#+TITLE: Exercise 2 - Simple calculation
#+AUTHOR: Miguel Felipe Silva Vasconcelos
#+DATE: 26-02-2021
#+LANGUAGE: en
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
* Reading input
Creating the data structure to store the following numbers:
#+begin_src
14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9,
18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1,
13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9,
12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0,
13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1,
13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1,
14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8,
8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4,
16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0
#+end_src
#+begin_src python :results value :session *python* :exports both
import numpy as np
array = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9,
18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1,
13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9,
12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0,
13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1,
13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1,
14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8,
8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4,
16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])
#+end_src
#+RESULTS:
* Calculating the average/mean
We can use numpy's [[https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average][average method]]
#+begin_src python :results value :session *python* :exports both
np.average(array)
#+end_src
#+RESULTS:
: 14.113000000000001
* Calculating the standard deviation
We can use numpy's [[https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std][std method]]
#+begin_src python :results value :session *python* :exports both
np.std(array, ddof=1)
#+end_src
#+RESULTS:
: 4.334094455301447
* Calculating the median
We can use numpy's [[https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median][median method]]
#+begin_src python :results value :session *python* :exports both
np.median(array)
#+end_src
#+RESULTS:
: 14.5
* Finding the minimum value
We can use numpy's min method
#+begin_src python :results value :session *python* :exports both
np.min(array)
#+end_src
#+RESULTS:
: 2.8
* Finding the max value
We can use numpy's max method
#+begin_src python :results value :session *python* :exports both
np.max(array)
#+end_src
#+RESULTS:
: 23.4