{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1 À propos du calcul de $\\pi$\n", "\n", "## 1.1 En demandant à la lib maths\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*\n", "\n", "\n", "In \\[1]:\n", ">from math import *\n", ">print (pi)\n", " \n", "3.141592653589793\n", " \n", "\n", "## 1.2 En utilisant la méthode des aiguilles de Buffon\n", "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on \n", "obtiendrait comme **approximation** :\n", "\n", "\n", "In \\[2]:\n", ">import numpy as np\n", ">np.random.seed(seed=42)\n", ">N = 10000\n", ">x = np.random.uniform(size=N, low=0, high=1)\n", ">theta = np.random.uniform(size=N, low=0, high=pi/2)\n", ">2/(sum((x+np.sin(theta))>1)/N)\n", " \n", "Out\\[2]: 3.1289111389236548\n", "\n", "\n", "## 1.3 Avec un argument \"fréquentiel\" de surface\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n", "\n", "\n", "In \\[3]:\n", "\n", ">%matplotlib inline\n", ">import matplotlib.pyplot as plt\n", "\n", ">np.random.seed(seed=42)\n", ">N = 1000\n", ">x = np.random.uniform(size=N, low=0, high=1)\n", ">y = np.random.uniform(size=N, low=0, high=1)\n", "\n", ">accept = (x*x+y*y) <=1\n", ">reject = np.logical_not(accept)\n", "\n", ">fig, ax = plt.subplots(1)\n", ">ax.scatter(x[accept], y [accept], c='b', alpha=0.2, edgecolor=None)\n", ">ax.scatter(x[reject], y [reject], c='r', alpha=0.2, edgecolor=None)\n", ">ax.set_aspect('equal')\n", "\n", "\n", "\n", ">Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :\n", "\n", "\n", "In \\[4]: 4*np.mean(accept)\n", "\n", "Out\\[4]: 3.1120000000000001\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }