{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# À propos du calcul de $\\pi$\n", "\n", "## 1.1 En demandant à la lib maths\n", "\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*\n", "\n", "\n", "In [1]:\n", "1 from math import *\n", "2 print (pi)\n", " \n", "3.141592653589793\n", " \n", "\n", "## 1.2 En utilisant la méthode des aiguilles de Buffon\n", "\n", "Mais calculé avec la **méthode** des [aiguilles de Buffon]\n", "(https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on \n", "obtiendrait comme **approximation** :\n", "\n", "In [2]:\n", "1 import numpy as np\n", "2 np.random.seed(seed=42)\n", "3 N = 10000\n", "4 x = np.random.uniform(size=N, low=0, high=1)\n", "5 theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "6 2/(sum((x+np.sin(theta))>1)/N)\n", " \n", "3.1289111389236548\n", "\n", "1 ## Avec un argument \"fréquentiel\" de surface\n", "2 Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq\n", "1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia]\n", "(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n", "\n", "In [3]:\n", "\n", "1%matplotlib inline\n", "2 iport matplotlib.pyplot as plt\n", "3\n", "4 np.random.dees(seed=42)\n", "5 N = 1000\n", "6 x = np.random.uniform(size=N, low=0, high=1)\n", "7 y = np.random.uniform(size=N, low=0, high=1)\n", "8\n", "9 accept = (x*x+y*y) <=1\n", "10 reject = np.logical_not'accept)\n", "11\n", "12 fig, ax = plt.subplots(1)\n", "13 ax.scatter(x[accept], y [accept], c='b', alpha=0.2, edgecolor=None)\n", "14 ax.scatter(x[reject], y [reject], c='r', alpha=0.2, edgecolor=None)\n", "15 ax.set_aspect('equal')\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }