diff --git a/module3/exo1/influenza-like-illness-analysis.ipynb b/module3/exo1/influenza-like-illness-analysis.ipynb index c8ccc621278fe4a3eefc05012a2dae576e2ee916..8020146aba2398dd849dece5e4f516ac6b81c2fe 100644 --- a/module3/exo1/influenza-like-illness-analysis.ipynb +++ b/module3/exo1/influenza-like-illness-analysis.ipynb @@ -2475,23 +2475,82 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
# @source=\"réseau SentinellesINSERMSorbonne Universitéhttp://www.sentiweb.fr\"@meta={\"period\":[198444202309]geo:[\"PAY\"1]geo_ref:\"insee\"indicator:\"3\"type:\"all\"conf_int:truecompact:false}@date=2023-03-12T17:29:51+01:00
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [# @source=\"réseau Sentinelles, INSERM, Sorbonne Université, http://www.sentiweb.fr\", @meta={\"period\":[198444, 202309], geo:[\"PAY\", 1], geo_ref:\"insee\", indicator:\"3\", type:\"all\", conf_int:true, compact:false}, @date=2023-03-12T17:29:51+01:00]\n", + "Index: []" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek\n", + "import os\n", "\n", "\n", - "local_file = \"incidence-PAY-3.csv\"\n", + "data_file = \"incidence-PAY-3.csv\"\n", "\n", - "if not os.path.exists(local_file):\n", + "if not os.path.isfile(data_file):\n", " data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", - " raw_data = pd.read_csv(data_url, skiprows=1)\n", - " raw_data.to_csv(local_file, index=False)\n", + " raw_data = pd.read_csv(data_url, encoding='iso-8859-1', skiprows=1)\n", + " raw_data.to_csv(data_file, index=False)\n", "else:\n", - " raw_data = pd.read_csv(local_file, encoding='ISO-8859-1')\n", + " raw_data = pd.read_csv(data_file, encoding='iso-8859-1')\n", "\n", "data = raw_data.dropna().copy()\n", - "\n" + "\n", + "data" ] }, {