{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# toy-notbook-fr\n", "\n", "## March 28, 2019\n", "\n", "### **1 À propos du calcul de** $\\pi$\n", "\n", "#### **1.1 En demandant à la lib maths**\n", "\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement\n", "\n", "In [1]: >from math import *\n", " >print (pi)\n", " \n", " 3.141592653589793\n", " \n", "\n", "#### **1.2 En utilisant la méthode des aiguilles de Buffon**\n", "\n", "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation**\n", "\n", "In [2]: >import numpy as np\n", " >np.random.seed(seed=42)\n", " >N = 10000\n", " >x = np.random.uniform(size=N, low=0, high=pi/2)\n", " >2/(sum((x+np.sin(theta))>1)/N)\n", " \n", "Out[2]: 3.1289111389236548\n", "\n", "#### **1.3 Avec un argument \"fréquentiel\" de surface\n", "\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction\n", "sinus se base sur le fait que si *X* $\\sim$ *U*(0,1) alors *P*[$X^2$ + $Y^2$ ≤ 1] = $^\\pi/_4$ (voir)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }