{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2,\n", " 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7,\n", " 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6,\n", " 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3,\n", " 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9,\n", " 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4,\n", " 15.7, 10.2, 8.9, 21.0]\n", "data_mean = np.round(np.mean(data),2)\n", "data_std = np.round(np.std(data, ddof=1),2)\n", "data_min = np.min(data)\n", "data_max = np.max(data)\n", "data_med = np.median(data)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean :14.11\n", "std :4.33\n", "min :2.8\n", "max :23.4\n", "median :14.5\n" ] } ], "source": [ "print('mean :{}'.format(data_mean))\n", "print('std :{}'.format(data_std))\n", "print('min :{}'.format(data_min))\n", "print('max :{}'.format(data_max))\n", "print('median :{}'.format(data_med))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }