diff --git a/module3/exo2/analyse_varicelle.ipynb b/module3/exo2/analyse_varicelle.ipynb
index c9f4f20bbe3507fd85880ac11985afed3afed2bc..b5422e1b1209f2a4f97a208b3973b763ad0e91af 100644
--- a/module3/exo2/analyse_varicelle.ipynb
+++ b/module3/exo2/analyse_varicelle.ipynb
@@ -25,12 +25,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- " Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](https://sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1991 et se termine avec une semaine récente."
+ " Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](https://sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en décembre 1990 et se termine avec une semaine récente."
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@@ -46,13 +46,2407 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(\"incidence-PAY-7.csv\"):\n",
" urllib.request.urlretrieve(data_url, \"incidence-PAY-7.csv\")"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Voici l'explication des colonnes données sur le site d'origine:\n",
+ "\n",
+ "\n",
+ "Nom de colonne | Libellé de colonne\n",
+ ":-------------- | :------------------\n",
+ "week | Semaine calendaire (ISO 8601)\n",
+ "indicator | Code de l'indicateur de surveillance\n",
+ "inc | Estimation de l'incidence de consultations en nombre de cas\n",
+ "inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation\n",
+ "inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation\n",
+ "inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
+ "inc100_low |Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
+ "inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)\n",
+ "geo_insee | Code de la zone géographique concernée ([Code INSEE](http://www.insee.fr/fr/methodes/nomenclatures/cog/))\n",
+ "geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis)\n",
+ "\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202234 \n",
+ " 7 \n",
+ " 2306 \n",
+ " 593 \n",
+ " 4019 \n",
+ " 3 \n",
+ " 0 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202233 \n",
+ " 7 \n",
+ " 7353 \n",
+ " 0 \n",
+ " 17414 \n",
+ " 11 \n",
+ " 0 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202232 \n",
+ " 7 \n",
+ " 7801 \n",
+ " 4086 \n",
+ " 11516 \n",
+ " 12 \n",
+ " 6 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202231 \n",
+ " 7 \n",
+ " 6896 \n",
+ " 4170 \n",
+ " 9622 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202230 \n",
+ " 7 \n",
+ " 9039 \n",
+ " 5770 \n",
+ " 12308 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202229 \n",
+ " 7 \n",
+ " 14851 \n",
+ " 10060 \n",
+ " 19642 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202228 \n",
+ " 7 \n",
+ " 15471 \n",
+ " 11028 \n",
+ " 19914 \n",
+ " 23 \n",
+ " 16 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202227 \n",
+ " 7 \n",
+ " 21191 \n",
+ " 16198 \n",
+ " 26184 \n",
+ " 32 \n",
+ " 24 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202226 \n",
+ " 7 \n",
+ " 16854 \n",
+ " 12806 \n",
+ " 20902 \n",
+ " 25 \n",
+ " 19 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202225 \n",
+ " 7 \n",
+ " 22246 \n",
+ " 18011 \n",
+ " 26481 \n",
+ " 34 \n",
+ " 28 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202224 \n",
+ " 7 \n",
+ " 22458 \n",
+ " 18105 \n",
+ " 26811 \n",
+ " 34 \n",
+ " 27 \n",
+ " 41 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202223 \n",
+ " 7 \n",
+ " 18772 \n",
+ " 14875 \n",
+ " 22669 \n",
+ " 28 \n",
+ " 22 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202222 \n",
+ " 7 \n",
+ " 18916 \n",
+ " 14941 \n",
+ " 22891 \n",
+ " 29 \n",
+ " 23 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202221 \n",
+ " 7 \n",
+ " 20310 \n",
+ " 16307 \n",
+ " 24313 \n",
+ " 31 \n",
+ " 25 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202220 \n",
+ " 7 \n",
+ " 23585 \n",
+ " 19004 \n",
+ " 28166 \n",
+ " 36 \n",
+ " 29 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202219 \n",
+ " 7 \n",
+ " 18593 \n",
+ " 14181 \n",
+ " 23005 \n",
+ " 28 \n",
+ " 21 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202218 \n",
+ " 7 \n",
+ " 17851 \n",
+ " 13963 \n",
+ " 21739 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202217 \n",
+ " 7 \n",
+ " 20314 \n",
+ " 16001 \n",
+ " 24627 \n",
+ " 31 \n",
+ " 24 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202216 \n",
+ " 7 \n",
+ " 19660 \n",
+ " 14860 \n",
+ " 24460 \n",
+ " 30 \n",
+ " 23 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202215 \n",
+ " 7 \n",
+ " 17799 \n",
+ " 13715 \n",
+ " 21883 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202214 \n",
+ " 7 \n",
+ " 17005 \n",
+ " 13162 \n",
+ " 20848 \n",
+ " 26 \n",
+ " 20 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202213 \n",
+ " 7 \n",
+ " 15448 \n",
+ " 11659 \n",
+ " 19237 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202212 \n",
+ " 7 \n",
+ " 14702 \n",
+ " 10794 \n",
+ " 18610 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202211 \n",
+ " 7 \n",
+ " 11729 \n",
+ " 8347 \n",
+ " 15111 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202210 \n",
+ " 7 \n",
+ " 13314 \n",
+ " 10036 \n",
+ " 16592 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202209 \n",
+ " 7 \n",
+ " 10485 \n",
+ " 7600 \n",
+ " 13370 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202208 \n",
+ " 7 \n",
+ " 12088 \n",
+ " 8741 \n",
+ " 15435 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202207 \n",
+ " 7 \n",
+ " 14003 \n",
+ " 10789 \n",
+ " 17217 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202206 \n",
+ " 7 \n",
+ " 9798 \n",
+ " 7048 \n",
+ " 12548 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202205 \n",
+ " 7 \n",
+ " 10851 \n",
+ " 7797 \n",
+ " 13905 \n",
+ " 16 \n",
+ " 11 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1626 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1627 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1628 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1629 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1630 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1631 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1632 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1633 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1634 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1635 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1636 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1637 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1638 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1639 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1640 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1641 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1642 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1643 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1644 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1645 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1646 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1647 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1648 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1649 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1650 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1651 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1652 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1653 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1654 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1655 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1656 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202234 7 2306 593 4019 3 0 \n",
+ "1 202233 7 7353 0 17414 11 0 \n",
+ "2 202232 7 7801 4086 11516 12 6 \n",
+ "3 202231 7 6896 4170 9622 10 6 \n",
+ "4 202230 7 9039 5770 12308 14 9 \n",
+ "5 202229 7 14851 10060 19642 22 15 \n",
+ "6 202228 7 15471 11028 19914 23 16 \n",
+ "7 202227 7 21191 16198 26184 32 24 \n",
+ "8 202226 7 16854 12806 20902 25 19 \n",
+ "9 202225 7 22246 18011 26481 34 28 \n",
+ "10 202224 7 22458 18105 26811 34 27 \n",
+ "11 202223 7 18772 14875 22669 28 22 \n",
+ "12 202222 7 18916 14941 22891 29 23 \n",
+ "13 202221 7 20310 16307 24313 31 25 \n",
+ "14 202220 7 23585 19004 28166 36 29 \n",
+ "15 202219 7 18593 14181 23005 28 21 \n",
+ "16 202218 7 17851 13963 21739 27 21 \n",
+ "17 202217 7 20314 16001 24627 31 24 \n",
+ "18 202216 7 19660 14860 24460 30 23 \n",
+ "19 202215 7 17799 13715 21883 27 21 \n",
+ "20 202214 7 17005 13162 20848 26 20 \n",
+ "21 202213 7 15448 11659 19237 23 17 \n",
+ "22 202212 7 14702 10794 18610 22 16 \n",
+ "23 202211 7 11729 8347 15111 18 13 \n",
+ "24 202210 7 13314 10036 16592 20 15 \n",
+ "25 202209 7 10485 7600 13370 16 12 \n",
+ "26 202208 7 12088 8741 15435 18 13 \n",
+ "27 202207 7 14003 10789 17217 21 16 \n",
+ "28 202206 7 9798 7048 12548 15 11 \n",
+ "29 202205 7 10851 7797 13905 16 11 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1626 199126 7 17608 11304 23912 31 20 \n",
+ "1627 199125 7 16169 10700 21638 28 18 \n",
+ "1628 199124 7 16171 10071 22271 28 17 \n",
+ "1629 199123 7 11947 7671 16223 21 13 \n",
+ "1630 199122 7 15452 9953 20951 27 17 \n",
+ "1631 199121 7 14903 8975 20831 26 16 \n",
+ "1632 199120 7 19053 12742 25364 34 23 \n",
+ "1633 199119 7 16739 11246 22232 29 19 \n",
+ "1634 199118 7 21385 13882 28888 38 25 \n",
+ "1635 199117 7 13462 8877 18047 24 16 \n",
+ "1636 199116 7 14857 10068 19646 26 18 \n",
+ "1637 199115 7 13975 9781 18169 25 18 \n",
+ "1638 199114 7 12265 7684 16846 22 14 \n",
+ "1639 199113 7 9567 6041 13093 17 11 \n",
+ "1640 199112 7 10864 7331 14397 19 13 \n",
+ "1641 199111 7 15574 11184 19964 27 19 \n",
+ "1642 199110 7 16643 11372 21914 29 20 \n",
+ "1643 199109 7 13741 8780 18702 24 15 \n",
+ "1644 199108 7 13289 8813 17765 23 15 \n",
+ "1645 199107 7 12337 8077 16597 22 15 \n",
+ "1646 199106 7 10877 7013 14741 19 12 \n",
+ "1647 199105 7 10442 6544 14340 18 11 \n",
+ "1648 199104 7 7913 4563 11263 14 8 \n",
+ "1649 199103 7 15387 10484 20290 27 18 \n",
+ "1650 199102 7 16277 11046 21508 29 20 \n",
+ "1651 199101 7 15565 10271 20859 27 18 \n",
+ "1652 199052 7 19375 13295 25455 34 23 \n",
+ "1653 199051 7 19080 13807 24353 34 25 \n",
+ "1654 199050 7 11079 6660 15498 20 12 \n",
+ "1655 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 6 FR France \n",
+ "1 26 FR France \n",
+ "2 18 FR France \n",
+ "3 14 FR France \n",
+ "4 19 FR France \n",
+ "5 29 FR France \n",
+ "6 30 FR France \n",
+ "7 40 FR France \n",
+ "8 31 FR France \n",
+ "9 40 FR France \n",
+ "10 41 FR France \n",
+ "11 34 FR France \n",
+ "12 35 FR France \n",
+ "13 37 FR France \n",
+ "14 43 FR France \n",
+ "15 35 FR France \n",
+ "16 33 FR France \n",
+ "17 38 FR France \n",
+ "18 37 FR France \n",
+ "19 33 FR France \n",
+ "20 32 FR France \n",
+ "21 29 FR France \n",
+ "22 28 FR France \n",
+ "23 23 FR France \n",
+ "24 25 FR France \n",
+ "25 20 FR France \n",
+ "26 23 FR France \n",
+ "27 26 FR France \n",
+ "28 19 FR France \n",
+ "29 21 FR France \n",
+ "... ... ... ... \n",
+ "1626 42 FR France \n",
+ "1627 38 FR France \n",
+ "1628 39 FR France \n",
+ "1629 29 FR France \n",
+ "1630 37 FR France \n",
+ "1631 36 FR France \n",
+ "1632 45 FR France \n",
+ "1633 39 FR France \n",
+ "1634 51 FR France \n",
+ "1635 32 FR France \n",
+ "1636 34 FR France \n",
+ "1637 32 FR France \n",
+ "1638 30 FR France \n",
+ "1639 23 FR France \n",
+ "1640 25 FR France \n",
+ "1641 35 FR France \n",
+ "1642 38 FR France \n",
+ "1643 33 FR France \n",
+ "1644 31 FR France \n",
+ "1645 29 FR France \n",
+ "1646 26 FR France \n",
+ "1647 25 FR France \n",
+ "1648 20 FR France \n",
+ "1649 36 FR France \n",
+ "1650 38 FR France \n",
+ "1651 36 FR France \n",
+ "1652 45 FR France \n",
+ "1653 43 FR France \n",
+ "1654 28 FR France \n",
+ "1655 5 FR France \n",
+ "\n",
+ "[1656 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(\"incidence-PAY-7.csv\", skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions s'il existe des données manquantes dans ce fichier. En l'occurence, aucune donnée ne manque de jusqu'à septembre 2022."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour rester robuste à de futures analyses des incidences, où certaines données pourraient manquer, nous prenons la précaution d'ôter les semaines où les données sont manquantes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202234 \n",
+ " 7 \n",
+ " 2306 \n",
+ " 593 \n",
+ " 4019 \n",
+ " 3 \n",
+ " 0 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202233 \n",
+ " 7 \n",
+ " 7353 \n",
+ " 0 \n",
+ " 17414 \n",
+ " 11 \n",
+ " 0 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202232 \n",
+ " 7 \n",
+ " 7801 \n",
+ " 4086 \n",
+ " 11516 \n",
+ " 12 \n",
+ " 6 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202231 \n",
+ " 7 \n",
+ " 6896 \n",
+ " 4170 \n",
+ " 9622 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202230 \n",
+ " 7 \n",
+ " 9039 \n",
+ " 5770 \n",
+ " 12308 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202229 \n",
+ " 7 \n",
+ " 14851 \n",
+ " 10060 \n",
+ " 19642 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202228 \n",
+ " 7 \n",
+ " 15471 \n",
+ " 11028 \n",
+ " 19914 \n",
+ " 23 \n",
+ " 16 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202227 \n",
+ " 7 \n",
+ " 21191 \n",
+ " 16198 \n",
+ " 26184 \n",
+ " 32 \n",
+ " 24 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202226 \n",
+ " 7 \n",
+ " 16854 \n",
+ " 12806 \n",
+ " 20902 \n",
+ " 25 \n",
+ " 19 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202225 \n",
+ " 7 \n",
+ " 22246 \n",
+ " 18011 \n",
+ " 26481 \n",
+ " 34 \n",
+ " 28 \n",
+ " 40 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202224 \n",
+ " 7 \n",
+ " 22458 \n",
+ " 18105 \n",
+ " 26811 \n",
+ " 34 \n",
+ " 27 \n",
+ " 41 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202223 \n",
+ " 7 \n",
+ " 18772 \n",
+ " 14875 \n",
+ " 22669 \n",
+ " 28 \n",
+ " 22 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202222 \n",
+ " 7 \n",
+ " 18916 \n",
+ " 14941 \n",
+ " 22891 \n",
+ " 29 \n",
+ " 23 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202221 \n",
+ " 7 \n",
+ " 20310 \n",
+ " 16307 \n",
+ " 24313 \n",
+ " 31 \n",
+ " 25 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202220 \n",
+ " 7 \n",
+ " 23585 \n",
+ " 19004 \n",
+ " 28166 \n",
+ " 36 \n",
+ " 29 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202219 \n",
+ " 7 \n",
+ " 18593 \n",
+ " 14181 \n",
+ " 23005 \n",
+ " 28 \n",
+ " 21 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202218 \n",
+ " 7 \n",
+ " 17851 \n",
+ " 13963 \n",
+ " 21739 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202217 \n",
+ " 7 \n",
+ " 20314 \n",
+ " 16001 \n",
+ " 24627 \n",
+ " 31 \n",
+ " 24 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202216 \n",
+ " 7 \n",
+ " 19660 \n",
+ " 14860 \n",
+ " 24460 \n",
+ " 30 \n",
+ " 23 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202215 \n",
+ " 7 \n",
+ " 17799 \n",
+ " 13715 \n",
+ " 21883 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202214 \n",
+ " 7 \n",
+ " 17005 \n",
+ " 13162 \n",
+ " 20848 \n",
+ " 26 \n",
+ " 20 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202213 \n",
+ " 7 \n",
+ " 15448 \n",
+ " 11659 \n",
+ " 19237 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202212 \n",
+ " 7 \n",
+ " 14702 \n",
+ " 10794 \n",
+ " 18610 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202211 \n",
+ " 7 \n",
+ " 11729 \n",
+ " 8347 \n",
+ " 15111 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202210 \n",
+ " 7 \n",
+ " 13314 \n",
+ " 10036 \n",
+ " 16592 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202209 \n",
+ " 7 \n",
+ " 10485 \n",
+ " 7600 \n",
+ " 13370 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202208 \n",
+ " 7 \n",
+ " 12088 \n",
+ " 8741 \n",
+ " 15435 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202207 \n",
+ " 7 \n",
+ " 14003 \n",
+ " 10789 \n",
+ " 17217 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202206 \n",
+ " 7 \n",
+ " 9798 \n",
+ " 7048 \n",
+ " 12548 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202205 \n",
+ " 7 \n",
+ " 10851 \n",
+ " 7797 \n",
+ " 13905 \n",
+ " 16 \n",
+ " 11 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1626 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1627 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1628 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1629 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1630 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1631 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1632 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1633 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1634 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1635 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1636 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1637 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1638 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1639 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1640 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1641 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1642 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1643 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1644 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1645 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1646 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1647 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1648 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1649 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1650 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1651 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1652 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1653 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1654 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1655 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1656 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202234 7 2306 593 4019 3 0 \n",
+ "1 202233 7 7353 0 17414 11 0 \n",
+ "2 202232 7 7801 4086 11516 12 6 \n",
+ "3 202231 7 6896 4170 9622 10 6 \n",
+ "4 202230 7 9039 5770 12308 14 9 \n",
+ "5 202229 7 14851 10060 19642 22 15 \n",
+ "6 202228 7 15471 11028 19914 23 16 \n",
+ "7 202227 7 21191 16198 26184 32 24 \n",
+ "8 202226 7 16854 12806 20902 25 19 \n",
+ "9 202225 7 22246 18011 26481 34 28 \n",
+ "10 202224 7 22458 18105 26811 34 27 \n",
+ "11 202223 7 18772 14875 22669 28 22 \n",
+ "12 202222 7 18916 14941 22891 29 23 \n",
+ "13 202221 7 20310 16307 24313 31 25 \n",
+ "14 202220 7 23585 19004 28166 36 29 \n",
+ "15 202219 7 18593 14181 23005 28 21 \n",
+ "16 202218 7 17851 13963 21739 27 21 \n",
+ "17 202217 7 20314 16001 24627 31 24 \n",
+ "18 202216 7 19660 14860 24460 30 23 \n",
+ "19 202215 7 17799 13715 21883 27 21 \n",
+ "20 202214 7 17005 13162 20848 26 20 \n",
+ "21 202213 7 15448 11659 19237 23 17 \n",
+ "22 202212 7 14702 10794 18610 22 16 \n",
+ "23 202211 7 11729 8347 15111 18 13 \n",
+ "24 202210 7 13314 10036 16592 20 15 \n",
+ "25 202209 7 10485 7600 13370 16 12 \n",
+ "26 202208 7 12088 8741 15435 18 13 \n",
+ "27 202207 7 14003 10789 17217 21 16 \n",
+ "28 202206 7 9798 7048 12548 15 11 \n",
+ "29 202205 7 10851 7797 13905 16 11 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1626 199126 7 17608 11304 23912 31 20 \n",
+ "1627 199125 7 16169 10700 21638 28 18 \n",
+ "1628 199124 7 16171 10071 22271 28 17 \n",
+ "1629 199123 7 11947 7671 16223 21 13 \n",
+ "1630 199122 7 15452 9953 20951 27 17 \n",
+ "1631 199121 7 14903 8975 20831 26 16 \n",
+ "1632 199120 7 19053 12742 25364 34 23 \n",
+ "1633 199119 7 16739 11246 22232 29 19 \n",
+ "1634 199118 7 21385 13882 28888 38 25 \n",
+ "1635 199117 7 13462 8877 18047 24 16 \n",
+ "1636 199116 7 14857 10068 19646 26 18 \n",
+ "1637 199115 7 13975 9781 18169 25 18 \n",
+ "1638 199114 7 12265 7684 16846 22 14 \n",
+ "1639 199113 7 9567 6041 13093 17 11 \n",
+ "1640 199112 7 10864 7331 14397 19 13 \n",
+ "1641 199111 7 15574 11184 19964 27 19 \n",
+ "1642 199110 7 16643 11372 21914 29 20 \n",
+ "1643 199109 7 13741 8780 18702 24 15 \n",
+ "1644 199108 7 13289 8813 17765 23 15 \n",
+ "1645 199107 7 12337 8077 16597 22 15 \n",
+ "1646 199106 7 10877 7013 14741 19 12 \n",
+ "1647 199105 7 10442 6544 14340 18 11 \n",
+ "1648 199104 7 7913 4563 11263 14 8 \n",
+ "1649 199103 7 15387 10484 20290 27 18 \n",
+ "1650 199102 7 16277 11046 21508 29 20 \n",
+ "1651 199101 7 15565 10271 20859 27 18 \n",
+ "1652 199052 7 19375 13295 25455 34 23 \n",
+ "1653 199051 7 19080 13807 24353 34 25 \n",
+ "1654 199050 7 11079 6660 15498 20 12 \n",
+ "1655 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 6 FR France \n",
+ "1 26 FR France \n",
+ "2 18 FR France \n",
+ "3 14 FR France \n",
+ "4 19 FR France \n",
+ "5 29 FR France \n",
+ "6 30 FR France \n",
+ "7 40 FR France \n",
+ "8 31 FR France \n",
+ "9 40 FR France \n",
+ "10 41 FR France \n",
+ "11 34 FR France \n",
+ "12 35 FR France \n",
+ "13 37 FR France \n",
+ "14 43 FR France \n",
+ "15 35 FR France \n",
+ "16 33 FR France \n",
+ "17 38 FR France \n",
+ "18 37 FR France \n",
+ "19 33 FR France \n",
+ "20 32 FR France \n",
+ "21 29 FR France \n",
+ "22 28 FR France \n",
+ "23 23 FR France \n",
+ "24 25 FR France \n",
+ "25 20 FR France \n",
+ "26 23 FR France \n",
+ "27 26 FR France \n",
+ "28 19 FR France \n",
+ "29 21 FR France \n",
+ "... ... ... ... \n",
+ "1626 42 FR France \n",
+ "1627 38 FR France \n",
+ "1628 39 FR France \n",
+ "1629 29 FR France \n",
+ "1630 37 FR France \n",
+ "1631 36 FR France \n",
+ "1632 45 FR France \n",
+ "1633 39 FR France \n",
+ "1634 51 FR France \n",
+ "1635 32 FR France \n",
+ "1636 34 FR France \n",
+ "1637 32 FR France \n",
+ "1638 30 FR France \n",
+ "1639 23 FR France \n",
+ "1640 25 FR France \n",
+ "1641 35 FR France \n",
+ "1642 38 FR France \n",
+ "1643 33 FR France \n",
+ "1644 31 FR France \n",
+ "1645 29 FR France \n",
+ "1646 26 FR France \n",
+ "1647 25 FR France \n",
+ "1648 20 FR France \n",
+ "1649 36 FR France \n",
+ "1650 38 FR France \n",
+ "1651 36 FR France \n",
+ "1652 45 FR France \n",
+ "1653 43 FR France \n",
+ "1654 28 FR France \n",
+ "1655 5 FR France \n",
+ "\n",
+ "[1656 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de semaine est collé à l'année, donnant l'impression qu'il s'agit de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ "\n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de semaine. Il faut lui fournir les dates de début et de fin de semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous écrivons une petite fonction Python pour cela. Ensuite, nous l'appliquons à tous les points de nos donnés. Les résultats vont dans une nouvelle colonne intitulée 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il reste deux petites modifications à faire.\n",
+ " \n",
+ "Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. Ceci en fait une suite chronologique, ce qui sera pratique par la suite.\n",
+ " \n",
+ "Deuxièmement, nous trions les points par période, dans le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Nos données couvrent donc bien tout l'intervalle des relevés d'incidence, confortant le fait que nous n'avons pas trouvé de données manquantes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Effectuons un premier affichage graphique des données d'incidence de varicelle de 1991 à aujourd'hui."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXe8HUXZ//c555b0ENIICZAAoQYIEDCCKBCRICpFUHgVsPzEAnbfV3h9fa1RsaFY8EVBAQtNFKQJUqQYExJKGiUBAgmkQdoN4d7ce8/8/tid3dnZZ8qes+fctt/PJ7nnzJmdmZ2dnWeeTkIIFChQoECBAipKPT2AAgUKFCjQ+1AQhwIFChQokEJBHAoUKFCgQAoFcShQoECBAikUxKFAgQIFCqRQEIcCBQoUKJBCQRwKFChQoEAKBXEoUKBAgQIpFMShQIECBQqk0NTTA6gWY8aMEZMnT+7pYRQoUKBAn8LChQtfFUKMddXrs8Rh8uTJWLBgQU8Po0CBAgX6FIjoRZ96hVipQIECBQqkUBCHAgUKFCiQQkEcChQoUKBACgVxKFCgQIECKRTEoUCBAgUKpFAQhwIFChQokEJBHAoUKFCgQAoFcSjQ59HR1Y0bF6xCkfK2QIH80Ged4AoUkPjJP5bj8geew/BBTZg9bUJPD6dAgX6BgnMo0Oexoa0DALC1vauHR1KgQP9BQRwKFChQoEAKBXEoUKBAgQIpOIkDEQ0iovlE9CQRLSWib4TlXyeil4noifDfO5VrLiaiFUT0DBGdqJQfTkSLw98uIyIKy1uJ6PqwfB4RTc7/Vgv0exT66AIFcoMP59AB4HghxCEApgOYTUQzw98uFUJMD//dAQBEdACAswAcCGA2gF8SUTmsfzmA8wFMDf/NDss/CmCTEGJvAJcCuKT2WyswUEA9PYACBfohnMRBBNgWfm0O/9nOaKcAuE4I0SGEeAHACgBHEtEEACOEEHNFYHN4DYBTlWuuDj/fBGCW5CoKFChQoEDj4aVzIKIyET0BYD2Ae4QQ88KfLiSiRUR0FRGNCssmAlilXL46LJsYftbLE9cIIboAbAEwmhnH+US0gIgWbNiwwesGCxQoUKBAdngRByFEtxBiOoBJCLiAaQhERHshEDWtAfCjsDp34heWcts1+jiuEELMEELMGDvWmcioQAErFr64Eas2bu/pYRQo0CuRyVpJCLEZwAMAZgsh1oVEowLg1wCODKutBrCbctkkAK+E5ZOY8sQ1RNQEYCSAjZnupECBjHjv5XNxzPfv7+lhFCjQK+FjrTSWiHYKPw8G8HYAT4c6BInTACwJP98K4KzQAmkKAsXzfCHEGgBtRDQz1CecC+AW5Zrzws9nALhPFLEQCmSEKMyVChTIDT7hMyYAuDq0OCoBuEEIcRsRXUtE0xGIf1YC+DgACCGWEtENAJYB6AJwgRCiO2zrkwB+B2AwgDvDfwBwJYBriWgFAo7hrBzurcAAQWG6UKBA/nASByHEIgCHMuXnWK6ZA2AOU74AwDSmvB3Ama6xFChQoECBxqDwkC7Qr7B49RbM/smDeL2jiLNUoEAtKIhDgX6F7975FJ5e24YnVm3u6aEUKNCnURCHAgUKFCiQQkEcChQoUKBACgVxKFCgjli7pR0X/vExvLGj2125QIFehII4FOhX6G3eMd+98ynctmgN/r50bU8PpUCBTCiIQ4ECBQoUSKEgDgX6DXob11CgQF9GQRwK9HkQE7excJouUKA2FMShQIECBQqkUBCHAgUKFCiQQkEcejm2bO/Ek4W3rxcKlUOBAvmhIA69HOdcNQ+n/OKRnh5GgQIFBhgK4tDLsWj1lp4eQq9HEbK7QIH8URCHPoIi95EfelvCn+KxFeirKIhDH0GxyRQokMQbO7rxh3kvFuHZ64SCOPQRFLShb6IQedUPNz++Gl/5yxL8Yd6LPT2UfomCOPQRFGKljOglm3Lx2OqHTa/vAABseaOzh0fSP+EkDkQ0iIjmE9GTRLSUiL4Rlu9MRPcQ0fLw7yjlmouJaAURPUNEJyrlhxPR4vC3y4iCcxURtRLR9WH5PCKanP+t9m0Ue0xGDNAJE0Jg8kW340d3P9PTQ2kYCgJcH/hwDh0AjhdCHAJgOoDZRDQTwEUA7hVCTAVwb/gdRHQAgLMAHAhgNoBfElE5bOtyAOcDmBr+mx2WfxTAJiHE3gAuBXBJDveWK/76+MtYt7W9x/qvFG9An0SjxUpymfzsvhWN7bgHEJ4tB+o5oO5wEgcRYFv4tTn8JwCcAuDqsPxqAKeGn08BcJ0QokMI8QKAFQCOJKIJAEYIIeaKQEZyjXaNbOsmALMkV9Eb0Nbeic9d/wQ++Jt5PTaGgjZkRC9ZPY1+bvIQ0XvenvqjeDfqAy+dAxGViegJAOsB3COEmAdgvBBiDQCEf8eF1ScCWKVcvjosmxh+1ssT1wghugBsATC6mhuqByqV4G9Pcg4FCvhgIO2TkgD2NvPl/gIv4iCE6BZCTAcwCQEXMM1SnTuzCEu57Zpkw0TnE9ECIlqwYcMG17D7FYrTUd9Eo0/wEefQ2G57BFw03gL5IZO1khBiM4AHEOgK1oWiIoR/14fVVgPYTblsEoBXwvJJTHniGiJqAjASwEam/yuEEDOEEDPGjh2bZeh9Hv3pdLS1vRNbttfHwqS3EdF6jOfptVux5GXec17214uksvVHL3vm/QU+1kpjiWin8PNgAG8H8DSAWwGcF1Y7D8At4edbAZwVWiBNQaB4nh+KntqIaGaoTzhXu0a2dQaA+0QvtN3c2t6Fb/5tGborjR9a75uN6nHw1+/GId+827v+BX98DHcsXuOs15vnKM+9evZPHsK7fvYw+1tEHPLrrtciFisVqAd8OIcJAO4nokUAHkWgc7gNwPcAnEBEywGcEH6HEGIpgBsALANwF4ALhBAyu/onAfwGgZL6OQB3huVXAhhNRCsAfAGh5VNvxFWPvIBHV6aYmszY+PoOvPDq6971B/ILcPuiNfjUHx4z/t4XDsl5EK75L2xER1e3tU5/4jBdkI+9F54j+wWaXBWEEIsAHMqUvwZgluGaOQDmMOULAKT0FUKIdgBneoy3VyAPs9K3/eB+tLV3YeX3TvaqX7wAbsx9/rXoc3+TR69Yvw3v+7+5OPvI3a31KpFYqQGD6mFEnEPxatQFhYd0NchhMba1Z4sHU6x/G4Jd4m9PvhKV9LYTdK2btfQCfnrtVmu9gXSIkAeAgXPHjUVBHKpATyzGAfTOZ0alB3RAWVHr85PExXWrEefQzzgnDgOBO+pJFMShCvTIRt37978eQzsjh+9vm2N0N47FJzSN9Pqt7fjCDU+gvdOuq+jLKA5O9UFBHKpAT4Sy6G1ikt6EN3b0/o2v1lNuySNUREdXN17auD1R9u3bn8LNj72Mu5asrW0AvRjFu1EfOBXSBdKLb0dXpfFjKNa/ESMHN/f0EJzIT6xkbugLNzyJ2xcFJr+SFsn6pVL/4qQAJbZS8W7UBQXnUAW6e4RzKGDC5DFDAQBnHD6p385TyWMjvP/p9akyWb8f0oZ+JjjsfSiIgwf0F7InTioDyQolK+TclHuxhjKvofnq3nVOo9SL56Za9MNb6lUoiIMHesO23BvG0FsxEOhmzDmYb5YSn4NvMXGo29B6HMXBqT4oiIMH0ouv8YuxyOdgBjcz/e1UmdXhSzd97Y+xliIP6R4dRf9FQRyqQGHK2rsgn0dnpZIqqxWf/P1CzP7Jg4mye5atQ1t730hNKfq1WKlQSNcTBXHwQM/zDQVtsEFak9382Mt4dVtHrm3fuWQtnl7bFn1f+err+Ng1C/ClG5/MtR8AmPf8a7hV8fKW2NFVwUk/fQgAsHH7Dq+2JCmQQSL7o1ipyOdQXxSmrB7oHQrpxvfZV6B6SD+/IQhmWK+D8vbQp+LF17Y7ambH+6/4NwDgPYfsqvUZh1rZ0BYTPyGEU1wkp6ZfmrKGf4t3oz4oOAcP6CeTnjip9PfT0Z/mv4Slr/A5Clzo8jTh2dDWgSdXbQaATBFxexomb2/bpiiJRn+2Vup3iqVehoI4+KDgHOqOi29ejJMv43MUuOBLHN79s4dxyi8eAQAc98MHquqrlv3oZ/cux9znXnNXTHXKF+v+Nuq3rkoFO7oq/drPQd5cP381egwFcagCeS5GXzO8vvgCrNq4HT++59m6mxp2dfu1vzaHHOC13MqP7nkWZ//635mvM23sNgu29s4K9vmfO/s15yDvvr8fnHoKBXHwQEohneNq9HVq6ou23B+7ZgEuu3d53UU43ZVs4Uw6uxsf/qQWmPQK+pLgav0r5FT6IW2IIITAL+5fgddyNkYY6CiIgwfquS/7+i/0QdoQxaCq99A7M4bsriVCaW/aZPV0tbZZ6JecQ3jDC1/chB/8/Rn8502LenZA/QwFcfBASiGd427Xn53bGnVn3Z5iJYn2zsZxDnJkDy1/tfo2DGsky9rpn8QhuH9JJPuK70lfgZM4ENFuRHQ/ET1FREuJ6LNh+deJ6GUieiL8907lmouJaAURPUNEJyrlhxPR4vC3yyjkl4molYiuD8vnEdHk/G81P+RpOeT7fvdlGlLvbanTU6wkZfd55DbI+jxuWri6+r4M5TrDZJvnPBTS67a2Y+2W2vU2eUHevm8ipALZ4MM5dAH4ohBifwAzAVxARAeEv10qhJge/rsDAMLfzgJwIIDZAH5JROWw/uUAzgcwNfw3Oyz/KIBNQoi9AVwK4JLaby0/1NPPwVus1AdV0o3Sk+jiFRNamoLl3sjEN757cjVh4PUMeLZZyONJvOk792Lmd+/NoaV8EFtiBbPsuw4K+MFJHIQQa4QQj4Wf2wA8BWCi5ZJTAFwnhOgQQrwAYAWAI4loAoARQoi5Itg1rgFwqnLN1eHnmwDMIpMWrgeQVkjn17a/Qjq/PhuNej9KzpSV67GlLIlD7WIl31vyfWw2Jbnp2WcRKzVi/Vz+wHP44g35e467EMed6sMvSS9EJp1DKO45FMC8sOhCIlpERFcR0aiwbCKAVcplq8OyieFnvTxxjRCiC8AWAKOzjK2eqOei8+cc+i5qmT+fa310Drc88TK2tgeexlxa0ezjqrmJDJ3xxVkOyo3YOC+562n8+bHqxWdZEYmVwqNAT+RZ6c/wJg5ENAzAnwF8TgixFYGIaC8A0wGsAfAjWZW5XFjKbdfoYzifiBYQ0YINGzb4Dr1mpMRKObZt29jUF7qnT0V/nPcSVm/KP2REHnAR2C1vdOKz1z0Rfa8lrWhWJsi3ejUb2yV3Pd2v/WRckPce6Rz6loVyr4cXcSCiZgSE4Q9CiJsBQAixTgjRLYSoAPg1gCPD6qsB7KZcPgnAK2H5JKY8cQ0RNQEYCWCjPg4hxBVCiBlCiBljx471u8M6IM+N2iZOUE+GPflyb9neif/+y2Kcd9X8qq6vRazkM9WuKrps/s4la6oeT70gLBubSd9008LVWL3pDb/2G7iArnr4hUQ8qHqjpIUKKZAPfKyVCMCVAJ4SQvxYKZ+gVDsNwJLw860AzgotkKYgUDzPF0KsAdBGRDPDNs8FcItyzXnh5zMA3Cd6+qhsQZ4D22ElDo3nHLa2d+KcK+fhkRWx6aUUw7S1Z3vhG/UAs07Nn+avcldqMGycQ+99E3h887Zl+Ok/lte1jy/c8AQuuetpAH75tQtkh09U1qMBnANgMRFJ3vy/AZxNRNMR7AErAXwcAIQQS4noBgDLEFg6XSCEkHz8JwH8DsBgAHeG/4CA+FxLRCsQcAxn1XZb2fHM2jYQAfuMH576rZ65fmxWKknikF+fNrz02nY8tPxVdHULHL33GADxGJvL1bnF1KKOHihCk2otbXqrtVtHFdZXWXDzYy+nygprpXzhJA5CiIfBv993WK6ZA2AOU74AwDSmvB3Ama6x1BMnhgldVn7v5NRv9YzK2mnVOah9NhablLwBkruRpqB9Db3H7s0MG2doNVH1XRgNXkBDW8vW35/fsA3jRwzC0NbaswZImlAwDvmib77tPYw8FmE59ErqbZwDdxKVY2xROIfN23fg70vX1n08PuK0HomSmzNPU62lTW+1dhvcbCcOx//on/jI7x7NpS+pUyrESvmiIA4eqIe1UnM5JA7dZsuZpEK6MQtfMKewToZzuOCPj+Hj1y7EuhwindaKRm4JptwKtcImErERSN9w5Y3eN23JheT9zHshZXNSFSRRKExZ80VBHAxYtXE7Jl90O25ftKYuTnBSfr+jy9xYT3IOKjGSxKGpHL/wMhOajfPJY8w+TXCbZ2/xofQdhW2ubHPgG2G20ToH6/3kPJRozfZj2nDxzYtx2i8faWifRZpQA5a+shVA4Dy1/4SkkjqPF02KaGzWSqp5Y6MWvuwmoe/QwhT44NGVG/HSxoCA1Huf7s17gq+oo1plqu91vWnjzFv8w3G7/Q1/mv9Sw/ssOAcP5Mk5dFcE/vbkK9EpvNNX59CALXBreydO/+W/wv5iVNPzmb+am8uYvPwcHHXqJQryge9aqdaU1WbQkAVb2zvx18fTFkD1QN5GRTHn0I+pQw+g4Bwc6OiqYJ0WibKWJXjVwy9gzh1PRd/9/Rxq6NQTz2+wJ+UhBGKkV7epSe7rPCgP9IIhGOGtuLZaK1l0Dt5iJTv+68ZFuGvpWuy7y3DsP2GEV5vW/iz3kzfnEFkr5dpqgYI4GCBFIf98dgP++awWqqOGxa2nqvT1kG40uJdbAPjKXxbjxoWrsfPQFu+2ajm5+2yuPXFi9OYIPB9itcnp/BXS9nprwnXZiIi1K19zZwa89J5nsWn7DnzzlJTlewrbOgLnzMJaKV8UYqUqUO0SfHLVZlz58AuJMpuzkGgw55Do21B+39PrAWSLT7RszZYcRsRj1cbtuVm9+CCr/sSXwFuJiFWslA/nUC3aO7ux8fUdqXLTel2/tR2zf/KQs92f3rsc18x90WsMsv+CNuSLgjhUgWoX4f/eujRV5h9bqf4r33S6VIuj8MgZxvOJ3z9m7c8qUnF0c8z373fnQlA29LHDW+11Hcj67H3r37boFXclBl2+Ooc6LZ/Tf/kvHPate6x1dnRVMPmi2/Grfz5X1yx8A4E23LNsXcP6KohDA9HOnLZ7kxOcMHyJol8q/+diptoDViblBpu4+oo6fvnAc8bfbC10eYYiNRHz9VvbaxLLLVuz1dBfjNdDsc+v/vkcmpuyzf+h37zbW9Q1EBTSH7tmQcP6KohDFah2EW7vTAeus0kTktZKjYXJWinmHGpHT8iIyzXmy8wuVqr9Hn2tlbL6FqxY34Yjv3MvrnpkZVyvivG5+hOGch9s2t6Jlzf7RZ4tQivli4I4GGDbA6pdg1zuBl+RSiNORab+EmKlqDCH/vJrKoXEJs6IxRqFej+2WoLNrXw18ENRI/Ca8JSBQ8gCQnXEUg+5bsJA4BwaiYI4VIFv/G1ZVddxIQVs67n3cA7p3vM4EfvYp+f9vtfKOUj4DquaeXpNMRUO+jK3oeqsbISPGwZX39SEtAiqFdU8T9+wGKZaV/9rJZa8XD+jiP6Kgjg0ENzGZNs8Kg3mHIyvF3Pyli9sLYryxnl9xx3VqnPIOmYf4qA/28O//Q/ctHC18rv5WtWUtdoQHPc9vR4doVzfVC+vZ1VNO74Z3kwcxtduXYp3/ezh7B0z6OjqxqqNvTMjYt4Y8MTh5/ctx3t+ns/CcYHbmGzvSk/EVuL6kx+JYp+FPJTJURu2OjnzTLaAcD6Q4/FtxWdju3FhOu/y3Ode82rf2wnO8aCeXtuW+P7Gjm785fHVVR9KTM+tmufZmyLPfvmmRTjm+/c3NNNdT2HAE4cf3v0sFq1Os5z1CNzGbUy2hS8aLFZKEgSDzkG7hVrEDbKPvmitlKdY6fGXNlfdl6qQtoqVnKMI2wj/zrljGT5//ZOY+3xApLISCVP1alQk3noVR7U8stNJh9h6muS60CjCNOCJQyPBcg5WnYNfvTzQ1V3BZfetYPtTCYV+B7Ww6z7vfJ4ms0AOnEOG8QghnA563RXhDKrmmwgoq7USR0xktbVhyJhtYWrY/KyYsrfkq3NwEeJL//FsQzzA640lL9duHOCDgjg0EJzOwTcGja3eyldfx6m/eASTL7o9EfdIx6qN29HW3sn+dvPjL+NBJUyIKXF9nhxV5ATXQHV7lZlOI2TZ29a3mZ+FhPQ41+E7zf6bbX5z7HQ6hE604m/VcA76PRqdNb2uzd6/z5gaiUZZ3BXEoYEoMbNt5RzUkN2Wds/8v7l4YlUgmpB5Fjgc8/378d7L/8X+1mE5UakEJ8+F6ZPeMY9XUG0jN7GSY3N4bVsHK67UYXJqSljiZuQIaoE+O/IwoPbzxRufrK5tIlTzRDe0JcNzmAgMNxe6SMrXabCAB3Egot2I6H4ieoqIlhLRZ8PynYnoHiJaHv4dpVxzMRGtIKJniOhEpfxwIloc/nYZhSuPiFqJ6PqwfB4RTc7/Vv1QzxMBF4DO2wnOUm/L9pgbcO19z67bZq+g4PPXPxH+jTeDXE8tPXD4ymLKunk7EzPIc9D//ZfFDfFm9Y/66tueu75MD6ub3Pp0WA3n8InfL0x8N+kgOLGSXrUWvxAVPcc3+BtD1AofzqELwBeFEPsDmAngAiI6AMBFAO4VQkwFcG/4HeFvZwE4EMBsAL8kIplQ9nIA5wOYGv6bHZZ/FMAmIcTeAC4FcEkO91YV5PqqxwPgZbw2hbRfPZUjyXPcf2Hi++eZG6EaM09fJE/ecRtqqlMXLvrzYmY8YfsOKlmrXNiXCNeiq/V5llwNQkA4D//2P7z6Uz+/8Ko7IqsLpnXDFet1faPYmtATGQaXvtIzPhrON0UIsUYI8Vj4uQ3AUwAmAjgFwNVhtasBnBp+PgXAdUKIDiHECwBWADiSiCYAGCGEmCuCt/Ua7RrZ1k0AZlFPPAXU90TA3ZAv52AbmCoq6S3pMX3gc0q1Xl/Fha1N9sT3Kto6eP0MAKxYb+fAan0M6sbt6yhpg+9UyV716gmjBArCWvhC7fvj1y40V/SEkTgwL4nOKeTGOTSQdXjgmWTKgF6pcwjFPYcCmAdgvBBiDRAQEADjwmoTAaxSLlsdlk0MP+vliWuEEF0AtgAYzfR/PhEtIKIFGzZs0H/OBXWN98NaK3kqpC3NqhY41a4bb1PHXHUOHpyD7bdqlJsZ6g5rrT7dic882Z69v0Lasx535xZrJdsPPn1yXC8X2pvDVoPRhEQmnYNW6Bvi3IVGKqR7ysLKmzgQ0TAAfwbwOSGEjWfmlrWwlNuuSRYIcYUQYoYQYsbYsWNdQ64KPelspsPXlDVLbudqxiFBOSfcjJ3gqpv0aux0nt/gr3Ph7tb/BO6eKd8Un3bRY76cg1dbyHgIydh3h8OHIIvOQWhN1co5yPtuZJC/dO6UxrAOXsSBiJoREIY/CCFuDovXhaIihH+lTd5qALspl08C8EpYPokpT1xDRE0ARgJoXAYXBZEHbJXzL4TA5Ituxw///kzqN16s5Pfi2zYIVclab5azLqasdbDGMV2Wpb1abtVH721LmKT2Xcv8nDNzj6CeezjWcSSuF+72Ek6UGft0Ebwspqw651CrzkGikRGFbamE6wkfayUCcCWAp4QQP1Z+uhXAeeHn8wDcopSfFVogTUGgeJ4fip7aiGhm2Oa52jWyrTMA3CfqyLe95+cP49cPPs/+VmuvcvH9/P4Vqd9sTkccquEcsp7thRCZWOS8ArABtet3qjk11/pS+3I5PkT0Dau4wO85eiukM3s4C+27YxwVc/2sU+6qrp7+x49oxegwZa2PKWteOofl67dFeSrqDX3MvUnncDSAcwAcT0RPhP/eCeB7AE4gouUATgi/QwixFMANAJYBuAvABUII+RZ8EsBvECipnwNwZ1h+JYDRRLQCwBcQWj7VA90VgUWrt2DOHU/VpX0fByEVts1KXRS2Ja0uFm7hrNvajluf5DONffzahZhy8R3em8cGD8cuX0RRWW2VbKfmKvp850ETvOuyxFzp9O6lazH5otvxIpMT2ef9tRMHpU/Lb7UQO58xyjmoaFysfu3NjGWbWj8LXPekcgNNnPOQ2rfOOfhmzjNAzsd5V83HR373aE1t+aKn8lQ4NW5CiIdhXkezDNfMATCHKV8AIJUxXAjRDuBM11jywCbGdj05FvNvX33XAfjWbeZw3UIILHxxE4AM4ZAt/SWIg6f4icOxP3jAuBHd3cC0gzoinUOVG5x62V5jh+K5Da+zv6mb0xGTR6XyeJvg4sJ+EWZve2LVZuwxeqh+sRO+MXJ8w2dkRRYRobohc8NJhxlXPmflHJj6QgjWIa+pTBAW/XVarJSfiKZRuct981nkjQHnIe2aaJvOYe9xw9L1hYgsIP44/yWce9V8ALySmHsZbackdSH7ip84+J5QXZi/Mt+Xwc9aKa4z+aLb8Zk/Pc7WG9bahB+ccbCzPddJMwGHGPDJ0CudUyz7bLs2KxTffVt6xrtg2nB94QoC2WHhmDPrHJgydY2rh6YykfU+dJGM6V25du5KnH3Fvz1Gl3wwjQiCl5eeJCsGHHFwKtIsFZpKhOP3G4eDJo6Myn790POY+pU7sXn7Djy9Jg57zCkkWZMsT87BNnB1k61akV7dZTUhtlbyhyoeUwnH9h3dXidhF21Y39aOaV/7uzE5DLcRcWGzfSzI3thh3lATTnyWNtR4WByayuFpm2nF1q7+25Y34uM5Nwc2capp8zZ5q3MHOPVdUNd7qUR2XyFtWKYDyVdvWRpFoM2C1zvqb2aqz19v8pDuV3Adlmw/l4hQouQC++O8IKKmbsPtqxi2LewuwwuhoxblX0/iziVrcPNjq6u2xlF/Uzev4Dc/wqrjwWdfxbaOLlz1yAt+9tUAOpmH6EMcbKfOvJSOzWGkwaycQxwpIBjIK5vb49+Y8ekWNT5rMksoE3X9qxu+i3PQDShckgN9HfUG+EalzRsDjzg4dgrbQgvWcvKkIuO6tzaXnW1nDZ+R1DmY202e6qxDMKIn1t937ngaX7jhSTy0vHaHxrb2Lj8Fa4Zzl8qJ2BTxXd0VnH/NAvxVUcr6bO6+Joq1PJvmclpOL+Elfg/vQ+UMuLZsgRuNYzNxDkwHJs6ByE77X9qYNBZpDnoVAAAgAElEQVRwSWhm/eif1t/159oIk9aeUkgPPOLgmGjbgyiXAs5BJSAdXcFLEZxg7G1zYg/9moUvbsSRc/6Bre2dyRSQhjbXbEmG1m5k+Ou8YDMJ9L2bHd0V44acaCPDiVytOj9UPnLPuKtb4O5l6/C5MFChL2zrhbwFS3ZIHQvXgo9Y6Sf3PIvPX/8EfnqvPVGOrnMwJYtSMbiFt4dxeTqrn59e26bEu2Kuy+gEZwt5z6ER+oCUmXDdewww8IhDDRWICCWNCMiXoiKS2zLHCvI6h2S9H939LNa3dWDx6i3oVhXShjfszd+9L/G90aeMfcanlfTcZl8PtxW1Sf2lN/Vmow3L17XhJ/94lv1tSIuMyZRuuZM5gvvoP/RT5367DFeud17uBck5+PQPpDfmJ1dvYQMw6rju0VWJ7yZrMRXDWvk4V2x0VYvlnqzPiwG1dVHjOtT76K7RNNYHesiPRnH5A484uLwvbdFPKVBoqotXPriKEImH5vtuXz33RcM4kzbZvuuhkZ6bAC9b17kZwE60bBup3YxTU9Qpzfzifj6rnQ0nXPpglOSIQIn2BjWbA/ZxtvPV7O0H7jqSLVfH/6ePzWR+DypwVmllyTmwhKB+ayVh3WToxjSnXHWV+OvcQBadVd6Hp0bkh2jWIgk3Kq7TACQO1f9eLhGIKKkcE+p12XUOpjoCwlvnoKJqnUN1l/m3bxlY1cECtSZVUcxDy1/l+zIEP+SUw4+siK1XBoecAy9W4jgHtnut3+R3c7TRZLsna458tmce6RyY37iNMi+OxdPQjgW3VlROXH9WVmMNSzt5IC+Pa2sf3QL7jo+5ykKs1EOQE8+toRIjVlLjA6nlrJ+DV/z8uE5Snum3JIQQeHTlRvx54Wp35RzgI5oI6pnbsDkm5v0icE+gqyLQ2ZXuSZU/lyKinQZnrWTbZCUx0TkfdaMxXU4AfvGBwxJlAny00f12GY5Z+4+PKynY0NaBGxasSl1Tq2OihE+K20x5GZTba2tPEgdZ3UT4ffr0hZ76tRGWRJ3dFTQ3xffWKKe4AUcc3JyDMNaTpqwJb9Hob+oYWzOq4hwAnPmrufjijU9ia3un0WksdV2Vi9x/XOaK378rHaTQr80kzAppYa3TXREp8UDaKsU8jqx+Dv/z1yXBuPQlkwiDEn9JiCsN7XIn2B+eeUiU3Eif/49dsyCVJyALXAed3z6yMvpsmjrT2uHmWn3ndOKQ5QRRy8b68WvTmf1qDcfhgx3dlcgkGSg4h7rBacqq/VVRKgXWH9yC+NKNTybyN3OvThaWfePrOxKnQW+dg7L4b1yw2hhTKS/4jstqmWOZF7s8OZ/XpLO7krI60U+ItkNDVg9pqeDV26o2v7WPyE6vsn5re6ouUJ+gbmYiYBKjpcvVdS0tBF3tcL9VQxsqFYGt7Z34+9J0qJlGiJU6NeLQKL3iwCMOjnmVaQy5F65EhNbmUsJsT1Z7dOUmp4dlFp3DZ697At9Xwn77rgd1re40uNnvIkv7Kx1pHX0Xqq1etWHAqyFM3Im3uyJSHr6653GsW0r3qm9WQUdxPydN2yXxk3T+0lsqGez+XZyPaR5KRIoOy4wPHTU5bstjUk+dvqu7UgLpRk8+aEImjsLGRUdiJY+2fDZz/Rlf8dDzOPjrd7N1G2HK2tkt0KIQh0axDgOPOCifJ190e+r3//vn86l6EiUitDaV+M1AAx94L9smmHA88tU5KPWGGjKZcTF9TJv3sT98wNWhT1HkLMjB5iibxW/Dh8hwVboqwiNDmHkcXHIatZuTD56AVsXiRIqc9E2olBArKT07RaEGMWjJb8196ri9nHUkhg9qwk5DWrzrA+mxTR49JCCEGTgKTpQLALuOHOTl6R1/d6+nz1yX9Fe5/+n1hpq8SDFvBJwD4dfnzgDQOHP1gUccHItD+hbwOocgB7EtyJhEFkLgs2DztFY65vv3p8qqXXCsTTpTZtN9VCtO0V9aUyvCUaerWzizskWcA/NbO3NYKGmbe2IMFJerSCRtMtyNyZafI6Ilg95CR7MScMr1KKp5UhyHRMiqkFY5h+Dz5R84DH/+1FHYc2za18bU95f/vMg53r89+Qoee2lT9H2nIWYOvBEb9Y6uClqaShgVjqNRjq4Djji4ELOJ6QdQLgWcw46uinNDZzkHk8LUQ+H4w7v9lLbJYfFj5EJBVCvH5K7iWPcFL5ojur5uyYjGcibhWDlrm2rQVak4OYfYiif9G8cVtTSZX61YrKRzDgaxUrWcAyVNo01oKqeJiKlPCmMZZdmgON2KLewFK1YKCysVgW/8LQibP23iSEwYORh/+thMTJs4gvcC1xrbqiuzDdiuBNQbaRHPNmKjljqHOLdG3bsEMACJg2te5cZmslZqbQ6mzId7yGtMABLKbonFq9ORQ5MmhP5jqNaKg/dm5epV1TwL88blcbFSZ8qYIAdDV7dwyo5thwEuIqnq4CWS3SpipeD73y58Cx7+8nHYY/QQvm+HzkH2kQYZFdLqV1XZ6YIrlhEHjgjqJuG2+kC8pq7994tRMD2poxk7vBXH7zuOPZTkseysxKEBG7XUOZBBHFkvDDzi4JjXEYMk65YGURC2G3ArtnyUY3F5dQ/73T9/OFWWzNjlj2rttW2nvGS9/DiTx1dtYkrNohi1b7XOZ2dNBRBwi67xxWIlRh7OrIXBKnEQyasi4hB+HzO8BZNGDcFH37JnPE7lVm5btEa5mo/PxRtQxNVtd9eUIQc5Rf3Z6+njS3yHsIqVuFdL1l2pZN1LENySYeOsch9Vn5jcE9h6DRIrNZdLRkJfLww44uBaLQfsOiKoxVQLAu8Fj8glhsmS2EctdcXnd6HadfOz+9I5r10IghCmy7nN0iXTz4I/zgvESdW+JFKGLE/M3RW3cCCq4Xm/tnAb8qAuxy8JVlLnEODxlzbh8jDjnG1sqzamQ5aUiGJiqE2WujrVfl1zShph8wFrMWRYO0H9+IfhoVEFV1d9xeR7mY6xVfu6M1mRAY0xK5VOcPGhopdwDkR0FRGtJ6IlStnXiehlLae0/O1iIlpBRM8Q0YlK+eFEtDj87TIKVxkRtRLR9WH5PCKanO8tJuEjvwX4B9CssHYuMUkWziFPqC/Wp/7wmPd11dhrN5VK7Ik1zxfG7ucQfx47vNVTpwPc8Zlj8NsPH6F4PQvvdaHj4EkjsWzN1lS5PhZWrBSuMZt+6g1NH2PKa/3Oyx5KldtMWdXvrGexZQMK5iuDzoHxBC8TpdZce2c3Vr76evRuXf6Bw/Dj908PrmH6U7lASeD0ej7DtFkjAXZuqhHEYYeuc6i/gRQAP87hdwBmM+WXCiGmh//uAAAiOgDAWQAODK/5JRHJI9TlAM4HMDX8J9v8KIBNQoi9AVwK4JIq78ULPifEbR1duPCPaeuaMcNa4w3FsSjatMikQggsfcWUXcwxKKRt5U3Ia60euvtOmLnnztY65RJ5K6TzhL7ZTB49BPd+8W2e+RyAXXcajOP2HRcT+krQqrVPA+PQ2S1SCWX0ikIk5fq6zsF2kPBJiGMaOVF+cauiNi2/+aKrItBULqW80j933RM49ocPRLkhhrY2RbGhuE2Y4xx8pEqLVidTq374d48ydeJ31WZ52IgzfEdorSTXkNvsOh84iYMQ4kEAvsmDTwFwnRCiQwjxAoAVAI4kogkARggh5opgV70GwKnKNVeHn28CMIu4o0xO8DkhrjN4jwJQxEq8QliFahW0bmuH0VLCxSaOGdbqbVue177cXCo556qpTLxNeo7EgZ0bjbsbN3yQVS6sQl1act/VI+raxqHHgTK9qEKrc+Mn3hz3W0rW4U/uAZq0kNs8IeEHn8VXIt0zD6mQrkWsVKkINJcpJWr8ZyhSlUmQiNI+IToXKCGfZUqsxAz0A7+Z5xzzD/7uax1YX/LQ1V3Bjq4KhrY0YVgoYmMPI3VALTqHC4loUSh2GhWWTQSg2heuDssmhp/18sQ1QoguAFsAjK5hXFb4hM9QTQqf/No7Er+rG8rWdv+UgnIT+fzb90n36Vhf5ZL/IsyLzfWxSmkq8RYn9eccwr/R7hr+yXikIOW06RqxvCWdozT5aCQTQlWw/4QROHbfsQDSG55JVATEIberQSBWslu46JyJy5QVIKNC+lunHOg1rq6KQHO5lHIgS4VgByUOY+mReIiVmCcb5+bwg1XEVmfWYXvIRQ1pKfcZ4nA5gL0ATAewBsCPwnLeR8dcbrsmBSI6n4gWENGCDRuqU9w6H6YQCQcm3Ywt1jmIhJWHb7+TRg32vkaiRPwJnUNeLGeJ7Ll5AaCpXHIGSasVXFPmhOvu58GdNv10DnwFc8iLGLpHetlDrCSft77GOLNZ09ADhbS9TqvFH4NDMHSedzDOhVa1uyLQVKZUNFudMJVIOYw5It9GBFebngUr05Ztww1c5l5jh3qNX0W9fQ6kv8WQlqYo4oEtc2KeqIo4CCHWCSG6hRAVAL8GcGT402oAuylVJwF4JSyfxJQnriGiJgAjYRBjCSGuEELMEELMGDt2bDVDtz5oeVq2RdRUZZvtDl8HLu8tdxB0bUwBcbDXkVCdd2oBWaxJJIKNK12p3iGFhfbXWV8VRSjl6qnUmQTK8LPJRUCtL31iok1PM7u0hZrWxUpcQh99Q5RIOMHpsniDTsM1pzadg5GL0hXSQqC5xHEOAaJsfBTPjSuzYiRW0upxWexUgqi+owdNNCVbMs9KvRXS8mAxqLmkmNHXtcsIVRGHUIcgcRoAacl0K4CzQgukKQgUz/OFEGsAtBHRzFCfcC6AW5Rrzgs/nwHgPlFHQZ6NRZQLf/N2s7hIFSvpliQ6VIVbRByqUKcQ+W+4XNKaalAiXtmsItA5pMvz1Tm4Iac0S2BD9bOe4pUfh0Gub/KtUD6PHdYa9cPV4TkHvn255v510fFRmYlTI8WUVa3xrxWvYm2oV9P7dpuywuyR7cs5dAt0ViqoCOD6R19SKgZ/ngx1eSWi2Js84irixlSiGomVPNaeShBVYmvyarc1WW+xknTODBKNyfHUudMQfGQ2BUT0JwDHAhhDRKsBfA3AsUQ0HcHjXAng4wAghFhKRDcAWAagC8AFQgg5+59EYPk0GMCd4T8AuBLAtUS0AgHHcFYeN2aCnXMgCIiUc9ltn35LtKDU06ZLhJPkHOI+UmNybE3lkr9YyRqKIgOI3IswMGVNEyPbdVve8NfTmBA1r22gJtpgml9V9u+aXpP5oKltIQSmjBmKr75rfxy377jEuCNRT7QmzO3q7W8Pn++uO8XiSWuqSsa67j8UhaxPJNhkc8E7wv1qErPqdbsqIhKNXHLXM3j/EbuzfRKShzEdanfyPkxr77ZPvwXnXTUfr72+I3FAU+ubPMXt5tT12ajb2jtRqcTjk1kogcZYSAEexEEIcTZTfKWl/hwAc5jyBQCmMeXtAM50jaMRMLHM0xR2M7Y1Fs7NUw3JICLOIV0vV7FSTpwD4CdW4jkH8zU/v295xjGkO4hpgxTLZGlRtVZSxEoehgpZIMJxHb/f+KhMrhfd94DjPpLpZ2McMTltXrx2C29dJyCcc6Nzsj4xw8wiNrdyHgD22WV45EG+VTks6O2SolB3KaRl8EDTgW3CyEERAdGDIkZtGIhDljSkeeHwb/0DO7orUUpYKbIL5r8x5GHAeUi7dA6uTVjVObiekZoUSLbLiZWccl7mFG8SM+XliewjViqXeKX1P55KJ0WRyCP+vdl00y3WYMVKAXWoqs9n120zXJDmZFJiJYtG2pRcaHcm/tKZv5rLj8EDKbFS+Le1ibfokVombjpatM1VrlG16umHTcTvPnRE9B4kDlB6e00lK+egDn74oOCcm8oSJ6sqsZwS76DSrEk5b1sa9RLxSHPe2xcHoVNKiuSiQbRhABIHq87BbaEjFcoV4cM5cDoHZkzhb/9a8SrfJ2OtZOo7L2slnxNKU5knIJwSUOKWJ+yZ6VRrnO4KH0o74hz0k6a15XQd9QTvet9MNI2zHgraFCliZdIjcGtCLh2fzccWBFIXYaV+T3EOwd/RQ3m/mli0kW5Ql9nfFOYxV8WrM6eMxqihLVaCKDGouRRzdwyhUYc+IrQq3GoQW5YiKytUIVYyPwNuXfx96VqrrxQQ+C9keVcjzgFFJri6wTqvHnJ2NbaS6xlx1krcWyF/uWvpWkOfaZm3SQlpyml71F7ZXEcIbuVemXGUe3Sl2V9SCIGNr+8w/g4Az65riz6fc+U8HOdKNoTs/g0SWZ5lVgGCYDgH6e2ry8er0UP5wraZA+ZES61MbKh9xw8P2jJwzfrmKvVLJgKqQ2+ytakciap4sVKMyMzTIFYlxCduA+NgUUgnOz/7yNggUycclYrAx69d6OTmzv71vzH1K3da66iQ8+Djf5QXBh5xcPzujJmkyECz6RyCv+rLePx+45JjMzTHcg6G982knPzYW/dky00gJvaNjiZGrLRqYzq0uITPgUcNWPev5wxpV0XiTwRjbKVEnbTOQXjoHLJKw4RIj+eHZx4CIAhNIusAyU3u4S8fl+ivlkPikJYmD84h+T1ShDMX3PrpoxN1dOibqySCXEZDTs+idzmoWc1hEPyorkmVA3DdJ5RNNZkEKb7g+Q28iNCukE5+l+Nctcn8HgBBWuEsKEXEwd84pVYMPOJgmVidZTv9sImpOmpspec22PMrq6d4Tt4pZZyRmZ7FqkbfnEycg0nnkDXbWsnLWik9Lpuprs+i9nHK4jxpAT8Oolshnj7hM+Ln7W5bh74BThg5GKOHtqQc09RxTxo1BJNGDY7mqloOYt5/z8Kw1iZnDunU87IQpRYZ/M2Tc5BzV23uk9amcsqbXH2nOP2RjQhGRiGGdMyTx/BOcPoaFwL4/UffFF6f/DFPB1AVpP4tdA71gVWqpFlinLD/+FQd1cLlV/+0h1JWLYc4J7hI5uh42CUmfIZpozXltPUJ4JYEpZSt+j4S6ByEtY4Kn9O3z7sVEVPPF1Gtt35rHO9K5QJNLTWFDyzrac1oCqqcYGPOgdJ1auQcxo8YlGjb1M4ag6UTH+guzuDG3Z9O2OWa21GlHkzVOcgmVDm9Om+cP0di7Mpv6nXyPj/xtr3w4aOmsNdy62z3nQPDAJ1Rl9+rlHQaofpJFWKlOsFqrYQky8bJgq3WExoeURTMqnz5kvceBADYfefgpBKz8nw7JaLUicRkrWSyBsoql/ep31RKh8/YbvGz8JkznzoxpxUgcoLzeCVVax8fp6I4pWc2cGKlsNcUp6jXU0OX1LoRZH3uQvubai802vDhHOT7kxArZbihgHMIPstnpK5vnnMwrX+K3pnEnITVJ40anPJG16po7SXHJWHTI9UCVV9S7wgEEgOOONheN91klDtsq7GVXPj1Qy9En1VT1vcfsTue/tZs7LZz4Mgkm5J1RgxqwgNfOhYP/ddxmHvx8bxYyUQcDGKlrJ7Z7L1r35tKae3YxTcvNrbpszFkOaHrVY129srnAyaMiD5HcyLMm4rcMLLali9avYW1WCFFLmDXMaGqfk2Ioso6DALitejmfHQ0a5urfBycQtpnOZZLlFLeWx3+4Mc5JJIbRWMl4/q54sHnE9/322W4UVwnD3H9gXNwOsH1N9g5h6Tog9tQTXHj3f3Khxt8H9RcTsmepTx8SEtTQv5ZovQmoXMSw1qbsK2jy2gel46+mTa1VMGdwkmTu5lCdnN9d3s4DQKeoifD6+EjOjOF7DYRT2m7XxECl93r78C31mDKSIin8MYFq8Ix6WOMNwP1Tn929qHe/euQfZ571XzPC/hidfw6UgppIixavdnLK94Y2FB73yS3rf4G+Okc5D1xpqxE/lzWeUdNxiuhOI6zVlLHUw04zkAeBnW9aD0x4DgHu84haX3DBcnjxEqzNKsjANh/wghMVkQYnBOcvjnLU7/O3nLWSvr6+MP/CxRkRrGS9n1HdwVtlpDj3OLWi0zJfnRIZbifyMifgMjcCnIes+pVEuGgDd3KNpe8vBU/vudZa3tHMt7LXJ9CBGaeK1/bnhiHhLoBq9MxxaAwtUF/jk8xWetUSMJr5hzI2wmuvbMb7/n5I7jkrqeV9sN2tGtN61Z/31QClBArOeLPBmE/km0CSYsxX6MNIjIaKph8WVS41jin1I7D79RmwZYFA484uDgH5eDN6xyUDSXEj953SCrc764jB0W210F984lCLhYZwjht9ZE2K9W/y03MxXZLdHRVMOf2p4y/cydpvailzKcJTbUVOQ66x+VTZ8LIQNn6Yri5ymGZwzfw7ahyYxc34kN4fFIvSK5AfX56y4HoQIqe4nrZjQpUhXRaZs9B1+ek2zNvbvq6bWKcyqQns76WTGJSPTd0xTBvHOeQDNIXf1ffax+xkm1cvuJeiUpF4Es3LkqULVi5EV/5y+JofFwbqi6jCJ9RJ1gnNqVzMG+QuuJaf6A6hZdZrlhWOPwuxUp6ALNSKb0IX3iVN6NVTVnfsveY6PNuOyfDLnR0VlKpTJM3kPx64K4jUlVamvh8DjpGDw2ikvpxBe46E3dK5sSQ85h181Q3Ttmt3ob87mVi6zEXUrphM3woEUWHFKGVZ4VL3PLXC45my43PlczWSjrHqz/v751+UBQrSIdR/6JFZe02zBunA9DfyRkhZ7eTkqOlEh/1MymRZU1j5AJDUxu2deDPj8V5zyoVgTN+NRd/mPdSNOccAVcjLDRK5zDgiAOHv134Fiz9xomMziFdV7e7lvX0ByrZb4nLH3gucT2QdtyRG7u+QXGJdz70W152rJqyPqxYS0nTRon2zu7E+tU3f/3WPzhzjxSr3BL5aZiX66z9xuEjb5kCIDm3w1p5dZd8CV58zexDYtq4TFFBv3nbMrY8Stcp4mfwhROSmfpkm1zLuozdiziEYqUEcUjViTfBxEnYc1v49qlxfEu7sAWYvttOie+ynlGsJOsxPzdprJN6ym9pKuGsI3c3x79yeHDL8Rg5B8ZkV10nRMCP3xc4IQ5l1l5WsmuKkBqd8A3X6ftEVyVOLiaJWTdjVDImDPteOMHVEdy0Dm0tY2hrU4pl4+SGHDvJiX1M7Hdi/4oWWHIjkKy32r6+IerObjLDnG/gvY6uSoJQfevUaZh7cZwjQH+JKfovRku5nBj3I0xsqLOO3B0tTJL4/zl5f3ZcssrbfvCAceyuENw6HnyWzxqYjMoaYOaeSb1BbC2Tvv6EA5J+ML6bt555jvMfketJXUM+e8IHZ+6OD87cQ2k727YX9WfrSwCLXk7nT09xDsrnVlNWpBAmgq+/b0mOC6nP6jOoaO/y6GGtGDm4OTGnc0Mv/KzzZDKdjRTHhuZ0ZfP7r5gb9S2v5UKAzNwzCH9TKnQO9YPtxONjysqlLSwRJU4E0pOU64sYzkGu5313GQYAuEyzSiGKF86qjduxoa0DOiQhs8mUF/zP2zHntOBU2dHVnYyHT4QJIwcr35mxa99bm0vR8L/61yXGxO3ynlXiYdrIfU5F37/rGfYEabJTNyHpIZ2WRwMx58ApCd82dWwiBIof5wBA5xy0PsulUvQc1SZr2RSEAF7bll43qXrhX7tCWuCrf12S+k3n3NSlqHNZ+sHL7J+QHE+3QSfIcTQcIVFNcSsVgf/6cyD/t0kkd9G47qA+RW2oiJ3g+Ab19/PxlzbH9xb+NYmMZcsNcnMYgKaszJFIcsMEQD14c6cJLr68unl//d0H4Pj9xuO7dz7F98WcdiS6KgItTaXEJg0kQ2Mf8/372fui8B5MHtJAwJrKJDEdXRXWrDNqT2+fWeuqmee1/37R2K98kX50d2zt8+rr/Eblu/ClpVIwtuyyePU6NROcTrTKFg/pM2dMwvq2dtz39Hq2ztv3T1uxSTt12302lyjSP2UVK6W8rZVrv3Tjk87ro76MJ3lzXK90hNe4EVPEUwk35yASf9N9h30a2iTlr2ziyodfUMZqHtuIwU1Yqxl5yYOIzqnbDE8AXtkc6VPCtmzRWtXosvXGgOMcuHmNOQfy5hySOod48z5233HYffSQkAtJX89H4AzQ3S1YublPsh95lcsaRbZfqYjENpIyp2TGqcfIaY4cxOxjk7ekLnrd7FHC1xKDG5+noZYyrnj8slt9+tX54sbAWb4AwODmMvYcO4y5JthAbF6u5RJFm85jL8UB2oa0uM9y+rSoCumthlwHCTDiGxWcWTXAxyFTq6V9IPh+JeS8l7UTupmzTOsCExZhYTuS8wGSorFtmnHGqCGK0prpcmj4LPTrXLGVbNZM0tLQxj2ThTjnjQFHHLhpLytKx6SfA7NRh2VqOs4SAW8P4zA1hy+BKTfEuOGt0WddidZVMREH+4IZO7w12uhcMeJlnxWR3GB1kUxqkwHhmKljtDppXQIH3RwRAE49dCJ+dvah+MZ7DkzUtdG2I6fE+oBlr8RHufceNgmAv8xfQt5iMH6RGKuELWS0DrVORfBZ2OTJ1TZlzeUSuisCr23rwA/+/gwA4GPHTPHyc0hzfFKv5elnIvVfht9NB5WxyrqWUDdKnTjoUYL1sXFpebsr5rzt3Fx3JeIwyfHHc6++a/p7oz9LHeUSYWhLOZVcKHKCY0dpJw5yvmybv2rmXG84iQMRXUVE64loiVK2MxHdQ0TLw7+jlN8uJqIVRPQMEZ2olB9ORIvD3y6jcNUSUSsRXR+WzyOiyfneYhK8zkGeKpIPxsY5rFTkgiUifOf0g3Dzp46KzSwp+YLtMmIQzjh8UiL3r65E66pUWNtwW/jsN03ZGbdeeHT0EpnCZ+jjF0JgsyKakbH6P3bMFPz63BmszPTX587A/K/Mwm8/dATeN2OSlxeoUDZJ3Uz43YfsGinS1fomqErsT/5+YfT55IMD88g8OAf9nqaOG5YauxGa8pg3hSbnRl0uEbq6K2hXOLUTDtjF3T8sIjbBx0PSEZnQmjgHJgikCeqa1TnF4YOa8dlZU6O+9Bajd1JJrnXBH2VAZYYAACAASURBVB7DjQtXgwOnc+hkI7jGxM1k3QYkOUXT7Q4b1BTlwo6ui9YR37aVOEhrJRvnAL+DSh7w4Rx+B2C2VnYRgHuFEFMB3Bt+BxEdAOAsAAeG1/ySiGSA/ssBnA9gavhPtvlRAJuEEHsDuBTAJdXejA84qluOTs3uwHuyTPUuJgpOe4ftHtHIYGNQuuro6saQlmQCFX1BdxnESmUypwZ86z5jMWHk4Gjxu5zgVJ3JvaGsfI/RQ6Lyr5x8AE44YHx646cg5Me44YNw3H7j8P0zDknJg01gU0KG1+iiEtvCVzdbjqsbqdiv+0AlWiadwxffsW9QxyOgoX7aNCn1hYhDifz0rOmpOs3lwMChOk0KP8aYN7KDM6FVoQeBPCzMTTE2NLW85/NvxU2feDOA5EGFS6Sjirz0NSQPSSoBNyXDCtqSHFLcjhrTKRYrBbWCPuIZtmVaNK3vlqZSiuNwOcHZNn45XzaRI1n2grzhJA5CiAcB6Om9TgFwdfj5agCnKuXXCSE6hBAvAFgB4EgimgBghBBirgh2hWu0a2RbNwGYRcbjT+1wcg7K77bYSqoDGUtEEC+qzu4KNm3vTDlS6Uq0ropgFXeBExy/ImIrm+D7q9tibmBoSzqbF6cz4QiSzwPgTmscpMKfs9/eWUtHaSM0al1uhew+egg+cvQU+2AS4+J0DoRDJo2M6jRHZrh8G2cevhsO3HUE9ttleMqMkrXIIinikfeRrrO+rQNLX9mKRas3R2Xcaf1DR01ON28VZbl3FZdsXxcrnXbYJFx29qH4cDjvU8cPj56TTawk25J96d01RWIlpNryBRcqXM4FkPQnSnk6exCH5lIp1Yc8nOm6iKhdy8YfK92T5Z97+9R4/OTPudWKanUO44UQawAg/CvNMiYCWKXUWx2WTQw/6+WJa4QQXQC2AMiW0zIDMukcLGIlVwITlXGQDmuDmnXOIdlBV3eF9fK1Ob7E8tP0oxzF5AHmrK1YguRBn6NTnWc99YWTp/y9xyWVtqb7/NuFb0mK5Ax9HbLbSMMv3LjiPtXw2bdc+Bbr2EsEPPvtkwAEsvbbP3MMJo0anHLA4jb+be1deHnTG9E649bYotWBovSmhXEubm5zlBnlfOGzp3QLgWfXteH+ZwLfkOvOn5n4PRUEUgi855BdE+s2ttuP3xEublF0UEF6w0vrHOyD1w8qnd2VyHT3TYquSjUxV98ZvfkEF6i86pIrAoL3RuccXDo/u0KaFyup72dfzufAvbPCUm67Jt040flEtICIFmzYwDs2ucBRXbOfg5lz4E7BibFCdQ4LHG104qCPqasiWFt9m7WSLC+XKHUK5xC/kArnwPSZVkinwekSVBwwYQTevNfoaLNQxUpSbJCOFgusZlIsTh2fJCKyzdEe92yCJM7dQuD6R8MIqXodeY/K2Ac1l5mTcDrMNrfxr2/rwBOrNkd1bUR47PD43nwPi1w9aaFjU2T+5twZAILN66+Px0RJOl9J6A6f3LqMPX7jsrnPp1O+qgYN+mFL9uEbBVkVUQHAp//4ON5/xb8BAOcryu8gAF+6sXRgy7QIFIhDcABAcxMlRGdLXt6Cr9261DpOG3HYFiq3dbFSIsERuQllXqiWOKwLRUUI/64Py1cD2E2pNwnAK2H5JKY8cQ0RNQEYibQYCwAghLhCCDFDCDFj7NixVQ2cm1a5mElzMGFZdE82V75EX74pDrKV2ry1BW3WOZgXhHScA5KWUObxpzmHMsN1+Aj2yPHi3vHZYzB8UHPKcfCovcyMYUXwFimmuEmuk5oNssnFq7fgoeWBgx5npQUg4XjIjUU9UcfhetL1xo9oDeuYCcj3Tg+SQakbD7ep+Epf5UFFV0ed9+Y9os97KYp3m6K2VEpysXwUgDTnwI4r7OauJWtT/jtvdHaHbQXf1Q1zj9FDsPJ7JyfbkpZ/4XdVP6GevFXOwTZ96nyb3vQmTaz0vv+biyUv26Pe2ojDKb94BED6XX/XwbtGn2VU30agWuJwK4Dzws/nAbhFKT8rtECagkDxPD8UPbUR0cxQn3Cudo1s6wwA94l6CtUMJ6vgbwbOwcPxYO3Wdly/IJaySaWdUiWBwJSVF/GYiMPsaRMS9XR869RpUTjvoE7wV23vc7Om6pelw2cY9CqAWwaqi2ZGDDIrjisCeOCZNFeoiyXkN92vI8vK4Tga/alIaxmpvDe3Ffdt2/iP3nsMJu4U54jm5lVaX6kbD3cY8SMNsYhTX0PfOCWOwVSO1jV/WJAIzKrj77bXwOVzIzf0u5euS/0mY4FxYj0+hWnwl1uLqq6PoIos4hmU1w1qlk6P8fVGhbQmVvI50fv4Qfz8vhWJMlX0Sp795AEfU9Y/AZgLYF8iWk1EHwXwPQAnENFyACeE3yGEWArgBgDLANwF4AIhhDwGfhLAbxAoqZ8DcGdYfiWA0US0AsAXEFo+1QsqS3nklJ3x+FdPiL6roiDAThx8Fr6+OaRCCCgn79889DwWvrjRIOIhLzNN/Z0mEM6ZuQeOVqKzxn3G4z988ijo8Nl4TDHtXfVsJ7aKEJhzRzqUuG6dJEV0elrSLDbgsklTjgDAMA+sKEUNs82PGQg2YVUBazJ3BZJcEbfp+ZptBD439lzOUVh1x7ru7BZYvq4t+s5tVFE8Kkdb3EFF4o8fCw40segy/s223gSAa+euTJSpgfZM1j6y/Xs+/7aoTOa+MN2GLlby0uk4XuS/L12L523hM8jP6iwPOF0uhRBnG36aZag/B8AcpnwBgGlMeTuAM13jyAvqA2xtKiWUtro/gU0hbQtTEbQlX3IzJxKdvCHw7TC3wpQxvMhCvkC7jBgUZRnbR5PD+yQr4TZ0n9wNvM7BU1moNWaTs3Ob4PFMMqXddh6Mlze/Ye3XBTkOW1wdbqymk6seHI67zXIolrFF75Tj2dGlnJaZ5eabnCbYUASe3xBvOnrgQykq6xbCerpd+OKmxHd2LsK/zgOUhTjIEDIysY4rAKGqG/rqLUm5/2DNao/L3S3HoIa2f/DZDdh/wggjZ9xUKmFbd2yV5Ecc7L+75oyL0FwvDLzYSo5N0RT1MS5Ln+o4lJJ0ISjzEOJxYqWyIudVT8bnvnkyO7b4OzeutM6B36DcG49uiqviwuP2Nrdl4xyYaeWqmw5gWd4bznFQ9vWbc2fg9R1d7ByyYVEUj3gXV9Bdidvgsw0G1+1wiCw4zoQDAc7jZixWEpEl2UnT3I53vELa79BgSpjD1fM9gHDvZavOGVo4BxVN5bSISUVzuYQdytrxEis5OIdmxzO1xbbKGwOPOCifdcWiKjcOvvOneACJRcGBQCmHtHT8onBMSlNGsZJg6qbyPuhjMMOZ1MhyrTouvS0AmPffsxL5I/RxWTkHtp90mel0m+lQJblAJgbP28Nw3O2daeU4J7pSTZdtOody6GFsigIr2wKAHV1x32wIB+baasVPcWjymDh8efZ+zus43VscS8vvYbjFT0lDERu3wr2XYxRdn/qcVKssbuE0lwn3LFuHja/vSP0GAC1NlJAg+BGH+PNfLzgap4ZKaAlXwqpyqVSVz0c1GHixlTR7dRVZFNKdHn4O+prniBFgJ1hynLolDFfXK5Ulo3OwcUjWOvKDdp96YiF9Hm3D5F+w9AW1WCnp47Cl7ORgNBfVxEqm9dMthNWUVSpKOxPWSuk+s2S+c20nKucgT7ec41qqXXYyELVlg6+fDJE7nIWcRn1dzNpvXMKEXOXwXlM2fZZzKJXwsWsWGMfVVEoqpPUmOKKnHhil8ltFs2POm0rmUDp5Y+ARB+VzOqGNT1RWP7ESz3Wk+wOSL5jJIa27IvDSa9vxqhKTPx0sz/4dQCL7mWlcvsjycie+W+r6nnxNAdjUq32tqJKcg7tvPQxK0BZjymoiDpWYc7DptdTwD7WIlcrk3lBkW90VEc2HzaRV4uBJaUc8X4s+8iQi5RJh9aZYv8RybpKgaoe2fXcZro0tfj5qIEm1zXNm7gEAGD0saXp+1+eOSXwPnODMRIs74avPcVBTeh01a3LGDx89OfG9XCKnXiIvDDyxUmJTTP6mn/Ztilo3cUiXcf0ByQ3tPsZkMtA5AF+88Qmt3BEGmQGrc7AQQVsdm0LR3pZ5oLw8P432Lp44qOjoqhgdD9VxJaN36lxOuvebPnkUO0YfJ7ggNwdw97J1xvYjnYODOPiitbmcaAsA9tslmRZWNVSQm7WLM/nw0ZPx1n3S/kbyKl/OQb+3b55yYKqeanzArhHDe5nm1ikl/gOS+8IZh0/Ctf9+MUUc9TlraSLrPtBdEdCXn6rf4tameuB77KsnpHyjAs6hMUqHAcc5uKyHXOIWecJy6xwyjMjx3ktxl/5SpHUO6fsxjcupc/AiNMFftymrm9BIsCdk5oL2Tv4FedfBsd+HzXRTHYftJKb3/NsPHYG9mDwNqilr7ASXRomCTeOKB59PjIEbl7rxHDF553RFT7Q2ldChEdO3aOHXVWsluYFxxhEqxgxLh+kGsnMO6iP/2dmHMoYWbo7QpHOwveMmT+9yyW/8ulhJB7f+1PWtx1pT+wYYp1nIiL0F51AXqOtKf+FUxS9gOtUFf31MWX2hLhguaYr0ijTFnzF958eVFgWZoocmv5tl43rYYh16++OGp9MuSnDvI2eyahIrqacxH0UnkHyWLiMCI9Wn2IpEtlFmgyiSFqeJI8zyABK088//PDYRV0qC2yS5O25pKjljgakbejeFnIMj7apJHOlDdIN6QcWHHeljS5qliE0t5eIcVD8B9VG/V3nvOI7m/845PNVlc7lk3ajbd3SnHD7VOeHmV3apOq6qWLOlHS9tTIeXqQcGHOcgH80V5xyekucFogFPhbTTlNX80uvf1RPKQRPTgePkadPFOaTENRbRlsqacmKeB5e7Y1fJy9YroSXevGc6NIbevhplEgDmXnw8rjwviO3DbXiLmWT225kk7Dp8T67qC6tfo0+NcUNUJltuGJxZoh6byCTXL1EsVuJyfAA8IeA2ztamEjoMnJZElNQog87B9LO3/wt7Ld9PgnNg2+LfSxmuJNFn2EC3EDh679FY+b2TMXV8rJuIOYf4uuGD0ufo5iaKCDi3H+gOmkB8YNl15CDeRNvi/wIgIgyveuQDrxUDjziEC2OP0UPZzTTJOaSvj80MXRnX3OBks9xGIOPZuDgH+VWW7zwkzZZy8mwOz67bFn0+adoueOdBE1J15PypIosfve8Qps/kd52dnjBycCSq8ZWt++jkfOJfAcn510+7aaMFU1sxYYvEMsyz1JXDJm6vRPHGY7R995QutDaVnSK2yFpJxNZK3NhaymZvcomIu/bk3LhrE2PT4jnZwmfom/Tph03S6qniPz6surxFtR/OUKRJUQ5/5HePpn7niIOsf/tnjmH7ll264mbpGejqgYFHHBjvSAlCUhTBPaDWciC2eIOxf0+0xZoo6nWCv+pmYTptCpHeC3SZsFxsU8YMxbdPnYbLP5hmhSPilkFuOee0g/hkLeHftVviU4waqiAal4vDgcLKM3vYTkOyJfGRuMmQNSzuM/j7r+fiiKG+3AZXLi+VYqVmLsKuNhcmuX6JyMk5+KK5TM7DQInhHCTBOGX6rnj/jCCepgxrIcfIgQvZzdcL/g5OKGZ5jlttavP2znSd8K/qVf6ZWVNTm3pTKZ6LSoUnDhznw4mPVG9lGbgRiE1U3+hMb+BRtNkSsWtJz89igprFsV4YsDoHbu6bSiV0KquQO8W0hg/+dYPMOwvky6fKubkkITJ8hinPblwv+N5UInwwNMdLt5XkHD7xtr3YesfuOzYKgGcK0yBP5v/9l8VRGadk87Gislk+DW2pbpl+/65n8OGjplj6TA9sGEPcEtcYeIe7lqzF1vYubN6+QxHLuOfCqCei+BTMOUYCvEnn0XunxXplzTZeTWaUqicERCUYpyQYPz3rUHa8ptMt5z9iq+c2H/fPcKhyDpwfwcSdBkdmsd1CsPOv+nxIqJkf43EFOkqdo28ul9DeWWEJirzXphKxa0nq11zm5Y0IvjfgOAcbmspJ0zTuAUm22nkS89BIy4V53fw4cisXdCtynNK61DcNuc5tfetisV134pXD5x8Tx8A3Ga2s29KeKuOIg09o6VgskF70b1ZCfOtmji7s/793Zao/ecxQ6++mW9kasvnPv/q6dVPXCa1p4y9RPBe67bsEtz+oUXrjtpJK8CmGewxEXubowECS4JmeapQnwzMqqzsqATm9reVVCeLA+BEMH9SE7Tu6sWrjdix5eatBrJQe/wG7jkjVM+WakNwKd/8RV2bgHKRHvuuVaYSrw4AjDnJOuclvKpfQqbCl3PyXSpQQF1x29qFMLT9rJbkI1aTpXBIh6X3rzTlYrExknS1vBCch0yagemqaTreyDX2sOkYwyjzTuF7RLJMuOG4vzDktjteo56xoNFyPVQhF58CJCD0tzNRNy1TH9/BYLpFTXBqMLdAfXf7Ac0YdhToWs0I6+FtN4D2T5dy6remDCNeWShwmjkpbeJVCLkp6Pq/ZkraEU0OJDGou4eNv3ROTRg1J1zNwu3J/4HRec0MRZpOBOMhC09yeOj3I7eCyxMsDA484RA8sPfuBgsls1ijRGp5IhrSU8Z5DdmXrWJ57BO6l514oedpMJWE3bDQ+nMOv/vkcAF4uHpQnUxNyeN3DYggAxlpMV/U+Nmmy1KnjhkfzHcCD6lYJaTFlhUf3ct2wxgXaXJq4ArWe6RlxFjQcpLjIWY8If1+y1lpHPXiYPLQ5Rb/qfyLB5dPgltorW9pZ5W6irfDBqLo0PYwLEIdMlyd07nQfv2+BDsxMTON6KuSBi2tb6ibKBrGS9PA29fm+IwLdTwMYh4FHHCRYzqFECZO/wQbvWik6sfkV+HAO3AJ4+/7p8NQm6w9TrCbbuFKbk0HZqW5IpvZ0ruOdB/FRPDlRU3pcwV9dXJc2JXU2VTW4zUSHSecgsaOrYjVl1afb5EsgSwPxA1/nyCl+jnElIjbybKpeiZwhORI6B0OdiHPoVolD+hDF6xfcD/gDb9qd6TT4owYr5HRlUv8iCTdHM1WdSWDRxI9DNq+bVctDnE0vIEOR65AHC+Mz8jQTzgMDjjjYFNLN5RLaQoXwrz54GIYbMpbJF8iaTtFikROPJf2Aj2NyF8j+2rXTk8laKQvRMomg1A3dpJD+r9n7AkAUxfMLJ+zD1vML/x3U0U0RdeLlmxqTw+mHph0MVS/fLGHKTWjv7I4V0h6cg2kNyWq2NUZEmMg4x6X71IiuoclyiYwHIgl1PGaFdHoD49Y65xvgcuQ8eu/R+PJJ6WixnM6KDWIZmsU2lcybrCpWqhiU1kD8Xnzi9wsT5XKuXbEhufmT4zf70wRoRGDWgUccIlNW/lQhceCuvEUHEC8KWzpF/QXcZ/wwHKgptbjnyy1EOdR1bUnHF/3livwcbGIl6JuTiXNQxEqGl2P4oGaMGtIcjaOlzG8sPvt5xDlo96QHuauFcxg/Ms0ZHLZ7HDjOtAm8STmhm7q//AOHAQg2FLk58JZbvCgwVS8sN3F2WVAuUWJeTdzPljc6sXz9NvY3ta1ojI4NTOV0ubXO2eq7Ehj977sOZNPMyqvUd8JkEBBwDma9gGqtVBFuIvjv55Mp7zsi4pDdF0pyW6ZpkOuiIA51gJ1zcItSgHiDysI5XHj81PQiYx4w1yZnWgekfQrkwvEZu4SPzsGGElH0MphCPPucyE3OeTrxqoFxYE+JCRm6oe2vvTu2kDJtFFJhWRGxU2ArY0qp9+ESH9iMC3whBPCCLfWkUs+FpCkrXydSNDvCbHPEwSXWMokoiVk/rJmqFCuF64rjXtQItYBb8a7jyyFH7eYc0mVSrGR6Z0xK8Hpg4Po5MHOvbkR20Uzw21qLBUVKWey5q/mE+p6+20647KxDsfvoIWy9LDoHk4OVL3FQU6uaCI3PncfZz5KLfkd3UpRWi1iJI8Yq92famLJsiEKIiFi2MqaU+rORIrlUe+FfVwgLn+nYqtno1zKFftZKgSWOyjlwm9kGJgSES6zkyjGhxpDi5o4oIODyN9U6UR+DS8TDlX9m1tTI9NplBMCtZcnhmZ+RWRyWN2riHIhoJREtJqIniGhBWLYzEd1DRMvDv6OU+hcT0QoieoaITlTKDw/bWUFEl1FNO4Adsa0Sc6rw5Bx8RqcSmtMPnYgTDxzPjMXvAXP96YQBUMRKWRTShrot3pyDco3xVOduh8JLd2jRQ6eOS8bjr2VhcLPdlNjs7Kc1/XNiXNGJDpFRAytWUhr4zmkHGYmztKZxRUb1gW404zOHN33izWx5ws/BKr7Uo56mZ//EA9MGDC4u08g5hH9V5bDJwa0iYrES112skK4kvpvqqXj/Ebsp3v7ZN/BIrGR4SrLPvmKtdJwQYroQQtoBXgTgXiHEVAD3ht9BRAcAOAvAgQBmA/glEcmj1eUAzgcwNfw3O4dxsbC5p6une9tJ3+ehq+KA/333ATWFQEgpsh31rC+Y9tMQg0dwc5PfNqz2ZSYO1YmVnv32SYmE70DSfPOik/bD3IuP9xonwCtF1Q3E9MyTHIXrFCnwX39eBICfD3W+bIdk6YHvEiv5EN5qMod5cVG264nYaLoq3rbPWIzREuq4OIdWg8I8shzqiA8XpnzsQZ6FUjRObuxAzDmY1i831ok7DTaG/HYlnwLiCMGmMwGXybFeqIfO4RQAV4efrwZwqlJ+nRCiQwjxAoAVAI4kogkARggh5orgjq9RrskdtilNnBAti9THZrzZwx7c9/nq/hamheFnRZX8PqyVf9n8dQ7B35amkje3YWtHtTbhNtfJo2Pv3kMm7YQJI93WOhLctG1T5N6uFxLwkLMrfbDx+hPEwb2zu56Dy7QWSK8XP86Xr+TDaXF9mE78KQV91ZxDcN12JeaZzVrJNE71Opf836Wo1vcJnwxunRU75xDrc5xN1YxaiYMAcDcRLSSi88Oy8UKINQAQ/pW2mRMBrFKuXR2WTQw/6+UpENH5RLSAiBZs2OAOKW0cMUzsZFxo22B9TmIJ/UWNUrLf//ulxPcPHTWZrVeNWIkLlAf4pYgE4hdk952H1KQP8I0W6+M5bAJHbHysb9TnZ+qRC6XA6RzULmwHEOkJ6/scbNA3KR+CYpwLdb6sxnpxvfPevAfecQDvA6P345KimYilbMYVDl1aK0lnNHZNhI11RToHfiymOYosobR9wifvecQ5OPrs9ToHAEcLIQ4DcBKAC4jorZa63O0KS3m6UIgrhBAzhBAzxo5Npyf0gc2UVR2JbePxOQEkOAfDItJzN6z83slsvdcUxd3X3n1AKgyx3o9t09HHstPgdFhvwF/xK19mH0c3H8gX6AomuQrgRxzkxqpiv12G48Lj906Vq8mBTO2pU2GaF1maDPPMbE4eCl11XK7H4POY9ABw0wyB91SYxFkJPwcLkVEJ0ieP3dtLTMV9rwWcg2HAOcTfrzgn7RUfZ3v0sxxK9WuwLpTK76++6wDjmHd02RXSkeGDsYX8UNMbLYR4Jfy7HsBfABwJYF0oKkL4VyZFXg1gN+XySQBeCcsnMeV1gc2UNSkPro1zSFrB8HXGjRiE980Ibv2kafzJCgC++96Do8+2qKFLwqQ4qyyZotTbmjZxBAa32J2eXIhNLmsjDrIdaW1ykGEDI6Ub00byASYi7SXvPRhDmOiuLYpuxWVbDri9gkWizEUczGtMEgc1rwbbr/J52sR0cDggeWL90jv2wQc5D2N9nB6cg40wqe+IlcPQ2qiWy+bWAheaRG9/73HplK+yPafPQfjDEZNHJcsNDnY7In+gdIN3fvYYAHHiLJfIqlfrHIhoKBENl58BvAPAEgC3AjgvrHYegFvCz7cCOIuIWoloCgLF8/xQ9NRGRDNDK6VzlWtyR2StxIqV4s81i5U8OAcA2PpGIPN+bZs5Pvu+SpYqLq+sxGMvbQYAPLFqs7GOOpSDJu5krOcLNUx4LShrpzVbnoPomgwmhsMMcYh8xH8JsZLxRBf8cNuT9nMNebQF8MnnbbjopP1w26ePYX9T823vP2GEn4GAkYvyW9cJWF6XVPDIKtcRt/74HM1+7ale5Ub/Hc3kNerDwDnMuX0ZAF40JkO3yNwirhSsjYjKWoufw3gAfwkXSxOAPwoh7iKiRwHcQEQfBfASgDMBQAixlIhuALAMQBeAC4QQUnv0SQC/AzAYwJ3hv7og5hwYllNd+JZF6goCBmgOdZaX6K6lQaCz+Ss3Guuoa8lGHHyQXHS1rzDZnC9x2MUQvyhWSEvi4GblzRFN02UmsZcPEU8eGuymlHcvW8f+LuGrkPbdd+Vmbavuk3lOh88J3neMtvzVWRXS5rEQWppKCZ0V9w77Ep/AudNuTiyb0g9juhOdxF+fCA4OHHHQIxeb9BOmMOH1QNXEQQjxPIBUTkghxGsAZhmumQNgDlO+AMC09BX5w5oJrkbFsYqkPXhtbakiqtFDawtZrb6MeVg8ZPXkPe0w1tYg5eFqznPg1jmw6S0NxKHFI0yIWu4TYtuGpM+E+Rrfl1+KF2xtDVEs0nyt0FzOZq4+VdgONHoT3twIg9ZyyWnQ4GtRVy7Fnv8+a1EFF7cpGTKduaZcwvBBTZHXuCnndyM9pIvwGQpy1IUlOIdaiY56mho1tLqUmdFYlM95LDA5Z77OWl80BOeTbcmX22WVAmTbqDnLIb0fH6sUH6U1YPZ8VgmNbb35OkhKkQYXqkPiZ2fzmdxs8DEw8CE03z39IKNFHIAU8+obBp4dj8eYfXMvb9/RjTvD8OUmzsf0WsemsPHNqT4fKlegZu5T14xJf9RID+mBFz5DfmA5h/z68d0sm8vuLFdqUz4pM233of6Wh9xSvjiunNoSNsV1iSiRKctURyIL5+AjVnJF3wRs4q5k+WTGg11vy7pRh8/GFSVV6mhsm7kaRNIU4kSHydlMhU9bbzhEa3P58gAAEGRJREFUsPomt+dYeyY+G1Su4Ovv5i2CfNepiteYMB+ATQwZbuDKC6YSil2VSLpXf/jI6Df1WbtSsDYCA45zkKyDS+fgA1O6RcAcp1+HDxFp8oj/o8K2UaiLzvd0asOLrwWWUfNfMOtMfOHjZ+JThxUrecSQMioBPSykfMYAJAm9D0f5mVlTrb93RsTBT4FtjSSswIdz8BHRuMRT+gr0vQ8O0qt/z7FD8aGjp7B1qhFbmfQgJiOH2EM6LpP+Cx9/6544Zmpsht9ULkXGB5u2pzMr6uhLfg59DnZrpWwL52uG0wlgzvClw0eRmzW8jq9cdUMbfyKS+PTxe+Mr79w/W+c1QN5nkELRfXIyZyJLfp8wcpCx7umKDsQnwJpR/qy1bxKlbFY2ANuTt61TFVLpOcgiVlKhh0A3wWdd+uglTmVyaKjIc5Mb0hzMud3SMLuizfQMxg7j9X9RbCaR5hwO3d1sIfiqgUPhxtIID+mBJ1ay6Bz0jE61wFdB61MvqwWHz0sLxCkLTfjiO/bN1G+t8EtWlF3E8z3FT0SHGn7D1K3aj1HnoH03bcJvmTomvsYmVYo4XDskcfA9cfvm4LZxNaOGNGPT9k4vnYPNLwfI1+pmwk6D8My6NrzeYRYdcbmgXTA5vZrStMosbwmxUrcUl+bjD9TrneD6IuLAe+nFf8OC1akya1vWfvza8OFWskbmzCNBTE9AzkWWXBIc9A38bfvYvel/cMbB2HXkIOPGr/oc+PhfAObNepyST9tOHNx1AJU4+M2ZKbshAPzh/73Jqw0J13MyK1Vj+Iybi2jMQXLCtoB/5zAOkhxUwwkTQbER5KZSKUFU4rzitSkNYj+HQiGdO+KQ3WaM9vQlmGbJFqcHyzPBR4ad9bAxaZRfMLrvnHZQtobrDLnwa5brZ+S0zpyxG86csZu7oqVP2aU0MPifk93iOJ/wE657iYiDp1jJNrdZQ6C0WCL3Pvm/7/Aa07jhg/DcBnsiol998HBMufgOZ1s+hwpvPwel3nsN5tc2Dr1Uijfwp9duxdNr2wDU7izaSA/pgUccPE5kLkXhkm+ciIoQbLpCCT2ejQmjhrRgfVsHfvuhI4x1fDmHD87cHb//90v4RZiy0oX/8Aij0EhIM8Palb71M+lw5XwmIgxvLWOcwdlPxZv23Nn4mww9bTUDRSzyqEWRK+E771veCPQmo4aYD1Ejh/iZXKsbrMlB0tcUPI8ghRJyLkYObjb2rxMHdfwywB8AzP7JQ8oYa+Pq+4qHdJ+G7dTmWosuOSrgF4FRxYSdzJuJr7LxG++Zhv98x37eL2ZvRafDkUkii4d0XjDrHILyzu4KhnoqfblYTxLbQv2XizhI5BH40Jc4XHneEbj58Zcx2qCQzQL5rv34fYfg1Ol25bULWffLD840H46kns/GhatzfvOnjsL0SbGyuVQiNsxOrWKlPuEh3VfRCEUOALxt3+qixnIgIpw6fVcn21wuUY8Rhjx9RHxP/qaTIpf6MS+4wnoIUXsQQgD4yNGTcc+ydThqr9HuysiHc5DQowXrOG6/cThuv3HWOr6Qs9lcLuXG8V2mOP3ZcJrFkkqOZYyFAKproUUbf7lEfM7yHMRKIwY15ZJb3IWBRxxs5koh8lijvi+rDG3gki3/5Cy/Bd9T+OTb9sqtLV9CY5qzWiPN2mDa+FXRgyn1ahYcvsfOePbbJ3nX99U59DbIectDJCTf7Z0t4i4VB0wwE0G599qkBOozT4UeJwPn4CFWmr6b2dx17PBWLPr6icbf80TfXFE5wKpzqClTcTb84j8OwxdO2AdTDaGD+wo+bwmLkRW+s2/aUMYOb7U6KNYDieB8PWAtZgrXkQWNEFWYkKeeyOW5vdvOgzGkpWw9RMjNvlq/kOZyiRUt+4iIL7GYXjcSA5BzCP7alk9e6/T9M3YzelFK7LrTYKcXbF9AnspAX9g2lL3HDcMLr9qtYPKEeqBoBMsvsfvOQ/DSxu2ZQ3z3FpD214a9HKE1XKFXJO7/4rFu8XIUUPL/t3fvMVKVZxzHvw8Lq7KouHRF7mCqW1AEZGsVUbRWLWrERI1aI6uYeKlNtfWPiq2tTW2iTW280MTSCtFqa9NYLfZmsPVSW+sFRQUpAmq80WIjIJegQJ/+cd7pDnOf3TNzzoHfJ5ns2XffOfPsu7PnPe8776V3o8D2aW3ZZan0nFp6FDoP2rdqnmbY8yqHSjvBBe2D+rYsds4t56TjDqAZ4lzRNo5zxX0X/Oz1J7Hl4/KTJPOX2NhQZRmEi6eNjW3C5cNXHcuHW8rvBVKPOD83qvc1q/25ln331Ko3IJdOH8fVDywtu4FPTi0X/NwEtlpvegq7i/Ye0MLWT3YWDTmtdXBJGux5lUOFlkNu5udt501uakyyqzgudtM/PYTHVlTeW6EeQ6sMTc1/P1WL/8YzD4shokh7W2uf9/jISaJbKbdwY7XRVrWMEJw1eQRnThoey83FzhpbITmFa6kNbG1h2/adrPlg1538KrUc7u7u4v0KE/iabc+rHMLXUu+f3M/6umdC2s2d+ZmqI1KyrnvaWG585LWmvV5f9iFIi1Ht0UzgZs5/yc2ZiOMzE4ivBVtv5VCYbZ8BLWz9ZAerCrZ5rTRx7qTxtc0Eb5Y9rnKYefhBHDp0UMkaPNeU3B3+0Su5PMaRRX+5dgbvrG/u3c5bN59eNY+ZMXjggKpdPHFJ+1tm3pem8K+N2yrmaW9rrals43T9aeO54eFljB9WfamNZsrNUK99/4tdryfbd/6XF9/ewJX3v7hLurqVUmzMkDbGDCn9wdZ5nx3FT//6Jnu3ZucPmLSDOwZxcEe8I62OGBlPq+bxa0/4/51po+XfUDz05WlNec16nHHE8KRDKOnog4ew+Oszkg6jSK6ba1uV/R8evPIY1m/ZXtS192yJJezvu/RzsX4212ipqRzM7IvA7UAL8DN3v7nZMcydOZ5rT+mMdUKRRO6dc1TFCUX5Tp84LJbXPKCtlQNi6o+vx6FD0zHaRHpvTNisqdIsdojmo9Si2S2yOKTiFtnMWoAfAzOBCcAFZlZ+s4QG6dfPMjskMO2OP7SDCcMrdx18+4zoT96bZZWTlj97vdYlLyS9Tuw8kNvOm8w1X+j7MPNJFSa1pVla3sVHAavd/Q0AM3sAmAU07xNFSVz3tLGM62jjhCpLbKdRrX3Tkg1mVnWjokpyi2ACTFHl0CcjgHfyvn8XqG9xecm8ln7GiZ3xrNmThFvPncRB+1dfjVV2fzedNZGbzprI6nWbGdVe2xL6aZOWyqHUbVfRqGszuwy4DGD06HQtNy1y9tSRSYcgKVNtQl6apeIzB6KWQv5uKyOB9wszuft8d+9y966Ojux1PYiIZEVaKofngUPMbJyZtQLnA4sSjklEZI+Vim4ld99hZl8BHiUayrrA3ZcnHJaIyB4rFZUDgLv/Aai+UayIiDRcWrqVREQkRVQ5iIhIEVUOIiJSRJWDiIgUscKdirLCzDYBK0v8aDTwdg2n2B/YGFO+OM+l+OvPp/h7xBl/nHHVmk/xNyau/Hyd7l59dUh3z+QDeKFM+gc1Pn9+XPliPpfiV/ypiD/OuBR/euIvd+0sfOyO3Uobasz3SIz54jyX4q8/n+LvEWf8ccZVaz7FX1+eRuQDst2t9IK7d9WanhWKP1mKP1mKv/FqjTHLLYf5daZnheJPluJPluJvvJpizGzLQUREGifLLQcREWmQTFQOZrbAzNaZ2bK8tElm9oyZvWpmj5jZfiG91cwWhvSXzeyEvOdMDemrzewOa9Ju3zHG/4SZrTSzpeHR8J1xzGyUmT1uZivMbLmZXR3S281ssZmtCl8PyHvO3FDGK83s1Lz0ppd/zPGnvvzNbEjIv9nM5hWcK/XlXyX+LJT/yWa2JJTzEjP7fN65Ern+9FotQ5qSfgDHA0cCy/LSngdmhOM5wPfC8VXAwnB8ILAE6Be+fw44hmhzoT8CMzMW/xNAV5PLfhhwZDjeF3idaJ/vHwDXhfTrgFvC8QTgZWAvYBywBmhJqvxjjj8L5d8GTAeuAOYVnCsL5V8p/iyU/xRgeDg+HHgvyfLvyyMTLQd3fwr4sCC5E3gqHC8Gzg7HE4A/h+etIxpa1mVmw4D93P0Zj/5S9wJnNTr2EEef429CmCW5+1p3fzEcbwJWEG3rOgu4J2S7h56ynAU84O4fu/ubwGrgqKTKP674Gx1nOfXG7+5b3P1pYFv+ebJS/uXiT0ov4n/J3XMblS0H9jazvZK8/vRWJiqHMpYBZ4bjc+nZSe5lYJaZ9TezccDU8LMRRDvO5bwb0pJSb/w5C0OT+oZmN0vNbCzRndGzwFB3XwvRPxBRKwdK7wc+ghSUfx/jz0l7+ZeTlfKvJkvlfzbwkrt/TArKv15ZrhzmAFeZ2RKi5t4nIX0BUcG/ANwG/B3YQY37VDdRvfEDXOjuE4HjwuOiZgVrZoOAB4Fr3P2jSllLpHmF9KaIIX7IRvmXPUWJtDSWfyWZKX8zOwy4Bbg8l1QiW6qHima2cnD3f7r7Ke4+FfglUd8w7r7D3b/m7pPdfRYwGFhFdMHN3wG+5D7VzdKL+HH398LXTcAvaFJ3h5kNIPrHuN/dfxOS/x2ayrkui3Uhvdx+4ImVf0zxZ6X8y8lK+ZeVlfI3s5HAQ8Bsd18TklN1/alFZiuH3EgFM+sHfAu4K3w/0MzawvHJwA53fy00/TaZ2dGhOTob+G0y0dcff+hm+lRIHwCcQdQ11eg4DbgbWOHuP8r70SKgOxx301OWi4DzQz/rOOAQ4Lmkyj+u+DNU/iVlqPzLnScT5W9mg4HfA3Pd/W+5zGm7/tQkqU/C63kQ3VmvBbYT1cCXAlcTjRx4HbiZngl9Y4lWa10BPAaMyTtPF9Ebag0wL/ecLMRPNIpjCfAK0QddtxNG0TQ49ulEzd9XgKXhcRowhOiD81Xha3vec74ZyngleSMykij/uOLPWPm/RTQAYnN4v03IWPkXxZ+V8ie60duSl3cpcGBS5d+Xh2ZIi4hIkcx2K4mISOOochARkSKqHEREpIgqBxERKaLKQUREiqhyEGkAM7vCzGbXkX+s5a3aK5K0/kkHILK7MbP+7n5X0nGI9IUqB5ESwiJrfyJaZG0K0WTF2cB44EfAIOA/wMXuvtbMniBaB+tYYJGZ7QtsdvcfmtlkohnwA4kmQM1x9/VmNpVoLa2twNPN++1EqlO3kkh5ncB8dz8C+Ihor407gXM8WhNrAfD9vPyD3X2Gu99acJ57gW+E87wKfCekLwS+6u7HNPKXEOkNtRxEynvHe9bHuQ+4nmgDl8VhtegWomVRcn5VeAIz25+o0ngyJN0D/LpE+s+BmfH/CiK9o8pBpLzCtWU2Acsr3OlvqePcVuL8IqmhbiWR8kabWa4iuAD4B9CRSzOzAWHd/rLcfSOw3syOC0kXAU+6+wZgo5lND+kXxh++SO+p5SBS3gqg28x+QrT65p3Ao8AdoVuoP9GGTMurnKcbuMvMBgJvAJeE9EuABWa2NZxXJDW0KqtICWG00u/c/fCEQxFJhLqVRESkiFoOIiJSRC0HEREpospBRESKqHIQEZEiqhxERKSIKgcRESmiykFERIr8Dy7zRiJrhJzPAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En se concentrant sur une période de temps moins étendue, nous observons un creux des incidences aux alentours de septembre de chaque année, suivi d'augmentations graduelles et irrégulières au cours du reste de l'année."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXd8I+d95/95MIMZdBawLJfkLrdKu1rVXTWruMiWFMdnOXGTc45lW4kSx77E57vLOd3J/fSLHSex4yR2orPjGre4REpc1a2+RW21q63cxl1WkESfAQbz3B8zz2DQCJBEGRDP+/Xii+QAAw6Gg+c7n28llFJwOBwOh2PH1eoD4HA4HI7z4MaBw+FwOCVw48DhcDicErhx4HA4HE4J3DhwOBwOpwRuHDgcDodTAjcOHA6HwymBGwcOh8PhlMCNA4fD4XBKEFt9ACulr6+Pjo2NtfowOBwOp604cODAHKW0v9rz2tY4jI2NYf/+/a0+DA6Hw2krCCFnankedytxOBwOpwRuHDgcDodTAjcOHA6HwymBGwcOh8PhlMCNA4fD4XBK4MaBw+FwOCVw48DhcDicErhx4HA4nAYwFVXw4OHpVh/GiuHGgcPhcBrAN/eexW99fT9yOm31oawIbhw4HA6nASRVDToFEqrW6kNZEdw4cDgcTgNQsjkA3DhwOBwOx4aS1QEACYUbBw6Hw+GY5JVDtsVHsjK4ceBwOJwGwIxDnCsHDofD4TAUjcccOBwOh1MEizlw5cDhcDgci3TGVA7cOHA4HA6HwdxK8SK30nPjEbz+rx/Dsel4Kw6rZrhx4HA4nAagVkhlfXUyhlNzSXzgy/swG1dbcWg1wY0Dh8PhNIBKqaxJ0900G1fxdw8fa/px1Qo3DhwOh9MA0hUqpJOqBtFFsDHsQySRacWh1QQ3DhwOh1NnKKUV6xySqga/LMLjFqznOBFuHDgcDqfOZHMUrBlriXLI5OCXBHjcLqia3oKjqw1uHDgcDqfOpG2KoJJykEWuHDgcDqejUG2LfnG2UkLV4JNFrhw4lcnpFA8engal7TkMhMPhlIdVR3f73CVupVQmh4AsQOYxB04lnh2P4De/th8Hz0dbfSgcDqeOsAK4voCMhKpBt02DS6oa/JIIWXRZRsSJcOPQQuKKkf8cTbdnS18Oh1Me1jqjPyADAJKZvHpIZvLZSsyttJjKWOuBU+DGoYWwu4ZUxrnSksPhLB/mLuoLGsbB7lpKqjn4ZQGy6LJiE7/zr8/jT+8/1PwDXQKx1QfQybALyMl+Rw6Hs3wUUxEw5ZBQNKDLeIy5lVwuYimHqZgCFyEtOdZKcOPQQtiFwZUDh7O2yCsHCUC++Z6W06FqOvyyCJ1SZHI6cjqFkslB1Zy1DnDj0ELYBcSNA4eztrCMg6kcWK0D66vkkwRoZpBa1XJIZXOOS2vlMYcWwmIO3K3E4awt2Ge6P2hzK8FwKQFAQBbhEY3lV83qSGVyVhdXp8CVQwth6W6pTHsOA+FwOOVhN35WzMHszMo+6z5ZBEtuTWVzyGg6dytx8qg8W4nDWZOki5QDcyslVGN7QBaQ043P/0LS6Mzadm4lQsgoIeRRQsirhJBDhJDfM7f3EkIeJIQcN7/32Pb5A0LICULIUULIbbbtuwkhB83HPkeIEZ4nhMiEkO+Y258jhIzV/606D6Yc0tw4cDhtjZLN4be/fgCHLkSt3wGg128GpIvcSkYRnAAAWEwZqqLtjAMADcD/oJTuAHAdgA8TQnYC+DiAhyml2wA8bP4O87E7AVwC4HYAnyeECOZrfQHAPQC2mV+3m9vvBrBAKd0K4DMAPlWH9+Z42AWU5jEHDqeteWY8gp8emsLTJyIADLeSJLjgFlwI+yXMmBPfLONg9lYCgPmUqRwctg5UNQ6U0klK6fPmz3EArwIYBnAHgK+aT/sqgLeZP98B4NuUUpVSegrACQDXEEKGAIQopc9Qo5nQ14r2Ya/1PQC3MFWxluGprBzO2uAXx2YBAAvmQq9kc9biP9Lrw8RCCkC+Upp1ZQWM6mggXxvhFJaVrWS6e64E8ByAQUrpJGAYEAAD5tOGAZyz7TZhbhs2fy7eXrAPpVQDEAUQXs6xtSPsToG7lTic9uaJ43MAgEWzFY5hHIzFf7THi7PzpnEwYw5sngMALCSNfXI6hZZzjoGo2TgQQgIAvg/go5TS2FJPLbONLrF9qX2Kj+EeQsh+Qsj+2dnZaofsePLtM3i2EofTrlxYTOPETAKATQXYjUOvDxcW08jptMCtxJQDUxuAs+IONRkHQogbhmH4V0rpD8zN06arCOb3GXP7BIBR2+4jAC6Y20fKbC/YhxAiwig0ny8+DkrpfZTSPZTSPf39/bUcuqNhqWtph+U3czic2mEupbBfslSAktUtZTDa40M2RzEVU6wiOK/bphza1TiYvv8vAXiVUvq3toceAHCX+fNdAO63bb/TzEDaBCPwvNd0PcUJIdeZr/m+on3Ya70DwCO0A4YcMOWQ5sqBw2lb9p1eQF9AxpUbevIxBy0Hr6UcvACAc/Mps6+SAJeL2JRDvhurk2odaqlzuAHArwM4SAh50dz2hwA+CeC7hJC7AZwF8E4AoJQeIoR8F8BhGJlOH6aUsnf8IQBfAeAF8BPzCzCMz9cJISdgKIY7V/m+2gLePoPDaX+mYwpGe73o8bnxynljoU9ncpBN47Ch1wfAMA6pjDEFDgBkK+ZgUw4O8iJUNQ6U0idRPiYAALdU2OdeAPeW2b4fwK4y2xWYxqWT4HUOHE77MxNXMBb2o8cv2ZSDji6vGwCwvtsLFzGMQ0LNIWAaBxaTaFu3EqdxsLuEWusctJyOd/3zM3jiePsH4zmctcJMXMVASEa3zw1V06Fkc1CzOat3kltwYajLi3MLaaRUDX7ZMAqy+fiiQ91K3Di0EOZW0nSKTA13DJFkBntPzePlCT5WlMNxAqqWw2Iqi4GgBz0+oxp6IZVBOpuDVxKs5430eE3loMEnGcpBElwgpHAQEFcOHACG9JQE419Qi2tpwaGVlBxOpzJrVj4PBGV0m26khWTWSGUV88ZhtNeHcwspJDOa5VYihBQ8B3BWzIEbhxZBqaEWevzGBVWLa2m+TIOuaDqLR4/OVNqFw+E0ENYWw3ArGcphMZUpSGUFgI29PkzHVJyNpOCzKQrZXbgEc7cSx1rgmRStpRCuXIOuzz50DB/8yj7EHDacnMPpBGZiTDl4rBu9hVS2oAgOAN519Si2DwYQU/LKAUCJclC4cuCweEO3z7igaklntdxK5t2FrlP8+OAkKAUiicxSu3I4nAYwm8i7ldiN3nwqA1XTC4zDYMiDH/7ODXj/a8bw5kuHrO1MOTCV4STlwOc5tAh2h8Ba+tbiVipWDs+fXcC0eecyn8xgU5+/EYfK4XAqMBtTQIjxOWZjP0/PJQGgQCEARsuMT7z1koJtTDl0eyVMZRUekObk7xCYn7KWgHRxzOFHBydLHuNwOM1jJq4i7JchCi543AK8bgEPvzoNALhspKvq/kw5MA+Ck5JNuHFoEUw59KzErWTu+9NXprBzKGQ8xo0Dh9N0ZuIqBsxpb4DxeT4dSUESXbh8tLvq/kw5MJcUVw4cK+bALop0djkB6RxyOsVkVMFN2/sAGDUQHA6nuczEFQyE8saBeQKuGO0uiDlUokQ5cOPAYRcBizksLyCt58cQ+iR43K6CEnwOh9McZmJFysHMWLp2U29N+7PmewFZhOgijgpIc+PQIkqUQw3GwR6QZgFsj1tAr0/i2UocTpPJ6RSRZAYDQY+1rdtrfJ6v3VTbrDKWpeSVBMiiixfBcUpTWZcTkM7YlIPXLaA3IGE+qTboSDkcTjnmkxnkdFrgVur1SxBdBFdtrB5vAPLKwSsJkN2Co9xKPJW1RbCLIOgx5GSqSpZCTqdWoZuq5ayAtux2occnYT7Fi+A4nGYyPmtMfxvp8Vrb7r5xE27e3m/1T6oGUw4+t2goB+5W4rA7f1kU4JWEispB1yn+4ZHjODYdBxt/pGYLlUPYz5UDh9NsDpxdAABcMdpjbRvr8+NNOwdrfo28cnCZxoErh45H0fJ3/l53ZeMwPpfAX//8GA5PGmO7A7JYEJD2uAWjj3ySKwcOp5k8f2YBm/v9VlLJSsjHHIyZ0gqvc+CotsXdJwkV3Upn51MAgEePGDMcBkIyVC1XEJAO+yUkVM1RkpTDWctQSnHgzAJ2b+ip/uQlYOmuPnOmtJOUAzcODeDIVAzxCo3wDk5E8Zq/fBjnF9MAjCIYryRWnCN9bt54HjMG60IeUzkYF5HXVA4Ar5LmcJrF+FwSC6ksdm9cnXFgA3+MbCWBZyutZSilePvnn8ZXnjpd9vHDk1FciCrYd3oehABugRjKoYJb6ZypHBjrQh5kClJZXQhz48DhNJUDZ4x4w56x+igHI1uJB6TXNDmdIpnJVaxYjiuGQjg6FYdHFEAIQX9AxlRMKfv8cwspDHd74RaMMd6DXUZOdSxtKBOPW0Cv30il48aBw2kOz59ZQJfXjc19gVW9DlMOPrfguIA0Nw5L8NSJuWXPa87kjH+uffSfHWYcsjlqBaPG+vw4N5+Cliu9MM7Np7F9MIDLR7rhFoilEqIFxsGoleDGgcNpDuNzSVw0GITLRVb1OgXKQXRWnQM3Dkvw2YeO4ePfPwjKckhrgM2CTihLGwcgn8a2qc+HbI7iwmKheqCU4tx8CqO9Prznmg345UuHIJsXU944uLhy4HCazIXFNNZ3e6o/sQo714dw0WAQG3v9vM6hnUhnczi/mMaJmUTN+zDlkKwQYLYHqi3lEDbmMJyOGH3g05kcPvzN5/HiuUXEVQ2jPT68ffcIPnvnlZYMjabyyqHL6wYhvDMrh9MMcjrFVFTB+m5v9SdXYftgED/77zejy+c2Yg4OCkjzOoclYP+oR4/OYNtgsKZ9mHKI16AcmKQc68sbh5vRjxMzCfzo5UkrGD3a67P2sYxDOgvRReAWjN+7vG4s8CppDqfhzCVUaDqti3Gww91KbYRiSjxWY1AL2ZzhgkpWiDkkVA3EdFOyhX4gKMMnCThlTpBibTJenogCAEZ78xeh3Th4bS2BPaLgKEnK4axVWBr6cN2NA3crtQ2slmDf6fmKdQvFMOVQyTjElSy2DxgqhMUPCCHYGPbjTMRQCiyewChUDvmYg2w3Dm6Xo4aTczhrlQumcRiqQ8zBjiwan+HlxDgbCTcOS6Bkc7h0uAuaTvHtvedq2sdyKy2RrbR1MACfJBQMA9nU57Nmz7I01W6fG11eN0Iet/U8u3JgMQtju7NK7zmctQozDnV3K5nrQaZM1mIr4DGHJVA1Ha/ZGsZAUMbfPngMt+9aV3AXXw4rIK1qoJSCkMJUt5iiIeRx4/rN4YLX2hj24+eHpqHldMut9MlfvbQkjsAmR0XTWQx15e9cnFZ6z+GsVS4sKgjKYsFNWz1gN36qplseglbClUMFdJ0io+nwiAL+z9t2wUWA///Hr1bdjykHnaKsmyehZhH0iPjiXXvwibdeYm3fFPZD04101lhag4sAt12yDu+5ZkPB/uyiSahagfLgyoHDaQ5GGmt9VQOQVw5OyVjixqEC7C7c4xawvtuLm7f349h0vOp+dkkYVwvv+rM5oydSUBZLFMXGsKEizswnEU1nEfK6S54D5O8uABQEpGWuHDicpnAhmq57vAGwKwdn3ORx41AB9g9i/zC/LNY0rS1rW6CTauHzWRpr0FPqzRsMGRfbbFxFTMmiy1testrlpmyLOXjcXDlwOM3gwmJ9ahyKsbuVnAA3DhVgLiHmuvFLApI1GAe7ciiukmYZT8EyvspwwGiLEUlkEEtnK/oziw2Ctd1hfVk4nLVIOpPDfDJT9zRWIH/jx91KDkexdT0FjGEcqQpVz3YytgW6uL/SUsohIIuQRBfmEqoRtPaWzxWo5FbyuAVrRgSHw2kMk1GWqdQAt5K51qQd8jmuahwIIf9CCJkhhLxi2/YJQsh5QsiL5tebbY/9ASHkBCHkKCHkNtv23YSQg+ZjnyOmQ50QIhNCvmNuf44QMlbft7gy2F04s+Z+SUA2RwsW/3LYlUNxrQMzDoEyxoF1Z51LZBBNV3YrSaJdORT+rHDlwOE0lFcnjbjjplV2Yy3HFvM1Xzq3WPfXXgm1KIevALi9zPbPUEqvML9+DACEkJ0A7gRwibnP5wkh7Pb2CwDuAbDN/GKveTeABUrpVgCfAfCpFb6XulKsHHyysaBXizssrRwMt1Ill1E4IBnKYQm3kiRUCEjzbCUOp+HsPRWBTxJwyfpQ3V97Q9iHLf1+PHp0pu6vvRKqGgdK6S8AzNf4encA+DalVKWUngJwAsA1hJAhACFK6TPUKP/7GoC32fb5qvnz9wDcQsql6TQZ+4xmwFAOQOWGeoyVupUAoC8gI5I0AtKhCspBFFwQzTbBnqIKaR5z4HAay3On5rF7Y4/V06zevP6iATw3Pl+xw0IzWc07/Agh5GXT7cTGIQ0DsJcST5jbhs2fi7cX7EMp1QBEAYRXcVx1QbFSWfNj/ABUjTtkc9WVQ7mANACE/RImFxUoWR2hCgYEyMcd5KLeSjmdFvx9DodTP6KpLI5Ox3HNWG/D/sYbLh5AJqfjqRNzDfsbtbJS4/AFAFsAXAFgEsDfmNvL3fHTJbYvtU8JhJB7CCH7CSH7Z2eXN4RnubDgbj7mYCzWlcZ5MjJa5ZgDMxYBufzCHw7I1gS5SjEHIG8UiuscAHDXEofTIPafmQelwNWbGmcc9oz1IiCLjnAtrcg4UEqnKaU5SqkO4P8CuMZ8aALAqO2pIwAumNtHymwv2IcQIgLoQgU3FqX0PkrpHkrpnv7+/pUces0UKwefbLqV1CrGIaeDECAoi2XdSrLoKggq2+kz01kBVHQrAXnl4CmT1spdSxxOY9h7ah6S4MIVo90N+xuS6MKu4RCOTdc+Q6ZRrMg4mDEExq8AYJlMDwC408xA2gQj8LyXUjoJIE4Iuc6MJ7wPwP22fe4yf34HgEeoA9oSKhWVQ5WYQ06HJLgQ8IgldQ4xRavoUgKMmANjqb4tzDgUt+y2HzeHw6kvB89HsXN9qCDW1wh8klg1K7IZVG28Rwj5FoDXAegjhEwA+DMAryOEXAHD/XMawG8BAKX0ECHkuwAOA9AAfJhSylarD8HIfPIC+In5BQBfAvB1QsgJGIrhznq8sdVib58BAD4r5lDdrSQJLvhlsSR4HVeyS8YSCoxDhToHIG+wPGXdSq2/qDictchiKtuQ+oZinDLXoapxoJS+p8zmLy3x/HsB3Ftm+34Au8psVwC8s9pxNBsr5lCUylpLQFoSDeOQKHJBJVStYqYSkK+SBqrFHErdSlZ1pQMuKg5nLRJTsrjYU9tEyNXglG4HvEK6AlYqq1iUylot5qDpcAsuI+ZQNCAormhlC+AYduOwlFuJ1ToUp7Iax936i4rDWYvElaVv7uqFLAqOaKHBjUMFlKwOFwHcgpFM5as15qAx5SCUabyXRVCuvOj3+iRrhOiSAWl3qXHI92XhyoHT2eg6xb+/cL6mdjfLec34EvVH9cTosNz6zzE3DhVQtRw8bsFqmy2JRvFZtZhDNkchiS4EZDei6Sw++JV9+N4Bo8RjPplBj7/yxSUKLvT4JEiCq6CHUjHMEHjLKAcnyFEOp5U8cmQGH/3Oi/j+gYmyj+s6LZu4oWRzePJ4+fqCZEaDTpdW9PWCu5UcjpLVSxZonyRUNQ6q6VYKyAKmYgoeOTKDR4/MQMnmMJeo3s2xLyBVnOXAyKeyFjbeM4679XccHE4r+dbeswCAA2cWyj7+r8+dwWs//WjJrOb/fHkS7/3SczhvjgG1U627QT2RRYEbByejZHMlKWt+Waxa1p4xA9L22MK5hZR1wQ33LG0cwn55yUwloHydA9umOECOcjit4sJiGo8enQEhwPNn8w3sXjq3iG88ewYAMLGQxnRMLZnVvJgyClCnokrJ67LRvU1xK4ku5HQKrcXdDrhxqICq6SXGwScJSFW5M89qOmTBhW6vEVy+eF0Q5+ZTOL9gGofupWdQv+vqEfxa0WjQYsq7lZzVC361TMeUuvqMOZ3Bv+2fgE6BX79uI87OpzATNxb6T//sKD75kyMA8uq6uIkm+302rpa8bizdROXgEBcxNw4VULK5Mm4lEakKymEhmUFOp8jkdLhFgnfuGcGXP3A17rhiGAuprDVitJpy+JUrR/AbN21e8jns4pHXsFvp7V94Gv/46IlWH0ZbkdF0/M3Pj2LvqVr7ZK49DpxdwK7hEO64wmjd9vyZRcwnM3hmPGJ9NtiiWzw3gd34zcZLlUO1jsr1JJ+W3lrj0Hgz2KYoml6w+AKGcig3DS6ayuLGTz2CP/svlyCjGU3zun0SXn/RgOWGenY8AtFFMBiUS/ZfLuUqpJ02YnA1UEoxGVXK3sFxypNQNfz21w/gyRNzmIoquKaB/X+cTCShYl3Ig13DIUiCCy+cXUA0bdy4AYCW0y0jURw/XFI5NNmtBLS+Zokbhwoo2Rw8RcrBL4uWTLXz7KkIkpkcJhbTyOb0gna+oz2GG+m5U/NY1+WBWIdWv90+CX5JsNJsAbtyaH/joGR15HSK9Bp4L83im8+dwZMn5hCURSyYvvNOJJLIYOdQCLIoYNdwCA8fmcHzZ/MLuqLpeeVQZByYG3M2kTcOjx2dgV8WmxuQZm6lFl//3DhUQNV0dBfdJVTKVnrmZASAMTOa1TkwRnsN4xBXNOwcqs+AkPddvxFv2jlYkNEkuAjcAlkTAWkm4asNVuLkOTqVwGBIxtaBAOaTnWkcKKWIJFWEzTY0771uI/7391/GiRmKkEdETNGgZnP5mEOxW6mMcvjLHx9Br1/CDVuNKQLNylYCWu8F4MahAmo2B7nIBeSTBKTKVEhbxkHNQi0yDj0+t2VURnqWDkbXStDjLtvAzymVlaslbrri1kr8pBmMzyWwuS+AHp+EC4uxVh9OS4irGrI5anU3/tWrRnD9ljAeePECNJ3i0z87uqRyKOdWiqazULUcYmZHZbZwNxKnuJV4QLoC5VJZfVJpM725hIqjZrA5oWpGbyWb64gQYrmWqgWjV4sxR7r9F1Qm4Z0yaL0dODWXxKZ+P3r9EiKJzozVRBKGYrK3oRnq8uK3XrsFI+ZnT8nmLONQ7AUopxxiShaTUcUY3duEeAPgHOXAjUMFjFTW4piDgHQmV1A88+y4oRq8bgFxRbPqHOyM9hoX5kiVArjVslbmSLNW59ytVBvzyQwWU1ls7jOMQ0zROnIiIDOKvf7SpA+rDsjmVir+rFjZSgkVlBpTFVMZw5iciaSa4lICnBNz4MahApWUg2amqzL2npqHXxJw5YZuQzlohcoBgOVOarRykNfIHOmEasQc1oKhawbjs8ZgmC39AfT6jbvmxVR2qV3WJHNMOfilksdkW8JGJeWQNr0C2RzFYiqLWDp/Do9Ox5uSxgo4x63EYw5FfOGxk+j1uyu2zwCAlJqzpN8r56O4ZH0Xun1uzE6rZp1D4X4bw4ZxGK1TzKESHlFYE433YtyttCzGZ5MAgM39fmv64Hwyg/46pE23EywQb5+LwvDYWtovFZCWRBcymo7ZhFqQdTifzGDXcFejDr0Ap7iVuHEo4vvPT8DrFqzGe3asaXDZHHoA5HSKI1NxvGvPKFIZDTElazTeK1IOb989gl6/hA3hBhsHt2tNpLImuHFYFifnEpAEF0Z6fFYlfidmLOXdSqXKwWNz1bBFt1iZpjM5bOj14cRMArNxFf6iWe9Ncys5RDlwt1IR6UwOR6fj0ClK3UoyUw7G4nUmkkQqk8PO9SEEZDcWkoYMLY45hDxuq2KzkRgNu9p/QY3zmMOyODWbxMawD4KLoMdcGDux1iGSzCDoEcvOaJdtY3RVqwiuMLkklclho5l6PhtXC9xKQHOqo4H8+sFjDg5Dyeas+a3FbiWmHFiV9KELRsrgzqEQAh7RikUUK4dmsWaUgxlzUDUdut7yceKOZ3wuiU19fgD5u+ZOVA5zCbWsSwmwDcPSclCsVNb8Z0XXKdLZnKXuZ+OqVRVtzVhpunLgxsFR2F0Zxe0zvFKhcjg8GYNbINg+GETQJkHL3bk0A497bWQrMeUA8C6z1Xj41WmMzyZw8TpjfGW3z7i77UTjMJ/MlA1GA4UdBDJWb6XS62ww5IEsujCbUBE1lcOmsGF4m5bK6s7HR1oJNw42KKUFxqGkfYY1DS6vHLYOBEtadLtbpBycMiRktcRtzQ072bWU0yk+/9gJfOPZMzgTSZY8fuDMPD70jedx6XAXfuNmo1mjLAoIymLDjcPnHj6Op06UH4zTKiKJTEGNgx1mHOyuIvu1xaY2+iQB/UEZ0zHF6sR68ZBheJuuHLhbyTmomg77/I9KMQdWCHf4QsxqiRHgyqFuJGzKoZOD0ocuRPFXPz2KP/73V3DXv+wtefznh6YBAF/74LUF/vAev9TwmMM/PX4S9794vqF/Y7nYW2cUwxbcRZtxsKeyMkPhdQsY6vIYhW9KFm6BYHNfAADKdiVoBKKLwEW4W8lRFN+lFhsH5jpKqBoiCRVzCRU7zLsKu3LgxmF1sN5KQGfXOkyYmUevu6gfZ+dTJYVtMUVDyCuiy1e4aPX4pYYqB1Yc5qRaipxOa3IrRe3KwXZtpUwXk08SMdTlxWQ0jVg6iy6vG0PdHgCoOoSrXhBCHJFcwo2DDXaxMCNQHJBmBiChaFgwPxgsl7wg5iBUHvHZSNaKWymhalZQ3x407DQmFlIAgBu