{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercice de calcul simple" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ ")>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ddof=1\n", "np.std" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(14.0,\n", " 7.6,\n", " 11.2,\n", " 12.8,\n", " 12.5,\n", " 9.9,\n", " 14.9,\n", " 9.4,\n", " 16.9,\n", " 10.2,\n", " 14.9,\n", " 18.1,\n", " 7.3,\n", " 9.8,\n", " 10.9,\n", " 12.2,\n", " 9.9,\n", " 2.9,\n", " 2.8,\n", " 15.4,\n", " 15.7,\n", " 9.7,\n", " 13.1,\n", " 13.2,\n", " 12.3,\n", " 11.7,\n", " 16.0,\n", " 12.4,\n", " 17.9,\n", " 12.2,\n", " 16.2,\n", " 18.7,\n", " 8.9,\n", " 11.9,\n", " 12.1,\n", " 14.6,\n", " 12.1,\n", " 4.7,\n", " 3.9,\n", " 16.9,\n", " 16.8,\n", " 11.3,\n", " 14.4,\n", " 15.7,\n", " 14.0,\n", " 13.6,\n", " 18.0,\n", " 13.6,\n", " 19.9,\n", " 13.7,\n", " 17.0,\n", " 20.5,\n", " 9.9,\n", " 12.5,\n", " 13.2,\n", " 16.1,\n", " 13.5,\n", " 6.3,\n", " 6.4,\n", " 17.6,\n", " 19.1,\n", " 12.8,\n", " 15.5,\n", " 16.3,\n", " 15.2,\n", " 14.6,\n", " 19.1,\n", " 14.4,\n", " 21.4,\n", " 15.1,\n", " 19.6,\n", " 21.7,\n", " 11.3,\n", " 15.0,\n", " 14.3,\n", " 16.8,\n", " 14.0,\n", " 6.8,\n", " 8.2,\n", " 19.9,\n", " 20.4,\n", " 14.6,\n", " 16.4,\n", " 18.7,\n", " 16.8,\n", " 15.8,\n", " 20.4,\n", " 15.8,\n", " 22.4,\n", " 16.2,\n", " 20.3,\n", " 23.4,\n", " 12.1,\n", " 15.5,\n", " 15.4,\n", " 18.4,\n", " 15.7,\n", " 10.2,\n", " 8.9,\n", " 21.0)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "list=[]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def moyenne(liste=[]) :\n", " somme = sum(liste)\n", " nb_elements = len(liste)\n", " moyenne = somme / nb_elements\n", " return moyenne" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "la moyenne des nombres est : 14.113000000000007\n" ] } ], "source": [ "print(\"la moyenne des nombres est : \", moyenne([14.0,\n", " 7.6,\n", " 11.2,\n", " 12.8,\n", " 12.5,\n", " 9.9,\n", " 14.9,\n", " 9.4,\n", " 16.9,\n", " 10.2,\n", " 14.9,\n", " 18.1,\n", " 7.3,\n", " 9.8,\n", " 10.9,\n", " 12.2,\n", " 9.9,\n", " 2.9,\n", " 2.8,\n", " 15.4,\n", " 15.7,\n", " 9.7,\n", " 13.1,\n", " 13.2,\n", " 12.3,\n", " 11.7,\n", " 16.0,\n", " 12.4,\n", " 17.9,\n", " 12.2,\n", " 16.2,\n", " 18.7,\n", " 8.9,\n", " 11.9,\n", " 12.1,\n", " 14.6,\n", " 12.1,\n", " 4.7,\n", " 3.9,\n", " 16.9,\n", " 16.8,\n", " 11.3,\n", " 14.4,\n", " 15.7,\n", " 14.0,\n", " 13.6,\n", " 18.0,\n", " 13.6,\n", " 19.9,\n", " 13.7,\n", " 17.0,\n", " 20.5,\n", " 9.9,\n", " 12.5,\n", " 13.2,\n", " 16.1,\n", " 13.5,\n", " 6.3,\n", " 6.4,\n", " 17.6,\n", " 19.1,\n", " 12.8,\n", " 15.5,\n", " 16.3,\n", " 15.2,\n", " 14.6,\n", " 19.1,\n", " 14.4,\n", " 21.4,\n", " 15.1,\n", " 19.6,\n", " 21.7,\n", " 11.3,\n", " 15.0,\n", " 14.3,\n", " 16.8,\n", " 14.0,\n", " 6.8,\n", " 8.2,\n", " 19.9,\n", " 20.4,\n", " 14.6,\n", " 16.4,\n", " 18.7,\n", " 16.8,\n", " 15.8,\n", " 20.4,\n", " 15.8,\n", " 22.4,\n", " 16.2,\n", " 20.3,\n", " 23.4,\n", " 12.1,\n", " 15.5,\n", " 15.4,\n", " 18.4,\n", " 15.7,\n", " 10.2,\n", " 8.9,\n", " 21.0]))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "ename": "ValueError", "evalue": "min() arg is an empty sequence", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: min() arg is an empty sequence" ] } ], "source": [ "min(list), max(list)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nouvelle tentative pour verifier la moyenne" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "calcul de la moyenne\n" ] } ], "source": [ "print (\"calcul de la moyenne\")\n", "list=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "n=0\n", "while n!=\"fin\":\n", " n=input((\"Entrer une note ou écrire fin s'il n'y a plus de notes à entrer : \\n\"))\n", " if n!=\"fin\":\n", " n=float(n)\n", " liste.append(n)\n", "print (\"Vous avez entré\", len(liste), \" notes\")\n", "m=sum(list)/len(liste)\n", "print(\"La moyenne de cette série est \", m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print (\"Vous avez entré \", len(liste), \" notes\")\n", "m=sum(list)/len(liste)\n", "print(\"La moyenne de cette série est \", m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "min(list), max(list)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m=" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la médiane" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Print (\"Calcul de la médiane.\")\n", "liste=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "n=0\n", "while n!=\"fin\":\n", " n=input((Entrer une valeur de la série ou écrire fin s'il n'y a plus de valeur à entrer : \\n))\n", " if n!= \"fin\":\n", " n=float(n)\n", " liste.append(n)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "liste.sort()\n", "if len(liste)%2==0 :\n", " m=((liste[(len(liste)-1)//2]+liste[len(liste)//2])/2)\n", "else :\n", " m=liste[len(liste)//2]\n", "print (\"Vous avez entré \", len(liste), \"valeurs\")\n", "print(\"La médiane de votre série est \", m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }