diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index e0f7d5d4a5154329b90fd26918357e74003a5420..b51d23ded3622d800fabcd84a670f5b0fc3d1456 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -50,7 +50,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Mais calculé avec la méthode des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :" + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :" ] }, { @@ -89,9 +89,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", - "sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\geq 1] = \\pi/4$ (voir\n", - "[méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\geq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { @@ -115,10 +113,12 @@ "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", + "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "\n",