39kGnpRPK4kq27N1suMHGgcWEomnnGIfFVAY6LV8AB+QbU0YruJWYivBJAoa6PZiKKlhMZxHyuK1g/0DQ08B3UIgTClq5cbDBjMOlI0axS7Fy8LoFuIixeLFiI5b77ATlILsF0zXW3hk+cUWzjG4nu5UmFtIIeUTLdXnONBaMuKKVzb3v8UlYKGMcdJ3isaMzq74+mN/eScbhdMQ4N5XcSoBRCBeroBwst5IkYH2XF9kcxfhsEkGvG9dvDuPfP3xD04rgAPNGj8ccnAO7QH7p0iG8cccgLjIzQBiEEPhl0TAO5t1TQHab31sfkPY4ZLzgakkoGvq4ccDEQhojPT6r/Qpl2p5dAAAgAElEQVRzMzESannj0Ot3I5LMlBiBp09G8P4v7yuYrbwSWIpncR1Aq3j06Azu+pe9CHpEXLmhu+LzZLfLMmhet1BZOXQZCuHkTAJdXjcIIbhitPLrNgLuVnIYbCEaC/vwxbv2oKtM6lpAFpFQNMsvzj6cQTn/3FbVOVhl921c66DrFImMhgFmHDo4W2liIYWRHi/WdXlACKzqZ0ZcyRZcd4wevwRV00sM62TU2P/8Yrpkn+XAsngWHWIcvvDoSfT43fjJ7920ZFt8WRSsOEmPz10Yc8iwmIOA9WaDzExOb1qGUjFOcBFz42DDnrFQiYCpHFi6JVMMfjm/T6vcSqz302K6fXPckxkNlOZjOZ0akKaUWspBEl1YF/KUKIdKbiXWw+vxo7MF2yOmq2kmpiCpavjYd1/EO77wND770LFlHRu7MUplco7o/hpTstixLlR1XorHphy6fFIFt5JoKQegebUNxfCYg8NgF0txrMFOwFPoVmIfTlFwWUalVW6l3Rt7AABPOiz/fDmwWM5Ah7uVFlJZc0CU2e69x2sFqBmGcShdvG7ftQ4XrwviL/7zsHU+gXxh3Excxf4zC/jB8+fx8vkofvTy5LKOLWbLJnNC3KHSeSjG4xasY+/xuQtSWS23kltAr1+ybvDKeQ+aAXcrOQx2l8oqocthKQelUDkA+aB0cZZTs9g2EMCGXh8eOjzdkr9fD9h57e9wtxIzBHnj4CtQDjmdIqFqBYkQDLfgwr2/cikmowru+8W4tX3ObEw3HVMsF9XlI10FLehrgbmVAKcYh2xNTfFk0WXVMfX4JGQ0Y1Y5kL8J8UoCCCGWemhWP6Vyx9pq9zA3DjbsQalKsJhDQs3C6xYg2lQCS2dtlVuJEII37hjEUycjSKpa9R0cCDMOLG2wU5UDMwTDNuUwFVOgmQs5UwSVfOK7N/Zgx1AIh85HrW1sUtpMTMX5xRQElzGlcLmLkJOUA6WmkZSrGwe7R4C1GXnh7AI+8cAhJFQNLpK/sbOMQ5NqG4rhMQeHUWvMIWmmshbftbHfW+VWAoA37RxERtPxxPH2dC0xf3avX4KLdG7MIa8cfOZ3L3I6xaRZ61CcEFGOgaCMWdvIUOZWmo4bymFdyAOvJKxAOdiMQ4sL4VKZHHRaWzttu3Ho8Rn1EN/Zdw5fefo0jkzG4JNEELPL3vouwyi30q2U4cbBOdQSc/DLIuKqhliZYGCgxcoBAK4e60HQI+LxY7PVn+xA7HfExemGncTEQhpBj2gtTsxIsEyjfJ1N5cWrPygXzENm8w4M5ZDGcI/XGm6zHGKKZnUqbbVyYOehnHutGPvYX6YcjkwZ899fmogWuJOtquhWuZXcLh5zcBJKNgdClo4ZBD35mENQLm8cWqkcRMGFzf2BkuBlu2DVj3hEeCWhY91Kk1HFunsFgGEzvZK5m+JFCRHl6A/KmEuo0HUKSinmkhmILoKEquH4TAIjKzUO6SwGTbdfq41DXkFVX8RZqjeQVw7Hpg3jMJ/MFLiTh1quHLhbyVGkMzl43YIlLcvhl0VQaqQDVnIrtSogzRgMypiJqdWf6EBitg+7x925xiGuZAv83azb6HxStR4HqiiHgIxsjiKaziKZMeaUbB0wmsgtprIY6fZCFlzI5JZXVR9TslagvPXGwTSSNcUcSpWDfQG2u5Nv3NqHG7f2YYt5vpqNka3kcONACPkXQsgMIeQV27ZeQsiDhJDj5vce22N/QAg5QQg5Sgi5zbZ9NyHkoPnY54i5AhNCZELId8ztzxFCxur7Fmsnlc0tGYwG8upgKqaUFCAFHaAcAKMn/XRcqf5EB3JhUUFQFuGXBHjNRoLRVLbjYg9JNVcwpjIgixBc+d5AtSoHAJhNqJZLibXiAIxgN5sdsJy4Q1zR0OuXEJDFljffK25jsxRMOUiCq2QEKFCYiDLW58c3fuPamgLdjcDIVnK+W+krAG4v2vZxAA9TSrcBeNj8HYSQnQDuBHCJuc/nCSHsjH8BwD0Atplf7DXvBrBAKd0K4DMAPrXSN7NalEzp3Ohi2EW4mMqWKIeRHh/6AhIEV2sa7zEGQzIWU9mW+yxXwsSC4QsnhBhupUwO777vGfzlj19t9aE1lWRRBg4hBCGPaBmHWA13zJZxiKuYMzOVdtiNQ7fPquZfzl1qLJ1FyOtGl9ftGOVQW8zB+GzLoqtAJbBBST6pNYagHG1RBEcp/QWA+aLNdwD4qvnzVwG8zbb925RSlVJ6CsAJANcQQoYAhCilz1BDv36taB/2Wt8DcAtZyq/TQNLZ3JKZSkB+4A+AkruKu14zhp999OaGHNtyGAgZ/uB2dC2xlhGA8WFeSGVxdDqO8bnSYTdrmXLpmcZibCyGNbmVbMaBZSrtKFIOLHliOXGHmKIh5HEj5ADjkChTb1QJ5u6V3a6C4POtOwcBLF3f1GxkUYCmUyt1uRWs1P8xSCmdBADz+4C5fRjAOdvzJsxtw+bPxdsL9qGUagCiAMLl/igh5B5CyH5CyP7Z2fpn46SzuaoXiP0OpTjHXBJdS3aFbBaDzDg4yLVUq1vo/GLaCr563QKOTcdBaT5Hv1NIqFqJ68N+px5XNIguUuBHL8ZuHJhbaVO/31ok13d7lm0ctJyOhGrOkfCKLW++F1tGQDqvHATrJpAQ4JYdhnGo5lJuJux/tNw043pSb+d4uTt+usT2pfYp3UjpfZTSPZTSPf39/Ss8xMqwgPRSlKuIdhqs9cS0Q5TDdEzBZX/+czw7HlnyedF0FnFFs9I2vW7BKkyMJJ3xXpqBrlOkMrkS4xAqMA5GVfBSIjsoi9Y8ZNZXKeyXMBCSMRCUIYuC5Vaq1TjkU43d6PZKJcphJqaUbRfeKBJq7cqBGVK7chgKebBjKATRRRxpHFpZJb1S4zBtuopgfp8xt08AGLU9bwTABXP7SJntBfsQQkQAXSh1YzWFmpRDQZCwNWlu1WDKYTrmDOUwPptERtNxuopr6HxRVbD9fxFJlLagXquwMbTF8YQur9u6U0/U0E+IEGLVOkQSGQRkER63gJFuH8bCxgAb2b28O1TWOoPVYBQ3ebzry/vwJ/e/Um7XhhBXNPgloaY4HwtIe0TBMgQbw35Iogt//Ms78I7do0vt3lRYokAr4w4rvfV9AMBdAD5pfr/ftv2bhJC/BbAeRuB5L6U0RwiJE0KuA/AcgPcB+Pui13oGwDsAPEJbtAqkMzl4u2t3K9WSIdEKenxuuAXiGOXA3FuJKi09ivsJ2ZMDNN1Iyez2lZ/0tZZgw+7LuZViNrdSLdcfMw46pVY67Cfffqn1uBWQrvEOlblxQl43unyFMYeZmIJXJ2MIyM27A08o5ftLlcOuHDwiMw6GSn3/DZsac4ArxFIOLUwqqSWV9VswFu6LCCEThJC7YRiFNxFCjgN4k/k7KKWHAHwXwGEAPwXwYUope3cfAvBFGEHqkwB+Ym7/EoAwIeQEgI/BzHxqBbUEpNvBrUQIwUDQgxmHKAdWpcsySyrBCrzsbiU7cx0Sd0ioxoLrL1pkWcyBUoq4Uls/of5AXjn0miM0N4b92GgqByvmkKttEbKMg8fIVlKyurWAPWO6Dav9n5fLsek4PvSNA2UXSmPgUW0Knt1seEQBLhfBXddvxFsvX1/XY60X1mwWJysHSul7Kjx0S4Xn3wvg3jLb9wPYVWa7AuCd1Y6jGSjZHDxV3Eqy6ILoItB02rJBILUwGJIdU+vAjEMl5ZBUNUxG0zi/mIbXLaDHLFDySsbCtbnPj/G5JCIJ1SriWsskTOVQLltJM+MRRiHa0vMLAEM5PDMewWxCxfVbSvM8JHF5qazMrWQEpI3/UzSVxUBIsGJK9Q5SPzcewU9emcKHpxMlozpjSrbmWgS7cgCAP7+jZDlyDFIbxxzWJOlMDr4qyoEQYikGp8YcALMQziFuJcs4VLij/PtHTuD2zz6Bp07MYcSscQDyyuHqsV4A+WE1a51khSCrtRibgftabk76gzLiiob5ZAa/edPmksflZWYr2ZVD2FQi7P/y9EnTONRZOTDDdSZS2hKm0qjUcthjDk6nLdxKnQKlFKkaAtJAvtbBqW4lgBkHhyiHxNLK4ZmTc9B0iiNTcSsYDeTdANdsMozDXMIZxq7RsPNULlsJYMahthkGLJ31LZcNlZ2DzBbMmo1D2mYczLTtSCKD84tpnImk0ONzI6Fqdc3PZ2nQpyOlCQ21xl6AUuXgZORlKrpG4Pyz1CRUTQelS3dkZVhzox1sHAZCxh0jm43bSlgxXryMcUiqGl65EMOG3nxrakY4IIEQwzgQ0jkxh2rKYTGVrdnXfvlIN7YOBPD7t11c9nFpmfn01swTWbAC3HMJFS+cXQAAvP5io+SpWvLBcsgrB8M4UErx6Z8dwbf3njUC0jW6lZghbHXvs1pg1dqtnMvi3NWtyVhT4GowDtbcaAeV2xfDumZOx1Rs6mvtcVrKQSn1Rb9wdhE5neITb92JBw9P482XDlmP/fKl67FtIIjRXh96fZJVyLXWqaQcmHE4N5+CTvPN45Zi13AXHvrYays+vtxspVQmB7dA4BZc6DOVg13RXbK+Cz94/jziila3zDL22WRupa8+fRr/+OhJbO7zmwpqmQHpGj7jrabHb7yn+Ra6Up27ujWRyWjayrCoya1kNoZrdQ+lpRg178TPzqewqc/fsuPIaLp1gZe7m9x7eh4uYsQV3nDxYMFjkuiyApDhgNQxVdKVmskx4/DCOeMuvR7/1+UqB8WW0RfyiHALBHOJDLScDo/bZVW3R9NZ1KtqQMnmYw6HL8Tw//3oVQQ9otVSpXbl4Cr47mTCftNl10Lj4Pyz1ATe+8Xn8NFvvwigthL6gEd0dLwBAMbM/O1qhWeNhlU2E1I+IL3v1Dx2DIWq3v2F/XLHxBySqgbBRUoWMRZz2H/aMA7bBoKr/lvLbZ+RymiWy4MQgrBfRiShYjquYjDksQxYrIxKXCksKDsVU/CtvWfhIgSfe8+V1uO1xxzaRzl4JaNQr5U3RM5e4ZpATqc4E0lBMweN13Lh/NdrN+CmrX2NPrRV0R+U4ZeEskG8ZsLiDSM93pL2zqqWwwvnFnDn1Ruqvk5fUMYrtnnIa5mkmoNfKp0rEpRFEAIcn0lAFl0FwfuVstxspVSmMGmjLyghkswgoWgYDHmsGRQs5bUeKDaX1/cOTOD6LWHcuLXPmBSYzS0/IN0GygEw1PJ8C9vGtMdZaiBzCdUyDEBtMYfXbOnDnddUX9BaCSEEG8P+lisHlsa6qS+AhKoVtMB4/OgslKyO111UvU9W2C91jHKoVODmchFrbOXm/kBd3JrLdSsV9x9jim4qpmBdyGMdX7zOyoHZyXQ2hzfuHIRbcGH3RmOMTK0xh4As4nffsBW3XbKubsfWSMJ+mbuVWgkb2M5wUtve1TLW58PpMrnhzWTGNA6b+/ygNJ/tAgD3v3QBYb+EG2tQYX0BCXFF64ihP8kyHVkZzG2zrU7FgPmAdG3nNV00ECsckDAXVzEdUzAYki3jUM9aByWrY2NvvuDvjTuMjChW/1JrzIEQgo/dehG2Da7eHdcMwv7Wxtk63jhMRY2WDezDVotyaBfGwn6cm0+1tCc8Uw4sBsKCrQlVw0OHp/GWy4Yg1jA5j2XGdEIhXDJTuV8QMw71qhQnhEASXFCXkcpqv4HqD8iYjClQNR2DIY913PWskla1HAaCHnT73Lh0uMua73zLjgEEZLGlCReNJByQWtqNuOONw4VFQzn8zuu3QBZdVkfTtcBYnx+aTnF+Md2yY5hNKOjxudFjVtOyrLCfH5qCqul46xW19bZh2VcnZxKNOVAHUW7QD6PeygEwXEu1xhzSmVLlwDyFgyEPBBdBUBbrGpBWsjpktwsfv/1i/P7tF1nbdw134eAnbrWujbVGr1/GfLJ13Yg73jhMxRTIogtvu2IYr/z5bVZF6VqAtWVupWtpJqaiPyhbQUOmHPadXkCPz42rNvQstbvFZSNdcBHgwJmFhh2rU0iqWsUamnorB2B5xiGV1QrUdZ9tuNW6LuPGKuR11zUgrWo6ZFHAnddswE3bCuNTLRoa2RT6AhKyOVr3diS10nHGYXw2gb998JhljS8spjHU5QEhRmHPWmKsr/XprJFkBn0B2epDxdJZZ83Ux1o/3EGPGxetC+H5s2vfOCSUJWIOPjcEF7G6qtYDeVnKQYfXZrjskw9Z4WXQI9Y3IJ3NtUXLi3rDKtDHZxN489890fRrv+PO+EOvTuNzDx/HAy8Zs4amoop1x7PW6A+0Pp01klARDsiWm4S1o55LqMtWabs3dlsV1WuZpZrJ/do1G3Dv23ZZWUb1QBJdy8hW0grdSv58FfRAyPh/hjzuOtc56G3RLK/e9JqFcD89NIXDkzH88+Mnm/r3O8443H3jZly5oRt/ev8hzMQUTEYVK8C11iCEYLTXZ81JaASRhIp7f3QY2QqLSySZQdgvWYsdiznMJdSChaUWdm/sQULVcGw6vrqDdjCUUiQzuZJZDoxdw111T6OWBFfF9hnnF9OWqmDNKe3GgRn4bp/bqhEKecU61znklpyVvVZhn4/Hj84CAB56daapzTQ77owLLoK/fuflSGdz+PTPjmI6pmBojSoHwJD4jWze9cTxOfzfJ07h8IVYyWOqlkNc0RD2SzblYBxLJJEp8FfXwu4NRuriWo47qJqOnE4rupUaQSXlEE1nccvfPIZvPnfGOrbi5pQ9Zv+kdbZEjkYoB7kDlQNzKx2ZiqMvICGnU3x337mm/f2OMw4AsKU/gLdfNYwfvHAemk7XtHHwSiKSmcbVBqTN/PhyBWqsp1I4IFuLXULRkFQ1pLM59C3TrTTa60VfQF7TcQemrGrN3a8HlQLSL51bhJLVcXTayBBLs46sNuUgiS50ed0FWX4hr7uu0+A6VTn02pT1zdv7cf3msOUObwadd8ZN/uu1Gy3f9Vp1KwGAXxKQaqByUJYwDqyAJxyQIIkuyKILCVWznrtc5UAIwYZer1U7sRap1K67kVQKSL9wdhGA0QUWAFLZUuMAGPUGN2/PZxGFzID01545jW8+d3ZVx6bldGg67UjlIIuC5Y69dLgLm/r9WEjVd8reUnSscdg13IUrNxjDT9ZqQBow+sKnGqgcWN+bcrMW8kbAuAMKekTEC4zD8ls6+2Wx7jOKnUSldt2NRBKFskVwrPvruQXDOKQzrHNx4bH97buuwN03brJ+D3rc0CnwF/9xGN/auzrjwGY5dKJyAPJxh0uHu+ARhZor2etBZ55xkw+9dgvWhTwYW6MVloBxl9fIgT/MrVTubt5SDmbWRUAWkVA0zMaN7ctVDuw1WjkApdFEbZPWmoURkC5cdCilePGcoRwuLKaR0ynSGWOhrjZKlzXf03SKhdTqKtqZMm2XZnn1JhyQ4SLAzvUheNwu6/PWDDq6K+utl6zDrW3ShGul+GShoTEHdSm3kln6zwJrAY+4KrcSsPaNAzs3/cH6DMqpBblMQPp0JIXFVBaXj3ThpYkopmKKdZNRrf+Y3bAVd+JdLnnl0HluJQDYGPYhm9Phk0R43AI0nULL6TW1nFktnWmOOwi/JCKj6Q3rr7SkckhmIIkuy3/OlANbAMMrdSutMeOg5XQ88NIF6Dq13HMrMZwrpVxAmo39/C+XG+1Nzs2nrJhDNeOwdSCAkEfE7ZesQ0LVai6wK4elHDrUrfQXd+zC1z54DYC8a01p0lzpzjzjHQQLHqYaJEftAemTswm84W8ew95T8wDMdFW/ZFVBB2S3FXPo9rlXVJHOUnNb1W+mEfzi+Cx+91svYN/pecwlVIguYrXJaAblAtKHLsTgdQt4gzkT+tx8qmy2Ujm2DQbx0p/dihu3Gd12F1fhWrKUQwcGpAHjhoqNW2VtS5rVmZgbhzUOm9qVbpBrKW0LSD9zMoLx2STu/so+HL4QQyShotemDrp9bszGFczG1RXfGftlETpFU32vjea82fzx/GLarCiXmtozqFydw3wyg76ghJEeH1ykyDi4q3ujCSFWDcRqMmw6XTnYkblx4NQTdpfXKD89u1Cj6SwOXYjBJwnwyyL+8IcHzerovBG4fnPYMiIryVQCUFJMtxZgbeMnowrmVlAcuFokoVQ5RNNZhDxuSKILQ11enFtIW+rTI9W2bPT4DPWzmqB0pysHOx5uHDj1xHIrrVA5UEpx62cex3f2lU9JtF+oz45HsH0wiPdetwEvnlvEqdlkQVzhlh0DEF0EMUVb8QIYsBXTrRWmoqr5XcFcYuWqaqVIostahBnRdNZybY30eE3lYJxzX4WOscUwd8jCKmZwcOWQx2NmbCkVWp3UG37G1zgsX36lxsHoZZTAvtPlq5LtxuHUXBLbBwO4ZccgACCuFhqBbp+E67eEAaw84MreT1JdO26lqVja/K4gksisKFC/GiTRhZxOCxoa2o3DaK8P5xZS1jVU60AsVuG7GrcSM1qdWARXDFcOnLrCMkuSK6x1YLUKEwvlZ0IoWb2gzH/7YBAXrwtiuNuoOi9ursdSh1frVoqrzasUbTRT5qjayWgaswkV/U1WDmzhtbuWYjbjsKHXh+mYisVUFrLoqnl2dXcd3EpsIezUIjg7eePAlQOnDrChMakV3mmzsZyVOrumszmM9OTbj2wdCIAQglvMOb/hooXutksGEfKI2DEUWtHxBNaicjCNw/hsEhlNb4lbCSg0DnblwIpEj0zFqmYq2fG4BXjdwqrcSlw55OHZSpy6ko85rFQ5GP7wyagCLafjlfPRgoI3pcg4bDeHt99mKoT13YWtSQaCHrzwp7darqflwmYUr5VCuLiSRTKTQ1DOtzlphVsJANSc8feVbA6qpiPEjIM5//uwmd66HHr90urcSjzmYJGvc+DGgVMHVhuQZp1Vc+Ys6jvvexZ/99Bx63Elm0O3z2jJHZRFq8PtDVv78MBHbsD1m8Mlr1mrW6IcbM7BWimEY6rhstEua1uzlYNs1puwmQ4xs4UHUw4bew3lEFO0qgVwxXT73PWpc+jQCmk77Bw0Ki29GG4c1jirDUhHbC6Bx4/NIqFqOD6TH7ajZI0pXX0BCVsHAwX5+ZeNdNc9Xz9ojhtdK8phyhzecuVofpZ2y9xKZq2D1d/JNA5dPreVllprphKjxyfVJebQqb2V7MhNrpDu6N5KnYAsukDIatxK+Q/2Tw5OATCykhjpbA5eyYUPv35rU6p6PW4XXGTtpLIy5XDFaLe1baXB+pUiF8UcokXKAQA2hv1YSC2uSDmcX1z5JEJV00GIUYvR6TDl0KzOrKs644SQ04SQg4SQFwkh+81tvYSQBwkhx83vPbbn/wEh5AQh5Cgh5Dbb9t3m65wghHyONLM8dI1DCIFfElccwI0kVawLeUAI8NypCABgOqYildGQzRlTyzyigHfuGW1KE0NCCPyyuGaK4JhxuNw0DoQUDnlpBsUBaTbFzW4cNplB6ZXFHFanHDyi0NSKcafCCgHbKSD9ekrpFZTSPebvHwfwMKV0G4CHzd9BCNkJ4E4AlwC4HcDnCSHsSvsCgHsAbDO/bq/DcXFMvJKAdHZli+l8MoN1XR4MBj3QqbF4AcDpuZTVwmK5d5OrJbiWjENMQa9fQl9Agl8S0OOTmtJx004lt1KhcjCC0svJVgKM2pZoOltQQ7EclKzOg9EmboHARdo7lfUOAF81f/4qgLfZtn+bUqpSSk8BOAHgGkLIEIAQpfQZanRT+5ptH04d8EvCipWD0c5BsjKSXmMWsZ2aS9qqV5trHPxrqG33VFTBYMgDQgjWdXlK6kKaAXPZWG6lVKlxGAubymGZxqHH5waleYOzXFQtx1tnmBBC4HULTesrtlrjQAH8nBBygBByj7ltkFI6CQDm9wFz+zAA+3TsCXPbsPlz8XZOnTCmwa08lTXsly3j8JbLjBbOpyNJK7vF0+RgIZsLsRa4EFWsDK+rNvRY7qVmYqWyaqxPlnFuQ558SHKlyiFfJb0y1xJXDoV43ELT3EqrDUjfQCm9QAgZAPAgIeTIEs8t5zSkS2wvfQHDAN0DABs2bFjusXYsxjS45V9QlFLMJzPoDUgQTH/StZt6MRiSMT6bbJlbKbBG3EqUUpyJJHHtpl4AwKffeXlLjoMVmDFjH01n4ZeEAvcWizksN1uJ9VdaaTorVw6FGMahDbKVKKUXzO8zhJAfArgGwDQhZIhSOmm6jGbMp08AGLXtPgLggrl9pMz2cn/vPgD3AcCePXvWTkP/BuOTxRXJ+lhag6ZThP0SXneRMUB+U58fm/r8OB3Ju5Wa/eENyCKmzRTQdmY2riKVyVkLb6voD8qQRRc+/oODSGZyBdXRjG6fhHftGcFN5oyGWmGq6NRcCrs39i772LhyKER2u5xfBEcI8RNCguxnALcCeAXAAwDuMp92F4D7zZ8fAHAnIUQmhGyCEXjea7qe4oSQ68wspffZ9uHUAZ9bsDpqLgf7mM+tA0H8z9suAiHEMA5zSasYp9nKwW9OlGt3WEpwq2eY9wdlfP9Dr8FY2Ic/vf8VLKQyVo2Dnb96x+W4aVv/sl57a38AYb+Ep0/MrejYuHIoxCMKbZHKOgjgSULISwD2AvgRpfSnAD4J4E2EkOMA3mT+DkrpIQDfBXAYwE8BfJhSyt7lhwB8EUaQ+iSAn6ziuDhF+OSVBaRZAZx9JgNgBCcjyQxmzNGgzW6K1q5upZxOC/oXMeOwucXGAQB2DXfh7ps2I5XJYd/p+brVrLhcBNdvCeOpk3PLmt43l1Dxny9f4MqhCI/b5Xy3EqV0HECJk5RSGgFwS4V97gVwb5nt+wHsWumxcJbGv8KANCuAK867X292XD1tLm7Nbm3AjAOltC3y33M6xfu/vBdPnpiDXxLx+P96HcIBGaciSUiCyzqfrebqMaMkKa5odS1ovGFrH/7z5UmcnE1g60Cw4vOmogpenljErZesw7/tn8CnfnoEXreAG7Yuz5W1ltoOdWgAABOASURBVDHS0p2vHDhtwkoC0v+2/xweO2qEi4rbOQwEjd/PzBttvJttHNio0GbdQa2WHx+cxBPH53DrzkEkVA1PnTSKCU/PJTHa611Vr6l6MtTltVqt19M43Ggu7k8eX9q19PVnT+O3v3EAGU3HrKlK09kcVw42PGLzspX4We8AfJIIVdOh5WpbTKdjCv7X917Gt/cZmcc9/sKFYiBkBBnPmsZhuVWzq4V1Zm2HmQ6UUvzjoyewpd+Pf/i1qxD0iHjmpLFInp5LtTwYXcweUz3U0ziM9vow2uvFE1WMQySRgU6Nwsv5ZL7zL4855GlmKis3Dh0A62SaqvGiOjplNNb7wA1j+JO37Czppc+Uw7kWKYeAzOZiO3umw4OHp/F7334RR6bi+J3XbYVbcOHaTWE8dSICXac4HUlaxWVOYc+YkVFULiC9Gt5y2Xo8fGQGe0/NV3wO6wA8l1ARSWasti180E8euYkxB37WOwCWTVRrq99j04Zx+Mjrt+LuGzeVPO6XRfglAZNmX6CmKwezM6uTM5a0nI4PfeMAHj06g1+5chhvvcIoHrxhaxhn51M4cHYBqqa3PFOpGBZ36KlzpfZ/e8NWjPR48b+//3LFO19WKDeXUBFJZLBrOITPvvsKvO/6sboeSzvjcQtWsWKj4cahA2DT4GptOXF8OoGwXyqZ4maHuZaA5rdTZi6PxfTKG7o1mkgyA02n+P3bL8Zn3n0F3GZBGQuu/s3PjwKA49xKFw0G8Q+/diXeevn6ur6uTxLxf+7YhVNzSTz06nTZ57ChQHOJDCJJFb1+CXdcMYyL1lUOYncaHlHg8xw49cO7zIE/x2bi2DYYWPI5/aZrSRZdcDU5oMr+NgtaOhF2bMwFx9g2EMC6kAfPjs9j+2AAu9Z3ldu9ZRBC8JbL1jek/TprDTJX4f/GxonOxlXMJzNL3px0Kl7Jxec5cOoHy6N/8PA0dg0vvRhRSnFiOoFfuWrp9lZs0WvFhC5mHOzjSp3GTNxwufUXGQdCCL59z3XQdB1b+gNtkYpbL7q8bhACzJcZG6rrFItmFf+puQSyOdqSJoROxyMKyOkU2ZxuqdFGwZVDB7BtMIjbL1mHLz15quqw98mogriqYdvg0lJ+IGi4lZodbwCMLrMet6stlQNgVERvHQh2lGEAjPGwIU/h2NAvPXkKv/r5pxBXNKut99HpBIDmz9JuB9jNWDMylrhx6BA+dut2JDMa/vkX40s+jwWjtw8s7VYaCDHl0PxLiBCC/qDsaOMwEzOOrdkjP51Oj89txRYA4KHD03j+7CIuRPPT4o6b12Cvn5+7YtjnrRkZS9w4dAjbB4O4cWsfHj82W/E52ZyOp80Cre1VlUPr3EqAsejOJZwbkJ5NqOjyult2fpxKj1+ylIOuU7xyPgoA1ndJdFmxMe5WKkXmyoHTCLYNBHEmkizb4yaV0XDjpx7Bfb8Yx7aBQNVURuZWatXi1x9wvnIojjdwgB6fZNUzjM8lETcz6Jhx2NKfV6zcrVQKdytxGsJYnw+pTA6zZQK55xfSmI6p+Ogbt+E//tuNVV+rlW4lAOgLyo4PSJeLN3Q63T43Fk230sHzi9b2g6Zx2G7Lkmv2LO12wGsZB+5W4tSRjWY17plIquQx5qK5dlO4JjXAFr5WBKQBQznMpzI1twRpNrMJlRuHMvT4JKvY7aVzUXjdAkQXweHJGAAj1Rcw5oQXV+ZzbDGHJhTCcePQQYyZox5Zq2g79tkNtdDldUMSXa2LOQRlUJpvudBIpqIKJm0B02pQSrlbqQK9fgmpTA6qlsPB81HsGg5hqNsDJavDLRDrBoa7lMrD3UqchjDc7YXoIjgTKWMcEmx2Q20fSkIIxsK+li2A/WYW0EwT4g4f++6L+Nh3Xqr5+XFVg6rpVlyGk6fbZxTXzSUyOHQhistGuq1OsN0+ycru4i6l8rAmhM1wK/EiuA5CFFwY6fHidBm3UiShwkXyM39r4Rt3X9v0KXCMZhbCnZhJlB9qXgGWxsqVQyk95vX1wtkFKFkdl6wPmTGIefT6JPQHjcd5dXR58qmsjVcO3Dh0GBvD/rLKYS6ZQa9fWtZsAXt/pWbDlEOjM5bSmZylTtKZHESBgFIj5bISSxXAdTpMOew/vQCAZdClrMeYcuBprOVhbqVmDPzhbqUOYyzsw5m5VEk6ayShlowDdTJ95h1mucyrenJuIa+yJhZS+KMfHsQHv7Kv5Hn/+twZfODLewHkW2ewjC5OHuYuYq27twz4MdzjtR7r8roR9kuOa0joFJhxaMYcaa4cOoyNYT/iqlbS2CySyLRVENAnGW3D5+KNDUiftbngzs6n8Oz4PKLp0t5A3913Di9NRJFUNUs59Ad4zKEY5lY6MhXDcLcXPknEiC3mQAjBQx97rTXQiVNI2C9h/x+/EcEmnB+uHDqMsT4jY+l0kWsp0oZdMPuDcsOVA5t2BwCHL8Rwdj6FaDqLmJI3EAvJDF428/RPzSUxsZCGTxIQ8vIFrhjmVtIpsLnfUAcjPcY12WtOHOzxSw1vKteuuFwEfQG5KWm+/D/QYWzuM/LIT8wkCrbPJdS28/P2B2VMx5SG/o2z8ykEzOFGD9rmEJxfyKe2Pn0yAualOzmbwNGpOLYNdl5jvVqQRQE+M4lhq1nTMNTtwWUjXbhqQ08rD41TBDcOHcZorw+y6MKx6bxxULUc4oqGvjZyKwGGi+x0mZqNenJ2PoUNvT6M9vrw8kTU2j5hMw5PHJ9FQBZBCDA+m8TR6TgurtKbqpNhriVmHNyCCw985EbcsmOwlYfFKYIbhw5DcBFsHQhY3VeBfCFZu7mVtvQHMBNXEVdKYwD1ghmHDb2G64NlKU2YgWpKKZ44PocbtoaxvsuLfafnMZ/M8OllS9Bjuo+29i/d+ZfTWrhx6EC2DwZx3KYcllsA5xS2mD7r8dnGqAddp4ZxCBvKAQCuHO2G1y1YyuHUXBLnF9O4aVs/Nvf78ey40dX2Ym4cKsKUw5YqbeE5rYUbhw5k22AAUzHFyrphhWTtlK0E5BeXk7OJKs9cPg+8dAF/9/BxZDS9QDnsGAphpMdrKYcnT8wBAG7a1ofNfX6Y82q4cliCsF9Cj8/ddjcjnQZPp+hAtg8YC9dL5xbx2NFZK6umneocAGBDrw+ii9TdOCjZHP7wBweRMNtJb+j1WVPKdg6FcCZiqAUA+MWxOWzo9WFj2I/NppukLyC3nYuumXzkDdvwrj2jPGDvcLhx6EDYIJ9PPHAI43NJqyq63ZSDW3BhY9iHkzP1dSs9cXwOCVXDH715BzSd4votYaiajnftGcEtOwZw8HwUL5xbRDan49nxCN56xXoAsAq3uEtpabYOBKxgNMe5cOPQgYz0eOF1CxifSyLslxBJZiCJLgTk9rsctvQHVq0cKKW4EFWsBnA/PjiJbp8b779hzMq3dwsu/NU7LgdgnL/FVBZPnjCMyM3b+gDk8/a5S4mzFuAxhw7EZWYsAcBXP3gNLl4XxLqQpy1l/paBAE5HktZch5XMd/j0z47ihk8+gsePzULJ5vDQ4WncunOwYiEWK9r6wmMn4SLA9VsM4zDc7cU9N2/GO3aPrPDdcDjOof1uFTl14b3XbcD5RQW7hrvw5Q9c3ZS5CI1gS38A2RzFuYU0BEJw62cfxz+9dzf2jPXiI998Hr9+3cYl8+ePTcdx3y/G4SLA//y3l/Da7f2IqxrefOlQxX1GzF5Ae0/N4z3XbECX10jNJITgD9+8o75vkMNpEdw4dCjvvnqD9fNQlxdDXd4WHs3KYWMlnz+zgNmECiWr498OTCCSyOCxo7PYe2oeP/id1+DidaGy+//p/a8g6BHx9++5Ch/4yl784PkJ/OZNm3Dztv6Kf3PXcBc+/ksX4+qxXuzeyKt6OWsTbhw4bc2u9V0Y6fHihy+cRypjZBc98uoMZmMqhro80CnFb339AH720ZtxcjaBR4/M4J6bt0ASXTh8IYZnx+fxJ2/ZiRu39eGbv3kd/JKInevLGxKG4CL47dduacbb43BaBjcOnLbG5SJ4+1Uj+NwjxwEAr9kSxtMnI9h7eh4ffv0WXLc5jF//0l788+Pj+MELEzgTSeG5U/P4p/fuxnf3n4MkuvD2q4YBAFeP9bbyrXA4jsIxAWlCyO2EkKOEkBOEkI+3+ng47cPbrxoBpQClwB/98g5rYMwdVwzjpm39eN1F/fjMQ8dwJpLC+18zhqdOzOHXvvgcfvjCedx+ybplTb/jcDoFRxgHQogA4B8B/BKAnQDeQwjZ2dqj4rQLG8I+XLe5F5v7/Ng5FML7X7MRb7h4wKrn+MM374BbIHjPNRvwibdegn96724cmYwhms7i3VePtvjoORxnQoongrXkIAi5HsAnKKW3mb//AQBQSv+y0j579uyh+/fvb9IRcpxOJKEik9MrBtanogoGgjJcZsHfgTPzeOL4HH73DdusbRxOJ0AIOUAp3VPteU6JOQwDOGf7fQLAtS06Fk4bUq1dxbquwqlsuzf2YvdGHmPgcCrhCLcSgHK3biWShhByDyFkPyFk/+zsbBMOi8PhcDoTpxiHCQB25+8IgAvFT6KU3kcp3UMp3dPfXzkPncPhcDirwynGYR+AbYSQTYQQCcCdAB5o8TFxOBxOx+KImAOlVCOEfATAzwAIAP6FUnqoxYfF4XA4HYsjjAMAUEp/DODHrT4ODofD4TjHrcThcDgcB8GNA4fD4XBK4MaBw+FwOCU4okJ6JRBC4gCOVnlaF4BoHf9sH4C5Or5evY/P6a9Xz/Pn9Pfq5HMHOP/9dtL5a9a5Y+dgI6W0ei0ApbQtvwDsr+E59zX7by7z9ep9fE5/vbqdvzZ4r449d23yfjvm/DXr3C33HKx1t9J/tPoAqlDv43P669UTp79XJ587wPnvt5POnyPPXTu7lfbTGppHtfvfXEvw87dy+LlbHfz8Lf8ctLNyuK9D/uZagp+/lcPP3erg52+Z56BtlQOHw+FwGkc7KwcOh8PhNIiONg6EkFFCyKOEkFcJIYcIIb9nbu8lhDxICDlufu8xt4fN5ycIIf9Q9FrvJoS8bL7OX7Xi/TSbFZy/NxFCDhBCDprf32B7rd3m9hOEkM8RQtb0BJ46n7t7CSHnCCGJVr2fZlOv80cI8RFCfkQIOWK+zidb+b4cRT1TqNrtC8AQgKvMn4MAjsEYU/pXAD5ubv84gE+ZP/sB3AjgtwH8g+11wgDOAug3f/8qgFta/f4ceP6uBLDe/HkXgPO219oL4HoYsz1+AuCXWv3+2ujcXWe+XqLV76vdzh8AH4DXmz9LAJ5Y69dezee41QfgpC8A9wN4E4ziuiFz2xCAo0XPe3+RcbgawEP/r727C42jCsM4/n8wRZCKVTBSEAne+IkoCioq3gkKgqAXFmliRcEPkN4VRWgv9ELRUluRtGjFL0oRFaqCIgELKnpl0dYINUUwEBS1trUFb/p6cc7imNl13XTWmc08Pxg2OTN7OPOy5J1zMvtO4fe1wIt1n09T45fbBfwKnJ6P+a6wbw2wve7zGYXYLWpvTXIYRvzyvueBB+o+nyZsrV5WKpI0Qbq6+BI4LyIWAPLreJ+3fw9cLGlC0hhwB/98eNGyt4T43Ql8FRF/kh4TO1/YN5/bWuEUY9d6VcVP0irgdmBmmOMdFY0p2V0nSSuBt4H1EXF00OXuiDgs6SFgN3AS+By4sPKBNtSg8ZN0GfA0cEunqcthrbiNroLYtVpV8csXdbuArRFxaEjDHSmtnzlIWkH6cL0ZEe/k5p8krc77VwM/9+snIt6LiGsj4nrS1PbgsMbcJIPGT9L5wLvAZETM5eZ50qNhO7o+Jna5qSh2rVVx/HYAByNiy/BHPhpanRzyHTEvA7MRsbmwaw8wlX+eIq1n9utrPL+eDTwMvFTtaJtn0PjlafsHwGMR8Vnn4Dz9PybputznJP8h5qOsqti1VZXxk/QkqVjd+mGPe6TU/U+POjfSnUcBfA3sy9ttpLuPZkhX/zPAOYX3/AD8BvxBuuK9NLfvAr7N2911n1sT4wc8ARwvHLsPGM/7rgH2A3PAC+QvaC7XreLYPZM/iyfz66a6z29U4keapQYwW2i/v+7za8Lmb0ibmVlJq5eVzMysOycHMzMrcXIwM7MSJwczMytxcjAzsxInB7MhkPSgpMkBjp+QtH+YYzIbhMtnmFVM0lhETNc9DrNT4eRg1kUu5vYhqZjbVaSS0JPAJcBmYCXwC3BvRCxI+oRUU+sGYI+kM0lVUp+VdCUwTSoPPQfcF6ke19XATuAE8On/d3Zm/XlZyay3i4AdEXEFcBR4BNgG3BURnT/sTxWOXxURN0fEc4v6eQ3YkPv5BtiY218BHo1Uj8usUTxzMOvtx/i7Ds8bwOOkB8V8nKt/ngYsFI7fvbgDSWeRksbe3PQq8FaX9teBW6s/BbOlcXIw621xbZljwIF/udI/PkDf6tK/WWN4WcmstwskdRLBGuAL4NxOm6QV+fkAPUXEEeCwpJty01pgb0T8DhyRdGNuv6f64ZstnWcOZr3NAlOStpOqfG4DPgK25mWhMWALcKBPP1PAtKQzgEPAuty+Dtgp6UTu16wxXJXVrIt8t9L7EXF5zUMxq4WXlczMrMQzBzMzK/HMwczMSpwczMysxMnBzMxKnBzMzKzEycHMzEqcHMzMrOQvjymNMLUTA7wAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le creux de l'épidémie se situe vers le mois de septembre, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année $N$ au\n",
+ "1er septembre de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence : à la place du 1er septembre de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er septembre. Comme l'incidence de la varicelle est beaucoup plus faible à cette période de l'année, cette modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent en décembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1991."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Enfin, un histogramme montre que l'incidence reste stable, restant vers 0,1% de la population annuellement."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEaZJREFUeJzt3XuQZGV5x/Hvwy7owgCiC0MFMEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlcRgaSxIakWUEuOoYEoB46Wio+IF2VXLFQlqBBGIRGJAl6Cw8uSP9wyZXXd2zlx6pp/N91M1Nae7T/d5nj7dv3P67dPdkZlIkmrZa6ULkCTNn+EtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fDatWtzbGxsh/PuvPNO9ttvv0EtclnYw3Cwh+FgD0tvy5Ytt2XmwXPNN7DwHhsbY/PmzTucNzU1xcTExKAWuSzsYTjYw3Cwh6UXET/oM5/DJpJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUN7EM6kn7V2FlX3De9cd12zphxepBuOOekZVmOlo973pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjohXR8Q1EfGtiPhARNx/kIVJkmbXK7wj4jDgVcB4Zj4CWAU8f5CFSZJmN59hk9XAmohYDewL3DKYkiRJc4nM7DdjxJnAm4C7gE9l5qm7mGcDsAFgdHT02MnJyR0u37ZtGyMjI4uteUXZw3Co2sPWm++4b3p0Ddx61/Isd91hBw7kdquuh5mGrYf169dvyczxuebrFd4RcRBwKfA84Hbgw8AlmXnxbNcZHx/PzZs373De1NQUExMTcy5vmNnDcKjaw9hZV9w3vXHdds7dunpZlnvDOScN5HarroeZhq2HiOgV3n2HTZ4MXJ+ZP87Me4CPAE9YTIGSpIXrG943Ao+LiH0jIoATgWsHV5YkaXd6hXdmXgVcAnwN2Npdb9MA65Ik7UbvAbfMPBs4e4C1SJJ68hOWklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiAdExCUR8W8RcW1EPH6QhUmSZrd6HvO+A/hEZj43IvYB9h1QTZKkOfQK74g4ADgeOAMgM+8G7h5cWZKk3YnMnHumiEcDm4BvA48CtgBnZuadO823AdgAMDo6euzk5OQOt7Nt2zZGRkaWpvIVYg/DoWoPW2++477p0TVw610rWMwS6NPDusMOXJ5iFmjYHkvr16/fkpnjc83XN7zHga8AT8zMqyLiHcBPM/N1s11nfHw8N2/evMN5U1NTTExMzLm8YWYPw6FqD2NnXXHf9MZ12zl363xGLodPnx5uOOekZapmYYbtsRQRvcK77xuWNwE3ZeZV3elLgMcstDhJ0uL0Cu/M/BHww4h4WHfWibQhFEnSCpjPa7ZXAu/vjjT5PvCHgylJkjSX3uGdmd8A5hyHkSQNnp+wlKSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSC5hXeEbEqIr4eEZcPqiBJ0tzmu+d9JnDtIAqRJPXXO7wj4nDgJOCCwZUjSeojMrPfjBGXAG8B9gf+LDNP3sU8G4ANAKOjo8dOTk7ucPm2bdsYGRlZbM0ryh6Gw2J62HrzHUtczcKMroFb71rpKhbHHnZt3WEHLvi669ev35KZ43PNt7rPjUXEycB/ZuaWiJiYbb7M3ARsAhgfH8+JiR1nnZqaYufzqrGH4bCYHs4464qlLWaBNq7bzrlbez0Fh5Y97NoNp04s6e3tSt9hkycCz4yIG4BJ4ISIuHhgVUmSdqtXeGfmn2fm4Zk5Bjwf+ExmvmiglUmSZuVx3pJU0LwHejJzCpha8kokSb255y1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBfUK74g4IiI+GxHXRsQ1EXHmoAuTJM1udc/5tgMbM/NrEbE/sCUiPp2Z3x5gbZKkWfTa887M/8jMr3XTPwOuBQ4bZGGSpNlFZs7vChFjwOeBR2TmT3e6bAOwAWB0dPTYycnJHa67bds2RkZGFlHuyrOH4bCYHrbefMcSV7Mwo2vg1rtWuorFsYddW3fYgQu+7vr167dk5vhc880rvCNiBPgc8KbM/Mju5h0fH8/NmzfvcN7U1BQTExO9lzeM7GE4LKaHsbOuWNpiFmjjuu2cu7XvyOVwsoddu+GckxZ83YjoFd69jzaJiL2BS4H3zxXckqTB6nu0SQDvBq7NzLcNtiRJ0lz67nk/ETgNOCEivtH9PX2AdUmSdqPXQE9mXgnEgGuRJPXkJywlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqaCh/Nnnlfx178X86vNiLGfPG9dt54wZy6vY8849SP/fuOctSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQX1Du+IeGpEXBcR34uIswZZlCRp93qFd0SsAs4DngYcDbwgIo4eZGGSpNn13fP+HeB7mfn9zLwbmASeNbiyJEm7E5k590wRzwWempkv6U6fBhyXma/Yab4NwIbu5MOA63a6qbXAbYsteoXZw3Cwh+FgD0vv1zPz4LlmWt3zxmIX5/1K6mfmJmDTrDcSsTkzx3sucyjZw3Cwh+FgDyun77DJTcARM04fDtyy9OVIkvroG95XAw+NiCMjYh/g+cDHBleWJGl3eg2bZOb2iHgF8ElgFXBhZl6zgOXNOqRSiD0MB3sYDvawQnq9YSlJGi5+wlKSCjK8Jakgw1uSChr68I6IEyLiyJWuYzGq91C9/ml7Qh/2MByGoYehfcOy++6USeB24F7g7Mz83MpWNT/Ve6he/7Q9oQ97GA7D1MPQ7HlHxOERccCMs54HXJqZx9PurBdExONXprp+qvcwn/ojYlefuh0K1dcD2MOwGOYeVjy8I+LhEfFx4ErgLyNi+guvfg7s201/iPbdA48bxtCo3sNC6s8hfMlWfT2APQyLCj2sSHhHxH4zTj4auCkzx4DPAH/Xnf8T4BcRsX9m/gT4DjAKjC1jqbOq3sNu6v8sv1r/SFf/dxmS+qdVXw9gD9jDgixbeEfEQRHx3oi4GjgnIg7utlaPBL7Y7c19DLg9Ik6i3Sn7A+u6m/gu7du/7l6umndWvYfd1L9uRv0f3UX9j+xu4jsrWf+06usB7KG7CXtYhOXc8z4e2A48nfYthX8BHNDVcOiMl+EXAS8Evgr8jPYDEGTml4ETgJ8uY807q97DbPWvokb906qvB7AHe1iszFzSP1oQvBT4HO27vdd2538IeFU3fSRwTnf5Y2njSqu6y0aAH3e3cxhwLfAK4D3A+cC+S13zntZD9fr3pD7swR4G9TeIPe+TgWcCbwQeD/xtd/6ngSd00z8EvgA8LTOvpm3x1gNk5jbgKuCxmXkzcBptTOlHwGsz838GUPOe1kP1+vekPuzBHgai748x7GD6aIOIeCztpcQXgCsy8xfAbwLfz8zPRMT1wFsj4inAFuDZEbE2M2+LiO8Cd0bEg4F3Ai+KiENo3xX+X7SXJ2TmZmDzIvvc43qoXv+e1kfXiz34nF42897znnEHHQ9cSDt05snAW7pZ7gW+ExFrMvN62suLR9LGiW6hHScJ8EvaS5C9gEtpX8t4KnAssCkz711wV3P3sKrr4Um0lz2leujqyoiYoOg66Po4oHofEfGg7v8TgPcW7eGQiHhQRIzTxnYr9rBP5ef0gvQZW6Ed1/jHwD8BfwTsDfwJ8PLu8oOAbwLH0O6Ec4Cx7rKTaXfA2m56K3AgbZD/48A+M5az16DGh4D9gJfQVshG2psS1XrYH7iC9n3qAK+uVP+Mx9LpwL/SPuxQqg/+71PJv0cbE52i/V5rtcfSfsAZtGGDO4CTCvawN/Ay4DLgH4CHAGdW6mExf3PueUfEocDlwATwPtpg/im0caPtAJn538BHgVd1D4ZDgId3N/F54EnA3Zl5OfBu4BLgPNpW/p7pZeXg9lT3o4XFCcC7gKcAz6G9KXFvhR46a4D7AUdFxFrgKNpeQon6I2Jv4BrgucBbM/M53UXHzFj+UPeRmRkRBwK/D7w9Mycy8zranlmJHiLiIbQhhROB1wI3AzfS3rAr83gCXk57Tr+d9pu6p3Snf1moh4XrsXVbQ/ul+OnTZ9AG+08Hvjrj/F8DbummX0776OhB3fUvAx48Y961y72VAh4wY/o1tBV6arEeTgfeCrwOeDHwDODqKvV3y/0IcOpO5z0PuKpKH7S9vb/qpqf3xE+p0gMtoO834/SFtA3qs6r00C3zMuAPuukXA6/sHktlntOL+esz5v1z4KvdgevQXoYcl5kX0fYADwXIzFuAayLiuMw8D/ge8EHajxdfmZk3Tt9gZt7WY7lLKjNvj4gDIuK9tGGTtbSVd1REjA5zDzPu+72Af6ftvZ6QmZcBRw57/Tu5EDg7Is6NiKmIeD3wFdpvpB7S1TbsfdwG/G5EnApsiYiLaHt7v9W9IhrqHjLzl9nexJsesw/aFy1dRlsPJZ7TwL8Ap0fEh4E3AI8CvkXr4eCurmHvYeHmsZWb3sO4CDizm34f8Dfd9AOBC+i2ZLTxqEcA91/pLdROfbyM9vJwE20M/EvA62kP4KHuAfgwba/pQNrxqq+lPVhfV2wdfJL2YYgjaE+kM4EvF1oPD+3q/XvaXtwLgbfRjgN+DW0jO9Q97NTP14FTuumLKz2nu+fwhbSdsTcAZwPXdY+vUuthvn+9jzbJzIyIw4FDaVs8ujuLiLicNqa8KrstWWbek5nfysyf913GcsjM87O923w+bZzyH2kvoT7GEPcQESO0Pb53AZ+gvVN+HPAC4KCIuIwhrn8nz87MN2fmD4E30w7jeicF1kPnRtrHoVdnG1e9vDvvctobshV6ICKmn/9X0t7sA3hTu6jM4+loYCrbXvN7aDs3H6DOY2nh5rmVewbtC1r2pm3xnkq7s14IPGalt0Tz7OUI4FPAg7rTLwKOWem6dlPv/Wmvei6gvdE0AXxqxuVDXf9u+vp12ptJD6zUB+3j0Vu66QfQXkEcU6mHrtZ9aRvOU3Y6/9Rh76HLnj8FLuhOr6XtWB5ZbT0s5G9eP8YQEV8EfgO4gXZs5Bsz85u9b2CFdUcJnEjb2BxNGzo5LzPv2e0Vh1D3IYJTgMnM/NFK1zMfEXE/2ob/NOC3aYd5nZ+Z21e0sHmKiDfRng/H0HYEzs62J15KRFwHvD4zPzj9OY6VrqmviDiK9jy+m7Yu/hn462yfiNyj9Q7v7jCvs4HrgYuze8OjkohYTft+g1/Qeij30ikiVgH3VnqC7UpEvJR2mOb7Kq6HaRHxMOAHFXuY8YG7R9PeBN9e8XHV7cg8FPhSZt610vUsl6H9GTRJ0uxW/Jd0JEnzZ3hLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV9L8Giii4LM1vYwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
}
],
"metadata": {