{ "cells": [], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 } # À propos du calcul de π ## En demandant à la lib maths Mon ordinateur m’indique que $\pi$ vaut *approximativement* from math import * print(pi) ## En utilisant la méthode des aiguilles de Buffon Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : import numpy as np np.random.seed(seed=42) N = 10000 x = np.random.uniform(size=N, low=0, high=1) theta = np.random.uniform(size=N, low=0, high=pi/2) 2/(sum((x+np.sin(theta))>1)/N) ## Avec un argument "fréquentiel" de surface Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X ∼ U(0, 1)$ et $Y ∼ U(0, 1)$ alors $P[X2 + Y2 ≤ 1] = \pi/4$ (voir [méthode de Monte Carlo](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80) sur Wikipedia). Le code suivant illustre ce fait : %matplotlib inline import matplotlib.pyplot as plt np.random.seed(seed=42) N = 1000 x = np.random.uniform(size=N, low=0, high=1) y = np.random.uniform(size=N, low=0, high=1) 1 accept = (x*x+y*y) <= 1 reject = np.logical_not(accept) fig, ax = plt.subplots(1) ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None) ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None) ax.set_aspect('equal') Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X2 + Y2$ est inférieur à 1 : 4*np.mean(accept)