEKiq7VW1qrtP0GbgH6rqXfRuKbGlG7YFuHVIU5yVqvp34IkkP9uVLqZ32+xR7utx4IIkL+t+O7mY3pfdo9xTv8n62AtsTnJKkrXAOuCeIcxvVpJsBP4IeHtV/W/fqpHsq6oerKozqmpN9+/GOPCm7v+5keypz98BbwFI8jrgpfRuIrcwfVXVknoAFwFf7pZ/it4ZGo92z6cPe36z6Oc8YAx4oPvhLhv1voA/Ab4DPAT8DXDKKPYE3Ezve40f0ftH5Mrj9UHv8MO/AgeAtw57/jPs6yC948n3d4+/GqW+BvV0zPpDwPJR6uk4P6uXAp/r/v+6D3jLQvblFcOS1LAlcThIkjQchoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ37f+3FennUKhOgAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utilisation d'autres langages" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "plot(cars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }