models + extrapolation

parent 031e33f0
...@@ -24,7 +24,10 @@ ...@@ -24,7 +24,10 @@
"import pandas as pd\n", "import pandas as pd\n",
"import isoweek\n", "import isoweek\n",
"import os\n", "import os\n",
"import urllib" "import urllib\n",
"import numpy as np\n",
"from scipy.optimize import curve_fit\n",
"import math"
] ]
}, },
{ {
...@@ -3443,30 +3446,30 @@ ...@@ -3443,30 +3446,30 @@
] ]
}, },
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": 276,
"metadata": {}, "metadata": {},
"outputs": [ "source": [
{ "Nous essayons de modéliser ces variations saisonnières par un signal triangulaire avec la fonction `curve_fit`, intialisée avec un signal triangulaire de période 12 (étant donné qu'il y a douze mois dans l'année) et d'amplitude 6 (par lecture graphique). Nous choisissons également une phase et un offset vertical correspondants à nos lectures graphiques. Enfin, nous affichons le résultat aux côtés des données initiales."
"name": "stdout",
"output_type": "stream",
"text": [
"[13.96250778 11.99932062 -3.48316557 21.26924621]\n"
] ]
}, },
{
"cell_type": "code",
"execution_count": 289,
"metadata": {},
"outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[<matplotlib.lines.Line2D at 0x7f3932b220f0>]" "<matplotlib.legend.Legend at 0x7f393263a400>"
] ]
}, },
"execution_count": 276, "execution_count": 289,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
{ {
"data": { "data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VOd56PHfqxUBArGITSxiFSMbDLaMF4xtFgM2Hpm4t0ua5tPettdN7k2a3Fw7sZNbN22S2i1J2t40ba/TNOme1DcO1rCYxThesGMswAbMSOybxCIWgQAhtLz3j3dGCDFa58x5zznzfD8fPjaj0TnP0cM8Ouc973kfpbVGCCFEsGTYDkAIIYTzpLgLIUQASXEXQogAkuIuhBABJMVdCCECSIq7EEIEkBR3IYQIICnuQggRQFLchRAigLJs7HTkyJG6uLjYxq6FEMK3tm/fflZrXdib91op7sXFxVRWVtrYtRBC+JZS6mhv3yvDMkIIEUBS3IUQIoCkuAshRABJcRdCiACS4i6EEAFkZbaMEEJ42eqdNazaUE1tfSPjCvJ4ZlkJK+cW2Q6rT6S491IQki36TvKeflbvrOG5V3bT2NwKQE19I8+9shvAV7mXYZleiCe7pr4RzY1kr95ZYzs0kUKS9/S0akN1e2GPa2xuZdWGaksR9Y8U914ISrJF30je01NtfWOfXvcqKe69EJRki76RvKencQV5fXrdq6S490JQki36RvKenp5ZVkJeduZNr+VlZ/LMshJLEfWPFPdeCEqyRd9I3tPTyrlFvPDkLIoK8lBAUUEeLzw5y1c3U0Fmy0DTZWi6BEPGdfmWeFJl1kSANNZD81XJe7q5XAet12Fo9zlcObfI93lWWmvXd1pWVqY9syrkq5+DaAV8rhIGj7IdjXDLTz4Fx96Dz2+HvGG2oxFu+fHjcO4gfO4DyB1sO5o+U0pt11qX9ea96T0s09psCvu1i7D5T2xHI9zS1AD7N8HVc/DGn9mORrjl8hk48g401MLb37EdTcqld3E/8rYp7OPmwof/Cic8cjUhUmv/JmhtgqIy+OAf4NQe2xEJN1StBTRMuAfe+xtzBh9gSRd3pdQApdQ2pdRHSqmPlVL+OQXeWwHZg+BT/w8Gj4F1T0Nbm+2oRKpFIzCoEH7zpzBgKKz/ClgYnhQui1bA8Cnwa/8Mmbmw4au2I0opJ87cm4BFWus7gDnAcqXUvQ5sN7XaWs1v8umPwKCRsPQbULsTdv6L7chEKjVfg/0bYeYKk/dFfwRH34GPX7EdmUilxgtw+C0IhSF/DDz0Zdj3GuzbaDuylEm6uGvjcuyv2bE/3j8NOr4NrpyB0nLz91m/ChPvg9f/xPxDEMF06A24ftl8yAHu+h0YMxs2/hFcv2I1NJFC+zZAWwuEnjB/v+czMGI6vPYstDTZjS1FHBlzV0plKqU+BM4Am7TW7zux3ZSKRiAzB6YvNX9XCh79C1PY33jBbmwidaIRyB0KxQ+av2dkwmOr4FJNWtxkS1vRCAwpMvfXALJyYPmLcP4g/PJv7caWIo4Ud611q9Z6DjAemKeUur3ze5RSTymlKpVSlXV1dU7stv+0Nsmeughy82+8PnY2lP0ufPADuckWRK3NUL0OSh41H+64iffC7F+Hd78X+Jtsaen6FTiwGWY+DhkdSt70JVDyGLy5Ci6dtBdfijg6W0ZrXQ/8Alie4Gsvaa3LtNZlhYWFTu62705+CBeP3bg072jh12BAAaz/stxkC5oj75grs0R5f+RPzZVcwG+ypaX9m6DlWuK8L/szM1yz6Xn340oxJ2bLFCqlCmL/nwcsAaqS3W5KRSOgMs1v7c4GDofFfwRHt8Ken7kfm0idaASyB5orts7S5CZbWopGYOBImHT/rV8bPhnu/zzs/k849kv3Y0shJ87cxwJvKKV2AR9gxtzXOLDd1IlGoPgBVlc3Mv/FLUx+di3zX9xyY53uO38bxt5hbrI1Xe5+W8If2tqgag1MW8Lqjy8kzvs9nw38Tba009JkbqbOfIzVH51KnPcFXzLj8eueNrPoAsKJ2TK7tNZztdaztda3a63/1InAUuZMFZzdx0f5D3bdiCEjEx5dFXuS7du2IxZOOPEBXD7NBwMXdJ33NLjJlnYOvQnXG3g35/6u854zyEyFPrUbdvyT7Ygdk35PqEYjADxfXdx9I4aJ98Adn4R3g/8kW1qIVkBmDl/dM677vN90k63WQqDCUdFXIXcIX905vPu83/YkTHoAXv8GXD1vIVDnpWFxr4AJ97DrYuI1uW9qxLDkTyBrgDzB6Hdam7xPeZgDF1XCt9yU9wDfZEsrrS1QtQ5mLOPoxZaEb2nPu1Lw6J/DtfrArDeUXsX9whE4tQtC4d41YsgfDQ9/BQ5sMjfahD+d2gX1x3qf9+GTYf4fwu6X4ei7LgUpHHfsXWg8D6Hy3uV9zO1w9+9D5Q/NEI3PpVdxjw3JMPPx3jdiuOczMLLE3GRrvuZSoMJR0QioDChZ0fu8P/AlGDIe1n05UDfZ0ko0All5MG1x7/P+8HOxqdD+v1pPv+I+ZhYMn9z7biuZ2eZy7cIReO97NqIWyYpGYNJ8GDSi93nPGQjLvgmnd8P2H/W4i9U7axLPxBB2tLWZvE9bDDmDep/3gcNh8fO9ngrt5bynT7OOhlPwnRJY+L/hoWf6/v0//S3Yvxk+XwlDx3f5ttU7a6Rzj5fU7YPv321mP93zVN++V2v4pzCc3gOf32E++Ams3lnDc6/svumGXV52pi9bswXG8Q/gh0vgEy/BHb/et+9ta4UfLDRdm7pp6mEj79KsI5Gq2NT7RE+p9cbSb5k1wCu7PouLJzvhdCthR7TC/Df0eN+/N36TrfEC7PzXLt+2akN19zMxhPuiFZCRDTOW9f17MzJh2QtmKnQ3q4V6Pe/pU9z3VpgHVAr72dx42CRzaR8ft0/A68lOS9EIjL+7216p3Rp9m1k1spu83zTTphevixSLrx015SHIK+jfNibdDwWTfJ339CjuV8+bdUVCYXM21l+hcjhbDXWJi7XXk5126o+ZdYT6e7UWFyqHE9u6XFyqVzMxhHtO74ELh5PLu1Lm+w/9wnRrS8DreU+P4l69HnTrjbXb+yt+ad/Fb3OvJzvtRGNDcTP7MSTTUfzfTVXiVTV6PRNDuCMaARSUrEhuO6FyaL1uFh5LwOt5T4/iHo3A0Akwdk5y2xkyzlzid1HcvZ7stBONwOjbYcTU5LZTWAIjZ9wYv++k1zMxhDuiETOsMjjJ1WfH323ab+59NeGXvZ73LNsBpFxTAxzcAnf/XnJDMnGhsHly8cJRMw7fQTypMlvGAxpOw7H3zLxlJ4TC8M5fwZVzMGjELV9eObdI8uwFZw/Amb2w/M+T31ZGhrla//Df4fpVMz22Ey/nPfhn7vs3mlkuyY67xsW308Ul+sq5RWx9dhGHX1zB1mcXeTbxgVcd63TvZN51K+xb78z2RGokMzsqkVAYmq+aE0SfCX5xj0Zg0CiYcI8z2xs+BUbP6vYuuvCAaASGT4VRIWe2N3YODJ0oefe6aATG3dntsyh9Mmk+5A3zZd6DXdybr5nGCzNXmLmrTgmFzcL+Daed26ZwTsdO904MxcGN2RMHt5ihPuE99cehdodzV2tgnlAvecxMymi57tx2XRDs4n5wCzRfcTbZENue7nJoRlhW/ZpZ1THZ2VGdhcJm9sS+Dc5uVzijaq35b8jpvJdD00U48paz202xYBf3aAQGDIXiBc5ud1TIXPL78FItLbR3ur/T2e1OmGeG+CTv3hStgFGlMHKas9ud8jDkDPZd3oNb3OOd7md06nTvhPgl+pG3A7Owf2A0XYaDrzs7JBOXkWlu1O3fBM3yYJqnXD5jlmd2+iodIHsATF9qrgx8tEJocIv7kXfMwvtOX5rHlZabS3+5RPeWA5u77nTvhFDYDPUdfCM12xf9U70OR2dHdRYKw5U6XzXRTrq4K6UmKKXeUEpFlVIfK6W+4ERgSeuu070Txt1pLv27eLBFWBLvdD/xvtRsv3iBGeqTvHtLNALDis1Da6kwfSlk5vpqaMaJM/cW4H9prUPAvcD/UEqVOrDd/ot3up/+CGSn6NH/+NDMgdfNUICwr73TvcOzozpqnz2xzgz9Cfsa600j7FQMxcXlDjZrw0cjvmnikXRx11qf1FrviP1/AxAF7D65c2IbXD7t/F3zzkJh84DUgcRrTwiXHfoFXG9I3aV5XKjcLCZ15O3U7kf0zr4N0Nbszuf90gmo3Zna/TjE0TF3pVQxMBd438nt9lk0Apk55lIqlSbeZ4YAfHSpFmjRCsgdApMfSu1+pi6E7EGSd6+IVkD+WCjqVQ+L/puxHDKyfDMk51hxV0oNBn4GfFFrfSnB159SSlUqpSrr6uqc2u2t2jvdL4QBQ1K3HzCX/jNXmDMH6a9qV3un++XOz47qLDvPDPlF1/hq9kQgXb9ihkZnPm7WgkmlgcPNPZe9Fb4YmnHkp6GUysYU9n/TWidsXaK1fklrXaa1LissTHK1tu6c/Ki9070rQuVw/bIZEhD2HN1qOt2nanZUZ6EwXDkDx7e5sz+R2IHXoaXRxc97GM4fhLoqd/aXBCdmyyjgh0BUa/3d5ENKUjQCKtPc9HLD5AfNUIBcotsV73Q/dbE7+5u+1Az9Sd7tilZA3nCzBowbZj4OKF/k3Ykz9/nAp4FFSqkPY39cqqwJRCNQPD/hsqwpkZVjhgKq15qhAeG+9tlRSxIuy5oSA4aYabY+mj0ROO2zox6DTJdWL88fDRPvNUMzHufEbJl3tNZKaz1baz0n9medE8H1WV21aYOX6rvmnZWWm8Wqjr7j7n6FUbMdGk66n/dQGC7GWvkJ9x1+C5ou2cn76d1w/pC7++2jYD2hGr9Umplke62+mrrYDAn44FItkKKv9r/TfTJmPGqGACXvdkQrICffrP3ipnjbxqi3Fw4MWHGvSK7TfX/lDDRDAtE1ZohAuKe90/3D5slRNw0aYYYApbi7r7XFrPUyYxlk5bq772GTYOwdns97cIr7haNmpozbl2hxoXK4fApqKu3sP12d3gMXjrg3W6KzUDmc3WeGBIV7jr0HV8/ZzfuJbXDppJ3990Jwint8bXWn2mv11YxlZmigi2a6IkWiEVAZ7g/FxbVfonv/BlugRCOQNQCmLbGz//hJpId7OgSnuEcjpv3d8Cms3lnD/Be3MPnZtcx/cQurd9akfv8DhpqhAZk94a69FWYa3KCRdvY/ZCyMn+eL2ROB0dZmPmdTF5s1X2wonAEjSzz9Sz0Yxb3htFmKMxRm9c4anntlNzX1jWigpr6R517Z7U6BD4Wh/iic2p36fQk4ux/qou2X5lZ+qYPZ/6ldZnhIpF7tDmiobX9gzWrej2yFK+fc2V8fBaO4V60BNJSWs2pDNY3NNz8S3tjcyqoNLoyJljxmhgg8fqMlMDrMjrL+Sx08P3siMKIVZo2XGcvs5r20HHQr7Fuf+n31QzCKezQCI6ZB4Uxq6xN3yOnqdUcNLoSJ93v6Ui1QohEouguGjrf7S334ZBgzS36puyE+O2ryg5A3zG7ex8yGgomeHZLzf3G/et4svRpby3lcQeL127t63XGl5Wbdibp97uwvXbV3ujeX5lZ/qYOJ4/j70HDKnf2lqzN7zcNDsaslq3lXyuT90Btw7Za1Eq3zf3Hft8G0u4sl+5llJeRl39yoIS87k2eWlbgTT3zWRpWcxaVU++wok3frv9RDYUB7evZEIOytABSUmM+ZJ/Leeh32b3Rnf33g/+IerYAh49s73a+cW8QLT86iqCAPBRQV5PHCk7NYOdel/iFDx5uhAo9eqgVGNAKjboMRUwEP/FIvnGmGBmVoJrWiEdNHIX804IG8j58Hg0d7cijWpdV2UqTpslnys+x3b2qvtXJukXvFPJFQGDZ/3QwdFEywF0dQxTvdP/SV9pfi+V61oZra+kbGFeTxzLIS9/4dxC/Rt/61GSocONyd/aaTcwfhzMew7IX2l6znPSPDPOvw0U+guTF1bT37wd/F/cAm0+bO1lNqXQmVm+IejcB9/912NMHTRad7T/xSf+e7UL0e5n7KXhxBFb8q6vSgoifyXvlDOLjF3sN0Cfh7WKa90/29tiO52YipZshALtFTY28FDJ8Co2+zHcnNxs01Q4SS99SIVsDYOWaGipcUPwADCjyXd/8W9+Zrqe90n4xQ2Kx/cfmM7UiCpbEeDqe4031/KWXiOrgFmhpsRxMsF0+YpZ3d6rTVF5nZ5hmX6nXQ2mw7mnb+Le6HfmHa23kx2dBh9sRa25EES/vsKI/mvbTcDBXu32Q7kmCJf468nPdrF80a8x7h3+IejUDuUCh+0HYkiY2+zQwdePAuuq9FKyB/XPvsKM+ZcA8MKvTcJbrvRSNmRtLI6bYjSWzKQsge5Km8+7O4t7aYtnYlLnS676/4Jfrht0yXJpG8eKf7UDj1ne77KyPTDBXu32iGDkXyrpw1DdC9NnGio+wBMGOpucJoa+35/S7w6CekB0e3moLp5WSDuYRsazFDCSJ5Bza72+m+v0JhM2R46A3bkQRD1VrQbd4dkokLheHKGTi+zXYkgF+Le7QCsge61+m+v8bdaYYQPHSp5mvRCAwcYR5i8bLiB80S0JJ3Z0QjUDDJrN/jZdOXQmauZ4ZiHSnuSql/VEqdUUrtcWJ73WprM6vvTXOx031/ZWSY3+YHNpsHrkT/xTvdl7jY6b6/snJMf1WPzZ7wpWsXzeQJL86O6iw3H6Yu8kxPB6fO3H8MLHdoW92rqTTt7Lx+iRYXCkPLNVPgRf8detN0ui99wnYkvRMKm6HDI+/YjsTf9m2AtmZ/fd4vHoeTH9qOxJnirrV+CzjvxLZ6FK2Idbpf6srukjbxPjOUIJfoyYlWQO4Qs9SrH0xdZIYOJe/JiVbA4DGm8b0flDwKKtMTeXdtzF0p9ZRSqlIpVVlXV9e/jcTXcp660P1O9/2VmWWGEvZtMEMLou9aW8wQh41O9/2VM9AMHVatMUOJou+uX4X9m81yA16dHdXZwOHmidW9FdaHZlz7iWmtX9Jal2mtywoLC/u3kVO77Xa676/SJ+B6gxlaEH1nu9N9f5U+AZdPw4kPbEfiTwdf98fsqM5Ky+HcfqhzoWFIN3zy6zAm3um+5DHbkfTN5AfNkEL0VduR+FO0ArLy7HW676/pSyEzxzOzJ3wnGoG8YaYBup/MfBxQ1odmfFPcV++s4fn3WvmH5uXM/94u95rgOiEr1wwpVK0zQwwx1hr7+sjqHcc5s+1nbGi6jfnffd9fP6MBQ2DKw6a4d7hEl7z37NXth2nYFeHlhlnMX/W2v35G+WNgwrxbfqm7nXenpkL+B/AeUKKUOqGU+j0nthsXb4L7zw138c2W33K3Ca5TQmFoPA/H3gWw29jXJ1bvrOE/fr6aUZxjfes8f/6MQmGoPwandgGS995YvbOGNat/Sj5XWd/m47yf2gXnDwN28u7UbJlPaq3Haq2ztdbjtdY/dGK7cVab4Dpl2hIztBC7VAvEMaXYqg3VLNTv06wz2dI2F/Dhz6hkhRlKlLz3msn7L7msB7C17XbAhz+j+H2CWNtFG3n3xbCM9ebHTsgZBNMWmw95W1swjinFauuvsjxjG++23cYlBnV43Uc/o0EjzJhxrLhL3nt2qv4KSzO380bbHJq4sXaUr35Gw4phzGyrefdFcbfeBNcpoXJoOAk124NzTCm0YMgZijNOs75t3k2v++5nFCqHuiqo2yd574XlQw4zUl1ifWsA8n78fWg4ZSXvviju1pvgOmXGMvMAVrQiOMeUQl+dvJ82rdjUelf7a778GcXbwknee+VL46tp0tn8om1O+2u+/BnFh2aiESt590VxXzm3iBeenEVRQR4KKCrI44UnZ9ntm9gfeQUw5SGIRlg5Z1wwjimFZl54k/Mj72JAwRh//4yGjDNPWEYjwfm3nCpaM/XsG5wf+wDDCob5+2dUWAIjplvLu9IWnqIqKyvTlZWVru/XE7b/GCJfgM9shTG3247Gu84dhO/dCctfhHs/azua5G39a9j0PHxxt/d6gHpJzXb4wSJY+Xcw5zdtR5O81/8U3vkreOaAeXo1SUqp7Vrrst681xdn7oFSsgLzgIM82NKt+M/Hb08ndmVmfGhmjd04vC4agYwsmOHOOoQpFwqDboXq9a7vWoq72wYXwqT7rT+95nnRiFkPf+h425E4Y8RUGH27/FLvjtZmTZbiBY6c5XrC2DkwdIKVvEtxtyFUDmf2wtkDtiPxpnin+6CctceFyuHYL6HhtO1IvOlMFM4fDFbe4+02D26BpgZXdy3F3Yb47IkqOXtPKD504Zc1vHsrFAa06f8rbhWNAOrGEFZQhMqh9brpq+siKe42DB1vhhz2yiV6QtEIjCqFkdNsR+KsUSEYPlWG5LoSjcDEeyF/tO1InDVhHgwa5XrepbjbEgpD7Q6oP247Em+5XGfW3wnSpXlc/BL98FumS5O44fwhOL07mHnPyISZK2DfRmh27ylbKe62xIccquQS/SbV62Kd7gP4IQeT97YWqH7NdiTeEj+rDdqQTFwoDM1X4OAbru1SirstI6eZoQe5RL9ZNGLW5Rgd0GcAiu6EIUWS986iERh7BwybZDuS1CheYLrHuZh3Ke42hcJmCOJyP9sOBk1jfazTfbn3O933V/vsideh6bLtaLzhUq3pVhXUqzWArBzTZKh6HbQ2u7JLKe42hcJmCEJmTxj7N/qr031/hcLQcg0ObLIdiTfEhyZDT9iNI9VCYbhWD0fedmV3UtxtGn07DJssl+hx0QrIHwtFd/X8Xj+beB8MHCl5j4tWwMgSKJxhO5LUmroIHvkGFM50ZXdS3G2KX6IfetMMSaSzeKf7mT7qdN9f7bMnNkDzNdvR2HXlHBzZGuwhmbjsPJj/h2YhORdkubIX0bVQObz7f8yQxOxfsx2Na1bvrGHVhmpq6xsZV5DHd2cd4x4/drrvr1A57PgnOPymWQo6TXTO+/dm7uFO3Zo+eXdRwE+RfKDoLjMUsfdV25G4JlE/ydPvv0xTToH/Ot331+QHIXdIWq01kyjvl3b+nCsDi8xMGeEopxpkL1dKVSulDiilnnVim2kjI8OctRx4Ha5fsR2NKzr3k8ymhYfVdja23gWZaXIxmZVjVj6sWgetLbajcUXnvA/mKvexi4qmu4I7O8qipIu7UioT+D7wKFAKfFIpVZrsdtNKKAwtjabAp4HOfSPvz/iYIaqRnzfeaSkiS0rLofE8HN1qOxJXdM77wowPyVUt/OzqXEsRBZsTZ+7zgANa60Na6+vAT4CAz2ly2MT7IW942sye6Nw3cnnGNhp0Hofy77YUkSVTF0NWXvrmPXMbZ3QBp4bMthRRsDlR3IuAjguknIi9dhOl1FNKqUqlVGVdnTy0c5PMLJj5GOx7DVqu244m5Tr2k8ygjaWZlbyp7+SLywP6VGpXcgbC9CVQtQba2mxHk3Id857LdRZmfMTr+m6eXh6yHFkwOVHcEw2W3dK7T2v9kta6TGtdVlhY6MBuAyZUDk2XzOyJgOvYT3KeqmaEamDUPf/Ffz0ynRAqh4aTUBP8tpMd8/5Qxi4GqiYmzv/19My7C5wo7ieACR3+Ph6odWC76WXKw5CTnzazJ1bOLWLrs4v4yYN1kDWAeUvSZxroTWYsg4zstMv7S3efhAEFzF+y0nZIgeVEcf8AmK6UmqyUygF+A0iPf6lOyso1H/SqtdDW2vP7g6CtzYw3T10MuYNtR2PHgKHmF3s0YtrMpYPWZrPGSsljkJltO5rASrq4a61bgM8BG4Ao8J9a64+T3W5aCoXh6jk49p7tSNxRuxMu1ZhZI+ksFIYLR+D0HtuRuOPwW3DtouQ9xRyZ5661Xqe1nqG1nqq1/pYT20xL05ZA1oD06dAUrYh1uk+fJzQTmrkCVEbazJohGoHsQTBloe1IAk2eUPWS3MGmwEcjwZ89obUp7sULIG+Y7WjsGjTSPJmbDr/U21rN0OOMpZA9wHY0gSbF3WtCYWioNUMWQXZmr2mtJpfmRigMdVE4u992JKl1fBtcOSNrybhAirvXzFhmhiqCPnsiqJ3u+2vmCvPfoA/NRCOQmQvTl9qOJPCkuHtN3jCzqFS0ItizJ6IRs6754FG2I/GGoePNInJBLu5ax2ZHLYLcfNvRBJ4Udy8KlZshizN7bUeSGucOmpkhcml+s1A51O6A+uM9v9ePTn4IF49J3l0ixd2LZq4AVHDP4uLHFZIhmZvEi17VGrtxpEo0AioTSh61HUlakOLuRYNHmSGLIBf3sXOgYKLtSLxlxFQYdVuw8z55AQwcbjuStCDF3atCYTN0ce6g7UicdbHGrKMis2QSC4Xh6Ltw+YztSJx1pgrO7pMhGRdJcfeq+IcgaGdx7Z3upbgnVFoO6Bs/p6CQ2VGuk+LuVQUTYNzc4BX3aIXp/j5yuu1IvGlUKQyfEsy8T5gH+WNsR5I2pLh7WShshjAu1tiOxBlXzpquQ3Jp3jWlzM/n8JvQWG87GmdcOAKndsnVmsukuHtZ/MMQlEv06nWg2+RD3pNQObS1wL4NtiNxhsyOskKKu5eNnG6GMILytGo0AgWTYMws25F427g7IX9csPI+ZjYMK7YdSVqR4u51oXIzlHHlrO1IknPtIhz6hRlykE733cvIMD+nA5vh+hXb0SSn4RQcf1+u1iyQ4u51obAZyqheZzuS5OzbCK3X5UPeW6EwtFwzBd7P4g9kyX0W10lx97oxs8xQht9nT0QrYPAYGH+37Uj8YeJ9MHCE//O+twJGzoBRM21HknakuHtdfPbEoV+YoQ0/un7VnIGGHjdDDqJnmVmmDd2+DdDSZDua/rl6Ho68I2ftlsgnzQ9KnzBDGvs22o6kW6t31jD/xS1MfnYt81/cwuqdsSmcB7dA81X5kPdV6RPQdAkOvWk7km51mffq9aBbJe+WSHH3g6IyM6QRfdV2JF1avbOG517ZTU19IxqoqW/kuVd2mw96NGKWMp4033aY/jL5Qcgd4ulZMz3mfehEs46QcF1SxV0p9atKqY+VUm1KqTKnghKdZGSYIY0Dr5shDg9ataGaxubWm14p5sFxAAATCUlEQVRrbG7lL1/bY87gpNN932XlmuYtVWuhtcV2NAl1lffvv/ahuWKT2VHWJHvmvgd4EnjLgVhEd0JhM7RxcIvtSBKqrW9M+Hpxw3ZouiizZPorFIbG83DsXduRJNRV3ksa3oPWJhmSsSip4q61jmqtq50KRnRj0gNmaMOjl+jjCvISvv6JvJ2QMximPOxqPIExbQlk5Xl21kyXeR+wAwaNMuvJCCtcG3NXSj2llKpUSlXW1dW5tdvgyMyCkhVQ/Rq0XLcdzS2eWVZCXnbmTa8NylYsz9pu+mVKp/v+yRkE0xZDdA20tdmO5haJ8j40u5WH1A7TdCYjs4vvFKnWY3FXSm1WSu1J8OeJvuxIa/2S1rpMa11WWFjY/4jTWShshjiOeG8UbOXcIl54chZFBXkooKggj79/qJkBTefk0jxZoXJoqDUt+DwmUd7/730XyWptlDX7Lcvq6Q1a6yVuBCJ6YcrDZogjGjGX6x6zcm4RK+cW3Xhh/bOxTveP2AsqCGYsg4ws2PsqjPfevIVb8v7zz8KAoVC8wF5QQqZC+kr2gBuzJ9pae36/TfFO99MWS6f7ZOUVwOSHzM9Ta9vRdK+12SyVIbOjrEt2KuQnlFIngPuAtUqpgKxR6mGhMFypg2O/tB1J92p3wqUTMiTjlNJyuHAYTn9sO5LuHXkHrtVL3j0g2dkyP9daj9da52qtR2utlzkVmOjCtEfMUIdHZ0+0i3e6n7HcdiTBULICUP7Ie/YgmLrIdiRpT4Zl/CZ3cGz2hIcv0bU2Uzal071zBhfCpPu9Xdzb2swqkNMfgezEUySFe6S4+1EobIY8anfajiSxuio4d0AuzZ0WCsOZj+HcQduRJHZiG1w+LXn3CCnufjRjuZk94dEHmqTTfYrEi6aX856ZY55rENZJcfejgcPNNLO9Fd4cmolWwIR7pNO904aONy34vDg0Ex+Km7oIBgyxHY1Airt/hcJw/qAZAvGS84fh1G65NE+VUBhqtsPFE7YjudnJj6D+mOTdQ6S4+9XMx/Hk7AnpdJ9a8QXYomvsxtFZ++yoR21HImKkuPtV/miYeK8ZmvGSaATG3iGd7lNl5DQoDHnzl3rxfBg0wnYkIkaKu5+FwnB6N5w/ZDsS49JJM2NCLs0d0WWHo9JyswTwZY8swFdXDWerZVlnj5Hi7gNdfsjjs1G8cone3ulePuTJ6rbDUSgMus085u8F8dk7MjvKU6S4e1y3H/Jhk8wQiFcu0aOxTveFJbYj8b2uOhyt2lANo283w15emRIZjcD4eTBkrO1IRAdS3D2u2w85mLPkE9vgUq2F6Dq4cg6ObJWzdod01eGotr7RtK0LhU3j7MZ6lyPr5MJRM1NGhuI8R4q7x3X7IYcbxbRqrUsRdWGfdLp3UlcdjtpfD5VDWzPs3+hiVAm0D8VJ3r1GirvH9fghL5wBI0vsX6K3d7q/w24cAZGow1FedibPLIsNeRWVQf5Y+3nfWwFjZsHwyXbjELeQ4u5xPX7IwZw1HdlqhkZsuHZJOt07LFGHoxeenHWjKUZGhrmBuX8zXL9iJ8iGU3D8fRmK86geOzEJu+If5lUbqqmtb2RcQR7PLCu5ufNNaTm8/W0ze+LOT7sf5P6N0HpdLs0ddkuHo85CYfjgB3DgdTst7arWAlry7lFS3H2gxw/5mNlQMNEMjdgo7tEIDB5t1pMR7pk0H/KGmZ+/jeIejcCIaVA40/19ix7JsEwQKGUujQ+9YYZI3NTcCPs3xTrdyz8nV2VmmSYe+16Dluvu7vvqeTjytgzFeZh8GoMiFDZDI27Pnji4BZqvyKW5LaXl0HQJDr/p7n73vQZtLTLe7mFS3INi/DwzNOL2A03RCAwokE73tkx+CHLy3Z81E43AkPEwbq67+xW9lmyD7FVKqSql1C6l1M+VUgVOBSb6qH32xCYzVOIG6XRvX/YAmLHU3Nxsa+35/U5oumxu4sqQjKcle+a+Cbhdaz0b2Ac8l3xIot9CYTNEcnCLO/s78jZcuyhDMraFwnD1HBx7z5397d8IrU2Sd49LqrhrrTdqrVtif/0lMD75kES/FT9ghkjcGprZWxHrdL/Qnf2JxKY9AlkD3Fv+ORqBQYVmyWnhWU6Ouf8usL6rLyqlnlJKVSqlKuvqPLJUadBkZptZK9XrzJBJKrW1mqEA6XRvX+5gmLrYFN22ttTuq/maOXOfuQIyMnt+v7Cmx+KulNqslNqT4M8THd7zNaAF+LeutqO1fklrXaa1LissLHQmenGrUNgMlRx+K7X7Ob4NrpyxM79a3CoUhoZaqN2R2v0cegOuX5YhGR/o8SEmrfWS7r6ulPpt4HFgsdZe7NacZqYshJzB5ixu2uLU7Uc63XtLyXLIyIotv1uWuv1EI5A7FIofTN0+hCOSnS2zHPgKUK61vupMSCIp2QPMUEkqZ09obT7kUxdBbn5q9iH6Jm+YmY4arTD5SYX22VHLISsnNfsQjkl2zP1vgHxgk1LqQ6XU3zsQk0hWqNwMmRzflprtn/wQLkqne88pLTctF8/sTc32j26Fxgvy4JJPJLW2jNZ6mlOBCAdNfwQyc81Z3KT7kt7c6p01Ny1c9o8T1lOiMs38duEdJStgzZfMVdXo25LeXOe8/8uYnzIle6C5YhOeJ0+oBlFuvvkARiNJX6InavOXtW8NZ0bcDQOHOxOvcEb+aDM90YGpsJ3zXlt/hfzDr1Ez8gHIGZh8rCLlpLgHVSgMF4+bIZQkdG7zN02dYKqq5Z/rZycboUiFUBhO74FzB5PaTOe8z1UHKFT1/OBs8lcEwh1S3IOq5FFQmUmfxXVu87c84wMAXr4sHZc8KX4fxOm8Z37AdZ3JKw1S3P1CintQDRwOkxeYpxaTGJrp3OZveeYHVLbNIKtgXLIRilQomAhj5yRd3G/Ou+bRjG280zaL/IIRycUnXCPFPchCYTi3H+qq+72Jjm3+xqsz3J5xhNeZd3ObP+EtoTDUVMLFmn5vomPeb1NHmZBRxxZ1j+TdR6S4B9nMxwGV1Flcx16ej8aGZOYu/XT3naGEXfGpilVr+72JjnlfnrmNVjK4/zHJu58oGw+VlpWV6crKStf3m5Z+uNQsAfyZtx3a1lX4zDvJb0uk1vfvMYt7/c4ab21LJEUptV1r3atHkOXMPehC5XBqF1w4ktx2pNO9v4TC5qGjK2eT207dPqirkgfWfEiKe9CFHjf/TXbuc1XsrE2Kuz+EwqDbzHIByYh3eJr5ePIxCVdJcQ+6YcUwZnbyxT0agRHToVBuqPnCmNlm5owTeS8qg6Ey1u43UtzTQajcDKk0nOrf9186CYel072vKGXyfvANswR0f5zdbx6CkyEZX5Ling7ia65X9fOG2OY/No0Z7vy0czGJ1AuVQ1sz7NvYv+/f8DXTfPuOTzobl3CFFPd0UFgCI2f0rw3bsV/Crp/CfZ+D4VOcj02kzvi7YfDoG+PmfbFvA+zfAA9/xaxZI3xHinu6CIXhyDtw9Xzvv6etFdY9DUOK4MGnUxebSI2MDHMj9MBmuN6HdgstTfDas+Yey7w/SF18IqWkuKeLUBh0K1R32eb2Vtt/DKd2w9JvQM6glIUmUqi03DybcPD13n/Pe98368I/+ufSlMPHpLini7FzYGgfZk9cPQ9bvmG6+9z2ZGpjE6kzab7p0tTbvF+qhbe+bc74U9mmUaScFPd0oZQ5ez+4BZoaen7/lm/CtUvm7E1myPhXZrZpqlL9GrRc7/n9m56HthZY+s3UxyZSSop7OgmFobUJ9vcwe+LkLtj+I7j79x3p6CMsC4Wh6SIceav79x19F3a/DPO/AMMnuxObSBkp7ulkwjwYNKr7S3StYf2XzaX8wufci02kzpSFkDO4+7y3tcK6L8OQ8fDA/3QvNpEySRV3pdQ3lFK7Ys2xNyqlZJFvL8vINMsR7NsIzdcSv2f3y3DsPVj8x6bAC//LHgDTl5pVIttaE79n+4/g9G5Y9k1poxcQyZ65r9Jaz9ZazwHWAM87EJNIpVAYmq+YsffOmhpg4x/BuLkwVx5YCpRQGK7UmecWOrt63txjKV4ApSvdj02kRFLFXWt9qcNfBwHurx8s+qZ4AQwYmvgS/a1VcPkUPPZtM0daBMf0RyAzN3Het3wjdvP8L+TmeYAk/QlWSn1LKXUc+BRy5u597bMn1kFr843Xz+6H9/4W5nwKxvdquWjhJ7n5MHWRKe4dezic/AgqfwTz/huMLrUXn3Bcj8VdKbVZKbUnwZ8nALTWX9NaTwD+DfhcN9t5SilVqZSqrKurc+4IRN+FyuFavXliFWI3Ub8C2Xmw5Os2IxOpVFoOl05A7Q7z93jeB46Ah+XmedD0WNy11ku01rcn+PNqp7f+O/Ar3WznJa11mda6rLCwMNm4RTKmLoTsQTcu0avXmScYH34WBo+yG5tInRnLQWXeyHv85vmSP4a8AruxCcclO1tmeoe/lgNVyYUjXJGdZ8Zgq9bA9Svw2nNQOBPmPWU7MpFKA4fD5AVmAbmON8/n/JbtyEQKJDvm/mJsiGYXsBT4ggMxCTeEwnD5NLz8X6H+qHkSNTPbdlQi1UJhOH8QXvkDuXkecFnJfLPWusthGOFxM5ZBZo5Z1rX0CZjysO2IhBtmPg5rn4bqtXLzPODkV3a6ys2HqYshKw+Wfst2NMIt+WNg4r2QO0RungdcUmfuwuce/y5cPgMFE2xHIty08m/NmLvcPA80Ke7pbMg480ekF+molRZkWEYIIQJIirsQQgSQFHchhAggGXMPmNU7a1i1oZra+kbGFeTxzLISVs4tsh2WSDHJu+hMinuArN5Zw3Ov7Kax2azZXVPfyHOv7AaQD3qASd5FIjIsEyCrNlS3f8DjGptbWbWh2lJEwg2Sd5GInLkHSG19Y69fl8v44JC8i0TkzD1AxhXk9er1+GV8TX0jmhuX8at31rgQpXCa5F0kIsU9QJ5ZVkJeduZNr+VlZ/LMspKbXpPL+GCRvItEZFgmQOKX1z1ddvflMl54n+RdJCLFPWBWzi3qcQx1XEEeNQk+0F1d3gvvk7yLzmRYJg319jJeBIvkPb3ImXsa6u1lvAgWyXt6UbpjJ3SXlJWV6crKStf3K4QQfqaU2q617lWHFRmWEUKIAJLiLoQQASTFXQghAkiKuxBCBJAUdyGECCArs2WUUnXA0X5++0jgrIPheEHQjiloxwPBO6agHQ8E75gSHc8krXVhb77ZSnFPhlKqsrdTgfwiaMcUtOOB4B1T0I4HgndMyR6PDMsIIUQASXEXQogA8mNxf8l2ACkQtGMK2vFA8I4paMcDwTumpI7Hd2PuQggheubHM3chhBA98FRxV0qVKKU+7PDnklLqix2+/rRSSiulRsb+XqyUauzw/r+3F31iXR2TUurrSqmaDq8/1uF7nlNKHVBKVSulltmMv7O+Ho+fcxT72udjefhYKfUXHb7HdzmKfe2W4/FzjpRSP+3w2hGl1Icdvsd3OerqePqVI621J/8AmcApzLxOgAnABsz8+JGx14qBPbZj7c8xAV8Hnk7wnlLgIyAXmAwcBDJtx57E8fg5RwuBzUBu7GujfJ6jro7Htznq9Pp3gOf9nKNujqfPOfLUmXsni4GDWuv4w05/CXwZ8PNNgs7HlMgTwE+01k1a68PAAWCeK9H1XW+Ox286HtNngRe11k0AWuszsff4NUddHY/f3PLvTimlgF8D/iP2kl9zBCQ8nj7zcnH/DWIHppQqB2q01h8leN9kpdROpdSbSqkFrkbYd+3HFPM5pdQupdQ/KqWGxV4rAo53eM+J2Gte1JvjAf/maAawQCn1fiz2u2Ov+zVHXR0P+DdHcQuA01rr/bG/+zVHcZ2PB/qYI08Wd6VUDlAOvKyUGgh8DXg+wVtPAhO11nOBLwH/rpQa4l6kvdfxmGIv/R0wFZiDOY7vxN+a4Ns9d7XSh+Pxc46ygGHAvcAzwH/Gzqj8mqOujsfPOYr7JDcXSL/mKK7z8fQ5R54s7sCjwA6t9WlMwZgMfKSUOgKMB3YopcbELrnOAWitt2PG1WZYirknHY8JrfVprXWr1roN+AE3LhlPYO4vxI0Hal2NtHd6dTx+zhEmF69oYxvQhlnvw5c5oovj8XmOUEplAU8CP+3wPr/mKOHx9CdHXi3u7b+1tNa7tdajtNbFWutiTNLu1FqfUkoVKqUyAZRSU4DpwCFbQffgpt/ESqmxHb72CWBP7P8rgN9QSuUqpSZjjmmba1H2Xq+Ox885AlYDiwCUUjOAHMxCTr7MEV0cj89zBLAEqNJan+jwml9zBAmOp185sn2nOMGd44HAOWBoF18/wo3ZMr8CfIy5K74DCNuOv7fHBPwLsBvYhfmHOLbD176G+c1cDTxqO/5kjsfnOcoB/hXzi2oHsMjnOUp4PH7OUez1HwOfSfB+3+Woq+PpT47kCVUhhAggrw7LCCGESIIUdyGECCAp7kIIEUBS3IUQIoCkuAshRABJcRdCiACS4i6EEAEkxV0IIQLo/wNnpHkQXIIGTwAAAABJRU5ErkJggg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4VdW5+P9ZOZkDIUDCGCABJTlAgIQwiczKICRSrbfaarXWoU6tt1+pWn9Va22lxVu9Wm/vtbZ1aq1iERMFQSYRRCHMw0kYg8yEQCATIcP6/bFyDhlOxjPsfXbW53nyQPbZe6137Tf7PWu9+13vK6SUaDQajcZaBBktgEaj0Wi8jzbuGo1GY0G0cddoNBoLoo27RqPRWBBt3DUajcaCaOOu0Wg0FkQbd41Go7Eg2rhrNBqNBdHGXaPRaCxIsBGdxsbGyoSEBCO61mg0moBly5YtZ6WUca051xDjnpCQQE5OjhFdazQaTcAihDjS2nO1W0aj0WgsiDbuGo1GY0G0cddoNBoLoo27RqPRWBBt3DUajcaCGBIto9FoNGZmybbjLFyex4micvrERDB/ZhLzUvsaLVab0Ma9lVhB2Zq2o/Xe8Viy7ThPLt5FeWU1AMeLynly8S6AgNK9dsu0AqeyjxeVI7mi7CXbjhstmsaHaL13TBYuz3MZdiflldUsXJ5nkETtQxv3VmAVZWvahtZ7x+REUXmbjpsVbdxbgVWUrWkbWu8dkz4xEW06bla0cW8FVlG2pm1ovXdM5s9MIiLEVu9YRIiN+TOTDJKofWjj3gqsomxN29B675jMS+3LCzel0DcmAgH0jYnghZtSAuplKuhoGagogYqLEN2nyVOcStVRExaivAgqy7TeOxolBVB9Gbo0r8N5qX0DXs9CSun3TtPT06VpskJ+/DA4suDhHOjUw2hpNP7iXz+AbzfCI1sgoqvR0mj8xZtzofAgPLwZwjoZLU2bEUJskVKmt+bcju2Wqa5Uhv3SBVj5a6Ol0fiLimLY/zmUFcKa3xktjcZflJyB/PVQfAK+/C+jpfE5Hdu453+pDHufVNj+LhwzyWpC41v2fw7VFdA3HTa/Aad2Gy2Rxh/kfgpI6DcWNv5JzeAtjMfGXQgRLoTYJITYIYTYI4QInCnw3iwIiYIffAidesHSx6CmxmipNL7GkQ1RcfD99yG8Cyx7HAxwT2r8jCMLug2E/3gbbGGw/JdGS+RTvDFzrwCmSSlHACOBWUKIcV5o17fUVKtv8quvh6hYmPEbOLENtr1jtGQaX1J5CfavgOQ5Su/TfgVH1sOexUZLpvEl5efh8DqwZ0DnXjD5F7DvM9i3wmjJfIbHxl0qSmp/Dan9Mf806OgmKD0DQzLV7ym3QP/xsOrX6g9BY00OrYHLJeohBxh1F/QaDit+BZdLDRVN40P2LYeaKrDfqH4f+xPofjV89gRUVRgrm4/wis9dCGETQmwHzgCfSym/8Ua7PsWRDbZQuHqG+l0ImP0HZdjXvGCsbBrf4ciGsC6QMEn9HmSDGxbCxeMd4iVbh8WRDdF91fs1gOBQmLUAzh2Er//HWNl8hFeMu5SyWko5EogHxgghhjU8RwhxnxAiRwiRU1BQ4I1u24+UStmDpkFY5yvHew+H9Lth81/0SzYrUl0JeUshabZ6uJ30HwfDvwdfvWr5l2wdksulcGAlJM+FoDom7+rrIOkG+GIhXDxpnHw+wqvRMlLKImAtMMvNZ69LKdOllOlxcXHe7LbtnNwOF769sjSvy9SnIDwGlv1Cv2SzGvnr1crMnd6vf06t5Cz+kq1Dsv9zqLrkXu8zf6fcNZ8/7X+5fIw3omXihBAxtf+PAK4Dcj1t16c4skHY1Ld2QyK7wfRfwZENsPvf/pdN4zsc2RASqVZsDekgL9k6JI5siIyFAdc0/qxbIlzzCOz6AL792v+y+RBvzNx7A2uEEDuBzSif+ydeaNd3OLIh4VqW5JUzYcFqEp/4lAkLVl/J0512J/QeoV6yVZQ035YmMKipgdxP4KrrWLLnvHu9j33A8i/ZOhxVFeplavINLNlxyr3eJ/5c+eOXPqai6CyCN6JldkopU6WUw6WUw6SUz3lDMJ9xJhfO7mNH50lNF2IIssHshbU72V40WmKNNzi2GUpOszlyYtN67wAv2Toch76Ay8V8FXpN03oPjVKh0Kd2wda3jJbYa3S8HaqObACezktovhBD/7Ew4jb4yvo72ToEjiywhfLL3X2a13u9l2wnDBBU41UcH0NYNL/c1q15vQ+9CQZcC6t+A2XnDBDU+3RA454F/cay84L7nNz1CjFc92sIDtc7GAMdKZXeB07hwAXh9pR6erfwS7YORXUV5C6FwTM5cqHK7SkuvQsBs38Pl4osk2+oYxn38/lwaifYM1pXiKFzT5jyOBz4XL1o0wQmp3ZC0bet13u3RJjwU9i1CI585SchNV7n26+g/BzYM1un917DYPQ9kPNX5aIJcDqWca91yZA8t/WFGMb+BGKT1Eu2ykt+ElTjVRzZIIIgaU7r9X7tzyE6Hpb+wlIv2ToUjmwIjoCrprde71OerA2FDvzVescz7r1SoFti66ut2ELUcu18Pmx81QipNZ7iyIYBEyCqe+v1HhoJM5+H07tgy99b7GLJtuPuIzE0xlBTo/R+1XQIjWq93iO7wfSnWx0KbWa9d5xiHcWn4L+SYOr/B5Pnt/3692+H/SvhkRzoEt/kaUu2HdeVe8xEwT54bbSKfhp7X9uulRLeyoDTu+GRrerBd8OSbcd5cvGuei/sIkJsAVmazTIc3Qx/vQ6+8zqM+F7brq2phr9MVVWbminqYYTedbEOd+TWht6726XWGmb8VuUAz2l6FudUtttwK40xOLLUv/a5bb/W+ZKt/Dxse7fJ0xYuz2s+EkPjfxxZEBQCg2e2/dogG8x8QYVCN5Mt1Ox67zjGfW+W2qAS187ixl0HqKW902/vBrMru0PiyIb40c3WSm2WnkNV1shm9F4v0qYVxzU+xpk7auBkiIhpXxsDroGYAQGt945h3MvOqbwi9gw1G2sv9kw4mwcF7o212ZXd4Sj6VuURau9qzYk9E45tajK5VKsiMTT+4/RuOH/YM70Loa4/tFZVa3OD2fXeMYx73jKQ1Vdyt7cX59K+iW9zsyu7w+GodcUlt8MlUxfn302u+6warY7E0PgHRzYgIGmOZ+3YM6H6sko85gaz671jGHdHNnTpB71HetZOdB+1xG/CuJtd2R0ORzb0HAbdB3nWTlwSxA6+4r9vQKsjMTT+wZGt3CqdPMw+Gz9ald/c+7Hbj82u92CjBfA5FcVwcDWM/rFnLhkn9gy1c/H8EeWHr4NTqTpaxgQUn4ZvN6q4ZW9gz4D1L0NpIUR1b/TxvNS+Ws9m4OwBOLMXZv3e87aCgtRqffs/4XKZCo9tgJn1bv2Z+/4VKsrFU7+rE2c7TSzR56X2ZcMT0zi8YA4bnphmWsVbnrzaSvfe1Lushn3LvNOexjd4Eh3lDnsGVJapCWKAYX3j7siGqB7Qb6x32us2EHqmNPsWXWMCHNnQbRD0sHunvd4joUt/rXez48iGPmnN7kVpEwMmQETXgNS7tY175SVVeCF5jopd9Rb2DJXYv/i099rUeI+6le694YqDK9ETB1crV5/GfBQdhRNbvbdaA7VDPekGFZRRddl77foBaxv3g6uhstS7yoba9mSTrhmNweR9prI6ehod1RB7hoqe2Lfcu+1qvEPup+pfu7f1ngkVFyB/nXfb9THWNu6ObAjvAgkTvdtuD7ta8gfgUq1D4Kp0n+bddvuNUS4+rXdz4siCHkMg9irvtjtwCoR2Cji9W9e4OyvdD25Q6d4bOJfo+V9aJrG/ZagogYOrvOuScRJkUy/q9n8OlXpjmqkoOaPSM3t7lQ4QEg5Xz1ArgwDKEGpd456/XiXe9/bS3MmQTLX010t0c3FgZdOV7r2BPUO5+g6u8U37mvaRtxSvRkc1xJ4BpQUBVUTbY+MuhOgnhFgjhHAIIfYIIX7mDcE8prlK996gT5pa+jexsUVjEM5K9/3H+6b9hInK1af1bi4c2dA1QW1a8wVXzwBbWEC5Zrwxc68C/p+U0g6MAx4SQgzxQrvtx1np/urrIcRHW/+drpkDq5QrQGM8rkr3Xo6OqosremKpcv1pjKe8SBXC9oUrzklYJ5Ub3pEdMEU8PDbuUsqTUsqttf8vBhyAsTt3jm2CktPef2veEHuG2iB1wH3uCY2fObQWLhf7bmnuxJ6pkknlf+nbfjStY99yqKn0z/N+8Ric2ObbfryEV33uQogEIBX4xpvtthlHNthC1VLKl/Qfr1wAAbRUszSOLAiLhsTJvu1n0FQIidJ6NwuOLOjcG/q2qoZF+xk8C4KCA8Yl5zXjLoToBPwbeFRKedHN5/cJIXKEEDkFBQXe6rYxrkr3UyE82nf9gFr6J89RMwddX9VYXJXuZ3k/OqohIRHK5ef4JKCiJyzJ5VLlGk2eq3LB+JLIbuqdy96sgHDNeOVuCCFCUIb9H1JKt6VLpJSvSynTpZTpcXEeZmtrjpM7XJXu/YI9Ey6XKJeAxjiObFCV7n0VHdUQewaUnoGjm/zTn8Y9B1ZBVbkfn/cMOHcQCnL9058HeCNaRgB/BRxSyj96LpKHOLJB2NRLL3+QOEm5AvQS3Vicle4HTfdPf1fPUK4/rXdjcWRBRDeVA8YfJM8FREDo3Rsz9wnAHcA0IcT22h8/WVY3OLIhYYLbtKw+IThUuQLyPlWuAY3/cUVHXec2LatPCI9WYbYBFD1hOVzRUTeAzU/Zyzv3hP7jlGvG5HgjWma9lFJIKYdLKUfW/iz1hnBtpiBPlcHz9VvzhgzJVMmqjqz3b78axfEtUHzS/3q3Z8CF2lJ+Gv9zeB1UXDRG76d3wblD/u23jVhrh6pzqZTsYXmttjJounIJBMBSzZI4Pm5/pXtPGDxbuQC13o3BkQWhnVXuF3/iLNvoMHfiQIsZ9yzPKt23l9BI5RJwfKJcBBr/4ap0P0XtHPUnUd2VC1Abd/9TXaVyvQyeCcFh/u276wDoPcL0ereOcT9/REXK+HuJ5sSeCSWn4HiOMf13VE7vhvP5/ouWaIg9E87uUy5Bjf/4diOUFRqr92Ob4OJJY/pvBdYx7s7c6t4qr9VWBs9UroEmiulqfIQjG0SQ/11xTlxLdPO/YLMUjmwIDoerrjOmf+ck0sQ1Haxj3B3Zqvxdt4Es2XacCQtWk/jEp0xYsJol2477vv/wLso1oKMn/MveLBUGFxVrTP/RvSF+TEBET1iGmhr1nA2arnK+GEHcYIhNMvWXujWMe/FplYrTnsGSbcd5cvEujheVI4HjReU8uXiXfwy8PQOKjsCpXb7vSwNn90OBw7U0N+RLHVT/p3Yq95DG95zYCsUnXBvWDNV7/gYoLfRPf23EGsY99xNAwpBMFi7Po7yy/pbw8spqFi73g0806QblIjD5ixbLUCc6yvAvdTB99IRlcGSpHC+DZxqr9yGZIKth3zLf99UOrGHcHdnQ/SqIS+ZEkfsKOU0d9yqd4qD/NaZeqlkKRzb0HQVd4o39Uu+WCL1S9Je6P3BGRyVOgoiuxuq913CI6W9al1zgG/eycyr1am0u5z4x7vO3N3Xc6wzJVHknCvb5p7+OiqvSvVqaG/qlDkqOo99A8Sn/9NdRObNXbR6qXS0ZqnchlN4PrYFLjXIlGk7gG/d9y1W5u1plz5+ZRERI/UINESE25s9M8o88zqiNXD2L8ymu6Cild8O/1O0ZgDR19IQl2JsFCEhSz5kp9F59Gfav8E9/bSDwjbsjC6LjXZXu56X25YWbUugbE4EA+sZE8MJNKcxL9VP9kC7xylVg0qWaZXBkQ4+h0H0QYIIv9bhk5RrUrhnf4shWdRQ69wRMoPf4MdCppyldsX7KtuMjKkpUys/0u+uV15qX2td/xtwd9gxY+axyHcT0M04Oq+KsdD/5cdchp74XLs/jRFE5fWIimD8zyX9/B84l+ob/Vq7CyG7+6bcjUXgQzuyBmS+4Dhmu96Agtddhx7+gstx3ZT3bQWAb9wOfqzJ3Ru1Sawp7pjLujmwY/6DR0liPJirdm+JLff0fIW8ZpP7AODmsinNV1GCjoin0nvNXOLjauM10bghst4yr0v04oyWpT/dBymWgl+i+YW8WdBsIPYcaLUl9+qQqF6HWu29wZEHvkSpCxUwkXAvhMabTe+Aa98pLvq907wn2DJX/ouSM0ZJYi/IiOOzjSvftRQgl18HVUFFstDTW4sIxldrZX5W22oItRO1xyVsK1ZVGS+MicI37obWqvJ0ZlQ11oic+NVoSa+GKjjKp3odkKlfh/s+NlsRaOJ8jM+v90gWVY94kBK5xd2RDWBdImGS0JO7pOVS5Dkz4Fj2gcWRB5z6u6CjT0W8sRMWZboke8DiyVURS7NVGS+KegVMhJMpUeg9M415dpcraJfmh0n17cS7RD69TVZo0nuOsdG/P8H2l+/YSZFOuwv0rlOtQ4zmlZ1UBdLMFTtQlJBwGz1ArjJrqls/3AyZ9QlrgyAZlMM2sbFBLyJoq5UrQeM6Blf6tdN9e7BnKZXhojdGSWIPcT0HWmNcl48SeAaVn4OgmoyUBAtW4O7IgJNJ/le7bS5805UIw0VItoHFkQ2R3tYnFzCRMUimgtd69gyMbYgao/D1m5uoZYAszjSvWK8ZdCPE3IcQZIcRub7TXLDU1KvveVX6sdN9egoLUt/mBlWrDlab9OCvdJ/mx0n17CQ5V9VVNFj0RkFy6oIInzBgd1ZCwzjBommlqOnhr5v4mMMtLbTXP8RxVzs7sSzQn9gyouqQMvKb9HPpCVbofcqPRkrQOe4ZyHeavN1qSwGbfcqipDKzn/cJROLndaEm8Y9yllOuAc95oq0UcWbWV7mf4pTuP6T9euRL0Et0zHFkQFq1SvQYCg6Yp16HWu2c4sqBTL1X4PhBImg3CZgq9+83nLoS4TwiRI4TIKSgoaF8jzlzOg6b6v9J9e7EFK1fCvuXKtaBpO9VVysVhRKX79hIaqVyHuZ8oV6Km7Vwug/0rVboBs0ZHNSSym9qxujfLcNeM3+6YlPJ1KWW6lDI9Li6ufY2c2mVspfv2MuRGuFysXAuatmN0pfv2MuRGKDkNxzYbLUlgcnBVYERHNWRIJhTuhwI/FAxphgD5OqzFWek+6QajJWkbiZOUS8HxsdGSBCaOLAiOMK7SfXu5egbYQk0TPRFwOLIhoqsqgB5IJM8FhOGumYAx7ku2HefpjdW8UTmLCa/u9F8RXG8QHKZcCrlLlYuhFsMK+wYQS7Ye5cymf7O8YigT/vhNYN2j8GgYOEUZ9zpLdK33lvl4y2GKd2azqDiFCQu/DKx71LkX9BvT6Evd33r3Vijke8BGIEkIcUwI8WNvtOvEWQT37eJRPF91u3+L4HoLewaUn4NvvwIwtrBvgLBk23He+2gJPShkWfWYwLxH9gwo+hZO7QS03lvDkm3H+WTJ+3SmjGU1Aaz3Uzvh3GHAGL17K1rmNillbylliJQyXkr5V2+068TQIrje4qrrlGuhdqlmiTH5mIXL85gqv6FS2lhdkwoE4D1KmqNciVrvrUbp/WtKZDgbaoYBAXiPnO8JassuGqH3gHDLGF782BuERsFV09VDXlNjjTH5mBNFZcwK2sRXNUO5SFSd4wF0j6K6K59xrXHXem+ZU0WlzLBtYU3NSCq4kjsqoO5R1wToNdxQvQeEcTe8CK63sGdC8Uk4vsU6Y/IhE6PPkBB0mmU1Y+odD7h7ZM+Eglwo2Kf13gpmRR8mVlxkWbUF9H70Gyg+ZYjeA8K4G14E11sMnqk2YDmyrDMmH/LLxP3USMHn1aNcxwLyHjnLwmm9t4qfx+dRIUNYWzPSdSwg75HTNePINkTvAWHc56X25YWbUugbE4EA+sZE8MJNKcbWTWwPETEwcDI4spk3so81xuRDks9/wbnYUYTH9ArsexTdR+2wdGRb52/ZV0jJoLNrONf7WrrGdA3sexSXBN2vNkzvQhqwiyo9PV3m5OT4vV9TsOVNyP4Z/GQD9BpmtDTmpfAgvJoGsxbAuAeMlsZzNvw3fP40PLrLfDVAzcTxLfCXaTDvzzDy+0ZL4zmrnoP1L8P8A2r3qocIIbZIKdNbc25AzNwtRdIc1AYHvbGlWZz3J9B2JzZFstM184mxcpgdRzYEBcNg/+Qh9Dn2DJDVkLfM711r4+5vOsXBgGsM371mehzZKh9+l3ijJfEO3QdBz2H6S705pFQ5WRImemWWawp6j4Qu/QzRuzbuRmDPhDN74ewBoyUxJ85K91aZtTuxZ8K3X0PxaaMlMSdnHHDuoLX07iy3eXA1VBT7tWtt3I3AGT2Rq2fvbnG6LgIlh3drsWcAUtX/1TTGkQ2IKy4sq2DPhOrLqq6uH9HG3Qi6xCuXw169RHeLIxt6DIHYq4yWxLv0sEO3Qdol1xSObOg/Djr3NFoS79JvDET18LvetXE3CnsGnNgKRUeNlsRclBSo/DtWWpo7cS7RD69TVZo0Vzh3CE7vsqbeg2yQPAf2rYBK/+2y1cbdKJwuh1y9RK9H3tLaSvcWfMhB6b2mCvI+M1oSc+Gc1VrNJePEngGVpXBwjd+61MbdKGKvUq4HvUSvjyNb5eXoadE9AH3TILqv1ntDHNnQewR0HWC0JL4hYaKqHudHvWvjbiT2DOWCKGln2UGrUV5UW+k+0/yV7tuLK3piFVSUGC2NObh4QlWrsupqDSA4VBUZylsK1ZV+6VIbdyOxZygXhI6eUOxfEViV7tuLPQOqLsGBz42WxBw4XZP2G42Vw9fYM+BSEeR/6ZfutHE3kp7DoGuiXqI7cWRB597Qd1TL5wYy/cdDZKzWuxNHFsQmQdxgoyXxLYOmwfW/gbhkv3SnjbuROJfoh75QLomOjLPSfXIAVbpvL67oieVQecloaYyltBDyN1jbJeMkJAIm/FQlkvMDwX7pRdM09kz46hXlkhj+H0ZL4zeWbDvOwuV5nCgqp09MBH9M+ZaxgVjpvr3YM2HrW3D4C5UKuoPQUO+vJu8mTVZ3HL37EYtPkQKAvqOUK2Lvx0ZL4jfc1ZM8/c0iKkJjAq/SfXtJnARh0R0q14w7vV/c9hGlkX1VpIzGq3irQPYsIUSeEOKAEOIJb7TZYQgKUrOWA6vgcqnR0viFhvUkQ6hiitjCiupRYOsgi8ngUJX5MHcpVFcZLY1faKj3TpQxnp1kVYyybnSUgXhs3IUQNuA1YDYwBLhNCDHE03Y7FPYMqCpXBr4D0LBu5DVBe4gW5XxUnmaQRAYxJBPKz8GRDUZL4hca6n1q0HbCRBX/Lks1SCJr442Z+xjggJTykJTyMvAvwOIxTV6m/zUQ0a3DRE80rBs5K2gTxTKCQ51HGySRQQyaDsERHVfvtk2ckTGcih5ukETWxhvGvS9QN0HKsdpj9RBC3CeEyBFC5BQU6E079bAFQ/INsO8zqLpstDQ+p249ySBqmGHL4QuZxqOzLLortSlCI+Hq6yD3E6ipMVoan1NX72FcZmrQDlbJ0Tw2y26wZNbEG8bdnbOsUe0+KeXrUsp0KWV6XFycF7q1GPZMqLiooicsTt16kmNEHt1FMT3GfjfwamR6A3smFJ+E49YvO1lX75ODdhIpKug/4XsdU+9+wBvG/RjQr87v8cAJL7TbsRg4BUI7d5joiXmpfdnwxDT+NakAgsMZc13HCQOtx+CZEBTS4fT++uiTEB7DhOvmGS2SZfGGcd8MXC2ESBRChAK3Ah3jL9WbBIepBz33U6ipbvl8K1BTo/zNg6ZDWCejpTGG8C7qi92RrcrMdQSqK1WOlaQbwBZitDSWxWPjLqWsAh4GlgMO4AMp5R5P2+2Q2DOgrBC+3Wi0JP7hxDa4eFxFjXRk7BlwPh9O7zZaEv9weB1cuqD17mO8EucupVwqpRwspRwkpfytN9rskFx1HQSHd5wKTY6s2kr3HWeHpluS54AI6jBRMziyISQKBk41WhJLo3eomomwTsrAO7KtHz0hpTLuCRMhoqvR0hhLVKzamdsRvtRrqpXrcfAMCAk3WhpLo4272bBnQPEJ5bKwMmf2qtJqemmusGdAgQPO7jdaEt9ydBOUntG5ZPyANu5mY/BM5aqwevSEVSvdt5fkOepfq7tmHNlgC4OrZxgtieXRxt1sRHRVSaUcWdaOnnBkq7zmnXoYLYk56BKvkshZ2bhLWRsdNQ3COhstjeXRxt2M2DOVy+LMXqMl8Q2FB1VkiF6a18eeCSe2QtHRls8NRE5uhwvfar37CW3czUjyHEBYdxbnHJddu2Tq4TR6uZ8YK4evcGSDsEHSbKMl6RBo425GOvVQLgsrG/feIyGmv9GSmIvug6DHUGvrPXEiRHYzWpIOgTbuZsWeoVwXhQeNlsS7XDiu8qjoKBn32DPgyFdQcsZoSbzLmVw4u0+7ZPyINu5mxfkQWG0W56p0r427W4ZkAvLKfbIKOjrK72jjblZi+kGfVOsZd0eWqv4ee7XRkpiTHkOg20Br6r3fGOjcy2hJOgzauJsZe4ZyYVw4brQk3qH0rKo6pJfmTSOEuj+Hv4DyIqOl8Q7n8+HUTr1a8zPauJsZ58NglSV63lKQNfohbwl7JtRUwb7lRkviHXR0lCFo425mYq9WLgyr7FZ1ZEPMAOiVYrQk5qZPGnTuYy299xoOXROMlqRDoY272bFnKldG6VmjJfGMSxfg0FrlctCV7psnKEjdpwMr4XKp0dJ4RvEpOPqNXq0ZgDbuZseeoVwZeUuNlsQz9q2A6sv6IW8t9gyouqQMfCDj3JCl37P4HW3czU6vFOXKCPToCUcWdOoF8aONliQw6D8eIrsHvt73ZkHsYOiRbLQkHQ5t3M2OM3ri0Frl2ghELpepGah9rnI5aFrGFqzK0O1bDlUVRkvTPsrOQf56PWs3CP2kBQJDblQujX0rjJakWZZsO86EBatJfOJTJixYzZJttSGcB1dDZZl+yNvKkBuh4iIc+sJoSZqlSb3nLQNZrfVuENq4BwJ905VLw/Gx0ZI0yZJtx3ly8S6OF5UjgeNF5Ty5eJd60B3ZKpXxgAlGixlYJE6CsGhTR820qPcu/VWIJEpgAAAgAElEQVQeIY3f8ci4CyFuEULsEULUCCHSvSWUpgFBQcqlcWCVcnGYkIXL8yivrK53rLyympc+261mcLrSfdsJDlPFW3I/heoqo6VxS1N6f+2z7WrFpqOjDMPTmftu4CZgnRdk0TSHPUO5Ng6uNloSt5woKnd7PKF4C1Rc0FEy7cWeAeXn4NuvjJbELU3pPal4I1RXaJeMgXhk3KWUDillnreE0TTDgGuVa8OkS/Q+MRFuj38nYhuEdoKBU/wqj2W46joIjjBt1EyTeg/fClE9VD4ZjSH4zecuhLhPCJEjhMgpKCjwV7fWwRYMSXMg7zOoumy0NI2YPzOJiBBbvWNRIYJZwVtUvUxd6b59hEbBVdPB8QnU1BgtTSPc6b1LSDWTxVZVdCbI1sSVGl/TonEXQqwUQux283NjWzqSUr4upUyXUqbHxcW1X+KOjD1DuTjyzecFm5falxduSqFvTAQC6BsTwf9OriS8olAvzT3FngnFJ1QJPpPhTu//N/4CwdXlOme/wQS3dIKU8jp/CKJpBQOnKBeHI1st103GvNS+zEvte+XAsidqK91fb5xQVmDwTAgKhr0fQ7z54hYa6f2jByC8CyRMNE4ojQ6FDChCwq9ET9RUt3y+kTgr3V81XVe695SIGEicrO6nlEZL0zzVlSpVho6OMhxPQyG/I4Q4BowHPhVCWCRHqYmxZ0BpAXz7tdGSNM+JbXDxmHbJeIshmXD+MJzeY7QkzZO/Hi4Vab2bAE+jZT6SUsZLKcOklD2llDO9JZimCa66Xrk6TBo94cJZ6X7wLKMlsQZJcwARGHoPiYJB04yWpMOj3TKBRlin2ugJEy/RpVQhm7rSvffoFAcDrjG3ca+pUVkgr74eQtyHSGr8hzbugYg9Q7k8TmwzWhL3FORC4QG9NPc29gw4swcKDxotiXuObYKS01rvJkEb90Bk8CwVPWHSDU260r2PcBpNM+vdFqr2NWgMRxv3QCSymwoz25tlTteMIwv6jdWV7r1Nl3hVgs+MrhmnK27QNAiPNloaDdq4By72DDh3ULlAzMS5w3Bql16a+wp7BhzfAheOGS1JfU7ugKJvtd5NhDbugUryXEwZPaEr3fsWZwI2xyfGytEQV3TUbKMl0dSijXug0rkn9B+nXDNmwpENvUfoSve+IvYqiLOb80s9YQJEdTdaEk0t2rgHMvYMOL0Lzh0yWhLFxZMqYkIvzb1CkxWOhmSqFMAlJknAV5AHZ/N0WmeToY17ANDkQ+6MRjHLEt1V6V4/5J7SbIUjewbIGrXN3ww4o3d0dJSp0Mbd5DT7kHcdoFwgZlmiO2or3cclGS1JwNNUhaOFy/Og5zDl9jJLSKQjG+LHQHRvoyXR1EEbd5PT7EMOapZ8bBNcPGGAdHUoLYT8DXrW7iWaqnB0oqhcla2zZ6jC2eVFfpasAeePqEgZ7YozHdq4m5xmH3K4YkxzP/WTRE2wT1e69yZNVThyHbdnQk0l7F/hR6nc4HLFab2bDW3cTU6LD3ncYIhNMn6J7qp0P8JYOSyCuwpHESE25s+sdXn1TYfOvY3X+94s6JUC3RKNlUPTCG3cTU6LDzmoWVP+BuUaMYJLF3Wley/jrsLRCzelXCmKERSkXmDuXwmXS40RsvgUHP1Gu+JMSouVmDTG4nyYFy7P40RROX1iIpg/M6l+5ZshmfDliyp6Iu0O/wu5fwVUX9ZLcy/TqMJRQ+wZsPkvcGCVMSXtcj8FpNa7SdHGPQBo8SHvNRxi+ivXiBHG3ZENnXqqfDIa/zFgAkR0VfffCOPuyIbuV0Fcsv/71rSIdstYASHU0vjQGuUi8SeV5bD/89pK9/rPya/YglURj32fQdVl//Zddg7yv9SuOBOjn0arYM9QrhF/R08cXA2VpXppbhRDMqHiIhz+wr/97vsMaqq0v93EaONuFeLHKNeIvzc0ObIhPEZXujeKxMkQ2tn/UTOObIiOhz6p/u1X02o8LZC9UAiRK4TYKYT4SAgR4y3BNG3EFT3xuXKV+ANd6d54QsJh8Az1crOmuuXzvUFFiXqJq10ypsbTmfvnwDAp5XBgH/Ck5yJp2o09Q7lIDq72T3/5X8KlC9olYzT2DCgrhG83+qe//SugukLr3eR4ZNyllCuklFW1v34NxHsukqbdJFyrXCT+cs3szaqtdD/VP/1p3HPV9RAc7r/0z45siIpTKac1psWbPve7gWVNfSiEuE8IkSOEyCkoMEmqUqthC1FRK3lLlcvEl9RUK1eArnRvPGGdYNB0ZXRranzbV+UlNXNPngNBtpbP1xhGi8ZdCLFSCLHbzc+Ndc55CqgC/tFUO1LK16WU6VLK9Li4OO9Ir2mMPUO5Sg6v820/RzdB6Rlj4qs1jbFnQPEJOLHVt/0cWgOXS7RLJgBocROTlPK65j4XQtwJzAWmS2nGas0djIFTIbSTmsVdNd13/ehK9+YiaRYEBdem3033XT+ObAjrAgmTfNeHxit4Gi0zC3gcyJRSlnlHJI1HhIQrV4kvoyekVA/5oGkQ1tk3fWjaRkRXFY7qyFL68QWu6KhZEBzqmz40XsNTn/ufgM7A50KI7UKI//WCTBpPsWcql8nRTb5p/+R2uKAr3ZuOIZmq5OKZvb5p/8gGKD+vNy4FCB7llpFSXuUtQTRe5OrrwRamZnEDxnvc3JJtx+slLvtbv2UkCZuKb9eYh6Q58MnP1aqq51CPm2uo93d6vc/AkEi1YtOYHr1D1YqEdVYPoCPb4yW6uzJ/wfs+4Uz30RDZzTvyarxD554qPNELobAN9X6iqJTOhz/jeOy1EBrpuawan6ONu1WxZ8CFo8qF4gENy/xdJY4xSJzg7aLhnkqo8QX2DDi9GwoPetRMQ72nigPEiSL+ctbzFYHGP2jjblWSZoOweTyLa1jmb1bQZgAWleiKS6bE+R7E23q3beaytLG4WBv3QEEbd6sS2Q0SJ6pdix64ZhqW+Ztl20xOzWCCY/p4KqHGF8T0h94jPTbu9fUumR20ifU1KXSO6e6ZfBq/oY27lbFnQOF+KMhrdxN1y/zFizMMC8pnFWPql/nTmAt7BhzPgQvH291EXb0PFUfoF1TAajFW6z2A0MbdyiTPBYRHs7i6tTxn17pkUmfc0XxlKI2xOEMVcz9tdxN19T7LtolqgrjmBq33QEIYsak0PT1d5uTk+L3fDslfZ6gUwD/50kttlcFP1nvelsa3vDZWJfe66xNztaXxCCHEFillq7Yg65m71bFnwqmdcD7fs3Z0pfvAwp6hNh2VnvWsnYJ9UJCrN6wFINq4Wx37XPWvp7HPubWzNm3cAwN7BsgalS7AE5wVnpLnei6Txq9o4251uiZAr+GeG3dHNnS/GuL0C7WAoNdwFTnjDb33TYcu2tceaGjj3hGwZyqXSvGp9l1/8SQc1pXuAwohlN4PrlEpoNvD2f1qE5x2yQQkpnmhWllZybFjx7h06ZLf5bE81ZVQfFJlDmxPFseyQrhcBtG9VVpZTWBQVQElpyGyO4RGtf360gLVRufelijMER4eTnx8PCEhgVvvty0vVE3zpB47dozOnTuTkJCA0LND73MmGIJCIPbqtl1XUQKFl6DTQIjWG5cCCilVKoLQKOg2sG3XXroA5y5BdBJ06ukb+fyIlJLCwkKOHTtGYmKi0eL4BdO4ZS5dukT37t21YfcV4TGqgk51VcvnOpESLhxTXwoWeMA7HEIovVcUty23v6xRG6BsYSoE0gIIIejevXuH8gyYxrgD2rD7kvAY9W9FG/yvZWehqly9TLPAsrxDEhGjjHVFceuvKTkD1RXQJR6EqUyER3Q0+2IdzWmaJyRClcUrL2rd+dVV6kVqaKcrXwwm4Y033qCoqJXj6OiERqkEcpdaq/fLyk8f3gXCo30rm8anaONeB5vNxsiRI10/+fn5rF27lrlz2xfju2TJEvbubX9VnPz8fP75z3+6fs/JyeGnP/1p+xoTQj2wrV2iF58EWV07e2s84/FIljaSlZXFggULXL9PnTqVhx9+mPLy8mau0gBq5h3eBS5dVDP4lrh4QrnjonXoY6BjmheqbaVhlZj5M5M8znsRERHB9u3185/n5+e3X8YlS5g7dy5Dhgxp1/VO4/79738fgPT0dNLTPSh+HB6jIiAqLqrImaa4XKZcMlFxasbvBo9laQOZmZlkZl7ZPDVo0CDefffdJs+vqqoiODhg/7S9T0QMlJ9TL8ebm41XlKgyep16QXCY/+TT+ISAnLm7qw705OJdLNnW/ix4reHZZ5/lxRdfdP0+bNgwl/F/++23GT58OCNGjOCOO+7gq6++Iisri/nz5zNy5EgOHjzIlClTcIaAnj17loSEBEAZ8YkTJ5KWlkZaWhpfffUVAE888QRffvklI0eO5KWXXqq3ijh37hzz5s1j+PDhjBs3jp07d7pkvPvuu5kyZQoDBw7klVdeAaC0tJQ5N32PEdffyrC0cbz//vuNxvfKK68wZMgQhqemcuuDv4TOvdi0aRPXXHMNqampXHPNNeTlqQyTdWX54osvXKud1NRUiouLkVIyf/58hg0bRkpKiqu/tWvXMmXKFL773e+SnJzMD37wA5zhuAkJCTzzzDOkpaWRkpJCbm4uAG+++SYPP/wwAAUFBdx8882kp6czevRoNmzY4Br3fffdx4wZM/jhD39IdXU18+fPZ/To0QwfPpz/+7//A+DkyZNMmjSJkSNHMmzYML780gs5d8xOaGc1g2/ONVPv5XkP/8mm8RkeTW+EEL8BbgRqgDPAXVLKE94QrDkaVokBKK+sZuHyPI9m7+Xl5YwcORKAxMREPvroo1Zdt2fPHn7729+yYcMGYmNjOXfuHN26dSMzM5O5c+fy3e9+t9nre/Toweeff054eDj79+/ntttuIycnhwULFvDiiy/yySdq6//atWtd1zzzzDOkpqayZMkSVq9ezQ9/+EPXqiM3N5c1a9ZQXFxMUlISDzzwAJ999hl9+vTh03/8L5Sf40J4/0ZyLFiwgMN7thBWfooiGQ1BwSQnJ7Nu3TqCg4NZuXIlv/zlL/n3v/9d77oXX3yR1157jQkTJlBSUkJ4eDiLFy9m+/bt7Nixg7NnzzJ69GgmTZoEwLZt29izZw99+vRhwoQJbNiwgWuvvRaA2NhYtm7dyv/8z//w4osv8sYbb9Tr62c/+xmPPvooEydOJD8/n5kzZ7q+cLZs2cL69euJiIjg9ddfp0uXLmzevJmKigomTJjAjBkzWLx4MTNnzuSpp56iurqasrKyVuk4oAkKgrBoFd4opfuNaM6X510T9Mtzi+Dp2nWhlPJXAEKInwJPAz/xWKoWaFglpqXjrcWdW6Y1rF69mu9+97vExsYC0K1b22qLVlZW8vDDD7N9+3ZsNhv79u1r8Zr169e7jOy0adMoLCzkwgUVCTNnzhzCwsIICwujR48enD59mpSUFB577DEe/00Uc69NYeKshEZtDk9J4Qd33Mm8G65n3h1KjRcuXODOO+9k//79CCGorKxsdN2ECRP4+c9/zg9+8ANuuukm4uPjWb9+Pbfddhs2m42ePXsyefJkNm/eTHR0NGPGjCE+Ph7A9W7DadxvuukmAEaNGsXixYsb9bVy5UpOnLgyf6iurqakpARQ7puICOVGWrFiBTt37uTDDz90jWP//v2MHj2au+++m8rKSubNm+f6Mrc8ETFq5n65FMI61f/MxC/PNe3HI7eMlPJinV+jAL9sd21YHail494iODiYmporL6WcMbNSylaFWdW9vm687UsvvUTPnj3ZsWMHOTk5XL58ucW23O0sdsoQFnbFX2qz2aiqqmLw4MFs2bKFlJFpPPnCn3juuV83uv7Tf/2Fh+78LltyjzAqPZ2qqip+9atfMXXqVHbv3k12drbbOOEnnniCN954g/LycsaNG0dubq5b+Zy4k6/hZw2PO6mpqWHZsmWsXbuWtWvXcuDAATp1UsYqKurKLkwpJa+++irbt29n+/btHD58mBkzZjBp0iTWrVtH3759ueOOO3j77beblNNShEUDwr1rpoWX55rAxGOfuxDit0KIo8APUDN3n1O3SoyTiBCbz6vEJCQksHXrVgC2bt3K4cOHAZg+fToffPABhYWFgPKHA3Tu3Jni4uJ612/ZsgXANaMENavs3bs3QUFBvPPOO1RXV7u9vi6TJk3iH//4B6DcNbGxsURHN/2y7MSJE0RGRnL7HT/ksZ8+wNZt2+tFT9RUlHF0326mXjeTP/zXSxQVFVFSUsKFCxfo21e5ut588023bR88eJCUlBQef/xx0tPTyc3NZdKkSbz//vtUV1dTUFDAunXrGDNmTJPytZYZM2bw6quvun533s+GzJw5kz//+c+ulca+ffsoLS3lyJEj9OjRg3vvvZcf//jHLn1aniCbSj1RXlS/7GIrXp5rApMW3TJCiJVALzcfPSWl/FhK+RTwlBDiSeBh4Jkm2rkPuA+gf//G/t624PSreztapiVuvvlm3n77bUaOHMno0aMZPHgwAEOHDuWpp55i8uTJ2Gw2UlNTefPNN7n11lu59957eeWVV/jwww957LHH+I//+A/eeecdpk2b5mr3wQcf5Oabb2bRokVMnTrVNQMdPnw4wcHBjBgxgrvuuovU1FTXNc8++yw/+tGPGD58OJGRkbz11lvNyr5r1y7mz59PUFAQIbYg/vz8/7sSPSEl1eePcPsjT3GhvBIp4T//8z+JiYnhF7/4BXfeeSd//OMf68lcl5dffpk1a9Zgs9kYMmQIs2fPJjQ0lI0bNzJixAiEEPzhD3+gV69erpek7eWVV17hoYceYvjw4VRVVTFp0iRGjRrV6Lx77rmH/Px80tLSkFISFxfHkiVLWLt2LQsXLiQkJIROnTp1nJk7KNdMxUVVcCU0Shn5i8dUvqDO7h5xTSDjtcRhQogBwKdSymEtnesucZjD4cBut3tFFk0L1NTA6V0Q0Q1i+qnZ3PnDKrZZR0pYl+oqpfdOPVWeoLJzUHQEuvSDqFijpfMLgW5n/FaJSQhRNwtVJuDZtEzjH1zRE0VqQ9PF4xAc3mEe8A6LLViFRZY79X4CQiJV1kiN5fA0WmaBECIJFQp5BD9Eymi8RHgXZdzP56st592vslQeEU0TRHRR8eznj0BNJXRL1C9RLYpHxl1KebO3BNH4mfAugFA+2PCY9uV51wQe4THKuFdcUG659uR51wQEeqrWUXFGTxCk84h0JGwhV5KJ6fz8lkYn4OjIxPRTL9mCQ42WRONPYgYon7stcCsSaVpGz9x9zL59+/j444+NFsM9tlAIjTRaCo2/CQ4zrd43bdrEF198YbQYlkAb9zoIIbjjjjtcv1dVVREXF9fmlL8JCQmcPXsWgMGDB7N9+/ZGeWrqntMaXn755WbzoNxzzz0epRduK3fddVe9jVjuePrpp1m5cqXX+mzrPXNHQUEBY8eOJTU1lS+//LLdbTZMx9weGur0hhtuME2een/Kcs0117j+P2rUKBYtWsTGjRv90reV0W6ZOkRFRbF7927Ky8uJiIjg888/d+3O9IRnnnG7r6tNvPzyy9x+++1ERjaecVVXVzdKsGUGnnvuObfHq6ursdmMSU61atUqkpOTW9z01RIN0zG3h4Y6Xbp0qUcyeRN/yuLMggoq7cSf/vSnJs+VUiKlJChIz0tbQt+hBsyePZtPP/0UgPfee4/bbrvN9VlTaXYLCwuZMWMGqamp3H///fXyqrz77ruMGTOGESNGcP/997tSC9TFec7IkSPdnvPKK69w4sQJpk6dytSpUwHo1KkTTz/9NGPHjmXjxo310gk/8MADpKenM3To0HpfLE2l1C0oKOD6668nLS2N+++/nwEDBnD27Fny8/MZNuzKnrQXX3yRZ599tpH8zz33HKNHj2bYsGHcd999rvHXnd0nJCTw3HPPce2117Jo0SIOHjzIrFmzGDVqFBMnTnS7c7U197XuPauuruauu+5ypRl+6aWX6rW3fft2fvGLX7B06VJGjhxZr9hHc2M9cOAA1113HSNGjCAtLY2DBw82SsdcNy0xwNy5c11ZPN3pw51O664i/vjHPzJs2DCGDRvGyy+/7JLRbrdz7733MnToUGbMmOEagytd8/Dh3HrrrY3u5Z49e1z3a/jw4ezfvx+AefPmMWrUKIYOHcrrr7/uOt8pS2lpKXPmzGHEiBEMGzbMlbp51apVpKamkpKSwt13301FRYXrOnd/Y02logZcuYEAFi5c6ErT7LxXznE/+OCDpKWlcfToUVasWMH48eNJS0vjlltucSWPe+KJJ1z34bHHHmt0HzoUzm9Cf/6MGjVKNmTv3r1Xfln6uJR/u8G7P0sfb9RnQ6KiouSOHTvkzTffLMvLy+WIESPkmjVr5Jw5c6SUUj788MPy2WeflVJKuWrVKjlixAgppZSPPPKI/PWvfy2llPKTTz6RgCwoKJB79+6Vc+bMkZcvX5ZSSnnffffJN998U0op5YABA1znzJ0713XOAw88IN96661GsjnPdwLI999/3/X75MmT5ebNm+W50gq5cc9huePoebn76Dk5YeIkuWPHDlcbr7zyipRSytdee03++Mc/llJK+dBDD8nf/e53Ukoply1b5pL/8OHDcujQoa4+Fi5cKJ955hkppZR33nmnXLRokZRSysLCQtc5t99+u8zKymp0zoABA+Tvf/9713nTpk2T+/btk1JK+fXXX8upU6c2GnNz99XdPcvJyZHXXXed6/rz5883avPvf/+7fOihhxrd1+bGOmbMGLl48WIppZTl5eWytLS03t+Fu3bnzJkj16xZU+/+VFVVycmTJ9fTR12dOn/PycmRw4YNkyUlJbK4uFgOGTJEbt26VR4+fFjabDa5bds2KaWUt9xyi3znnXeklFL26tVb7jh8Ru44el5+4zgiz5VW1Bv3ww8/LN99910ppZQVFRWyrKysnmxlZWVy6NCh8uzZs/Vk+fDDD+U999zjaqeoqEiWl5fL+Ph4mZeXJ6WU8o477pAvvfSS6zp3f2PPPPOMHD9+vLx06ZIsKCiQ3bp1c+kvKipKSinl8uXL5T333CNrampkVVWVnD17tly7dq08fPiwFELIjRs3SimlLCgokBMnTpQlJSVSSikXLFggf/3rX8vCwkI5ePBgWVNTI6V0r/96diYAAXJkK+2snrk3YPjw4eTn5/Pee+9xww031Pts/fr1Lp983TS769at4/bbbwdUut2uXVWVo1WrVuFwOLj++uuZMmUKW7Zs4ejRo/XaXLVqFVu2bGH06NGMHDmSVatWcejQoRbltNls3Hxz/W0GFy9Vcvx8OZ98vJjvzZ7Md66/lr179rBp207XOXVT6joLjaxfv94125s1a5ZL/tayZs0axo4dS0pKCqtXr2bPnj1uz/ve974HQElJCV999RW33HKLa+Z98uTJRuc3d1/d3bOBAwdy6NAhHnnkET777LNmE6m1luLiYo4fP853vvMdAMLDw926xprjgw8+IC0tjdTUVPbs2dPiu5H169fzne98h6ioKDp16sRNN93kKiqSmJjoSlPs1OH5sssMShrC/3voHj5Z/D41Iojj58s5X3Ylu+j48eP53e9+x+9//3uOHDniSo38yiuvMGLECMaNG8fRo0ddM3onKSkprFy5kscff5wvv/ySLl26kJeXR2Jioiu30p133sm6detc17j7G4MrqahjY2NdqajrsmLFCr766iumTp3K9OnTOXHihCs534ABAxg3bhwAX3/9NXv37mXChAmMHDmSt956iyNHjhAdHU14eDj33HMPixcvbrOerIY5fe6zF7R8jg/JzMzkscceY+3ata5Mj9B8ml13KX+llNxyyy316n+6O+fOO+/khRdeaJOM4eHhjfzW50oquHQkn7f/70/885PVRMfE8Kv/fJCC81cyS7pLqetuXNB0iuO6XLp0iQcffJCcnBz69evHs88+6/Y8uJKSt6amhpiYmFblzm/qvjZ1z3bs2MHy5ct57bXX+OCDD/jb3/7WYh/QfDpnT64/fPgwL774Ips3b6Zr167cddddTd4fJ8312TBdcnl5OacvXOLVt95nyzdf8cWKZbz+3y+yeNVGTl8QdI1UYa7f//73GTt2LJ9++ikzZ87kjTfeICgoiJUrV7Jx40YiIyOZMmVKI9mcqaKXLl3Kk08+yYwZM+qVPGxOxqbSObv7zDnuRx55hJ/8pP5G9/z8/EbpnK+//nree++9Rn1v2rSJVatW8a9//Ys//elPrF69ullZrYyeubvh7rvv5umnnyYlJaXe8abS7NY9vmzZMs6fPw+oVMD//ve/OXPmDKB8yA1rsk6fPp0PP/zQdc65c+c4cuRII5maS//rpLJaUlpykYjISDpFR1NYcIb1a1dSVdPYWFy8VEnZ5Wp2HitiaOoY3npXPSgrVqxwyd+zZ0/OnDlDYWEhFRUVropQdXEag9jYWEpKSlqMoAGIjo4mMTGRRYsWAeph3bFjR6Pzmruv7u7Z2bNnqamp4eabb+Y3v/lNm9L5NjXW6Oho4uPjWbJkCQAVFRWUlZW5Tee8fft2ampqOHr0KJs2bQLg4sWLREVF0aVLF06fPs2yZctc1zSl00mTJrFkyRLKysooLS3lo48+YuLEiU3KfqmyilMnjjPmmok8+tSvKb54gbLSUi5XX/myca5s7rjnJ1w7fRafrfuGPYdP0im6C5GRkeTm5vL11183atuVKvr223nsscfYunUrycnJ5Ofnc+DAAQDeeecdJk+e3Op73RQzZ87k73//u8t/fuzYMZeO6zJu3Dg2bNjg6r+srIx9+/a5UlTfcMMNvPzyy+0qvGMlzDlzN5j4+Hh+9rOfNTreVJrdZ555httuu420tDQmT57sSmk8ZMgQnn/+eWbMmEFNTQ0hISG89tprrtqpzZ0zYMCAen3fd999zJ49m969e7NmzRq3cofYBIOHpJA8dDg3TcKnXmEAAAakSURBVB9PfP8BjEwfS3BQ/dnv+bLLFFyscM0Q7330Fzz58D189O9FTJs6hd69e9O5c2dCQkJcL20TExNJTk5u1GdMTAz33nsvKSkpJCQkMHr06Fbd43/84x888MADPP/881RWVnLrrbcyYsSIeue09b5GRETwox/9yDWDbstqqLmxvvPOO9x///08/fTThISEsGjRokbpmB999FESExNJSUlh2LBhpKWlATBixAhSU1MZOnQoAwcOZMKECa52m9JpWload911lyv//T333ENqamqTxdptSH75s/souXgRKSW33/MA0V26EGq7Mnd7//33eeudd0DY6B7Xk3t/Op+IyEjee/tvDB2WwhB7ssvtUZd6qaJDQvjzn/9MeHg4f//737nllluoqqpi9OjRjWbb7WHGjBk4HA7Gjx8PqBet7777bqMValxcHG+++Sa33Xab60Xu888/T+fOnbnxxhu5dOkSUspGL9Q7Gl5L+dsWdMpf33C+7DLHz5dTU0enQULQt2uEa3kOkHvyYr1Z3eWKCoJsNiLDQjmfv4cHHnigw896Aon26t1JqC2I5N6ev58IBALdzrQl5a+euVsI54N8+sIlLlfXEGoLomeX8HoPONDoAT954hjzH/gRsqaG6KgI/vKXv/hNZo3ntFfvLR3XBDbauFuMrpGhjR7qhoTaguo90AMSB/HBZ+s61AzOarRH73WPa6yH1moHpGeXcIIaRKEECUHPLuEGSaTxB1rvHQtTzdyllG5D3zTepbXLeI216Oh6N+L9opGYxriHh4dTWFhI9+7dtYH3A61ZxmusR0fVu5SSwsJCwsM7zirFNMY9Pj6eY8eOUVBQYLQoGo3GgoSHhxMfH2+0GH7DNMY9JCSExMREo8XQaDQaS6BfqGo0Go0F0cZdo9FoLIg27hqNRmNBDEk/IIQoABpnx2odsYBntdbMh9XGZLXxgPXGZLXxgPXG5G48A6SUca252BDj7glCiJzW5lYIFKw2JquNB6w3JquNB6w3Jk/Ho90yGo1GY0G0cddoNBoLEojG/fWWTwk4rDYmq40HrDcmq40HrDcmj8YTcD53jUaj0bRMIM7cNRqNRtMCpjLuQogkIcT2Oj8XhRCP1vn8MSGEFELE1v6eIIQor3P+/xonvXuaGpMQ4lkhxPE6x2+oc82TQogDQog8IcRMI+VvSFvHE8g6qv3skVo97BFC/KHONQGno9rPGo0nkHUkhHi/zrF8IcT2OtcEnI6aGk+7dCSlNOUPYANOoeI6AfoBy1Hx8bG1xxKA3UbL2p4xAc8Cj7k5ZwiwAwgDEoGDgM1o2T0YTyDraCqwEgir/axHgOuoqfEErI4aHP8v4OlA1lEz42mzjkw1c2/AdOCglNK52ekl4BdAIL8kaDgmd9wI/EtKWSGlPAwcAMb4Rbq205rxBBp1x/QAsEBKWQEgpTxTe06g6qip8QQajf7uhMoT/h/Ae7WHAlVHgNvxtBkzG/dbqR2YECITOC6l3OHmvEQhxDYhxBdCiIl+lbDtuMZUy8NCiJ1CiL8JIbrWHusLHK1zzrHaY2akNeOBwNXRYGCiEOKbWtlH1x4PVB01NR4IXB05mQicllLur/09UHXkpOF4oI06MqVxF0KEApnAIiFEJPAU8LSbU08C/aWUqcDPgX8KIUxZBLTumGoP/RkYBIxEjeO/nKe6udx0q5U2jCeQdRQMdAXGAfOBD2pnVIGqo6bGE8g6cnIb9Q1koOrIScPxtFlHpjTuwGxgq5TyNMpgJAI7hBD5QDywVQjRq3bJVQggpdyC8qsNNkjmlqg7JqSUp6WU1VLKGuAvXFkyHkO9X3ASD5zwq6Sto1XjCWQdoXSxWCo2ATWofB8BqSOaGE+A6wghRDBwE/B+nfMCVUdux9MeHZnVuLu+taSUu6SUPaSUCVLKBJTS0qSUp4QQcUIIG4AQYiBwNXDIKKFboN43sRCid53PvgPsrv1/FnCrECJMCJGIGtMmv0nZelo1nkDWEbAEmAYghBgMhKISOQWkjmhiPAGuI4DrgFwp5bE6xwJVR+BmPO3SkdFvit28OY4ECoEuTXyez5VomZuBPai34luBDKPlb+2YgHeAXcBO1B9i7zqfPYX6Zs4DZhstvyfjCXAdhQLvor6otgLTAlxHbscTyDqqPf4m8BM35wecjpoaT3t0pHeoajQajQUxq1tGo9FoNB6gjbtGo9FYEG3cNRqNxoJo467RaDQWRBt3jUajsSDauGs0Go0F0cZdo9FoLIg27hqNRmNB/n9TTJrNXyIEOgAAAABJRU5ErkJggg==\n",
"text/plain": [ "text/plain": [
"<Figure size 432x288 with 1 Axes>" "<Figure size 432x288 with 1 Axes>"
] ]
...@@ -3478,10 +3481,6 @@ ...@@ -3478,10 +3481,6 @@
} }
], ],
"source": [ "source": [
"import numpy as np\n",
"from scipy.optimize import curve_fit\n",
"import math\n",
"\n",
"def signal_triangle(x, a, b, c, h):\n", "def signal_triangle(x, a, b, c, h):\n",
" v = np.divide(x - h,b)\n", " v = np.divide(x - h,b)\n",
" return a * np.abs(v - np.floor(v + 0.5)) + c\n", " return a * np.abs(v - np.floor(v + 0.5)) + c\n",
...@@ -3496,12 +3495,125 @@ ...@@ -3496,12 +3495,125 @@
"fitC = params[2]\n", "fitC = params[2]\n",
"fitH = params[3]\n", "fitH = params[3]\n",
"\n", "\n",
"print(params)\n",
"\n",
"model_seasonal_fluctuations = signal_triangle(x_data, fitA, fitB, fitC, fitH)\n", "model_seasonal_fluctuations = signal_triangle(x_data, fitA, fitB, fitC, fitH)\n",
"\n", "\n",
"plt.plot(x_data[-30:], seasonal_fluctuations[-30:], 'o')\n", "plt.plot(x_data[-30:], seasonal_fluctuations[-30:], 'o')\n",
"plt.plot(x_data[-30:], model_seasonal_fluctuations[-30:], '-')" "plt.plot(x_data[-30:], model_seasonal_fluctuations[-30:], '-')\n",
"plt.legend([\"Fluctuations saisonnières\", \"Modèle triangulaire des fluctuations saisonnières\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette modélisation a ces limites. Tout d'abord, à chaque période, la concentration en C02 augmente plus lentement qu'elle ne redescend, ce que ce signal triangulaire ne reflète pas. Nous observons de plus que l'amplitude des variations saisonnières augmente systématiquement entre 1958 et 2022, ce qui n'est pas reflété par ce modèle d'amplitude constante.\n",
"\n",
"## Augmentation systématique\n",
"\n",
"Nous étudions à présent l'augmentation systématique de la concentration en C02 antmosphérique. Nous tentons de modéliser les données `SAFitFilled`, c'est-à-dire les données complétées et ajustées pour omettre les fluctuations saisonnières.\n",
"\n",
"Nous essayons un modèle linéaire et un modèle quadratique pour ces données, donnés par les fonctions `linear` et `quadr`.\n",
"\n",
"Nous utilisons de nouveau la fonction `curve_fit` pour trouver quels paramètres de ces modèles correspondent au mieux à nos données."
]
},
{
"cell_type": "code",
"execution_count": 320,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f3930407b70>"
]
},
"execution_count": 320,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD8CAYAAACW/ATfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8jef/x/HXlZNEhkSs2nsHEcTe1KyiNUoH5WvU1ql+anVoqzpUdChFFUGIrXYQOyHUnkGMiohIjuxz/f44cSQSRCv783w88pBzn+u+z3Ui3u5z3df9uZTWGiGEEDmbVWZ3QAghRPqTsBdCiFxAwl4IIXIBCXshhMgFJOyFECIXkLAXQohcQMJeCCFyAQl7IYTIBSTshRAiF7DO7A4AFCpUSJctWzazuyGEENlKQEDAba114bS0zRJhX7ZsWfz9/TO7G0IIka0opS6nta0M4wghRC6Q5rBXShmUUkeUUusSH3+jlDqtlDqmlPJRSrkkaTtOKXVeKXVGKdU+PTouhBAi7Z7lzH40cCrJ4y1ADa21G3AWGAeglHIFegPVgQ7AT0opw/PprhBCiH8jTWP2SqmSwEvAF8B7AFrrzUma7Ad6JH7fFfDSWscAl5RS54H6wL5n6VhcXBzBwcFER0c/y25CPDM7OztKliyJjY1NZndFiHST1gu0PwAfAU6PeX4AsDTx+xKYw/+B4MRtzyQ4OBgnJyfKli2LUupZdxciTbTWhIaGEhwcTLly5TK7O0Kkm6cO4yilOgO3tNYBj3l+PBAPLHqwKZVmKVZIUUoNVkr5K6X8Q0JCUuwQHR1NwYIFJehFulJKUbBgQfkEKTKU0WTE+543IfEheN/zxmgypvtrpmXMvgnQRSkVBHgBrZVSfwIopfoBnYE39MMlr4KBUkn2Lwlcf/SgWuvZWmsPrbVH4cKpTxOVoBcZQX7PREbzi/LjWsI11kWu41rCNfzu+6X7az51GEdrPY6HF19bAh9ord9USnUAxgIttNb3k+yyBlislPoOKA5UAg4+744L8Ti//vorvXr1In/+/JndFSGS8QzzJIEEy2N99TJ58ubhtMtpToedxoCBEflHpMtr/5d59p6Yx/C3KKUClVK/AGitTwDLgJPAX8BwrXXC4w+Ttfn4+KCU4vTp05ndlVQFBgayYcOGZ263Zs0avvrqq3TrV1BQEDVq1Ei34z/Op59+SoECBSToRZaUNOgLnrxBz/Y/0G7Yoifs8fw80x20WmtfwDfx+4pPaPcF5pk7GcpoMrIxciMd83bE0crxuRxzyZIlNG3aFC8vLyZPnvxcjvk8BQYG4u/vT6dOnZ6pXZcuXejSpUtGdPG5iY+Px9r6yb+yEydOzKDeCJF2j57RF9t/kS59fiPe3oZ941+ybO+fr3+69SFH3UF7IOoA1xKucSDqwHM5XmRkJHv27GHu3Ll4eXlZtvv6+tK5c2fL4xEjRjB//nwANmzYQNWqVWnatCmjRo2ytJs8eTL9+vWjXbt2lC1blpUrV/LRRx9Rs2ZNOnToQFxcHAABAQG0aNGCunXr0r59e27cuAFAy5YtGTt2LPXr16dy5crs3r2b2NhYJk6cyNKlS3F3d2fp0qUcPHiQxo0bU7t2bRo3bsyZM2dSbTd//nxGjDB/XLx8+TJt2rTBzc2NNm3acOXKFQDefvttRo0aRePGjSlfvjze3t6p/py+++47atSoQY0aNfjhhx8s2+Pj4+nXrx9ubm706NGD+/fNo30ff/wxrq6uuLm58cEHHwAQEhJC9+7dqVevHvXq1WPPnj2Wn9vgwYNp164dffv2pUGDBpw4ccLyGi1btiQgIACj0ciAAQOoV68etWvXZvXq1QAkJCTw4YcfUq9ePdzc3Pj111//za+CEP+a0WRMFvTlNp3g1Vd/JqpwXpb9NZrb1YsD4Kgcn9tJaqq01pn+VbduXf2okydPptj2ODPvzNQ/3PkhxdfMOzPTfIzULFy4UA8YMEBrrXWjRo10QECA1lrrHTt26JdeesnSbvjw4XrevHk6KipKlyxZUl+8eFFrrXXv3r0t7SZNmqSbNGmiY2NjdWBgoLa3t9cbNmzQWmvdrVs37ePjo2NjY3WjRo30rVu3tNZae3l56f79+2uttW7RooV+7733tNZar1+/Xrdp00ZrrfW8efP08OHDLX0JDw/XcXFxWmutt2zZol999dVU2yV93LlzZz1//nyttdZz587VXbt21Vpr3a9fP92jRw+dkJCgT5w4oStUqJDiZ+Tv769r1KihIyMjdUREhHZ1ddWHDx/Wly5d0oD28/PTWmvdv39//c033+jQ0FBduXJlbTKZtNZah4WFaa217tOnj969e7fWWuvLly/rqlWrWn5uderU0ffv39daa/3dd9/piRMnaq21vn79uq5UqZLWWutx48bphQsXWo5ZqVIlHRkZqX/99Vf92Wefaa21jo6O1nXr1rX8/ST1LL9vQqRFZEKk/uPOH8kyaZNnH51gsNI3a5fSv5793LL9pzs/6bURa5/5NQB/ncaczRFn9v3z9aeKTRWsE0elrLGmik2V//yRaMmSJfTu3RuA3r17s2TJkie2P336NOXLl7fM1+7Tp0+y5zt27IiNjQ01a9YkISGBDh06AFCzZk2CgoI4c+YMx48fp23btri7u/P5558THBxs2f/VV18FoG7dugQFBaXah/DwcHr27EmNGjV49913k50FP86+fft4/fXXAXjrrbfw83s4M6Bbt25YWVnh6urKP//8k2JfPz8/XnnlFRwdHcmbNy+vvvoqu3fvBqBUqVI0adIEgDfffBM/Pz+cnZ2xs7Nj4MCBrFy5EgcHBwC2bt3KiBEjcHd3p0uXLty7d4+IiAjAPORkb28PQK9evVi+fDkAy5Yto2fPngBs3ryZr776Cnd3d1q2bEl0dDRXrlxh8+bN/PHHH7i7u9OgQQNCQ0M5d+7cU38mQvxXc8Pncoc75gda4/H9FtqNWMLVZpVYsWo4UYXyApCHPFgrazrn7fyEo/13WaLq5X/laOWIrbIlnngMGIgnHltl+58+EoWGhrJ9+3aOHz+OUoqEhASUUkybNg1ra2tMJpOl7YM52lqnuJ0gmTx58gBgZWWFjY2NZcqflZUV8fHxaK2pXr06+/alfrPxg/0NBgPx8fGptpkwYQKtWrXCx8eHoKAgWrZs+UzvG5JPRXzwmpD6+3vSe350SqNSCmtraw4ePMi2bdvw8vLC09OT7du3YzKZ2LdvnyXUk3J0fPj3WKJECQoWLMixY8dYunSpZVhGa82KFSuoUqVKiv7NnDmT9u2lRJPIGI+Oz6sEEy0+XkmtuX6c7lGXLZ59MNla44gjFWwrYNTGdA96yEFj9vf1fdxs3XjN6TXcbN24n2w26LPz9vamb9++XL58maCgIK5evUq5cuXw8/OjTJkynDx5kpiYGMLDw9m2bRsAVatW5eLFi5az7qVLlz7hFVKqUqUKISEhlrCPi4t76pm5k5OT5QwYzGf2JUqYb1h+cB0htXZJNW7c2HJNYtGiRTRt2jTNfW7evDmrVq3i/v37GI1GfHx8aNasGQBXrlyxvJcHF7ojIyMJDw+nU6dO/PDDDwQGBgLQrl07PD09Lcd9sD01vXv3Ztq0aYSHh1OzZk0A2rdvz8yZMy3/+Rw5csSy/eeff7ZcEzl79ixGY/rfwCJyp5D4kGRBb4iKpVP/+dSa64f/yNZs+uUNTLbWGDBQ1KYorRxbZUjQQw4K+855O9PKsRWFrQs/lx/gkiVLeOWVV5Jt6969O4sXL6ZUqVL06tULNzc33njjDWrXrg2Avb09P/30Ex06dKBp06YUKVKEfPnypfk1bW1t8fb2ZuzYsdSqVQt3d3f27t37xH1atWrFyZMnLRdeP/roI8aNG0eTJk1ISEh4bLukfvzxR+bNm4ebmxsLFy5kxowZae5znTp1ePvtt6lfvz4NGjRg4MCBlp9HtWrVWLBgAW5ubty5c4ehQ4cSERFB586dcXNzo0WLFnz//feWPvj7++Pm5oarqyu//PLLY1+zR48eeHl50atXL8u2CRMmEBcXh5ubGzVq1GDChAkADBw4EFdXV+rUqUONGjUYMmTIYz8VCfFfGE1GFkcstjzOE2bkle6/UGH93+yc+gp7pnQBKyussGJE/hEZFvIPqKcNPWQEDw8P/ejiJadOnaJatWqZ1KN/LzIykrx586K1Zvjw4VSqVIl33303s7slniK7/r6JrGFGWPITJKfgMLr2+IV8QbfZ/PObnHvFfAJUwabCcw15pVSA1tojLW1zxJh9VvLbb7+xYMECYmNjqV27NkOGDMnsLgkh0tHMsJnJHhc6cZ2uvX7FxhjDKu93uNa00nMP+X9Dwv45e/fdd+VMXohcwGgysi5iHSYeTtYoufscnd+cS2zePCzfMIpQ1+JYYZXpQQ8S9kII8a/MCZ+T7HGllYdpN2wR4eUKs2r5ECJL5sdZOdPfJf3uin0WEvZCCPEMHp1aCVD7J1+af7KKa43Ks3bRQGJcHHBWzhS2Tr2ib2aQsBdCiGeQLOhNJppNXEOdn3w539mNv2a/hcnOFntll2XO6B/IMVMvs4uzZ89a6rZkhoiICH7++een3gAmhEjJM+zhvSCGmHg6DF5InZ98OTqwKRvmvU2CnQ1OyonBLoMzsZepk7B/AqUUb731luVxfHw8hQsXTlYELS3Kli3L7du3AahcuTKBgYH4+Pg8tk1atGzZkgfTVTt16sTdu3efuk9sbCzDhg2jRYsWT12wI71LIAuR3SQtaJYnzMgrr/5ElZVH2DOxM75fd8dgsH3moZu4OHjMvY7PnQzjPIGjoyPHjx8nKioKe3t7tmzZYrk79b+YNGnSc+jdQ2mpZw/mm7YWLlyYpraPK4GcljLDQuQ0IfEhlhumnINu0/W12ThfDmXjb29xtntdDBgoY1PmmWbd+PrCiBHQqBH89ls6dTwJObN/io4dO7J+/XrAfFdt0uJmd+7coVu3bri5udGwYUOOHTsGmOvqtGvXzjLPPumQyZ9//kn9+vWpVasWQ4YMSXaX66Nt3N3dH9smqQefCoKCgqhWrRqDBg2ievXqtGvXjqioKAAuXLhAhw4dqFu3Ls2aNbMsxrJ27VoaNGhA7dq1efHFFy3FzpKWQH777bd57733aNWqFWPHjn1sOWEhcqKZYTMtQV/0UBCvtfsBh5BIfHyGcbZ7XYBnuiM2OBj69IFWrcBohJdfTreuJ5Mtwn7MGGjZ8vl+jRmTttfu3bs3Xl5eREdHc+zYMRo0aGB5btKkSdSuXZtjx44xdepU+vbtC8CUKVNo2rQpR44coUuXLpb68KdOncLLy4s9e/Zw9OhRwBzsSZ06dYqlS5eyZ88eAgMDMRgMLFqU9pVszp07x/Dhwzlx4gQuLi6sWLECgMGDBzNz5kwCAgKYPn06w4YNA6Bp06bs37+fI0eOWGrOpObs2bNs3bqVb7/9li+++ILWrVtz6NAhduzYwYcffij1ZkSOExIfwoywGZZ59BXWHqV711nE5s3D0k2jud6oAgAlrUum6XixsfD111C1KqxaBZMnw8mTkFFrCMnn8adwc3MjKCiIJUuWpFgNys/PzxKmrVu3JjQ0lPDwcHbt2sXKlSsBeOmllyxL5G3bto1Tp07Rtm1bwFxaoVSpUsmOuW3bNgICAqhXrx4AUVFRvPDCC2nub7ly5XB3dwcelkKOjIxk7969lnLAADExMQAEBwfz2muvcePGDWJjYy3lmR/Vs2dPDAYDYC4nvGbNGqZPnw5gKScs5QZETmA0GVl9bzUhOsS8QWtq/7yTZhNWc7NOadYuHkhUYSfAXE69u1P3px5z82YYORLOnoWuXeH77+Ex/9TSTbYI+ySLH2WKLl268MEHH+Dr60toaKhle2ozWh5c+EztAqjWmp49ez7xwqfWmn79+vHll1/+q74mLUlsMBiIiorCZDLh4uKSaiXJkSNH8t5779GlSxd8fX0fu/Ri0jLDjysnLEROkPRmKZVgovn/+eD+227z1Mpf3yTB3tb8HApbZfvEYwUFwXvvgY8PVKwIGzZAx47p2fvHyxbDOJltwIABTJw40VJO94HmzZtbhlh8fX0pVKgQzs7OybZv3LiRsLAwANq0acOKFSu4desWYB7bf3QRkjZt2uDt7W1pc+fOHS5fvvyf+u/s7Ey5cuUsi35orS3DSElLIi9YsCBNx3tcOWEhsiujyciMsBnJCppZG2Po/NZc3H/bTcDwVqyf/7Yl6A0YKG9TnkEug1I9XnQ0fPYZVKsGmzbB1Klw/HjmBT1kkzP7zFayZElGjx6dYvvkyZPp378/bm5uODg4WMJy0qRJ9OnThzp16tCiRQtKly4NgKurK59//jnt2rXDZDJhY2PDrFmzKFu2rOWYj2tTpkyZ//QeFi1axNChQ/n888+Ji4ujd+/e1KpVi8mTJ9OzZ09KlChBw4YNuXTp0lOPNWHCBMaMGYObmxtaa8qWLcu6dev+U/+EyEyPrlvtcDOcLq/PofCxYHZM686xgeY1GqywYmT+kU881rp1MHo0XLwIvXrB9OnwyGhtppASx0Igv2+5VWqlDwqcukHX12Zjf8fIxrn9uNS+OgD2yv6JN0tduGAO+fXrzWf0M2dCmzbp2v1nKnEswzhCiFzr0XWqS+46S6+OMzDEJeC9bqQl6Gva1nxs0N+/DxMmgKsr7NxpPpM/ejT9g/5ZyTCOECLXmhc+z/J99T/20eqD5YRVfIE1y4YQUdI8i87N1g2jTjm1WGtYudJ8AfbKFXjzTZg2DYoVy7DuPxMJeyFErvRgCEclmGgyeS11Z+0gqHVVNv7ej1hne6yxppdTr1TLH5w+DaNGwZYt4OYGf/4JiUsvZ1kS9kKIXOdB0NtERNNh8ELKbzpB4KBm7PqiG9rafD+Js1XKOjcREeZZNt9/D46O5nH5d96B7FBBJBt0UQghni8TJpyCw3i5z28UPH0z2YybPOQhr1VeonSUpb3W4OUFH3wA16/DgAHw5ZfwDPc7Zro0h71SygD4A9e01p2VUgWApUBZIAjopbUOS2w7DvgfkACM0lpves79FkKIZ/ZgKcEi/kF0fnMO1lFxrPYaxJU25plY1lhT0qZksjo3x4+bC5bt3Al165rH6ZNUTck2nmU2zmjgVJLHHwPbtNaVgG2Jj1FKuQK9gepAB+CnxP8oBJlfz16I3MpoMjInfA5O3hvo3sWTeHtblm0aYwl6gHjiLUF/9665hpa7O/z9N/z6Kxw4kD2DHtIY9kqpksBLQNJFF7sCD265XAB0S7LdS2sdo7W+BJwH6j+f7masrFzPPr0krXaZVoGBgcnKLEstfJGVPLg7ds7d36g/7S86DfyDf9xLsXTLu9ypWtTSzl7ZMzDfQEwmWLAAqlSBH3+EQYPMNW0GDwZDNj5tTeswzg/AR4BTkm1FtNY3ALTWN5RSD0avSgD7k7QLTtyWjFJqMDAYsNxhmtVkl3r2GeFJdewDAwPx9/e3FIp7XC18ITLD3PC5GKLjeHGUF1W9AzjZux7bv3+NhDzJf58r2lTkTKAjI0bAvn3QsCFs3Ah16mRSx5+zp57ZK6U6A7e01gFpPGZqSyCluE1Xaz1ba+2htfYoXDjrLMr7qKxaz/6vv/6iatWqNG3alFGjRlk+bUyePNlSjRKgRo0alvo73bp1o27dulSvXp3Zs2db2sybN4/KlSvTokUL9uzZY9n+aB37gwcP0rhxY2rXrk3jxo05c+YMsbGxTJw4kaVLl+Lu7s7SpUuTfTq4dOkSjRo1ol69ekyYMIG8efMC5lpCST8hjRgxgvnz5wMQEBBAixYtqFu3Lu3bt+fGjRtp+JsSIjnPME9mhM3A/tY9Xu06i6reAeyZ2Jkts15PEfTRYQ5MH1MeDw/znbDz5sGePTkn6CFtZ/ZNgC5KqU6AHeCslPoT+EcpVSzxrL4YcCuxfTCQtBJESeD6f+rlmDGQSsXG/8TdPU3lNHv37s2nn35K586dOXbsGAMGDGD37t3Aw3r2q1atYvv27fTt25fAwEBLPfuJEyeyfv16S7AmrWdvY2PDkCFD+PPPP+nXr5/l9ZLWs7exsWHYsGEsWrTIUisfzCWFBw0axPbt26lYsSKvvfZamt7y77//ToECBYiKiqJevXp0796d2NhYJk2aREBAAPny5aNVq1bUrl3bss+DOvYGg4F79+6xa9curK2t2bp1K//3f//HihUr+PTTT/H398fT07w+54PQBhg9ejRDhw6lb9++zJo166l9jIuLY+TIkaxevZrChQuzdOlSxo8fz++//56m9ygEPFxCsODJ63Tp8xv2tyNZP78/57vUStbOkGDLmSVNWDLFjbt3zXPnJ08GF5fM6Xd6emrYa63HAeMAlFItgQ+01m8qpb4B+gFfJf754KrjGmCxUuo7oDhQCTj4/LueMbJiPfvTp09Trlw5KlWqBMCbb76Z7Ez9cX788UfLtYKrV69y7tw5bt68ScuWLXnw6eq1117j7Nmzln2S1rEPDw+nX79+nDt3DqUUcXFxT33NPXv2WH5Gb731FmPHjn1i+zNnznD8+HHLzyghIYFiWfWWRJElzQybiQkT5Tf8Tft3/iQ2bx6814/ilnvyf2tX/Yuz+uO2nD/sQvPm5jnzbm6Z1OkM8F/m2X8FLFNK/Q+4AvQE0FqfUEotA04C8cBwrfWT19V7mkwuaJ8V69k/bsFwa2trTCaT5XF0dDRgHjbZunUr+/btw8HBgZYtW1qee9Li40nr2E+YMIFWrVrh4+NDUFAQLVu2fGIfn9TXx/VTa0316tXZt29fmo4txAMPZtugNfW+3ULjqRu4Wac06xb+D2OxfA/b3XbA97P2bFlYmmLFYNEi8zKBT/hnkCM8UyE0rbWv1rpz4vehWus2WutKiX/eSdLuC611Ba11Fa31xufd6YyW1erZV61alUuXLnHhwgXAfC3hgbJly3L48GEADh8+bClZHB4eTv78+XFwcOD06dPs32++ht6gQQPLf2JxcXGWmvepSVr7PulQjZOTExEREanu06RJE7y8vACSLa9YpkwZTp48SUxMDOHh4Wzbtg2AKlWqEBISYgn7uLg4Tpw48dg+CfHAnPA5WBtj6DhgAY2nbuDUax54rxtpCfqEeMXB3+oxtX4/diwpzYcfwpkz8PrrOT/oQapepsmT6tn7+/vj5ubGxx9/nKye/a5du6hTpw6bN29OtZ69m5sb7dq14+bNm8mO+Wibtm3bprhAaWdnx+zZs3nppZdo2rRpslr33bt3586dO7i7u/Pzzz9TuXJlADp06EB8fDxubm5MmDCBhg0bAlCsWDEmT55Mo0aNePHFF6nzhCtSH330EePGjaNJkybJLhq3atWKkydPWi7QJjVjxgxmzZpFvXr1CA8Pt2wvVaoUvXr1ws3NjTfeeMNyncDW1hZvb2/Gjh1LrVq1cHd3Z+/evY/tkxAPLsQ6Xb1Dz04/UnHtUXZP6cLmn94gwc4GgIv7i/Nd69dZPLYxjTxsOXbMXLTMyekpB89BpJ59DuDr68v06dOzxQIiefPmJTIyMrO7kYL8vmVfM8JmUHzfBV7qNw9DbDwbf+vL5bauAITfdGDt5Kb4L6tGoZJR/PKDPa++mnPO5J+lnr3UxhFCZEsPxuirL9hHq4+8uVemAGsWDeRupSIkxFmxa3Yt/vq6AQmx1owfD+PG2ZPkElSuI2GfA7Rs2TLNF0szW1Y8qxfZj9Fk5Pfbv9JyvA+15vgR1KYqG+f0JTafA2d3lWTl2JbcPFOQTp1gxgzzYt+5XZYOe631E2eKCPE8ZIWhTJF2M8NmYht6j24DFlBq9zkCRrRiz6SXuXPDmdXvNiNwVWUKlglnwtKDTOlZP8cM2fxXWTbs7ezsCA0NpWDBghL4It1orQkNDcXOzi6zuyLSwDPMk/wng3n5jbk43gxn089vcLxbQ3xn1mbz9Ppok6LruACWTKiLvX22LMmVbrJs2JcsWZLg4GBCQkIyuysih7Ozs6NkyZKZ3Q3xFDPCZlBh3THaDf2TWCc7vNeNxDesOSubtiDkQn7cOp+n6+e7qF/hBeztM7u3WU+WDXsbGxvKlSuX2d0QQmQio8nIyvCVhCXcptGXG6n/3RZu1inNwq9GsfCHrvy9viKFK4QxZLkPNdtcp4xNmWS16MVDWTbshRDCL8oPY9hVugxaSNntpzn6eiMmFP+Sv7o0QRlMdJ7kR8t3AnHMY01JCfonkrAXQmQ5D+rbFDp+jd59f8fp2l3++N8w3ts6ldDL+aj9yhm6fuqHS4lIbLDBoAwS9E8hYS+EyFKMJiMmTFReEcCLo7yIyuvIG+7LWTr3FYpWCWXYqhVUbh6MAw4Myp/yznaROgl7IUSWMSNsBio+gWaT11LnJ1/+LlGLDrfWEXqqMN0+30WzQUcx2JiwwopiNlIN9VlI2AshsgTPME/sb0fSccACSvmdY7bjYEZcm0mt1y7wzuSNOBe5n6y9DNs8Gwl7IUSWUPDIJTq+Ph+7ECN9WcC2ch0ZOm015Rua1z5yVs70d+mfyb3MviTshRCZambYTMr/fpDuY5dxI6EonfKuo/jEaN5/ewkGa/PdzQYMFLbOusuXZgcS9kKIDGc0GVl9bzVhUf9Qrc92Xty5jq20YXqPSbw09W/yFoqytK1gU0GGbJ4DCXshRIbzi/Lj8rYQOr79B+6RgfzywlDO/9GEjvUPW9ooFKWtS0vQPycS9kKIDOMZ5klEuIHQYSY+3vgZtsTybf+JWH1TgFJWt5O1NWCgm1O3TOppziMrVQkhMkRQ9BX2LayIdg1m2saRhOcvwKKtH2D9bQGskiSRQuGsnCljU+bxBxPPTM7shRDp7sMdXmx9twZfHf2e9mzGv30zDsx9mXgH2xRtFUpm3aQDCXshRLq5EmKkz9gLJMwryxqrjhSx/oct017jZL+GKdYGtMaa4fmHZ1JPcz4ZxhFCPHcJCTD9pwiqVVbUmb+T3VbNcCoexYrNozj5dqNkQe+II262bjJsk87kzF4I8Vzt2BtFv+H3uBPoiFehPrys13CprSubfn6DmPzJF4E1YKCoTVFaObbKpN7mHhL2Qojn4uT12wz8MIR9i6uwZ9SDAAAgAElEQVRRr9AJ9hV7lWL/BLP3k5c4NKYNya7CAgWsCvBWvrcyqbe5jwzjCCH+k/h4+PKHCOpWc+Lg8sp83v5z/O43IX9cGKtWDOXQe22TBb0tthS0Kki0js7EXuc+cmYvhPjXdu2C3kNvc+NkIWo1O81v+d+h3pqdXG9Qjg1z+2Es7pKsvRVWDM0/NJN6m7s99cxeKWWnlDqolDqqlDqhlJqSuN1dKbVfKRWolPJXStVPss84pdR5pdQZpVT79HwDQoiMd/06vPkmtGgB0fds+b8vf2br7dbUW7OTQ+++iPfaEcmCXqGoYFOBkflHZmKvc7e0nNnHAK211pFKKRvATym1EfgUmKK13qiU6gRMA1oqpVyB3kB1oDiwVSlVWWudkE7vQQiRQeLiYMYMmDJFExWbQLv3Axhd0pO245cR52CLz/IhXGlTLdk+BgyUtSkrZQ8y2VPDXmutgcjEhzaJXzrxyzlxez7geuL3XQEvrXUMcEkpdR6oD+x7jv0WQmSwbdtg5Eg4dQqqtw+i5yeb6fnTXFy/PURwkwr8NbsvxmL5LO2tsMJO2THIZVDmdVpYpGnMXillAAKAisAsrfUBpdQYYJNSajrm4aDGic1LAPuT7B6cuO3RYw4GBgOULl36X78BIUT6unoV3n8fli+HQmXDGbRkJ81L7aXjgPkUOHeLAx+258CH7dDWBsA8ZGONNTbKRoI+C0lT2CcOwbgrpVwAH6VUDcxB/a7WeoVSqhcwF3gRUKkdIpVjzgZmA3h4eKR4XgiRuWJi4Ntv4YsvQGtN709O4DHUl1ree2gxYAWxTnb4rBzK1RaVLfsYMDAi/4hM7LV4nGeajaO1vquU8gU6AP2AB6v9LgfmJH4fDJRKsltJHg7xCCGygY0bYdQoOH8eXn0VOn+6gyinQ7Qes5yqywO40qIym355k/tFnC37WGMtd8FmYWmZjVM48YwepZQ95rP305gDvEVis9bAucTv1wC9lVJ5lFLlgErAwefdcSHE83fxInTtCp06gcEAQ71X0XzODGzv/EWfNt9SecVh9o3ryCrvd5IFPUAZmzJyETYLS8uZfTFgQeK4vRWwTGu9Til1F5ihlLIGokkcf9dan1BKLQNOAvHAcJmJI0TWFhUFX38NX30F1tbw2VexlO6/kjDrm9SavZumk9YQnd+BlauGca1ppWT72mBDaRtZZCSrU+bJNpnLw8ND+/v7Z3Y3hMh1tIY1a2DMGAgKgj594JtvwNthBva3I2k7YjHlNp/kUjtXtszsQ1Rhp2T7y7TKzKWUCtBae6SlrdxBK0Qude6ceVz+r7+genXYsQOO1/LEmwRK7zhDu2GLyHP3Pr5fvcrRQc1SlCSWi7HZi4S9ELmM0WieYfPtt2BnB99/D8OHQ6zByN8hMTT5YgMeM7cTWrkIq7zf4Xb14imO8WDoRmQfEvZC5BJag7c3vPceBAdDv37mMfqiRWFm2EycL/xDr0F/UCTwKn+/3Zhdn3dLsZKUHXZUtq2MURtl6CabkbAXIhc4edJ89+v27eDuDl5e0KSJ+TnPOzOpsmQfLceuwGRjzboF/bnwcq1k+zsoB7lBKpuTsBciB7t3D6ZMgR9/BCcn+OknGDzYPK0S4OfLX9H2vWVUWXmE4CYV2PTLW0SWSF7AzF7ZS9DnABL2QuRAWsOiRfDhh/DPPzBwIEydCoUKPWyzfNN7vD54AU7X7rJ3fCf8x7yINiS/9UaCPueQsBcihzl6FEaMAD8/qF/fPLWyXr0kDeLiMH72f3SfOoOIEi4sXz+Sm/XLpTiODN3kLBL2QuQQYWEwcaJ5qKZAAZgzB/r3T74a4P3Tgdx7oytFD1/hdM+67PimB7HO9imOVca6DN2cumVg70V6k7AXIpszmWD+fPj4YwgNhaFD4dNPzYEPYDQZWXdvLWV+30TdCYtxsbVmw9x+nHuldqrHq2lbk9aOrTPuDYgMIWEvRDbm72+eI3/woHl2jaenebZNUvsu+VB/6JeU23KSyy2rsMWzT4rlAsF8MdZJOXFf38+g3ouMJGEvRDZ0+zaMHw+//QYvvAB//GFeJjDpTa6eYZ6UWX+ENmOWYmuMNd8JO7Bp8nGdJBSK/i79M+gdiIwmYS9ENpKQYA748eMhPBzefRcmTQLnJAUor8ReYd3NJbQat5Lqiw9yy60km355kztVi6Z6TLkQmztI2AuRTezbZ55lc/gwtGoFM2eaa9qExIcwK2wZGo1C8cL+s7wxdBFOV+9w8L22HPioPSbb1P+pW2ElQZ9LSNgLkcX984/54uv8+VCihPnu1169zEM2V2Kv4GP0AcAqNp4GX/9F3RnbiChVAO91I7nRsPxjj1vBpoKUPMhFJOyFyKLi42HWLPN0yqgoc+CPHw9585pn2My5O8fSttCJ67QdtogX/r7GiTcasHPqK8Q52aU4phVW5FV5KWxdWII+l5GwFyIL2rnTPGRz/Di0a2cud1ClysPn54Sbg17FJ+AxYxsNpm0ixsWetX/+j4udaqZ6TBmbz90k7IXIQq5fhw8+gCVLoEwZ8PExLxP4YJaNZ5gnCZgXfitw+ibthi+iyJGrnHmlNr7TuhNdMG+qx5WgFxL2QmQBsbEwY4b5Zqi4OPPQzdix4OCQvJ0JEyrBRO1ZvjT6cgNxjnlY//vbnO/mnuKYzspZplIKCwl7ITLZli3mFaNOn4aXX4YffoDyqVxXnRE2A5fzt2g7fDHFDwVx/qWa7Pi2F/dfeLhUYD6Vj3gdj0EZKGxdOAPfhcjqJOyFyCRXrpgXElmxAipUgHXr4KWXUm87I/R73H/dRZPP1hNvZ8Nfv77JmR51LeM79sqewS6DM7D3IruRsBcig0VHm5cE/OIL8+PPP4f33zcvEfgoo8nIjr/n0n3YLEruvcCldq5s+/41jMXyWdrIcI1ICwl7ITLQ+vUwejRcuAA9ephDv/QjS7mGxIewPGI5jtqe0r9voN3kNWgrK7bM7MPJ1+snq4lgQIZrRNpI2AuRAS5ehDFjYO1aqFoVNm+Gtm2TtwmJD8E7wps8Kg+OF67TZowXJfdc4HKrKmyd0ZvIkvmTtTdgYET+ERn4LkR2JmEvRDq6fx++/tr8ZWMD33xjvhhra5uy7eKIxaj4BGr89BeNvtpIgq2BrTN6c+LNBskrnAE22FDapnTKgwjxGBL2QqQDrWHVKnOhssuX4fXXYdo0c7mDR80ImwGY74J9cdQSihy5yoVONdjxTc9kY/NJ2SgbuQNWPBMJeyGeszNnzGfvmzdDjRrg6wstWqRsFxIfwrKIZRhi4qn33RY8vt9CjIuDeWGRbu4pzuYfkOJl4t94atgrpeyAXUCexPbeWutJic+NBEYA8cB6rfVHidvHAf8DEoBRWutN6dN9IbKOyEjzzJrvvgN7e/NNUsOGgXUq/8qMJiOLIxZTxD+IF0d5Uej0TU718mDX1FeILuCY6vENGChrU1bO6MW/kpYz+xigtdY6UillA/gppTYC9kBXwE1rHaOUegFAKeUK9AaqA8WBrUqpylrrhPR5C0JkLq1h2TLz9Mlr1+Dtt+Grr6BIkdTbzwibgbUxhmZTN1D7l11EFsvH6qWDCWrrmqydNdYoFDbKRs7kxX/21LDXWmsgMvGhTeKXBoYCX2mtYxLb3Ups0xXwStx+SSl1HqgP7HvOfRci0504ASNHwo4dUKcOLF8OjRo9vr1nmCcld52lzZiluASFcmxAE/ZMfJlY54eT7A0YsMJKQl48V2kas1dKGYAAoCIwS2t9QClVGWimlPoCiAY+0FofAkoA+5PsHpy47dFjDgYGA5R+dKKxEFncvXswebK5GqWzM/z8MwwaBAZD6u1D4kNYefk3Wk1cTfXFB7lbvhDea0dwrUnFFG3zqDwS8uK5S1PYJw7BuCulXAAfpVSNxH3zAw2BesAypVR5ILWrSjqVY84GZgN4eHikeF6IrEhr+PNP+PBDuHXLHPBffAGFCj1+n5C4Wxye+x5vfbKKPOFRHBrThgMftifBPuX8S6lOKdLLM83G0VrfVUr5Ah0wn7GvTBzmOaiUMgGFEreXSrJbSeD68+muEJknMNBcY37PHmjQwFzLxsPjyfss8P+EVh8sp/3Os1yvV5bt3/ci1LV4sjbWWFPGpoxceBXpKvVl5pNQShVOPKNHKWUPvAicBlYBrRO3VwZsgdvAGqC3UiqPUqocUAk4mD7dFyL9hYWZQ75uXfO0yrlzYe/e5EFvNBnxvueN0WTEaDKy6J957P3kJd5o+jVFDl9h+/QeLN84KkXQAxL0IkOk5cy+GLAgcdzeClimtV6nlLIFfldKHQdigX6JZ/knlFLLgJOYp2QOl5k4IjsymeD332HcOLhzB4YPh48mGdlvs5EoOuKII0aTkdX3VhOiQwDzClLF91+kw7vLKHjmJme7urPzy1e4XzTlzVEP7oKVoBcZQZnzOXN5eHhof3//zO6GEBaHDpnD/dAhaNoUPD2hVi1YH7me83HnsVN2dHToaFnsGyDP3fs0mbKWmgv2ca9UfnZ804OgdtUf+xqy4Lf4r5RSAVrrpwwmmskdtEIkcfs2/N//wZw55nnyf/5pLnUw664nvmEPP6BG6+iHQa81lVceofl4H+xDjQQMb8X+jzsQ75gnxfGtsWZ4/uEZ9XaEsJCwFwJISIBff4VPPoGICPOiIhMnmqdVApZ1Xx/lcu4fWn20gtI7z/JP7VKsXjaEELeSqbY1YKCMTZn0egtCPJGEvcj19u41D9kEBkLr1jBzJri6mufGzwhbnOo+1sYY6n+3hTqeO4i3t2HHtO783b8J2pD6nAcrrKQcschUEvYi17p507yo9x9/QMmS5pIHPXrA7YQQZoUtI574lDtpTYX1f9P8/3xwDg7jZJ96+E3uQlRhp5RtkXF5kXVI2ItcJy4OZs2CSZMgKso822b8eLifJ4Sf7j4m5IF8F0No+fFKym49xW3XYixfP5LrjSpYnpcbokRWJmEvchVfX3Mtm+PHoUMH+PL7+5wsuop5sXdIiE19XN4QFUu9H7ZR98dtJNgY2PlFN44OakYR2xIo0z8oFCPzj8zYNyLEM5KwF7lCcLC5xIGXF5Qta15YpFGnELwil/Ck6cdlN5+g5diV5Lscypnuddj9aVeiixWgvJQaFtmMhL3I0WJj4fvv4bPPID7ePHQzdizMjfYkKPLx9/o5B92m+SerqLDhOKGVi7Bi9XCCm1XCCitGyoVWkQ1J2Isca/Nm85DN2bPQpYs59MuXf7gMYGpsImPw+GErdWbtwGRthd/klzn2TmtKO1ZktJzJi2xMwl7kOJcvm+fJr1wJFSvC+vXQqZP5Oc8wz9R30poqywNoOmUteW+Ec6qXB/sndqVwGXeGSciLHEDCXuQY0dHwzTfw5Zfm5VunTjWHfp7EG1kfd0b/wpErtPh4JcUPBfFP7VL8Ne9/2DVpRX8JeZGDSNiLHGHdOhg9Gi5ehJ49Yfp0SLomzpXYKyn2cfjnHo0/W4frkkPcL5yX3Z79CX+rGz2cu2Rgz4XIGBL2Ilu7cMEc8uvXQ7VqsHUrtGnzoOTwRlo4tGBxRPK7YK1i43H/dRf1v9mEdUw8gcNb88+4wXQo3iuT3oUQ6U/CXmRL9++bh2umTQNbW/OZ/MiR5u8BDkQd4FrCteRBrzVlt5yk+fhV5L8QwqV2ruz6vBsFqzWSaZQix5OwF9mK1uDjA+++C1euwJtvwtdfQ/HENUE8wzxTLVpW6MR1mk5YTRnfM4RVLMyqpYO52rYG5WzKSdCLXEHCXmQbZ86Yz963bAE3N3P54WbNzM8ZTUbWRazDgCFZ2DvcDKfR1I24Lj5ArLM9uz7vxtGBTTHZWmMFEvQi15CwF1leRAR8/rl5nryDA/z4IwwdCjFWRhaGreQOd1LsY22Moc6sHdSduR1DbAKBQ5pz8IN2xOR3xAorRkt5A5HLSNiLLEtrWLoU3n8frl+HAQPM4/QvvGB+fpvRL0XQqwQT1bwO0WjqBvLeCOdcl1rsmfQy4eUKAVKsTOReEvYiSzp+3LzI986dUKcOrFgBNesnrvcaFpLqPqV2nqXZhFUUPn6dG3XLsGFuP240LG95XoJe5GYS9iJLCQ8316/x9IR8+eCXX2DgQDAYYH2kr2Vh76QKnL5J08lrKLf5JPdK5Wfjb305+2pt851VSMgLARL2IoswmWDhQvjoIwgJgSFDzOP0dvmNeIbPSXUfx+t3aTBtE9UXHSDOwRa/yS8TOLg5CXY2KBT2yl5CXohEEvYi0x05Yh6y2bsXGjaEjRvNQzch8SHMDV+Son2eu/fxmLEN9193oRJMHP1fUw5+2I7ognkB81qvZaUEsRDJSNiLTHPnjnmB719/hYIFYd486NsXrKxSny9viIrF/bfdeHy/lTz3ojndsy77x3UkskxhmS8vxFNI2IsMl5AAv/9uXg4wLMx8Vj9lCri4mJ9/tGCZik/AddFBGk77i7w3wrnU1pW9Eztzu7r5TiqZLy/E00nYiwx18CAMHw7+/uYbojw9oZhrCIsjlmMfZs897j1srDUV1x6j0RfrKXDuFjc8yrDxt75cb1wBO+xws62MURsl6IVIAwl7kSFCQsxn8nPnQrFisGgR9OkD97WReeFLSSCBOOIs7UvuPkeTKWspevgKoZWLsHbhAC52qglKyewaIf6Fp4a9UsoO2AXkSWzvrbWelOT5D4BvgMJa69uJ28YB/wMSgFFa603p0HeRDcTHm8fkP/kEIiNh9PuxuI9ZC04x/Hg35TTKogcv0ejLjZTeeZaIEi5smdmHU73roQ1W2GCDjbKRoBfiX0jLmX0M0FprHamUsgH8lFIbtdb7lVKlgLaApVi4UsoV6A1UB4oDW5VSlbXWj1/wU+RIe/aYh2yOHjWXHZ45E66U3sHp2GAwJW/7QuBVGk3dQNmtp7hfKC+7PuvKsf81JcHOBmusKWNTRoZrhPgPnhr2WmsNRCY+tEn80omPvwc+AlYn2aUr4KW1jgEuKaXOA/WBfc+r0yJru3HDvKj3woVQqhTM9QrnXtv5bFZAbPK2hU5cp+GXG6iw4ThR+R3YM7EzRwc2Iy6veXkphZKgF+I5SNOYvVLKAAQAFYFZWusDSqkuwDWt9VGVeKdiohLA/iSPgxO3PXrMwcBggNJJlxQS2VZcnPnsffJkiImB8ePhzfevsomVqEfaFjh9kwZf/0Xl1YHEONux7+MOBL7Tklhnu2Tt7JW9BL0Qz0Gawj5xCMZdKeUC+Cil3IDxQLtUmj/67xoefhJIeszZwGwADw+PFM+L7GXHDvMUypMnoWNHmDEDNhSawaMXa1wuhNBg2l9U8T5MnKMtB99vy+HhrYhxcQDAWTlT2LqwBLwQz9kzzcbRWt9VSvliHqopBzw4qy8JHFZK1cd8Jl8qyW4lgevPpbciywkONlelXLYMypWDNWugVScjc+8lL3HgHHSb+tM3U22pPwm2BgJGtCJgVGvLXa8Pyhv0d+mfGW9DiBwvLbNxCgNxiUFvD7wIfK21fiFJmyDAQ2t9Wym1BlislPoO8wXaSsDBdOm9yDQxMeb68p99Zq5rM2UKDHvfyOa41cy993CWjcu5f6j3/VaqLg/AZG3F0YFN8R/zIveLOANgjTUaLeUNhEhnaTmzLwYsSBy3twKWaa3XPa6x1vqEUmoZcBKIB4bLTJycZdMmGDUKzp6Fzl3j6fjZZnpWq8eiJOu9Fjx5g3rfbaayTyDxdtYcHdSMgJGtMRbLB0j9GiEymjJPtslcHh4e2t/fP7O7IZ4iKMi89uuqVVCpEkz7IZpbjf4giihLm8LHgqk/fTMV1x0j1tGWY/9ryuHhrYgq7IQVVoyUFaKEeG6UUgFaa4+0tJU7aMVTRUXBN9+YV4mysoIpU2Nx7D+by3kefmArEnCZ+tM3U37TCWKc7DjwfjsCh7YguoAjYJ5VM9hlcGa9BSFyPQl78Vhaw9q1MGYMXLoEvXrBuK9C2enyp6VN8f0Xqf/NJsrsOENUfgf2jetI4OBmxOZzsLSxxlqCXohMJmEvUnX+PIweDRs2gKsrrNsSxfm6s9kJoDVlt57C44etlNh3kfuF8uI3qTPHBjQlzin5PPkHUymFEJlLwl4kYzSah2u++Qby5IHvvoP+w4wsuD8Hq7gEKvkcwePHbRQ6eYOIEi7s/KIbx/s2It4xT7LjyAVYIbIWCXsBmIdsVq40X4C9ehXeegu+/hpW2HmyKOQ+tRYdoM6sHThfDSO0SlE2/fQ6Z7vXxWRjSHGsCjYVJOSFyGIk7AWnTpmnUm7dCm5uMOuPMK7UWsyaO+F4zNhNrd92Y3/HyPUG5fD9ujuX2rmar9QmkvVehcj6JOxzsYgI+PRT+OEHcMxroue03TR++29Cbt6m8bgd1Fi4H5v7sVxsX52A0W243rB8imPIcI0Q2YOEfS6kNSxZAh98YK5Q2fKt87T5ZDsVr5ym9ju+VFp9FK3gTI+6HB7RmlDXYimOIXPmhcheJOxzOKPJyOp7q7mr79LTqSc3TxVmyPBY9u22pVTtf3j39220vrWVOn19KX7gEjFOdgQOaU7gOy2IKJk/xfEUivI25eVMXohsRsI+h/O970uIDuF+uC09P77G7rkFsc+XQL8v1/B2wnxqv7OLfJdDCS9dgJ1fdOPkGw1TlBl+wAor7JSdBL0Q2ZCEfQ7lGeZJAgmYTHDIqxprpzTFeNueV3pu4kOnb6k91Y88EdFcb1AOvylduPBSTbTB6onHtFN2chFWiGxKwj6HSiCBq4Ev4P1RSy77F+WVamuZWH0qbisOAXCuay2ODG3JP3XLPPE4Mo1SiJxBwj4H+urCb6z9ohVH5lWkn9MffFTqW8qdOk/MNTuODG3B0cHNUx2PB5ldI0ROJWGfgyQkwBs/bufo5Gb0j/idDXlmky8inNslirJ9eg9O9/RIUc4gKQflIMM0QuRQEvY5gNFk5Putezg1NIw+FxezmLVog+Jiu5psGdSUa00qgkq5WqRMnxQi95Cwz6aMJiMrw1dy8+IdDENu0jNgJVU4S7iTC4cGt+X4242JLOGSbJ+ODh05GH2QKB0lZ/BC5DIS9tmA0WRkXcQ6ok3R3OUuVlhRIOAKRcaf5pWDO8iLkZNFa7L2435cfq0mCXmS/7U+KGdQOU9lKuepnEnvQgiRmSTss6AH4Y6CRnaN8DH6AGB7L5oaKwOoPMufUhcuYcSBv4q+xM0vqxPf1eWxx5OboIQQEvZZ0IGoA9w03QTAJ3IlRY5cpcaCvVT2PoJtVAxHcWOGy3SivixJpV43UxuOB+SCqxDiIQn7LOTBjVBgPouvsiKAGvP38sLf14i2sWORfp3Z1gNxHmXFi+8FYOtw87HHssJKgl4IYSFhn8keDNkkkICTzovDgSO4LjpAZZ8j2NyPJbhsWca+MI2fbw2hVLtQXpm6k8Llwx97PJknL4RIjYR9JvOL8iPyyimqLT2E65KDuFy8TayjLX+3r8+3oaNZvKs7BcuG03uJL9XbX0r1GHKXqxDiaSTsM0FIfAhLb82n4vq/qbb4IO12nkVpzdWmFdk3ugNzr/VjrWcLtEnRcdx+Wo8MwMYuwbK/s3Kmc97OHI85jlEbJeiFEE8lYZ8BQuJDWBaxDJNO4IVDF3FdcpBBK4+QJyKa8NIFOPBhO071qc/+s3VYOa4lty+64Nb5PF0/30Wh0pFodKrDM62sW2XiuxJCZCcS9ukkJD6EpRFLzWPxV0Kp7X2YqksPUeDcLeIcbDnXpRYnX6/PtcYVCL3qgs/45hzfUIHCFcMYstyHam2uAFBehmiEEM+BhP1z9OBia6yO5f7tK1RfFUiV5QEUP2gea7/WqDxbRrbmXFd34pzsiI0ysG2aB9t/9EAZTLw82Y8W7xzB2tYk0yaFEM/VU8NeKWUH7ALyJLb31lpPUkp9A7wMxAIXgP5a67uJ+4wD/gckAKO01pvSqf+ZxmgysjFyIx3zdsTRyhGjyYjX9bmU2OhPleUBlN5xGkO8idvVirFnYmfOdK9DRKkCgHlZwOMbyuPzf825cyUftV89Q9cpfhQsEYUVBmykbrwQ4jlTWusnN1BKAY5a60illA3gB4wGnIHtWut4pdTXAFrrsUopV2AJUB8oDmwFKmutE1J/BfDw8ND+/v7P5Q2lp6TTJO+Z7hFDDFZxCZT2PUMV7wDKb/gbW2MsESVcONOjLmd61OV29eLJjhFywYWV41pwamtZila9TfdpvlRqek2mTAohnplSKkBr7ZGWtk89s9fm/w0iEx/aJH5prfXmJM32Az0Sv+8KeGmtY4BLSqnzmIN/Xxr7n6mSlironLczofGh+Bh9UCg05v8YVXwCJf3OU2l1IBXWHcMh1Ei0iwNnetTldE8PrjcsB1bJV32KMVqz5bv67JhVG5s8CXT7YictBh5nzAvDM+NtCiFymTSN2SulDEAAUBGYpbU+8EiTAcDSxO9LYA7/B4ITt2VJD4ZjWji0YOf9ndgoG0upgjnhcx42jI+nlN95Kq0KpMJ6c8DHOtpyqV11zvSoy+U2VTHZpvxxag1HV1dk1SfNuXvdidZ9rrLou1IULdoCaJFB71IIkdv9f3t3HhxFmcZx/PuQhHAkHFkDokGSsAE5XIOliLAFFJcgClKihUqVlrpolViwR60gKmUpVV7ltcjW4h4gKyCLIMhm5dBFcQthATlCOMJN5FzuQwNJnv2j38hABjJJZpiezPOhptLT6en5dY4nzTtvPxNSsXdDMLki0gSYKyIdVTUfQETGASXAR27zYJ1aKowVicgIYATADTfcUI3oNXe45DAzTs1AUaafml7h81JSSstl2/j5vEsK/J0dKBycy64+7SitX/ey+z+wOY25Y3uy5auW5ObCxFnQrVvLSB6SMcYEVaXZOKp6XESWAv2BfBF5BLgb6K0XBv+LgMCKlgHsC7KvycBk8Mbsqx69asrnugvC/an3M4/KAa4AAAp8SURBVPPUTMooq7BdnXMlZCwrJGf+Olr/cwP1j57hXEryhQLf+8YrFniAH0/WZdEbt/PVn3Kpl1LC++/Dk09CQkKkjs4YY64slNk46cB5V+jrA32A10SkP/As0ENVzwY8ZD4wXUTewnuBNgdYGf7olTtccpjZp2YzsOFAPjvzGSWUAFQ4i6978gcyFxeQnZdP5pJNJJ/6keKUZHb270jh4JvZ3avyAg/ekM3q2W3JG9+TYwfr8cQTMGFCXdLTI3J4xhgTslDO7FsAU924fR1glqoucC+8JgOLvQk7fKuqT6nqRhGZBRTgDe88faWZOOFSXtiHpg4lPTGdM2VnfrqoqbwffKCUomNkf55Pdl4+Gd8UklBSxtn0FArvzWX7wJvY270NpfWSLvt8iSRSQgmJJJKVlMWO9an84Xc5bF1+LbfdBhPnQefOkTxiY4wJXaVTL6+GcEy9nHZiGkfLjpJAwk9tgi+iyjUF+8nO20D2v/JpvnYvAEdzmrFjQEe233UTB25tVWEWTbnLXeR0/Di88AJMmgRNm8Krr8Jjj112N8YYEzZhnXrpd+8ee/ei+4GFPul0MRnLCslaXECrJZtoVHQMFWH/ra34Zvzd7BhwE8faNA+638quYC0rgylTYMwYOHIEnnoKXn4Z0tLCcljGGBNWMV/sMxIyKCot8u6o0rTwEJmLC8hcsonrlm8n8Vwp51KS2dOjDSt/24+d/Ttwtnmji/ZR1QuaVq2CkSNhxQro2hUWLoROncJ9ZMYYEz4xW+zL39Up8UwxWd9so9WSTWQuLqDxnqMAHGl7Let+1Z1dfduxr0v2RXPgxf0ro4w61GFk05EhPeeRI/Dcc/DBB9CsGXz4IQwfzmXfFtAYY/wiZot9KaVc9+0OhgyZRGJxCecb1GVv9xxWj+rNrj7tfupDU658LL86DcZKS70CP24cnDgBo0fD+PHQuHE4j8gYYyInZov9Q6kP8WmHaax/rBu7+7Tn+66tKU2ueDiCkJ2UXe2eM8uXe0M2a9ZAz54wcSJ06FDD8MYYc5XFbLFPT0znfGo9lk0YUuFz5cM0KZJCemJ6tQr9wYPei69TpsD118PMmfDAAzZkY4yJTTFb7AGSJIlG0ojO9Tqz8seV/KA/1Lg1cEmJN43yxRfh7Fl49ll4/nlISQlTaGOMiYKYLvaBhb1Ncpsa7+/rr70hmw0boF8/eO89aNu2xrs1xpios0t/gH374OGHoUcPOHkS5syBzz+3Qm+MqT3iutifOwdvvukV9U8+8YZuCgpgyBAbmzfG1C4xPYxTE0uWwDPPwObNcM898Pbb0Lp1tFMZY0xkxN2Z/Z49MHQo9O0L58/DggUwf74VemNM7RY3xb64GCZMgBtvhLw8eOUVyM+HgQOjncwYYyIvLoZx8vJg1CjYtg3uuw/eegui9OZYxhgTFbX6zH7HDhg0yDt7T0iARYtg9mwr9MaY+FMri/3Zs17vmvbt4csv4fXXYf16b5zeGGPiUa0axlGFefO8RmW7d8ODD8Ibb3jtDowxJp7VmjP7rVthwABvjnxqKixdCtOnW6E3xhioBcX+9GkYOxY6dvQ6VL7zjtehskePaCczxhj/iOlhnFWrvDP5oiJ49FHv/V+bB3+XQWOMiWsxXeyzs6FdO/j4Y+/tAY0xxgQX08U+Lc2bTmmMMebKYn7M3hhjTOWs2BtjTBywYm+MMXHAir0xxsSBSou9iNQTkZUisk5ENorIS259mogsFpFC97FpwGPGisg2EdkiIndG8gCMMcZULpQz+2Kgl6reDOQC/UWkCzAG+EJVc4Av3H1EpD0wDOgA9AcmiUhCJMIbY4wJTaXFXj2n3d0kd1NgMDDVrZ8K3OuWBwMzVbVYVXcC24DOYU1tjDGmSkIasxeRBBFZCxwCFqvqCqC5qu4HcB+buc2vB/YGPLzIrTPGGBMlIV1UpaqlQK6INAHmikjHK2we7K26tcJGIiOAEe7uaRHZEkqWIK4B/lfNx0aan7OBv/NZturzcz4/ZwN/5wuWrVWoD67SFbSqelxEluKNxR8UkRaqul9EWuCd9YN3Jt8y4GEZwL4g+5oMTK7K8wcjIqtU9daa7icS/JwN/J3PslWfn/P5ORv4O19Ns4UyGyfdndEjIvWBPsBmYD7wiNvsEWCeW54PDBORZBHJAnKAldUNaIwxpuZCObNvAUx1M2rqALNUdYGILAdmicjjwB7gfgBV3Sgis4ACoAR42g0DGWOMiZJKi72qrgc6BVl/BOh9mcdMACbUOF1oajwUFEF+zgb+zmfZqs/P+fycDfydr0bZRLXCa6fGGGNqGWuXYIwxcSBmi72I9HftGLaJyJgoZfiriBwSkfyAdb5oIyEiLUXk3yKyybW5GOWXfLHQgsNdW/KdiCzwYbZdIrJBRNaKyCo/5RORJiIyW0Q2u5+9O3yUra37mpXfTorIaB/l+7X7fcgXkRnu9yR82VQ15m5AArAdyAbqAuuA9lHI0R24BcgPWPc6MMYtjwFec8vtXc5kIMvlT4hgthbALW45FdjqMkQ9H961GCluOQlYAXTxQ7aAjL8BpgML/PR9dc+5C7jmknW+yId3Nf0Tbrku0MQv2S7JmQAcwJunHvV8eBee7gTqu/uzgEfDmS3iX9QIfWHuABYG3B8LjI1SlkwuLvZbgBZuuQWwJVhGYCFwx1XMOQ/o67d8QANgDXC7X7LhXRvyBdCLC8XeF9ncc+yiYrGPej6gkStY4rdsQbL2A/7jl3xc6DyQhjdxZoHLGLZssTqM4+eWDL5rIyEimXgzqnzT5kL83YLjHeD3QFnAOr9kA++K9EUislq8K9H9ki8bOAz8zQ2B/VlEGvok26WGATPcctTzqer3wJt409j3AydUdVE4s8VqsQ+pJYPPRCWziKQAnwCjVfXklTYNsi5i+VS1VFVz8c6iO0sYWnCEg4jcDRxS1dWhPiTIukh/X7up6i3AAOBpEel+hW2vZr5EvGHNP6pqJ+AMrhvuZUTrd6IuMAj4R2WbBlkXqZ+7pnhNJLOA64CGIjI8nNlitdiH1JIhSg6K1z4CqUYbiXASkSS8Qv+Rqs7xWz7wWnAASwlowRHlbN2AQSKyC5gJ9BKRv/skGwCqus99PATMxesq64d8RUCR+18awGy84u+HbIEGAGtU9aC774d8fYCdqnpYVc8Dc4Cu4cwWq8X+v0COiGS5v9LD8No0+IEv2kiIiAB/ATap6lt+yic+bsGhqmNVNUNVM/F+rr5U1eF+yAYgIg1FJLV8GW9cN98P+VT1ALBXRNq6Vb3xrqSPerZLPMiFIZzyHNHOtwfoIiIN3O9ub2BTWLNdjRdDIvSCxl14M0y2A+OilGEG3vjaeby/tI8DP8N7ca/QfUwL2H6cy7sFGBDhbL/E+2/demCtu93lh3zAL4DvXLZ84EW3PurZLsnZkwsv0PoiG964+Dp321j+s++jfLnAKve9/RRo6pds7vkaAEeAxgHrfJEPeAnvpCcfmIY30yZs2ewKWmOMiQOxOoxjjDGmCqzYG2NMHLBib4wxccCKvTHGxAEr9sYYEwes2BtjTBywYm+MMXHAir0xxsSB/wMj6cIeya8dhQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"def linear(x, a, b):\n",
" return a * x + b\n",
"\n",
"def quadr(x, a, b, h):\n",
" return a * np.square(x - h) + b\n",
"\n",
"x_data = np.array(data.index)\n",
"y_data = np.array(data['SAFitFilled'])\n",
"\n",
"params_lin, extras_lin = curve_fit(linear, x_data, y_data)\n",
"params_q, extras_q = curve_fit(quadr, x_data, y_data)\n",
"\n",
"fitA_lin, fitB_lin = params_lin[0], params_lin[1]\n",
"fitA_q, fitB_q, fitH_q = params_q[0], params_q[1], params_q[2]\n",
"\n",
"model_lin_sys_augm = linear(x_data, fitA_lin, fitB_lin)\n",
"model_q_sys_augm = quadr(x_data, fitA_q, fitB_q, fitH_q)\n",
"\n",
"x_plot = indexed_data.index.strftime('%Y-%m')\n",
"\n",
"plt.plot(x_data, data['SAFitFilled'], '*', color = \"lightgreen\")\n",
"plt.plot(x_data, model_lin_sys_augm, '-', color = \"blue\")\n",
"plt.plot(x_data, model_q_sys_augm, '-', color = \"red\")\n",
"plt.legend([\"Augmentation observée\", \"Modèle linéaire\", \"Modèle quadratique\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le modèle quadratique semble correspondre assez précisément aux données, nous allons donc l'utiliser pour extrapoler l'évolution future de la concentration de C02 atmosphérique jusqu'à l'année 2050. Nous calculons le nombre de mois supplémentaires à générer par le modèle affichons le résultat."
]
},
{
"cell_type": "code",
"execution_count": 328,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f3930252710>"
]
},
"execution_count": 328,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlclNX+wPHPAVHcNUVzxxUVQUTUzBKXzDW1zaUsl0wrrW7dNuuWrffnzRaXupXZVa+VS+5aet01UzPMJfcVFTVFUARUhJnv748ZpkFAQJZhhu/79ZoXM+c5zzPfA8OXh/Oc5xwjIiillPJcXq4OQCmlVP7SRK+UUh5OE71SSnk4TfRKKeXhNNErpZSH00SvlFIeThO9Ukp5OE30Sinl4TTRK6WUhyvm6gAAKleuLP7+/q4OQyml3Mr27dsviIhfVvUKRaL39/cnIiLC1WEopZRbMcacyE497bpRSikPp4leKaU8XLYSvTEm0hjzhzFmpzEmwl52mzFmlTHmsP1rRaf6Y4wxR4wxB40xXfMreKWUUlnLSR99RxG54PT6NWCNiIwzxrxmf/2qMaYpMAAIBKoDq40xjUTEkpPAkpOTiYqK4tq1aznZTSnlQr6+vtSsWRMfHx9Xh6Kc5OZibB+gg/35DGA98Kq9fLaIJAHHjTFHgNbAlpwcPCoqirJly+Lv748xJhdhKqUKgogQExNDVFQUdevWdXU4ykl2++gFWGmM2W6MGWEvqyoiZwHsX6vYy2sAp5z2jbKX5ci1a9eoVKmSJnml3IQxhkqVKul/4YVQds/o24nIGWNMFWCVMebATepmlJnTLWNl/4MxAqB27doZH0iTvFJuRX9nC6dsndGLyBn71/PAQmxdMeeMMdUA7F/P26tHAbWcdq8JnMngmFNEJExEwvz8shzvr1S2ffXVV1y8eNHVYSiVtS++gDVr8v1tskz0xpjSxpiyqc+Be4E9wBJgsL3aYGCx/fkSYIAxpoQxpi7QENiW14EXlIULF2KM4cCBm/0T4zo7d+7kp59+ynG9JUuWMG7cuHyLKzIykmbNmuXb8TPz7rvvctttt1GxYsWsKyvlSv/5DzzzDEydmu9vlZ0z+qrAJmPMLmwJ+0cRWQGMA7oYYw4DXeyvEZG9wFxgH7ACGJXTETe3KtGayLzL80i0JubZMWfNmsVdd93F7Nmz8+yYeelWE33v3r157bXX8jO0PJeSkpJlnbfeeouHH364AKJRKhdmzYLhw6FrV5g+Pf/fT0Rc/mjZsqXcaN++fenKsrImYY1MiJ0gaxLW5HjfjMTHx0v16tXl4MGDEhAQ4Chft26d9OzZ0/F61KhRMm3aNBER+fHHHyUgIEDatWsnzz77rKPe2LFj5fHHH5cuXbpInTp1ZP78+fLyyy9Ls2bNpGvXrnL9+nUREYmIiJD27dtLaGio3HvvvXLmzBkREQkPD5dXXnlFWrVqJQ0bNpSNGzdKUlKS1KpVSypXrizNmzeX2bNny6+//ipt27aVkJAQadu2rRw4cCDDetOmTZNRo0aJiEhkZKR06tRJgoKCpFOnTnLixAkRERk8eLA8++yz0rZtW6lbt6788MMPGX6fPv74YwkMDJTAwED59NNPRUTk+PHjEhAQII8//rgEBQXJgw8+KImJiSIi8uqrr0qTJk0kKChI/v73v4uIyPnz5+WBBx6QsLAwCQsLk02bNjm+b08++aR06dJFBg4cKK1bt5Y9e/Y43js8PFwiIiIkISFBhg4dKmFhYRISEiKLFi0SEZGUlBR56aWXJCwsTIKCguTLL7+81Y+DyqZb+d0tUhYtEvH2FmnfXsT+O3GrgAjJRo51eZKXPEj0k2Mny4TYCekek2MnZ/sYGZk5c6YMGzZMRETatm0r27dvF5HME/3Vq1elZs2acuzYMRERGTBgQJpE365dO7l+/brs3LlTSpYsKT/99JOIiPTt21cWLlwo169fl7Zt28r58+dFRGT27NkydOhQEbEltBdffFFEbH9MOnfuLCKSJmGLiMTFxUlycrKIiKxatUoeeOCBDOs5v+7Vq5dMnz5dRES++eYb6dOnj4jYEv1DDz0kFotF9u7dK/Xr10/3PYqIiJBmzZpJQkKCxMfHS9OmTeX333+X48ePC+BI2EOHDpXx48dLTEyMNGrUSKxWq4iIXLx4UUREBg4cKD///LOIiJw4cUIaN27s+L6FhobKlStXRETkk08+kbfeektERM6cOSMNGzYUEZExY8bIzJkzHcds2LChJCQkyFdffSXvvfeeiIhcu3ZNWrZs6fj5qPyhif4m/vc/keLFRVq3Frl8OdeHy26i94gpEIaWH0qATwDF7IOIilGMAJ8AhpYfmqvjzpo1iwEDBgAwYMAAZs2addP6Bw4coF69eo4xxAMHDkyzvXv37vj4+BAUFITFYqFbt24ABAUFERkZycGDB9mzZw9dunQhJCSE999/n6ioKMf+DzzwAAAtW7YkMjIywxji4uJ4+OGHadasGS+88AJ79+7Nsp1btmzhkUceAeCxxx5j06ZNjm19+/bFy8uLpk2bcu7cuXT7btq0ifvvv5/SpUtTpkwZHnjgAX7++WcAatWqRbt27QAYNGgQmzZtoly5cvj6+jJ8+HAWLFhAqVKlAFi9ejWjR48mJCSE3r17c/nyZeLj4wFbN1PJkiUB6NevHz/88AMAc+fOdXTTrFy5knHjxhESEkKHDh24du0aJ0+eZOXKlfz3v/8lJCSENm3aEBMTw+HDh7P8niiV537+Gfr2hSZNYMUKKFu2wN66UMxemVulvUpT3BQnhRS88SaFFIqb4pT2Kn3Lx4yJiWHt2rXs2bMHYwwWiwVjDB9++CHFihXDarU66qaOG7b9gc1ciRIlAPDy8sLHx8cxFM3Ly4uUlBREhMDAQLZsyfjestT9vb29M+2vfvPNN+nYsSMLFy4kMjKSDh065KjdkHaIXOp7Qsbtu1mbbxxqZ4yhWLFibNu2jTVr1jB79mw+++wz1q5di9VqZcuWLY6E7qx06b9+jjVq1KBSpUrs3r2bOXPm8NVXXznimD9/PgEBAenimzx5Ml276kwcyoW2bYOePaFOHVi5Egp4sIBHnNEDXJErBBcPpn/Z/gQXD+aKXMnV8ebNm8fjjz/OiRMniIyM5NSpU9StW5dNmzZRp04d9u3bR1JSEnFxcayxD49q3Lgxx44dc5xtz5kzJ0fvGRAQQHR0tCPRJycnZ3lGXrZsWceZL9jO6GvUsN2fNt3pIs+N9ZzdeeedjovN3333HXfddVe2Y27fvj2LFi3iypUrJCYmsnDhQu6++24ATp486WhL6kXthIQE4uLi6NGjBxMmTGDnzp0A3HvvvXz22WeO46aWZ2TAgAF8+OGHxMXFERQUBEDXrl2ZPHmy4w/Pjh07HOVffPEFycnJABw6dIjExLy7WK9UlnbsgG7doHJlWL0aqlTJep885jGJvleZXnQs3RG/Yn50LN2RXmV65ep4s2bN4v77709T9uCDD/L9999Tq1Yt+vXrR3BwMI8++igtWrQAoGTJkvz73/+mW7du3HXXXVStWpXy5ctn+z2LFy/OvHnzePXVV2nevDkhISFs3rz5pvt07NiRffv2ERISwpw5c3jllVcYM2YM7dq1w2KxZFrP2aRJk5g2bRrBwcHMnDmTiRMnZjvm0NBQhgwZQuvWrWnTpg3Dhw93fD+aNGnCjBkzCA4OJjY2lqeffpr4+Hh69epFcHAw4eHhfPrpp44YIiIiCA4OpmnTpnz55ZeZvudDDz3E7Nmz6devn6PszTffJDk5meDgYJo1a8abb74JwPDhw2natCmhoaE0a9aMkSNHZmv0jlJ54o8/oEsXKFMG1q6FGjmeJCBPmKy6GwpCWFiY3LjwyP79+2nSpImLIrp1CQkJlClTBhFh1KhRNGzYkBdeeMHVYSlVYNz1dzfP7dsHHTqAjw9s3Aj16+f5WxhjtotIWFb1POaMvrD4+uuvCQkJITAwkLi4OEaOHOnqkJRSBe3QIejcGby9bWfy+ZDkc8IjLsYWJi+88IKewStVlB09Cp06gcUC69fDDQMEXEETvVJK5ZXISFuSv3YN1q2Dpk1dHRGgiV4ppfLGqVO2JH/5sq27xj4irDDQRK+UUrl15owtycfE2IZQ2keeFRaa6JVSKjfOnbMl+T//tN0M1aqVqyNKR0fdKGU3depULl265OowlDuJjraNrjl1Cn76Cdq2dXVEGdJEfxPe3t6EhIQ4HlnN3/7Pf/6zQOJ6++23+eijj25aZ9GiRezbt8/x+q233mL16tX5HVqODRkyhHnz5rnkvadPn87o0aMdrzt27Mjo0aO5evVqpnVcyd/fnwsXLuRonwkTJnDlyl93iffo0UP/mOWVmBi45x7bKJtly8B+R3hhpF03N1GyZMmb3op/o3/+85+8/vrr6codM8h5Fdzf1UWLFtGrVy+a2q/6v/vuuwX23jdjsVjw9vZ2dRgZql+/Pt9++62rw8iRrD5bEyZMYNCgQY7J47KzdoHKhthYuPdeOHgQliyBjh1dHdFN6Rl9DsXFxREQEMDBgwcB2wyVX3/9Na+99hpXr14lJCSERx99lMjISJo0acIzzzxDaGgop06d4umnnyYsLIzAwEDGjh3rOKa/vz+vvvoqrVu3pnXr1hw5cgSAEydO0LlzZ4KDg+ncuTMnT55MF8/XX39Nq1ataN68OQ8++CBXrlxh8+bNLFmyhJdffpmQkBCOHj2a5sx5zZo1tGjRgqCgIIYNG0ZSUpIjjrFjxxIaGkpQUFCGq2pNnz6dPn360K1bNwICAnjnnXcc2/r27UvLli0JDAxkypQpjvIyZcrw1ltv0aZNm0wnbAPYvn074eHhtGzZkq5du3L27Nl0dYYMGcLTTz9Nx44dqVevHhs2bGDYsGE0adKEIUOGOOrNmjWLoKAgmjVrxquvvuoonzZtGo0aNSI8PJxffvnFUR4dHc2DDz5IWFgYrVq1SrPtxjqtWrXKtM7Vq1cZMGAAwcHB9O/fnzZt2pB613eZMmUc9ebNm+eId+nSpbRp04YWLVpwzz33OGYJjYmJ4d5776VFixaMHDnSMY9Pdj9bkyZN4syZM3Ts2JGO9kTk/F/BBx98QEBAAPfccw8DBw50/JfYoUMHR8wXLlzA398fsP2Rfvnll2nVqhXBwcGOCeWKnNhY25n8nj2wcKEt4Rd22ZnLOL8fWc5H//zzIuHheft4/vmbT/QsIl5eXtK8eXPHY/bs2SIisnLlSrnjjjtk1qxZ0rVrV0f90qVLO54fP35cjDGyZcsWR1lMTIyI2BbDCA8Pl127domISJ06deT9998XEZEZM2Y45rDPbJ74sWPHyvjx40VE5MKFC47jv/HGGzJp0iQRsc0l77xQSOrr1DnzDx48KCIijz32mGOxkDp16jj2//zzz+WJJ55I9z2ZNm2a3H777XLhwgW5cuWKBAYGym+//ZamfanlqbEBMmfOnAy/x6lx3Wwu/hvr9+/fX6xWqyxatEjKli0ru3fvFovFIqGhobJjxw45ffq01KpVS86fPy/JycnSsWNHWbhwoZw5c8ZRnpSUJHfeeadjTv6BAwfKxo0bHT+7Ro0aOdrrXCejOfOdffzxx464d+3aJd7e3o7vj/Pn44cffpDBgweLiEhsbKxjfv6vv/7ase7As88+K++8846IiCxbtkwAiY6OzvFnKzo62lEv9XXqOgKJiYkSFxcn9evXd3ymwsPDHTFHR0dLnTp1RESyPbe/R89Hf+GCSEiISIkSIvb1JFyJbM5Hr103N5FZ102XLl344YcfGDVqFLt27cp0/zp16nDHHXc4Xs+dO5cpU6aQkpLC2bNn2bdvH8HBwcBfc9cPHDjQcWftli1bWLBgAWCbJ/6VV15J9x579uzhH//4B5cuXSIhISHL6XgPHjxI3bp1adSoEQCDBw/m888/529/+xuQds771PfOqP2VKlVy1N+0aRNhYWFMmjSJhQsXAnDq1CkOHz5MpUqV8Pb25sEHH8wyrtS5+MF29litWrUM6953330YYwgKCqJq1aqOGSwDAwOJjIzkxIkTdOjQgdRF5x999FE2btwIkKa8f//+HDp0CLDNh3/mzF9r2FssFhISEtK87+rVq9Nc90idM7+s07ziGzdu5LnnngMgODjY8fO9maioKPr378/Zs2e5fv26Yz2DjRs3On4GPXv2TLMObk4+Wxn5+eefuf/++x1dOr17984yzpUrV7J7927Hf4ZxcXEcPnzYEa/HS+2T378fFi2yzUjpJrKd6I0x3kAEcFpEehlj5gCp9/ZWAC6JSIgxxh/YDxy0b9sqIk/lKsoJE3K1e16zWq3s37+fkiVLEhsbS82aNTOs5zyP+vHjx/noo4/47bffqFixIkOGDHHMYw9p526/cR73m5UPGTKERYsW0bx5c6ZPn8769etvGrtkc878m815n9E88+vXr2f16tVs2bKFUqVKORb/APD19c2yX16ymIs/oxi9vLzSzJefOq9/sWKZf6wz+95arVaWL1+e4Xz4znUymzM/O+/hXO78s3/22Wd58cUX6d27N+vXr+ftt9/O8lg5+WzlNE7n9RacjyNFeW7/CxdsSf7AAVi82LbWqxvJSR/989gSOAAi0l9EQkQkBJgPOJ/+HU3dluskXwh9+umnNGnShFmzZjFs2DDHXOc+Pj6O5ze6fPkypUuXpnz58pw7d47ly5en2Z46dfCcOXNoax+ilZ154uPj46lWrRrJycl89913jvLM5p9v3LgxkZGRjusAM2fOJDw8PEftX7VqFbGxsVy9epVFixbRrl074uLiqFixIqVKleLAgQNs3bo1R8e8lbn4M9OmTRs2bNjAhQsXsFgszJo1i/DwcNq0acP69euJiYkhOTnZsVIV2ObDnzx5suP19u3b0x03O3Pmt2/f3vFz2LNnD7t373Zsq1q1Kvv378dqtTr+84G0awjMmDEjw2MtX76cixcvZtjem322MvsctG/fnoULF3L16lXi4+NZunSpY5u/v7+j/c4joors3P4XLtiGUKZeeHWzJA/ZPKM3xtQEegIfAC/esM0A/YBOeR6di6VeXE3VrVs3hg0bxtSpU9m2bRtly5alffv2vP/++7zzzjuMGDGC4OBgQkND+eCDD9Icq3nz5rRo0YLAwEDq1avnWGIvVVJSEm3atMFqtTqWLJw0aRLDhg1j/Pjx+Pn5MW3atHQxvvfee7Rp04Y6deoQFBTk+KUeMGAATz75JJMmTUrzy+rr68u0adN4+OGHSUlJoVWrVjz1VM7+Ft9111089thjHDlyhEceeYSwsDCCgoL48ssvCQ4OJiAgIE23QnakzsX/3HPPERcXR0pKCn/7298IDAzM0XEAqlWrxv/93//RsWNHRIQePXrQp08fwDY0tW3btlSrVo3Q0FDHnP2TJk1i1KhRBAcHk5KSQvv27WnZsmWa42ZU58Z5859++mmGDh1KcHAwISEhtG7d2rFt3Lhx9OrVi1q1atGsWTNH19Dbb7/Nww8/TI0aNbjjjjs4fvw4AGPHjmXgwIGEhoYSHh5O7dq1M2zvzT5bI0aMoHv37lSrVo1169Y5ykNDQ+nfvz8hISHUqVPHsVgMwEsvvUS/fv2YOXMmnTr99Ws9fPhwIiMjCQ0NRUTw8/Nj0aJF2f/BuKPUJH/okC3J27sW3U52OvKBeUBLoAOw7IZt7XG6IAD4A4nADmADcHdWx8/t4uDu7sYLZoXZjYuMq5tzvrBZmDlf4M8tj/ndPX9eJChIxNdXZNUqV0eTIfJqcXBjTC/gvIik/1/WZiDgvGr2WaC2iLTAdvb/vTGmXAbHHWGMiTDGRERHR2f9F0kppQpK6h2vhw/D0qW2/nk3luUKU8aY/wMeA1IAX6AcsEBEBhljigGngZYiEpXJ/uuBl0QkIqPt4FkrTClV1Ln97+7587Ykf/SoLcl37uzqiDKVZytMicgYEakpIv7AAGCtiAyyb74HOOCc5I0xfvYROhhj6gENgWO30IYsR4gopQoXt/+dPX/eNkFZ6rQGhTjJ50Ru74wdQNpuG7D12e82xuzC1rf/lIjE5vTAvr6+xMTEuP8HR6kiQkSIiYnB19fX1aHcmjNnIDwcjh2zJflOnjO+pNAuDp6cnExUVFS2xgMrpQoHX19fatasiY+Pj6tDyZmTJ22J/dw5+PFHaN/e1RFlS3a7bgrtnbE+Pj5F5447pZTrHDtmS/KXLsGqVZDDocHuoNAmeqWUyncHD9r64a9ehTVr4IZ7JzyFJnqlVNG0d68tyVuttoW8szEvkbvSaYqVUkXPzp3QoQN4ecGGDR6d5EETvVKqqNm2zbZQSMmSsHEjuPOY/2zSRK+UKjo2bbLd5XrbbbYk36CBqyMqEJrolVJFw9q1tpknq1WzJXn7yllFgSZ6pZTnW7ECevaEunVtffL2aaGLCk30SinPtnAh9OkDjRvD+vVw++2ujqjAaaJXSnmuGTPgoYcgNNTWdVO5sqsjcglN9EopzzR5MgwZYhths2oVOK25W9RooldKeRYReP99eO456NvXNkFZmTKujsqlNNErpTyHCLz8Mrz5Jjz+OPzwA7jrbJp5SKdAUEp5BosFRo6Eb76BZ5+FCRNsd74qPaNXSnmA69dh4EBbkv/HP2DiRE3yTvSMXinl3q5cgQcftI2VHz8eXnrJ1REVOprolVLuKy4OevWCX36BKVPgySddHVGhpIleKeWeoqNtUxr88QfMmgX9+7s6okIr251YxhhvY8wOY8wy++u3jTGnjTE77Y8eTnXHGGOOGGMOGmO65kfgSqki7ORJuPtu2L8fFi/WJJ+FnJzRPw/sB8o5lX0qIh85VzLGNMW2aHggUB1YbYxpJCKW3AarlFLs3Ws7k09IgJUrbQlf3VS2zuiNMTWBnsDUbFTvA8wWkSQROQ4cAVrfeohKKWW3ebMtsVutthkoNclnS3a7biYArwDWG8pHG2N2G2P+Y4xJvb+4BnDKqU6UvUwppW7djz/a5pKvXNl28dXDV4XKS1kmemNML+C8iGy/YdMXQH0gBDgLfJy6SwaHkQyOO8IYE2GMiYiOjs5Z1EqpomXGDNsMlE2b2hYPqVvX1RG5leyc0bcDehtjIoHZQCdjzLcick5ELCJiBb7mr+6ZKKCW0/41gTM3HlREpohImIiE+fn55aoRSikPNn78X5OTrVsHVaq4OiK3k2WiF5ExIlJTRPyxXWRdKyKDjDHVnKrdD+yxP18CDDDGlDDG1AUaAtvyOG6llKezWm03P73yim1UzbJlULasq6NyS7kZR/+hMSYEW7dMJDASQET2GmPmAvuAFGCUjrhRSuVIcjI88QTMnAmjR+uUBrlkRNJ1nxe4sLAwiYiIcHUYSqnCIDER+vWDn36C996DN94Ak9GlP2WM2S4iYVnV0ztjlVKFR0yMbUqDbdvgq69gxAhXR+QRNNErpQqH48ehe3eIjLTNI//AA66OyGNooldKud727dCzJyQl2e52bd/e1RF5FL26oZRyreXLITzcthLU5s2a5POBJnqllOt88w3cdx80agRbtkCTJq6OyCNpoldKFTwRGDsWhg+3TWuwYQNUq5b1fuqWaB+9UqpgJSfb1nadNg2GDrWNrvHxcXVUHk3P6JVSBSc+3tZVM22a7Yz+m280yRcAPaNXShWMs2dtI2t274apU213vqoCoYleKZX/9u+Hbt1sN0QtW2Z7rgqMdt0opfLX2rVw5522MfIbN2qSdwFN9Eqp/DNtmm3Zv+rVYetWCA11dURFkiZ6pVTes1phzBgYNsw2j/zmzeDv7+qoiizto1dK5a2rV+Hxx2HePNswysmTdWSNi2miV0rlnXPnoHdv+O03+PhjeOEFnWK4ENBEr5TKG3v32oZPRkfDggXQt6+rI1J22kevlMq9lSttI2uuX7eNrNEkX6hooldK5c5XX0GPHraLrb/+Ci1bujoidYNsJ3pjjLcxZocxZpn99XhjzAFjzG5jzEJjTAV7ub8x5qoxZqf98WV+Ba+UciGLBf7+d3jqKdsQyk2boFYtV0elMpCTM/rngf1Or1cBzUQkGDgEjHHadlREQuyPp/IgTqVUYXL5MvTpA598As8+C4sXQ9myro5KZSJbid4YUxPoCUxNLRORlSKSYn+5FaiZ9+EppQqdY8egbVtYsQI+/xwmTYJiOq6jMMvuGf0E4BXAmsn2YcByp9d17d08G4wxd+cmQKVUIbJ+PbRubZugbOVKeOYZV0eksiHLRG+M6QWcF5HtmWx/A0gBvrMXnQVqi0gL4EXge2NMuQz2G2GMiTDGRERHR99yA5RSBeSrr6BLF/Dzg23boFMnV0eksik7Z/TtgN7GmEhgNtDJGPMtgDFmMNALeFREBEBEkkQkxv58O3AUaHTjQUVkioiEiUiYn59fnjRGKZUPkpNh9GjbRdcuXWxz1jRo4OqoVA5kmehFZIyI1BQRf2AAsFZEBhljugGvAr1F5EpqfWOMnzHG2/68HtAQOJYv0Sul8ldsLHTvbuuLf+klWLoUypd3dVQqh3JzBeUzoASwythucd5qH2HTHnjXGJMCWICnRCQ215EqpQrW/v226QxOnoTp02HwYFdHpG5RjhK9iKwH1tufZ/i/m4jMB+bnNjClVMGJTonmh/gfqOBdgT5l+lD6fxthwADw9YV162x3vSq3pXfGKlXEnbx+ku/jvyeZZKJTznN83Gjo1Qvq1bNNTqZJ3u3p4FelirCJFyc6nhe7cp17np9NwPzfOXxfc9b8exBP1aztwuhUXtFEr1QRlGhNZGqc4/5Hyp2Ioddj31B571k2/6Mnv71wj04v7EE00StVxNyY5GutP0j3J2ZgrMLi2U9yoktTAO4vfb+rQlR5TBO9UkXEjQkeEUI/W0e7d5YS26gqy759grh6tntaDIbaxbXbxlNooleqiPgm7hvH8zT98b2bs+qzR0guUwIALx2j4XE00Svl4T67+BkWLI7Xzv3xv7zVi4jnOzv648uZcvgV86NXmV6uClflA030Snmw6JToNEm+9rqDdBtu74+fM4IT9zRxbPPCi6EVhroiTJXPNNEr5aESrYl8H/+97YUIoZPX0e7dpcQG3G63qgwzAAAbi0lEQVTrj69bGbAl+GcrPuvCSFV+00SvlAdyHh9f/PJVuoyeRYNluznUJ4TVkwem6Y/XJO/5NNEr5WE+u/iZ43mlfWfoOXga5SNj2PhuH3aM6uDoj6/vU1/74osITfRKeZCT1086+uQbz/mNTi/OJal8SeYvGcWZtvUB29DJ5yo+58owVQHTRK+Um0u0JrL48mKixbaAj/e1ZMJfX0jQ9M1EtavP8qmDuVL1r7V/6vnUc1WoykU00Svl5tYkrnEk+bInY+g5ZDpVd54i4vnObH6jB1LMG4CSpiQjKoxwZajKRTTRK+WmJl+cjNVpGWf/VfvoOvJbjNXK0m+f4FiPIMe2YhTTJF+EaaJXyg0lWhMdSd5YrLT51wrafLSS6GbV+XHGMMfQyVR1fOq4IkxVSGiiV8rNOA+dLBkdT9eR31Jn/UH2PtKadeMfwlKyuGO7Dp9UoIleKbfiPHSyxqbDdBsxE9+LV1g9cQB7H7sjTV0dPqlSZTvR2xf8jgBOi0gvY8xtwBzAH4gE+onIRXvdMcAT2NaMfU5E/pfHcStV5KTOWWMsVlp/tJLW4//Hpfp+LP7hKS4EVnfUK2VK8WSFJ10YqSpscnJG/zywH0gdp/UasEZExhljXrO/ftUY0xQYAAQC1YHVxphGImLJ6KBKqaylzllT6s84uj31LbU2HmZ//zDWjX/YcZerDz48U/EZF0eqCqNsJXpjTE2gJ/AB8KK9uA/Qwf58BrZFw1+1l88WkSTguDHmCNAa2JJnUStVRCRaE1kQt4BYYqm97iBdn5qJT0ISqyYPZN8jrR13ufrgg4/xcXG0qrDK7hn9BOAVoKxTWVUROQsgImeNMVXs5TWArU71ouxlSqkcOHn9JAsTF2JSLLT91wpafbKamICqLF88mtjGtzvq+RpfRlYY6cJIVWGXZaI3xvQCzovIdmNMh2wcM6OFJiWD444ARgDUrq0r2SiVynklqDKnL9FtxH+pseUYewbdwYZxD5BS6q9RNT74aJJXWcrOGX07oLcxpgfgC5QzxnwLnDPGVLOfzVcDztvrRwG1nPavCZy58aAiMgWYAhAWFpbuD4FSRVF0SrRjamH/Vfu49+nv8E5KZsVXgzj4cFi6+tpdo7Ijy0QvImOAMQD2M/qXRGSQMWY8MBgYZ/+62L7LEuB7Y8wn2C7GNgS25X3oSnmW1FE13kkp3PnuUkK/2EB0s+r89J8hXGpQJU1dHR+vciI34+jHAXONMU8AJ4GHAURkrzFmLrAPSAFG6YgbpW4u9Saoigf/pPuT/8Vvzxl2PXEXP7/XB4tv2rN2HT6pcipHiV5E1mMbXYOIxACdM6n3AbYROkqpLESnRIMIzWZspv0bi0guVZwl3w/neLdmaer54ENtn9p6E5TKMb0zVikXmnxxMsVj4+n5/Gwa/PgHJzoEsPLfj3Dl9vJp6umi3So3NNEr5QKpQydrbjxE16e/o+SFBDa+14cdT4eDl5ejnjfe+Pv4a4JXuaKJXqkCdujaIf4Xt5R2/7eclpPWcrGBH0tmPUl0cM009bQvXuUVTfRKFZBD1w6x/OpyKhw5T78RM6m68xR/DG7Lxvf7klK6RLr6muRVXtFEr1QBOHn9JMuv/ETgt7/S/vUFWIoXY9l/h3G0V3C6unomr/KaJnql8tnEixMpdT6e+/42m3or9nLq7oas/PejJNSokK6uJnmVHzTRK5UPnBfsrr90F51enEvxhCQ2fNCXnSPbp7ngmkrnj1f5RRO9UnksdRqD4pev0uW1BTSd/RvnQmqx8t+PppmMLJUmeJXfNNErlUecJyOrufEQ9476ntJ/XubXl+5l28tdsfp4p6mv0xiogqKJXqk8kJrkva9ep917P9Liyw1cbODH3OXPcS7MP01dg+G5is+5JlBVJGmiVyqXJl+cjBUrfrtO0XXkt1Q6dI6dT97NL2PvSzOlcKp6PvVcEKUqyjTRK3WLUvvivZIttP50Fa0/WskVv7IsnPcUJzs1znCf5ys+X8BRKqWJXqkcS52+AKDyH1F0GT2LKn+c5sBDLVn/4YMkVSiVbh8dNqlcSRO9UjmQmuS9rqfQ6pNVtPpkFdduK83SmcM41jP9zU/lTDmGVhjqgkiV+osmeqWyKXXOeL/dUXQZ9T1+e8+wv18YG/7vfpIqlk5XP3XGSaVcTRO9Utkw8eJEvJNSaPXRSlpNWM0VvzIZzhkPOmxSFT6a6JXKhPPdrVV2nKTL6FlU3n+WfQNbsfGD+zPsi9eLraow0kSvVAZSZ5r0Tkqh7fj/ETZxDVeqlGXx7CeJvDcwXX292KoKsywTvTHGF9gIlLDXnyciY40xc4AAe7UKwCURCTHG+AP7gYP2bVtF5Km8Dlyp/JI6Lr761mN0fn42tx0+z95HWrPxg75cL5/2LF6nL1DuIDtn9ElAJxFJMMb4AJuMMctFpH9qBWPMx0Cc0z5HRSQkj2NVKl85z1Fz19tLCZq+mcu1KrJo7khO3NMkXX1N8spdZJnoRUSABPtLH/tDUrcbYwzQD+iUHwEqVRASrYl8H/899ZfuosOr8yl1Pp7fn+nAljHdM1wURPvilTvJVh+9McYb2A40AD4XkV+dNt8NnBORw05ldY0xO4DLwD9E5Oe8ClipvDbx4kRKn42j56vzabBsN+eDarD0u+Gcb1E7w/qa5JW7yVaiFxELEGKMqQAsNMY0E5E99s0DgVlO1c8CtUUkxhjTElhkjAkUkcvOxzTGjABGANSunfEvlFL5bXLMRIJm/EK7t5finWxh09v3sePpDulmmgTtqlHuK0ejbkTkkjFmPdAN2GOMKQY8ALR0qpOErV8fEdlujDkKNAIibjjWFGAKQFhYmKBUAYlOiWZO/BzKHTzNAy/MpcbWY5xq35A1n/Qjrl7aG5x0TLzyBNkZdeMHJNuTfEngHuBf9s33AAdEJOqG+rEiYjHG1AMaAsfyPnSlcu7k9ZMsuTCHVp+upuWkNaSUKsHKzwayf2BrMCZdfU3yyhNk54y+GjDD3k/vBcwVkWX2bQNI220D0B541xiTAliAp0QkNq8CViqnnCchq7NqH4NenU+FyBgOPNySje/35apf2XT76Lh45UmyM+pmN9Aik21DMiibD8zPdWRK5UJ0SjRz4+diwYIglIm6SPjrC2mwbDexDaswf/Eoou5umOG+muSVp9E7Y5XHcT6D90q20OLLDbT5cAXGKvzyZk9+H9URa/GMP/peeGmSVx5HE73yKKkzTAJU33KUjn//gcoH/uRYt0DWj3uA+NqVMtxPL7oqT6aJXnmM1CRf8kICd41dTNNZv3G5ZkWWfDec493TzzIJ4I03/j7+OmxSeTRN9MojTLw4EZNiIWj6Ztr+czk+Cdf47W+d2fb3ezO8s1UX6FZFiSZ65dZS56epsekwHV5bQOV9ZznVviHrxz1IbOPb09UvTWm8jbcuCKKKFE30yu2k3vBkwULZU7F0f2sJjRbv5HKtiiybMZSjvYLTjInX7hlV1GmiV24ldUSN99XrtJm0lrCJaxADW8Z0Z/vojlhKFk9TX6ctUEoTvXITjiGTIjRYupu731xEuVMXOdQ3hE3v9iG+ZsV0++jkY0rZaKJXhV7qak+V9p0l/PUF1Np4mAtNqzFv6WhOt2uQrr5eaFUqLU30qtBKvdBa6nw8ncYtJ/C/W7heriTrxj/EH4PbIsXSzzAJUNKULOBIlSrcNNGrQskx+dgXGwibsBrva8nsGn43217pyrXbSme4j150VSpjmuiVyyVaE1mesJzWvq1ZnLgYqzWFgHm/M/i9ZZQ9fYkjPYP4Zex9XGpQJd2+Oi+NUlnTRK8KXHRKNPPi59G5ZGdWXl2JBQsACxMXUn3zUdq/uYiqO05xrnlN/vfloAz74UFH1CiVXZroVYFynnBs+dXljvIKR87T7p2lNPjxD+KrV2DFl4M4+FAoeHmlO4YmeKVyRhO9KhCpF1ZvVDI6nlYfryL4P5uw+Pqw+R89+f3p8HTj4UEnHlPqVmmiV/km0ZrIgrgFxJJ+3Znil6/R4t/rCP33eopdTWbvoDZsHdODK1XSLwIC2hevVG5oold5LtGayLy4eVziUrpt3kkpBP1nE60+WUWpmEQO9Qlhy+vdudSwaqbH064apXJHE73KMzc7gzcWK43n/MYd41ZQLuoiJ8MbsfnNXpwLrZ3hsfQMXqm8k53FwX2BjUAJe/15IjLWGPM28CQQba/6uoj8ZN9nDPAEtjVjnxOR/+VD7KoQSbQmMjVuavoNItRbvoc73/uRSgf/5FyLWqyeNIBTHQLSVNPErlT+yc4ZfRLQSUQSjDE+wCZjTOpwiU9F5CPnysaYptgWDQ8EqgOrjTGNRMSSl4GrwmPyxclYsaYrr/nzYe58bxnVIk5wsYEfP04bwpHezR0zS2qXjFIFIzuLgwuQYH/pY3/ITXbpA8wWkSTguDHmCNAa2JLLWFUhlFGSr775KG3/7ydq/nKU+GrlWT2hP/seae2YskATvFIFK1t99MYYb2A70AD4XER+NcZ0B0YbYx4HIoC/i8hFoAaw1Wn3KHuZ8iDO4+FTVdt6jDv+tYLaGw6RWLUc68c9wJ7H22Lx9dHpCZRyoWwlenu3S4gxpgKw0BjTDPgCeA/b2f17wMfAMMBkdIgbC4wxI4ARALVrZ3xBThU+0SnRzI6fneYsvmpEJHeMW4H/2gNc8SvDxvf7snvonVhKFscLL57Xse9KuVSORt2IyCVjzHqgm3PfvDHma2CZ/WUUUMtpt5rAmQyONQWYAhAWFnazriDlYhmdvQNU2XGSO8atoO6qfVypVJqf3+nN7mHtSCldQhO8UoVIdkbd+AHJ9iRfErgH+JcxppqInLVXux/YY3++BPjeGPMJtouxDYFteR+6yk/Oy/XdqOrvJ2n18UrqL9/D1Yql+OWtXuwafjfJZWyLcOsdrEoVLtk5o68GzLD303sBc0VkmTFmpjEmBFu3TCQwEkBE9hpj5gL7gBRglI64cR+Z3uwkQo3NR2n18SrqrD/ItQql2Px6D3aNaM/1cr6Oarqqk1KFj7ENqnGtsLAwiYiIcHUYRV6GXTQi1Fm9n9afrKL6r8dJrFKW35/pyB9D7yS5rG+aqprklSpYxpjtIhKWVT29M1YBGQyTtFppsOwPwj5dRdVdUcTXqMC6fz3I3kFt0k04pgleqcJNE30RlroWqzOTYqHRgh20+nQ1lQ7+yaV6lVk1aQAH+oVhLZ7246J3syrlHjTRFzGpyT3YJ5jdybsd5T4JSTT9bistvthA+ZOxXGhSjeVfP87hviGI919zwuvZu1LuRxN9EXFj/3tqki917jLNv/6Z4P/8gu+lK5xpU5eN/7yfY90CHYt+lDPl8Cvmpzc7KeWmNNF7uMxG0VQ8+Cehn6+n8dzf8E62crRnENtHd+TP1nUddXSYpFKeQRO9h0q0JrIsfhl/Wv/8q1CE6luO0fKztdRbsZcUXx/2PdqGHc905FJ9P0c1g+G5is+5IGqlVH7QRO+Bbly2z+t6Cg2W7qLFFxu4/feTXL2tNFtf6cru4XdztXKZdPuXNCULMlylVD7TRO8hMpqDptT5eJrN2EzQtF8o8+dlLtWrzNqPHmL/gNaklNIhkkoVFZro3VxGUxVU2XmK5lM20mjB7xS7biGyU2PWTBxAZOfGjgusACUoQTLJ2g+vlIfTRO/GnEfSeCVbqL9sNyFTNlL91+NcL12cvY+3Zdfwu7nYKO16rHr2rlTRooneTU28OBGAUn/GEfjdrwT95xfKno3jkn8lNnzQl32PtuF6ubR97TqKRqmiSRO9m0jTB2+1UmvjYYKmbabe8j/wTrFyMrwR6z5+mMguTdPc4JRK72JVqujSRF+IJFoTWZ6wnO5lugOwPGE5jXwase7aOgBKXkigyffbCJqxmQrHL3D1ttLsHBnOnsFtudSgSobH1ASvlNJEX0g4D4mcGjfVUX46JYrqW44RPO0X6i/dRbHrFk63rcfW17px5L7mWHx90h1Lk7tSypkm+kIgowW2S52PJ2BuBIHfbqXSoXMklfNlz5A7+WPwncQ2qZbhcTTBK6UyoonexVIvqoJt5Iz/yr00/X4bdVfuw8ti5WzLOqyaPJBD97dIN/bdmY6kUUplRhO9izh31VTad4am3/1K4x+2U+pCAolVy/H7Mx3Y90hrLgbcnuWxNMkrpW5GE30BSB3vXp7yXOYyglDiYiLBC3bQ9PtfqbrjFBYfb453DWTfo22I7NwYKead6fG0i0YplRPZWRzcF9gIlLDXnyciY40x44H7gOvAUWCofQFxf2A/cNB+iK0i8lQ+xF5opU4oZsFCkjWJy1wGIOFqNA1W7CVg/nb8V+3HO9lCdGB1Nvzzfg483JJrldLPO+NMz9yVUrciO2f0SUAnEUkwxvgAm4wxy4FVwBgRSTHG/AsYA7xq3+eoiITkT8iFW3RKNLPiZyHY1uI1KRZq/3yEgHkR1F+6mxIJSSTcXo5dT97NgYdbEh1cE4xJc4ziFKesV1muylU9c1dK5VqWiV5sq4cn2F/62B8iIiudqm0FHsr78NxHmhkjRai64xQBP0TQaOEOSp+PJ6msL0d6N+fgw2FE3dUgw5uaQLtllFJ5L1t99MYYb2A70AD4XER+vaHKMGCO0+u6xpgdwGXgHyLyc14EW1g439h0+vpp27qrIvj9cZoGS3bRcPFOKh6NJqW4N5H3BnLwoZYcv7dphmPeU+kc8Eqp/JKtRC8iFiDEGFMBWGiMaSYiewCMMW8AKcB39upngdoiEmOMaQksMsYEishl52MaY0YAIwBq166dN63JZzcuxzf10tdU2XmKdkt20WDJLiocv4DV24uouxqw/dlOHOndnKQKpbI8rjfe+Pv452PkSqmiLEejbuwXW9cD3YA9xpjBQC+gs72LBxFJwtavj4hsN8YcBRoBETccawowBSAsLExy2Y58k2hNZPHlxcRIjO2mJhGqbj9BQ3tyL38yFksxL061b0TE85052jPophdVvfHGgkW7aJRSBSY7o278gGR7ki8J3AP8yxjTDdvF13ARuXJD/VgRsRhj6gENgWP5E37eSu2ScZ5fBmwrNNXYfJR6K/ZQ76c9lIu6iMXHm5MdAtj2cleO9mhGUsXSNz22JnallKtk54y+GjDD3k/vBcwVkWXGmCPYhlyuMrZRI6nDKNsD7xpjUgAL8JSIxOZP+Lcu0ZrIgrgFxBJLaUqTSKJj22nLaUpcuoL/6v3UXb4H/9X7KRF/jeSSPpzsEMCW17tzvFuzLLtlNLkrpQqD7Iy62Q20yKC8QSb15wPzcx9a3nJO7Om22ZN8ucgL1Fu+h3or9lJj81G8LFYSq5TlcN8QjnVvxqn2jW46DUGq+j716VWmV563QSmlboVH3hmbesPSNes1LnEp03reV69TY/NR/NccoM6a/dx2+DwAFxrfzvbnOnGsWzP+bFk7zfJ7mdFFPZRShZVHJHrnO1EtYiE2s54iESoeOkedtQeos+YANTcfpdi1ZFJKFOP0nfX5Y8idHO/WjLi6lbN8z3KmHH7F/PTMXSlV6Ll9ok+0JvJt3Ldc41qG231jE6m56Qi119mSe7moiwDENqzCH0Pu5ESnxpy+s362umRAE7xSyv24daL/7OJnWLCkKSt++So1Nh+l1sbD1Nx0GL89ZwBIKlOCUx0C+O3FLpzo3Jj4Wrdl6z0a+jQEgXOWc5rglVJuyW0TfWqS90lIovrWY9TcdJhaPx/Gb1cUXlYhxdeHs6392fx6D6Lubsi50NpYfTKfEdIHH3yMj46SUUp5HLdN9IJQfesxHuj9Gd4pViw+3vwZVoff/n4vp+5uwJ9h/plOOaAXTpVSRYnbJvph5YexoOl0fh/dkai7G3GmtT8ppUtkWl+HPCqliiq3TfSlvUqTUr4Um9+6L9M6esOSUkq5caIH8CvmBylQtVhVvWCqlFKZcOtErwldKaWylvUtn0oppdyaJnqllPJwmuiVUsrDaaJXSikPp4leKaU8nCZ6pZTycMa+1KtrgzAmGjiRi0NUBi7kUTiFiae2C7Rt7spT2+au7aojIn5ZVSoUiT63jDERIhLm6jjymqe2C7Rt7spT2+ap7UqlXTdKKeXhNNErpZSH85REP8XVAeQTT20XaNvclae2zVPbBXhIH71SSqnMecoZvVJKqUy4daI3xnQzxhw0xhwxxrzm6nhywhhTyxizzhiz3xiz1xjzvL38NmPMKmPMYfvXik77jLG39aAxpqvros8eY4y3MWaHMWaZ/bVHtM0YU8EYM88Yc8D+82vrQW17wf553GOMmWWM8XXXthlj/mOMOW+M2eNUluO2GGNaGmP+sG+bZIwxBd2WXBMRt3wA3sBRoB5QHNgFNHV1XDmIvxoQan9eFjgENAU+BF6zl78G/Mv+vKm9jSWAuva2e7u6HVm08UXge2CZ/bVHtA2YAQy3Py8OVPCEtgE1gONASfvrucAQd20b0B4IBfY4leW4LcA2oC1ggOVAd1e3LacPdz6jbw0cEZFjInIdmA30cXFM2SYiZ0Xkd/vzeGA/tl+0PtgSCfavfe3P+wCzRSRJRI4DR7B9DwolY0xNoCcw1anY7dtmjCmHLYF8AyAi10XkEh7QNrtiQEljTDGgFHAGN22biGwEYm8ozlFbjDHVgHIiskVsWf+/Tvu4DXdO9DWAU06vo+xlbscY4w+0AH4FqorIWbD9MQCq2Ku5W3snAK8AVqcyT2hbPSAamGbvlppqjCmNB7RNRE4DHwEngbNAnIisxAPa5iSnbalhf35juVtx50SfUT+Z2w0hMsaUAeYDfxORyzermkFZoWyvMaYXcF5Etmd3lwzKCmXbsJ3xhgJfiEgLIBFbF0Bm3KZt9v7qPti6LqoDpY0xg262SwZlhbJt2ZBZWzyije6c6KOAWk6va2L7N9NtGGN8sCX570Rkgb34nP3fRexfz9vL3am97YDexphIbF1qnYwx3+IZbYsCokTkV/vredgSvye07R7guIhEi0gysAC4E89oW6qctiXK/vzGcrfizon+N6ChMaauMaY4MABY4uKYss1+5f4bYL+IfOK0aQkw2P58MLDYqXyAMaaEMaYu0BDbRaJCR0TGiEhNEfHH9nNZKyKD8Iy2/QmcMsYE2Is6A/vwgLZh67K5wxhTyv757Izt2pEntC1Vjtpi796JN8bcYf+ePO60j/tw9dXg3DyAHthGqxwF3nB1PDmM/S5s/wLuBnbaHz2ASsAa4LD9621O+7xhb+tB3OTKP9CBv0bdeETbgBAgwv6zWwRU9KC2vQMcAPYAM7GNQnHLtgGzsF1rSMZ2Zv7ErbQFCLN/P44Cn2G/0dSdHnpnrFJKeTh37rpRSimVDZrolVLKw2miV0opD6eJXimlPJwmeqWU8nCa6JVSysNpoldKKQ+niV4ppTzc/wMdhWjpayB8lwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"months = range((2050 - 1958) * 12 + 9)\n",
"\n",
"extrapolation_sys_augm = quadr(months, fitA_q, fitB_q, fitH_q)\n",
"plt.plot(x_data, data['SAFitFilled'], '*', color = \"lightgreen\")\n",
"plt.plot(months, extrapolation_sys_augm, '-', color = \"red\")\n",
"plt.legend([\"Augmentation observée\", \"Extrapolation par le modèle quadratique\"])"
] ]
} }
], ],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment