{
"cells": [
{
<<<<<<< HEAD
"cell_type": "code",
"execution_count": 41,
=======
"cell_type": "markdown",
>>>>>>> 5b4a347ece88315f3afbf737327897f8bae59c83
"metadata": {},
"source": [
"# Incidence du syndrome grippal"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import isoweek"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
"\n",
"| Nom de colonne | Libellé de colonne |\n",
"|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
"| week | Semaine calendaire (ISO 8601) |\n",
"| indicator | Code de l'indicateur de surveillance |\n",
"| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
"| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
"| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
"| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
"| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
"\n",
"La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 201842 \n",
" 3 \n",
" 7832 \n",
" 5145.0 \n",
" 10519.0 \n",
" 12 \n",
" 8.0 \n",
" 16.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 201841 \n",
" 3 \n",
" 8048 \n",
" 5098.0 \n",
" 10998.0 \n",
" 12 \n",
" 8.0 \n",
" 16.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 201840 \n",
" 3 \n",
" 7409 \n",
" 4717.0 \n",
" 10101.0 \n",
" 11 \n",
" 7.0 \n",
" 15.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 201839 \n",
" 3 \n",
" 7174 \n",
" 4235.0 \n",
" 10113.0 \n",
" 11 \n",
" 7.0 \n",
" 15.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 201838 \n",
" 3 \n",
" 6127 \n",
" 3482.0 \n",
" 8772.0 \n",
" 9 \n",
" 5.0 \n",
" 13.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 201837 \n",
" 3 \n",
" 4644 \n",
" 2200.0 \n",
" 7088.0 \n",
" 7 \n",
" 3.0 \n",
" 11.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 201836 \n",
" 3 \n",
" 3215 \n",
" 1349.0 \n",
" 5081.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 201835 \n",
" 3 \n",
" 1506 \n",
" 239.0 \n",
" 2773.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 201834 \n",
" 3 \n",
" 1368 \n",
" 116.0 \n",
" 2620.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 201833 \n",
" 3 \n",
" 1962 \n",
" 5.0 \n",
" 3919.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 201832 \n",
" 3 \n",
" 1839 \n",
" 183.0 \n",
" 3495.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 201831 \n",
" 3 \n",
" 2048 \n",
" 242.0 \n",
" 3854.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 201830 \n",
" 3 \n",
" 1951 \n",
" 202.0 \n",
" 3700.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 201829 \n",
" 3 \n",
" 1951 \n",
" 252.0 \n",
" 3650.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 201828 \n",
" 3 \n",
" 1654 \n",
" 52.0 \n",
" 3256.0 \n",
" 3 \n",
" 1.0 \n",
" 5.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 201827 \n",
" 3 \n",
" 3269 \n",
" 1145.0 \n",
" 5393.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 201826 \n",
" 3 \n",
" 3758 \n",
" 1493.0 \n",
" 6023.0 \n",
" 6 \n",
" 3.0 \n",
" 9.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 201825 \n",
" 3 \n",
" 4580 \n",
" 2220.0 \n",
" 6940.0 \n",
" 7 \n",
" 3.0 \n",
" 11.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 201824 \n",
" 3 \n",
" 3223 \n",
" 1351.0 \n",
" 5095.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 201823 \n",
" 3 \n",
" 1207 \n",
" 136.0 \n",
" 2278.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 201822 \n",
" 3 \n",
" 3202 \n",
" 1330.0 \n",
" 5074.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 201821 \n",
" 3 \n",
" 2537 \n",
" 763.0 \n",
" 4311.0 \n",
" 4 \n",
" 1.0 \n",
" 7.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 201820 \n",
" 3 \n",
" 2694 \n",
" 967.0 \n",
" 4421.0 \n",
" 4 \n",
" 1.0 \n",
" 7.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 201819 \n",
" 3 \n",
" 1025 \n",
" 0.0 \n",
" 2098.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 201818 \n",
" 3 \n",
" 3541 \n",
" 1416.0 \n",
" 5666.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 201817 \n",
" 3 \n",
" 2573 \n",
" 1003.0 \n",
" 4143.0 \n",
" 4 \n",
" 2.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 201816 \n",
" 3 \n",
" 4818 \n",
" 2724.0 \n",
" 6912.0 \n",
" 7 \n",
" 4.0 \n",
" 10.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 201815 \n",
" 3 \n",
" 16311 \n",
" 12168.0 \n",
" 20454.0 \n",
" 25 \n",
" 19.0 \n",
" 31.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 201814 \n",
" 3 \n",
" 22666 \n",
" 18092.0 \n",
" 27240.0 \n",
" 35 \n",
" 28.0 \n",
" 42.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 201813 \n",
" 3 \n",
" 32680 \n",
" 25536.0 \n",
" 39824.0 \n",
" 50 \n",
" 39.0 \n",
" 61.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1743 \n",
" 198521 \n",
" 3 \n",
" 26096 \n",
" 19621.0 \n",
" 32571.0 \n",
" 47 \n",
" 35.0 \n",
" 59.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1744 \n",
" 198520 \n",
" 3 \n",
" 27896 \n",
" 20885.0 \n",
" 34907.0 \n",
" 51 \n",
" 38.0 \n",
" 64.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1745 \n",
" 198519 \n",
" 3 \n",
" 43154 \n",
" 32821.0 \n",
" 53487.0 \n",
" 78 \n",
" 59.0 \n",
" 97.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1746 \n",
" 198518 \n",
" 3 \n",
" 40555 \n",
" 29935.0 \n",
" 51175.0 \n",
" 74 \n",
" 55.0 \n",
" 93.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1747 \n",
" 198517 \n",
" 3 \n",
" 34053 \n",
" 24366.0 \n",
" 43740.0 \n",
" 62 \n",
" 44.0 \n",
" 80.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1748 \n",
" 198516 \n",
" 3 \n",
" 50362 \n",
" 36451.0 \n",
" 64273.0 \n",
" 91 \n",
" 66.0 \n",
" 116.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1749 \n",
" 198515 \n",
" 3 \n",
" 63881 \n",
" 45538.0 \n",
" 82224.0 \n",
" 116 \n",
" 83.0 \n",
" 149.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1750 \n",
" 198514 \n",
" 3 \n",
" 134545 \n",
" 114400.0 \n",
" 154690.0 \n",
" 244 \n",
" 207.0 \n",
" 281.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1751 \n",
" 198513 \n",
" 3 \n",
" 197206 \n",
" 176080.0 \n",
" 218332.0 \n",
" 357 \n",
" 319.0 \n",
" 395.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1752 \n",
" 198512 \n",
" 3 \n",
" 245240 \n",
" 223304.0 \n",
" 267176.0 \n",
" 445 \n",
" 405.0 \n",
" 485.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1753 \n",
" 198511 \n",
" 3 \n",
" 276205 \n",
" 252399.0 \n",
" 300011.0 \n",
" 501 \n",
" 458.0 \n",
" 544.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1754 \n",
" 198510 \n",
" 3 \n",
" 353231 \n",
" 326279.0 \n",
" 380183.0 \n",
" 640 \n",
" 591.0 \n",
" 689.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1755 \n",
" 198509 \n",
" 3 \n",
" 369895 \n",
" 341109.0 \n",
" 398681.0 \n",
" 670 \n",
" 618.0 \n",
" 722.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1756 \n",
" 198508 \n",
" 3 \n",
" 389886 \n",
" 359529.0 \n",
" 420243.0 \n",
" 707 \n",
" 652.0 \n",
" 762.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1757 \n",
" 198507 \n",
" 3 \n",
" 471852 \n",
" 432599.0 \n",
" 511105.0 \n",
" 855 \n",
" 784.0 \n",
" 926.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1758 \n",
" 198506 \n",
" 3 \n",
" 565825 \n",
" 518011.0 \n",
" 613639.0 \n",
" 1026 \n",
" 939.0 \n",
" 1113.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1759 \n",
" 198505 \n",
" 3 \n",
" 637302 \n",
" 592795.0 \n",
" 681809.0 \n",
" 1155 \n",
" 1074.0 \n",
" 1236.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1760 \n",
" 198504 \n",
" 3 \n",
" 424937 \n",
" 390794.0 \n",
" 459080.0 \n",
" 770 \n",
" 708.0 \n",
" 832.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1761 \n",
" 198503 \n",
" 3 \n",
" 213901 \n",
" 174689.0 \n",
" 253113.0 \n",
" 388 \n",
" 317.0 \n",
" 459.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1762 \n",
" 198502 \n",
" 3 \n",
" 97586 \n",
" 80949.0 \n",
" 114223.0 \n",
" 177 \n",
" 147.0 \n",
" 207.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1763 \n",
" 198501 \n",
" 3 \n",
" 85489 \n",
" 65918.0 \n",
" 105060.0 \n",
" 155 \n",
" 120.0 \n",
" 190.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1764 \n",
" 198452 \n",
" 3 \n",
" 84830 \n",
" 60602.0 \n",
" 109058.0 \n",
" 154 \n",
" 110.0 \n",
" 198.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1765 \n",
" 198451 \n",
" 3 \n",
" 101726 \n",
" 80242.0 \n",
" 123210.0 \n",
" 185 \n",
" 146.0 \n",
" 224.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1766 \n",
" 198450 \n",
" 3 \n",
" 123680 \n",
" 101401.0 \n",
" 145959.0 \n",
" 225 \n",
" 184.0 \n",
" 266.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1767 \n",
" 198449 \n",
" 3 \n",
" 101073 \n",
" 81684.0 \n",
" 120462.0 \n",
" 184 \n",
" 149.0 \n",
" 219.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1768 \n",
" 198448 \n",
" 3 \n",
" 78620 \n",
" 60634.0 \n",
" 96606.0 \n",
" 143 \n",
" 110.0 \n",
" 176.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1769 \n",
" 198447 \n",
" 3 \n",
" 72029 \n",
" 54274.0 \n",
" 89784.0 \n",
" 131 \n",
" 99.0 \n",
" 163.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1770 \n",
" 198446 \n",
" 3 \n",
" 87330 \n",
" 67686.0 \n",
" 106974.0 \n",
" 159 \n",
" 123.0 \n",
" 195.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1771 \n",
" 198445 \n",
" 3 \n",
" 135223 \n",
" 101414.0 \n",
" 169032.0 \n",
" 246 \n",
" 184.0 \n",
" 308.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1772 \n",
" 198444 \n",
" 3 \n",
" 68422 \n",
" 20056.0 \n",
" 116788.0 \n",
" 125 \n",
" 37.0 \n",
" 213.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1773 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 201842 3 7832 5145.0 10519.0 12 8.0 \n",
"1 201841 3 8048 5098.0 10998.0 12 8.0 \n",
"2 201840 3 7409 4717.0 10101.0 11 7.0 \n",
"3 201839 3 7174 4235.0 10113.0 11 7.0 \n",
"4 201838 3 6127 3482.0 8772.0 9 5.0 \n",
"5 201837 3 4644 2200.0 7088.0 7 3.0 \n",
"6 201836 3 3215 1349.0 5081.0 5 2.0 \n",
"7 201835 3 1506 239.0 2773.0 2 0.0 \n",
"8 201834 3 1368 116.0 2620.0 2 0.0 \n",
"9 201833 3 1962 5.0 3919.0 3 0.0 \n",
"10 201832 3 1839 183.0 3495.0 3 0.0 \n",
"11 201831 3 2048 242.0 3854.0 3 0.0 \n",
"12 201830 3 1951 202.0 3700.0 3 0.0 \n",
"13 201829 3 1951 252.0 3650.0 3 0.0 \n",
"14 201828 3 1654 52.0 3256.0 3 1.0 \n",
"15 201827 3 3269 1145.0 5393.0 5 2.0 \n",
"16 201826 3 3758 1493.0 6023.0 6 3.0 \n",
"17 201825 3 4580 2220.0 6940.0 7 3.0 \n",
"18 201824 3 3223 1351.0 5095.0 5 2.0 \n",
"19 201823 3 1207 136.0 2278.0 2 0.0 \n",
"20 201822 3 3202 1330.0 5074.0 5 2.0 \n",
"21 201821 3 2537 763.0 4311.0 4 1.0 \n",
"22 201820 3 2694 967.0 4421.0 4 1.0 \n",
"23 201819 3 1025 0.0 2098.0 2 0.0 \n",
"24 201818 3 3541 1416.0 5666.0 5 2.0 \n",
"25 201817 3 2573 1003.0 4143.0 4 2.0 \n",
"26 201816 3 4818 2724.0 6912.0 7 4.0 \n",
"27 201815 3 16311 12168.0 20454.0 25 19.0 \n",
"28 201814 3 22666 18092.0 27240.0 35 28.0 \n",
"29 201813 3 32680 25536.0 39824.0 50 39.0 \n",
"... ... ... ... ... ... ... ... \n",
"1743 198521 3 26096 19621.0 32571.0 47 35.0 \n",
"1744 198520 3 27896 20885.0 34907.0 51 38.0 \n",
"1745 198519 3 43154 32821.0 53487.0 78 59.0 \n",
"1746 198518 3 40555 29935.0 51175.0 74 55.0 \n",
"1747 198517 3 34053 24366.0 43740.0 62 44.0 \n",
"1748 198516 3 50362 36451.0 64273.0 91 66.0 \n",
"1749 198515 3 63881 45538.0 82224.0 116 83.0 \n",
"1750 198514 3 134545 114400.0 154690.0 244 207.0 \n",
"1751 198513 3 197206 176080.0 218332.0 357 319.0 \n",
"1752 198512 3 245240 223304.0 267176.0 445 405.0 \n",
"1753 198511 3 276205 252399.0 300011.0 501 458.0 \n",
"1754 198510 3 353231 326279.0 380183.0 640 591.0 \n",
"1755 198509 3 369895 341109.0 398681.0 670 618.0 \n",
"1756 198508 3 389886 359529.0 420243.0 707 652.0 \n",
"1757 198507 3 471852 432599.0 511105.0 855 784.0 \n",
"1758 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
"1759 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
"1760 198504 3 424937 390794.0 459080.0 770 708.0 \n",
"1761 198503 3 213901 174689.0 253113.0 388 317.0 \n",
"1762 198502 3 97586 80949.0 114223.0 177 147.0 \n",
"1763 198501 3 85489 65918.0 105060.0 155 120.0 \n",
"1764 198452 3 84830 60602.0 109058.0 154 110.0 \n",
"1765 198451 3 101726 80242.0 123210.0 185 146.0 \n",
"1766 198450 3 123680 101401.0 145959.0 225 184.0 \n",
"1767 198449 3 101073 81684.0 120462.0 184 149.0 \n",
"1768 198448 3 78620 60634.0 96606.0 143 110.0 \n",
"1769 198447 3 72029 54274.0 89784.0 131 99.0 \n",
"1770 198446 3 87330 67686.0 106974.0 159 123.0 \n",
"1771 198445 3 135223 101414.0 169032.0 246 184.0 \n",
"1772 198444 3 68422 20056.0 116788.0 125 37.0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 16.0 FR France \n",
"1 16.0 FR France \n",
"2 15.0 FR France \n",
"3 15.0 FR France \n",
"4 13.0 FR France \n",
"5 11.0 FR France \n",
"6 8.0 FR France \n",
"7 4.0 FR France \n",
"8 4.0 FR France \n",
"9 6.0 FR France \n",
"10 6.0 FR France \n",
"11 6.0 FR France \n",
"12 6.0 FR France \n",
"13 6.0 FR France \n",
"14 5.0 FR France \n",
"15 8.0 FR France \n",
"16 9.0 FR France \n",
"17 11.0 FR France \n",
"18 8.0 FR France \n",
"19 4.0 FR France \n",
"20 8.0 FR France \n",
"21 7.0 FR France \n",
"22 7.0 FR France \n",
"23 4.0 FR France \n",
"24 8.0 FR France \n",
"25 6.0 FR France \n",
"26 10.0 FR France \n",
"27 31.0 FR France \n",
"28 42.0 FR France \n",
"29 61.0 FR France \n",
"... ... ... ... \n",
"1743 59.0 FR France \n",
"1744 64.0 FR France \n",
"1745 97.0 FR France \n",
"1746 93.0 FR France \n",
"1747 80.0 FR France \n",
"1748 116.0 FR France \n",
"1749 149.0 FR France \n",
"1750 281.0 FR France \n",
"1751 395.0 FR France \n",
"1752 485.0 FR France \n",
"1753 544.0 FR France \n",
"1754 689.0 FR France \n",
"1755 722.0 FR France \n",
"1756 762.0 FR France \n",
"1757 926.0 FR France \n",
"1758 1113.0 FR France \n",
"1759 1236.0 FR France \n",
"1760 832.0 FR France \n",
"1761 459.0 FR France \n",
"1762 207.0 FR France \n",
"1763 190.0 FR France \n",
"1764 198.0 FR France \n",
"1765 224.0 FR France \n",
"1766 266.0 FR France \n",
"1767 219.0 FR France \n",
"1768 176.0 FR France \n",
"1769 163.0 FR France \n",
"1770 195.0 FR France \n",
"1771 308.0 FR France \n",
"1772 213.0 FR France \n",
"\n",
"[1773 rows x 10 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
"raw_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 1536 \n",
" 198919 \n",
" 3 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" 0 \n",
" NaN \n",
" NaN \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
"1536 198919 3 0 NaN NaN 0 NaN NaN \n",
"\n",
" geo_insee geo_name \n",
"1536 FR France "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 201842 \n",
" 3 \n",
" 7832 \n",
" 5145.0 \n",
" 10519.0 \n",
" 12 \n",
" 8.0 \n",
" 16.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 201841 \n",
" 3 \n",
" 8048 \n",
" 5098.0 \n",
" 10998.0 \n",
" 12 \n",
" 8.0 \n",
" 16.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 201840 \n",
" 3 \n",
" 7409 \n",
" 4717.0 \n",
" 10101.0 \n",
" 11 \n",
" 7.0 \n",
" 15.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 201839 \n",
" 3 \n",
" 7174 \n",
" 4235.0 \n",
" 10113.0 \n",
" 11 \n",
" 7.0 \n",
" 15.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 201838 \n",
" 3 \n",
" 6127 \n",
" 3482.0 \n",
" 8772.0 \n",
" 9 \n",
" 5.0 \n",
" 13.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 201837 \n",
" 3 \n",
" 4644 \n",
" 2200.0 \n",
" 7088.0 \n",
" 7 \n",
" 3.0 \n",
" 11.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 201836 \n",
" 3 \n",
" 3215 \n",
" 1349.0 \n",
" 5081.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 201835 \n",
" 3 \n",
" 1506 \n",
" 239.0 \n",
" 2773.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 201834 \n",
" 3 \n",
" 1368 \n",
" 116.0 \n",
" 2620.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 201833 \n",
" 3 \n",
" 1962 \n",
" 5.0 \n",
" 3919.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 201832 \n",
" 3 \n",
" 1839 \n",
" 183.0 \n",
" 3495.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 201831 \n",
" 3 \n",
" 2048 \n",
" 242.0 \n",
" 3854.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 201830 \n",
" 3 \n",
" 1951 \n",
" 202.0 \n",
" 3700.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 201829 \n",
" 3 \n",
" 1951 \n",
" 252.0 \n",
" 3650.0 \n",
" 3 \n",
" 0.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 201828 \n",
" 3 \n",
" 1654 \n",
" 52.0 \n",
" 3256.0 \n",
" 3 \n",
" 1.0 \n",
" 5.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 201827 \n",
" 3 \n",
" 3269 \n",
" 1145.0 \n",
" 5393.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 201826 \n",
" 3 \n",
" 3758 \n",
" 1493.0 \n",
" 6023.0 \n",
" 6 \n",
" 3.0 \n",
" 9.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 201825 \n",
" 3 \n",
" 4580 \n",
" 2220.0 \n",
" 6940.0 \n",
" 7 \n",
" 3.0 \n",
" 11.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 201824 \n",
" 3 \n",
" 3223 \n",
" 1351.0 \n",
" 5095.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 201823 \n",
" 3 \n",
" 1207 \n",
" 136.0 \n",
" 2278.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 201822 \n",
" 3 \n",
" 3202 \n",
" 1330.0 \n",
" 5074.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 201821 \n",
" 3 \n",
" 2537 \n",
" 763.0 \n",
" 4311.0 \n",
" 4 \n",
" 1.0 \n",
" 7.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 201820 \n",
" 3 \n",
" 2694 \n",
" 967.0 \n",
" 4421.0 \n",
" 4 \n",
" 1.0 \n",
" 7.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 201819 \n",
" 3 \n",
" 1025 \n",
" 0.0 \n",
" 2098.0 \n",
" 2 \n",
" 0.0 \n",
" 4.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 201818 \n",
" 3 \n",
" 3541 \n",
" 1416.0 \n",
" 5666.0 \n",
" 5 \n",
" 2.0 \n",
" 8.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 201817 \n",
" 3 \n",
" 2573 \n",
" 1003.0 \n",
" 4143.0 \n",
" 4 \n",
" 2.0 \n",
" 6.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 201816 \n",
" 3 \n",
" 4818 \n",
" 2724.0 \n",
" 6912.0 \n",
" 7 \n",
" 4.0 \n",
" 10.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 201815 \n",
" 3 \n",
" 16311 \n",
" 12168.0 \n",
" 20454.0 \n",
" 25 \n",
" 19.0 \n",
" 31.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 201814 \n",
" 3 \n",
" 22666 \n",
" 18092.0 \n",
" 27240.0 \n",
" 35 \n",
" 28.0 \n",
" 42.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 201813 \n",
" 3 \n",
" 32680 \n",
" 25536.0 \n",
" 39824.0 \n",
" 50 \n",
" 39.0 \n",
" 61.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1743 \n",
" 198521 \n",
" 3 \n",
" 26096 \n",
" 19621.0 \n",
" 32571.0 \n",
" 47 \n",
" 35.0 \n",
" 59.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1744 \n",
" 198520 \n",
" 3 \n",
" 27896 \n",
" 20885.0 \n",
" 34907.0 \n",
" 51 \n",
" 38.0 \n",
" 64.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1745 \n",
" 198519 \n",
" 3 \n",
" 43154 \n",
" 32821.0 \n",
" 53487.0 \n",
" 78 \n",
" 59.0 \n",
" 97.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1746 \n",
" 198518 \n",
" 3 \n",
" 40555 \n",
" 29935.0 \n",
" 51175.0 \n",
" 74 \n",
" 55.0 \n",
" 93.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1747 \n",
" 198517 \n",
" 3 \n",
" 34053 \n",
" 24366.0 \n",
" 43740.0 \n",
" 62 \n",
" 44.0 \n",
" 80.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1748 \n",
" 198516 \n",
" 3 \n",
" 50362 \n",
" 36451.0 \n",
" 64273.0 \n",
" 91 \n",
" 66.0 \n",
" 116.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1749 \n",
" 198515 \n",
" 3 \n",
" 63881 \n",
" 45538.0 \n",
" 82224.0 \n",
" 116 \n",
" 83.0 \n",
" 149.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1750 \n",
" 198514 \n",
" 3 \n",
" 134545 \n",
" 114400.0 \n",
" 154690.0 \n",
" 244 \n",
" 207.0 \n",
" 281.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1751 \n",
" 198513 \n",
" 3 \n",
" 197206 \n",
" 176080.0 \n",
" 218332.0 \n",
" 357 \n",
" 319.0 \n",
" 395.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1752 \n",
" 198512 \n",
" 3 \n",
" 245240 \n",
" 223304.0 \n",
" 267176.0 \n",
" 445 \n",
" 405.0 \n",
" 485.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1753 \n",
" 198511 \n",
" 3 \n",
" 276205 \n",
" 252399.0 \n",
" 300011.0 \n",
" 501 \n",
" 458.0 \n",
" 544.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1754 \n",
" 198510 \n",
" 3 \n",
" 353231 \n",
" 326279.0 \n",
" 380183.0 \n",
" 640 \n",
" 591.0 \n",
" 689.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1755 \n",
" 198509 \n",
" 3 \n",
" 369895 \n",
" 341109.0 \n",
" 398681.0 \n",
" 670 \n",
" 618.0 \n",
" 722.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1756 \n",
" 198508 \n",
" 3 \n",
" 389886 \n",
" 359529.0 \n",
" 420243.0 \n",
" 707 \n",
" 652.0 \n",
" 762.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1757 \n",
" 198507 \n",
" 3 \n",
" 471852 \n",
" 432599.0 \n",
" 511105.0 \n",
" 855 \n",
" 784.0 \n",
" 926.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1758 \n",
" 198506 \n",
" 3 \n",
" 565825 \n",
" 518011.0 \n",
" 613639.0 \n",
" 1026 \n",
" 939.0 \n",
" 1113.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1759 \n",
" 198505 \n",
" 3 \n",
" 637302 \n",
" 592795.0 \n",
" 681809.0 \n",
" 1155 \n",
" 1074.0 \n",
" 1236.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1760 \n",
" 198504 \n",
" 3 \n",
" 424937 \n",
" 390794.0 \n",
" 459080.0 \n",
" 770 \n",
" 708.0 \n",
" 832.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1761 \n",
" 198503 \n",
" 3 \n",
" 213901 \n",
" 174689.0 \n",
" 253113.0 \n",
" 388 \n",
" 317.0 \n",
" 459.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1762 \n",
" 198502 \n",
" 3 \n",
" 97586 \n",
" 80949.0 \n",
" 114223.0 \n",
" 177 \n",
" 147.0 \n",
" 207.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1763 \n",
" 198501 \n",
" 3 \n",
" 85489 \n",
" 65918.0 \n",
" 105060.0 \n",
" 155 \n",
" 120.0 \n",
" 190.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1764 \n",
" 198452 \n",
" 3 \n",
" 84830 \n",
" 60602.0 \n",
" 109058.0 \n",
" 154 \n",
" 110.0 \n",
" 198.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1765 \n",
" 198451 \n",
" 3 \n",
" 101726 \n",
" 80242.0 \n",
" 123210.0 \n",
" 185 \n",
" 146.0 \n",
" 224.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1766 \n",
" 198450 \n",
" 3 \n",
" 123680 \n",
" 101401.0 \n",
" 145959.0 \n",
" 225 \n",
" 184.0 \n",
" 266.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1767 \n",
" 198449 \n",
" 3 \n",
" 101073 \n",
" 81684.0 \n",
" 120462.0 \n",
" 184 \n",
" 149.0 \n",
" 219.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1768 \n",
" 198448 \n",
" 3 \n",
" 78620 \n",
" 60634.0 \n",
" 96606.0 \n",
" 143 \n",
" 110.0 \n",
" 176.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1769 \n",
" 198447 \n",
" 3 \n",
" 72029 \n",
" 54274.0 \n",
" 89784.0 \n",
" 131 \n",
" 99.0 \n",
" 163.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1770 \n",
" 198446 \n",
" 3 \n",
" 87330 \n",
" 67686.0 \n",
" 106974.0 \n",
" 159 \n",
" 123.0 \n",
" 195.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1771 \n",
" 198445 \n",
" 3 \n",
" 135223 \n",
" 101414.0 \n",
" 169032.0 \n",
" 246 \n",
" 184.0 \n",
" 308.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1772 \n",
" 198444 \n",
" 3 \n",
" 68422 \n",
" 20056.0 \n",
" 116788.0 \n",
" 125 \n",
" 37.0 \n",
" 213.0 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1772 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 201842 3 7832 5145.0 10519.0 12 8.0 \n",
"1 201841 3 8048 5098.0 10998.0 12 8.0 \n",
"2 201840 3 7409 4717.0 10101.0 11 7.0 \n",
"3 201839 3 7174 4235.0 10113.0 11 7.0 \n",
"4 201838 3 6127 3482.0 8772.0 9 5.0 \n",
"5 201837 3 4644 2200.0 7088.0 7 3.0 \n",
"6 201836 3 3215 1349.0 5081.0 5 2.0 \n",
"7 201835 3 1506 239.0 2773.0 2 0.0 \n",
"8 201834 3 1368 116.0 2620.0 2 0.0 \n",
"9 201833 3 1962 5.0 3919.0 3 0.0 \n",
"10 201832 3 1839 183.0 3495.0 3 0.0 \n",
"11 201831 3 2048 242.0 3854.0 3 0.0 \n",
"12 201830 3 1951 202.0 3700.0 3 0.0 \n",
"13 201829 3 1951 252.0 3650.0 3 0.0 \n",
"14 201828 3 1654 52.0 3256.0 3 1.0 \n",
"15 201827 3 3269 1145.0 5393.0 5 2.0 \n",
"16 201826 3 3758 1493.0 6023.0 6 3.0 \n",
"17 201825 3 4580 2220.0 6940.0 7 3.0 \n",
"18 201824 3 3223 1351.0 5095.0 5 2.0 \n",
"19 201823 3 1207 136.0 2278.0 2 0.0 \n",
"20 201822 3 3202 1330.0 5074.0 5 2.0 \n",
"21 201821 3 2537 763.0 4311.0 4 1.0 \n",
"22 201820 3 2694 967.0 4421.0 4 1.0 \n",
"23 201819 3 1025 0.0 2098.0 2 0.0 \n",
"24 201818 3 3541 1416.0 5666.0 5 2.0 \n",
"25 201817 3 2573 1003.0 4143.0 4 2.0 \n",
"26 201816 3 4818 2724.0 6912.0 7 4.0 \n",
"27 201815 3 16311 12168.0 20454.0 25 19.0 \n",
"28 201814 3 22666 18092.0 27240.0 35 28.0 \n",
"29 201813 3 32680 25536.0 39824.0 50 39.0 \n",
"... ... ... ... ... ... ... ... \n",
"1743 198521 3 26096 19621.0 32571.0 47 35.0 \n",
"1744 198520 3 27896 20885.0 34907.0 51 38.0 \n",
"1745 198519 3 43154 32821.0 53487.0 78 59.0 \n",
"1746 198518 3 40555 29935.0 51175.0 74 55.0 \n",
"1747 198517 3 34053 24366.0 43740.0 62 44.0 \n",
"1748 198516 3 50362 36451.0 64273.0 91 66.0 \n",
"1749 198515 3 63881 45538.0 82224.0 116 83.0 \n",
"1750 198514 3 134545 114400.0 154690.0 244 207.0 \n",
"1751 198513 3 197206 176080.0 218332.0 357 319.0 \n",
"1752 198512 3 245240 223304.0 267176.0 445 405.0 \n",
"1753 198511 3 276205 252399.0 300011.0 501 458.0 \n",
"1754 198510 3 353231 326279.0 380183.0 640 591.0 \n",
"1755 198509 3 369895 341109.0 398681.0 670 618.0 \n",
"1756 198508 3 389886 359529.0 420243.0 707 652.0 \n",
"1757 198507 3 471852 432599.0 511105.0 855 784.0 \n",
"1758 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
"1759 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
"1760 198504 3 424937 390794.0 459080.0 770 708.0 \n",
"1761 198503 3 213901 174689.0 253113.0 388 317.0 \n",
"1762 198502 3 97586 80949.0 114223.0 177 147.0 \n",
"1763 198501 3 85489 65918.0 105060.0 155 120.0 \n",
"1764 198452 3 84830 60602.0 109058.0 154 110.0 \n",
"1765 198451 3 101726 80242.0 123210.0 185 146.0 \n",
"1766 198450 3 123680 101401.0 145959.0 225 184.0 \n",
"1767 198449 3 101073 81684.0 120462.0 184 149.0 \n",
"1768 198448 3 78620 60634.0 96606.0 143 110.0 \n",
"1769 198447 3 72029 54274.0 89784.0 131 99.0 \n",
"1770 198446 3 87330 67686.0 106974.0 159 123.0 \n",
"1771 198445 3 135223 101414.0 169032.0 246 184.0 \n",
"1772 198444 3 68422 20056.0 116788.0 125 37.0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 16.0 FR France \n",
"1 16.0 FR France \n",
"2 15.0 FR France \n",
"3 15.0 FR France \n",
"4 13.0 FR France \n",
"5 11.0 FR France \n",
"6 8.0 FR France \n",
"7 4.0 FR France \n",
"8 4.0 FR France \n",
"9 6.0 FR France \n",
"10 6.0 FR France \n",
"11 6.0 FR France \n",
"12 6.0 FR France \n",
"13 6.0 FR France \n",
"14 5.0 FR France \n",
"15 8.0 FR France \n",
"16 9.0 FR France \n",
"17 11.0 FR France \n",
"18 8.0 FR France \n",
"19 4.0 FR France \n",
"20 8.0 FR France \n",
"21 7.0 FR France \n",
"22 7.0 FR France \n",
"23 4.0 FR France \n",
"24 8.0 FR France \n",
"25 6.0 FR France \n",
"26 10.0 FR France \n",
"27 31.0 FR France \n",
"28 42.0 FR France \n",
"29 61.0 FR France \n",
"... ... ... ... \n",
"1743 59.0 FR France \n",
"1744 64.0 FR France \n",
"1745 97.0 FR France \n",
"1746 93.0 FR France \n",
"1747 80.0 FR France \n",
"1748 116.0 FR France \n",
"1749 149.0 FR France \n",
"1750 281.0 FR France \n",
"1751 395.0 FR France \n",
"1752 485.0 FR France \n",
"1753 544.0 FR France \n",
"1754 689.0 FR France \n",
"1755 722.0 FR France \n",
"1756 762.0 FR France \n",
"1757 926.0 FR France \n",
"1758 1113.0 FR France \n",
"1759 1236.0 FR France \n",
"1760 832.0 FR France \n",
"1761 459.0 FR France \n",
"1762 207.0 FR France \n",
"1763 190.0 FR France \n",
"1764 198.0 FR France \n",
"1765 224.0 FR France \n",
"1766 266.0 FR France \n",
"1767 219.0 FR France \n",
"1768 176.0 FR France \n",
"1769 163.0 FR France \n",
"1770 195.0 FR France \n",
"1771 308.0 FR France \n",
"1772 213.0 FR France \n",
"\n",
"[1772 rows x 10 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nos données utilisent une convention inhabituelle: le numéro de\n",
"semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
"de nombre entier. C'est comme ça que Pandas les interprète.\n",
" \n",
"Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
"semaine. Il faut lui fournir les dates de début et de fin de\n",
"semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
"\n",
"Comme la conversion des semaines est devenu assez complexe, nous\n",
"écrivons une petite fonction Python pour cela. Ensuite, nous\n",
"l'appliquons à tous les points de nos donnés. Les résultats vont\n",
"dans une nouvelle colonne 'period'."
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
" data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202339 \n",
" 7 \n",
" 1390 \n",
" 118 \n",
" 2662 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 202338 \n",
" 7 \n",
" 1670 \n",
" 278 \n",
" 3062 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 202337 \n",
" 7 \n",
" 1122 \n",
" 223 \n",
" 2021 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 202336 \n",
" 7 \n",
" 726 \n",
" 10 \n",
" 1442 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 202335 \n",
" 7 \n",
" 961 \n",
" 96 \n",
" 1826 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 202334 \n",
" 7 \n",
" 1168 \n",
" 9 \n",
" 2327 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 202333 \n",
" 7 \n",
" 3308 \n",
" 1184 \n",
" 5432 \n",
" 5 \n",
" 2 \n",
" 8 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 202332 \n",
" 7 \n",
" 7996 \n",
" 1120 \n",
" 14872 \n",
" 12 \n",
" 2 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 202331 \n",
" 7 \n",
" 3318 \n",
" 1398 \n",
" 5238 \n",
" 5 \n",
" 2 \n",
" 8 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 202330 \n",
" 7 \n",
" 5821 \n",
" 3269 \n",
" 8373 \n",
" 9 \n",
" 5 \n",
" 13 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 202329 \n",
" 7 \n",
" 13558 \n",
" 8297 \n",
" 18819 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 202328 \n",
" 7 \n",
" 6700 \n",
" 4043 \n",
" 9357 \n",
" 10 \n",
" 6 \n",
" 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 202327 \n",
" 7 \n",
" 7253 \n",
" 4599 \n",
" 9907 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 202326 \n",
" 7 \n",
" 9192 \n",
" 6223 \n",
" 12161 \n",
" 14 \n",
" 10 \n",
" 18 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 202325 \n",
" 7 \n",
" 11498 \n",
" 8257 \n",
" 14739 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 202324 \n",
" 7 \n",
" 11115 \n",
" 7968 \n",
" 14262 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 202323 \n",
" 7 \n",
" 12563 \n",
" 6134 \n",
" 18992 \n",
" 19 \n",
" 9 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 202322 \n",
" 7 \n",
" 12184 \n",
" 8125 \n",
" 16243 \n",
" 18 \n",
" 12 \n",
" 24 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 202321 \n",
" 7 \n",
" 11349 \n",
" 7598 \n",
" 15100 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 202320 \n",
" 7 \n",
" 9000 \n",
" 4615 \n",
" 13385 \n",
" 14 \n",
" 7 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 202319 \n",
" 7 \n",
" 9344 \n",
" 6091 \n",
" 12597 \n",
" 14 \n",
" 9 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 202318 \n",
" 7 \n",
" 10671 \n",
" 7291 \n",
" 14051 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 202317 \n",
" 7 \n",
" 9184 \n",
" 6162 \n",
" 12206 \n",
" 14 \n",
" 9 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 202316 \n",
" 7 \n",
" 11387 \n",
" 8014 \n",
" 14760 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 202315 \n",
" 7 \n",
" 14040 \n",
" 7613 \n",
" 20467 \n",
" 21 \n",
" 11 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 202314 \n",
" 7 \n",
" 15247 \n",
" 11032 \n",
" 19462 \n",
" 23 \n",
" 17 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 202313 \n",
" 7 \n",
" 13322 \n",
" 9700 \n",
" 16944 \n",
" 20 \n",
" 15 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 202312 \n",
" 7 \n",
" 10374 \n",
" 7218 \n",
" 13530 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 202311 \n",
" 7 \n",
" 4919 \n",
" 2880 \n",
" 6958 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 202310 \n",
" 7 \n",
" 4854 \n",
" 2731 \n",
" 6977 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1683 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1684 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1685 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1686 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1687 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1688 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1689 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1690 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1691 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1692 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1693 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1694 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1695 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1696 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1697 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1698 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1699 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1700 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1701 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1702 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1703 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1704 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1705 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1706 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1707 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1708 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1709 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1710 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1711 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1712 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1713 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202339 7 1390 118 2662 2 0 \n",
"1 202338 7 1670 278 3062 3 1 \n",
"2 202337 7 1122 223 2021 2 1 \n",
"3 202336 7 726 10 1442 1 0 \n",
"4 202335 7 961 96 1826 1 0 \n",
"5 202334 7 1168 9 2327 2 0 \n",
"6 202333 7 3308 1184 5432 5 2 \n",
"7 202332 7 7996 1120 14872 12 2 \n",
"8 202331 7 3318 1398 5238 5 2 \n",
"9 202330 7 5821 3269 8373 9 5 \n",
"10 202329 7 13558 8297 18819 20 12 \n",
"11 202328 7 6700 4043 9357 10 6 \n",
"12 202327 7 7253 4599 9907 11 7 \n",
"13 202326 7 9192 6223 12161 14 10 \n",
"14 202325 7 11498 8257 14739 17 12 \n",
"15 202324 7 11115 7968 14262 17 12 \n",
"16 202323 7 12563 6134 18992 19 9 \n",
"17 202322 7 12184 8125 16243 18 12 \n",
"18 202321 7 11349 7598 15100 17 11 \n",
"19 202320 7 9000 4615 13385 14 7 \n",
"20 202319 7 9344 6091 12597 14 9 \n",
"21 202318 7 10671 7291 14051 16 11 \n",
"22 202317 7 9184 6162 12206 14 9 \n",
"23 202316 7 11387 8014 14760 17 12 \n",
"24 202315 7 14040 7613 20467 21 11 \n",
"25 202314 7 15247 11032 19462 23 17 \n",
"26 202313 7 13322 9700 16944 20 15 \n",
"27 202312 7 10374 7218 13530 16 11 \n",
"28 202311 7 4919 2880 6958 7 4 \n",
"29 202310 7 4854 2731 6977 7 4 \n",
"... ... ... ... ... ... ... ... \n",
"1683 199126 7 17608 11304 23912 31 20 \n",
"1684 199125 7 16169 10700 21638 28 18 \n",
"1685 199124 7 16171 10071 22271 28 17 \n",
"1686 199123 7 11947 7671 16223 21 13 \n",
"1687 199122 7 15452 9953 20951 27 17 \n",
"1688 199121 7 14903 8975 20831 26 16 \n",
"1689 199120 7 19053 12742 25364 34 23 \n",
"1690 199119 7 16739 11246 22232 29 19 \n",
"1691 199118 7 21385 13882 28888 38 25 \n",
"1692 199117 7 13462 8877 18047 24 16 \n",
"1693 199116 7 14857 10068 19646 26 18 \n",
"1694 199115 7 13975 9781 18169 25 18 \n",
"1695 199114 7 12265 7684 16846 22 14 \n",
"1696 199113 7 9567 6041 13093 17 11 \n",
"1697 199112 7 10864 7331 14397 19 13 \n",
"1698 199111 7 15574 11184 19964 27 19 \n",
"1699 199110 7 16643 11372 21914 29 20 \n",
"1700 199109 7 13741 8780 18702 24 15 \n",
"1701 199108 7 13289 8813 17765 23 15 \n",
"1702 199107 7 12337 8077 16597 22 15 \n",
"1703 199106 7 10877 7013 14741 19 12 \n",
"1704 199105 7 10442 6544 14340 18 11 \n",
"1705 199104 7 7913 4563 11263 14 8 \n",
"1706 199103 7 15387 10484 20290 27 18 \n",
"1707 199102 7 16277 11046 21508 29 20 \n",
"1708 199101 7 15565 10271 20859 27 18 \n",
"1709 199052 7 19375 13295 25455 34 23 \n",
"1710 199051 7 19080 13807 24353 34 25 \n",
"1711 199050 7 11079 6660 15498 20 12 \n",
"1712 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 4 FR France \n",
"1 5 FR France \n",
"2 3 FR France \n",
"3 2 FR France \n",
"4 2 FR France \n",
"5 4 FR France \n",
"6 8 FR France \n",
"7 22 FR France \n",
"8 8 FR France \n",
"9 13 FR France \n",
"10 28 FR France \n",
"11 14 FR France \n",
"12 15 FR France \n",
"13 18 FR France \n",
"14 22 FR France \n",
"15 22 FR France \n",
"16 29 FR France \n",
"17 24 FR France \n",
"18 23 FR France \n",
"19 21 FR France \n",
"20 19 FR France \n",
"21 21 FR France \n",
"22 19 FR France \n",
"23 22 FR France \n",
"24 31 FR France \n",
"25 29 FR France \n",
"26 25 FR France \n",
"27 21 FR France \n",
"28 10 FR France \n",
"29 10 FR France \n",
"... ... ... ... \n",
"1683 42 FR France \n",
"1684 38 FR France \n",
"1685 39 FR France \n",
"1686 29 FR France \n",
"1687 37 FR France \n",
"1688 36 FR France \n",
"1689 45 FR France \n",
"1690 39 FR France \n",
"1691 51 FR France \n",
"1692 32 FR France \n",
"1693 34 FR France \n",
"1694 32 FR France \n",
"1695 30 FR France \n",
"1696 23 FR France \n",
"1697 25 FR France \n",
"1698 35 FR France \n",
"1699 38 FR France \n",
"1700 33 FR France \n",
"1701 31 FR France \n",
"1702 29 FR France \n",
"1703 26 FR France \n",
"1704 25 FR France \n",
"1705 20 FR France \n",
"1706 36 FR France \n",
"1707 38 FR France \n",
"1708 36 FR France \n",
"1709 45 FR France \n",
"1710 43 FR France \n",
"1711 28 FR France \n",
"1712 5 FR France \n",
"\n",
"[1713 rows x 10 columns]"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
"Index: []"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202339 \n",
" 7 \n",
" 1390 \n",
" 118 \n",
" 2662 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 202338 \n",
" 7 \n",
" 1670 \n",
" 278 \n",
" 3062 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 202337 \n",
" 7 \n",
" 1122 \n",
" 223 \n",
" 2021 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 202336 \n",
" 7 \n",
" 726 \n",
" 10 \n",
" 1442 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 202335 \n",
" 7 \n",
" 961 \n",
" 96 \n",
" 1826 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 202334 \n",
" 7 \n",
" 1168 \n",
" 9 \n",
" 2327 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 202333 \n",
" 7 \n",
" 3308 \n",
" 1184 \n",
" 5432 \n",
" 5 \n",
" 2 \n",
" 8 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 202332 \n",
" 7 \n",
" 7996 \n",
" 1120 \n",
" 14872 \n",
" 12 \n",
" 2 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 202331 \n",
" 7 \n",
" 3318 \n",
" 1398 \n",
" 5238 \n",
" 5 \n",
" 2 \n",
" 8 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 202330 \n",
" 7 \n",
" 5821 \n",
" 3269 \n",
" 8373 \n",
" 9 \n",
" 5 \n",
" 13 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 202329 \n",
" 7 \n",
" 13558 \n",
" 8297 \n",
" 18819 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 202328 \n",
" 7 \n",
" 6700 \n",
" 4043 \n",
" 9357 \n",
" 10 \n",
" 6 \n",
" 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 202327 \n",
" 7 \n",
" 7253 \n",
" 4599 \n",
" 9907 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 202326 \n",
" 7 \n",
" 9192 \n",
" 6223 \n",
" 12161 \n",
" 14 \n",
" 10 \n",
" 18 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 202325 \n",
" 7 \n",
" 11498 \n",
" 8257 \n",
" 14739 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 202324 \n",
" 7 \n",
" 11115 \n",
" 7968 \n",
" 14262 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 202323 \n",
" 7 \n",
" 12563 \n",
" 6134 \n",
" 18992 \n",
" 19 \n",
" 9 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 202322 \n",
" 7 \n",
" 12184 \n",
" 8125 \n",
" 16243 \n",
" 18 \n",
" 12 \n",
" 24 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 202321 \n",
" 7 \n",
" 11349 \n",
" 7598 \n",
" 15100 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 202320 \n",
" 7 \n",
" 9000 \n",
" 4615 \n",
" 13385 \n",
" 14 \n",
" 7 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 202319 \n",
" 7 \n",
" 9344 \n",
" 6091 \n",
" 12597 \n",
" 14 \n",
" 9 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 202318 \n",
" 7 \n",
" 10671 \n",
" 7291 \n",
" 14051 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 202317 \n",
" 7 \n",
" 9184 \n",
" 6162 \n",
" 12206 \n",
" 14 \n",
" 9 \n",
" 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 202316 \n",
" 7 \n",
" 11387 \n",
" 8014 \n",
" 14760 \n",
" 17 \n",
" 12 \n",
" 22 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 202315 \n",
" 7 \n",
" 14040 \n",
" 7613 \n",
" 20467 \n",
" 21 \n",
" 11 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 202314 \n",
" 7 \n",
" 15247 \n",
" 11032 \n",
" 19462 \n",
" 23 \n",
" 17 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 202313 \n",
" 7 \n",
" 13322 \n",
" 9700 \n",
" 16944 \n",
" 20 \n",
" 15 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 202312 \n",
" 7 \n",
" 10374 \n",
" 7218 \n",
" 13530 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 202311 \n",
" 7 \n",
" 4919 \n",
" 2880 \n",
" 6958 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 202310 \n",
" 7 \n",
" 4854 \n",
" 2731 \n",
" 6977 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1683 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1684 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1685 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1686 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1687 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1688 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1689 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1690 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1691 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1692 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1693 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1694 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1695 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1696 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1697 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1698 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1699 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1700 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1701 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1702 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1703 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1704 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1705 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1706 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1707 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1708 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1709 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1710 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1711 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1712 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1713 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202339 7 1390 118 2662 2 0 \n",
"1 202338 7 1670 278 3062 3 1 \n",
"2 202337 7 1122 223 2021 2 1 \n",
"3 202336 7 726 10 1442 1 0 \n",
"4 202335 7 961 96 1826 1 0 \n",
"5 202334 7 1168 9 2327 2 0 \n",
"6 202333 7 3308 1184 5432 5 2 \n",
"7 202332 7 7996 1120 14872 12 2 \n",
"8 202331 7 3318 1398 5238 5 2 \n",
"9 202330 7 5821 3269 8373 9 5 \n",
"10 202329 7 13558 8297 18819 20 12 \n",
"11 202328 7 6700 4043 9357 10 6 \n",
"12 202327 7 7253 4599 9907 11 7 \n",
"13 202326 7 9192 6223 12161 14 10 \n",
"14 202325 7 11498 8257 14739 17 12 \n",
"15 202324 7 11115 7968 14262 17 12 \n",
"16 202323 7 12563 6134 18992 19 9 \n",
"17 202322 7 12184 8125 16243 18 12 \n",
"18 202321 7 11349 7598 15100 17 11 \n",
"19 202320 7 9000 4615 13385 14 7 \n",
"20 202319 7 9344 6091 12597 14 9 \n",
"21 202318 7 10671 7291 14051 16 11 \n",
"22 202317 7 9184 6162 12206 14 9 \n",
"23 202316 7 11387 8014 14760 17 12 \n",
"24 202315 7 14040 7613 20467 21 11 \n",
"25 202314 7 15247 11032 19462 23 17 \n",
"26 202313 7 13322 9700 16944 20 15 \n",
"27 202312 7 10374 7218 13530 16 11 \n",
"28 202311 7 4919 2880 6958 7 4 \n",
"29 202310 7 4854 2731 6977 7 4 \n",
"... ... ... ... ... ... ... ... \n",
"1683 199126 7 17608 11304 23912 31 20 \n",
"1684 199125 7 16169 10700 21638 28 18 \n",
"1685 199124 7 16171 10071 22271 28 17 \n",
"1686 199123 7 11947 7671 16223 21 13 \n",
"1687 199122 7 15452 9953 20951 27 17 \n",
"1688 199121 7 14903 8975 20831 26 16 \n",
"1689 199120 7 19053 12742 25364 34 23 \n",
"1690 199119 7 16739 11246 22232 29 19 \n",
"1691 199118 7 21385 13882 28888 38 25 \n",
"1692 199117 7 13462 8877 18047 24 16 \n",
"1693 199116 7 14857 10068 19646 26 18 \n",
"1694 199115 7 13975 9781 18169 25 18 \n",
"1695 199114 7 12265 7684 16846 22 14 \n",
"1696 199113 7 9567 6041 13093 17 11 \n",
"1697 199112 7 10864 7331 14397 19 13 \n",
"1698 199111 7 15574 11184 19964 27 19 \n",
"1699 199110 7 16643 11372 21914 29 20 \n",
"1700 199109 7 13741 8780 18702 24 15 \n",
"1701 199108 7 13289 8813 17765 23 15 \n",
"1702 199107 7 12337 8077 16597 22 15 \n",
"1703 199106 7 10877 7013 14741 19 12 \n",
"1704 199105 7 10442 6544 14340 18 11 \n",
"1705 199104 7 7913 4563 11263 14 8 \n",
"1706 199103 7 15387 10484 20290 27 18 \n",
"1707 199102 7 16277 11046 21508 29 20 \n",
"1708 199101 7 15565 10271 20859 27 18 \n",
"1709 199052 7 19375 13295 25455 34 23 \n",
"1710 199051 7 19080 13807 24353 34 25 \n",
"1711 199050 7 11079 6660 15498 20 12 \n",
"1712 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 4 FR France \n",
"1 5 FR France \n",
"2 3 FR France \n",
"3 2 FR France \n",
"4 2 FR France \n",
"5 4 FR France \n",
"6 8 FR France \n",
"7 22 FR France \n",
"8 8 FR France \n",
"9 13 FR France \n",
"10 28 FR France \n",
"11 14 FR France \n",
"12 15 FR France \n",
"13 18 FR France \n",
"14 22 FR France \n",
"15 22 FR France \n",
"16 29 FR France \n",
"17 24 FR France \n",
"18 23 FR France \n",
"19 21 FR France \n",
"20 19 FR France \n",
"21 21 FR France \n",
"22 19 FR France \n",
"23 22 FR France \n",
"24 31 FR France \n",
"25 29 FR France \n",
"26 25 FR France \n",
"27 21 FR France \n",
"28 10 FR France \n",
"29 10 FR France \n",
"... ... ... ... \n",
"1683 42 FR France \n",
"1684 38 FR France \n",
"1685 39 FR France \n",
"1686 29 FR France \n",
"1687 37 FR France \n",
"1688 36 FR France \n",
"1689 45 FR France \n",
"1690 39 FR France \n",
"1691 51 FR France \n",
"1692 32 FR France \n",
"1693 34 FR France \n",
"1694 32 FR France \n",
"1695 30 FR France \n",
"1696 23 FR France \n",
"1697 25 FR France \n",
"1698 35 FR France \n",
"1699 38 FR France \n",
"1700 33 FR France \n",
"1701 31 FR France \n",
"1702 29 FR France \n",
"1703 26 FR France \n",
"1704 25 FR France \n",
"1705 20 FR France \n",
"1706 36 FR France \n",
"1707 38 FR France \n",
"1708 36 FR France \n",
"1709 45 FR France \n",
"1710 43 FR France \n",
"1711 28 FR France \n",
"1712 5 FR France \n",
"\n",
"[1713 rows x 10 columns]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
=======
"execution_count": 6,
"metadata": {
"collapsed": false
},
>>>>>>> 5b4a347ece88315f3afbf737327897f8bae59c83
"outputs": [],
"source": [
"def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n",
" year = int(year_and_week_str[:4])\n",
" week = int(year_and_week_str[4:])\n",
" w = isoweek.Week(year, week)\n",
" return pd.Period(w.day(0), 'W')\n",
"\n",
"data['period'] = [convert_week(yw) for yw in data['week']]"
]
},
{
<<<<<<< HEAD
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
=======
"cell_type": "markdown",
"metadata": {},
"source": [
"Il restent deux petites modifications à faire.\n",
"\n",
"Premièrement, nous définissons les périodes d'observation\n",
"comme nouvel index de notre jeux de données. Ceci en fait\n",
"une suite chronologique, ce qui sera pratique par la suite.\n",
"\n",
"Deuxièmement, nous trions les points par période, dans\n",
"le sens chronologique."
>>>>>>> 5b4a347ece88315f3afbf737327897f8bae59c83
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcnEWZ//fpniv3nRBykADhhiQQDrkEwhFkFWRBw7rAKooiuLKyKnis6BrFdRWX/S0oChJYNCLKghKOcMgZEoYrIQlHCAnkvu9kZnq6fn+8b71vvfXW9Xb39PTM1JdP6J56662qft+qeuq5iTEGDw8PDw8PF+Q6ewAeHh4eHl0Hnmh4eHh4eDjDEw0PDw8PD2d4ouHh4eHh4QxPNDw8PDw8nOGJhoeHh4eHMzzR8PDw8PBwhicaHh4eHh7O8ETDw8PDw8MZdZ09gFIxdOhQNm7cuM4ehoeHh0eXwiuvvLKRMTas1Pu7LNEYN24cmpubO3sYHh4eHl0KRLSinPu9eMrDw8PDwxmeaHh4eHh4OMMTDQ8PDw8PZ3ii4eHh4eHhDE80PDw8PDyc4YmGh4eHh4czPNHw8PDw8HCGJxoeXQ7FIsN9zR+irb3Y2UPx8Ohx8ETDo8vhoTdW4xv3L8CtT7/X2UPx8Ohx8ETDo8th6+5WAMDmXS2dPBIPj54HTzQ8PDw8PJzhiYaHh4eHhzOsRIOImohoPhG9QUSLiOj7YfmNRLSKiF4P/31MuOcGIlpKRG8T0TlC+TFEtDC8dgsRUVjeSER/CMvnEdG4yv9UDw8PD49y4cJptAA4gzE2EcAkANOI6ITw2s2MsUnhv9kAQESHAZgO4HAA0wDcSkT5sP5tAK4EMCH8Ny0svwLAFsbYgQBuBvCT8n+ah4eHh0elYSUaLMDO8M/68B8z3HI+gFmMsRbG2PsAlgI4johGAujPGJvLGGMA7gZwgXDPzPD7/QCmci7Ew0MH0yT08PDoGDjpNIgoT0SvA1gPYA5jbF546RoiWkBEdxLRoLBsFIAPhdtXhmWjwu9yeeIexlgBwDYAQxTjuJKImomoecOGDU4/0KP7gZ8nmKcaHh5VhxPRYIy1M8YmARiNgGs4AoGo6QAEIqs1AH4WVldxCMxQbrpHHsftjLEpjLEpw4aVnHjKo4ujFB6UMYa/LliN9qKnNB4e5SCT9RRjbCuAvwGYxhhbFxKTIoBfAzgurLYSwBjhttEAVofloxXliXuIqA7AAACbM/0SDw8D7n9lJa753Wu468XlnT0UD48uDRfrqWFENDD83gvAmQDeCnUUHJ8E8Gb4/SEA00OLqPEIFN7zGWNrAOwgohNCfcVlAB4U7rk8/H4RgKdCvYeHR0WwcWfgELh++95OHomHR9eGS47wkQBmhhZQOQD3Mcb+SkT3ENEkBGKk5QC+CACMsUVEdB+AxQAKAK5mjLWHbV0F4C4AvQA8Ev4DgDsA3ENESxFwGNMr8Ns8PCJ4swoPj8rASjQYYwsATFaUX2q4ZwaAGYryZgBHKMr3ArjYNhYPDw8Pj86F9wj36NJ4c9U2TPvFs9jVUnCq72WeHh7lwRMNjy6Nmx55C2+t3YFXP9hirOelUx4elYEnGh49Ct6+wsOjPHii4dFlwcL/XOAV4R4elYEnGh5dDuXs/x3JaMx/fzN+8JfFHdeBh0cNwBMNjx4BqoJW41O/mos7X3i/w/vx8OhMeKLh0S3gShS8RsPDozx4ouHRI+B1Gh4elYEnGh4eHh4ezvBEw6NHwVvceniUB080PDw8PDyc4YlGDWPhym3Ysqu1s4fRreDq1+Hh4aGGJxo1jI//v+dx8a/mdvYwahaMuYubfPZgD4/KwBONGsfS9TvtlXoayiAAXqfh4VEePNHw6BGoJp/h41t5dGd4ouHRLVBL0idPMyqDzbtaMWv+B2hrL3b2UDwEeKLh0S1g26hriah4uOFXz7yH6/+8EM+/u7Gzh+IhwBMND48KwzMalcHyTbsAAC2FdktNj2rCSjSIqImI5hPRG0S0iIi+H5YPJqI5RPRu+DlIuOcGIlpKRG8T0TlC+TFEtDC8dguFJi1E1EhEfwjL5xHRuMr/VI/uDFdOohr6hmr0sXbbXoy7/mH8dcHqDu+rs+HFfbUFF06jBcAZjLGJACYBmEZEJwC4HsCTjLEJAJ4M/wYRHQZgOoDDAUwDcCsR5cO2bgNwJYAJ4b9pYfkVALYwxg4EcDOAn1Tgt1UMa7ftxYOvr+rsYXhIyLKXdDfp1JK12wEAf2xe2ckj6TjwIJSeZtQWrESDBeB2n/XhPwbgfAAzw/KZAC4Iv58PYBZjrIUx9j6ApQCOI6KRAPozxuay4Ch2t3QPb+t+AFOphgzrp98+F1+d9Tr2tlWPTfYWOHqUlU+jYqPo3D56wk7KdwC/FGoLTjoNIsoT0esA1gOYwxibB2AEY2wNAISfw8PqowB8KNy+MiwbFX6XyxP3MMYKALYBGFLKD+oIrNm2t+p9+oViR60691Xj3XHP9lzNHK0qj4ho9AQK2YXgRDQYY+2MsUkARiPgGo4wVFdNY2YoN92TbJjoSiJqJqLmDRs22IbdpeGXiR7l7P/dhRjz31FDDLlHD0Em6ynG2FYAf0Ogi1gXipwQfq4Pq60EMEa4bTSA1WH5aEV54h4iqgMwAMBmRf+3M8amMMamDBs2LMvQuxy6m3hq/Y69HSLec90zq7m3Vupk/MGm3Zi3bJO6j+41PZTgBLEn/NauBBfrqWFENDD83gvAmQDeAvAQgMvDapcDeDD8/hCA6aFF1HgECu/5oQhrBxGdEOorLpPu4W1dBOApVoO75t1zl+PFpdWxGa+5H18mjpvxJP7xN/Oc6j70xmpcO+s1p7pZZ0k1RB2Vmrmn/vRpfPr2l4x1ujOfwX9bd1sLXR11DnVGApgZWkDlANzHGPsrEc0FcB8RXQHgAwAXAwBjbBER3QdgMYACgKsZY/yIeRWAuwD0AvBI+A8A7gBwDxEtRcBhTK/Ej6s0fjT7LQDA8pvOK6udNdv2gDFg34G9tHVqj2SWj+YVW5zq/fPvA4Lxi+mTK9Z3V9pcF6/ejuH9G411uuH00KIGz489GlaiwRhbACC1ehljmwBM1dwzA8AMRXkzgJQ+hDG2FyHR6Qn4yI+fAmAmPl75Z8ecxWsxYXi/zh5GxfGxW57D4D4NTnW7s0rD62tqE94jvEbhD1d2bNwZ5xpx3V6qYtlUgT42W/Ko+NO3R2fBEw2PnoFue2rtrr8rNif29LG24IlGjcIvlI5BdZz7qqBsDz85LXzu3Q347yff7fB+q4lYEe4XQy3BRRHu0QnwC6WyqG4+jcq2Vywy5AQvvl0tBazeugdA/LsuvWM+AOArUydUtvMagD9A1RY80ahR+IWiBwkkICtx7YrPtVBkaBCIxqdvn4s3V23vxBFVB14RXpvw4qkaxarwJOmRRkNdMG0PGtHX+Z7qOvdVFoViMgmRSDC6874aiae6IKHvzvBEo0bx49lLOnsINQtuOdRYl7fUVN5d2cGoeqjwLtfW3kN3zZBqFD3VqCl4ouHR5cCiT2EzsZy4qQtbGRWL+k2zK/8uG7rzb+vK8ETDAZ0hAvBnKwNq/OFUeng9/aTds3997cETDQd0xpo1HC57PDiHUShBbGN6l8+8swHjrn8Y67bHofBfXr4ZH27eXbE+SoFpLnRrnYYPPlWT8ESjRuE9fvXgj+attTuwdP0up3tcNtd75q4AALz+4dao7OJfzsUp//F05jGa0Foo4j8fexu7Wgqpayfd9FSqzMRpdGuiEX568/PagicaHl0O7cImunFnS6Z7q0KLLX386dWV+H9PL8XNc95JXVNZzRmJRjeW+3dngtiV4YmGAzpFp9HND1fb9rTh54+/jUJ70V5ZQruj7G7p+h1YsSngRJ7PENK+3NdtOxm3hHlFWh1/e08XVXb3tdDV4ImGAzpj0nZ3lvzHs5fglqeW4pE312a+11WXcebPn8VHf/o3AMDDC9YAcHuu5T75PW3t+Pof38AWTdBBTgRyjqcRk/VUS6FYEuHtCuDPp6cTzVqDJxo1imIX3Qfe37gLtzz5rlUnw7P4yY5rLsh6j2vGwEpxlPe9vBJ/fGUlfq4QPwHZiZJJPPXEknVRCJHuBvJ+GjUJTzRqFF2V0/jH38zDz+e8kwhbbkIp+0Eh49Fz6+62TP2Vu0fxTU5HhJjlero98/W5mpSw3QW7Wgq4ec47aOumHFVXg4895QCv03BHS8H1VF/6Q21XiKdMCuHWgttmU6nX7PrqXJXYPfekHTyfn895By2FIkYN7IVPHTumk8fk4TkNB3SOTqNrohrPSsVpmDizUkRg5eCtNUFsKB1JYJFOw629nm5+3RISfdcDiUfHwko0iGgMET1NREuIaBERfTUsv5GIVhHR6+G/jwn33EBES4nobSI6Ryg/hogWhtduofC4SUSNRPSHsHweEY2r/E/tYuji+4SNkSgnGF1WIiCe1N26K+/hP754HQA9N8WtplyZrWpKZTbvas3szNhRkImqq9WcR8fChdMoALiOMXYogBMAXE1Eh4XXbmaMTQr/zQaA8Np0AIcDmAbgViLikeVuA3AlgAnhv2lh+RUAtjDGDgRwM4CflP/Tuja6qk5DNWrlSZlnZSuhDxWnYRL11Joo/KePvQ3AXURXTfHUqf/xdMWdGUuF/Hh6atzGWoOVaDDG1jDGXg2/7wCwBMAowy3nA5jFGGthjL0PYCmA44hoJID+jLG5LNhF7gZwgXDPzPD7/QCmkuuKqgK8TqO2oNJpGOsLRMbtuVbnhbv2Uk2isVPhpS7iWw8sxC2dlCGwp4vpagWZdBqh2GgygHlh0TVEtICI7iSiQWHZKAAfCretDMtGhd/l8sQ9jLECgG0AhmQZW0fC6zTKg+n5lbIR2KynikWGu+cuF+pnZTUq8/Sthw1nnUbZQ6kYfjfvA60pcaXBuUdveltbcCYaRNQXwJ8AXMsY245A1HQAgEkA1gD4Ga+quJ0Zyk33yGO4koiaiah5w4YNrkPvkqiFU9Wbq7Zh9sI1Jd0rvlDVL+EbQim/0vZs/vzaKvzbg4uiv/e0xgpUk9iv0hylzTrK1bnv+39Z1CPl+fzx8KdUa2LGngonokFE9QgIxr2MsT8DAGNsHWOsnTFWBPBrAMeF1VcCEO3iRgNYHZaPVpQn7iGiOgADAGyWx8EYu50xNoUxNmXYsGFuv7CLoha2iL/77+fx5Xtf7ZC2y9mgbc9m5962xN+vfrBVU1PTfoUevqsxgA0vL9+CF99zD4NSDdwzd3mHH2zk5+M5jdqAi/UUAbgDwBLG2M+F8pFCtU8CeDP8/hCA6aFF1HgECu/5jLE1AHYQ0Qlhm5cBeFC45/Lw+0UAnmK1cNQOUTvalY7D7IVr8PmZL5ftQKV6bcZXWcJbzjozfvLoW079VTv4X5Z5VWuMxncfXIQla3Z0WPtX/e8rmBlGHebqTVM4FY/qwcW57yQAlwJYSESvh2XfAnAJEU1CsAyXA/giADDGFhHRfQAWI7C8upoxxuUDVwG4C0AvAI+E/4CAKN1DREsRcBjTy/tZ2TFv2SaMH9oHw/s3pa51FPlqLzLkNcb61SaZX/n9a2gvMmzZ3Yrh/dLPoByoxVOVRS0SdtuQsrzjWjxl1+U77qGLMcki8VQNPoOeCCvRYIw9D/X8n224ZwaAGYryZgBHKMr3ArjYNpaOxKdvfwkDetXjje+dXbU+29qLyOfUea6rvTy4zLwrrEuVXkIct9HwrorExUbIMh2ca/C9NBlytO9uLWDNtr04YFjfsvuJFeFlN+VRAXiPcAHb9rTZK1UQLabwFp20e5tOtIwxPPj6KqcAgOLGrXTTiPw0zP2py63d61HFx2qzGs/CPdSi345pTF+85xVM/dkzFREpRUYTXeFE0wPgiYYDOkr0YdIfdNbyMK3x55duxFdnvZ7UEUhQOvcpSuONIOsINeKuGhRP2ZBlQ63F/dI0phfC/CWVFCn1RAuyWoQnGhr8ePYSjLv+YQAdt2BNROPwfft3TKcaRCIAw8Lcvidw/BJzaHckdM+9nPfhcmulXreNjmXZUGuRaJg4JW5OXJGNvozoAbWOr856DZfeMc9esYbgo9xq8KtnlwHoWJbYFH11aN9GAMBHD6qOaTEhWJTlKFybl2+OwpCLz61U4ymD4Crr0JxQcW7F0l6WR+1alTFWVgThLDDRg1yOgCLLHMbe3F/3IxsPvr7aXqnG4DkNmAkDY5XbTPa2teMRwVnOxGnwBVKNZXLP3OXRBlDOGr/ol3Od60Y6jSqY3Cbvtd9cMT8NC9XIsgm61rVVm7N4HdZsS+chLw0mTiP4zBryxdhN96MZXRKe04B5oW3c2YK9bZVxRb3pkbdw14vLo79NinC+eVdD+Tdj9hKhX3V/H27enVFxWz6C3+5GsStB16utF8nEaVRoGnzh7maM6N+Ied86M/O98lw0chrhw2yrYFh6TzNqA57TgFm2fNyPnqxYPyu3JENOtxlOYZ3FiquI1IpNu3DKfzxdcqC6Uq2nsrQnFpk2/2o+Vd04GuuCZXfU6AHObTlzGg511m1vce430TYz/82xu7WA3WHoFp1O47FFa/H3t73odCjioeS9c19twBMNVGeDnv/+ZjyxZH2izGg9xZKf1YJqSGu3BYrvd9fvdG7n3XVxXTVhsB/rVXdt2dWKJ99a5zyOzoTuF44a2Cu4noG1cfXU7wjOdHdrAVt3t6beh27diDnLdTqNq+99Fa+s2GI2O5fgSUZtwBMNANVI7PbNPy1IlZkU4fxUVQ37fHHtqzaCUhSrl/z6JWX7WaC6b/K/z1HmH9eNsF7yWq4mEVY9ttZCEcs27grH4j6YgqNuoFI/TxzbGf/5DCb9YE5qvOKfs+Z/gHHXP4xtu9vwyootUblOp8G5LTGYpA3dURHOMfe9rpPn3RMNVGcyqhZHq1ERHnxWY52IXVRrYZajCM/UT5XjSdnw9to4XlOWn+5quqp6nnta2zM7rordrQ1NrE2cBtfVrdqaVLLrwtI31gfe5JP/fQ7eD4moDd2YZiQOWbUOTzRQnZg2u1vTyW1MJ83IeqrKC8Wkfyi5TUUZGa7F91XOxj8LKsXdVZJguSqUVWM/8+fPYOL3H8/Un+rw4DoXRe5OR+w4pwEAD7y2KtPYPDoXnmgAYFUQT6kWj2kf4ASlKuEjbOKpcpuvMuUjzXfATKQqzZVYiW2Gx+IqnlKBn/6zvAfVfJXnolqUmcwTojP2EAN1uo6rO4unuhI80UB2TuPDzbvtlSTkFNFsTb1WUzwlQrVZdKgpqsVHply4JjqqdL+Andjuai04y/TdFeFO1TT3MuG7vW1dX+Ij1x16xHvLEb1t2NGCnz72lresqiI80UD2E8ySNdsz96EKge4knsrcU3lQr73yqIZSPFUlVYPcj/FUW4Uxbd0TK/G//5fFOHbGE073VSIcx7PvmhM5iV24rAldHZFjc1la8qFN945U/d3w54X4n6ffw9xl5SuS97a1p8ziPdLo8UTjm/cvwFX/+0qme0qxJsor7jHtA9G1qkinxBNm5TmNCudgskMYcKahV3owigcnmqMCwM6WtK5LBddwHKZnffmd81NlsxeuwbYw9Iu4KbvoNHRDSnAaDsOWuQQdgVSVthQCTq0S4Uq+cHczTv7J02W3093R44nGH5o/xMvLt9grCtDkTTLfo7zJrAYO/l9tk9v0dXnkKpPXrHCJctsR4qlqcm6VZFycxVMZfuHKLbvx5XtfxTW/D1L6ipu1ah6k21aLs5L54XXiKX1fuv3fNB9+89wyvPpBtnUs4zkLJ9bR6Coith5PNEpBKSdvFc0wchrhHtHROo131u1InNJc/DTmv59K325GiRZZVbeeKmOXV+km5N/4zDsbSm7fdR5kmS88PM6qLVxRLrZTGqeRFgeq+xaLZc5CJ/ZSc8FBh8+9uxEX3vqiurMugt0OeWpqAZ5olIBSrGzqculHbVrgLjqNvW3tuHbWaxh3/cN4+u312nrvb9ylTZx09s3PJv5evyMdYqJs66kSEi1lhbPIsIOI8L3zVljrqMRDrqjGGVTULexSEMEUn6EVT8XvQk8AxO+uRCNdVgrXb0NnJXuqLY8iPTzRKAUliafSZSZlo0vAwt++sBz/F4ZWfnjBGmWdQnsRp//n3/Dle191GudzitNwRywhJz+NKjMaUb8Z66/augfvrNuRKhcPF+VmhXTdyEp6ZDwirXDiv/i29KndZXNnTBZPqSEeJFZtTeZn0ek0OsIcXN1PBzTajWAlGkQ0hoieJqIlRLSIiL4alg8mojlE9G74OUi45wYiWkpEbxPROUL5MUS0MLx2C4VHEiJqJKI/hOXziGhc5X9qNlQ6zbSKOzFvmMFV0wQWuQfdmPjp8XlHee0fX1mJVVv34PUPt0Zl5drHqx0GO+5cJbasslrT4dE315bU3yW3v4T7mlemx5FQCFf+GarrZelHb7W0Oow3tmlni6a2YUwOinCx/IklyVhiWp2GprtKo9OChXZKr9nhwmkUAFzHGDsUwAkAriaiwwBcD+BJxtgEAE+GfyO8Nh3A4QCmAbiViHgG+tsAXAlgQvhvWlh+BYAtjLEDAdwM4CcV+G1lwTRvSrH9V91SrsmtuCFWcg9etGpbcrMod8MzXetgy6q6fHKK606x2/a0Rdey/t4PHPx2yjWZrWSUWxl86shj3LKrFcf8MDYJTvtpxAXi/Nuxt6Cs4zrOLLnhS1mLNlSLaIgxuoDOE4tlhZVoMMbWMMZeDb/vALAEwCgA5wOYGVabCeCC8Pv5AGYxxloYY+8DWArgOCIaCaA/Y2wuC57O3dI9vK37AUyljjyKlolKjcys07BXShCNCjLqRGS1qKoGKrGI6iVOo5KZ5GwQN5/VW8tLkes66nIemfxoNu+WrORkouHQr244MoES/9ab3KoU4ZoOykC19u7HFyc5265BMjLqNEKx0WQA8wCMYIytAQLCAmB4WG0UgA+F21aGZaPC73J54h7GWAHANgBDFP1fSUTNRNS8YUPplijlopQNWnWHWadh5zTEU5Zu8ZS6AFw2BOe2OvEExcUsHLoAeh0xRrHJL2X0BZLhfPrN8DPS1lDmm13CiPziiXeMfXBs3pUkSKJJcTaT267LaeyVjA2qEc6oEnAmGkTUF8CfAFzLGDO5ROscEkyOCk5ODIyx2xljUxhjU4YNq07ubBVKOd2oGCcXHwVTnXwHmjEk7egrL56KkzBlu69c6GI4qcNmlKuHiO/fsLO0xEdxY+Xd7gL5PafidqXEU+k2Hlu0TqrjNvAk0cigCO8ATqNazKicEbQqceYqAKdth4jqERCMexljfw6L14UiJ4Sf3OZzJYAxwu2jAawOy0cryhP3EFEdgAEAMjoDVA+miTrlh09g+u3pXNmlcxr6Oh3FachNdcTJK3bu64C2De9H5yTXEctVbNOUO8UFtnfwjyeMDfss/ZfIYqGU4jvjmII6bn2LgQ2zmNx2jPVUdTZvOTVCF1FpOFlPEYA7ACxhjP1cuPQQgMvD75cDeFAonx5aRI1HoPCeH4qwdhDRCWGbl0n38LYuAvAU60CZxrn/9RzueP79ku83iac27mzBS8vc6J3pB7qERk8qAdVjcvHIlSFvuqa0tC4oWUTWATNg3zBrXrqvdGfl9l/JzcfWFJ8LJR0Swntt0dd3SSFPXPpyJWIiMReJ16Ej+wttpdERnMbi1dvLJvIukOdHV4ni68JpnATgUgBnENHr4b+PAbgJwFlE9C6As8K/wRhbBOA+AIsBPArgasYYF95dBeA3CJTj7wF4JCy/A8AQIloK4GsILbE6Am3tRSxZsx3//tfFHdWFGhmtp9odPMLFBaNaPKu37sGs+YF6ST7VjL9hNi69Y562bbHbbz+wUD8IB5R6+n1xqXtYB9fNo1dDXlmuGqFY9uaqbRh3/cOYlyEwXiX3ANuJPSIaGdq0cQ7yI/2BtGYSMct0PTsOSNykxWGIuTnUfhrx9aF9G906s2D67S/hB39dVJG2TLBxdrWKOlsFxtjz0HOBUzX3zAAwQ1HeDOAIRfleABfbxlIJbNlVftwk3WYvZmWToVTaGGZJe3jsM3MjhosATrzpKeN1U6wdcWwrt+zR1isVLpv8Y4vW4twjRzq1p3uWX/zo/vjVM8us9WynvDtDznTO4nU4fv+UjYamTadqTrAR3pjTyN5pZHJruXe1lJXPJS+U6zMoaKynkhaCaYhOs5X0Dhf9lDoK3ZnT6FbgCyMrW3vQiL446cBgsxAXQlt7EYwxbN3dinN+8azmbrUi3LSgCg4+Awk7eX1TmeHybDIFV3NQ+Kvwf6+vxrjrH9aGQPnvSyZbu05HF7afiGMjhLjwz2F2uSwmu5VUbL66whyMj2+YmTiNlGLbfLcssnHpy/UZJIMlxt/rVaEUBCTCsGvqLF2/A8fOeALrt7ubPb+5Knv6g6xIEd2uQTN6HtFwsUpSIUeEfznzIADxpN66uxUTvv0Ifv3cMmuIa7V5mEk85aJkFIhGBqph2/CDhWiukyVxlVIWHV2zt5M1V4K4kcge4fKwv/N/C/HVWa9ZxVMcrtFmVX2VgzdWbtMSTwBoqCt/KW/bk5zD8kFHFnG6nIxdn4EuLHudIJ5StuXgfX7Xi8uxYUcLHl1Umsd/R0FeQ10lfEnPIxol3pcjihYRb4On0XzgtdWauyxjMYqn7IrwUjclefGX0napHs5PLlmHl5ZtqgiRcwnTIW98crX/fekDPPj66mRob8PYsqRdrbQth4nLqQ/tr8vpcu0280m8RTYRdejLVeSSJBpxuUj0VW21JAipui8uulu1tfJi1nIgz49uZXLbnVDqQs7lYhEAn7zczrqxLmddQFnDiEREwzCRfvzIW3H7GQRUldjLsshfxapXzGzG9NtfytSX+OzqMnrB18mchuZ5ir/nvubAeED1E9uKRVx976v4Y/OH6YupNq1VKgbOaZSy8fDna+Oi0iaiDpyG4xi04inBGUl1UBGDHeqGw4mGqNuqBaRDwnfSQDLCqgjvbih1w8wRpZSNPGtYU72d9roELPzR7CXYsKMFN396kqDTULcnmz9mOrlbKZx9sWdlDbUpAAAgAElEQVRTaSisXjKYiIrPrj6fQ6HonnfAJp6KxxjjhaV6cVh7keHhhWvw8MI1uHjKGG09U18dgUYunirhvbyzbifOu+U5O9Ew6DS0v9VVPCU0LW6mqwQjDFuCMF1XtRqQSOYcu03sKY8AgXgq+M4neEvEaeRL4jRkscvtzy7DA6HCNeY01PjC3c3J9s3dJ+CkwLRUkie4Sd6ugkto9KiuyGkIMm6XzcCUue+Xz7wXl6v8NBSjyyKeEolzr3q1qW+lEHMaaYwd3Ft5j7hRL1q9He+s22nsQ9bblZNHXIYo3xdveVsIOa9qS9ST6zbdUoMadnQmvd1yGJGuQTN6HtEondNI28Jzdr0+nytJLDDbEIrbZj314nvJ03CW+I62E02gBjfXSQW3M5gyl7sYxEXfIIgrxF98699iAiA+iomjByTa4hvP6q17cJMg3lOHEUmXueiDVDhon37R9787ym5G/J3zDs3UPk/ypRpzb61vSnkvxsm5T1OnX1NSyKELWCiOXSWeEq3jtJyGfZhKZDH2KAWDetcn/vZEo5shwWlI3to5Ku2Fm9KmFi2cRjmoSJuZxCCGaxkHI3IaInSpVEWPYiB+rhdJSYY2OsaGymIAkDgZixZBjg4FV5w8PvE3waTw17ejFcmVORGcrKc05bLYUGxrj8C19m6oU9bhyAntaHUaJTpwlBvO3g5KzE/vp1GjKPV0lculdRp8SZCDDiBrpPcoGmuG4b61djvueuF9az27KI3s4qkySc/ji9fZK4VImBYjm3hKrsM5ODn67TW/ey36Pv1Yva4ii8mtyH2JT0vO8aHDd//usMTfDMAmBUf3hVPGC3WS7+WJxesSIp5Ee3bVlhFunIa6klwsbtA7hXwcdRbrqQSnUQJBNaGjw+gXikU05O2cUq2h5xGNEt9MscgioqEK8eEi8skCm04j1T4B037xHG78y2Lsaingq7Ne01d2WeyW65kU4Ypn8/7GXWE/2U6ryfrZdwOdTkLkNHioEaX1VAai8dcFa7B49fZUW40OPhXqqMhMOf7rzj441hFJlz8v6b5ElHuynbPETvh188TkDb2jJU6NK75vlQd6zkE8JdbR6Sk+P/PlVFl7mTHXbGhrLyaswzynUaMo9bW88sGWSDRSkEJ8PLZoHR6xpArNctrZsqvVySNchDj5Hl6wBg++rvcdsW3UJjFI1EbKxtxUt7RrTo1bIFut6U6PLY4B6na1ZFP4v7s+OOWLz7y+xJj2DOp3R+QWal7VXjkQ89Lr29LJxpJ/igRB9AcRX5dKx5BYVzrxlFBHboMxhm172vDEkvWQ0dE6jbYCS8yFLkIzeiDRsLwZbkYroz6Xi06Iqg3mp4+9Xf7gQkz+9zmRpYrrPBLZ+AGSgk2GbXIWikUsWm0OoyDvvR1paZIIjCd0oyPEpPnjwOF9o5hexv5Yul+O3a1mz/+/P3p04m9V9FkXnUaWWGU5Imuo+amHDE+VmU62B4/oV5ap6mdPGheOR31dLk5YT4nlRfHdpxtjmu8ixIPDtj1tiWu/m/8BJn7/ceV9uoRdlUJrexH1dSLR6BpUo+cRDeH7uOsfTl3nYhMZ9XmKzBo50cjyjrMuwN3hida1D1FO3qdB7X7DJ6WtyRkPL8Htz5odoVyyuBVCUU65bLe4dssRTgU+Hu5jUQ1bF1qd48unH5D4myt8XT3OzQNSjylHFD0M3aMe3r8JV566f7I5Td0DhvXBmMG9yzr5ThozEEAG8VSCOMTl+w/tE31XKqYdRMQijZ7ywycS5uEvGCIpZzGvLgVt7YFO48aPB7qrrkEyeiLRsLwZPjH5pOeor8uhsS6QdfPQBVmUwSrnvgOG9VHUDMBNO137aNBYFYn4/l+C0Na2E817G9SEMwGDIpODe6yXe4Dit6/cshsbdmTLgCd7k5drEWPLsyD7BKgCCdrilAGaCAKa2UCwE9D6PGFIn4Zke5oXE4hMyntOkQmwph2TIpzf88t/PBq/vPSYuI6SZsSFu1rbsUlhBSfrh340e0n0fUAvPVfe0ToGrtMY3r8JgBdP1TDMb4YnHBo1KHmirFOIp7K8ZNnE0D6SAB9u3oM9rWmRmbyp5AUvJ91CvevF5QAqE64gJZ5SPIw3V23TXuNwCkUR1nnjw22JcheLNLFGPkdOp0cTR2bTfcgjIsHibnC4aY8fqj8s6NqRx5bsw9pcpvmXzwXWc+WIp1Qclgh5TnDxVLHI8G8PBrksjh47CEP7NuKp6z6KAb3q1eIpqWjBym2pOjIhXydEu+1vIBodvYm3tQc6DT46rwivUdjeSySzlurV5ShNNDL0W6/iBBwbkOWw63fsTYe11sj9VahEYDS5DZVREZM+S++rdIiEpaEu5ySnNvWnsp4SI8zKG624YU3ZbxD+cs3JuOLkpJjIFUwjniIxmKZm8PX5XGrz1OmhckQoMpZp05Q3dE40tKlbNfffO29FzHWEw91/WF8cO26QkktM6UYUdUwqJBOn0dF7eGsh4DSyhNSpBfQ8omG5bgoUSETI5yhabFmUv0oTSsd7ZYIz7RfPpdsSGrOeWDqA0zDJm805Qex9iZ7bIrIehHs35J3EU8wwbtV4RV8BeWPmqiZ+cj9y9ADkc4SPT9w31Y7o7Jl1vsRhWdS16nKUImhaxbGD35ENVmV/ilMNPpdv2h2Vic+SiJQcso5YuaJfk4FodLCWoa29iIa6tNNwraPnEQ3bfsrU9fgEylH8cjO9ZEtVlQiKwyVkh7h4qkAzUotV9SzmL9/sNB4bdMYJWuspoTwhniJyUoTzd62qqfqdJt+NOJw+S+i1Dh3ZL1X3U7+aax4XY1ghbKrJfngd9b2qTVxXl8Jr5by2nIXTcMlaJ7871SEtxbEoRv2zOe8k6whVTDSmox3CuU6j1NhYnQUr0SCiO4loPRG9KZTdSESrpJzh/NoNRLSUiN4monOE8mOIaGF47RYKVxMRNRLRH8LyeUQ0rrI/MQnb6SESqUjV+GlSPPGUG+lV3Hg37zbFbnI/HQPAZ+9KOyrp6pYKkyJThuk5dfTZigj445c+gsf/5VQnT3dA/3z2G9Ib7yi8q0UdRUrXJIgeksH17ONOjQvAP2ryutv8NFS+IaYcJMxw3QX1nGhI9PSddTtQLAar4QunjMfsfz4lqKcRu3Hkc6QkLHKR3J8tW5/Zh6ijOY3uq9O4C8A0RfnNjLFJ4b/ZAEBEhwGYDuDw8J5biYhHHLsNwJUAJoT/eJtXANjCGDsQwM0AflLib3GCndNgePD1VaksX+NDS6cgzlTQyLIN+qig4umTMYYla9KbjesUcSFO5RIwIFsk1hTRMDxYsyI8XaaLyiri1e+e5ayoPXbcYBw0ol+CSzRBd3DoVZ9XPudBvWOrJFmsxE+RRcaUFnRZYBq6re1eDfl0QipdW+EcL2cL43oeUYe0YOVWnH3zs/jVs8tQZAxN9fkorUBkfCB0Ko6WSD3H5JKfPJoUZV73xzdS94ghbEy/saM5jZZCO+rzuchpWMWxbtvThrfXqsPAdBasRIMx9iwAfWS9JM4HMIsx1sIYex/AUgDHEdFIAP0ZY3NZMDvuBnCBcM/M8Pv9AKaSPLsrCBdizq2MRDSF5rZcSQgkI6vK+GPzyuj7mm17lWaW4lhMpxq3jc59huudxJybSPtpGFZY1gOUTh4uzorBfRqcNmE5VpUbpxFUkhexTl4uPoscJXOXJ0xuMzxfVVW39KrqOr0b6lJt6trj4qlywM3T2wRrtZVhbowFK7cGOh5ACM2jEE8JAxZ1iQlIA313ffIgZ4q+HNxu+qEdRzXa2otoa2fo3ZCPIv7uVEQbmH77SzjnF8922DhKQTk6jWuIaEEovhoUlo0CIKY0WxmWjQq/y+WJexhjBQDbAAwpY1xGuIin+EQe2rcBP73oKABxdNWcRiEno1XwLOdmnteeOSHTWDjc8hY4NRX2q0YW2aqTIjyq23lst/iTckROz5wP91+lU6qWaCROx0klNwlyo0TEixKeiUkfYxNP9WrIpRXhOp1G+JxU16876yDlPXLViNNIcNzpfmJOTD0ODt26sz1Fm0+M6TV0JKfBc2n0bsijT2NANOTEagCwZA2PXVY7oqtSicZtAA4AMAnAGgA/C8uV0Q8M5aZ7UiCiK4momYiaN2xQh8IuGyw+HfbvVY/GUGTDPa4JbpugOOF5/f2G6MUualNK/bX0/Vk4DXXdLCGk5TZKjdNTlhBEpwjXXHAl+Pyn/O3t5BxzIary3BA5DXFO2B7XX4S4ThwuAfR07faqzztzGnGo//R11zkSi6fiNuT+iGI9T5RuQOhTJvjywaS9yJR+GSLEiLkqZBWdVgrc8KVXQz6K4KAiGhwdHXE3C0oiGoyxdYyxdsZYEcCvARwXXloJQIwrPRrA6rB8tKI8cQ8R1QEYAI04jDF2O2NsCmNsyrBhw0oZupMPA1/cDflcdFLiij1XEYc44fnETGWRE9pRTQoupsliJuoC/QkzQxvS3yb3h8wL03EcWWWYJOg0TjtYP3+0YhtNh2Jtncc4Y8wpNSmHymLM5GMSEyR1y6Lzp20MBLXSOehHO4QEONEQxVP8Gw/uqUqhnBxHjHwuXed38z+wjmNHuBHrRJ6mpdWRHDIPZdJUl7f6tAD2SATVRElEI9RRcHwSALesegjA9NAiajwChfd8xtgaADuI6IRQX3EZgAeFey4Pv18E4CnWibwYY7EctLEuh/6hHffoQQGXkMuR06k+yWno++JQBdJzmUxxH5XQaXQMp9GZnHXC/FawnjJazWjKdc9HfBb1UthzJnxmIco8VM38b0+NykzvOCIZYZVikeHWvy2NrudzaS5BO4/Dg5GS+3Uk1TzDoqiYlvsTdRou4il5jqlChsj9tFocccv1ISoV/LfU5UU/DX39WiIa6sh2Aojo9wBOAzCUiFYC+B6A04hoEoJ3sRzAFwGAMbaIiO4DsBhAAcDVjDEu3L8KgSVWLwCPhP8A4A4A9xDRUgQcxvRK/DAdbBNh9sK1WBoq0xrqcph66HD81/RJOPeIgE66ijjE9cknpmlTVnEaecOCkpFlfutEQtmIRvJvkyL8rbX6iLllMBqOYUTEjcdNjGcS26jAEHh7f+2sgzBKCmgoEinx9oIlL8fecJMY3q8pvsdBp8Hxwnsb8R+PxpGXg0i40rj1NCMwuVVcc5VgutQjiuvZ/DRyOUpFHRB/0e++cDz+4deBOTJj8fMILOb0792s06g81djdWsDetmK0XpIRivX3lZpmuCNgJRqMsUsUxXcY6s8AMENR3gzgCEX5XgAX28ZRKdhk6K+siCVjjXWBmeL5k0ZFZaLZJp+QKojmq7xKWjwV36yKicRPhuVsdCpUwnoqiyL8m39a6N5wBmQVT4kE3/i0tOI7vSK8V2MeJx44VNFULKsX77fFsBKz8XGs2Wr2OQj6CSDn/cjnKEVZdK9MpT9ItOOAOjEWGmNKHxkx/Ima0xDbo5R4Trw+ckBMrMWm6nI544Zr2g86gtP4u1uex7KNu3BemCc+nyMj4eSoJU7De4Qb0KDIsKYLZyCDmxwCSSKTGIvwXR0zx53TyMJq2MQvBw7v69BGspVn3y3RMEF1wizX4johkkp+j/O7GzYLTfnqrXu09bVj1nAaYnhuFT4xcVSqzOS0KZ9W5Q02r+Q09HoLXewpF6Jx7+ePT+R0Wbc9ECPJc6Yhn4sNBRR+GuIhq19THXbuLSTGLA5FxdkDsaJd907NjqeVpxrLQl0VT2CVCGtvuC9LxsiORs8jGpbr4uJXpeUURRymCScuWv7VtBl+5ffp9Kx1HabTMItfXGJqyU3cPXeFc/8iZJ8Y22YqwoW2JEQcjh7humfJ/QxSkJTcybaiKonB2DiNrMn9YpPboEMXHxPda+axp1SbppzfXBWH7SSJ4+Je9PJjbayPQ2jYjD36NdWjUGTYI8wPWefBIbYkeuSrYFo38pD2tLbjj80fWjn/LHM44DTsZpJFxtBeZB2a7MwVPY9oWF64uLRUnEYcAdTcjrgItJyG0MQHm9MxhfhCL8d6SpaxAwarGb6AhcbkvCIc4mIzecbbsF0wiXxvw04c8t1HI52SDVk9rAkip6Gvl1UsEXAaumtxY+J4xwrm1+pw59l/W9BW8NkmiTvzioCFupkQEFf1tXpZmR5+7m0zWXYlx8bRVJcXYlTp7wMQ+TKIfhcyFxmNScOtqCCP6Ysf3V+4lrw4Y/ZifP3+BXhh6SZte3MWr8Mh330Ui1abTYHj8cXvzrTM24vAAd+ajc/8Rh1GpproeUQjQ101pxGIp2z7uKi05HNPnMCnHTzMyv7achKI0Fkvfe7ktGxc117fcGGK+pV/OH6ssq7YxsadZq9bV3BHpkpCPo1GimnNs99/aJ/MQglZ9AQA15x+YHQt+GSJje2Lpx6Ak8MTuWou5bMSDWljljmNXI5SRFbV7wNfPjG65iKe4hurLk0yEB96tu9NhvgPOI1kO+IBKeHNH3UI5fUkpxFXGtavUTsusV8V5OfDxWwmh8FZoRnwh4pDoAq5nNnsmINLLuYu0xOsaqHnEQ2rfCr++i8K71cu77UppsSNN+I0hKfdp6HOOhYxbpENuuRC6oR+6rojBwaWOuIGoMwDAvk0Zx0eAERJiEqF3E1m8VTOgdOgbKI+IK3kBoDTDxkWXgtQZMnnlM8Rjh8/OBxLuj8X3cHYwb3x6nfPigcuoK2g0GkYOF2Opvq8ELAwfV0OfMg3VpO4jT9PnjmSo7Eul5rjolhXxUmIQ0rqNASiIVQaGhINXeKr1G9kiNKvyuuE1zXNO650761JuZzuPz5MGH1Gakel0fOIho3XEOfDsL7pUwo/rf7s8bdT10REyZwQL4jExkJ2rkf2ljVBpyhTefDqmuOclcg5aH0TEp67blSjWu434mhkP42EjkGBHDm8GAkqTgORYjokUkgHLDSJZlyIRkNdLkWI+XuRzXPzubQwT2nmysUlTJ1ctk46RPA6Jjm+TofbWJ9PGXuIYrXEe1SYpSY9xtV9MMZwyD798NA1Jymvq579AaEhSPoaS41LBj+86ZaEnPQpMA8moXVNuzVENXoc0ciyb6k2TG5yq9JBiHhMiJLLJ1+OCFeddgAAtehLxkHD+yXuN0GWYcfjVRANTRuykhNImk4m2hAaMYkmbP0OVRBmV2S1sSIkN3FdncycBktvEvLJWFWHQ9Wfi89MQpSTEk8l28ypOA1Fm4TABFQ7R1LiqeDTLI9XX2ysywmn7JDYCRQmmYSJj1kjvtJwGowBQ/o2aJMtyfOACf3KryXmNPTvhouJdb9ZVmQXmfjuTKKy6hy4XODGQ3UjZHn0qrnh6tz38vItcZ+CIvwb5xyMa8+cgBsfWqwkYL/97LGYPGYg3l2/E3ta2/HkW+udTui6k4jaakbdnirUgnyy5L4pYhtf+V3a8guIdSRRv4oHd8Awe75sHVziIKV0GuF33SMlyq4IX7xmO/o0JsPK5ySqwZCeTybC0KvBHqY+Kf9P4uXlyUg8qtDsqnkVuHPo073Kh4hyrNEa6/KpDbqgIIRAWtEvX0+Y3AqrnMFsMPGLJ95N/D1heF9rfgvTrONzXEs0pDbbi0z522Tc+fxyQ6/Vhec0JBCpTy9xWbgAMxxzRU6DiEKnQUBFwvbp34SBvRtw7LjBmayndOIplUJV9wxUBEYmJHzTEJvYpAk/LS8QlZNVOQcoa0pRCaJjpmoTD+oEEV4ffH2VU5v83YiHBACJjWfNtj3YsKMF8najc+rq11RnzF3NIZ7K5TzTT721PlG3pdCe2u1Uz56Lp3TvRT5EtLYX8cqKLerKIUycBn8GvI4Y1JOUnAaU13U6DdkAwTami44ZnXqWUVvKO5IoWImG/Ddz0l0+vDAdwLKz0OOIRrng5oimze6CScn8z5FOQygzLUyxr+B+fZ0vnDIeQ/s2asVTYqcDQ4crVfY5QMdpJKdI5CxlGbwq4ZFKWZo4FVqex24pJW6WqLxAeIIWHuZx4wYr6xUZ8NVZrxvbmhiaItsC+zEG/M/TQQwo2TpMpwCdOFpt5iyjoOA0dGK31kLal0St0yAjtyVzGjc98hb+/rYXjePUbaBNCZ1GUKchr+awYp1G3Jb4+hMmt8J9RaY+/OkOWfz3y30l6yiLw/7MREO2chQPoLUjgDKjxxENl83OfJ1QLMYv+JB9+uEWIekOAAzp24g+gnhBJQt10bfK5ogqFIrBpLPFMhLHodsQVZFQZUJSzzkNy+CD9Jzq/kVk8VWSs7Bl5TQSm6FGx+CaErYhbz4dRpscEGVtlPPA60wtXUN1qHQaOqjEgEpOAzBaT8mcxmIHfwQjpyEZA2gDX0o6G6Eo+J7gNGTxVBqmOF7Re5HKebu6Z/3kknVRqPZCkWHr7lZ88Z5mbBVSOcvvOrCqU3M2pr46Ez2PaFiu2xzGuHgq/ptShIakfniIjcTJyEGNq7KukfUC2/cUkKPkIhAJ1pGjBkTfbWbCqk1Y3sB4FFfbcxzQq8FJF2NT8O0/tI+WI3DdXDkSOg2FNVNQJ7hqg80KSzyt6qIV6+Iu6cycZSjTn2rGM7x/U+rEreU0wnGruBZ5bGKNg0f0w/1f+oh2nEePTXJQ3BgkEWVBs5mrnojIaTYIHHGiBY14yhgxWCM25EPTrd0v/e8r0ff2IsOdLyzHY4vW4bcvLE+UJ4cX/12qQUS10fOIhmKuvHj9GXjkq6c43c/NNmULjWSdZNltYVpYl9DUKuWeOJkWrU6KOPo11YFACYKwSzjRHjqyf/S9pdCe6vOfp8bZBFWbsDxp+eI0hTM445Dh+NSU0anNUCWnjzdfhqffXp+6Prx/o1bzqCMaX79/gbI8odPQchqOUYWFdoz1IORFkSrrwrboLNZk/PSiidF3k4jjpguPDOooxiaDxzXU671kP4244sQxAzBFQeDFiK4iuM+HmEJZL+5Ln8bF1no15HHuEfuk6ug4DWY4P8XrTlNBMx9FEXF7kSVT/ULd5tC+jUbCkPFcVBX0PKKhWCoDetWjKYxKayPscnhtQvr0oEsrKstgVXNSZUZYNJxGvjntkBSnoUORpet97ayDcNKBQXZdFachF9XXJVn35uXpfFmXHDc2FE8l+zpq9IBUXf4sH3pjNf78alr5bAppkV0RHo+JwaAId+CQeA0XnYbOoEFHTFw4qB+cfzjOOmxE3J9C5q8bUwSleCr4j4HhzVVpD33ZsEI02lOF3QH0IqeGOpFomOsqdTbSWCKCFVbZ2VLAgpXbUrowwMZpqJ9lFp3DdX98AzvCEDm8HRWnf9KBQ2PORrGGs4bKqQZ6HNFQvXmV45MOsYgjbii1YWtOqwmdBpInIn4KP2hEHGFWVBK2FNqxaPU2zJasKHo1BB68piiYL90wFVefHviHqJTRE0J/kLxCLCKLNPjpsMgYHl+0Fhf9cq6yT64buGfu8qhs/fZ00hy+eFdrwn7vam3Hy8u3YOWWtF9MZtadkpyN6q0T1O9ueL/GyMcGQh197o14m+PfZa99fmpPyfwdflaqW+FU++w76ojD8uPSOfflckH733ogHdLe5Oshe4tH/WgONLy+KPLNZE0ni/uiMQXl33twEQBg3vvpgw0nTgeP6Je6FrWjEz06Do8fqHg7Ot8unQ4FqE2dhvfTQHDic305XMQhbjg8695Rowfgxk8cjscXrVN2lHRWSp5oR/RvxIkHDEls0lESpiJw40OL8XtNeksivXMfAOwzoClK5tOi8Nzlm1a9g1gkkh0z4Mp7XtHW44fl74YLFwDW70gTBtsm8caHWwGk7ekBdzFOPKaYvdNxGhD0HiJ+fOGRyZhDkTgl+FPOfyFaRtk4jRTBz7Jx8v6EYV1253xNHb0+IqpDQT1XZzJxDms5DS3RCMYjxgTT1RU5N44UrZXq/OnVldpx898n+9cE4+KpapPvJWtEgzdCpXjspa+x2JLGlLhWg0Sjx3EaqveeF4K52UJiyPk0xOoHjeiHo8cOCkVPKlZTGovwvdDOUmIJUSH3erh5qpAjslpP5TWiEN4+oDZh3SEFmeMLyrZ8VFzAPgPSEXddrac0+3smyDoNXR1dLChVCl9ed18pmrAY9iLiNGSikY+JyYpNcU7wfQc2IStM85ZfcuM0CLoQN18/5+BUmdhEo4bT0KoGiBONmFhYiYZQJteNOQ07+LhV3fVVRNRNjiXbxCuFIHJ4RXgNQLmZC7bZtlfEN5UnBecprmzmG0dOo0gc3j8OmSHPhUKRpWT0op+GSX5PDjoN08Tkm4eqjyF9gjHzEOv1FlPTeOzpspmfPRZ3f+64RJnr6W2HEEL9sPB5Zw2tkNZpqMVTatPH5DmdzyPRcTNZP67H91I5Dzwn5IUiw0d/+jcAwLghvfGvis1Zhv65pct1VXUmt7r4WwN7qwwZ9JzGd847NKyjGWqIXKj/KhaZNoaVSmeTzuRn1+tw8A1cVbdvk5po8KpZt3Heg97STj/u2iMZDkSDiO4kovVE9KZQNpiI5hDRu+HnIOHaDUS0lIjeJqJzhPJjiGhheO0WCp8UETUS0R/C8nlENK6yPzGJjPtMCuLGw3HU6IF44MsnRuGwZfZ+1MBeuGDSvomUlMFg4q/tRWZ0pFNxAX+66sRoTLbMXipb8E9ODrLDXXvmQTjz0OE4X3JKBIAjRw/Ac984HX/9ysk46cAhuPLU/VPtyODpPWUM79+EUw8aligzbfxifK5HhVheX592cHivfgwqJLhEpk6cRBojhhSXKOk05J8riosGh4T3O+cdlqhTp9BpDOvXmMj66AqTHJ4fKOR3og4jQtr4W4ylLeDEscs6jU8dO0bbj9wnY8D1f16AWS9/qKyj4jRkkaxYR9WnaDgQW2ul+9JxGqVm8rNxGoDeMKarchp3AZgmlV0P4EnG2AQAT4Z/g4gOAzAdwOHhPbcSEV8BtwG4EsCE8B9v8woAWxhjBwK4GcBPShXSCEwAACAASURBVP0xLtCzyslPHbhzn3zf5LGDopOWPAFaCkX0kkIlBxYqMdrai0ZOQ2W6f8x+g8K27OkgVea7nEiM6N+E31x+rDao25jBvTGoTwPu/fwJGBbqRuychttkN238DUJAu8Q94U19HOIziYg3VqbUaXzm+LFaLhFSfVkRLm/I4gbWuyGPPg15/P0xoxN18gqdxtbdSXGgDvIQTSa3XHRpEo+K7cjzd5/+wTsf3KcBYwb3xv9dfRJ+cP7hwdiFxSBzGjaFMgcXG97XrNdBRGMW2pKtkcT+bKF3eDtqX5RQp1FQt5E9oCUnUPr7tFkla49m2IkGY+xZALL5wfkAZobfZwK4QCifxRhrYYy9D2ApgOOIaCSA/oyxuSx4gndL9/C27gcwlVTH1ApBHxqA6zTM94uWHoDaJE4UcRTai9iyuzUV1ZYk2XnAachEI7zGmDJuE8eyjbuiBDHacSMtVpIVyS4P3bQ5iXC1hjUtpFMPGoYmxal7YO8gHPjw/k343EnjU9f1Y0pzWz+96Kjo+/ihfbRK4P2H9cFHDxqGo0YPwP7D+sTvLhJPyXfEIgdRryGCi/r+S1Dyq8xt//mMA20/TRk6nCPmNJLlahPPtIjuix/dH/99yeTID2LSmIHRe2kXTvsy0YitguwHDNtGHG8Jcb3UQUnozyaujTgNxbIKUrCm2+eE6LUP9PpFFfhI5N/4qSnxIULH3dUgzShZpzGCMbYGAMLP4WH5KAAif7kyLBsVfpfLE/cwxgoAtgEYUuK4rChTOpU6ESgDywmr88v3vor2Iov8QKIq0lgCnYZMWOKNR5TplwKVTkM2PnIh1XL0Vms9BW77zNHxH2E7q7em82//7OKJKUIKxBwWABw5un/qun5MwSeP4EoALp4yBp89aVxUhxScxts/nIbRg3qjX1M9HrrmZEwYHptF63QavK/dre3aAJd8E3p88bqoTPV7Dx+V9m+REb/f9IvhG2gfKerwjWFSpH+/4Ih43GEmOXGjz+cIH5+4b5KbCr+2ieKp1PwNPotJ+qoYuz1ytMy17GwpROKjP3+Zi2njOrYNmD97sd6froq92evyuQQXBcQm0//1ZNqSz4Q4K2GyXEzUJEYrEJE1vlo1UGlFuOoXMkO56Z5040RXElEzETVv2KC2RbdCJ3pwvF3M/gYkF1xUR1jAfENQcRoiCu3F1CkzMrllzHgSO/3gYdpr8ZjSJ1HZUcuFweM1dOM5bGR/fOSAIanf178pXiATBNt43s49L61I1W+qz2cOFWICX4Dvb9yFhau2pbyMec4J+afJOgaRG9Hlf+cHgJkvLtfqpNZsU/umlALTU+LiqdNCfdJEKe/7pSfsF33Ph9ZT4n6pEvXEvidxRXmTFedcW3vR4NNi13vIZ5UjvvcY7p67Av2b6nD0WC6mjfuziadUYWCO2S/2Zm/I5xLiqfuaP0SzJZqvDtv2tIV9JseU+Ju6P6exLhQ5IfzkpkQrAYwR6o0GsDosH60oT9xDRHUABiAtDgMAMMZuZ4xNYYxNGTbMvlFmgbufRpKVFjfDqK3wVYvpLYf0Tac6FedIQSmeColGEWhp04unuLjGBP77RJNbeSPLwmno1vjsr56Cfk31KQJ086cnRd9FQqBb27xORygCz7r5WQBJHUfQV6BcXbZxp/F+7vwG6HUaYwYHRg8TRw9MBKUT8YmJgU5p5IDYxFYlhczyBFSP8++O2jca4/HjBxsTgLnmEuc1ClLoDBWKjGHCtx/RinVkPeHA3vVYftN5Un/qedcgEHTRYs2u0zDrGerylLDO+oYmNI0LuK5GFgd+akq8VeZk0QOCnChbHHVc1USpROMhAJeH3y8H8KBQPj20iBqPQOE9PxRh7SCiE0J9xWXSPbytiwA8xTowL6g+YxslPnWQWWnVZsCL7npxeVQmp46VrXRUJrein4Z84v6akL9cta/O+OQRCfNWPk5RTivGpQKy6TSymtyK8m6RwykypvQx4eO1EY0sM0VnFhuJmHKEV1ZsSaS7VUHkNEQuJdk2oU9DHn2b6hDkTEi3M6hPA6YeMjyRslUdjyx9c6qaQvzIMU7Ij53PBeHhdV7a+RzntuLrSiur8HW2JXJ6qw89NuQoeZhRmzyH16T1KxJAUYSlIhrD+sVrsN1CNOrzOatxSVb8VtgPAOAIQeyo0qVdrIm20NlwMbn9PYC5AA4mopVEdAWAmwCcRUTvAjgr/BuMsUUA7gOwGMCjAK5mjHHD66sA/AaBcvw9AI+E5XcAGEJESwF8DaElVkdBfC/nHrEP3vje2QCycBrJRaS6T9WUyrKEscAC5MaHFqG9yFLB4DgnwBjw6WPHJK71a0rKQ2V85vj9EuatvIpocSJn1stif2BXhOvbEi8xBmUSHy7245ttJaRUchs8pIqOW9CC0spN1fgi/wMW3qRqStKRqTY7F/ltHIo9eeV//uHoxN/5HKGdMW2Mp3zISa8WRGdm8ZTAuUoDjYiy4v5fXzYlvk+KU2byV9jT2o6fz3knKt/dGuv6RBGW6vd957zDcOy4QJT1p1dWhn2lqgEA6nNkjLKQFRt3tmCOoLuSYbLaqzVYw4gwxi7RXJqqqT8DwAxFeTOAlAKAMbYXwMW2cVQK4ovpVZ+PFNnRKcXJ0iP+W2k9pdpAFIb8DMBfF6yOOJL6lMlt8FlkLGUDf8lxY1P1TOAboskKy6Udm3jKpa2keErd0JRQ2S1yHDrfgeTf+oHJ74Dnt+AcnmsARNH5LQqXrXnnwYap5jSCOuaAlIBbAEPev8wlnXfUSOWYdOKbXA6pwJEmSU8yEZSa01DdPlkIky4bl6jq89/3/55amnCsFcU3ogOgapr3ashjyrjBeHn5Fvz2heX49nmHaVd7fV1lOQ3bG3QxBqgV9ECP8BgqaxBXm/LoNsUT1KWJTfwdmcDGZXLAQL7o5FPTlP0GJayxXDYVXsWUU8MlbKPJSufCyaOEepK4RmjbhWhwLkv0mlZBLjUtPPkd8OinXzv7YHz2pHG48OhRirsU7UAMR8I5jfSz44moikU95yUr3lXjd8qFHn6u325WrnNOQ/c8VemBS83zwGvY9AvymtKYwQAAdmhCe4gdmhThXBRaZ4lsUJejVIDJcmBbo7Ipfy2j5wUsFF6MeHhXbeIqpGJPKeu4DiZ5IpdNFkXnPpHFT8eociEaIadhIhpZOA2p/KUbpmIfQaFrzhEQX9Otk1IV4ObQ4Mk2F4fpVwf0qsf3Pn64cx+5hHhK3Tav1x5avuk5jaRuS8lpuGzQjjqgHBHai7F/xb+efVDiumpzs+V90Y8p+FQF6kuYfktrysRpGL2qhe8rt6RNuIHYi7w+n8MLSzdixSZ15FmTToMbMOgweWxg/PCGEC/O5jdSZxDRXXj0KIwc0IT/efo9YxvVQs/mNIRpZjpBiyCpjjp+kduJnSFpvy8vWNF0VxyVzgnQ2F/4WS7LrVOEiwTDNiYX66lIl2GZoar0mTpUynqXiBSchqq/IJJxkekJu7xhKvUHGVap7USbz4Xim3Dc/SU/I9U4ldxPBkKm0g2IM1o+ZZtMT+XNd86/nJrqjzFg6Xq1BRwnYPX5HD7zm3nasZuIhjYlLb83l0vtADauJZ/LJX6b+DN7N+Rx8D7u/kgdjZ5HNMQTToLTCOASHkOso1qjSuV4SlyDlKew3uSWJZR/KYV5hgVs4jSyiBzsYjwTpxF/t3no207Z8t0mnVSlzHf5uwP0zn28rL3IQj8NfWMioVA9DtUzSOcVDz5dYpC1F1m0ebqINmW/DiCDXxNp5pzEaYjOq2rrqXgtiBCJXjQ3wZTBFQHggkmBCPJsIQ4VgFTmzvo8abkDW0Tpunw61YLMbclx3vK5pHe9OCdylE4p3ZnoceIpJE44lPpuj8iZPDXowojYwHWp4hg270oqMXOaMeliVJkQ6TQME95N5KAWT6Urmi4ldRqq020pfhrBBm3ot4SFN1OKyhu0QwLR0HMa+RxhZ0sBsxeuxdjBvZXty8EmVZyGy8bekA90XKosdYn+uPVU2I+NKH/m+LH46EFpnyhXSzNVgrBTJgxNmL8GRCNWaJsObvLzEXODx9ICvRiLm7mOHZJ8H7L5eV0+pz1g2XQ0+dCrXoS4Z9z9ueNSgTvrJE7jGSGRVkA0aodq9GhOQ1wwrpwGEUm26ek6St+N1N+B6ELcD+a+tylZJ6ceUzpkhTunocrcpxujup3g0yVyqeo+GVrnPi6jt2yYony5UCxaiEa2hff5k8drNkyVc5jinRMwe2EQnVeftS15Er9O0jG4jruxPpgsuwQT1FMmDE3Vy4fWU3wTsxGkoZJ/UTym4HOKENJFhRwlN8xzj9gH91xxfOI35XIOOo3wM0U06hREA/aMijZOuSGf03IaNlPculz6KCm2dfKBivci6TS+cHdz9J0ouZ5snE5Ho+cRDeG7yHaLpxQTckSJ8AJqUZR9HLyOOL2+MS2ZR0FM9yoizWnY++N1TOKLLAr1rCa3vYWItDzPOKBf3HH+aHM/ohVZsWiLJGpuS4bucRDiecQ3MZW5rpOpLOJ38p3zDsXFU8aYb9CAO7ntbok5DdFpUByTyGmoYl2J0B1IeLnVKgiEpRti/YJajCcdQpTiqeBTFvMkiIZgcitWu/bMCYm+gCTx+fGFR6b6q8vr0w3YOI26fDo6M7/nR588UnkQ+mDzbjzw2qpUeTBmSjznJ5bo/T2qgZ5HNML3ffulx+DvBRNLVRRYFeTol67ZxVVrj0nlg6RwIPy0LZ94ZPm4i0mmi/VUFoV61tDok8fGJ9LeDXV48OqT8OkpY7RyrpLEU8zsZZOVxTcpr/nPLxg2XzexISUsetSwCgOjzVPkNFS985AdfNyyfkyGiXACkj5GmeBMct7UcObi6d2U9lSXMleswxArq5/7xum49syYe1Ol3h2oCDoaKMKDOnskkZ/KGkzUtVxz+oGpfYHfU4qUKUdJS8/O9ufoeUQjnNjjhvZR+mm4bIbixuui9FaBwBXhcVk6ym3wKVte7JXiUMndKZWAXKdhNLlNNnTXZ49V1Ak+xYl75z9N0dYDgrDiMiaOGYh+YYgNE7KIlGyBHTNzGtoxxfOEvxtVvnJXp0v+TmynfhHyz+RBFUVOQ+07EmyYJg7pSCG8hdZUmGcjtL6/OA6XbkyqMOSpdsK3IRKXz540ThtipRgRRVlMSilrLZUYKvDTCMZ06L89GpU31OWUllD8OVx31kGYOGZgWhHertd9iVA9B5J0Gp3tztHziEb4wFM6Br4ZWsSF9XnC3oJ5YTptTtF9cWWd9ZQ8kcTQCfIY/uOio/DQ1ScrxqRuS4fLPrIfTjt4eKqct/Pu+h1RmSp5kzgm3ePgsmwTXciy0f/ljdXGBWUimEroTtkUh7GWncVEuOmaYuMEnUe6yybBc3PsEdKlynnL+ZiKLG09df25h2Di6IBY3PzpicL41GPim7jdcY8kwxFFW5KyXKlLUHAaF05OJrXinFproRht4irxmWwBuX1vOiigLlR5U51a1xEZFoTvQWc9ZZNMbN+THkuxyLwivDMRqS2ld8AXrG1TbazLJ047ykXgMI5YCR+3pfO/kC2eZE5DVOhffMzolGVIoq1w4/ztP6W5iGR986/41TPLou8qsYp4v8kbmue20OGIfe25JDi+/cCb2hzTQDJvhQt0C/yxRWuxYUcLtu5ujcVTJeo0TJwmh+rxTBqbNIPlfYmE8UunHZDuj8fDKvI+g/u+9NED8OA1J4djSot8ZOjERal6SHIHan8WoM1C0Plt4obdVJ98XpxIrt66J+I0lNwWUSLMyE5FrhqZG+ForM8rxVOyNZqsLL9n7oqoXRNUz7NQZAndTalpZyuFHkc0YiTfHl+wNqKRCjxYoniqtT3Y3F4VwkXrPMLltJPyxOILMYhQqpfDA0BL+PtUSlIgtrjRbXgq/Um98pQdf9c9Dq4b+PEjS9QVAHzz3EO011Q4/kdPaq/Jz41notNBN25uGv3ehp3RBiLndw/ud9NpcGQRTx07bnDi7+j9Clyw6r0EG6bZT0MkXjZFuM1pLUfJEONqz3lKJHNSITaJj+vJeU54AM5drQX8MjzUqANJJts5SWHNJMfDivs0i6f48xTfAwC8tXZH1K4JqsfQ1l5MBBf14qkqQ2cqyk9ctkWQTqaUngRKQiIRKR7m4PZn4xO7HHuKt8MJDIfMHrs4wvErW3cF7K9ug+Jcg45oqEobFBtmX0sUXt5WkbFUnoUXrz9DGE/l2HKZaJwywZyTxaXnWKeh1h/YID4anSLcZZOI842Lp3o199NeZPjDy0GCTRV3I85Dk14HUCuFkxUlvyYlp0HYsMOWrjjsTzjUyVEI+DPY2VLAqjATpGoec7PjMYN74cLJoxIhysW2VKf+pvq8snxLeJDg80CWBowJ/XR0S5T78ai4iCJLRrXubPQ4osEhv7wgzaXZ+Q1Inm5+ISQWSrTt0L9qsabTZZLSo1b2iuWbg+kQwwnLH5qDzUK3QfFNWrfRq/Yv1Sl7eL8mRc0kdHJjURZfSVmuuNh71edxyXFm81Zb14yVbz0lHjp0hLpPYzpPuq4vca7ovNSLDJgVEg01p2EXLaocT889YmSqXrHIorSsgFrkN3+5MudaAipxmMz1R9aGIuHU6DTaQxGdVmejE09pdBr//PvXAAAfbA6IlbxmDwudB3XP85rTgzzwRQY8kRKjssSa6GRGo+cRDZ0iHAg2cpPzGyAlE9Kdxh02C9WJQi3mScf1l093fBhZFMp6osE5DXU7ss5gcJ8G7Kfwdk46Xek2HhdnSuPlTBgvJCM6ctQA63uyKS1b24uROFNtPZVNp6Hjqg530OvwdloSRhrpetx6isNG7Gwmt+JcVIk8d0nmqi7c18cVAQH5uzAF/uNjFUXMKu47lws4Ddm5NlEnFE9t2pnkgJo0Oo3lYeBDfk2e11aT27C8WGSYOXd54lKxaDLHrj5qZyRVAt+sVRuGuIDe+LezlfeL705n7aJkwR2etOrEniPCLikcdEqn4eDTIP9e3di5qEnX1v5Dk+azMy44QnOaU3+Xx2QTvbj6wajwu88fn/j7urNj50mX92Hb81vaikbTVTe/F0GnYRiULgxJ1E7IlSaMNDQbZiLlr2odJHwfzAcjm3RKhs044MhRA/CDT6QjDrso3iNjAJFoaAwU2sNAknpOKtj4j/nhE4ny+rw6ZHqkCA/7k+c1v8emcwTSelWZAHVgYlMn9DyiYeA0+Avfb0hvDNAEPBNfrl7unyxvqMvhhPFDpIG4jZcI2CqZ4W3fqza5NS1HV07D5lRHRDjn8DjYmywiiOopIginx+QivrFW0UKO4Cpa2+j6vvUzcaY73QK/LaxTZCwSQzTWK3QDma2nTETf2hRyRFZOWfYzUpkhizoNPcEPPq06DUX/Jnz7vEMxSMGxxJyNA9Gw+FFxEV27IZCkbJbLITpGihCj5wLpjZ4Tc92v58+5yBheWpYU13W2M5+Mnks0FG/PpgQG3IiGXHztmRNSp3HXeZAjwvz3k5NIjl3Dm87EaWhEIfw3mZ6BeE1HfMTudNyCm/ObvY4O8poXx637fR87ciRGhgpWXdejBwWn/iKLY3mpjAGcnDwT1lP65ejyGApFho07zQrlFZt2Jf5W+SiIIh2bTiNrGCQbIZUNTSI4Ek0gSTSU4ilCJJ4ycVKqzXq/Ib2VsZ/kWF468ZTJ/BwArrvvjdS1zuYsZNSOSr5KiPw0FLMw2jANi12c87oFIJfLCm7AfSLIXbx0w9SUx7ebIjz5t2pMAFIZ89RtZSMarmNSjqcMqiHrjUTxj2lDtz1PXs4Yi3QIjfVpZbU4j+S4YnJbQDaT21IhW/XoLIc4bM+gvcKchgvnqoOK09CKp4pcPKUbZ3qNzr3hDPzqmWUaTiMok0Pmc3CRk43rbhZDroSQe+tsGlIWp0FEy4loIRG9TkTNYdlgIppDRO+Gn4OE+jcQ0VIiepuIzhHKjwnbWUpEt1DWcKQZwCeCktPIeMrWyaDFjfTEA4bg0o/sV8pQAaStP/YZ0JQI0gfEv8VlI+TQbVBcRGJa3OJmqFvk4v06ZbdqvGcemvRCL2ciGDkNF6Km6T0iGog3KBWnIU6Pz5+8v7UPHSEP+qzMkhCfwT+dOA6jFF7jLjoNXsXm3GfqXwXZ9yIeh71t3nQiNpzBgqzImPaAKCfHAoCRA3qhPq82xeXgBxV57rVZwoiY3m+tpYGthHjqdMbYJMYYD0B0PYAnGWMTADwZ/g0iOgzAdACHA5gG4FYi4jPkNgBXApgQ/ptWgXEpYXr8LikzXUwkxQ35xk8cntrkbeMQ4XLS5uPIYj2lGpPYn2lti79btVnKY1m7TZ23Wv5tU/YbhF9floxjJfZ14eRReOzaU+EKebGJbZnfcfIzdV2IpvqfjwfJsXSWb/F3dVsvLN2oHF9HQdwkdTqU5HPStRRckPVrMq47Kxnq3fYTteIpB/ADVqvN4TB07isW9eIp2bKPh4jP59TOfRHCSzKXEou0NAcRw3hlGtUdPcLPBzAz/D4TwAVC+SzGWAtj7H0ASwEcR0QjAfRnjM1lwZO+W7in8jDoNPhBzyQmcPHgdbFzdz08bFPEotGNybgRStPSJlpz2VSBpBOfrr9NUnIpDnkIFx0zOrWIiSgylR0/tA8O3qefdlwy5Ecs9veuJh1oUC8kwrrr4TwR36HuRKv6LmKa4JVucmSsFDkRldwuJuPl6KOANKdsi8isIxou3XGCaIsxxr3i5cyZ8jhFf6ihfQPlfJDRT98+vyOlCC+aOQ3VOPh8SFtPabuvCsolGgzA40T0ChFdGZaNYIytAYDwk8sbRgH4ULh3ZVg2Kvwul6dARFcSUTMRNW/YsEFVxWHAetM3vkCMohnhienqJcMwuI3r+PGDrXX2HaB2mIsV4fp7XaUbohWHDuJpdcygtHjDNpa4TrJSn0YdAQrrZzyJy6IH8Z3rkiIF9ZKf6fHwxWzu3yWUylGjY52CSRFeKaqRUHJntO5KDEf6QbdfeozmfumwYpmIKsspVX8qcCL4zDvrjfW42XHRwU9DbjtIlpR2sOWRgXkaWXluFCKdhjsRvunCo4K2asx8qlyicRJj7GgA5wK4mohMsgPV02KG8nQhY7czxqYwxqYMG2YOAaGDyeSWvzhXJbCumstpbvqxsTfyMfsNwh+++BFtnwAwelAvPPuN0y1jcuOQTOAbiSnkNf9NdTnSb3QO3fEhccX+eUemPYqBeDLoxClnHjoiVfbxifsmNuQsiJ6mxdLFJiYQxYa6tkQxocnktlIQuWOX/kx+DCLOPlwdx0uuZxPBlWNYwce6cWfA2Z52sHqPyFOQNbPI9IRTFk/J/jiyMvzA4X0xZnAvTAljgsnNcu7HZsLM8Q/Hj8Vx4wejT0Me/3TiuMS1Ls1pMMZWh5/rATwA4DgA60KRE8JPTvZXAhDjNowGsDosH60o7xBE1lMq8ZSDPD/pLauuWO8Q8O3EA4diXBiNVvR70KFXfV67QXOzSZO5pTiMz588XluPnwRNpxsXC6usITTOn7SvdgHzxavr7zKFocEPPnF4ycpj29hjbszcjouOTPQdMYlFxSsnHjBEW4/j+W+qDxguc1PbcaLY8RAi9VGqNVxW73oAuFzabMW2AuspZvCbSCrC40yHucTfHK3txQTB239YXwDAry+bgj4NeWzZHaxRvTVa8sLQPg0YM7g3Fv1gGo7f3/6+q4mSiQYR9SGifvw7gLMBvAngIQCXh9UuB/Bg+P0hANOJqJGIxiNQeM8PRVg7iOiE0GrqMuGeDoNq0i/bGNiwv7w8bfbG4eLNLy5+kwiAhx4wLUDO7urYdgBYuk4vn4/GIUzKcUPTSZE44sxmpraCT1NoA5etIbJ2KRSN3tD8ZKXbOFTERCfqcoJFPMUr/G8Y7lqHvMMhRLQWMj0DjhvOPQS/+8IJ1nrcl0SGOB/dnA/N3Jb1fqmPUpX9OoMLU9tay6hcEBq9UGRaQh34aeg5jTZBr7F84y48vGANlm2IfWB4euOGuhwG9m7A6x8GQTnXblMf7OTnbDqQdLawqhw/jREAHggpZB2A3zHGHiWilwHcR0RXAPgAwMUAwBhbRET3AVgMoADgasYYD0xzFYC7APQC8Ej4r0NQLmuXzKClbiypCLe3ucHAIfBJPbi3nmi4heAWv+vr84VitJ6ibJzG505SczZi2AeTqISLgfQLPF1WTnRc/lp1Y+LFtkB7nAbIscNEiITXqAjnyvkyJVgufkaJfrXtuHIayb8Xrd7mdJ8MnWm3CJ6Vz/b+8qH1VHuRaQl1jpDwrpfzprQL71SVs5sr9Fva2tG/V30UdVenS5NHakrR0NnOfiUTDcbYMgATFeWbAEzV3DMDwAxFeTOAI0odSxbEivDS7l+xSa9A5RDFSDbFH+C2+Zo4jaye1ab6fK6aOCR+zTXsxfH7q5X8fCNsa9ef+IA4vpGW01AZNZSxu7JIHKaTr5cmmlFBPECXc/J3hXi/y+ldx/yIw5CTIYmQf9Nji7IlwuJwPQSI+6leXxGHUtG1Kz/nODNfmHdH4DQ2K6wDOQfZUihiQK94m23Q9Sc9Qpspc2ei54YRKfH+nS32l+niHCXC7IEeEg1NLCyxjgkJBb7pVB9xGvo6fLxmGXx87RwHJamLUtbVA79c2BTvcvHpGoWrG9EQdBoG8RQ/eZr8GGxJpYDkZu9yeteJIMXf9tR1pxn6q8y7KSXKq+75L1i5Dc+H/jGcA0jfm/xbFk+JOg0V93BO+C4OGtEPA4QYaJ/T6BPl56QK78LRlcVTXRLRAy9xLrtsBHUO1lMiTHW4uMgko3cznSTld11/pjXK+1u33aB4d1jjSZ8Xk07DrAjPaoprg03xLuugRiq8qk33ixAJk4kgRIERNR7TAHDpR/bDI2+uNfYnPnMXRzoXaybT4UE+EF2fMRMjhzzWWVfa4O2n8wAAEh9JREFU9ToukBOAccibuCyeEh38+HfuywEAn5i4L846dAR6NeQTFnI6p1r5CbYY0hZ3NtXocZwGZzVKDbktrqEJI9SOZln9NEybC+eMTOy5U4Y44btpTPwAZSIsOxxYZ5en68pp8DGZQj5UEpt3JrOwyXDt7p11O6x1Et7XhmfA9SKqaLrR/U4cZ/zd1BaHToQlnrQb83pCJv+k4xz8kVQQiddnjh+LEypkUaRbe32lQ1p7lNY3JBrC7y8UGepyhKf+9bTEPb1CZbjK30OG/O7kGGGJsfjQ6NWFyeTWBSKxkScWh7jBO0U6NVzjp16T6MKFAIqT0hQ754qTx+OY/Qbhk5OV/pXOyCoyM51WuR5KK56S+vr0FH1GvkuOG2sdF08cpPeYTv6t21gXrd5u7cvVN4NvWibuwM0sVdRp6Dd7rqfQcRpiMi5dGgHVmEol8HwDBiorjtS1NaxfY+LvWDzFTW5FJXkRh+3bH/2b1M/hjZUxN+N68JFzjAMxJ9PZsah6HtEoU6fhQuVdQnCLMK0jPkHqy4jJI/cx971N2nr7DuyFP111Iob0bdTWcfFQzeKMBeiVzkD8zvTiqeTfXzhVHRwQAH584ZH2gYUwmWOK0G3kVxj8YThcN0C+aZnEUy5NnTwhDqtv0mlwk10dh7snJBo2ziEVRqTEhddUn4/G60p4dNXEDIO6Q50sDuZTPjK5FcRT7SGnoR2H8F3HTcrDUIVCmXVl4ADc2R7iPZBo6MOIcPznxSmjsAiqWPoyxNNZuYciPj/qjeKbymzirnAhnJlTnbqIpxxZ+wOH9zX2e8So/rjBIFvnsa5cvaF1REOVtlSGi28GIBINeyRcU53TD46jCJvqMcthZeSAQI9zlsIbX0SfBikis+K49uXTDjC2wcE30mff1YcQkr2nVfi+kBnw8H37K+vIBLUQiafSzn1t7WY/I7e8Ksm/v3LGhFQdTuw6O6pIj1WEm16jKbXm5LGDALxvDFHhGk2Vo1eD/jUUJU9UZR2HSSSOo5xQ7UD2cNg6JDgyg3iKe7pnce4z4a9fOcV4/eAR/fD+xl3OivArTlFzNk4WYY6mpFyGbtZphG06Pg+X/B060dv4oX0w/9tTMczAkQJBKH8Rqlf49XMOxq1/e886Fo6tu/WWRYcJRED368Tnozs8yL875dzXXkSxyPDYorVoa2dlRecNxhqP6cGrT8LEMQPT4+bRGrqqn0ZXhSlzH4dpU/zYkSPx0g1TU4tBRNZQDZeeoN/EI/GUYYF/5IAh+P38D/Dfl0zW1uHjaKjLhYSvdJhSbnI4RagQKplySXDoHJ4qqwaPxV0uEV73HdCUMKkUkdV6ygQ+D8ziKUp82mAyY+V+AnLCLxHD++nXAEdv6UC0r8LSLKtZ7p5WvWWRiz+H+Hzk8XHInMZlHxkHQIyYwDDr5Q/xrQcWAgBOmZDMpikiq1GI9rASDqlSh7ZS0fOIRvhpUh7bPC5NBEOGy8Zhki33C5Vrphj+n5i4L04+cGhCViuDrxMXZ0MbXLK1ZRVPlaPcbM2ac9SCKF+GzrZRtPoyhVIJ6x00Qi8uc/3dBQfxlEsGRxFHKrL2cfzXpydh5tzlyiRNWSByM0tnnGuO5OuIM6REXSLEpXvU6PRpHXDTOYrP+e0fTos4D9F6au32OE+MOaKBHTkH6QQv7+yAhT2PaDhowssl5P0FD9BydRr/dNI4vLJiCyaOMUdsNREMQCAaFbA8MSah4f05tOOSm0SEji1vseRPyIooaoA2YY4wbqMC1L7I63KEEf0b8S9nHqSvJLRh4jSyvmOdzwAQBNQ88UD96dkV4vOpBMEAkjoJGau2xM56+qyS9j5EovH/2zv3YKvKKoD/FpfL28tLoCtvEVEElEcqiuGgmKiF46PRIUFJTbO0dCowqxnpoWWOz1IqmKy0xjFHNM2UUaesfDCBioCI4yTqaOULtYfk6o/9be6+h7P3+c45++yz973rN3Pm7Pud73x37XX23ut7rG+tXi09do2GwrWL0nvgoS3x6yxJ+Tc6ZKpsyMIOX7Ndbrud0QhJnJ6q80fplMSmzp79jDGDeXTZvLragOp7oUn4DI+9XG4jxz4LwnFGY3BCXK5aCH3k43r1nfaXJCbsCt6T5qBFhMcuPdpbtqRRabXTU1mQlqGI0j9hDTCcwpwUs4cKOnr1SVNZUT2Xcw33MQQhPp2sqPt+JVdvW9PIGB+X26xc2u44fzbbIpExG0l4vqmMNJx+Vp/50fj/5/FvomsjPnP7cffp+D37dwpUVy/hHoTY3bvRh0ii10w68kRJWmMIRUl5g3xdJHnF1dxmwsP+4PFDgef5zknxoezCHnvSmk6ccS63I7wS4XX+rRPjZYpmwCzdIxIS3rvmcptD0rDkF87bh+OnlU8qFDJz7BA+lbARLU0q7aquhl3B2xIDFlb+P1FfdJ/pqaQRYFLPslr2dW2NaCt/83ZyFU6UO1wbqZ+9nRtw0pRSxwgjP1ajmpGGTywsSL7u5kzck80rjmXm2Pj9Iy09PIxGzGfhd3d+qN69lNBNPyk2WHSk0RaTQjn8fa/6/XM8tb18+JMs6H4jjYR0ryG1BEcr5eJjJtXdRprsCkSYQs+v1P2wVqLeUD4joCQHhTRH7MuP249PHNgeGyYmuqaRFFJl1OC+jB7Sl2+cMLlume44/7DYXOshfdx6RzVTJ43Gd2S76fJjK9Y549CxrN30WsUOSZJhhY6Hby0jjfA7Oz/80GvHf5QkAxo1Gj4pYdduej12ob/RdD+j4TE9leQ+V1RKd7TWQ/hQqneqK2o0fAx1kpPU0ZOHs8Uj1pMPvXu2JPZUo8EYw8Rd5ejT2sIfvlL/ehQEofGTwuNDxxRHkktq1viGNO/bK/lBD7DixClcvjB+EdyX8LqNC1MO8UYj6nK7dnNyLvKQW885lLvWvxI7goi2m4R4LJZnQbebnvKJPZVWOOc8MaKtN2fPGc8tSw+uu63QP7+u7Hh09npKugkmuh3e8/aLd7W8ZH52I7u8Xh17uIdSJW+yCcP6M3Zo/AbWNPHd8e5LGvdm2D9JCs0TNz3VGvGeios9V8r+7W0sW7Bfqs+VcxNC5TSabjfSWDDlI+w7YkCi62JXRES4LIVpEoDvnjyVo/YfzpQEP38fovsrkhICPXDx3IptpR0ePYm8dipaW3pw9pzxLJianFdjbUL+i7RpbRGmjxnkFYcrK8LpqeQkYjFur250csntGzqV33rOIXXLteLEKbvWripRaQqukXQ7ozF2aH/GDi3/w4we0peX3iiflMXooK1PKyfNGOVVtzT2UJToQvjsCfWHun780qNS3+hXjuiz5r6LkkOSZE1aHYO0EBHu/NzhzRajE+EIoVJkgx8umrFbSKFy3mAH7NXGYRPqn9JOigyRJ3JjNETkWOBaoAX4iapekbUMD11yZLPzm3QpfrRoBgfsFT8aOWFaO9c8uBVIp+c0vM1/p349RBfCJwxLDo5o5I9wenVEhTAox03d3ftxQMm6xPWnT/cKTJkW93xhTmy2wazIhdEQkRbgRmA+sB14QkTWqOqzWcrRiI1I3ZkFZW66KPsMT89NNkuii7u+bqJGfhjYr5UfL57F9DHVex/1LencHFJjUqlamTJyYN3TwvWSC6MBHAw8r6ovAIjIr4CFQKZGw8ieR758ZKfcBEXAOhfFZ/7k5JDucZSudVTyaOuK5MVojAReivy9Hah/ZcnIPXHrS3nn+6dMY+Tg+oL5GcXkxSuO598f/I9X3vpXKnu6ikZejEY5V4Xdup8ici5wLsCYMZXTdhpGozg1o538Rj7p09rC3t10PSsvZnI7EL0LRwGvlFZS1ZWqOktVZw0bNiwz4QzDMIyAvBiNJ4CJIjJeRHoBpwFrmiyTYRiGUUIupqdUdaeIfB64n8DldpWqbmyyWIZhGEYJuTAaAKp6L3Bvs+UwDMMw4snL9JRhGIZRAMxoGIZhGN6Y0TAMwzC8MaNhGIZheCNJ2dDyjIjsALbEfDwG+FuFJgYCb2dUx7deWnL71kurjo/cWcvkWy/LayXNtop6rYDdn82+Viapau2B31S1kC/gyYTP/u7x/ZVZ1amirVTkzvr8fOTu6jpvwu9SyGsla53btbK73EnPTp9XV52e8sm6fneGdXzrpSW3b7206vhmue/KOs/6dynqtQJ2f+bxWvGmyNNTT6rqrGo/yzMmd/YUVfaiyg3Flb2ryF3veRR5pLGyxs/yjMmdPUWVvahyQ3Fl7ypy13UehR1pGIZhGNlT5JGGYRiGkTGFMBoiskpEXheRZyJlB4rIn0XkaRG5W0TaXHkvEVntyjeIyJGR78x05c+LyHVSmoYrv3I/LCJbRGS9ew1vsNyjReQhEdkkIhtF5CJXPkREHhCRre59cOQ7y51et4jIxyPlWes8Tdkz03u1covIUFf/XRG5oaStXOu8gux51vl8EVnndLtOROZF2spM5ynLXb2+63G9yuoFfAyYATwTKXsCmOuOlwIr3PEFwGp3PBxYB/Rwfz8OzCZI+nQfsKAgcj8MzMpQ3+3ADHe8B/AcMBn4HrDMlS8DrnTHk4ENQG9gPLANaGmSztOUPTO91yB3f2AOcB5wQ0lbedd5kux51vl0YC93PAV4uRk6T1nuqvXd8B8mRUWNo/PD9x061mRGA8+64xuBT0fqrSXIQd4ObI6Unw7cnHe5a/1hUz6Hu4D5BJsp211ZO7DFHS8Hlkfq3+9uoKboPA3Zm633SnJH6p1J5MFbBJ3HyV4UnbtyAf5J0Nloqs5rlbtWfRdieiqGZ4BPuuNT6cj8twFYKCI9RWQ8MNN9NpIgQ2DIdleWNdXKHbLaDR+/3ujphigiMo6gp/IYMEJVXwVw7+FQtlyO95E0Wed1yh6Sud495Y6jCDqvRBF0fjLwV1X9D03UeZ1yh1Sl7yIbjaXABSKyjmCI9l9XvorgR3sSuAb4E7ATzzzkGVCt3ACLVHUqcIR7nZGFoCIyALgD+KKqvpNUtUyZJpQ3nBRkhybovQq5Y5soU5Y3nSeRe52LyAHAlcBnw6Iy1Rqu8xTkhhr0XVijoaqbVfUYVZ0J3EYwF42q7lTVL6nqQaq6EBgEbCV4II+KNFE2D3kO5UZVX3bvO4BbCabbGoqItBJckL9U1d+44tdEpN193g687srjcrw3RecpyZ653quUO44i6DyWvOtcREYBdwKLVXWbK85c5ynJXZO+C2s0wlV+EekBXAbc5P7uJyL93fF8YKeqPuuGaztE5FA3BFtMMBeYa7nddNWerrwVOIFgiquRMgrwU2CTql4d+WgNsMQdL6FDf2uA00Skt5tamwg83gydpyV71nqvQe6yFETnce3kWuciMgj4LcEa2KNh5ax1npbcNes7q8WaOhd6bgNeBT4gsOqfAS4i8Bp4DriCjsXlcQQLQpuAB4GxkXZmOaVsA24Iv5NnuQk8TdYBTwEbgWtx3j0NlHsOwfD6KWC9ex0HDCVYoN/q3odEvvM1p9ctRDxHmqDzVGTPWu81yv0i8Abwrru+JhdI57vJnnedE3Ty3ovUXQ8Mz1rnacldq75tR7hhGIbhTWGnpwzDMIzsMaNhGIZheGNGwzAMw/DGjIZhGIbhjRkNwzAMwxszGobRAETkPBFZXEX9cRKJhmwYeaVnswUwjK6GiPRU1ZuaLYdhNAIzGoZRBhcI7ncEgeCmE2zGXAzsD1wNDAD+AZypqq+KyMME8cIOB9aIyB7Au6p6lYgcRLDzvx/B5q+lqvqmiMwkiDn2PvDH7M7OMGrHpqcMI55JwEpVnUYQ0v4C4HrgFA1ih60Cvh2pP0hV56rqD0rauQX4qmvnaeCbrnw1cKGqzm7kSRhGmthIwzDieUk7YvX8AriUIInNAy6CdAtBmJiQX5c2ICIDCYzJI67oZ8DtZcp/DixI/xQMI13MaBhGPKUxdnYAGxNGBu9V0baUad8wco9NTxlGPGNEJDQQpwN/AYaFZSLS6nIUxKKqbwNvisgRrugM4BFVfQt4W0TmuPJF6YtvGOljIw3DiGcTsEREbiaIHHo9QTrY69z0Uk+ChFkbK7SzBLhJRPoBLwBnufKzgFUi8r5r1zByj0W5NYwyOO+pe1R1SpNFMYxcYdNThmEYhjc20jAMwzC8sZGGYRiG4Y0ZDcMwDMMbMxqGYRiGN2Y0DMMwDG/MaBiGYRjemNEwDMMwvPk/OkLvC2Z9qoAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'].plot()"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcHGd95/9++r7mPqSRRrdky5Zvy8IHh7GxsQnEJAvEJIudhMRZEjbXbn7Byf6ykIUFsgkEsgHiBAIk4YoTsAkYAnaMjbEtS/iSLMm6pdGMNPf0fT/7R9VTXdPdc/c13c/79ZrXzFRX9Txd013f+nxPIaVEo9FoNBo7jnovQKPRaDSNhzYOGo1GoylBGweNRqPRlKCNg0aj0WhK0MZBo9FoNCVo46DRaDSaErRx0Gg0Gk0J2jhoNBqNpgRtHDQajUZTgqveC1guvb29cvPmzfVehkaj0awq9u/fPy6l7Ftov1VrHDZv3sy+ffvqvQyNRqNZVQghTi9mP+1W0mg0Gk0J2jhoNBqNpgRtHDQajUZTgjYOGo1GoylBGweNRqPRlKCNg0aj0WhK0MZBo9FoNCVo46DRtDCHz4fZd2qy3svQNCDaOGg0Lcwn/v1V/se3DtR7GZoGRBsHjaaFiaWzhBOZei9D04Bo46DRtDDJTJ5IKlvvZWgaEG0cNJoWJpnJEU1lkVLWeymaBkMbB42mhUlkckgJ8XSu3kvRNBjaOGg0LUwqkwcgql1LmiK0cdBoWphkxlAMkaQ2DprZaOOg0bQwBeOgM5Y0s9HGQaNpUaSUJEzjoN1KmmK0cdBoWpRMTpI3k5SiRW6lrzx7hrf+1ZOMhpN1WJmmEdDGQaNpUZLZQoZSca3DS0PTHDgX5j2f38tMXLucWhFtHDSaFkXFG6BUOURTWYIeJ0cuRHjwp0O1XpqmAdDGQaNpUZLpvPVzccwhns6xuTcI6GB1q6KNg0bTotjdSsXGIZrKEvK68DgdJDP54kM1LYA2DhpNi2J3KxXXOcTThnHwuh2ksrp6uhXRxkGjaVESabtxmO06iqVyBLwufG6nVg4tijYOGk2LkszOHXOIpbKEvE68LgepjFYOrYg2DhpNi6LcSp0Bd0m2UiyVJeAxlEMqq5VDK6KNg0bToijj0BvyzlIO+bwkls4R9LrwuhyzYhOa1kEbB42mRVEX/b6Qd1ZAWrXUCHmds5TDaDipDUULoY2DRtOiqEBzb9ts5RAzfw54ZiuHOz71JF/6yamar1NTH7Rx0GhaFLtysE+Di6WVcijEHNLZPJOxNGORVN3Wq6kt2jhoNC1KQTl4yOWl9XtBOTgt5aDSXnVwunXQxkGjaVESmRwep4N2nxso1Doo42BXDioOoQviWgdtHDSaFiWZyeF1O2jzuYBCZ9ZY2lQOtmyluLlNK4fWQRsHjaZFSWVz+N1OyzioWodYana2kmEcTOWgq6VbBm0cNJoWJZHO4XM7CXkNt5LKWJqVreR2kMrmreC1diu1DgsaByHEBiHEfwghDgkhDgohfsfc3i2E+IEQ4qj5vct2zP1CiGNCiCNCiDfbtl8rhHjZfOzTQghhbvcKIb5ubn9WCLG58i9Vo2lthqcT/PLf72UqlgaMgLTP7SDkNd1KKuZgqgSjCM6IOcR0QLrlWIxyyAL/TUp5CXA98FtCiEuBDwCPSil3AI+av2M+djewC7gD+IwQwmk+12eB+4Ad5tcd5vb3AlNSyu3AJ4GPV+C1aTQaGw+9MMzjR8Y4MDwDGC27fW4nvW0eAC6EjTRVpRyCHic+t3GJmI4bBkUbh9ZhQeMgpRyRUv7U/DkCHALWA3cBXzJ3+xLwdvPnu4CvSSlTUsqTwDFgjxBiAGiXUj4tjYTqLxcdo57rQeBWpSo0Gk1leOLVMQCmzLGfyYxhHPpCXvxuJ2cm44ARkPa6HLicDrwu475u2naMpjVYUszBdPdcDTwLrJFSjoBhQIB+c7f1wFnbYUPmtvXmz8XbZx0jpcwCM0DPUtam0WjmJp7Osu/0JAAzpgpIZPL43E6EEGzsDnB6wjQOqSxB09WklMOUVg4tx6KNgxAiBPwL8LtSyvB8u5bZJufZPt8xxWu4TwixTwixb2xsbKElazQak2dOTJDJGR8ppRxSmRw+l3EJ2NAd4KxSDqkcQa+hGIqVgw5Itw6LMg5CCDeGYfgnKeW/mpsvmK4izO+j5vYhYIPt8EFg2Nw+WGb7rGOEEC6gA5gsXoeU8gEp5W4p5e6+vr7FLF2j0QBPvDqOz+3A73ZaKkC5lQA29QQ4MxlHSmkoB88cykGnsrYMi8lWEsDngUNSyk/YHnoYuNf8+V7gIdv2u80MpC0Ygee9puspIoS43nzOe4qOUc/1DuAxqRq9aDSaFfPcqUl2b+qmt81jix/k8ZvGYWN3gEQmx1g0RSxdcCsp5WCpDe1Wahlci9jnJuA9wMtCiBfMbX8EfAz4hhDivcAZ4J0AUsqDQohvAK9gZDr9lpRSadH3AV8E/MAj5hcYxucfhBDHMBTD3St8XRqNxsaFcJIrBjuZSWQsFZDI5CxlsLEnAMCZiTixVI52v1H7YCmHmIo5aLdSq7CgcZBS/pjyMQGAW+c45iPAR8ps3wdcVmZ7EtO4aDSaypLN5ZmIpelr89IZcJdkK4GhHADOTMaJpbIMdPiAgnKYjBUC0lJKdDJh86MrpDWaJmc8mkZK6G/z0hXwMBNPk89LUtk8XtM4DHb5EcIwDnFzChxQUucgJVZgW9PcaOOg0TQ5o5EkoIyDoRxU7EDFHLwuJwPtPs5MxImmsgQ9xnalLFSFNGjXUqugjYNG0+SMmpXP/e0+OgIewsmM1XlVKQMw0lkN5WAPSJdeInRQujXQxkGjaXJGzeltSjlIWTAYShkA7FrXwU/PTJHJSZtbyVnyfNo4tAbaOGg0TY5yK/WGjJgDwMhMApitHP7b7Rdx5YZOAMutVE456BYarYE2DhpNkzMWSdEd9OBxOegMGCmqIzOGwfDblEHQ6+KLv7yHX9i9gdfuMIpM7cpBGRJdCNcaLKbOQaPRrGJGIyn6Ql4AOk3lcHI8BmC5jxQdATcff8cV1u8eZ+H+sdPv4XwmqQPSLYJWDhpNkzMaSdHfbhiHLlM5PHroAkLA5es75j3W4RB4TNeSUh065tAaaOOg0TQ5Y+EkfW2zlcOpiTgXr2mzfp8PFXdQ8QptHFoDbRw0miZGSslYNEV/m1Hx3O5z4XQY1c2v2dK9qOdQcQdLOeiAdEugjYNG08RMxTNkcpJ+UzkIIeg0+ybt2bK4kSley62klUMroY2DRtPEjKkaBzPmAEbQGWDPcpWDNg4tgc5W0miamELrDJ+1rSdoKAAVh1gIlcLaZRkH7VZqBbRx0GiamBNjRsrqYJff2nb/Wy5hKeNSVGdWy62k6xxaAm0cNJomZv/pKda2+6wW3ADXbOxa0nMo5aBiFdqt1BromING08TsPz3FtZu6VjR/QSmHLtMdpdtntAbaOGg0Tcr5mSTnphNcs2lpSqEYpRwCHicel0MrhxZBGweNpknZf3oKgGtXaByUcvC7nXhdDh2QbhG0cdBompT9p6fwuR3sWte+oucpKAcXXpdTK4cWQRsHjaZJ2X9miisGO3E7V/Yxt5SDx1QOOlupJdDGQaNpUk6ORdm5tm3Fz+M1lYPf7cTr1m6lVkEbB42mCYkkM4STWdZ1+hfeeQGuGuzkxm09eFwO7VZqIXSdg0bThKhhPpUwDndePsCdlw8AmAFpbRxaAa0cNJomZHjaGAO6vtO3wJ5Lw4g5aLdSK6CNg0bThAxPV0452PG6tVupVdDGQaNpQoanEzgdYlbDvUrgdTl0hXSLoI2DRtOEDE8nWNvuswb7VAqvy0FaK4eWQBsHjaYJOTedYF2F4w2AzlZqIbRx0GiakJGZZMXjDWBUS+s6h9ZAGweNpsnI5yUjMwkGOipvHLwup66QbhG0cdBomozxaIpMTlY8jRUwK6S1cWgFtHHQaJqMc2aNQzXcSl6Xg3QuTz6/+ElymtWJNg4aTZNRyeroYlQTvqSOOzQ9CxoHIcQXhBCjQogDtm0fFEKcE0K8YH69xfbY/UKIY0KII0KIN9u2XyuEeNl87NPCHE0lhPAKIb5ubn9WCLG5si9Ro2ktDo2EcToEG7sDFX/ubX1BAF44O13x59Y0FotRDl8E7iiz/ZNSyqvMr+8CCCEuBe4GdpnHfEYI4TT3/yxwH7DD/FLP+V5gSkq5Hfgk8PFlvhaNRgM8e3KSy9a1E/RWvnXaTdt7cTsFjx8Zq/hzNxJHzke481NPMhVL13spdWNB4yClfAKYXOTz3QV8TUqZklKeBI4Be4QQA0C7lPJpKaUEvgy83XbMl8yfHwRuFSsZeKvRtDDJTI4Xzk6zZ0t3VZ4/6HXxmi09PHZ4tCrP3yjsOz3JoZEwL52bqfdS6sZKYg7vF0K8ZLqd1BzC9cBZ2z5D5rb15s/F22cdI6XMAjNAzwrWpdG0LC8NzZDO5tmzpXofoTfu7OfYaJSzk/Gq/Y16MxZJAXBiLFrnldSP5RqHzwLbgKuAEeAvzO3l7vjlPNvnO6YEIcR9Qoh9Qoh9Y2PNLWs1muXw3ClD5O9e4dzo+XjjxX0ATa0elHE4OR6r80rqx7KMg5TygpQyJ6XMA38L7DEfGgI22HYdBIbN7YNlts86RgjhAjqYw40lpXxASrlbSrm7r69vOUvXaJqaZ09OcvGaNrqCnqr9ja19IToDbl69EKna36g3BeWgjcOSMGMIip8DVCbTw8DdZgbSFozA814p5QgQEUJcb8YT7gEesh1zr/nzO4DHzLiERqNZIgfOzXDNps6q/52A29nUDfjGolo5LJjOIIT4KnAz0CuEGAL+J3CzEOIqDPfPKeA3AKSUB4UQ3wBeAbLAb0kpVUL0+zAyn/zAI+YXwOeBfxBCHMNQDHdX4oVpNK2GlJLpeJqeoLfqf6vZ5zoo5XBuOkEyk8Pndi5wRPOxoHGQUr67zObPz7P/R4CPlNm+D7iszPYk8M6F1qHRaOYnls6Rl9Dur/70X2NcaHMWwkkpGYukWNfhY3gmycnxGJcMtNd7WTVHV0hrNE1CJJkBoM3nrvrfauZZ0pFUllQ2b6UDt6prSRsHjaYOJNI5vvn8EJUMr4UTWQDaa2Icmrc7q3IpXaeNg0ajqTWf//EJfu/rL7Lv9FTZxzO5fFm3zWgkyYtztK4Im8qhJm6lJp7roIzD5p4ga9t9HG/RWgdtHDSaGpPPS76616gV3T+HcfifDx/k17+8v2T7Az86wT1f2Fv2GO1WqgzKOPS1eVnX6eNCOFnnFdUHbRw0mhrz5LFxzk0nEAJ+ajMO/37wPD985QIAQ1MJhspUIE8nMswkMsRS2ZLHCm6lWgSkmzdbyTIOIS+dAQ8ziUydV1QftHFYAWcm4uR0X3vNEvna3jN0Bz289Yp1/PTMFFJKcnnJH3/rAJ/70XHA6JEUT5e6bRLmtnEzD99OuObKoUndStEUbqegw++mw+/WxkGzNCZjaW79xON89+WRei9lVTEdT/Ohbx/k9ERrBvnAcCXdsrOf67d2Mx5Nc2Yyzv7TU4xFUtachFQ2TyJTevGNpw11MBopNQ6RpPFYWy2Ug9vR1AHp3pAXh8MwENPxyhqH0XCST/3waEWTEaqBNg7LZMIcxThW5kOqKc/QVJyf/+xP+PunTvHDQ83bl2c+8nnJZCzNmnYv15r9j356Zsq6yUiaF9xUJmepBDtKTZR734UTGbwuR00KtprdrdTfZhQSdvjdRJLZinoIfnholE/+8FVrYl+joo3DMomYPt9yd3ea8nzi31/lwkwSh6Bl++SHkxmyeUl30MuO/jZCXhcPvTDM9w6cBwx3EhjKIZ3Lk83NvgCr95vdODy4f4iT4zHCyWxNXErQ3G6l8WiKPptxAMPwVoq0ed4yOa0cmhIl4ZPaOCyaIxci7N7cTVfAw2S8NY3DeNR43b0hD06H4J4bNvH4kTHOh5O0+1zW3bh6XxXffBQrh1xe8gcPvsiXnz5FOJmpSRorFLKVGt01shwmY2m6Akbjws6AYRwqGXdImwY/k2ts5VWbd1ITEjWNQznprylFSsnJ8Rh7tnRzbjrRssph0nzdqv/R/3fHTn72qnU88eoYpybifPtFo1mxMhKJTG6WGkgUGYdoMouUMDKdJJauoXJwO5HSuPv1uJprNlc4kaHdVAxKOUxXVDnkZ31vVLRyWCYqp1y7lRbHhXCKeDrH1t4g3QEPEy1qHCbMLKOeUKGl9s617dz3+m20+9xWkDellEO6WDkYNyWqa6i6ox2ZSRBJZmuSxgqGcgCazrWUzeWJpXNWlXlVlEN2dSgHbRyWSVTHHJaEmqi1tS9Ed9DTssph3FIOpfMWvC4H6VyeXF6StCkHO8VuJZW+OjyTNNxKNYw5AE0XlFafa+WeU8qhsm4lwxXX6DEH7VZaJjrmsDSOm/1ptvYF6Qp6mDrdmsZBKYdyw3hUllEsXciOsdc65PLSuhiPRoyqXRUoHYukyOTyNYw5GGttNuOgCgmVe065l2YqGCPTyqHJieiYw5I4MRYl4HGytt1Hd9DNVDxDvgULCCdjaToDbtzO0o+ez21sm7Hl1Sdt7y+lIjwuB+PRNPm8nHVHOx2voXIw15pqspsjqz+Vb3nKIZXNWYZ7LtK5nPldG4emJJrSMYelcGIsxpbeIEIIuoNecnlpfRBbiYlouqxLCQrKwX4hsr+/VLxhY3eAXF4yFU+XnMNaFMBB87qVCs0LDaPgdTnxu52LLoT7o389wNv+6sfz7mMphwY/d9o4LBNLOTRplWilOTkeY2tfCIDuoPHBm2zBuMN4NDXnpDZ1wbXn1NvdSkqlbuoOAEZQWrlBFOqiVm08zWocEqVV5p2BxbXQODMR51svnONCODXv/plVEnPQxmGZqMBVUruVFiSVzTE0FWdLbxDAyiGfasFah4lYelamkp2FlYPx88Ye0zhEjIuQsGWS1k45mDGHJlPOEcutVDCyHX73olJZ/+aJ41asaGiqtGmiQsccmpxwUmcrLZa/f+oUeQk717YB0G26VSairWccJuc1DmbMwW4c0qXGwVIOkRThZIYOv9tKudTZSitDfa7tCmwxzfdmEhn+ef8QVwx2AEZX3blQ50zHHJqUqK5zAIzg6Sd/8Cr/vO9s2U6h39h3lo89cpi3XjHA7ZeuAQrGoZrKIZvL80fffLmhpnhlc3mm4uk53Uo+1+JiDptMBabcFx1+N+s6/EDt3ErNm61kKLE2b0GBdfjds5IEyvH8mSnS2Tz3vX4rML9xWC0V0to4LBPtVjL4/sHzfOrRo/zBgy/xP755oOTxf3tphK19QT75C1fhMjN0lHGYjFUvID08neQrz57hPw43ToO/qXgGKY3WGeVQGUDTc8Qc1M99IS9tXhfnZxJGNa/PzbpOH1BDt5K7OYvgIsksIY8Lh6Pgq1uMcnjh7DRCwBsu6iPgcc7rVsqskoC0rnNYJhHtVgIM36pDwE3be8vepUeSGdZ1+GelbvrdTrwuB5Ox6nW0VVknlWx7sFImzNfbPWdAulQ52OtolIvJ73Ey0OkzC9+ydPjdDCjlUGu3UpMlZBj9qWafw8UEpJ8/M81F/W20+dwMdvkXqRx0QLrpyOUl8XQOj9NBNi8bXh5Wk6GpBAMdfrb3hxiaipc0YosksyV3s0IIeoKeqioHlfFTyW6aK0XFWJYSkFauJONnwzgEPE4GOvyMzCSYSRjN9rb0BnE7hRV7qDbN7FYqfr92+N0kMrk5VZKUkheHprlqQycAg12B+Y2Djjk0L6rpnmrr28rqYWgqwfouP4NdAWLpXEk+eCRZ+mEDo0K4XMwhmsqy9+TkitellEMjTfE6ZQ44msutpALS4VkB6cIFRBmKgNvFuk4fI9NJy630i6/ZyMPvfy0Bj+6ttBLKtSDpMLPr5novnZqIMx3PcPVGZRz8DE3FyebyZQvidLZSExMxC+B6TePQynGHoak4g11+Brv85u+z75iic8wY6A6Wb773tb1nuPuBp1dcIKfy1RvFOHzxqZP8yUMH2dIbZLArUHafYreS3+0kkSkoh1lupQ4/E7E0U/E0HX43PreTSwbaq/wqbGt1N2e2UiSZLWlBYlVJzxGUfv6MMQf8KptxiCSz/NE3X+ZNf/Gjkk4AGR2Qbl5UvKG/xZVDOpvnfDjJYFeA9Z2GcTg3XQjE5fKSWDpXXjkEyjffG5lJkpdwYWb+FgQLYcUcGqSW4i9+8CrXburiofffNOekNqUclPrqCrhnp7JmcrgcAo/LwUCHEYDO5GTNMpTseJxNHHMoupnpXKBt90tDMwQ9Tnb0G6nayvh/Y98Q4WS25EYnldUxh6ZFZSq1ulvpvHkhH+zys8H8QNiVQzQ5u4mZnQ3dfs5NJzh6ITJru2pMdyGc4vREjPf9435+7jNP8a3nzy1pbSpfvRGUQz4viSSzXL+le96AcXHMoSPgmfXeSqRz+D3GPutMYwzUrE23HZfTgcshms+tlCiNkS1UlzM8nWCwK4DTzHBSKlpR3AlAp7I2MdFi5dCibiWVrjfY5afd76LN65plHNQdUznl8Cs3bSHkdfHH3zowK4itXE2jkSTfO3CeRw6c5+BwmEeXmJKq/PYzRe0l6kEsPbeRtON2OnA6hHXeSpRDOkvANA5KOUDtahuKUdPgmgUpJZEy2UqF1OvyxmE6nqErWDhGKYfekHF9KI6t6ZhDE6M+vK2uHJQh2NAVQAjBejMQp1DuN3tBkaI35OUDd+5k78lJHjHnJ0Ph7uxCOMW56QRtPhebewLW3N3Fov5H4USm7qMs1XkILeIO3+tyICUIYaSlFrfPUAFnlboKdTQObmdTKYdYOkdelqYDF4xD+dTryXja2kft/+fvvJKP/vzl5nGz1asVc8hqt1LTodxK/W3G3VurznRQNQ5rzbvY4hS+iKUcyl+83rV7A06H4MC5GWubqgUYjSQ5N5Vgfacfr8u55DtUFZBO5/Ik6+wXV++XxRSoKdeS1+Ug4HEST+d49NAFPvej44ZbyXzc73HWvGVGMV6Xo6liDkptFv+ffG4nQY9zzumFU7E0nYHZGWjvuHaQSwbarMftaOXQxESKU1nTjf1PrhZDUwnWtvusAjdV/KPu1C3lMMdF0ekQ9IY81lQzKaUl3UdN5TDY5cfjcix53q49CDidqG9QWhnJUBkFVYzPTBH1uZ34PU6SmRz/+Mxp/vKHrxJNFdxKUFAPHXV0KzV6rv5SiJTpq6ToDnms9+aFcCFZIp+XTCcydAdK05MtxWFzK+XzkqyZvdTo504bh2UQTWZxOoT1hmhlt5I9LXOwy080lbXu2hdzx9zX5rXmIYeTWSuD40K4oBw8zmUYB1u30noHpSPzBOaLsSsHv9tQDqcn4yQzeY6ORq2ANMA6U7HVavpbMV6Xs7mUQ5mOrIruoJfJWJpXL0R4zf9+1KrFiSSNqX3lJvupTgB25WA3CFo5NCHRVJaQ12V9UFvVOIyEEwx0FgKjKkvjrBl3WMitBEafINWwT2UquRyC42NRIqksg10BQzks8YMUSWZZY7r9FmqaVm0WUlB2PDblEPA4SWRyDE0arrrJWHq2cjDPfd3cSm5HU8Uc5nIrgTHzeyKa5sh5I7vulWHDFapUQVeZyvRCJ4C5jIOOOTQdqsReGYdWLYKLJLOzLkw9ZnaG+jCEF3FR7GvzWm4lddz2/hBT5gV9/XLdSokMG7oNY1Vv5aAU1KLcSjbl4PM4kXL2BcVeAX3bpWu566p1c9ZNVJtmy1YqngJnp9u8yJ+bNgz16UnjBkhlIpVTDmq7PVvJ/j5e9cpBCPEFIcSoEOKAbVu3EOIHQoij5vcu22P3CyGOCSGOCCHebNt+rRDiZfOxTwthiH4hhFcI8XVz+7NCiM2VfYmVZ3gmwUCHz/IPJzI5xqMpsg3+z640sVSWYFFrYyhcjCPJLB6nY96LV1+b15qHPG5mKl1qq/Q1AtJLMw75vCSazrLBnHtQ7+Z70SUoB1UI53M7CZQ5b3a30hsu6uNTd19doVUuneUkCjQysZRxkxf0lJ53pQDOmQkXZyZM42De0JSLOUDBqCjs7+Ol3vDUmsUohy8CdxRt+wDwqJRyB/Co+TtCiEuBu4Fd5jGfEUKoM/1Z4D5gh/mlnvO9wJSUcjvwSeDjy30xtWLI9IW7nA48TgcT0RRv+LP/4J/3D9V7aTUjlc2RyclZF7xS45BZMH2zL+S15iGrTCV7GwilHJZyEYqkskiJVZhX7+Z7kaQR/wguou/RrJiD7SKlBiWVMxj1wlAOzaOa1XvMW+Yc94Q8pHN5jphFm0o5qAt/91zKIeCxVDDMVgurXjlIKZ8Aijuh3QV8yfz5S8Dbbdu/JqVMSSlPAseAPUKIAaBdSvm0NFJZvlx0jHquB4FblapoRLK5PCMzSSsQ63M7ODAcJpbONdRgmWpT7i6rnHJY6G65z4wLjEVTTJrKYaeZAuhzO+gJepbsvlDGYF2nD4eov1spkiqdETAXqqGd1+W0DIXH6eANF/cBzIo51Buvu7lSWVVKulJvdlSb9YNm2vWZybiRqWRe+OfqhjufcmjWmMMaKeUIgPm939y+Hjhr22/I3Lbe/Ll4+6xjpJRZYAboKfdHhRD3CSH2CSH2jY2NLXPpc7OYeoULkRS5vGS9GXz1e5wcGgkDlJ2E1qwoV4ndreRzO/G4HNbFea6OrHZUOvBYJMVELE27z2UZ3vWdfoQQZrbS4u9Qle+4w++hfRGDWqpNJJldVAEcFJSDz+2w4guD3X4uWWuoKX+Nuq4uhmZzK6WyeYQo9I2y02Mqg5hZa5LO5hmNpJiMp3E7xZzxpK6Ah5lExnI5q/PlEE2gHJZIuVsjOc/2+Y4p3SjlA1LK3VLK3X19fctcYnmePj7BFR/8d0bD8zd8G5ostIwArHRDaK2ZyHMFWe1TsyLJLG3e+TNp7MZhPJqiJ+S12pKsN43EUrOVVCptu99FZxnjcGYiXtOWJ9FFKCiFGhXqdTmtgrfNPUEuWmO6lRpJOTSbWymTw+tyUM5xYXcbXbelG4DTEzGmYmm6Ap6yxxjHGe9/5VpS7+Ogx9W0dQ4XTFcR5neEWnanAAAgAElEQVTV+GYI2GDbbxAYNrcPltk+6xghhAvooNSNVXUOnw+TzuUZXqAbqMpWUF1I7cHWiSpONms0VL+g4jtiu3GIphbjVioYh8lYmp6gh6DXRVfAzeYewzh4Xcad2mLbYNjz1Tv87lkzJuLpLHd86gm+8NTJRT1XJYikMovKVIJCK2yvuxBz2NQT4OK1bfzWG7dx6yX98x1eU1ZTtpKUklx+/vdPKpu32qYXYzcON24zHBunJ+NMxQ3jMBddRfPS1WjQoNfVtMrhYeBe8+d7gYds2+82M5C2YASe95qup4gQ4noznnBP0THqud4BPCbr0Axn1EynVO6SuVDtIVRXTHvQcDzSesohWEY5qItzZI5ZDnaCHuMOeSySYiKatqak/eOvvYbfvnUHYCiHvMSqLF0I5dZq97lL3Er7Tk0RT+c4v8KW4EthrpkW5SgEpAvKYVO30fHzD968c85ZEPXA6149RXB/88QJ7vzUE/Puk8zkysYbYPb0vus2d+N0CM5MxJmKzW66V4zKYlJxB0s5eJ2rv7eSEOKrwNPAxUKIISHEe4GPAbcJIY4Ct5m/I6U8CHwDeAX4HvBbUkqlO98H/B1GkPo48Ii5/fNAjxDiGPD7mJlPtUbl2kdT8/unh6bi9Ld5rQ+xv0g51LvJW61QRnQ+t1J4ETEHIYRVJT0RS1mBv13rOqyulqowbLGpf4U2CC7DWNmMw9MnJsx9KhuHePTQBT748MHy60ktIeZgFcE52NoX5C2Xr+WWnWsqts5KotxKq+E9f3w0yvGx2LxrnU85BDwuy3Bs7jHml5yejJc03SvGUg7KOJjv4dAqUA4LvmOllO+e46Fb59j/I8BHymzfB1xWZnsSeOdC66g2SjlE5lAOY5EUqWyOc9MJKxgNBeOwtTfIifGYNfC92YnNoxyOjkaMWoNFuJXAcC09f2aaiVia9baKa4UKEKazeUzbMS9hWy+jzoB7Vp3D08cnzH0q28r70cOjfHXvGe5/y86SC4xRLLhYt1JBOfjcTj7zS9dWdJ2VxOMsKDq3s2ETDAFD6arZ78XvWcV8ygGgJ+g1b2A8bOoJcHgkbMUc5qK4v5IyDoEmjjk0HQXlUP6i8QcPvsjb//onHBuNzpL2PtOtdN1mI0g10SIZS/MGpOMZYmmj1mBRxiHk5cxknKDHxbv3bCx53FIOi/wwhRNGexOX00F30Mt0PE0ub/Tqf9lMRax07UMqk0fK0jGpYKisRcccbMqh0VlNo0LV+3W+8bPzKQcwLvQqg+7OywY4OhplYgHjoFJcVZp2wa3U+Mqh8d+BNWJsnphDNpdn78lJxqMpLoRTVjAaCsphj5nBMN4iGUtzVZO2+1xEUlnLtbQYX7sKSr/v5m1WCw473iW6lezurN6Qh7w0AoLPnZo0mqQF3CueUV1M0szaOT0xu9Ylk8uTyOSWFXNodNQaU6ugt5gyDnN5BsBQDuq9Vo63XD7Az11tZOC/c/eglTAxV+sMMM5Rm89ltfsuuJWcTVvn0FRkc3kr06iccjg4HCaezrHRbMdgHwPYE/TQFXBbVb2tohxi6Sw+twNXUU54u9+NlMYsaFicctizpZurNnTyqzdtKfu4Ug6LvUO1T0zrMf1Q49EUPz09jdMheN2OPivdtVKowOypcSPVOZnJ8d//+UW+f9AYZLRY5WCvkG50VDJGfBX0FlM3ffPFmlLZ/LytXt538zbef4uRJOF2Ovi92y4CjBuQ+egLFToP25VDLr9wBlU9aZyKmjoyGUuj4lSRMsbhuVNGZu0D91zLXz12jNfvKNRY/ObN23nXdRusi+D4HANBmo3IHK4SFW85OWbcQXf65//gALztynW87cp1cz7utYzD4i5C9olp6oM7EU0zMpOkv81LX5u34gFptbYzZh3MBx8+yIP7h3jVbLew6DoHW2+lRkdl4kzE0lYfq0bFcivNc1OQzOToXEK88GevXEfA4+J1O3rn3a/X1lwybUtlBUNZOh2N+b/WxoFCMBrKu5X2npxkY3eAnWvb+etfvGbWYx0BNx0Bt1UB2TLKITW/cXj+7BQAW/qCK/5bS81WSqRz1l2tclMZLsEka9p9tPvcxNI5srl8ifJZLqq6/tREjG+/OMzXnjtLm8/FS0NGjGOxxsHrWj3KQaV3zjU+s5FYbMxhKUZZCMFtly6cSdbX5rW6KKg4g1K2mdzS/mYtafx3YA1QVl2IUreSlJJ9p6esgPNcuJwOugLulmmhUdyRVaGMw75TUwQ9TmsgzUrwOI0Pz6KNQyZnffiUchiPpk3j4LWG48znf14qyuV1eiLON/adZUtvkD+8Y6f1eGiBSnHFalIOBZddY6tlKaXNOCw/5rBc+kKlyiFkKYfGdStp44AxrxjMSWZFb55jo1EmY2n2bOkqd+gsekPelmmhEZ3LOJjZGUdHo2zrD83ZVmApqKyYxWYrxW2zljv8blwOwUQ0xflwkrWmcoD57yKXilIOZyfjPHNigtt3reGGbYUWYYt3K61G5dDY7/l4OldwGy+UrVQFo2y4MbMkMznLOKj/cyNnLDX+O7AGKKu+uSdYEnN45MB5hIDX7Vi4l1NPyNNSxmE+txLA9r5QRf6Wvc5hMdjdSkIIekIezkzGjelwHT5rmEullYMQRs5/Jie57ZI1bO0NWsplsUVwl6/v4N4bNln9exqZgMeJz+1oeFeq3Ruwkmyl5dIXKrSISeXyeFyOJbtK64E2Dhgxh3afi96Qd1aFtJSSb71wjj2bu612GfPRYxt52ews5FYC2L6mQsZhidlKdrcSGO6PV0yf75o2n3UXX8lah2QmxyYzKNsT9HD1xi6EEJY7cinK4UN3XbYqCimNMZheK02zUbEbh3Aig5SSfJksoaXGHBaL1T8smiKTlXjNOTCglUPDMxZJ0d/uI+R1zXIrHRwOc2Isxl1XrZ/n6AL2lLVmJ5rKlVUOfrfTqpatmHJY4l2WkcpaWFtvm9eatbG2ozpupVQ2b3VOvWVnP05zdsMdl61lbbtvUVlbq5FGUcsT0RR3/fVTnDWzxezYP9ORZJav7D3Daz/+2Kw00nxeks7mq6McbM0l07kcHpcDt2UcdMyhoRmLpOgLeQn5XERTWav/ysMvDuN2Cu68bO2inmewy08kmbViGM2Mka1UepclhLDueneYF8uVshS3Uj4vSWbys3pe9QY9ls/ZHpCuZK1DMpNjU0+A37l1B7/xhq3W9ruuWs/T999iGbhmozvoaYhuxEfOR3jx7LSVdm5nlnJIZnjp7AzDM0mGpwvV7CqeVVXlEEmRzuZxOx3WDZRSDk+8Osb+01MV/9sroTnfsUtkNJKir81rNsOSlvviuVOTXLupa94KSDvXbDKC1j9tsH9ypcnlJYnM3D1q2v1uPE4HG7oWdsUtBqvOYRESPGEGhu3dcnvbClXXa9oLMYdKKQcppeWS+L3bLmJ7/2yj2MCDDVdMT9BrtYaoJyoLyX7BV6g4Q1fATSSZZXjG2OfYWNTaRyUUVEM5dAc9CFEwDh6XA3dRS5iPPnKY//vY0Yr/7ZWgjQOGJO0NeS2/sLrTGIukGOhY/AVu17p2PC5Hw90BVJq5+iopOv1utvQGK1ZDoHL/F6MclHGYHXPwWNtCXhchjwshKtd8L50z+iqthgyjStMb8jAeS/PKcJg7P/UkFxYYllUtlKEvN49FNYkc6PATSWYsA3J8tGAcUtnqKQe300F3wGPEHHLSCEgrt5L5dxPpbMNVmrfeu7mIZCZHLJ2jJ+SxLnbRpOFaGo+mFiyNt+N1OblifUfTG4fYAsbhv96ygz+88+KK/b2lxBzUhDe7W0kVwq1t9yGEwOEwxjpWKiBdzQtLo9Md9JDO5nnoxXMcGgnz9efOLnxQFVDqYKSMclA3M+s6fYQTWau1ywnbzPdqKgcw0tyNzs55PM7SmEMik1vUmOJa0vLGQWVa9NqNQypLLJ0jmcmXbQQ3H9du6uLAuXDD/aMryVztuhVv3Nlf0RkEngXaZ5waL/TpV3dfswLSpoHvby/8L9t9lWu+Z11YWtA4qM/Hj44YM92//tzZsplA1UYZ+uHpUuUQtSmH0UjSeo/USjmAEXcYj6ZI5/K4XaUxh0Q6Z6neRkEbBzO7qDvotXLRI8mstb13icbhmk1dpHN5Dg7PVHahDcRCbqVK43QInA5RVjm8eHaam//8cZ49aQQi4+b4Ur+n8NbutSkHRbvfXbGAtGq614puJeWyO3w+QlfAzbnpBE8dH6/5OpRyUPGE4sc8Tgc9ZodeMFKLa6kc+sz+SplsHq9NOaiYQzKT18ah0VBpeD0hD21mi4NoKmvVKyzFrQRwzUYVlJ6u4Cobi7lGhFYTj9NR1jg8e9IY3qMa3FkBaXdhbaqSd42tlUe7z1Wx5ntK0bSiW8k+PvPXXreVzoCbbz5/rubrsI+mLf6/xsxJfO22tuk3buthLJKyjquFcjBSWWcXwWVyeXJ5STqXJ9lgI1db3jhYRsCmHKKpDGMR5W5amnLoa/MS8DibOp11oZhDNfC6HWXbZzx/xjDCZyaM/PZEujQg3RfysntTF9dvLbSzULOlP/rIIZ54dWxFa0u2snKwfT6u2djFlt6g1XGgltgNwkhRUFpV89sLEV9rdjw4YXYPLrgGq/M/XNvuI5XNc2YyXlTnkLf+dlIHpBsLFXMoDkgro9HXtjTjAMYd9VwT5ZqBqDnop5bGYS7loIzD2SnDOMTLGAeX08GD77uRN17cb21r87k4Nhrlb350gm+/OLyitbW0crClee9a347P5axLvC2cyFp+/OJ01kjSqOZXKcwuh+B6sz2JijtU2zV488WGMRqLpHA7RSHmkJWW2tVupQZjIprC53YQ8DitO4uIza003/DwuQh5XdYFtBmZNufhqmKyWuBxOUraZ4zMJDhvpk6enTQuCOXqHMrR7nOTNR3QU/GVuZdaWTn43E6CHidbeoO0+9z43I66uEciqQzbzIr8UuWQoc2mHNa0+9jcG8TpEFblfLLKBn5rX4ida436F4/LWSjszOUttWv05Woc11LrvZuLmIim6Ql6EULgdTlwOYSlHDoDbkv+LYWQ12W5XpqRiVgat1PUtP+Px1WqHF4wVcOVgx2WciiXylqOdtvalbFbLq2sHAA29QS5brMRa/O5nXW5Aw4nsmzvD+EQpcohlsrNijms7/TjdjroCnism8BaJBXcYXZasKeyZm1uJWgs9dCSxmHGlt8+EUtbQWchhNVCYzySXnK8QRH0OssODVrNTMfTPHb4AgDjkZRlUGuFx1mqHJ4/O43H5eD2XWuJJLPMxDNlU1nLsXNtG2vbfdy4rYfJFRqHVlYOAP/4a6/hgz+7CzCMQz3cSpFkhq6AhzXtvpJ0VhVzUMZhoNNITOgNeSy3crWVAxgzqIFZFdKZnJxlEBop7tBy7+YvPnWS2z/5I6tB10QsNSuopprvLbUAzk7I6266mMM/PXuGX/3iPqbjaePctNW2kZzX7SwJSB8cnuGSgXa2mdPmzk7FSaSzCFEYmjMXb7l8gKfvv4WtfUGmV+hWanXl0B30WMa4Vm6lB/cP8d2XRwCjfUk4maXd72Kgw8fITGnMIeQruJVU14PuoMdKWa+FctjRH+JtV67j+q3dVszB7lYCrRzqyo3be0lm8rzn888yFkkxEU3Piit0BtxciCRNRbE85RDyOpvOOCipPjxtnBs1BaxWeJ0O0kVFcBPRNP1tXmt+8ZnJOImMMehnMapGCEFXwMN0PL2iwq1WVw52vC4nqRpc4D796FH+8F9eYiaRIZHJkctL2nxuLlrTxstDM7PUSzSVIeR10eF38+49G61Gmj0hrzWoqBbKQQjBX737au66aj1uhy1byaaItXGoIxetaeMLv3wdIzNJPvGDI0bMwaYQbtjaw96Tk4zMJJZvHHzNF3M4bwb5zocTjEdSyz43y6VczCGcyNDuc1vG4exkfNYUuMXQGTAKo1Yy+EddDFtVOdjxuZ3WhbZa5POSkZkEkWSWLz51yipmbPe5+ZkrBoiksjx+ZJR4OsvZyTjJTJ6Q14XDIfjoz1/OlRs6ASPTStU5KeXgqVA/sIVwOAQuhyBTrBy0W6m+XLupizdduoZ/e2mEdC5Pr+0u+I7L1pLJGW2fl5PGCkYqa/FEudWOygoamUkyHk3X3K1ULltpJpGhw++m3eemw+823Uq5BTOV7HSZY01XEndQd35aORiJAJmcnDUrodKMRowGdl6Xg8//+IRVFd3mc3HD1h56Q14e3D/Eez6/l9f92X8A5dOue4IeIqksqWyOZNaYs+Bw1C6O5nY6zGuNLebQQIVwLftuftMl/dbdol05XL2hyzIKy445eFyks/mGHgG4VJRyOHohWmJQa0FxnUMmlyeWzlkZUxu6/ZydTBBPz54CtxCqHfvUCoxDK7fPKEbFeioZlE6kc7MKFc9NG/HCX75xM+Fklh++YiRKtPvduJwO3nrFAD88NMr+01P85+s38vqL+mYVQCq6bTOwU5nqDPqZD7fTaAkzKyCt3Ur15+aL+lE3CfaAtMMhuP1So2nccv3qqtK6WVxLqWzOyuo4cM7oGVX7gPTsCmll2DvMWouN3YFCzGGBTCU7XQHjdawknTWZzeFyiIq1KF/NKNdaJS9y335pmHu+sJdTZk3C0JShFG7fZXxO95ldkFXA+eeuXo8QhvH48Nsv58u/uodL17WXPK/6fE9E06SyuZq7BT0uR6lbSRuH+tMV9LB7k1El2VNU6Pbz1wzidTnYscwZyEHv7LkQq53RcKEdgprFXPOYQ5FyUOnIHaZbaHNPkLOTcaKpLIElfMgtt1Js+RlLqUx1Zg+vRizlsAzVPDyd4BEzA8mOChofMftnnTOTI3aubWddh48Xzxr1LipV9coNnTz+32/mT9566bx/T3kGJuqmHEzjkNExh4bj9l1rcAhjrrCdazd18cqf3sGmnuCynrfNNA6xdHMYBxVvaPO6rDqCWmcrFQekLePgLxiHbF5y9EJkaTGHYGWUg3YpGaxEOfzDM6f5za/8tORY1TfpmNnqYng6QWfATdDr4qK1bVYsqt3WO2lTT3DB+IHKUpyMpUjWSTmksroIriH55Rs38+3/+tqyd8HOFQSmgrYeTc2AakdwxYYOa1u9A9LFxmFTj5GxFE5ml2Qc2rwuXA6x4piDVg4Gamrfcu6AxyIppCzEtxQqG0kZh3NTCdZ3GrUKF9vmlLcvsWJfuZMnovVRDu0+N+FEpiggrY1DQ+ByOti1rmPhHZdIyNdcbqUL5of16g1GiwQhoDtQe+NQTjkoV8Lm3oLKW4pbSQhBZ8C9ov5KWjkUUG6luQYzzYcqSCueyaCUw9HRgltJGYeLTOPgdool/w/afS7cTsFELF0X5aDed4lMzlI92q3U5ISaLOZwPpwk4HFaMZiugKfmwVevy2nOajZSJIuVQ3+b16pvWEq2Ehi1DlOxlSmHVpwCV46CW2npMQeV9DBS1P5CJR8cG42Sz0tDOXTNNg7tPveS27kIIawq6Xooh06zADORztPmc+NyiOZxKwkhTgkhXhZCvCCE2Gdu6xZC/EAIcdT83mXb/34hxDEhxBEhxJtt2681n+eYEOLTopZNe6qAcis1S7bS+Zkka9t9VtuB5ab4rgT1wVUZS2ospHIlCCEs15JvicahO+BZmVspm1uwXUersJKYw7g5B6Jc+wvjOfMcHA4TS+cs5bC9P4QQzJrVsBS6g0aVdF2Ug9/NtOlW8nuc+OvUtHAuKvGOfqOU8iop5W7z9w8Aj0opdwCPmr8jhLgUuBvYBdwBfEYIof4bnwXuA3aYX3dUYF11QymHlVTdNhLnw0nWdvgY6FANy2objIZC5apyLYUTGbwux6wP9GYzgSDgXtqFojPgXlF/pWRGu5UU/mUqBykl46ZyOFekHMLJjJVR+PiRUQDLOPg9TjZ1B5Ycb1D0hjyM1ynm0BUwBk5FU1n8bic+j7Ppi+DuAr5k/vwl4O227V+TUqaklCeBY8AeIcQA0C6lfFoaPoMv245ZlQTNO9dYk8x0UMqhv90wCj31MA6u2cZBVUfb2dRrKIelupW6Ah4rXXI5pLI6IK1YbhFcNJW1/rfllMPV5vjdr+w9A2C1TAH4z9dv4m1XrFvWeruDnroph46ABymNim+/21AOjRSQXum0Fgn8uxBCAn8jpXwAWCOlHAGQUo4IIdT4rfXAM7Zjh8xtGfPn4u2rFpfTgd/tJJqqzIziepLLSy6YysHrcnLlYAdXrK98EH8hlHFIzWMclHJYSrYSGOms0/EMUspltSHXyqGA5VZaREB6eDrB2nYfDoewehxBacwhnMww2OVnoMPHaCTFb7x+K7tsRW2/9rqty15vT9CY7ex1O+qiHADOzyToXd+Bz+1oqID0So3DTVLKYdMA/EAIcXiefct96uQ820ufQIj7MNxPbNy4calrrSnBJpkGd24qQTYvLX/+Q+9/bV3W4S1jHIpdCZZbacnKwU06lyeezlnxoqWglUMBn2txbqWZeIab/8/j/K+37+IXrtvIRMyIN2zuCczKVsrnJdFUlnafi8/fex0el2B7f9tcT7tkets8JDI5EpmcNamtVnSaxmEqnrGUQ9PEHKSUw+b3UeCbwB7ggukqwvw+au4+BGywHT4IDJvbB8tsL/f3HpBS7pZS7u7r61vJ0qtOW5N0Zj05YbQs2LzMgsBKodwI7/n8szx9fKKscrhisIM3XdLPtZu6yj3FnKgiSDUycqlo5VDAu0i30lg0STqX5z8OGz2Txk3lcNn6DiLJrJXpF0tnkRLafG4uXddeUcMA8M5rN/Cnd+3iR39wM79805aKPvdCdPgLiR1+j7NuU/TmYtnvaCFEUAjRpn4GbgcOAA8D95q73Qs8ZP78MHC3EMIrhNiCEXjea7qgIkKI680spXtsx6xagk0y00H1s9nSW1/jcN3mbr74K9chJXzskUOEk6XGIeh18Xf3XrfkynbVlO0nx8eXtTatHAp4XQ6EYMGZDioV+ZmTE+Tz0hrXebnpshwxW2SopI7lZiMtRF+bl3tu2LzsbggrQbmVwAjk+z2NFXNYye3OGuDHQogXgb3Ad6SU3wM+BtwmhDgK3Gb+jpTyIPAN4BXge8BvSSnVmXgf8HcYQerjwCMrWFdDEPS4VqVxyOTyZG0N7k6Oxwh6nMtuX15Jbr64n7uuWsfB4TDjkXTFZlivafexvT/EU8cmlnTcsdEoPz46rpWDDTWLfaE7YFX1PB3PcOh82Io5KOMwbBZeFoxD7eaV14pOWyGpT7mVmiHmIKU8AVxZZvsEcOscx3wE+EiZ7fuAy5a7lkakzecqmWXbyExEU7z7b5/h1QtRtvYFefT334AQgpPjMTb3Bms6L3o+rtvczWceP042n1t2+mI5btrWwzf2DZHK5qwWEOU4NBImmspy3eZu/uqxo3zvwHmtHIow5kjPH3MIJwvJGk8fn2AimqLd52KjGdsqKAdjv2oph3piv7lp1joHTRmCXteqarz3hadOcnQ0ym2XruHEWMzqY3NqIjarNUW9uWZjF8pOVUo5ANy0vZdEJsfzZ6bn3e/Pv3+EP/7my4DRCyilB/2U4HMt7B5RRYxdATdPH59g3BzLu6bdh0MU4j/VdivVE6dDWG0zWqXOQYNRCLdaGu/NJDJ8+SenufOytVab458cnyCTyzM0lWBLnYPRdjoCbi4yg5KVNA6v2dqDQ8CTR8fm3W88lmbUrOS110Zo5VDA73Eu2LJbxRxuv3QtT5+Y4NR4jJ6QB7fTwet29PHQC8Nkc3lLYVRSJTYSqiuwz+1YlFGtJdo4VImQt/FjDlJKvrr3DL/5T/uJpLL85s3b2dAdYLDLz1PHxjk7GSeXlw2lHAB2bzaykdoreDfZ4Xfzhov6+NJPTpcUYdmZiqWZjmfI5PKMR9OsMzOddG+lAl6XY2HlkMziczt4zw2biKdzHBwOW23gf+k1GzkfTvLo4VHCTawcwGihASogbcRqVP+weqONQ5UIeV2ksnkyucaRicW8eiHK/f/6Mq9eiPLbt2znMjMYeNO2Xp45McGJMZWpFJjvaWrOdZuNIU3dwcr2ePrQz15GNp/nj795YM4PqGrQNx5NMRVPc9fV6/nQz+7ijl1rK7qW1YxvEZW+4USGdp+by9Z38Jot5tAts2fXLTv7Wdvu45+ePWPFHNqbMCANhaC0Ckjn8pJMThuHpkZNKFtJz55qo+6QP/tL1/D7t19sbb9xew/hZJa/+/EJoP41DsX8zBUD/Pk7r+SajUurZ1iIjT0BfvvWHTx2eJTjY6U1D5lcnoipBo+PxsjlJX0hL/feuLkhsrkaBZ/bYc3Vngt7KrKqcFZtWVxOB++6bgNPvDrG6fH4stpxrxZUIZyqc4DGGfjTnGe8Aegz3+hjkdQCe9YPtbb+ttmT8G7Y1oPTIXjmxCRvuKiv4nfoK8XtdPCOawcXnPS1HK4a7ASw8u7t2Du3qpGVPXXoUNvo+NzOBdtn2Cvcb93Zz395wzZ+5vIB6/HX7egF4EevjtG2jHbcqwU1w1zVOUDjDPxpTkdeA6DuJMtdZBoFFVgtvuvtb/Px8Ptvojvosdp0twpK5peb72BXgUfOG7O0az0udTWwuGylrNX63eEQfODOnbMev3x9B26n4Hw4abVuaUY67DEH9/Kn6FUDbRyqRO8qUQ5tXlfZRnXVmJC3GugKFvrdKD7wLy8hBNx1VaEf5JELRqqvVg6l+NyORdU5bO2b213pczvZta6DF85ON228AQpV0j6PzTg0iHLQbqUqoe7GxxpYOYxFUtpXXoSS+cqFJKXk+wfP8/TxiVlq4qhyKzWYy60RWEyPoHK9sYrZbfbIatZMJYBu8yYy6HFZQ6riDaIctHGoEkGvC7/baU23akS0cShFZY1Mm8ZhaCrBVDzD8HTSGmPpcTmsD3CXNg4lLJStJKW0spXm49oWMMJep3wAABBESURBVA63X7qGP/tPV3DRmpB1PlSBYL3RxqGK9LV5G1o5jEaS2jiUoSvgZjJmfEBfHDIqptO5vKUWtvUZs7Q7/G7cNZ6lvRrwuZ3zZivF0jnyEtr981/0r7GMQ/O6lXxuJ++6bgNCCCsGM7GCwVOVRL+zq4gxgrCRjUOqJFNJUxj8DvDy0Iy1/eVzMwQ8TtZ3GudMxxvK43M7SOfy5PLl8/Wt+d8LXPTXtPu4Y9daq2tus6NSeSca5JrRvHqtAehr8y57RkC1iaWyxNM5a/SnpkBX0G3FHF4cmqbN5yKSzPLKiFHFq5INdLyhPCpfP5XNEfCUXmJU64zFtD/53HuureziGpigx4nH5VjRyNpKopVDFekNea0hJtXm+FiUmSUU3FlprHWYB93odAWMsaH5vOTAuTC3XboGMKabdQc9NuOgz105fC418Ke8a8lSDk3aL2m5CCHoDXpqds1YCG0cqkhfm5fJWLrqLTSklLzrc0/zl4++uuhjrAI4rRxK6Ap4mIqnOTEeI5rKcsPWHquStTPgttxJ3dqtVBZrjvQcQWnVL6mZU1SXS0/Ia41MrTfaOFQRFeyttkycimeYiKWtNtuLYTRizJrQAelSugJuphMZDg4b8YZd6zpY32kUA9qVQ692K5VlQeNgKQft1S6mO+jRbqVWoFaFcGcm44CRdgmGr3euYKBirtYZGiMgLSU8f2Yah4CtfUEGuwzj0BUoGIdGayvSKPjc87uVlhJzaDV6Qh5rKl690cahiliFcFU2DqcnjKD30JTRYvudn3uaj373UMl+H/r2QT78b68ARszB7RRWy2BNAXXR33tykg3dAXxuJ+s7jRYOXQEPm3oCOB2CLWZKq2Y2fjMIHUmWj4GpGQ0hr1YOxfQEPUzEUg3RtlsbhypiNd+rcmraWVM5ZHKS42NRXhqa4eVzM7P2SWfzfOO5s/z7KxcAGA2n6A15q9K8brWj4guHz4fZbhqA9Uo5BN2s6/Tz9P238HqzOZxmNrvWtQOw/8xU2cfDiSwhrwuXrhEpoSfkJZnJN0SVtP7vVJFau5UAfmBe/JWLSfH8mSli6RxDU3FS2RznpuOs7dAupXKoFhp5Cdv6DeNgdyuB4Y5r1k6hK6U35GXn2jaeOjZe8piUkgPnZrRLbg5UenQjxB20cagifo+TNq+L0XCyqn/n9EScNWbW0fcPngfgfDhJ1pYl9WPzg5qXxv5Hzke4eE1bVde1WlEGALCUw5WDnWzuCVgDkTTzc9P2Xp47NVUSlP7q3rPsPTXJb7xha51W1tioTLhGKJ7VxqHKbOoNcHIivvCOK+DsZJzrtxozGF4yK3pzecnITMEoPXF03Bqr+eyJCabiGS5eq41DOTqDhTiMUg5rO3w8/gdvZEuDjUxtVF67vZd0Ns/+04Zr6dBImN/92vP86b8d5LXbe/nFPRvrvMLGRNXOzBWUrmUsQhuHKrOtL8SJscWnmC6VVDbHSDjJlt6glW7pMYuQlGtpOp7m5aFp3rl7AwCPHDDUhTYO5WnzunCZsZjtOui8LPZs6cblEJZr6QP/+jKPHhrl9kvX8hfvulK75OZAKYdybqWPPXKYOz/1ZM2GAWnjUGW29YU4N52o2gCPoakEUsLG7gAbug3jcNO2HvMxQ7H85PgEeQl3XraWvjYvz5yYAGDn2vaqrGm1I4Sg00xZVeNeNUsj6HVxzcYuHjs8ynQ8zUtD07z3dVv49LuvZk27jnXNhVIO40WFcNlcnn/ed5bD5yN86tGjNVmLNg5VZltfCCmpSo+lv3vyBF/6ySkANvUE2NhtpFvecskahCgohyePjtPmdXHlhk629AbJSyPNVgcF56Y35GFHv1YNK+Etl6/l8PkIX3jqFFLC63b01XtJDY/f4yTgcTJZ5Fbae2qSiViarb1BHnjiBAeKshGrgTYOVWZbv+GjPl5h19LxsSgf/s4hvvz0aQA2dAfYYBqHKwc7WNvu49x0AiklTx4d4/ptPbidDraZ07d2apfSvHz47Zfx/7/10novY1XzM1esw+kQfPbxY7T7XFw5qIP5i6E76Clp2/3dl0fwu5185devZ0OXvyYNPXUVSpXZ3BNEiMobh+++NALAJ951JclMnv42H3deNsDwdIJLBtoZ7PIzNBXn9EScoakE973eyA5RAVWdqTQ/uzd313sJq56+Ni83be/liVfHeNMlvbquYZH0hLycmYwjpUQIQS4v+d6BC9yys5+1HT5++PtvqMm51P+tKuNzO9nQFeD42MosfTqbn5US+52XR9i9qYufv2aQX3yNkfmxpTfIh99+OW6ng8GuAENTCZ48OgYUJP3WXsNVooPRmlpw15XrAHj9RdqltFjevGsN+09P8ZnHjwPw+JFRxqMpfuaKAYCaGVmtHGrAtr4gx21N8bK5/JL+wVJK/ss/7ueZExN897dfR05KDp+P8CfzuD0Gu/w8/GKSbz5/jvWdfjb3GC6n67f18O49G7j1kjXLf0EazSJ565UDTMXT3HXVunovZdXwvjds49XzEf7P94+wtTfI3//kFOs6fFbr+FqhlUMN2NYX4sR4lHxe8qNXx7jsg9/n9ESMU+MxfvFvn+HQSHje47934DyPHR4lmcnxO197nj956AAAd16+ds5jBrv85PKSF85O897XbrFSB0NeFx/9+St0MFpTE7wuJ7/2uq1lh/5oyiOE4OPvuIKrNnTye994gb0nJ/nV126p+Uha/R+rARetaSOZyXPofJhv/nSIZCbPwy8ME05m+MnxCX79y/t4+P2vLXvBTmZyfOjbr3DpQDv3vX4rv/v1F/C7nfyvt1/GQId/zr95x2UDXAineNuV63ThlkazyvC6nPz1L13DWz/9JG6ng7vrUDSojUMNeNOla3B/S/DP+4Z49PAoAP/20ggziQyXDLRzfCzKf/vGC/z9r+zhscMXOD+T4t17jKHj3315hPPhJJ9415XcuL2XNp+LnQPtVsHbXHT43fz2rTtq8fI0Gk0VWN/p58H33Ugsla1LB1ttHGpAd9DDLTv7+YdnTpPLS27c1sNPjhuFaH/8M5dwIZzkw985xFeePcOHv/MK8XSOw+fDfPBtu/j6c2fZ3BPgBrOwTccKNJrWYVsdK/QbJuYghLhDCHFECHFMCPGBeq+n0vynawbJ5SU+t4P//XOXIwQEPE7edMka3nPDJjZ2B/ijb76MAN69ZyNffvo0v/LF53j25CTvum6Dbjeg0WhqSkMoByGEE/hr4DZgCHhOCPGwlPKV+q6scrxxZz+9IS97tnSxuTfIz165jrXtPvweY6Ti/Xfu5H3/9FP+8M6d3HPDZjb3BPjoI4dxOgTvuGawzqvXaDSthmiEiUNCiBuAD0op32z+fj+AlPKjcx2ze/duuW/fvhqtsDIMTcUJeV10BspnCg1PJ1hniyU88vIIE7E0//n6TbVaokajaXKEEPullLsX2q8hlAOwHjhr+30IeE2d1lI1BrsC8z6+rijIfOflA9Vcjkaj0cxJo8QcyjnUSySNEOI+IcQ+IcS+sbGxGixLo9FoWpNGMQ5DwAbb74PAcPFOUsoHpJS7pZS7+/p0Ob5Go9FUi0YxDs8BO4QQW4QQHuBu4OE6r0mj0WhaloaIOUgps0KI9wPfB5zAF6SUB+u8LI1Go2lZGsI4AEgpvwt8t97r0Gg0Gk3juJU0Go1G00Bo46DRaDSaErRx0Gg0Gk0JDVEhvRyEEBHgCNABVGradi8wXqHngsqubTU8nz5/y0efu5Whz9/CqHO0SUq5cC2AlHJVfgH7zO8PVPo5K/h8FVvbKnk+ff70uavX8+nzV+Fz1AxupW/XewHzUOm1NfrzVZpGf72NfP4a/bU28rmDxn+9VT9/q9mttE8uonlUvZ+zldDnb/noc7cy9PlbmKWeo9WsHB5YJc/ZSujzt3z0uVsZ+vwtzJLO0apVDhqNRqOpHqtZOWg0Go2mSjS1cRBCbBBC/IcQ4pAQ4qAQ4nfM7d1CiB8IIY6a37vM7bcJIfYLIV42v99ie65rze3HhBCfFi0wt7PC5+8jQoizQohovV5PLanUuRNCBIQQ3xFCHDaf52P1fF21osLvve8JIV40n+dz5uRJzUJUMr2q0b6AAeAa8+c24FXgUuDPgA+Y2z8AfNz8+WpgnfnzZcA523PtBW7AmD3xCHBnvV/fKjt/15vPF63361pN5w4IAG80f/YAT+r33pLfe+3mdwH8C3B3vV/faviq+wJq+mLhIYw51UeAAXPbAHCkzL4CmAC85j6HbY+9G/iber+e1XL+ira3hHGoxrkzH/sU8Ov1fj2r8fwBbowU0F+o9+tZDV9N7VayI4TYjHF38SywRko5AmB+7y9zyH8CnpdSpjDGmA7ZHhsyt7UMKzx/LU2lzp0QohN4G/BoNdfbaFTi/Akhvg+MAhHgwSovuSloCeMghAhhyMnflVKGF7H/LuDjwG+oTWV2a5k0rwqcv5alUudOCOECvgp8Wkp5ohprbUQqdf6klG/GUBpe4JYyh2qKaHrjIIRwY7y5/klK+a/m5gtCiAHz8QGMOwq1/yDwTeAeKeVxc/MQxuhSRdkxps1Ihc5fS1Lhc/cAcFRK+ZfVX3ljUOn3npQyiTFh8q5qr70ZaGrjYGYUfR44JKX8hO2hh4F7zZ/vxfBnKtn+HeB+KeVTamdTvkaEENebz3mPOqaZqdT5a0Uqee6EEB/GaLT2u9Ved6NQqfMnhAjZjIkLeAtwuPqvoAmod9Cjml/AazHcPy8BL5hfbwF6MPy2R83v3eb+/wOI2fZ9Aeg3H9sNHACOA/8Xs4Cwmb8qfP7+DEOB5c3vH6z361sN5w5DpUrgkG37r9X79a2i87cGY0b9S8BB4K8AV71f32r40hXSGo1Goymhqd1KGo1Go1ke2jhoNBqNpgRtHDQajUZTgjYOGo1GoylBGweNRqPRlKCNg0ZTBYQQ/0UIcc8S9t8shDhQzTVpNEvBVe8FaDTNhhDCJaX8XL3XodGsBG0cNP+vvfuHkSkKwzD+vEEjhEarFYkIUQmi1mtEWKuVaCUalQ4RmqVY8acRnSiIxiYb0YuoaBTbSNYS236KeyY2e+eumCy7xfMrv9x8uaeZb87JzHs0Rgt7e0kX9naYLjL6PLAfuAXsAL4CF6pqIckb4C1wDHieZCddAu2NJIeAGbr47U/AxapaTHIEmAWWgfn/tzrpzzxWkobtA+5X1UHgO3CJ7h+2p6tq9MF+fcXzu6vqZFXdXNXnEXCl9XkPXGv1B8Dlqjr6LxchTcKdgzTsS/3O6XkCXKW7SOZ1uwhwC7Cw4vmnqxsk2UU3NOZa6SHwbEz9MXBq/ZcgTcbhIA1bnS3zA/iwxjf9n3/RO2P6S5uGx0rSsL1JRoPgDPAO2DOqJdnW7g8YVFVLwGKSE610Dpirqm/AUpLjrX52/V9fmpw7B2nYR2AqyT26FNC7wCvgTjsW2grcpkv7XMsUMJNkO/AZmG71aWA2yXLrK20aprJKY7RfK72oqgMb/CrShvBYSZLU485BktTjzkGS1ONwkCT1OBwkST0OB0lSj8NBktTjcJAk9fwC80tLr3BY2HoAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
" sorted_data['inc'][-200:].plot()"
=======
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
"le début de la période qui suit, la différence temporelle doit être\n",
"zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
"d'une seconde.\n",
"\n",
"Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
"entre lesquelles il manque une semaine.\n",
"\n",
"Nous reconnaissons ces dates: c'est la semaine sans observations\n",
"que nous avions supprimées !"
>>>>>>> 5b4a347ece88315f3afbf737327897f8bae59c83
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1143"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data['inc'][0]"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"sorted_data['inc']=sorted_data['inc'].astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcHGd95/9++r7mPqSRRrdky5Zvy8IHh7GxsQnEJAvEJIudhMRZEjbXbn7Byf6ykIUFsgkEsgHiBAIk4YoTsAkYAnaMjbEtS/iSLMm6pdGMNPf0fT/7R9VTXdPdc/c13c/79ZrXzFRX9Txd013f+nxPIaVEo9FoNBo7jnovQKPRaDSNhzYOGo1GoylBGweNRqPRlKCNg0aj0WhK0MZBo9FoNCVo46DRaDSaErRx0Gg0Gk0J2jhoNBqNpgRtHDQajUZTgqveC1guvb29cvPmzfVehkaj0awq9u/fPy6l7Ftov1VrHDZv3sy+ffvqvQyNRqNZVQghTi9mP+1W0mg0Gk0J2jhoNBqNpgRtHDQajUZTgjYOGo1GoylBGweNRqPRlKCNg0aj0WhK0MZBo9FoNCVo46DRtDCHz4fZd2qy3svQNCDaOGg0Lcwn/v1V/se3DtR7GZoGRBsHjaaFiaWzhBOZei9D04Bo46DRtDDJTJ5IKlvvZWgaEG0cNJoWJpnJEU1lkVLWeymaBkMbB42mhUlkckgJ8XSu3kvRNBjaOGg0LUwqkwcgql1LmiK0cdBoWphkxlAMkaQ2DprZaOOg0bQwBeOgM5Y0s9HGQaNpUaSUJEzjoN1KmmK0cdBoWpRMTpI3k5SiRW6lrzx7hrf+1ZOMhpN1WJmmEdDGQaNpUZLZQoZSca3DS0PTHDgX5j2f38tMXLucWhFtHDSaFkXFG6BUOURTWYIeJ0cuRHjwp0O1XpqmAdDGQaNpUZLpvPVzccwhns6xuTcI6GB1q6KNg0bTotjdSsXGIZrKEvK68DgdJDP54kM1LYA2DhpNi2J3KxXXOcTThnHwuh2ksrp6uhXRxkGjaVESabtxmO06iqVyBLwufG6nVg4tijYOGk2LkszOHXOIpbKEvE68LgepjFYOrYg2DhpNi6LcSp0Bd0m2UiyVJeAxlEMqq5VDK6KNg0bToijj0BvyzlIO+bwkls4R9LrwuhyzYhOa1kEbB42mRVEX/b6Qd1ZAWrXUCHmds5TDaDipDUULoY2DRtOiqEBzb9ts5RAzfw54ZiuHOz71JF/6yamar1NTH7Rx0GhaFLtysE+Di6WVcijEHNLZPJOxNGORVN3Wq6kt2jhoNC1KQTl4yOWl9XtBOTgt5aDSXnVwunXQxkGjaVESmRwep4N2nxso1Doo42BXDioOoQviWgdtHDSaFiWZyeF1O2jzuYBCZ9ZY2lQOtmyluLlNK4fWQRsHjaZFSWVz+N1OyzioWodYana2kmEcTOWgq6VbBm0cNJoWJZHO4XM7CXkNt5LKWJqVreR2kMrmreC1diu1DgsaByHEBiHEfwghDgkhDgohfsfc3i2E+IEQ4qj5vct2zP1CiGNCiCNCiDfbtl8rhHjZfOzTQghhbvcKIb5ubn9WCLG58i9Vo2lthqcT/PLf72UqlgaMgLTP7SDkNd1KKuZgqgSjCM6IOcR0QLrlWIxyyAL/TUp5CXA98FtCiEuBDwCPSil3AI+av2M+djewC7gD+IwQwmk+12eB+4Ad5tcd5vb3AlNSyu3AJ4GPV+C1aTQaGw+9MMzjR8Y4MDwDGC27fW4nvW0eAC6EjTRVpRyCHic+t3GJmI4bBkUbh9ZhQeMgpRyRUv7U/DkCHALWA3cBXzJ3+xLwdvPnu4CvSSlTUsqTwDFgjxBiAGiXUj4tjYTqLxcdo57rQeBWpSo0Gk1leOLVMQCmzLGfyYxhHPpCXvxuJ2cm44ARkPa6HLicDrwu475u2naMpjVYUszBdPdcDTwLrJFSjoBhQIB+c7f1wFnbYUPmtvXmz8XbZx0jpcwCM0DPUtam0WjmJp7Osu/0JAAzpgpIZPL43E6EEGzsDnB6wjQOqSxB09WklMOUVg4tx6KNgxAiBPwL8LtSyvB8u5bZJufZPt8xxWu4TwixTwixb2xsbKElazQak2dOTJDJGR8ppRxSmRw+l3EJ2NAd4KxSDqkcQa+hGIqVgw5Itw6LMg5CCDeGYfgnKeW/mpsvmK4izO+j5vYhYIPt8EFg2Nw+WGb7rGOEEC6gA5gsXoeU8gEp5W4p5e6+vr7FLF2j0QBPvDqOz+3A73ZaKkC5lQA29QQ4MxlHSmkoB88cykGnsrYMi8lWEsDngUNSyk/YHnoYuNf8+V7gIdv2u80MpC0Ygee9puspIoS43nzOe4qOUc/1DuAxqRq9aDSaFfPcqUl2b+qmt81jix/k8ZvGYWN3gEQmx1g0RSxdcCsp5WCpDe1Wahlci9jnJuA9wMtCiBfMbX8EfAz4hhDivcAZ4J0AUsqDQohvAK9gZDr9lpRSadH3AV8E/MAj5hcYxucfhBDHMBTD3St8XRqNxsaFcJIrBjuZSWQsFZDI5CxlsLEnAMCZiTixVI52v1H7YCmHmIo5aLdSq7CgcZBS/pjyMQGAW+c45iPAR8ps3wdcVmZ7EtO4aDSaypLN5ZmIpelr89IZcJdkK4GhHADOTMaJpbIMdPiAgnKYjBUC0lJKdDJh86MrpDWaJmc8mkZK6G/z0hXwMBNPk89LUtk8XtM4DHb5EcIwDnFzChxQUucgJVZgW9PcaOOg0TQ5o5EkoIyDoRxU7EDFHLwuJwPtPs5MxImmsgQ9xnalLFSFNGjXUqugjYNG0+SMmpXP/e0+OgIewsmM1XlVKQMw0lkN5WAPSJdeInRQujXQxkGjaXJGzeltSjlIWTAYShkA7FrXwU/PTJHJSZtbyVnyfNo4tAbaOGg0TY5yK/WGjJgDwMhMApitHP7b7Rdx5YZOAMutVE456BYarYE2DhpNkzMWSdEd9OBxOegMGCmqIzOGwfDblEHQ6+KLv7yHX9i9gdfuMIpM7cpBGRJdCNcaLKbOQaPRrGJGIyn6Ql4AOk3lcHI8BmC5jxQdATcff8cV1u8eZ+H+sdPv4XwmqQPSLYJWDhpNkzMaSdHfbhiHLlM5PHroAkLA5es75j3W4RB4TNeSUh065tAaaOOg0TQ5Y+EkfW2zlcOpiTgXr2mzfp8PFXdQ8QptHFoDbRw0miZGSslYNEV/m1Hx3O5z4XQY1c2v2dK9qOdQcQdLOeiAdEugjYNG08RMxTNkcpJ+UzkIIeg0+ybt2bK4kSley62klUMroY2DRtPEjKkaBzPmAEbQGWDPcpWDNg4tgc5W0miamELrDJ+1rSdoKAAVh1gIlcLaZRkH7VZqBbRx0GiamBNjRsrqYJff2nb/Wy5hKeNSVGdWy62k6xxaAm0cNJomZv/pKda2+6wW3ADXbOxa0nMo5aBiFdqt1BromING08TsPz3FtZu6VjR/QSmHLtMdpdtntAbaOGg0Tcr5mSTnphNcs2lpSqEYpRwCHicel0MrhxZBGweNpknZf3oKgGtXaByUcvC7nXhdDh2QbhG0cdBompT9p6fwuR3sWte+oucpKAcXXpdTK4cWQRsHjaZJ2X9miisGO3E7V/Yxt5SDx1QOOlupJdDGQaNpUk6ORdm5tm3Fz+M1lYPf7cTr1m6lVkEbB42mCYkkM4STWdZ1+hfeeQGuGuzkxm09eFwO7VZqIXSdg0bThKhhPpUwDndePsCdlw8AmAFpbRxaAa0cNJomZHjaGAO6vtO3wJ5Lw4g5aLdSK6CNg0bThAxPV0452PG6tVupVdDGQaNpQoanEzgdYlbDvUrgdTl0hXSLoI2DRtOEDE8nWNvuswb7VAqvy0FaK4eWQBsHjaYJOTedYF2F4w2AzlZqIbRx0GiakJGZZMXjDWBUS+s6h9ZAGweNpsnI5yUjMwkGOipvHLwup66QbhG0cdBomozxaIpMTlY8jRUwK6S1cWgFtHHQaJqMc2aNQzXcSl6Xg3QuTz6/+ElymtWJNg4aTZNRyeroYlQTvqSOOzQ9CxoHIcQXhBCjQogDtm0fFEKcE0K8YH69xfbY/UKIY0KII0KIN9u2XyuEeNl87NPCHE0lhPAKIb5ubn9WCLG5si9Ro2ktDo2EcToEG7sDFX/ubX1BAF44O13x59Y0FotRDl8E7iiz/ZNSyqvMr+8CCCEuBe4GdpnHfEYI4TT3/yxwH7DD/FLP+V5gSkq5Hfgk8PFlvhaNRgM8e3KSy9a1E/RWvnXaTdt7cTsFjx8Zq/hzNxJHzke481NPMhVL13spdWNB4yClfAKYXOTz3QV8TUqZklKeBI4Be4QQA0C7lPJpKaUEvgy83XbMl8yfHwRuFSsZeKvRtDDJTI4Xzk6zZ0t3VZ4/6HXxmi09PHZ4tCrP3yjsOz3JoZEwL52bqfdS6sZKYg7vF0K8ZLqd1BzC9cBZ2z5D5rb15s/F22cdI6XMAjNAzwrWpdG0LC8NzZDO5tmzpXofoTfu7OfYaJSzk/Gq/Y16MxZJAXBiLFrnldSP5RqHzwLbgKuAEeAvzO3l7vjlPNvnO6YEIcR9Qoh9Qoh9Y2PNLWs1muXw3ClD5O9e4dzo+XjjxX0ATa0elHE4OR6r80rqx7KMg5TygpQyJ6XMA38L7DEfGgI22HYdBIbN7YNlts86RgjhAjqYw40lpXxASrlbSrm7r69vOUvXaJqaZ09OcvGaNrqCnqr9ja19IToDbl69EKna36g3BeWgjcOSMGMIip8DVCbTw8DdZgbSFozA814p5QgQEUJcb8YT7gEesh1zr/nzO4DHzLiERqNZIgfOzXDNps6q/52A29nUDfjGolo5LJjOIIT4KnAz0CuEGAL+J3CzEOIqDPfPKeA3AKSUB4UQ3wBeAbLAb0kpVUL0+zAyn/zAI+YXwOeBfxBCHMNQDHdX4oVpNK2GlJLpeJqeoLfqf6vZ5zoo5XBuOkEyk8Pndi5wRPOxoHGQUr67zObPz7P/R4CPlNm+D7iszPYk8M6F1qHRaOYnls6Rl9Dur/70X2NcaHMWwkkpGYukWNfhY3gmycnxGJcMtNd7WTVHV0hrNE1CJJkBoM3nrvrfauZZ0pFUllQ2b6UDt6prSRsHjaYOJNI5vvn8EJUMr4UTWQDaa2Icmrc7q3IpXaeNg0ajqTWf//EJfu/rL7Lv9FTZxzO5fFm3zWgkyYtztK4Im8qhJm6lJp7roIzD5p4ga9t9HG/RWgdtHDSaGpPPS76616gV3T+HcfifDx/k17+8v2T7Az86wT1f2Fv2GO1WqgzKOPS1eVnX6eNCOFnnFdUHbRw0mhrz5LFxzk0nEAJ+ajMO/37wPD985QIAQ1MJhspUIE8nMswkMsRS2ZLHCm6lWgSkmzdbyTIOIS+dAQ8ziUydV1QftHFYAWcm4uR0X3vNEvna3jN0Bz289Yp1/PTMFFJKcnnJH3/rAJ/70XHA6JEUT5e6bRLmtnEzD99OuObKoUndStEUbqegw++mw+/WxkGzNCZjaW79xON89+WRei9lVTEdT/Ohbx/k9ERrBvnAcCXdsrOf67d2Mx5Nc2Yyzv7TU4xFUtachFQ2TyJTevGNpw11MBopNQ6RpPFYWy2Ug9vR1AHp3pAXh8MwENPxyhqH0XCST/3waEWTEaqBNg7LZMIcxThW5kOqKc/QVJyf/+xP+PunTvHDQ83bl2c+8nnJZCzNmnYv15r9j356Zsq6yUiaF9xUJmepBDtKTZR734UTGbwuR00KtprdrdTfZhQSdvjdRJLZinoIfnholE/+8FVrYl+joo3DMomYPt9yd3ea8nzi31/lwkwSh6Bl++SHkxmyeUl30MuO/jZCXhcPvTDM9w6cBwx3EhjKIZ3Lk83NvgCr95vdODy4f4iT4zHCyWxNXErQ3G6l8WiKPptxAMPwVoq0ed4yOa0cmhIl4ZPaOCyaIxci7N7cTVfAw2S8NY3DeNR43b0hD06H4J4bNvH4kTHOh5O0+1zW3bh6XxXffBQrh1xe8gcPvsiXnz5FOJmpSRorFLKVGt01shwmY2m6Akbjws6AYRwqGXdImwY/k2ts5VWbd1ITEjWNQznprylFSsnJ8Rh7tnRzbjrRssph0nzdqv/R/3fHTn72qnU88eoYpybifPtFo1mxMhKJTG6WGkgUGYdoMouUMDKdJJauoXJwO5HSuPv1uJprNlc4kaHdVAxKOUxXVDnkZ31vVLRyWCYqp1y7lRbHhXCKeDrH1t4g3QEPEy1qHCbMLKOeUKGl9s617dz3+m20+9xWkDellEO6WDkYNyWqa6i6ox2ZSRBJZmuSxgqGcgCazrWUzeWJpXNWlXlVlEN2dSgHbRyWSVTHHJaEmqi1tS9Ed9DTssph3FIOpfMWvC4H6VyeXF6StCkHO8VuJZW+OjyTNNxKNYw5AE0XlFafa+WeU8qhsm4lwxXX6DEH7VZaJjrmsDSOm/1ptvYF6Qp6mDrdmsZBKYdyw3hUllEsXciOsdc65PLSuhiPRoyqXRUoHYukyOTyNYw5GGttNuOgCgmVe065l2YqGCPTyqHJieiYw5I4MRYl4HGytt1Hd9DNVDxDvgULCCdjaToDbtzO0o+ez21sm7Hl1Sdt7y+lIjwuB+PRNPm8nHVHOx2voXIw15pqspsjqz+Vb3nKIZXNWYZ7LtK5nPldG4emJJrSMYelcGIsxpbeIEIIuoNecnlpfRBbiYlouqxLCQrKwX4hsr+/VLxhY3eAXF4yFU+XnMNaFMBB87qVCs0LDaPgdTnxu52LLoT7o389wNv+6sfz7mMphwY/d9o4LBNLOTRplWilOTkeY2tfCIDuoPHBm2zBuMN4NDXnpDZ1wbXn1NvdSkqlbuoOAEZQWrlBFOqiVm08zWocEqVV5p2BxbXQODMR51svnONCODXv/plVEnPQxmGZqMBVUruVFiSVzTE0FWdLbxDAyiGfasFah4lYelamkp2FlYPx88Ye0zhEjIuQsGWS1k45mDGHJlPOEcutVDCyHX73olJZ/+aJ41asaGiqtGmiQsccmpxwUmcrLZa/f+oUeQk717YB0G26VSairWccJuc1DmbMwW4c0qXGwVIOkRThZIYOv9tKudTZSitDfa7tCmwxzfdmEhn+ef8QVwx2AEZX3blQ50zHHJqUqK5zAIzg6Sd/8Cr/vO9s2U6h39h3lo89cpi3XjHA7ZeuAQrGoZrKIZvL80fffLmhpnhlc3mm4uk53Uo+1+JiDptMBabcFx1+N+s6/EDt3ErNm61kKLE2b0GBdfjds5IEyvH8mSnS2Tz3vX4rML9xWC0V0to4LBPtVjL4/sHzfOrRo/zBgy/xP755oOTxf3tphK19QT75C1fhMjN0lHGYjFUvID08neQrz57hPw43ToO/qXgGKY3WGeVQGUDTc8Qc1M99IS9tXhfnZxJGNa/PzbpOH1BDt5K7OYvgIsksIY8Lh6Pgq1uMcnjh7DRCwBsu6iPgcc7rVsqskoC0rnNYJhHtVgIM36pDwE3be8vepUeSGdZ1+GelbvrdTrwuB5Ox6nW0VVknlWx7sFImzNfbPWdAulQ52OtolIvJ73Ey0OkzC9+ydPjdDCjlUGu3UpMlZBj9qWafw8UEpJ8/M81F/W20+dwMdvkXqRx0QLrpyOUl8XQOj9NBNi8bXh5Wk6GpBAMdfrb3hxiaipc0YosksyV3s0IIeoKeqioHlfFTyW6aK0XFWJYSkFauJONnwzgEPE4GOvyMzCSYSRjN9rb0BnE7hRV7qDbN7FYqfr92+N0kMrk5VZKUkheHprlqQycAg12B+Y2Djjk0L6rpnmrr28rqYWgqwfouP4NdAWLpXEk+eCRZ+mEDo0K4XMwhmsqy9+TkitellEMjTfE6ZQ44msutpALS4VkB6cIFRBmKgNvFuk4fI9NJy630i6/ZyMPvfy0Bj+6ttBLKtSDpMLPr5novnZqIMx3PcPVGZRz8DE3FyebyZQvidLZSExMxC+B6TePQynGHoak4g11+Brv85u+z75iic8wY6A6Wb773tb1nuPuBp1dcIKfy1RvFOHzxqZP8yUMH2dIbZLArUHafYreS3+0kkSkoh1lupQ4/E7E0U/E0HX43PreTSwbaq/wqbGt1N2e2UiSZLWlBYlVJzxGUfv6MMQf8KptxiCSz/NE3X+ZNf/Gjkk4AGR2Qbl5UvKG/xZVDOpvnfDjJYFeA9Z2GcTg3XQjE5fKSWDpXXjkEyjffG5lJkpdwYWb+FgQLYcUcGqSW4i9+8CrXburiofffNOekNqUclPrqCrhnp7JmcrgcAo/LwUCHEYDO5GTNMpTseJxNHHMoupnpXKBt90tDMwQ9Tnb0G6nayvh/Y98Q4WS25EYnldUxh6ZFZSq1ulvpvHkhH+zys8H8QNiVQzQ5u4mZnQ3dfs5NJzh6ITJru2pMdyGc4vREjPf9435+7jNP8a3nzy1pbSpfvRGUQz4viSSzXL+le96AcXHMoSPgmfXeSqRz+D3GPutMYwzUrE23HZfTgcshms+tlCiNkS1UlzM8nWCwK4DTzHBSKlpR3AlAp7I2MdFi5dCibiWVrjfY5afd76LN65plHNQdUznl8Cs3bSHkdfHH3zowK4itXE2jkSTfO3CeRw6c5+BwmEeXmJKq/PYzRe0l6kEsPbeRtON2OnA6hHXeSpRDOkvANA5KOUDtahuKUdPgmgUpJZEy2UqF1OvyxmE6nqErWDhGKYfekHF9KI6t6ZhDE6M+vK2uHJQh2NAVQAjBejMQp1DuN3tBkaI35OUDd+5k78lJHjHnJ0Ph7uxCOMW56QRtPhebewLW3N3Fov5H4USm7qMs1XkILeIO3+tyICUIYaSlFrfPUAFnlboKdTQObmdTKYdYOkdelqYDF4xD+dTryXja2kft/+fvvJKP/vzl5nGz1asVc8hqt1LTodxK/W3G3VurznRQNQ5rzbvY4hS+iKUcyl+83rV7A06H4MC5GWubqgUYjSQ5N5Vgfacfr8u55DtUFZBO5/Ik6+wXV++XxRSoKdeS1+Ug4HEST+d49NAFPvej44ZbyXzc73HWvGVGMV6Xo6liDkptFv+ffG4nQY9zzumFU7E0nYHZGWjvuHaQSwbarMftaOXQxESKU1nTjf1PrhZDUwnWtvusAjdV/KPu1C3lMMdF0ekQ9IY81lQzKaUl3UdN5TDY5cfjcix53q49CDidqG9QWhnJUBkFVYzPTBH1uZ34PU6SmRz/+Mxp/vKHrxJNFdxKUFAPHXV0KzV6rv5SiJTpq6ToDnms9+aFcCFZIp+XTCcydAdK05MtxWFzK+XzkqyZvdTo504bh2UQTWZxOoT1hmhlt5I9LXOwy080lbXu2hdzx9zX5rXmIYeTWSuD40K4oBw8zmUYB1u30noHpSPzBOaLsSsHv9tQDqcn4yQzeY6ORq2ANMA6U7HVavpbMV6Xs7mUQ5mOrIruoJfJWJpXL0R4zf9+1KrFiSSNqX3lJvupTgB25WA3CFo5NCHRVJaQ12V9UFvVOIyEEwx0FgKjKkvjrBl3WMitBEafINWwT2UquRyC42NRIqksg10BQzks8YMUSWZZY7r9FmqaVm0WUlB2PDblEPA4SWRyDE0arrrJWHq2cjDPfd3cSm5HU8Uc5nIrgTHzeyKa5sh5I7vulWHDFapUQVeZyvRCJ4C5jIOOOTQdqsReGYdWLYKLJLOzLkw9ZnaG+jCEF3FR7GvzWm4lddz2/hBT5gV9/XLdSokMG7oNY1Vv5aAU1KLcSjbl4PM4kXL2BcVeAX3bpWu566p1c9ZNVJtmy1YqngJnp9u8yJ+bNgz16UnjBkhlIpVTDmq7PVvJ/j5e9cpBCPEFIcSoEOKAbVu3EOIHQoij5vcu22P3CyGOCSGOCCHebNt+rRDiZfOxTwthiH4hhFcI8XVz+7NCiM2VfYmVZ3gmwUCHz/IPJzI5xqMpsg3+z640sVSWYFFrYyhcjCPJLB6nY96LV1+b15qHPG5mKl1qq/Q1AtJLMw75vCSazrLBnHtQ7+Z70SUoB1UI53M7CZQ5b3a30hsu6uNTd19doVUuneUkCjQysZRxkxf0lJ53pQDOmQkXZyZM42De0JSLOUDBqCjs7+Ol3vDUmsUohy8CdxRt+wDwqJRyB/Co+TtCiEuBu4Fd5jGfEUKoM/1Z4D5gh/mlnvO9wJSUcjvwSeDjy30xtWLI9IW7nA48TgcT0RRv+LP/4J/3D9V7aTUjlc2RyclZF7xS45BZMH2zL+S15iGrTCV7GwilHJZyEYqkskiJVZhX7+Z7kaQR/wguou/RrJiD7SKlBiWVMxj1wlAOzaOa1XvMW+Yc94Q8pHN5jphFm0o5qAt/91zKIeCxVDDMVgurXjlIKZ8Aijuh3QV8yfz5S8Dbbdu/JqVMSSlPAseAPUKIAaBdSvm0NFJZvlx0jHquB4FblapoRLK5PCMzSSsQ63M7ODAcJpbONdRgmWpT7i6rnHJY6G65z4wLjEVTTJrKYaeZAuhzO+gJepbsvlDGYF2nD4eov1spkiqdETAXqqGd1+W0DIXH6eANF/cBzIo51Buvu7lSWVVKulJvdlSb9YNm2vWZybiRqWRe+OfqhjufcmjWmMMaKeUIgPm939y+Hjhr22/I3Lbe/Ll4+6xjpJRZYAboKfdHhRD3CSH2CSH2jY2NLXPpc7OYeoULkRS5vGS9GXz1e5wcGgkDlJ2E1qwoV4ndreRzO/G4HNbFea6OrHZUOvBYJMVELE27z2UZ3vWdfoQQZrbS4u9Qle+4w++hfRGDWqpNJJldVAEcFJSDz+2w4guD3X4uWWuoKX+Nuq4uhmZzK6WyeYQo9I2y02Mqg5hZa5LO5hmNpJiMp3E7xZzxpK6Ah5lExnI5q/PlEE2gHJZIuVsjOc/2+Y4p3SjlA1LK3VLK3X19fctcYnmePj7BFR/8d0bD8zd8G5ostIwArHRDaK2ZyHMFWe1TsyLJLG3e+TNp7MZhPJqiJ+S12pKsN43EUrOVVCptu99FZxnjcGYiXtOWJ9FFKCiFGhXqdTmtgrfNPUEuWmO6lRpJOTSbWymTw+tyUM5xYXcbXbelG4DTEzGmYmm6Ap6yxxjHGe9/5VpS7+Ogx9W0dQ4XTFcR5neEWnanAAAgAElEQVTV+GYI2GDbbxAYNrcPltk+6xghhAvooNSNVXUOnw+TzuUZXqAbqMpWUF1I7cHWiSpONms0VL+g4jtiu3GIphbjVioYh8lYmp6gh6DXRVfAzeYewzh4Xcad2mLbYNjz1Tv87lkzJuLpLHd86gm+8NTJRT1XJYikMovKVIJCK2yvuxBz2NQT4OK1bfzWG7dx6yX98x1eU1ZTtpKUklx+/vdPKpu32qYXYzcON24zHBunJ+NMxQ3jMBddRfPS1WjQoNfVtMrhYeBe8+d7gYds2+82M5C2YASe95qup4gQ4noznnBP0THqud4BPCbr0Axn1EynVO6SuVDtIVRXTHvQcDzSesohWEY5qItzZI5ZDnaCHuMOeSySYiKatqak/eOvvYbfvnUHYCiHvMSqLF0I5dZq97lL3Er7Tk0RT+c4v8KW4EthrpkW5SgEpAvKYVO30fHzD968c85ZEPXA6149RXB/88QJ7vzUE/Puk8zkysYbYPb0vus2d+N0CM5MxJmKzW66V4zKYlJxB0s5eJ2rv7eSEOKrwNPAxUKIISHEe4GPAbcJIY4Ct5m/I6U8CHwDeAX4HvBbUkqlO98H/B1GkPo48Ii5/fNAjxDiGPD7mJlPtUbl2kdT8/unh6bi9Ld5rQ+xv0g51LvJW61QRnQ+t1J4ETEHIYRVJT0RS1mBv13rOqyulqowbLGpf4U2CC7DWNmMw9MnJsx9KhuHePTQBT748MHy60ktIeZgFcE52NoX5C2Xr+WWnWsqts5KotxKq+E9f3w0yvGx2LxrnU85BDwuy3Bs7jHml5yejJc03SvGUg7KOJjv4dAqUA4LvmOllO+e46Fb59j/I8BHymzfB1xWZnsSeOdC66g2SjlE5lAOY5EUqWyOc9MJKxgNBeOwtTfIifGYNfC92YnNoxyOjkaMWoNFuJXAcC09f2aaiVia9baKa4UKEKazeUzbMS9hWy+jzoB7Vp3D08cnzH0q28r70cOjfHXvGe5/y86SC4xRLLhYt1JBOfjcTj7zS9dWdJ2VxOMsKDq3s2ETDAFD6arZ78XvWcV8ygGgJ+g1b2A8bOoJcHgkbMUc5qK4v5IyDoEmjjk0HQXlUP6i8QcPvsjb//onHBuNzpL2PtOtdN1mI0g10SIZS/MGpOMZYmmj1mBRxiHk5cxknKDHxbv3bCx53FIOi/wwhRNGexOX00F30Mt0PE0ub/Tqf9lMRax07UMqk0fK0jGpYKisRcccbMqh0VlNo0LV+3W+8bPzKQcwLvQqg+7OywY4OhplYgHjoFJcVZp2wa3U+Mqh8d+BNWJsnphDNpdn78lJxqMpLoRTVjAaCsphj5nBMN4iGUtzVZO2+1xEUlnLtbQYX7sKSr/v5m1WCw473iW6lezurN6Qh7w0AoLPnZo0mqQF3CueUV1M0szaOT0xu9Ylk8uTyOSWFXNodNQaU6ugt5gyDnN5BsBQDuq9Vo63XD7Az11tZOC/c/eglTAxV+sMMM5Rm89ltfsuuJWcTVvn0FRkc3kr06iccjg4HCaezrHRbMdgHwPYE/TQFXBbVb2tohxi6Sw+twNXUU54u9+NlMYsaFicctizpZurNnTyqzdtKfu4Ug6LvUO1T0zrMf1Q49EUPz09jdMheN2OPivdtVKowOypcSPVOZnJ8d//+UW+f9AYZLRY5WCvkG50VDJGfBX0FlM3ffPFmlLZ/LytXt538zbef4uRJOF2Ovi92y4CjBuQ+egLFToP25VDLr9wBlU9aZyKmjoyGUuj4lSRMsbhuVNGZu0D91zLXz12jNfvKNRY/ObN23nXdRusi+D4HANBmo3IHK4SFW85OWbcQXf65//gALztynW87cp1cz7utYzD4i5C9olp6oM7EU0zMpOkv81LX5u34gFptbYzZh3MBx8+yIP7h3jVbLew6DoHW2+lRkdl4kzE0lYfq0bFcivNc1OQzOToXEK88GevXEfA4+J1O3rn3a/X1lwybUtlBUNZOh2N+b/WxoFCMBrKu5X2npxkY3eAnWvb+etfvGbWYx0BNx0Bt1UB2TLKITW/cXj+7BQAW/qCK/5bS81WSqRz1l2tclMZLsEka9p9tPvcxNI5srl8ifJZLqq6/tREjG+/OMzXnjtLm8/FS0NGjGOxxsHrWj3KQaV3zjU+s5FYbMxhKUZZCMFtly6cSdbX5rW6KKg4g1K2mdzS/mYtafx3YA1QVl2IUreSlJJ9p6esgPNcuJwOugLulmmhUdyRVaGMw75TUwQ9TmsgzUrwOI0Pz6KNQyZnffiUchiPpk3j4LWG48znf14qyuV1eiLON/adZUtvkD+8Y6f1eGiBSnHFalIOBZddY6tlKaXNOCw/5rBc+kKlyiFkKYfGdStp44AxrxjMSWZFb55jo1EmY2n2bOkqd+gsekPelmmhEZ3LOJjZGUdHo2zrD83ZVmApqKyYxWYrxW2zljv8blwOwUQ0xflwkrWmcoD57yKXilIOZyfjPHNigtt3reGGbYUWYYt3K61G5dDY7/l4OldwGy+UrVQFo2y4MbMkMznLOKj/cyNnLDX+O7AGKKu+uSdYEnN45MB5hIDX7Vi4l1NPyNNSxmE+txLA9r5QRf6Wvc5hMdjdSkIIekIezkzGjelwHT5rmEullYMQRs5/Jie57ZI1bO0NWsplsUVwl6/v4N4bNln9exqZgMeJz+1oeFeq3Ruwkmyl5dIXKrSISeXyeFyOJbtK64E2Dhgxh3afi96Qd1aFtJSSb71wjj2bu612GfPRYxt52ews5FYC2L6mQsZhidlKdrcSGO6PV0yf75o2n3UXX8lah2QmxyYzKNsT9HD1xi6EEJY7cinK4UN3XbYqCimNMZheK02zUbEbh3Aig5SSfJksoaXGHBaL1T8smiKTlXjNOTCglUPDMxZJ0d/uI+R1zXIrHRwOc2Isxl1XrZ/n6AL2lLVmJ5rKlVUOfrfTqpatmHJY4l2WkcpaWFtvm9eatbG2ozpupVQ2b3VOvWVnP05zdsMdl61lbbtvUVlbq5FGUcsT0RR3/fVTnDWzxezYP9ORZJav7D3Daz/+2Kw00nxeks7mq6McbM0l07kcHpcDt2UcdMyhoRmLpOgLeQn5XERTWav/ysMvDuN2Cu68bO2inmewy08kmbViGM2Mka1UepclhLDueneYF8uVshS3Uj4vSWbys3pe9QY9ls/ZHpCuZK1DMpNjU0+A37l1B7/xhq3W9ruuWs/T999iGbhmozvoaYhuxEfOR3jx7LSVdm5nlnJIZnjp7AzDM0mGpwvV7CqeVVXlEEmRzuZxOx3WDZRSDk+8Osb+01MV/9sroTnfsUtkNJKir81rNsOSlvviuVOTXLupa94KSDvXbDKC1j9tsH9ypcnlJYnM3D1q2v1uPE4HG7oWdsUtBqvOYRESPGEGhu3dcnvbClXXa9oLMYdKKQcppeWS+L3bLmJ7/2yj2MCDDVdMT9BrtYaoJyoLyX7BV6g4Q1fATSSZZXjG2OfYWNTaRyUUVEM5dAc9CFEwDh6XA3dRS5iPPnKY//vY0Yr/7ZWgjQOGJO0NeS2/sLrTGIukGOhY/AVu17p2PC5Hw90BVJq5+iopOv1utvQGK1ZDoHL/F6MclHGYHXPwWNtCXhchjwshKtd8L50z+iqthgyjStMb8jAeS/PKcJg7P/UkFxYYllUtlKEvN49FNYkc6PATSWYsA3J8tGAcUtnqKQe300F3wGPEHHLSCEgrt5L5dxPpbMNVmrfeu7mIZCZHLJ2jJ+SxLnbRpOFaGo+mFiyNt+N1OblifUfTG4fYAsbhv96ygz+88+KK/b2lxBzUhDe7W0kVwq1t9yGEwOEwxjpWKiBdzQtLo9Md9JDO5nnoxXMcGgnz9efOLnxQFVDqYKSMclA3M+s6fYQTWau1ywnbzPdqKgcw0tyNzs55PM7SmEMik1vUmOJa0vLGQWVa9NqNQypLLJ0jmcmXbQQ3H9du6uLAuXDD/aMryVztuhVv3Nlf0RkEngXaZ5waL/TpV3dfswLSpoHvby/8L9t9lWu+Z11YWtA4qM/Hj44YM92//tzZsplA1UYZ+uHpUuUQtSmH0UjSeo/USjmAEXcYj6ZI5/K4XaUxh0Q6Z6neRkEbBzO7qDvotXLRI8mstb13icbhmk1dpHN5Dg7PVHahDcRCbqVK43QInA5RVjm8eHaam//8cZ49aQQi4+b4Ur+n8NbutSkHRbvfXbGAtGq614puJeWyO3w+QlfAzbnpBE8dH6/5OpRyUPGE4sc8Tgc9ZodeMFKLa6kc+sz+SplsHq9NOaiYQzKT18ah0VBpeD0hD21mi4NoKmvVKyzFrQRwzUYVlJ6u4Cobi7lGhFYTj9NR1jg8e9IY3qMa3FkBaXdhbaqSd42tlUe7z1Wx5ntK0bSiW8k+PvPXXreVzoCbbz5/rubrsI+mLf6/xsxJfO22tuk3buthLJKyjquFcjBSWWcXwWVyeXJ5STqXJ9lgI1db3jhYRsCmHKKpDGMR5W5amnLoa/MS8DibOp11oZhDNfC6HWXbZzx/xjDCZyaM/PZEujQg3RfysntTF9dvLbSzULOlP/rIIZ54dWxFa0u2snKwfT6u2djFlt6g1XGgltgNwkhRUFpV89sLEV9rdjw4YXYPLrgGq/M/XNvuI5XNc2YyXlTnkLf+dlIHpBsLFXMoDkgro9HXtjTjAMYd9VwT5ZqBqDnop5bGYS7loIzD2SnDOMTLGAeX08GD77uRN17cb21r87k4Nhrlb350gm+/OLyitbW0crClee9a347P5axLvC2cyFp+/OJ01kjSqOZXKcwuh+B6sz2JijtU2zV488WGMRqLpHA7RSHmkJWW2tVupQZjIprC53YQ8DitO4uIza003/DwuQh5XdYFtBmZNufhqmKyWuBxOUraZ4zMJDhvpk6enTQuCOXqHMrR7nOTNR3QU/GVuZdaWTn43E6CHidbeoO0+9z43I66uEciqQzbzIr8UuWQoc2mHNa0+9jcG8TpEFblfLLKBn5rX4ida436F4/LWSjszOUttWv05Woc11LrvZuLmIim6Ql6EULgdTlwOYSlHDoDbkv+LYWQ12W5XpqRiVgat1PUtP+Px1WqHF4wVcOVgx2WciiXylqOdtvalbFbLq2sHAA29QS5brMRa/O5nXW5Aw4nsmzvD+EQpcohlsrNijms7/TjdjroCnism8BaJBXcYXZasKeyZm1uJWgs9dCSxmHGlt8+EUtbQWchhNVCYzySXnK8QRH0OssODVrNTMfTPHb4AgDjkZRlUGuFx1mqHJ4/O43H5eD2XWuJJLPMxDNlU1nLsXNtG2vbfdy4rYfJFRqHVlYOAP/4a6/hgz+7CzCMQz3cSpFkhq6AhzXtvpJ0VhVzUMZhoNNITOgNeSy3crWVAxgzqIFZFdKZnJxlEBop7tBy7+YvPnWS2z/5I6tB10QsNSuopprvLbUAzk7I6266mMM/PXuGX/3iPqbjaePctNW2kZzX7SwJSB8cnuGSgXa2mdPmzk7FSaSzCFEYmjMXb7l8gKfvv4WtfUGmV+hWanXl0B30WMa4Vm6lB/cP8d2XRwCjfUk4maXd72Kgw8fITGnMIeQruJVU14PuoMdKWa+FctjRH+JtV67j+q3dVszB7lYCrRzqyo3be0lm8rzn888yFkkxEU3Piit0BtxciCRNRbE85RDyOpvOOCipPjxtnBs1BaxWeJ0O0kVFcBPRNP1tXmt+8ZnJOImMMehnMapGCEFXwMN0PL2iwq1WVw52vC4nqRpc4D796FH+8F9eYiaRIZHJkctL2nxuLlrTxstDM7PUSzSVIeR10eF38+49G61Gmj0hrzWoqBbKQQjBX737au66aj1uhy1byaaItXGoIxetaeMLv3wdIzNJPvGDI0bMwaYQbtjaw96Tk4zMJJZvHHzNF3M4bwb5zocTjEdSyz43y6VczCGcyNDuc1vG4exkfNYUuMXQGTAKo1Yy+EddDFtVOdjxuZ3WhbZa5POSkZkEkWSWLz51yipmbPe5+ZkrBoiksjx+ZJR4OsvZyTjJTJ6Q14XDIfjoz1/OlRs6ASPTStU5KeXgqVA/sIVwOAQuhyBTrBy0W6m+XLupizdduoZ/e2mEdC5Pr+0u+I7L1pLJGW2fl5PGCkYqa/FEudWOygoamUkyHk3X3K1ULltpJpGhw++m3eemw+823Uq5BTOV7HSZY01XEndQd35aORiJAJmcnDUrodKMRowGdl6Xg8//+IRVFd3mc3HD1h56Q14e3D/Eez6/l9f92X8A5dOue4IeIqksqWyOZNaYs+Bw1C6O5nY6zGuNLebQQIVwLftuftMl/dbdol05XL2hyzIKy445eFyks/mGHgG4VJRyOHohWmJQa0FxnUMmlyeWzlkZUxu6/ZydTBBPz54CtxCqHfvUCoxDK7fPKEbFeioZlE6kc7MKFc9NG/HCX75xM+Fklh++YiRKtPvduJwO3nrFAD88NMr+01P85+s38vqL+mYVQCq6bTOwU5nqDPqZD7fTaAkzKyCt3Ur15+aL+lE3CfaAtMMhuP1So2nccv3qqtK6WVxLqWzOyuo4cM7oGVX7gPTsCmll2DvMWouN3YFCzGGBTCU7XQHjdawknTWZzeFyiIq1KF/NKNdaJS9y335pmHu+sJdTZk3C0JShFG7fZXxO95ldkFXA+eeuXo8QhvH48Nsv58u/uodL17WXPK/6fE9E06SyuZq7BT0uR6lbSRuH+tMV9LB7k1El2VNU6Pbz1wzidTnYscwZyEHv7LkQq53RcKEdgprFXPOYQ5FyUOnIHaZbaHNPkLOTcaKpLIElfMgtt1Js+RlLqUx1Zg+vRizlsAzVPDyd4BEzA8mOChofMftnnTOTI3aubWddh48Xzxr1LipV9coNnTz+32/mT9566bx/T3kGJuqmHEzjkNExh4bj9l1rcAhjrrCdazd18cqf3sGmnuCynrfNNA6xdHMYBxVvaPO6rDqCWmcrFQekLePgLxiHbF5y9EJkaTGHYGWUg3YpGaxEOfzDM6f5za/8tORY1TfpmNnqYng6QWfATdDr4qK1bVYsqt3WO2lTT3DB+IHKUpyMpUjWSTmksroIriH55Rs38+3/+tqyd8HOFQSmgrYeTc2AakdwxYYOa1u9A9LFxmFTj5GxFE5ml2Qc2rwuXA6x4piDVg4Gamrfcu6AxyIppCzEtxQqG0kZh3NTCdZ3GrUKF9vmlLcvsWJfuZMnovVRDu0+N+FEpiggrY1DQ+ByOti1rmPhHZdIyNdcbqUL5of16g1GiwQhoDtQe+NQTjkoV8Lm3oLKW4pbSQhBZ8C9ov5KWjkUUG6luQYzzYcqSCueyaCUw9HRgltJGYeLTOPgdool/w/afS7cTsFELF0X5aDed4lMzlI92q3U5ISaLOZwPpwk4HFaMZiugKfmwVevy2nOajZSJIuVQ3+b16pvWEq2Ehi1DlOxlSmHVpwCV46CW2npMQeV9DBS1P5CJR8cG42Sz0tDOXTNNg7tPveS27kIIawq6Xooh06zADORztPmc+NyiOZxKwkhTgkhXhZCvCCE2Gdu6xZC/EAIcdT83mXb/34hxDEhxBEhxJtt2681n+eYEOLTopZNe6qAcis1S7bS+Zkka9t9VtuB5ab4rgT1wVUZS2ospHIlCCEs15JvicahO+BZmVspm1uwXUersJKYw7g5B6Jc+wvjOfMcHA4TS+cs5bC9P4QQzJrVsBS6g0aVdF2Ug9/NtOlW8nuc+OvUtHAuKvGOfqOU8iop5W7z9w8Aj0opdwCPmr8jhLgUuBvYBdwBfEYIof4bnwXuA3aYX3dUYF11QymHlVTdNhLnw0nWdvgY6FANy2objIZC5apyLYUTGbwux6wP9GYzgSDgXtqFojPgXlF/pWRGu5UU/mUqBykl46ZyOFekHMLJjJVR+PiRUQDLOPg9TjZ1B5Ycb1D0hjyM1ynm0BUwBk5FU1n8bic+j7Ppi+DuAr5k/vwl4O227V+TUqaklCeBY8AeIcQA0C6lfFoaPoMv245ZlQTNO9dYk8x0UMqhv90wCj31MA6u2cZBVUfb2dRrKIelupW6Ah4rXXI5pLI6IK1YbhFcNJW1/rfllMPV5vjdr+w9A2C1TAH4z9dv4m1XrFvWeruDnroph46ABymNim+/21AOjRSQXum0Fgn8uxBCAn8jpXwAWCOlHAGQUo4IIdT4rfXAM7Zjh8xtGfPn4u2rFpfTgd/tJJqqzIziepLLSy6YysHrcnLlYAdXrK98EH8hlHFIzWMclHJYSrYSGOms0/EMUspltSHXyqGA5VZaREB6eDrB2nYfDoewehxBacwhnMww2OVnoMPHaCTFb7x+K7tsRW2/9rqty15vT9CY7ex1O+qiHADOzyToXd+Bz+1oqID0So3DTVLKYdMA/EAIcXiefct96uQ820ufQIj7MNxPbNy4calrrSnBJpkGd24qQTYvLX/+Q+9/bV3W4S1jHIpdCZZbacnKwU06lyeezlnxoqWglUMBn2txbqWZeIab/8/j/K+37+IXrtvIRMyIN2zuCczKVsrnJdFUlnafi8/fex0el2B7f9tcT7tkets8JDI5EpmcNamtVnSaxmEqnrGUQ9PEHKSUw+b3UeCbwB7ggukqwvw+au4+BGywHT4IDJvbB8tsL/f3HpBS7pZS7u7r61vJ0qtOW5N0Zj05YbQs2LzMgsBKodwI7/n8szx9fKKscrhisIM3XdLPtZu6yj3FnKgiSDUycqlo5VDAu0i30lg0STqX5z8OGz2Txk3lcNn6DiLJrJXpF0tnkRLafG4uXddeUcMA8M5rN/Cnd+3iR39wM79805aKPvdCdPgLiR1+j7NuU/TmYtnvaCFEUAjRpn4GbgcOAA8D95q73Qs8ZP78MHC3EMIrhNiCEXjea7qgIkKI680spXtsx6xagk0y00H1s9nSW1/jcN3mbr74K9chJXzskUOEk6XGIeh18Xf3XrfkynbVlO0nx8eXtTatHAp4XQ6EYMGZDioV+ZmTE+Tz0hrXebnpshwxW2SopI7lZiMtRF+bl3tu2LzsbggrQbmVwAjk+z2NFXNYye3OGuDHQogXgb3Ad6SU3wM+BtwmhDgK3Gb+jpTyIPAN4BXge8BvSSnVmXgf8HcYQerjwCMrWFdDEPS4VqVxyOTyZG0N7k6Oxwh6nMtuX15Jbr64n7uuWsfB4TDjkXTFZlivafexvT/EU8cmlnTcsdEoPz46rpWDDTWLfaE7YFX1PB3PcOh82Io5KOMwbBZeFoxD7eaV14pOWyGpT7mVmiHmIKU8AVxZZvsEcOscx3wE+EiZ7fuAy5a7lkakzecqmWXbyExEU7z7b5/h1QtRtvYFefT334AQgpPjMTb3Bms6L3o+rtvczWceP042n1t2+mI5btrWwzf2DZHK5qwWEOU4NBImmspy3eZu/uqxo3zvwHmtHIow5kjPH3MIJwvJGk8fn2AimqLd52KjGdsqKAdjv2oph3piv7lp1joHTRmCXteqarz3hadOcnQ0ym2XruHEWMzqY3NqIjarNUW9uWZjF8pOVUo5ANy0vZdEJsfzZ6bn3e/Pv3+EP/7my4DRCyilB/2U4HMt7B5RRYxdATdPH59g3BzLu6bdh0MU4j/VdivVE6dDWG0zWqXOQYNRCLdaGu/NJDJ8+SenufOytVab458cnyCTyzM0lWBLnYPRdjoCbi4yg5KVNA6v2dqDQ8CTR8fm3W88lmbUrOS110Zo5VDA73Eu2LJbxRxuv3QtT5+Y4NR4jJ6QB7fTwet29PHQC8Nkc3lLYVRSJTYSqiuwz+1YlFGtJdo4VImQt/FjDlJKvrr3DL/5T/uJpLL85s3b2dAdYLDLz1PHxjk7GSeXlw2lHAB2bzaykdoreDfZ4Xfzhov6+NJPTpcUYdmZiqWZjmfI5PKMR9OsMzOddG+lAl6XY2HlkMziczt4zw2biKdzHBwOW23gf+k1GzkfTvLo4VHCTawcwGihASogbcRqVP+weqONQ5UIeV2ksnkyucaRicW8eiHK/f/6Mq9eiPLbt2znMjMYeNO2Xp45McGJMZWpFJjvaWrOdZuNIU3dwcr2ePrQz15GNp/nj795YM4PqGrQNx5NMRVPc9fV6/nQz+7ijl1rK7qW1YxvEZW+4USGdp+by9Z38Jot5tAts2fXLTv7Wdvu45+ePWPFHNqbMCANhaC0Ckjn8pJMThuHpkZNKFtJz55qo+6QP/tL1/D7t19sbb9xew/hZJa/+/EJoP41DsX8zBUD/Pk7r+SajUurZ1iIjT0BfvvWHTx2eJTjY6U1D5lcnoipBo+PxsjlJX0hL/feuLkhsrkaBZ/bYc3Vngt7KrKqcFZtWVxOB++6bgNPvDrG6fH4stpxrxZUIZyqc4DGGfjTnGe8Aegz3+hjkdQCe9YPtbb+ttmT8G7Y1oPTIXjmxCRvuKiv4nfoK8XtdPCOawcXnPS1HK4a7ASw8u7t2Du3qpGVPXXoUNvo+NzOBdtn2Cvcb93Zz395wzZ+5vIB6/HX7egF4EevjtG2jHbcqwU1w1zVOUDjDPxpTkdeA6DuJMtdZBoFFVgtvuvtb/Px8Ptvojvosdp0twpK5peb72BXgUfOG7O0az0udTWwuGylrNX63eEQfODOnbMev3x9B26n4Hw4abVuaUY67DEH9/Kn6FUDbRyqRO8qUQ5tXlfZRnXVmJC3GugKFvrdKD7wLy8hBNx1VaEf5JELRqqvVg6l+NyORdU5bO2b213pczvZta6DF85ON228AQpV0j6PzTg0iHLQbqUqoe7GxxpYOYxFUtpXXoSS+cqFJKXk+wfP8/TxiVlq4qhyKzWYy60RWEyPoHK9sYrZbfbIatZMJYBu8yYy6HFZQ6riDaIctHGoEkGvC7/baU23akS0cShFZY1Mm8ZhaCrBVDzD8HTSGmPpcTmsD3CXNg4lLJStJKW0spXm49oWMMJep3wAABBESURBVA63X7qGP/tPV3DRmpB1PlSBYL3RxqGK9LV5G1o5jEaS2jiUoSvgZjJmfEBfHDIqptO5vKUWtvUZs7Q7/G7cNZ6lvRrwuZ3zZivF0jnyEtr981/0r7GMQ/O6lXxuJ++6bgNCCCsGM7GCwVOVRL+zq4gxgrCRjUOqJFNJUxj8DvDy0Iy1/eVzMwQ8TtZ3GudMxxvK43M7SOfy5PLl8/Wt+d8LXPTXtPu4Y9daq2tus6NSeSca5JrRvHqtAehr8y57RkC1iaWyxNM5a/SnpkBX0G3FHF4cmqbN5yKSzPLKiFHFq5INdLyhPCpfP5XNEfCUXmJU64zFtD/53HuureziGpigx4nH5VjRyNpKopVDFekNea0hJtXm+FiUmSUU3FlprHWYB93odAWMsaH5vOTAuTC3XboGMKabdQc9NuOgz105fC418Ke8a8lSDk3aL2m5CCHoDXpqds1YCG0cqkhfm5fJWLrqLTSklLzrc0/zl4++uuhjrAI4rRxK6Ap4mIqnOTEeI5rKcsPWHquStTPgttxJ3dqtVBZrjvQcQWnVL6mZU1SXS0/Ia41MrTfaOFQRFeyttkycimeYiKWtNtuLYTRizJrQAelSugJuphMZDg4b8YZd6zpY32kUA9qVQ692K5VlQeNgKQft1S6mO+jRbqVWoFaFcGcm44CRdgmGr3euYKBirtYZGiMgLSU8f2Yah4CtfUEGuwzj0BUoGIdGayvSKPjc87uVlhJzaDV6Qh5rKl690cahiliFcFU2DqcnjKD30JTRYvudn3uaj373UMl+H/r2QT78b68ARszB7RRWy2BNAXXR33tykg3dAXxuJ+s7jRYOXQEPm3oCOB2CLWZKq2Y2fjMIHUmWj4GpGQ0hr1YOxfQEPUzEUg3RtlsbhypiNd+rcmraWVM5ZHKS42NRXhqa4eVzM7P2SWfzfOO5s/z7KxcAGA2n6A15q9K8brWj4guHz4fZbhqA9Uo5BN2s6/Tz9P238HqzOZxmNrvWtQOw/8xU2cfDiSwhrwuXrhEpoSfkJZnJN0SVtP7vVJFau5UAfmBe/JWLSfH8mSli6RxDU3FS2RznpuOs7dAupXKoFhp5Cdv6DeNgdyuB4Y5r1k6hK6U35GXn2jaeOjZe8piUkgPnZrRLbg5UenQjxB20cagifo+TNq+L0XCyqn/n9EScNWbW0fcPngfgfDhJ1pYl9WPzg5qXxv5Hzke4eE1bVde1WlEGALCUw5WDnWzuCVgDkTTzc9P2Xp47NVUSlP7q3rPsPTXJb7xha51W1tioTLhGKJ7VxqHKbOoNcHIivvCOK+DsZJzrtxozGF4yK3pzecnITMEoPXF03Bqr+eyJCabiGS5eq41DOTqDhTiMUg5rO3w8/gdvZEuDjUxtVF67vZd0Ns/+04Zr6dBImN/92vP86b8d5LXbe/nFPRvrvMLGRNXOzBWUrmUsQhuHKrOtL8SJscWnmC6VVDbHSDjJlt6glW7pMYuQlGtpOp7m5aFp3rl7AwCPHDDUhTYO5WnzunCZsZjtOui8LPZs6cblEJZr6QP/+jKPHhrl9kvX8hfvulK75OZAKYdybqWPPXKYOz/1ZM2GAWnjUGW29YU4N52o2gCPoakEUsLG7gAbug3jcNO2HvMxQ7H85PgEeQl3XraWvjYvz5yYAGDn2vaqrGm1I4Sg00xZVeNeNUsj6HVxzcYuHjs8ynQ8zUtD07z3dVv49LuvZk27jnXNhVIO40WFcNlcnn/ed5bD5yN86tGjNVmLNg5VZltfCCmpSo+lv3vyBF/6ySkANvUE2NhtpFvecskahCgohyePjtPmdXHlhk629AbJSyPNVgcF56Y35GFHv1YNK+Etl6/l8PkIX3jqFFLC63b01XtJDY/f4yTgcTJZ5Fbae2qSiViarb1BHnjiBAeKshGrgTYOVWZbv+GjPl5h19LxsSgf/s4hvvz0aQA2dAfYYBqHKwc7WNvu49x0AiklTx4d4/ptPbidDraZ07d2apfSvHz47Zfx/7/10novY1XzM1esw+kQfPbxY7T7XFw5qIP5i6E76Clp2/3dl0fwu5185devZ0OXvyYNPXUVSpXZ3BNEiMobh+++NALAJ951JclMnv42H3deNsDwdIJLBtoZ7PIzNBXn9EScoakE973eyA5RAVWdqTQ/uzd313sJq56+Ni83be/liVfHeNMlvbquYZH0hLycmYwjpUQIQS4v+d6BC9yys5+1HT5++PtvqMm51P+tKuNzO9nQFeD42MosfTqbn5US+52XR9i9qYufv2aQX3yNkfmxpTfIh99+OW6ng8GuAENTCZ48OgYUJP3WXsNVooPRmlpw15XrAHj9RdqltFjevGsN+09P8ZnHjwPw+JFRxqMpfuaKAYCaGVmtHGrAtr4gx21N8bK5/JL+wVJK/ss/7ueZExN897dfR05KDp+P8CfzuD0Gu/w8/GKSbz5/jvWdfjb3GC6n67f18O49G7j1kjXLf0EazSJ565UDTMXT3HXVunovZdXwvjds49XzEf7P94+wtTfI3//kFOs6fFbr+FqhlUMN2NYX4sR4lHxe8qNXx7jsg9/n9ESMU+MxfvFvn+HQSHje47934DyPHR4lmcnxO197nj956AAAd16+ds5jBrv85PKSF85O897XbrFSB0NeFx/9+St0MFpTE7wuJ7/2uq1lh/5oyiOE4OPvuIKrNnTye994gb0nJ/nV126p+Uha/R+rARetaSOZyXPofJhv/nSIZCbPwy8ME05m+MnxCX79y/t4+P2vLXvBTmZyfOjbr3DpQDv3vX4rv/v1F/C7nfyvt1/GQId/zr95x2UDXAineNuV63ThlkazyvC6nPz1L13DWz/9JG6ng7vrUDSojUMNeNOla3B/S/DP+4Z49PAoAP/20ggziQyXDLRzfCzKf/vGC/z9r+zhscMXOD+T4t17jKHj3315hPPhJJ9415XcuL2XNp+LnQPtVsHbXHT43fz2rTtq8fI0Gk0VWN/p58H33Ugsla1LB1ttHGpAd9DDLTv7+YdnTpPLS27c1sNPjhuFaH/8M5dwIZzkw985xFeePcOHv/MK8XSOw+fDfPBtu/j6c2fZ3BPgBrOwTccKNJrWYVsdK/QbJuYghLhDCHFECHFMCPGBeq+n0vynawbJ5SU+t4P//XOXIwQEPE7edMka3nPDJjZ2B/ijb76MAN69ZyNffvo0v/LF53j25CTvum6Dbjeg0WhqSkMoByGEE/hr4DZgCHhOCPGwlPKV+q6scrxxZz+9IS97tnSxuTfIz165jrXtPvweY6Ti/Xfu5H3/9FP+8M6d3HPDZjb3BPjoI4dxOgTvuGawzqvXaDSthmiEiUNCiBuAD0op32z+fj+AlPKjcx2ze/duuW/fvhqtsDIMTcUJeV10BspnCg1PJ1hniyU88vIIE7E0//n6TbVaokajaXKEEPullLsX2q8hlAOwHjhr+30IeE2d1lI1BrsC8z6+rijIfOflA9Vcjkaj0cxJo8QcyjnUSySNEOI+IcQ+IcS+sbGxGixLo9FoWpNGMQ5DwAbb74PAcPFOUsoHpJS7pZS7+/p0Ob5Go9FUi0YxDs8BO4QQW4QQHuBu4OE6r0mj0WhaloaIOUgps0KI9wPfB5zAF6SUB+u8LI1Go2lZGsI4AEgpvwt8t97r0Gg0Gk3juJU0Go1G00Bo46DRaDSaErRx0Gg0Gk0JDVEhvRyEEBHgCNABVGradi8wXqHngsqubTU8nz5/y0efu5Whz9/CqHO0SUq5cC2AlHJVfgH7zO8PVPo5K/h8FVvbKnk+ff70uavX8+nzV+Fz1AxupW/XewHzUOm1NfrzVZpGf72NfP4a/bU28rmDxn+9VT9/q9mttE8uonlUvZ+zldDnb/noc7cy9PlbmKWeo9WsHB5YJc/ZSujzt3z0uVsZ+vwtzJLO0apVDhqNRqOpHqtZOWg0Go2mSjS1cRBCbBBC/IcQ4pAQ4qAQ4nfM7d1CiB8IIY6a37vM7bcJIfYLIV42v99ie65rze3HhBCfFi0wt7PC5+8jQoizQohovV5PLanUuRNCBIQQ3xFCHDaf52P1fF21osLvve8JIV40n+dz5uRJzUJUMr2q0b6AAeAa8+c24FXgUuDPgA+Y2z8AfNz8+WpgnfnzZcA523PtBW7AmD3xCHBnvV/fKjt/15vPF63361pN5w4IAG80f/YAT+r33pLfe+3mdwH8C3B3vV/faviq+wJq+mLhIYw51UeAAXPbAHCkzL4CmAC85j6HbY+9G/iber+e1XL+ira3hHGoxrkzH/sU8Ov1fj2r8fwBbowU0F+o9+tZDV9N7VayI4TYjHF38SywRko5AmB+7y9zyH8CnpdSpjDGmA7ZHhsyt7UMKzx/LU2lzp0QohN4G/BoNdfbaFTi/Akhvg+MAhHgwSovuSloCeMghAhhyMnflVKGF7H/LuDjwG+oTWV2a5k0rwqcv5alUudOCOECvgp8Wkp5ohprbUQqdf6klG/GUBpe4JYyh2qKaHrjIIRwY7y5/klK+a/m5gtCiAHz8QGMOwq1/yDwTeAeKeVxc/MQxuhSRdkxps1Ihc5fS1Lhc/cAcFRK+ZfVX3ljUOn3npQyiTFh8q5qr70ZaGrjYGYUfR44JKX8hO2hh4F7zZ/vxfBnKtn+HeB+KeVTamdTvkaEENebz3mPOqaZqdT5a0Uqee6EEB/GaLT2u9Ved6NQqfMnhAjZjIkLeAtwuPqvoAmod9Cjml/AazHcPy8BL5hfbwF6MPy2R83v3eb+/wOI2fZ9Aeg3H9sNHACOA/8Xs4Cwmb8qfP7+DEOB5c3vH6z361sN5w5DpUrgkG37r9X79a2i87cGY0b9S8BB4K8AV71f32r40hXSGo1Goymhqd1KGo1Go1ke2jhoNBqNpgRtHDQajUZTgjYOGo1GoylBGweNRqPRlKCNg0ZTBYQQ/0UIcc8S9t8shDhQzTVpNEvBVe8FaDTNhhDCJaX8XL3XodGsBG0cNP+vvfuHkSkKwzD+vEEjhEarFYkIUQmi1mtEWKuVaCUalQ4RmqVY8acRnSiIxiYb0YuoaBTbSNYS236KeyY2e+eumCy7xfMrv9x8uaeZb87JzHs0Rgt7e0kX9naYLjL6PLAfuAXsAL4CF6pqIckb4C1wDHieZCddAu2NJIeAGbr47U/AxapaTHIEmAWWgfn/tzrpzzxWkobtA+5X1UHgO3CJ7h+2p6tq9MF+fcXzu6vqZFXdXNXnEXCl9XkPXGv1B8Dlqjr6LxchTcKdgzTsS/3O6XkCXKW7SOZ1uwhwC7Cw4vmnqxsk2UU3NOZa6SHwbEz9MXBq/ZcgTcbhIA1bnS3zA/iwxjf9n3/RO2P6S5uGx0rSsL1JRoPgDPAO2DOqJdnW7g8YVFVLwGKSE610Dpirqm/AUpLjrX52/V9fmpw7B2nYR2AqyT26FNC7wCvgTjsW2grcpkv7XMsUMJNkO/AZmG71aWA2yXLrK20aprJKY7RfK72oqgMb/CrShvBYSZLU485BktTjzkGS1ONwkCT1OBwkST0OB0lSj8NBktTjcJAk9fwC80tLr3BY2HoAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'][-200:].plot()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
" for y in range(1991,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_august_week[:-1], first_august_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG+dJREFUeJzt3X+QldWd5/H3B5t0qwOm0cbwS2EqxAqaDIZbwGyys2OYAdxMCdZo0hsndq1UMVE3Y6a2SiG6Za0yVTq1tZmhUnGl4ihq/MGyY8nOypoWNzXsLgGaaEbRMN2JBAnEbreJYqroseG7f9zTw+22+/Zzm+77qz+vqlv3uec+5/Q5PN187/nxnKuIwMzMLIspla6AmZnVDgcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLLOGSldgvF1yySUxf/78SlfDzKymHDhw4N2IaBntvLoLGvPnz6ejo6PS1TAzqymSfpHlPA9PmZlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmNar7/VN8+eE9dJ88Vemq2CTioGFWozbv6mT/4V42v9RZ6arYJFJ392mY1bsr7tlJX/+Zf3795N4jPLn3CI0NUzi06doK1swmA/c0Cri7b7Vg953XcN3i2TRNzf/5Nk2dwprFs9l91zUVrplNBg4aBdzdt1owc3oT0xob6Os/Q2PDFPr6zzCtsYGZ05qGPd8fhmw8eXgKd/et9rz7QR83Lbucry69jKf2HaGnSEAo/DC06frPlLGWVo8UEZWuw7jK5XJR6t5T3e+fYtMLb/KDg7/i1IdnaJo6hVVXfoK7v/TpET+9mVW7oR+GBvjDkA1H0oGIyI12noenKL27b1YLPPdhE8HDU0kp3X2zWuAPQzYRHDSSh792tle2ae1VFayJ2fjxhyEbb57TMDMzz2mYmdn4c9AwM7PMMgUNSX8u6aCk1yU9LalJ0gxJ7ZI603NzwfkbJXVJOiRpVUH6Ekmvpfc2S1JKb5T0bErfK2l+QZ629DM6JbWNX9PNzKxUowYNSXOAPwNyEXEVcB7QCmwAdkXEQmBXeo2kRen9K4HVwHclnZeKewhYDyxMj9UpfR1wIiI+CXwbeDCVNQO4F1gGLAXuLQxOZmZWXlmHpxqA8yU1ABcAx4A1wNb0/lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ij/7/viQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZTZq0IiIXwL/CTgCHAfei4gfAJdGxPF0znFgZsoyB3i7oIijKW1OOh6aPihPRPQD7wEXFynLzMwqIMvwVDP5nsACYDZwoaQ/KZZlmLQokj7WPIV1XC+pQ1JHT09PkaqZmdm5yDI89QfAWxHRExEfAn8L/AvgnTTkRHruTucfBeYV5J9LfjjraDoemj4oTxoCuwjoLVLWIBGxJSJyEZFraWnJ0CQzMxuLLEHjCLBc0gVpnmEF8CawAxhYzdQGPJ+OdwCtaUXUAvIT3vvSENZJSctTOTcPyTNQ1g3Ay2ne40VgpaTm1ONZmdLMzEbk7eAnzqjbiETEXknbgR8D/cArwBbgt4BtktaRDyw3pvMPStoGvJHOvz0iTqfibgUeA84HdqYHwCPAE5K6yPcwWlNZvZLuB/an8+6LiN5zarGZ1T1vBz9xvI2ITSrd75/i3z39Ct/56tXeuK8OeTv4sfM2ImbD8Lcz1jdvBz/xvMutTQr+dsbJwdvBTzz3NGxS8CfQyWNgO/jnbvs8Ny27nJ4P+ipdpbrinoZNCv4EOnn4u3EmloOGTRr+QiKzc+fVU1YXvCrK7Nx49ZSNq2q/WcqroszKw8NTlkm13izlVVFm5eXhKSuq2m+W6n7/FJteeJMfHPwVpz48Q9PUKay68hPc/aVP1+wwlYfarBI8PGXjotqXqtbjqigPtVk18/CUFVUL/ynXy6ooD7VZLXDQsFFV+3/K9bIuf/ed14w41GZWLRw0bFT18p9ytauFXp2Zg4ZZFan2Xp2ZV0+ZmZlXT5mZ2fhz0DAzs8wcNMzMLDMHDbMyqfb9u8yycNAwKxPf6W31wEtuzSaY7/S2euKehtkEq/b9u8xK4aBhNsF8p7fVk1GDhqQrJL1a8Hhf0jclzZDULqkzPTcX5NkoqUvSIUmrCtKXSHotvbdZklJ6o6RnU/peSfML8rSln9EpqW18m29WHgN3ej932+e5adnl9HzQV+kqmY1JSXeESzoP+CWwDLgd6I2IByRtAJoj4i5Ji4CngaXAbOAl4FMRcVrSPuAO4EfAC8DmiNgp6TbgsxHxdUmtwPUR8RVJM4AOIAcEcABYEhEnRqqj7wg3qx7+bpDaMVF3hK8AfhYRvwDWAFtT+lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ih+pHh+SZ6Cs7cCK1AtZBbRHRG8KFO3A6hLrbGYV4hVj9afU1VOt5HsRAJdGxHGAiDguaWZKn0O+JzHgaEr7MB0PTR/I83Yqq1/Se8DFhenD5DGzKuUVY/Urc09D0seA64D/Otqpw6RFkfSx5ims23pJHZI6enp6RqmemU00rxirX6UMT10L/Dgi3kmv30lDTqTn7pR+FJhXkG8ucCylzx0mfVAeSQ3ARUBvkbIGiYgtEZGLiFxLS0sJTTKziVDqijHfLV87Sgka/4azQ1MAO4CB1UxtwPMF6a1pRdQCYCGwLw1lnZS0PM1X3Dwkz0BZNwAvp3mPF4GVkprT6qyVKc2K8B+gVYNSVox57qN2ZFo9JekC8nMLvx0R76W0i4FtwGXAEeDGiOhN790N3AL0A9+MiJ0pPQc8BpwP7AS+EREhqQl4AriafA+jNSJ+nvLcAnwrVeUvIuLRYnX16im457nX+P6+I9y09DI2Xf+ZSlfHbERD5z4GeO6j/LKunvKXMNWRsfwBekmkVVL3+6dG/F50/z6Wl7+EaRIay+SjhwWskny3fO3xhoV1pJQ/QC+JtGrh70WvLQ4adSbrH+DuO68ZcVjArJwe/trZEZFNa6+qYE0sCweNOpP1D9DDAmY2Fp7TmEDVvvTVm+iZWam8emoCeemrmdWKrKunPDw1ATzJbGb1ysNTE6DUpa/VPoxlZjbAQWMClDrJ7HslzKxWeHhqgmRZ+uphLDOrNe5pjEGW4aSHv5Zj09qrWDR7OpvWXjVoKewAbx9t1cTDpLWtXNfPQWMMxms4yfdKWDXxMGltK9f185LbEkzEjpx/+kQHLdOaBg1jDdcrMZso3mm2to3X9fMutxPAO3LacGp9p2D/Xte28bp+3uV2Ang4aXLJOkZc68M6/r2ubeW+fl49VSLvyDl5FAaD4e7or6fVb/69rm3lvH4enjIbIusY8WQe1qn1ITn7KA9PWVWr5uWdWZdCT+ZhnVofkrOx8/CUjausn0BHG/qppFKCwWQb1qmnITkbGw9P2bgabWffWlne6aXQw5vMQ3L1zrvcWlll/QRaK98Y6G+TG95kHpKzPM9p2LjwPMDk4S/vmtzc07Bx4XmAyaOSvTCv2qq8TD0NSR+XtF3STyW9Kel3Jc2Q1C6pMz03F5y/UVKXpEOSVhWkL5H0WnpvsySl9EZJz6b0vZLmF+RpSz+jU1Lb+DXdxlvWT6BZNnM0G45XbVVepolwSVuB3RHxPUkfAy4AvgX0RsQDkjYAzRFxl6RFwNPAUmA28BLwqYg4LWkfcAfwI+AFYHNE7JR0G/DZiPi6pFbg+oj4iqQZQAeQAwI4ACyJiBMj1dUT4Wb1p1YWUNSycbtPQ9J04PeARwAi4p8i4tfAGmBrOm0rsDYdrwGeiYi+iHgL6AKWSpoFTI+IPZGPVI8PyTNQ1nZgReqFrALaI6I3BYp2YPVodTaz+uKvEageWYanfhvoAR6V9Iqk70m6ELg0Io4DpOeZ6fw5wNsF+Y+mtDnpeGj6oDwR0Q+8B1xcpKxBJK2X1CGpo6enJ0OTzKyWeAFF9cgSNBqAzwEPRcTVwG+ADUXO1zBpUSR9rHnOJkRsiYhcRORaWlqKVM3MapVXbVWHLKunjgJHI2Jver2dfNB4R9KsiDiehp66C86fV5B/LnAspc8dJr0wz1FJDcBFQG9K//0heX6YqWVmVldq5d6Zel/hNWpPIyJ+Bbwt6YqUtAJ4A9gBDKxmagOeT8c7gNa0ImoBsBDYl4awTkpanuYrbh6SZ6CsG4CX07zHi8BKSc1pddbKlGZmVpXqfYVX1vs0vgF8P62c+jnwb8kHnG2S1gFHgBsBIuKgpG3kA0s/cHtEnE7l3Ao8BpwP7EwPyE+yPyGpi3wPozWV1SvpfmB/Ou++iOgdY1vNzCbMZNmXy3tPmZmNg1rfl8tbo5uZldFkWeHlbUTMzMbJZNgix8NTZmbm4al6VM3fdmdmk4ODRg2p96V8Zlb9PKdRAybLUj4zq37uadQAb9ZmZtXCQaMGTJalfGbl5nnC0jlo1Ahv1mY2/jxPWDovuTWzScdf6vRRXnJrZjaCUucJPYx1loOGmU06pc4TehjrLC+5NbNJKcuWH17u/lGe0zAzG0Gt71xbCs9pmJmdIy93/ygPT5mZFTEZdq4thYenzMzMw1NmZjb+HDSsqnl9vFl1cdCwqub18WbVxRPhVpW8Pt6sOrmnYVXJ28GbVScHDatKXh9vVp0yBQ1JhyW9JulVSR0pbYakdkmd6bm54PyNkrokHZK0qiB9SSqnS9JmSUrpjZKeTel7Jc0vyNOWfkanpLbxarhVP28Hb1Z9Mt2nIekwkIuIdwvS/hLojYgHJG0AmiPiLkmLgKeBpcBs4CXgUxFxWtI+4A7gR8ALwOaI2CnpNuCzEfF1Sa3A9RHxFUkzgA4gBwRwAFgSESdGqqvv0zAzK1057tNYA2xNx1uBtQXpz0REX0S8BXQBSyXNAqZHxJ7IR6rHh+QZKGs7sCL1QlYB7RHRmwJFO7D6HOpsZmbnIGvQCOAHkg5IWp/SLo2I4wDpeWZKnwO8XZD3aEqbk46Hpg/KExH9wHvAxUXKGkTSekkdkjp6enoyNsnMzEqVdcnt5yPimKSZQLuknxY5V8OkRZH0seY5mxCxBdgC+eGpInUzM7NzkKmnERHH0nM38Bz5+Yp30pAT6bk7nX4UmFeQfS5wLKXPHSZ9UB5JDcBFQG+RsszMrAJGDRqSLpQ0beAYWAm8DuwABlYztQHPp+MdQGtaEbUAWAjsS0NYJyUtT/MVNw/JM1DWDcDLad7jRWClpOa0OmtlSjMzswrIMjx1KfBcWh3bADwVEf9T0n5gm6R1wBHgRoCIOChpG/AG0A/cHhGnU1m3Ao8B5wM70wPgEeAJSV3kexitqaxeSfcD+9N590VE7zm018zMzoG3RjczM2+NbmZm489Bw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDLLHDQknSfpFUl/l17PkNQuqTM9Nxecu1FSl6RDklYVpC+R9Fp6b7MkpfRGSc+m9L2S5hfkaUs/o1NS23g02szMxqaUnsYdwJsFrzcAuyJiIbArvUbSIqAVuBJYDXxX0nkpz0PAemBheqxO6euAExHxSeDbwIOprBnAvcAyYClwb2FwMjOz8soUNCTNBb4EfK8geQ2wNR1vBdYWpD8TEX0R8RbQBSyVNAuYHhF7IiKAx4fkGShrO7Ai9UJWAe0R0RsRJ4B2zgYaMzMrs6w9jb8C7gTOFKRdGhHHAdLzzJQ+B3i74LyjKW1OOh6aPihPRPQD7wEXFynLzMwqYNSgIemPgO6IOJCxTA2TFkXSx5qnsI7rJXVI6ujp6clYTTMzK1WWnsbngeskHQaeAb4o6UngnTTkRHruTucfBeYV5J8LHEvpc4dJH5RHUgNwEdBbpKxBImJLROQiItfS0pKhSWZmNhajBo2I2BgRcyNiPvkJ7pcj4k+AHcDAaqY24Pl0vANoTSuiFpCf8N6XhrBOSlqe5ituHpJnoKwb0s8I4EVgpaTmNAG+MqWZmVkFNJxD3geAbZLWAUeAGwEi4qCkbcAbQD9we0ScTnluBR4Dzgd2pgfAI8ATkrrI9zBaU1m9ku4H9qfz7ouI3nOos5mZnQPlP9DXj1wuFx0dHZWuhplZTZF0ICJyo53nO8LNzKpY9/un+PLDe+g+earSVQEcNMzMqtrmXZ3sP9zL5pc6K10V4NzmNMzMbIJccc9O+vrP3hr35N4jPLn3CI0NUzi06dqK1cs9DTOzKrT7zmu4bvFsmqbm/5tumjqFNYtns/uuaypaLwcNM7MqNHN6E9MaG+jrP0NjwxT6+s8wrbGBmdOaKlovD0+ZmVWpdz/o46Zll/PVpZfx1L4j9FTBZLiX3JqZmZfcmpnZ+HPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLbNSgIalJ0j5JP5F0UNJ/TOkzJLVL6kzPzQV5NkrqknRI0qqC9CWSXkvvbZaklN4o6dmUvlfS/II8belndEpqG8/Gm5lZabL0NPqAL0bE7wCLgdWSlgMbgF0RsRDYlV4jaRHQClwJrAa+K+m8VNZDwHpgYXqsTunrgBMR8Ung28CDqawZwL3AMmApcG9hcDIzs/IaNWhE3gfp5dT0CGANsDWlbwXWpuM1wDMR0RcRbwFdwFJJs4DpEbEn8t8x+/iQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZZZpTkPSeZJeBbrJ/ye+F7g0Io4DpOeZ6fQ5wNsF2Y+mtDnpeGj6oDwR0Q+8B1xcpCwzM6uATEEjIk5HxGJgLvlew1VFTtdwRRRJH2uesz9QWi+pQ1JHT09PkaqZmdm5KGn1VET8Gvgh+SGid9KQE+m5O512FJhXkG0ucCylzx0mfVAeSQ3ARUBvkbKG1mtLROQiItfS0lJKk8zMrARZVk+1SPp4Oj4f+APgp8AOYGA1UxvwfDreAbSmFVELyE9470tDWCclLU/zFTcPyTNQ1g3Ay2ne40VgpaTmNAG+MqWZmVkFNGQ4ZxawNa2AmgJsi4i/k7QH2CZpHXAEuBEgIg5K2ga8AfQDt0fE6VTWrcBjwPnAzvQAeAR4QlIX+R5GayqrV9L9wP503n0R0XsuDTYzs7FT/gN9/cjlctHR0VHpapiZ1RRJByIiN9p5viPczMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzq4Du90/x5Yf30H3yVKWrUhIHDTOzCti8q5P9h3vZ/FJnpatSkoZKV8DMbDK54p6d9PWf+efXT+49wpN7j9DYMIVDm66tYM2ycU/DzKyMdt95Ddctnk3T1Px/v01Tp7Bm8Wx233VNhWuWjYOGmVkZzZzexLTGBvr6z9DYMIW+/jNMa2xg5rSmSlctEw9PmZmV2bsf9HHTssv56tLLeGrfEXpqaDJcEVH8BGke8DjwCeAMsCUi/lrSDOBZYD5wGPhyRJxIeTYC64DTwJ9FxIspfQnwGHA+8AJwR0SEpMb0M5YA/w/4SkQcTnnagHtSdTZFxNZi9c3lctHR0ZH9X8DMzJB0ICJyo52XZXiqH/j3EfFpYDlwu6RFwAZgV0QsBHal16T3WoErgdXAdyWdl8p6CFgPLEyP1Sl9HXAiIj4JfBt4MJU1A7gXWAYsBe6V1JyhzmZmNgFGDRoRcTwifpyOTwJvAnOANcDAp/6twNp0vAZ4JiL6IuItoAtYKmkWMD0i9kS+e/P4kDwDZW0HVkgSsApoj4je1Itp52ygMTOzMitpIlzSfOBqYC9waUQch3xgAWam0+YAbxdkO5rS5qTjoemD8kREP/AecHGRsszMrAIyBw1JvwX8N+CbEfF+sVOHSYsi6WPNU1i39ZI6JHX09PQUqZqZmZ2LTEFD0lTyAeP7EfG3KfmdNOREeu5O6UeBeQXZ5wLHUvrcYdIH5ZHUAFwE9BYpa5CI2BIRuYjItbS0ZGmSmZmNwahBI80tPAK8GRH/ueCtHUBbOm4Dni9Ib5XUKGkB+QnvfWkI66Sk5anMm4fkGSjrBuDlNO/xIrBSUnOaAF+Z0szMrAKyLLn9ArAbeI38kluAb5Gf19gGXAYcAW6MiN6U527gFvIrr74ZETtTeo6zS253At9IS26bgCfIz5f0Aq0R8fOU55b08wD+IiIeHaW+PcAvMra/mlwCvFvpSowTt6X61Es7wG2ZKJdHxKhDNaMGDSsPSR1Z1kjXArel+tRLO8BtqTRvI2JmZpk5aJiZWWYOGtVjS6UrMI7clupTL+0At6WiPKdhZmaZuadhZmaZOWhMEEl/I6lb0usFab8jaY+k1yT9d0nTU/rHJD2a0n8i6fcL8vxQ0iFJr6bHzGF+3ES3ZZ6k/yXpTUkHJd2R0mdIapfUmZ6bC/JslNSV6r6qIH1JameXpM3pnp1abUvFrk2p7ZB0cTr/A0nfGVJWTV2TUdpS0b+XMbTlDyUdSP/+ByR9saCsil6XEUWEHxPwAH4P+BzwekHafuBfpeNbgPvT8e3Ao+l4JnAAmJJe/xDIVbgts4DPpeNpwD8Ci4C/BDak9A3Ag+l4EfAToBFYAPwMOC+9tw/4XfJbxOwErq3htlTs2oyhHRcCXwC+DnxnSFm1dk2KtaWify9jaMvVwOx0fBXwy2q5LiM93NOYIBHx9+RvVCx0BfD36bgd+ON0vIj89vJERDfwa6Bq1m5HeXY6Lovxaks56zycUtsREb+JiP8NDPq2n1q8JiO1pRqMoS2vRMTA1kgHgSbld9Oo+HUZiYNGeb0OXJeOb+Tsvlo/AdZIalB+65UlDN5z69HU1f4Ple6iauJ2Oi67c2zLgIpfm4ztGEktXpPRVPyawJja8sfAKxHRR5Vdl0IOGuV1C/kvsTpAvuv6Tyn9b8j/UnQAfwX8X/JbsADcFBGfAf5lenytrDUuoInd6bisxqEtUAXXpoR2jFjEMGnVfk2Kqfg1gdLbIulK8l8+96cDScOcVhVLXR00yigifhoRKyNiCfA0+fFxIqI/Iv48IhZHxBrg40Bneu+X6fkk8BQVGhrRxO90XDbj1JaKX5sS2zGSWrwmI6r0NYHS2yJpLvAccHNE/CwlV8V1GY6DRhkNrOSQNIX8957/l/T6AkkXpuM/BPoj4o00XHVJSp8K/BH5Ia5y17scOx2XxXi1pdLXZgztGFaNXpORyqn430upbZH0ceB/ABsj4v8MnFwN12VElZ6Jr9cH+Z7EceBD8p8a1gF3kF9N8Y/AA5y9uXI+cIj8pNlL5HebhPwqkQPAP5CfJPtr0sqdMrflC+S7xv8AvJoe/5r8tyvuIt8r2gXMKMhzN/me1CEKVn2Qn+B/Pb33nYF/g1prS6WvzRjbcZj84owP0u/kohq+Jh9pS6WvyVjaQv7D428Kzn0VmFkN12Wkh+8INzOzzDw8ZWZmmTlomJlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmZpaZg4aZmWX2/wFIULHVnmtEQwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
" yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"2020 221186\n",
"2021 376290\n",
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2022 641397\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAErBJREFUeJzt3XuQZGV5x/Hvwy4o0LCiC0OyaJYgIRJXJYzBS4XMgFooRCKaKC4GUpo1hRdiSFmEAtHEyyaCpbEgqXFEUFRUNCUXY7TQUVGDuGAJuCLEXRWIF1SIs0Fg4ckf79k4LpfZ6T6zffrl+6mamr6cPud9+nT/+u33nNMnMhNJ0ujbYdgNkCS1w0CXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVWLp9lzY8uXLc88992TXXXfdnott3aZNm6yhA6yhO2qoo8s1rFu37rbM3HO+6bZroK9cuZIzzzyTiYmJ7bnY1s3MzFhDB1hDd9RQR5driIjvbct0DrlIUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKrFdDyySdH8rT7lsKMvduPbIoSxXi8ceuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZWYN9Aj4tyI+HFEXDfntkdHxGcj4sbm/x6L20xJ0ny2pYd+HnDEVredAlyemfsDlzfXJUlDNG+gZ+YXgZ9tdfPRwPnN5fOBP2m5XZKkBYrMnH+iiJXApZn5xOb67Zn5qDn3/zwzH3DYJSLWAGsAxsbGDp6enqbX67XQ9OGZnZ21hg6opYYNd9w7lGWvWrGstXnVsi66WsPk5OS6zByfb7pFP6doZk4BUwDj4+PZ6/WYmJhY7MUuqpmZGWvogFpqOOuKTUNZ9sbVE63Nq5Z1Meo19LuXy48i4jcAmv8/bq9JkqR+9BvoFwPHN5ePBz7ZTnMkSf3alt0WPwx8FTggIm6OiJcDa4FnR8SNwLOb65KkIZp3DD0zj32Quw5vuS2SpAF4pKgkVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUGCvSIeF1EXB8R10XEhyPikW01TJK0MH0HekSsAF4LjGfmE4ElwEvaapgkaWEGHXJZCuwcEUuBXYBbB2+SJKkfkZn9PzjiJOAtwJ3AZzJz9QNMswZYAzA2Nnbw9PQ0vV6v72V2wezsrDV0QC01bLjj3qEse9WKZa3Nq5Z10dUaJicn12Xm+HzTLe13ARGxB3A0sC9wO/CxiDguMy+YO11mTgFTAOPj49nr9ZiYmOh3sZ0wMzNjDR1QSw1nXbFpKMveuHqitXnVsi5GvYZBhlyeBWzIzJ9k5j3AJ4BntNMsSdJCDRLo3weeFhG7REQAhwPr22mWJGmh+g70zLwSuAi4Gri2mddUS+2SJC1Q32PoAJl5BnBGS22RJA3AI0UlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUiYECPSIeFREXRcS3I2J9RDy9rYZJkhZm6YCPfxfw6cx8UUTsBOzSQpskSX3oO9AjYnfgUOAEgMy8G7i7nWZJkhYqMrO/B0Y8BZgCvgU8GVgHnJSZm7aabg2wBmBsbOzg6elper3eQI0ettnZWWvogFpq2HDHvUNZ9qoVy1qbVy3roqs1TE5OrsvM8fmmG2TIZSnw+8BrMvPKiHgXcApw+tyJMnOKEvyMj49nr9djYmJigMUO38zMjDV0QC01nHXFpvknXAQbV0+0Nq9a1sWo1zDIRtGbgZsz88rm+kWUgJckDUHfgZ6ZPwR+EBEHNDcdThl+kSQNwaB7ubwG+GCzh8t3gb8YvEmSpH4MFOiZ+Q1g3oF6SdLi80hRSaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSgz687mSRtTKUy5rbV4nr9rMCS3Ob7FsXHvksJuwqOyhS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVImBAz0ilkTENRFxaRsNkiT1p40e+knA+hbmI0kawECBHhH7AEcC0+00R5LUr8jM/h8ccRHwNmA34G8z86gHmGYNsAZgbGzs4OnpaXq9Xt/L7ILZ2Vlr6IA2a7j2ljtamc9Cje0MP7pzKItu1ajUsWrFsge9r8vvicnJyXWZOT7fdH2fUzQijgJ+nJnrImLiwabLzClgCmB8fDx7vR4TEw86+UiYmZmxhg5os4ZhnQ/z5FWbOeva0T+176jUsXH1xIPeV8N7YpAhl2cCz4+IjcCFwGERcUErrZIkLVjfgZ6Zf5eZ+2TmSuAlwOcy87jWWiZJWhD3Q5ekSrQy6JWZM8BMG/OSJPXHHrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilun+KEUlqycqHODPVyas2L+qZqzauPXLR5r2FPXRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVIm+Az0iHhsRn4+I9RFxfUSc1GbDJEkLM8jvoW8GTs7MqyNiN2BdRHw2M7/VUtskSQvQdw89M/87M69uLv8CWA+saKthkqSFaWUMPSJWAgcBV7YxP0nSwkVmDjaDiB7wBeAtmfmJB7h/DbAGYGxs7ODp6Wl6vd5Ayxy22dlZa+iANmu49pY7WpnPQo3tDD+6cyiLblUNdSx2DatWLOv7sZOTk+syc3y+6QY6p2hE7Ah8HPjgA4U5QGZOAVMA4+Pj2ev1mJiYGGSxQzczM2MNHdBmDYt5LsmHcvKqzZx17eif2reGOha7ho2rJxZt3lsMspdLAO8F1mfmO9prkiSpH4OMoT8TeBlwWER8o/l7XkvtkiQtUN/fLzLzCiBabIskaQAeKSpJlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJkflF+pVDOgEBwMa1Rw5luYtZ88mrNj/oSR2GVS8srOaHqkF6OLKHLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUGCvSIOCIiboiImyLilLYaJUlauL4DPSKWAGcDzwUOBI6NiAPbapgkaWEG6aH/AXBTZn43M+8GLgSObqdZkqSFiszs74ERLwKOyMxXNNdfBhySma/earo1wJrm6gHAT4Hb+m5xNyzHGrrAGrqjhjq6XMNvZeae8000yDlF4wFuu9+nQ2ZOAVP//6CIr2fm+ADLHTpr6AZr6I4a6qihhkGGXG4GHjvn+j7ArYM1R5LUr0EC/Spg/4jYNyJ2Al4CXNxOsyRJC9X3kEtmbo6IVwP/ASwBzs3M67fhoVPzT9J51tAN1tAdNdQx8jX0vVFUktQtHikqSZUw0CWpEga6JFViJAI9Ig6LiH2H3Y5BWEM3WEM3WMPi6PRG0ea3YS4EbgfuA87IzC8Mt1ULYw3dYA3dYA2Lq1M99IjYJyJ2n3PTi4GPZ+ahlCfw2Ih4+nBat20ebjVExAMdMTx0D7f10FXWsH11ItAj4gkR8SngCuDvI2LLj3z9EtilufxRyu8sPK2LIfJwrSE79hXv4boehtDMh2QNwzG0QI+IXedcfQpwc2auBD4HnNnc/jPgrojYLTN/BnwHGANWbsemPqjKa/g896+h19RwI6NRQw3rwRq2o1GvYbsGekTsERHnRcRVwNqI2LP5VHsS8OWmx3cxcHtEHEl5onYDVjWzuJHyi2h3b892z1V5Dav4VQ2f5P41PKmZxXfobg01rAdr2I5qqGGL7d1DPxTYDDyP8muNpwK7N+3Ye87X9/OBlwJfA35BOYkGmflV4DDgf7Zvs39NzTUsYfRrqGE9WMP2VUMNRWa2/kcJhlcCX6D8Fvry5vaPAq9tLu8LrG3ufyplnGpJc18P+EkznxXAeuDVwPuAc4BdFqPd1mAN1mANXa5hvr/F6qEfBTwfeBPwdOCfmts/CzyjufwD4EvAczPzKson4yRAZs4CVwJPzcxbgJdRxqh+CJyWmf+7SO22BmuwBmvocg0Pqe9fW9yyh0NEPJXyNeRLwGWZeRfwO8B3M/NzEbEBeHtEPAdYB7wgIpZn5m0RcSOwKSIeB7wbOC4i9qL8tvpPKV9tyMyvA18foE5rsIZFrWFOLdbga2lo+uqhz3nSDgXOpezG8yzgbc0k9wHfiYidM3MD5avJkyjjTrdS9uMEuJfy9WUH4OOUn69cDRwMTGXmfX1VtW01LGlq+CPKV6ZRrGHnpoYJRnc97F5BDY9p/j8DOG9Ea9grIh4TEeOUseJRrGGnUX9PD2xbx2Yo+13+FfAh4C+BHYG/Bl7V3L8H8E3gIMoTsxZY2dx3FOVJWd5cvhZYRtmQ8ClgpznL2WGxxpeAXYFXUFbSyZQNHyNVQzP/3YDLKL9BD/C6UaqheS0dD1xOOUBjpGrgV0dY/ylljHWGcr7ckXotNe+HEyhDDncAR45gDTsCJwKXAP8CPB44aZRqaPNvm3roEbE3cCkwAXyAssHgGMo41GaAzPw58Engtc0LZC/gCc0svgj8EXB3Zl4KvBe4CDib0hu4Z8uycpE+/aLsX3o5ZWW9B3gO8ELKho/7RqGGOXYGHgHsFxHLgf0oPYrO1xAROwLXAy8C3p6ZL2zuOmjOsjtdQ2ZmRCwD/gx4Z2ZOZOYNlB7cSNQQEY+nDEccDpwG3AJ8n7JRcCReS41XUd7T76Sc0/iY5vq9I1RDe7bxU3Bn4JA510+gbFA4HvjanNt/E7i1ufwqymGxezSPvwR43Jxpl2/vTy/gUXMuv56yklePUg3Nco8H3g6cDrwc+GPgqlGpAfgEsHqr214MXDlCNZwI/ENzeUuP/ZhRqYES2o+Yc/1cyofs0aNSQ7PMS4A/by6/HHhN81oaqfd0W3/bOob+S+Brzc72UL7CHJKZ51N6iXsDZOatwPURcUhmng3cBHyEckLpKzLz+1tmmJm3beOyW5OZt0fE7hFxHmXIZTllhe4XEWNdr2HO878D8F+Unu5hmXkJsO8o1NA4FzgjIs6KiJmIeAPwn5Rz1O7VtKvrNdwG/GFErAbWRcT5lF7h7zbfmjpdQ2bem2VD4ZZtAEH5salLKOthJN7TwL8Dx0fEx4A3Ak8GrqPUsGfTrq7X0J4Ffhpu6YmcD5zUXP4A8I/N5UcD0zSfeJTxrScCjxz2J9dWdZxI+Wo5RRlT/wrwBsqLuvM1AB+j9LCWUfapPY3yIj59VNYD5Vy0pwKPpby5TgK+OirrAdi/ae8/U3p7LwXeQdlP+fWUD91O17BVPdcAxzSXLxil93TzHj6X0kF7I3AGcEPz+hqp9TDo34L2csnMjIh9gL0pn4w0TyARcSlljHpJNp94mXlPZl6Xmb9cyHIWW2aek2Ur9zmUcc9/pXz9upiO1xARPUrv8D3Apylb6Q8BjgX2iIhL6HgNjRdk5lsz8wfAWym7lL2bEVkPlPHmu4GlWcZpL21uu5Sy0XcUaiAitmTAFZQNigBvKXeNzGvpQGAmS+/6fZTOzocZnddSa/rZD/0gytbgDRHxCsrXllMp41bfzsyrW2zfYvspZYPiaZn5/og4Drg+M68ZcrseymZKYNxD6ZnfC5yamdcCfzMiNZC/fhDG7ZRAPz0zPzQKNWTmXRGxFnhzc9MOlJ0E1mbmNaNQA5SNfRGx5ZcDb2puWw+8vhlO+laXa4iIJZQMOhR4P7CJsqPDiZm5YVTWQ1sWfIKLiPgy8NvARsq+m2/KzG+237TF0eydcDjlK/KBlGGXszPznod8YEc1Bz8cA1yYmT8cdnu2VUQ8AjiCcrTd71F2OTsnMzcPtWELFBFvobwfDgI+QznZwc+H26qFi4gbgDdk5ke2HGcy7DZtq4jYj/I+vpuyLv4NeHOWIzsfVhYU6M0uZ2cAG4ALstmoMkoiYinl9xzuotQwkl+7mp7JfaP0xttaRLySssvoB0Z1PQBExAHA90axhjkHCT6FspF98yi+ppqOzf7AVzLzzmG3Z1g6fQo6SdK268QZiyRJgzPQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiX+DzfBLfwEirG6AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.hist(xrot=20)"
=======
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
]
}
],
"source": [
"periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Un premier regard sur les données !"
>>>>>>> 5b4a347ece88315f3afbf737327897f8bae59c83
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcHVWZ979PliYJWUggBAy7EhYFEVmccesBMTCOgL6C\noCNRecdxwOUjDqM4owF3mFHRGWVm3gFZBCPgKFEiCQ40igMCsm8hypoEQkKSJnsved4/Th1u9e1b\nVae663bV7ft8P5/+3Nt1T506p86p8zvP85yqElXFMAzDMEIYU3YBDMMwjNbBRMMwDMMIxkTDMAzD\nCMZEwzAMwwjGRMMwDMMIxkTDMAzDCCZTNETkUhFZJSIPxrZdJCKPicj9IvJTEZka++08EVkW/f7O\n2PbDReRBEXlCRC6Obe8QkQXRPneIyF6x3+ZF6ZeKyBmx7fuIyJ3Rbz8WkXHDPRGGYRhGNiGWxg+B\nuXXblgCvVdXDgGXAeQAicjBwKnAQcALwAxGRaJ9LgDNVdQ4wR0R8nmcCa1V1f+Bi4KIor+nAl4Aj\ngaOB+SIyLdrnQuBbUV7rozwMwzCMJpMpGqp6O7CubtuvVXV79O+dwB7R9xOBBarap6pP4wTlKBHZ\nDZiiqndH6a4ETo6+nwRcEX2/Hjgm+j4XWKKq3aq6HidUx0e/HQP8NPp+BfCegLoahmEYw6SImMZH\ngUXR99nAc7HfVkTbZgPLY9uXR9sG7KOq/UC3iMxIyktEdgbWxURrOfCqAuphGIZhZDAs0RCRfwR6\nVfXHBZUHQLKTBKUxDMMwCmbIAWQR+TDwl9TcSeCsgT1j/+8RbUvaHt9npYiMBaaq6loRWQF01u1z\nq6q+JCLTRGRMZG3E82pUTnu4lmEYxhBQ1UET9FBLQ4jN7kXkeOBc4ERV3RZLtxA4LVoRtS/wGuAu\nVX0B53Y6KgqMnwHcENtnXvT9FOCW6Pti4LhIIKYDx0XbAG6N0hLt6/NqiKry9re/HVVN/Zs/f35m\nmjLThdQhNL/RUIei042GOhRdj9FQh7LK1+p1SCLT0hCRa3Az/p1F5FlgPvAFoAO4OVocdaeqnqWq\nj4rItcCjQC9wltaOfjZwOTABWKSqN0XbLwWuEpFlwEvAadFAv05EvgLcAyhwgbqAOMDngQXR7/dF\neaSyzz77ZCWhs7MzM02Z6ULqEJrfaKhD0elGQx3ypLNrornpRkMdGhKiSK3856qoOn/+fG11rA7V\nYDTUQXV01MPq0DyisXPQmNo2d4QPWVUrhNWhGoyGOsDoqIfVYeQRTfFdjQZEREd7HQ3DMIpGRNBh\nBMINwzAMw0TDMAzDCMdEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZE\nwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTD\nMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMw\nDMMIxkTDMAzDCCZTNETkUhFZJSIPxrZNF5ElIrJURBaLyLTYb+eJyDIReUxE3hnbfriIPCgiT4jI\nxbHtHSKyINrnDhHZK/bbvCj9UhE5I7Z9HxG5M/rtxyIybrgnwjAMw8gmxNL4ITC3btvngV+r6gHA\nLcB5ACJyMHAqcBBwAvADEZFon0uAM1V1DjBHRHyeZwJrVXV/4GLgoiiv6cCXgCOBo4H5MXG6EPhW\nlNf6KA/DMAyjyWSKhqreDqyr23wScEX0/Qrg5Oj7icACVe1T1aeBZcBRIrIbMEVV747SXRnbJ57X\n9cAx0fe5wBJV7VbV9cAS4Pjot2OAn8aO/56sehiGYRjDZ6gxjV1VdRWAqr4A7Bptnw08F0u3Ito2\nG1ge27482jZgH1XtB7pFZEZSXiKyM7BOVbfH8nrVEOthGIZh5KCoQLgWlA+AZCcJSlN51q4FGRU1\nMQyjXRhqAHmViMxS1VWR6+nFaPsKYM9Yuj2ibUnb4/usFJGxwFRVXSsiK4DOun1uVdWXRGSaiIyJ\nrI14Xg05//zzX/ne2dlJZ2dnYtqRZF29088wDKMkurq66OrqykwnqtlGgojsA/xCVQ+J/r8QF7y+\nUEQ+B0xX1c9HgfCrcYHr2cDNwP6qqiJyJ/Ap4G7gRuB7qnqTiJwFvE5VzxKR04CTVfW0KBB+D3A4\nziK6B3ijqq4XkZ8A/62qPxGRS4AHVPXfE8quIXUsg8cfh4MOgooWzzCMNkZEUNVBvpBMS0NErsHN\n+HcWkWeB+cA3getE5KPAM7gVU6jqoyJyLfAo0AucFRuxzwYuByYAi1T1pmj7pcBVIrIMeAk4Lcpr\nnYh8BScWClwQBcTBrd5aEP1+X5RHy9HbW3YJDMMw8hFkabQyVbY07r0X3vhGszQMw6geSZaG3RFe\nIj09ZZfAMAwjHyYaJWLuKcMwWg0TjRLZHt1pYu4pwzBaBRONEvFiYaJhGEarYKJRIl4svMVhGIZR\ndUw0KoCJhmEYrYKJRomYpWEYRqtholEiJhqGYbQaJholYqJhGEarYaJRAUw0DMNoFUw0SsQsDcMw\nWg0TjRIx0TAMo9Uw0agAJhqGYbQKJholYpaGYRitholGiYwW0XjrW2Hz5rJLYRjGSGCiUSKjRTRu\nvx1Wriy7FIZhjAQmGhWg1UXDMIz2wUSjRLyl0d9fbjkMwzBCMdEokdHinjIMo30w0SiR0SQa9k4Q\nw2gPTDQqwGgYcEdDHQzDyMZEo0RsoDUMo9Uw0SgRe92rYRitholGBTDRMAyjVTDRKJHRZGmMhjoY\nhpGNiUaJmGgYhtFqmGiUiA20hmG0GiYaFcDEwzCMVsFEo0RC3VOqcN11zS+PYRhGFsMSDRH5jIg8\nLCIPisjVItIhItNFZImILBWRxSIyLZb+PBFZJiKPicg7Y9sPj/J4QkQujm3vEJEF0T53iMhesd/m\nRemXisgZw6lHWYSKxurVcOqpzS+PYRhGFkMWDRF5FfBJ4HBVPRQYB5wOfB74taoeANwCnBelPxg4\nFTgIOAH4gYhIlN0lwJmqOgeYIyJzo+1nAmtVdX/gYuCiKK/pwJeAI4GjgflxcRpttMIDDc3FZhjt\nwXDdU2OBHUVkHDARWAGcBFwR/X4FcHL0/URggar2qerTwDLgKBHZDZiiqndH6a6M7RPP63rgmOj7\nXGCJqnar6npgCXD8MOsy4oRaGq3wbCoTDcNoD4YsGqq6EvgW8CxOLLpV9dfALFVdFaV5Adg12mU2\n8FwsixXRttnA8tj25dG2Afuoaj/QLSIzUvJqKUJFoxUsDcMw2oNxQ91RRHbCWQJ7A93AdSLyQaB+\nCCxyDirZSQZz/vnnv/K9s7OTzs7OgoozPEaTpWEYRmvT1dVFV1dXZrohiwbwDuBJVV0LICI/A/4c\nWCUis1R1VeR6ejFKvwLYM7b/HtG2pO3xfVaKyFhgqqquFZEVQGfdPrcmFTQuGlXELA3DMMqmfkJ9\nwQUXNEw3nJjGs8CbRGRCFNA+FngUWAh8OEozD7gh+r4QOC1aEbUv8BrgrsiF1S0iR0X5nFG3z7zo\n+ym4wDrAYuA4EZkWBcWPi7a1FKFxgFYQDYtpGEZ7MGRLQ1XvEpHrgfuA3ujzP4EpwLUi8lHgGdyK\nKVT1URG5FicsvcBZqq8MNWcDlwMTgEWqelO0/VLgKhFZBrwEnBbltU5EvgLcg3N/XRAFxFuK0eSe\nMtEwjPZAdJRf7SKiVa3jj38MH/gA3HsvvOENyekeeQRe97pqDsyqMGYMPPggHHJI2aUxDKMoRARV\nHRRHtjvCK0ArWxqj6aGLhmFkY6JRInljGlUcmE00DKO9MNEokdABt68vLF2ZVLlshmEUh4lGBQhd\nclvFgbkZlsaaNcXlZRhGsZholMhosDSaIRozZ8KyZcXlZxhGcZholEieR6NDNQPizSrbxo3F5mcY\nRjGYaJRI3tl5u1gaADKkB8YYhtFsTDQqQKilUUXR8FS5bIZhFIeJRonkdU9VcWA2S8Mw2gsTjRLJ\nO+C2k2gYhlFNTDRKJK9YVHFgNkvDMNoLE40K0MruKU8VV3YZhlE8JholYu6pZMzSMIxqYqJRIhYI\nNwyj1TDRqAAmGoZhtAomGiViN/clY+4pw6gmJholMhrcUx4LhBtGe2CiUSKjQTTM0jCM9sJEowLY\n6inDMFoFE40SySsWVXQBmaVhGO2FiUaJmHvKMIxWw0SjArSye8pTVNmqXEfDMEw0SmU0WRpFuc6q\nXFfDMEw0SmU0iUbRlkYV62oYRpuIxvbtsHJl2aUYjN3cNxhvsWTlt349dHQUc0zDMMJpC9G45hqY\nPbvsUiRjlkb+/FauhN7eYo5pGEY4bSEaa9eWXYLGjAb3lGekLY0qnwvDGM20hWiMqWgt7dHoQ8+v\niufCMNqBYQ2nIjJNRK4TkcdE5BEROVpEpovIEhFZKiKLRWRaLP15IrIsSv/O2PbDReRBEXlCRC6O\nbe8QkQXRPneIyF6x3+ZF6ZeKyBlp5Rw7dji1bB6j6c19I716qornwjDageHOwb8LLFLVg4DXA48D\nnwd+raoHALcA5wGIyMHAqcBBwAnAD0Reue/3EuBMVZ0DzBGRudH2M4G1qro/cDFwUZTXdOBLwJHA\n0cD8uDjVU1XR8LSye6qsQHgVz4VhtANDFg0RmQq8VVV/CKCqfaraDZwEXBEluwI4Ofp+IrAgSvc0\nsAw4SkR2A6ao6t1Ruitj+8Tzuh44Jvo+F1iiqt2quh5YAhyfVNaqioa5p4aeXxXPhWG0A8OxNPYF\n1ojID0XkXhH5TxGZBMxS1VUAqvoCsGuUfjbwXGz/FdG22cDy2Pbl0bYB+6hqP9AtIjNS8mpIq8c0\nqmxpeMzSMIz2YNww9z0cOFtV7xGR7+BcU/WXc5GX95AeY7dw4fkAnH8+dHZ20tnZWVyJCiB0gGyH\nBxaapWEY5dDV1UVXV1dmuuGIxnLgOVW9J/r/pzjRWCUis1R1VeR6ejH6fQWwZ2z/PaJtSdvj+6wU\nkbHAVFVdKyIrgM66fW5NKuj73nc+P/+5E40qYTf3DcYsDcMoh/oJ9QUXXNAw3ZAdN5EL6jkRmRNt\nOhZ4BFgIfDjaNg+4Ifq+EDgtWhG1L/Aa4K7IhdUtIkdFgfEz6vaZF30/BRdYB1gMHBet3poOHBdt\na0irxzSq7J6y1VOG0V4Mx9IA+BRwtYiMB54EPgKMBa4VkY8Cz+BWTKGqj4rItcCjQC9wluorl/7Z\nwOXABNxqrJui7ZcCV4nIMuAl4LQor3Ui8hXgHpz764IoIN4Qi2k0D7M0DKO9GJZoqOoDuGWv9bwj\nIf03gG802P4H4JAG27cRiU6D3y7HCU0mVRUNT+gAWMWYhsdiGobRHlR8OC2GqrunQtP19zevLEPF\nAuGty623wpYtZZfCaDVMNEok7wDZDqJh7qmR45hj4D/+o+xSGK1GW4iGd09VdaAJLVc7iEZofqHi\nYqRTZZenUU3aQjQ8VbtARpOlUdS5DRUDfy6q1qZlcsopcNJJ+fYx0TXyMtzVUy2BvzD6+qrlqhoN\nouExS6N8fv5z18dHA1u2wMSJZZfCaERbWBpVHXTzDnhVKz+UF9Pw6Uba0lCF664b2WOGIkN6XkI1\nmTQJ7ruv7FIYjWgr0ajqLKyVLY2yYhr+XIy0pbFhA5x6ajUtnKGIRhXr4enuLrsERiPaQjT8bLRq\nojEa3FNlB8JH2tLwiyqquFS16vcj5aVd3FPXXANve1vZpQhnlHWzxlTV0sg74FZRNDwjHQhvVkxj\n3br0uvjfNm4s9rhFMBTRqKKl4cvULqJx003w29+WXYpwTDRKxG7uG3p+zXq0yowZ8P3vJ//uRWPD\nhmKPWwSjxT21dav7HE0xmjSmTi27BPkw0agA5p6qUYVA+IsvJv/my+UHtioxWpYf9/a6zyoKWjOY\nMqXsEuSjLUTDYhrNY7RZGgA77JD8m+9LVRSN0TLIVvn9Mc2g1WJRLVbcoVFVSyPvwFfFi2g0Whod\nHdnH3batuON9//vFrBQabTGNKvZ3w0SjErSypeFpF0vDH69I0fjEJ2DhwuHnU+aMde1atxS5CNpN\nNFotdtNWolG1QXc0BcJH+iVMzbQ0QtxTRYoGFNO2ZVoa991X3E2PVRcNVVi1quxSlEdbiUaWpdHb\nO7KqPxqW3Jb9lNtmWBo77pj8W7NEowgruExLo8hjV100liyB3XYrLj+zNCpIaCDcr9oYqcHZAuFD\nz68ZlobvH5MmJadphnsKyrM0iqLIga/qorF5c9klKJe2EI1QS8NfuF48RgoTjRplWhohwehmrcQr\ny9Io6vy1k2ikWaJDwSyNChIqGv73np7mlsczGh5Y6BkNT7n1M8iQO8KLHtBaPaZRJCGicd118PGP\nj0x56vGiUcVzNxKYaMQoSzTM0qhR5pLbkGM3qy1aPaZR5Gw5pG2/+MXy3jo4LnqhxEMPFZOfWRoV\nJNSlYKKRn7JWTzXDPRUyWJmlUdyxkwjpU2U++6vKN3iOBG0hGlW1NDy2eqpGmZZGyNsAmyUaZmnU\nCBGNMmfnRfcBszQqSOhM3V+4Ra+MSWI0WRqj4ea+Mt1TRdRjKKJR1IDVjqJRxetxJGgr0Qhdclu1\nQHiVRcMzGpbclmlpFEE7WRplYpZGG5A3plHGK0RDqKJojKYlt3liGlW0NIZClS2NtHNilkZ5tIVo\n5I1p2M194Yymm/vyuKeqOAsucwmoH8SLKEOVzzEUfz2apVFBTDSaR9EXeJmWRh73VBXbokyK7Aet\nEtMY6RWDVcFEI8ZIu6fydpIqzrzKtjRGy5LbIihz0ClSTKtuaRQ9cah6fesZtmiIyBgRuVdEFkb/\nTxeRJSKyVEQWi8i0WNrzRGSZiDwmIu+MbT9cRB4UkSdE5OLY9g4RWRDtc4eI7BX7bV6UfqmInJFW\nxqpaGp5WtjQ8ZcU0Rot7qki3Th6KmrGPtGiMJkuj1azXIiyNTwOPxv7/PPBrVT0AuAU4D0BEDgZO\nBQ4CTgB+IPJK018CnKmqc4A5IjI32n4msFZV9wcuBi6K8poOfAk4EjgamB8Xp3ryBsLNPRXOaLI0\nzD01dIo8LyGDchVEo6g+ENLvqsSwRENE9gD+Eviv2OaTgCui71cAJ0ffTwQWqGqfqj4NLAOOEpHd\ngCmqeneU7srYPvG8rgeOib7PBZaoareqrgeWAMcnlTPvktuRdk/Z6qn8+TXT0mgn91RRg6/FNIaf\nXxWv70YM19L4DnAuEO+us1R1FYCqvgDsGm2fDTwXS7ci2jYbWB7bvjzaNmAfVe0HukVkRkpeDcl7\nc19V3VPbtlUvWFb2HeHNsDRa9ea+PHkU3Y8spjH8/Kpa33rGDXVHEXkXsEpV7xeRzpSkRXbPIc0v\nFi06H4Abb4TXv76Tzs7OhunKck+Fpvvnf4b99ivv6Z6NKOvZU81cctsOlkaVZ8utIhpVPHfDoaur\ni66ursx0QxYN4M3AiSLyl8BEYIqIXAW8ICKzVHVV5Hp6MUq/Atgztv8e0bak7fF9VorIWGCqqq4V\nkRVAZ90+tyYVdO7c81m8GI49FhL0AqhuTCPOY481pyzDxW7uK5+hiEbR7dZOgfDRZml0dg6cUF9w\nwQUN0w3ZPaWqX1DVvVR1P+A04BZV/RDwC+DDUbJ5wA3R94XAadGKqH2B1wB3RS6sbhE5KgqMn1G3\nz7zo+ym4wDrAYuA4EZkWBcWPi7YllNV9VnXJbegAWUXKDoQ34zEirbp6Kg/NutfARKP8/JrNcCyN\nJL4JXCsiHwWewa2YQlUfFZFrcSuteoGzVF+5VM4GLgcmAItU9aZo+6XAVSKyDHgJJ06o6joR+Qpw\nD879dUEUEG/IaFlyC8VcLKrur4hnFbXbY0R83yh6jX5ZMQ2zNPLTLPdU2ZZGKIWIhqreBtwWfV8L\nvCMh3TeAbzTY/gfgkAbbtxGJToPfLscJTUD53GfVRKMsC+Izn4Grr4bVq4efV7tZGqPlbuCy/PKL\nFsH3vgc33ZScplViGu1qabTFHeG+UbLe/V3VJbdFWxr33Qdr1gw/HygvEF62pVHFWWYVYhpZ9bj2\nWlic6EgeWCazNKpJW4iGKnR0wJYt6emqGghXrb1isggmTCguL89oWHJbRiC8GW6dPMcdaUsj5Hjt\ndnOfWRoVRBWmT4f1iVEPx+bN7rNqMQ2AsWOLO94OOxSX12i6uS/EPVVlS2Moxy263bKunZBrqyyX\nXShmabQBqrDTTtDdnZ7Oi0oVLQ0vGkXMsIq0NEbTzX1lWhpluadG2tLIIxpVHUTN0mgDVGHy5OyX\n0XvRGOmYRki6qrqnRqOlUUZMoyz31EivnipKNKrgnjJLYxSzfTuMH5/dYavqnipaNIp0dXlGk6UR\nsnpqtFgaJhr5MUujDVANE42i1+Bnoeo6f8gAOX58ccct8l3SZa+eGi2WxkiLRrPaLSs/E43k/MzS\nqBB+ph4iGmPGjKxojBmTz9Io4mJphmiMJktjJG/uM/fUYFolplFFF+VI0DaiMX582M19HR0jG9MI\nEYGi3VNVFo0qWBojeXNf2aunWjUQXqalUeQjU8AsjUoSGtPo73eiMZKKH+KeKtrSKPKCa5ZoZFG2\npVFF0WgnS6MK7imzNEYxoe6pvj53D0ORjfenP8Hddzf+bSjuqSIo0tLwtIJ76m//Fg4Z9LCaGmW8\nua9s0WhVS6NMiu4DrfbmvmY8sLByhLqn+vtduiIb76/+Ch5/vPEFnUc0Ojrc93axNJrhnlq0CJYv\nT/49RIiqvOR2KMctut2KCIQXLWjPPecmg7vump02BLM02oA8lkbR7qm0VU95RGPHHYsrU5VXTzXT\n0vBLqpMItTRCXJ2hjDZLo4qrp044AQ47LDx9FmVam+vXw1NPFXPcodIWopEnplG0eyprqWxoIHzS\npGLKA+0bCN+0Kf330JhGkdZo2aJRtFuxiqLxpz/B88+Hp8+iTNH40Ifc2zuHy8MPD738bSEaedxT\nIZbGZZfBiSeGHTvL0ggNhFfd0miFmMa2bem/h66eaoalUdYNpa0uGiHlLzIeCOW6p9auLeaYhxzi\nnjg8FNpGNPK4p7I6w403wi9+EXbsotxT3tIo4z6NkAuzFSwNSG+P0Jv7RpOl0ao39+URvTyi0dcH\nPT3pacq0NIqc8GVZ3ollKK4I1SXPzX0hlsbOO4cfO8Q9FTJATpwYfsws8gjP5s3w6lcn/16We2qo\n7pW09gjJ01sao0U0RtpCzLL243mELEgIGbjzPE3hv/4LvvSl9DTbt7vBuwxLoxmLWPLSNqIRenNf\nSEwjT8OlPecpz819RT4vKs9sZdOm9BVHZbmnhmpppM06+/vdeQ6xNEIu8IcfhjvvTE9T9h3hIy1+\nWbN4CHsZWp7z5ts8yz0J8PLL7i+N7dvDJqGh5GmLIkVjqG3fFqLhZ4ehS26r/BiRIsjT8Xp73V9S\nB2vWM4xCLY3QtvIrp/zS5aQ8x40LWz0VUt93vAP+7M/S05R1N7A/XsjMP09+RYiGL1NRojFlivtc\nujTs2Flv+GyGtSky8paGiUYKqu5x4FkdthmPEUlr5FDR2L692Pdp5LE0/AWUdO7KtjSyLnDPAQe4\nz6yYxrhx2W6R0IlFSFuV7Z7Keptl3vyy6hHSXnlEI+S8vfa1+Y6dJaTNsDSKEiFVuPXW8LRDoW1E\nY4cdwlbPFL3kNovQmEbZopF17sqKaYTOlL2LLc1iC7l4R1tMI+velbzHLkI0inZP+TQhfaUsSyNU\nhLLq8PDDcMwxYX3BLI0U4pZG1iyy6Jv7irA0io5peEI6jbcwkkSjbEsjr3slxNIoKqaRx9Io647w\nEEtj0aJwER9pSyOPaIQKVoholGVpZJVt2TL3mfVqa3/codAWouEbecyY9EGmGZZGlmiUEQj3A0BI\nPbMsjbJXT+UVjZCYRlGrp0IsurItjRDReNe74Nlnw/Iroh5FWxq+jxRtaRQpGqEilFW2J590nyYa\nw8QPzjvskB7X8KunigoOhpDXPVUEVRANEfdMoKHmlzem4amqpTHSouGviVD31Lp16b8XWY8QSyPP\nM8DyWBpluadC88sam/wkIM8zvvLSVqLR0ZHum/eWRlbDFDmrzuueKiKmkWeWFuqeGkoHbLSUN9Q9\nNVRLIyumUeTqqZF2T+W1NHbcMTwQ3t0dduys8xJyTprhnuroqLZ7qqiYhm/PkOvCRCMFPzhnBcND\nRaMo/KqodrQ0ksjjnuroaE5MIyvulSUsnqItjR/+ED73uex0IWzfDpMnZ1saobGj0HqEtG+oe2rs\n2HDRCL2uW93S2LrVfYYIpK2eSsGvg+7oSHdP+RlJkaKRNnBs3x7m9y5aNPLM0kJFo+jVRCFCmqet\nvFhk3RGedfHmcU8VHdP4znfgoouSf2+GpeHrmbV6LrQeIX0v1NIIbYf+frcQpkj3lFkao5x4TCOt\n8/f1uc5V5Zv7inBP5Vl5lCUaw/FlN6p3Hktj/PjwmEaIaIRYEWW6pyZPTv+9GaLh+0jo85iyzkvI\n4z96e7PvzM/TDnlEI497qsqWRiVFQ0T2EJFbROQREXlIRD4VbZ8uIktEZKmILBaRabF9zhORZSLy\nmIi8M7b9cBF5UESeEJGLY9s7RGRBtM8dIrJX7Ld5UfqlInJGWllDA+F5YxrDdcnkcU8V+aCyZsQ0\nhiK0jeqdx83RDEsjxD1V5LLsPKJb5JOOvWiEvmNkpC2NHXbItvjyrDiaOLE491TR793JU5esOvh2\nSks3XO/AcIaiPuAcVX0t8GfA2SJyIPB54NeqegBwC3AegIgcDJwKHAScAPxA5JW52CXAmao6B5gj\nInOj7WcCa1V1f+Bi4KIor+nAl4AjgaOB+XFxqqfoQHieh6VluadCRcPnE9LQH/oQfOYz6flBMe6p\nou8zCC1b3piGL2eam69oSyP0BqvQh99lWS55LY0JE9z5C1mllGVphA5EoZZGiJswdHl8X58TjaLc\nUz097qnTZVgaIWWD9OtiqItIPEMWDVV9QVXvj75vBB4D9gBOAq6Ikl0BnBx9PxFYoKp9qvo0sAw4\nSkR2A6Yp0kLHAAAgAElEQVSoqn+T9pWxfeJ5XQ8cE32fCyxR1W5VXQ8sAY5PKqu/MIsKhOdZ912U\naHhLI6Rj/ehH6Y9uLzoQntdUT5uVhpYtr6XhZ9RZ92AUueQ2hDyujizRCI0H+bRjxmTH+fz5LdLS\nyDp/IY/zCX24KNQsjaLcU9u2hbuxf/SjcFdrSJ9fsyY9jS971v1o8bR5KcTpISL7AIcBdwKzVHUV\nOGEB/Jt5ZwPxlfkrom2zgfjiy+XRtgH7qGo/0C0iM1LyaogfnEMuED/7SiOPaKQR6nbygXz/PYRp\niXZXsYHwPAFJT1qnDS1b3phGyAuWQgShGStnQl0TofGsENHIs6IQsi2N0PsmQtx7XhCKegaYtzSK\nck95SyNkkP/Qh8KemhvSp+64I/13CBON0DhVEsMWDRGZjLMCPh1ZHPVNXdBiTHe4oexUpqWRVa6Q\nASPungp1QaSly2NpZMU0hiIavmM3ujj7+lxbFW1pvOlNtfIm4V02aYNGMyyNIgLrvk1DhaVoS6NI\n0ejtzbY0fD6hLp1Jk4p7YGFPjxOhUFdcVtwodBwIeWmSX0TQTEtjWA/cFpFxOMG4SlVviDavEpFZ\nqroqcj29GG1fAewZ232PaFvS9vg+K0VkLDBVVdeKyAqgs26fxGc73nvv+axbB08/DX/4Qydz53Y2\nTFeGaISapXktjazjQjGrp7x7Ks8gmnb+QgPNeWMa06e7OM8DDySnCVll04yYRhHuqbg1msc9FWpp\nZIlGyDJZ/3uIeyorEJ7HPVV0TGPbNthll+xj+3O2YQPsvntyutA+FXIjphe0rIlPo/y6urro6urK\nPMZw39JwGfCoqn43tm0h8GHgQmAecENs+9Ui8h2cK+k1wF2qqiLSLSJHAXcDZwDfi+0zD/g9cAou\nsA6wGPhaFPweAxyHC8A35JBDzmduFFo/+ODkyox0TEO1HNHIE8hvhnvKn7ckSyPERbh9e74bMb2F\nkGVp7LBDujvB95Ey3FNpxJdvFykaoa6MEEvD/5ZV3yxLIzSfeH6h7qmQmEaopeHP2YYN6elC+8Da\ntXD66XDddclpfF1D7oOpL1dnZyednZ2v/H/BBRc03H/IoiEibwY+CDwkIvfh3FBfwInFtSLyUeAZ\n3IopVPVREbkWeBToBc5SfaV7nw1cDkwAFqnqTdH2S4GrRGQZ8BJwWpTXOhH5CnBPdNwLooB4Q3xM\nY9y4bF9f0TGN+PLcegEJnS2XaWmELLnNGwjPEo2QGaQ/d3liGiHLaSdMgJdeSj9uFd1TcUsj9Lje\nPVWEpREqGmPHZt/JnRUI920Zekd4MyyNkEB41rXjCe0DL70EM2dmC27IcmXIFrMkhiwaqvo7IGkB\n4zsS9vkG8I0G2/8AHNJg+zYi0Wnw2+U4ocnEXyBZotEMSyO+qqR+uafvLHlEo4jHdeTxaYZYGkN1\nTzU6frPcU6GWxqRJ2ffyNCMQXkRMw8eC8lgaWQKYJxAe8qrcMWPCRCNt4Ovrc3mELlUu+j6NjRvd\nQpOsY/trJkQ0Qq6h9eth551r1mSj/tDbmy1o/rdVq9KPl0Rb3BEeIhq+A4QMRHlEwzdQo7Shwdxm\nWRqhoiHSnJjGcC2Nobinsi6mrJhGyEXpyRPTGK7l4i2NkKcm+/QhE6k8gfDx47MtuRBLI8s99fLL\nrjzNsDRC3FNeNEItjZC76UMmItu2uT6ftlDEu86yRHmnneDBB9OPl0RbiUbaqgLfobMuIhiapdGo\nEZtpaWRdvACLF2fn09vrHl/RjJjGSAbCQ24G80KUNmiEBGnzkMfSSOtLvo/kXT0VYn1DuGgU5Z5K\nO8df/KL7DBWNvKunstJt2FC8aIRMHPxNj2n1DnVPTZvm0g5l2W1biIY3i9MukL4+93vRopEWdB7K\n6qmJE7OPmYXvUAlxrgH09GSLRt6ZctaS22bENPxy2pDHyGSJRtGPEcl7N3CjOsTv+Qm1NETCBvCk\nY8YJWQIbd0+lXTtZlob3xee1NELdU9u3p9cj1NLI454K6QNeNNLccqHuqXHjYOrUocU12kI04oHw\npJMZN51HSjTyuqfe9z549auzjxlaphB6e2HKlHT3VF4ff5GB8DyWRpbryQtkVS2NtMBqXveUF5mi\nLI2+vux+EJ+YDXfJLWTHUKAmAFmTAU/ahMazZYu7JqpoafT0ZIuGjwlNnZr9npRGtI1oZF0ged1T\nIsOPaeRdPbXrrsUEwvMMeCHuqbIC4XljGhMnpl/AW7a4GWRaGj8LLiOmEWJphIpGiPUN+SyNUNEY\n7uopT8hNoF7MQp8ekNY3wR3PWy5FiUZofUPdUxMmZFt8Y8e6vp51t3ojTDQi4qIR0hFDlub6fOOf\n9eXKE9MIHRBCyxRClnuq6Jv7Qi0NLy55RSNrBjl1ajGWxurVjV9nW08e91TaIBS3NELwg2no3cNF\nxDTixxxOIHzPPd1niHuqt9f1z5DrzJfR79eILVtcPwo5dqh7KnRxRR7RCHVPmWgk0IyYRhGi4V07\nIaKRZxbp90kir6WR5p5qxs19zQqEZ8U0vNuhCNF4z3vCylWUe8oPKBDWR0JdRUWKhh/AQwPhjdKs\nXu3eGfHZz4YN3F6oxo0rxtLIIxqhlkZI8NqnK8LS8O6p22+HT34y/ZiNaAvRaIZ7Kq9opLmnQgbI\nPLPILLZvh9e8Jixtlnuq6CW3IaucIJ+f2ueb5Z7aujXM0ghps9Wrw8pVlHvKz85DJxahk6Si3VOh\nlsaUKbUXCsV5z3vgX//VtX1ITCNuaYTGNMaMyRaNkDYLFY2QOIQvWxExDT/WnXEGzE58zGsybSMa\nWYLQLNHwna9qS24/8QnYb7/sfEJjGmUEwvPENPzqqRD3VFZMI2RWGPKcIF+uPO6ppJsPe3pqohFC\nqGj097tjjrSlMWVK43PohSTrfoV4Xt7SCHVPpbkx45ZGVn4hd4Sr1saT4VoaPq+s68e7p049dWju\n7rYQjf/5n3yWRsibu4oQjbyrp4qKaeSZpTczptFo8POWRtY5aZZ7yq9fTyJU1LIGWU8e0U0T8J6e\nobmnQgbwadOy3+MQEswNtTTSRGPqVPc5YUL+mEaoe2ry5OR+MpSYRtZThEPuXYFs0fB5ZfUnn27K\nFFtym0poTCPrUdFQ8xuGDFj+Yk56d0RZgfA870wuOqbhz+9IL7kdyUB4vFxZN7yFiq4X8CxLo0j3\nVH8/HHYYPPNMuhB6t0iIpZF1TN/n0kTDu6fyrJ4KneRNntzYNQbFxzS8WzHU1ZZ2n0ZPT5gF5ifI\nJhoZZInGscfCU09lP/UT8lsaO+6YvOIlZMD1jVxkTCPPuvWi7wj3F+RIP7DQ1zlpUI2vv09KE59R\npw3O8b6RdQGHnr800YjHNELIE9MYPx5mzIB169LLFhKAHTfOpUsalH26JNHwLxfLG9PIEwgvWjSy\nxNYLwXAtDT9xyCqbd0+ZaGSQdePeM8+4T38BZ3X+IkQj1D3lRcPvM1ziA2gWzQiE+7xG+j6NtMGj\nv78Wr0gbYPyFmzWj9+0d8u6I0EdcZLmnOjrc3crXX5+dV6h7yve9GTPSn/4bumpn/Hg36KbFfHp7\nnUXRaOD2lkZHR/H3afiYQFGisW2b6ydZloYXguHGNOKiYe6pAgi5kQlcI2c9Ljqve2rHHZPdU6Gi\nMW5cmOsh/ij2JPIMuD092e6pIkWjme4p/8rfRsfdutUd17d/0oXuB6GsJ6z6QSfLLdLbG/4wvSz3\nlI9pBLxHJ5elMW6cO27am+PyuKeyRCPN0vB0dxd/n4YfTCdOzBaN0NVTU6aki4Yf6Iu0NMw9VRCh\nogHZLqqtW90JL8o9FdqZQ0Qj7b6QeJo8MY0QSyPP6in/PoLhWhoTJ7oAbcix46LRqC22bq091ytt\nVuoH0awLc8IE9xnyyAx/d3HWK3p7e93TSTduHPy7d09B49+T6pF1TfjzkjXQh4jGxo2uL4VYGl40\n6s+Jb7vOzuLv0/BPkU1zn+VdPZUlGhs2uDQh5SvaPeWfxxXq4vW0jWjMmBE+I04TDX+Ci5gdhopG\n3NLIwueVFdzM8u97mhHT2LYt+ZzksTT228+lT3ObxNOPHZssCH4wgDDRyHIBzJkD990X9nC+kEGt\nv9+1/+67N34Pgh8wIPud1PF6ZF0T3gKbNCk93xDR8ANkiKUxYULj+yV6euDSS+ENb3DlClm0Erp6\nyp/DCROS+3te91TatQO1czJpUvYy7XhfadSn4qKRZT36SejkyfmtjbYRjZkzG5/sTZsGD8ZpouE7\nTUgQtr/f/SVZGn7dfWggHLIH+ZCbsbzvPsQk3rTJzW6LjmkkPRgwj2iMHeteShPyKAR/oSRZGqGi\n4QehrHO3ZYtr2xBLI2RQ8wPCrrs2vnEw7p4KvVEw5DEiW7e6QTRrUAsRjZdfdjGJENFIin3ELaqJ\nE7MFMs/qqbyWRoh7Km35LrhzMmWKGyOy6uLbLKkPb9uWLXowcDwZiouqLUTjK19xA18j0fCztoMP\nhl/+0n1PEw1vrmfFPQBeeMFd5EmumG3bXGdphnsqbXWKH4BCZl/d3TBrVvGWRtLjOkLdU/39buCe\nMiVMNPxgk1TnNWtq5ywkppFlaWzeHObGyJo91pc/6SFzcUsjxG3qXYQh7qkJE9IH6L4+ePJJJyxF\niIYX5gkTBqeLi2NWPvG8inZPhayy3LwZpk/Pdk9NnerOXVrMCGp1Typf3FJKu/695wJMNBI55xz3\n2egC8bO2F1+sPQgtzezt7HT7hHSa3/0OdtkleRDyQfIiA+F9fS5d1kUZepdsd7erg19ZUs9QAuFb\ntxZnaUyfHuae8hdUUlu8//2wYoX7XkRMw1saWff95LE0xo9Pfpx1fAYeIhpeDELcU97SSBKN//f/\n3Oeuu2a7p/JaGvWDX1wc87h0QiZIeUWjvz+9bTdudG7xEPdUHktjuKLhJ6FgopHIpEnus9Eg6YOG\na9a4hoN0QXjssVqaLH/q+98PDz2Ubk5OmhS+5DZENLZtc7PRtE4TeiH19LjfJ01KPiehj9WoL+Nw\nRcNbGnPmwBNPpKfdvj375s1DYm+oD3FPhVgakya5tli/PjldaFt4Udh5Z7jjjsF9Jj4Dnz49OR+P\nj1VkTRy8RZI20Pt+EeKe8jGNrP6ZtMpqKO6p0AeRhgy6XjREXF3SFh1s3OjaK8Q9FWJp+LZIcj/5\n8med37h7aigvYmoL0fA0MlHjJ9dfbEkDpB+wH3nENc6jjyYfy6f9zW/cxZwkGlmBMhjYyFls3Ogs\ng56e5AvYDzBZA1V3txv0RNwA3Wjw80tGi4pphLqnsnz89WX0N74l1fmQQ+DrX3ffh2tpLF5cm6FP\nn55+U1xeS+Od73QTnOefH/x7Rwdce21tUE3Dly9PTCNpgJ4+HU45JXsZcp6YRpJoxMWxaEvDC0KI\naED2LH3DBmdphLinQiwN3xZFuKfM0ghkxx0Hq7nvdCef7BoYkkXDz84OPtjdDHj11Y1n/qrwt3/r\nvr/1remWxuzZzr1SxMtroLascYcdkjtOln/fs369iwUBHHoo3H//4DQ9PUMTjaSYRug9MP6RCVmD\nsk/rB9KktvDnDZJFHsLa4uKL3aeIK1+IpRGypLWjwx17jz0GxzV8m2atcvLE3VPDFY2NG91CkzFj\n0i1hP0BOnZp+TooOhIeunnr5ZTdJmjgxedafRzTWr0+PB8LA1VNpdVEd6BpLEo0s9xrULJaQOjSi\nrURj+nRYu3bgtq1bXWf/xjdq25JEY+3amjXi82k0YC1b5vy8732v+7/RSitV18hTp7qB+emnk8vt\nZwYhcZRNm9zgl9Zx/Gwt66JbvdqZ1+DiPY1McS8aWY/ViJO25NbfA+PP1yOPNM7X+5932il9APJl\n9ANN0uCxaVPNPZk0g+3vrz1GJG0QiotJlqht3OiOm+XqiA+WjV6es3VrTTSy3BxQC9SHxjTSRM0L\nboilMWWKE73ly5PTpbmn8gbC8y76mDo1/UbGuGhkLVdduxZ22y3sPo1GE9o4PlaZ9hiWUEvDu07B\nRCOTRs/P+dCHXEc/8MDatqQLb+VKeNWr3PfLLnOdZuXKgWm6u+H3v3ff/XNyGs1u77mn5uaYOxdu\nvTW53KGisWULLFqUfQOVn91mzYKfeqr2+PSkzuVnNyLhcY20lx1t3erOsQ9uv+51yRZOR0eYWZ/X\n0kiqq7/YRNKXNcYH4Z/9DM48MzntSy85d2LWAPTd79bO18yZg/vdihXuvIWcj23b4N57neCGuKey\n7tPYsMGVPy2vVauc227qVDf7fvzxxpOBvr7airxGE4K8gfB161w/zxqUwbn9pk1LF/B6SyNN6Neu\ndffV5IlpJE284jefFiEaPq+smFsj2ko0pk93QdNf/9r9733hhx8+MN3ee7tOXc+KFbWXluy8Mxx1\n1GDf8m67uZebQG0QrR+oXnzR7esHgb33HjwIePbc05Vz3Lhs0bj8cvjmN2vvjmjUcbyZG+Jv/9Of\nYN993fekQS0efAt9h8QLL7h6JYnG7ru7CyjtgvSWRog7ZssWlxaS76/JIxqQ7CJ4+eWBN99dcon7\nbGRJ3n47LFzo+tKUKcltsX27s1yXLXP/H3hg7bvnmWdcP5o8OXsJ8mc/647lb3hNmoFv3+4sghD3\n1JQp6TP0m25yn9Onu+O+/DLceOPgdPE42i67DH4ke3zQDnFPrVnj8vEuzzRr4+Mfd5O3yZOT+95j\njw2cSDVayQbu3IW4p5591qXx1lBSfVaurLmKswLheSyNEPduPW0nGuBmbeCCqAA/+MHAdMcd52ZF\n9bznPQOXd+6++2DRiDeWv2mw3kf+7LMD90masWzc6C7aP/7RdYYs0fAus6efTh7E16+vBfvSOoyq\nOy/HH18rY5poJC0Free3v4XbboPXvrZxx/Yzqp12qg2MjeoRammougHVt31SvCLunkqqazxN0oV7\nzjnOpfaRj7j/Tz8d3v722nLeOD/6kfvcZRc3ifjf/21ch/olxZMmDT53XjRmz3bHSnMV/ulP7nPm\nzMZ5eb76VddeWZarF9y0e2a8D33ffWsPHWx0XC8aAPvv7yzyOGvX1mKPu+/urOG0unrR8Kudslwx\nn/hE8gSpu9tdj4ce6v7fZx93/EZ0d7t8kl6a5XnwQTjiCPd9xozB7nPP44+7u+AhecLiJ0d5LI2s\npxc3oq1Ew5u1u+8+cPusWQP/P/zwwb70Y45xn342Cs4dELcQkl5UU9/I69e7ALkfZJM6abxDTpuW\n3Rn8aq5t29z3RjO5lStr9d9pp8YdprfXLetUhbe9zW1LErZt29xAPG1atmhs3w4nnui+H3mkm5HH\nz3FfX+0O86lTYcECt73+uN6/O3ZstqXx1a+6tvMzzKSbMl9+eaCl0Wjwq7c0kvIBZ3F6ktyAvh1m\nzHADUSPrFmqWi++/9cfets0Nrnvv7dphzJj0gcCLk/ffJw2kDz/sPt/4xmz31JQpjWMtns2b4aST\n3GA1Zgy8+92NYylr1tTiaIcd5m4a9Dz2mDsXfgIwZ47rL14EG+Hdf5AuGv/0T+7zk59MtjReeMG1\nmV95tNdeybGZJ55w40PafTqbNrk/P3lNm8S9+GJNTJPGgQ0bwsaJuPCmCVUSbSUa4GIR9TO3etHY\nbTc3wL34ovtftRZziD92ut7SeOgh9/nXfz0wv112GXjMl15yx/AzrqSLLX7BTJuWviIK3EX+7nfD\nF7/o/vcXgueXv3QxAk+jhQHg3sH85je7mahn0iR3s2I9fsXJrFmDra56xo51g+ehh7oZe0fHQKGJ\nxwymTYMlS9z2+iW1L71U6/TTpqV3ej9IPPKI+5w5c6D7qK/P7f/887VBvNHa9Z12cu0av5enUVv4\nwSY+qI8f75bCelSdi7S3180ed90VDjrI9Z9Gs+ZVq1yZ/NNr6weFRYvcp+/H++xTu58ozvLlLt72\n8svOAoLGA+T998PXvgbXXQef+Yzrv5MmJbts1q937bDnnq7PNqrDunU1V6cva6NJxtNPu/KDs5qW\nLq25eQ8+2OXtZ8kirk7vf3/jcsFAEUqzhL72Nfe5ww7JE6TVq2sCBC7fpBtLf/YzdyNw2pMjnnrK\n1dV7JNJE42Mfq4ljozvloRbIT1v9BW5c80LVdqIhIseLyOMi8oSIfC5kn/e+F/77v+HHP65t852w\nlq9zn/iBZvlyN8ivX+86lGf33d3MXQRuvrnWuS+7bGB+s2YNtBrigx64i63eZQVuH3+hTZ3qZjYL\nFsB55w1Mt2aNc3U8+aT7/cwzXf3+8i8HpvODvh8Qk1ax+EH69a+vbXviicHuk23b4IEHXF1e97qa\naDYifnH5hQL+/HlWrar5bVevdoPXEUcMzvf552sz+b33hueea3wRPflkzS30mc+4z333defVz3K/\n+EV38a9bVxt0G81Iu7tdXbNWzviL/tvfrm078kj4yU/cMbu7XZmOO84NVJ/9rOs/c+a43+utDVX4\n1a9cv/2zP3Pb6kXj6afh0592M3iAt7zF/dUP3n/1V/CmN7nvl15aq2v94P3Vr9YmHP/4j+7zgAPc\npCSepyp87nNu0Jk2zQ3yO+ww2GWzerWzeuM3HSatevMDKbjYTV/fwMlIo/fa33vv4G3gyvXii9mW\nxj/8g/v88z93n43a9g9/gJ//3PU3T5Jo3H47XHihc+36R6vUP2Ty29+G004bWJ9Gk7gtW2pi4ds3\naaB/+mn32047pVv9q1fXJoQ775z9Kt96WlY0RGQM8G/AXOC1wOkicmBS+q5omjZtmuskH/iA2540\nUzj0UPje99z3Rx5xIuLNw3gab3k89pjL673vrS0J9LzjHc536Rs/bh4CvOY1znd8/PEDG/upp5y5\n3NPjXDYbN7o6fPObA/P/0Y/cKrA99qi5T/bYwwVZ4zOX1avd/Sg/+Yn7/9WvbmzaP/II/Od/usC6\n57zzasFkz9FH16ymt7wFfvrTwXlt2gR/8zdw9tnwrnfBr37V9Yp/e/LkmjXxwANu4PQitmiRiyGd\ne647d3Gee642wE+a5AT1wAMHXugrVrj6XXONCyL7QXz2bPf9oIPc/17AZs2quR122WXwRe7F+ze/\ncX3Ji8/KlQPdNi+84D5vuKG27dxz3fF+/3vX1n7ghlrMSMSdnwUL4KqranU44AD41recO9NT7556\n8MHazBFqg3NcuKA2CQInfl1dXey3n4uZxYlbuH6Wvscerg8+91zttz/+ES66yLnG/CN4DjpocJB+\n113hlltcHp4kd2Z8oiTi2vDxx2sLCX7724Hpv//9rgEWjOfFF13Z778/3dK4+mr4539236+7zn3O\nmuXaMb4a8IgjXDvE9/eice65tfL19NTGliOOcGPByScP7A8AX/6ya49dd62NTbvtNnhBzLve5foM\n1Npzr70GTzIffdSJ2gknuOtq8+bBK9m6u107/OEPtf5SP4kKoWVFAzgKWKaqz6hqL7AAOCkpsW8Y\ncLMAT3zwjnPkka6hFy6EL3yhNgOOE1+m+8QTbsZzwAG1bT5gtuOOLhj6f/+vCwLffHNtFRbUlvEu\nXuyOc+KJbib50EOuUb0I/f73XfzsZy5NT09ttuFdET//eS3PN7zBDaYXXlgbAJ95xpm5b3lLrfw3\n3+xMaU9Pj7Mojj9+oPjtvLO7iDZscJ2vv98N9J/+tCv/Kae4watehO++G/7rv5xQnX8+3Hln1yu/\ndXTULAAfj5kzx30ecoizCI88Eu66qzazvu02d37irrKFC91FFF/QcPPNte/xR4T4875smRuU/Bsb\n/+ZvamnqraZf/MJdWH7frq4utmxxQe/Zs2uzelV3rh9+uBa78Zx4onNJrVnjxMD3Jz+ggZt1XnKJ\nW32n6gZZPwB3dtbSTZniJgB+Rv+rXzl3oufYY93n3/+9E9+lS93/e+8Nf/d3bvDz9dhvP1dmfx7A\n/X/jjQPPIbj+dNtttf+9uL3jHTVB2GcfN4B6UfOWSUcHnHpqbd+ZMwdOWFRdP/yP/xh4bfzFX7hB\neO5c93/cPQTwwgtddHfX4i9+4hDvHz6/Qw4Z7GL1Y8E3v1m7DqdMce3jJzB9fbV28oIAbtvq1fAv\n/+ImJwAf/KAT1o9/vJbfYYcNFOyXX3bX0Pvf7yw5PzYdcECtrcAd37vFb73VLZYAJxpx8e7pcZPa\nzZvdeDFmjBNlXybPRRfV+oZ3xU6a5OobtzZUBwv/AFS1Jf+A/wP8Z+z/vwa+1yCdqqrOmzdP4zz1\nlLvM49x6662vfN+0SfWMM/xQoHrttY3TPfSQ6kUX1dLdfrvb3t+vessttXRPPllLA6q/+93A/Hp6\nVM8/f2AaUL3//lo6X4fp02u/P/ec6tFHq9522+DyXXllLd0jj6hOnar67LMD01x1lft9991VOzvd\n94kTG9e1o6OW38EHq06ePDDdm9/sfpszR/VVr1L9+tfd/52dqn/608A6qKr29amOHat62WWq55yj\n+oUvND7u296m+slPql53nercuS7PeD36+lT33Vf1oINUjz3WnTNQ/djHVN/+9oH5PfHE4HPc3z8w\nzebNbvuUKao77VRL19Xl2nrevHm6dOnAPC67TPXv/m5gn4rX4fLLB6b/6EdV164dmO7nPx9cNlDt\n6RmY7oUXBqfZvn3gcS+9dODvBx7o6uLzireFT9PRoXrkkY3PSTzdRz6i2tur+pa3qO64o+pdd9XS\nfeUrtXTXX6/63e+6fH35fLpnnnFpPv95105+n09+0h3bp3v44dpvP/2pDmLevHn65S+7tjrsMJfu\nmGNcfb/4RdWvfa123Pvuc79/8IOq3/iGK9vUqY3re8QRg8/x5s0Dz/G2bbXfZs5U/fCH3feTTlJd\nt66W10031dIdd5zq6ae771u3DmyHRYvc9q9+1Y0rn/qUq1N9f9qyxaV74xtV3/1u1bPOcmPCjTfW\n0n3pS+7a6upSvece1y6ve53qoYeqfuITA/ObOVP1vPNcmjVrXBvsvrtqNHYOHnsbbWyFv7yi8XY/\neqqDJgkAAAgKSURBVKQwf/78Af9v3OjO0NSpAy/K+nRPPaV6wgluAE/L7/nnXSf2wtIo3dq1rlFB\n9Vvfchenx9fB/z5mjPucMcOVtVF+q1apvu99Lt3rX1+rh0/T3+8GsA98wHXS/fd3Ha1RXv/zP6pv\nepMbKA47zAlOPN0DDzgBq7/YbrhhcB08P/6x6/BTp6r+8Y+Njxu/6OqF1Kd77jlXv3i6Rvn196su\nXFgbeM85p/ExP/Yxd4H5vK65ZnAdtm9XvfRS1dNOq6U76aTG+W3aVBuQwfWZ+nTbt6v+0z8NPO5D\nDzXO79xzB9Y1jk936aWuzfzk59vfHpjO1+O731WdNKmW1z77ND7mb35TE23/t27dwHT1kyNwfaJR\nfvPnD0w3YcLg/qmq+tJLqrfcog3xdfjCFwbmNWNGrWzx/M4/X/XVr66l+8d/bHxtf+c7A/P7/e8H\nHtenO/54dyyf7i/+oibMPs2GDbXJx5w5qgccMHCS5+uwZYu7vl77WjeQg+ovf9n43F15pbteG11j\n8+fP161bB5b/bW9z1+zzzw/O78wzXRoRN2GcM0d1/fpk0RB1A2vLISJvAs5X1eOj/z+Pq+SFdela\ns4KGYRglo6qD3hfayqIxFlgKHAs8D9wFnK6qDRYbGoZhGEUwruwCDBVV7ReRTwBLcAH9S00wDMMw\nmkvLWhqGYRjGyNOyS25F5FIRWSUiD8a2HSoi/ysiD4jIDSIyOdo+TkQuF5EHReSRKP7h97k1ukHw\nPhG5V0R2aXS8CtRhvIhcFtXhPhF5e2yfw6PtT4jIxSNV/oLrUGY77CEit0R94yER+VS0fbqILBGR\npSKyWESmxfY5T0SWichjIvLO2PYy26LIepTSHnnrICIzovQbROR7dXmV0hYF16G06yKRRtHxVvgD\n3gIcBjwY23YX8Jbo+4eBL0ffTweuib5PBJ4C9or+vxV4QwvU4SycCw5gJnBPbJ/fA0dG3xcBc1uw\nDmW2w27AYdH3ybhY2YHAhcA/RNs/B3wz+n4wcB/OvbsP8EdqVnuZbVFkPUppjyHUYRLw58DHqFs9\nWVZbFFyH0q6LpL+WtTRU9Xag/kkt+0fbAX6NW5YLoMCO4oLnk4BtQPze0FLOQ2Adolc5cTBwS7Tf\namC9iBwhIrsBU1T17ijdlcDJzS15jSLqENuvrHZ4QVXvj75vBB4D9sDdLHpFlOwKauf1RGCBqvap\n6tPAMuCoCrRFIfWIZTni7ZG3Dqq6WVX/F3dNv0KZbVFUHWJUapyuVGEK4BER8ffinoprKIDrgc24\nVVZPA/+iqvEn31wemX51j/grhfo6RA9o4AHgRBEZKyL7Am+MfpsNxJ8gtTzaViZ56+ApvR1EZB+c\n5XQnMEtVV4EbCAD/sI7ZQOyeXFZE2yrTFsOsh6fU9gisQxKVaIth1sFT+nURZ7SJxkeBs0XkbmBH\nwD+U+GigD2c27gf8fdSYAB9Q1UOAtwJvFZG6Z9SOOEl1uAx3Ud8NfBv4HZDjiTEjylDqUHo7RLGX\n64FPRzPE+lUiLbFqpKB6lNoeo6EtRkM7NGJUiYaqPqGqc1X1SNyzqPzTbU4HblLV7ZFb5HfAEdE+\nz0efm4BrGGiejzhJdVDVflU9R1UPV9X3ANOBJ3CDcHy2vke0rTSGUIfS20FExuEu8KtU1T9ebpWI\nzIp+3w2IHpafeM5Lb4uC6lFqe+SsQxKltkVBdSj9umhEq4uGRH/uH5GZ0ecY4J+A6GWbPAscE/22\nI/Am4PHITbJztH088FfAwyNW+qjYpNfh36P/J4rIpOj7cUCvqj4embndInKUiAhwBlD3TM1q16Ei\n7XAZ8Kiqfje2bSEukA8wj9p5XQicJiIdkZvtNcBdFWmLYdejAu2Rpw5xXumDFWiLYdehAu3QmLIj\n8UP9w6nuSlzw6FngI8CncCsVHge+Hku7I3At7oQ/DJyjtVUL9wD3Aw8B3yFaPVLBOuwdbXsEd0Pj\nnrHf3hiVfxnw3Qq3Q8M6VKAd3oxzk92PW010L3A8MAMXyF8alXen2D7n4VYbPQa8syJtUUg9ymyP\nIdbhKWANbnHLs8CBZbZFUXUo+7pI+rOb+wzDMIxgWt09ZRiGYYwgJhqGYRhGMCYahmEYRjAmGoZh\nGEYwJhqGYRhGMCYahmEYRjAmGoZRIiLyt3keDSEie4vIQ80sk2Gk0bJv7jOMVkdExqrqfwxhV7u5\nyigNEw3DGAYisjdwE/AH4HDcEwfOwD0G/tu4pxGsAT6sqqtE5FbcHb5vBn4sIlOBDar6bRE5DPfo\nm4m453V9VFW7ReSNwKU4sbh5RCtoGHWYe8owhs8BwL+p6sG4x0B8AvhX4P+oe2jjD4Gvx9KPV9Wj\nVPU7dflcAZyrqofhxGd+tP0y4GxVfUMzK2EYIZilYRjD51lVvTP6fjXwBeC1wM3Rw/LG4J7P5flJ\nfQaRxTFNay+vugK4Nnol6DRV/V20/Srcc4wMoxRMNAyjeDYAj6jqmxN+35SwXXJuN4wRx9xThjF8\n9hKRo6PvHwDuAGaKyJvAvVtBRA5Oy0BVXwbWiogXmg8Bt6lqN7BORP482v7B4otvGOGYpWEYw2cp\n7k2FP8Q99v1fgcXAv0bupbHAxcCjpK98+jDw7yIyEXgS95h5cG9CvExEtuMeqW0YpWGPRjeMYRCt\nnvqluldyGsaox9xThjF8bOZltA1maRiGYRjBmKVhGIZhBGOiYRiGYQRjomEYhmEEY6JhGIZhBGOi\nYRiGYQRjomEYhmEE8/8B7bUFBeO7tZIAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEbCAYAAAAxukhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWd//H3NytJSGLCEsjGmiDIomEIyDIWa0BHYJ4Z\nEIVJkDjjCI7jjDMj0ZEk8hsQfBQUBVFRAoYlMirIliamWwfZErYAwWwkkHQWQpLuLGTv7++Pc4tU\nurq6blXXXp/X8+RJ9alzb5+6XVXf+z3n3HPN3REREUnVrdwNEBGRyqPgICIiaRQcREQkjYKDiIik\nUXAQEZE0Cg4iIpImVnAws4Fm9msze9PM3jCzk81skJk1mNkCM5tpZgNT6k8ys0VR/fNSyseY2Twz\nW2hmt6aU9zKzB6JtnjWzkSnPTYjqLzCz8YV64SIiklnczOEHwOPufjRwAvAX4FpglrsfBcwGJgGY\n2THApcDRwAXA7WZm0X7uACa6+2hgtJmNi8onAuvdfRRwK3BztK9BwHXAScDJwOTUICQiIsWRNTiY\n2QDgDHf/JYC773L3VuAiYFpUbRpwcfT4QuCBqN4yYBEw1swOAvq7+5yo3j0p26Tu6yHgrOjxOKDB\n3VvdvQVoAM7P65WKiEhscTKHw4D3zOyXZvaSmf3UzPoCQ9x9DYC7rwYOjOoPA5anbN8clQ0DVqSU\nr4jK9trG3XcDrWY2uJN9iYhIEcUJDj2AMcCP3X0MsIXQpdR+3Y1CrsNh2auIiEix9IhRZwWw3N3n\nRj//LyE4rDGzIe6+Juoyejd6vhkYkbL98KgsU3nqNivNrDswwN3Xm1kzkGi3TWP7BpqZFogSEcmD\nu3d4Mp41c4i6jpab2eio6GzgDeAR4MqobALwcPT4EeCyaAbSYcCRwAtR11OrmY2NBqjHt9tmQvT4\nEsIAN8BM4NxottQg4NyorKN2MnnyZNy9w3/5PleubYux32z7rLQ2daW9xXqtxWpTufZbSe/PYu63\nGG2qtvdYR3U6EydzAPgKMN3MegJvAZ8HugMzzOwq4G3CDCXcfb6ZzQDmAzuBq31PK64B7gb2Icx+\nejIqvwu418wWAeuAy6J9bTCz64G5hG6rqR4GpnOWSCTyeq5c2xZjv9n2GbdOPtvm06autLerr7UY\n++3Ksc13v9X0/izmfrMpx+epXO+x2McpW5Sphn/hZbhPnjzZpXh0fItHx7b4dIzTRd+dHX6v1tQV\n0l09M5PO6fgWj45t8ekY58Y8S79TNTAzr4XXISJSSmaG5zsgLSIi9UfBQURE0ig4iIhIGgUHERFJ\no+AgIiJpFBxERCSNgoOIiKRRcBARkTQKDiIikkbBQURE0ig4iIhIGgUHERFJo+AgIiJpFBxERCSN\ngoOIiKRRcBARkTQKDiIikkbBQURE0tRVcJg0CbZvL3crREQqX93cQ7qtDXr0gIYGOOecEjVMRKSC\n6R7SwKZN4A6PP17uloiIVL66CQ4tLdCtGzz2WLlbIiJS+eomOLS2wtFHw8aNsHhxuVsjIlLZ6io4\nfOhD8MlPwhNPlLs1IiKVrW6CQ0tLCA7jxsGsWeVujYhIZaub4NDaCgMHwsEHw7p15W6NiEhlixUc\nzGyZmb1qZi+b2QtR2SAzazCzBWY208wGptSfZGaLzOxNMzsvpXyMmc0zs4VmdmtKeS8zeyDa5lkz\nG5ny3ISo/gIzG5/vC012K/XrB1u25LsXEZH6EDdzaAMS7v4xdx8blV0LzHL3o4DZwCQAMzsGuBQ4\nGrgAuN3MkvNo7wAmuvtoYLSZjYvKJwLr3X0UcCtwc7SvQcB1wEnAycDk1CCUi5aWkDn07Qvvv5/P\nHkRE6kfc4GAd1L0ImBY9ngZcHD2+EHjA3Xe5+zJgETDWzA4C+rv7nKjePSnbpO7rIeCs6PE4oMHd\nW929BWgAzo/Z5r0ku5WUOYiIZBc3ODjwlJnNMbMvRGVD3H0NgLuvBg6MyocBy1O2bY7KhgErUspX\nRGV7bePuu4FWMxvcyb5ylhyQVnAQEcmuR8x6p7n7KjM7AGgwswWEgJGqkOtwdHg5d1cocxARiS9W\ncHD3VdH/a83sd8BYYI2ZDXH3NVGX0btR9WZgRMrmw6OyTOWp26w0s+7AAHdfb2bNQKLdNo0dtXHK\nlCkfPE4kEiQSib2eTwaHXr1g927YuRN69ozz6kVEakNTUxNNTU2x6mZdeM/M+gLd3H2zmfUj9PtP\nBc4mDCLfZGZfBwa5+7XRgPR0wgDyMOApYJS7u5k9B3wFmAM8BvzQ3Z80s6uBY939ajO7DLjY3S+L\nBqTnAmMIXWBzgROj8YfUNmZdeO+UU+CWW+DjH4cBA2D58hAsRETqVWcL78XJHIYAvzUzj+pPd/cG\nM5sLzDCzq4C3CTOUcPf5ZjYDmA/sBK5O+ea+Brgb2Ad43N2fjMrvAu41s0XAOuCyaF8bzOx6QlBw\nYGr7wBBXMnOAPV1LCg4iIh2rmyW7hw6FOXNg2DA48siwhMaoUSVqoIhIBdKS3eyZrQS61kFEJJu6\nCA47d4Z/ffuGnzVjSUSkc3URHFpbwyB08jptBQcRkc7VRXBI7VICBQcRkWzqIjikzlQCjTmIiGRT\nl8FBmYOISOfqIjioW0lEJDd1ERyUOYiI5KYugkPyXg5JGnMQEelcXQSH5F3gkpQ5iIh0rm6Cg7qV\nRETiq4vg0L5bScFBRKRzdREc3n9/z9IZoDEHEZFs6iI4bN8OvXvv+VmZg4hI5xQcREQkjYKDiIik\nqcvgoDEHEZHO1WVwUOYgItI5BQcREUlTl8Ghb98QHGrg9tkiIkVRl8GhV69wV7idO8vXJhGRSlaX\nwQHUtSQi0hkFBxERSVO3wSE57iAiIunqNjj066drHUREMqn54LB7d5iV1KPH3uXqVhIRyazmg0My\nazDbu1zBQUQks7oJDu1pzEFEJLO6DQ4acxARySx2cDCzbmb2kpk9Ev08yMwazGyBmc00s4EpdSeZ\n2SIze9PMzkspH2Nm88xsoZndmlLey8weiLZ51sxGpjw3Iaq/wMzG5/oCOwsOyhxERDqWS+bwr8D8\nlJ+vBWa5+1HAbGASgJkdA1wKHA1cANxu9kGP/x3ARHcfDYw2s3FR+URgvbuPAm4Fbo72NQi4DjgJ\nOBmYnBqE4sgUHHr3Ds+JiEi6WMHBzIYDnwR+nlJ8ETAtejwNuDh6fCHwgLvvcvdlwCJgrJkdBPR3\n9zlRvXtStknd10PAWdHjcUCDu7e6ewvQAJwf/+UpOIiI5CNu5nAL8J9A6lJ1Q9x9DYC7rwYOjMqH\nActT6jVHZcOAFSnlK6KyvbZx991Aq5kN7mRfsSk4iIjkrke2Cmb2KWCNu79iZolOqhZyjVPLXmVv\nU6ZM+eBxIpEgkUgACg4iIklNTU00NTXFqps1OACnARea2SeBPkB/M7sXWG1mQ9x9TdRl9G5UvxkY\nkbL98KgsU3nqNivNrDswwN3Xm1kzkGi3TWNHjUwNDqk6Cw6bN2d4xSIiNSj1xBlg6tSpGetm7VZy\n92+4+0h3Pxy4DJjt7v8A/B64Mqo2AXg4evwIcFk0A+kw4EjghajrqdXMxkYD1OPbbTMhenwJYYAb\nYCZwrpkNjAanz43KYssUHHr1gh07ctmTiEj9iJM5ZPIdYIaZXQW8TZihhLvPN7MZhJlNO4Gr3T+4\nrc41wN3APsDj7v5kVH4XcK+ZLQLWEYIQ7r7BzK4H5hK6raZGA9OxqVtJRCR3OQUHd/8j8Mfo8Xrg\nnAz1bgRu7KD8ReC4Dsq3EwWXDp67mxBQ8qLgICKSu7q9QlrBQUQks7oNDhpzEBHJrG6DgzIHEZHM\nFBxERCSNgoOIiKSp6+CgMQcRkY7VbXDo1UuZg4hIJnUbHNStJCKSmYKDiIikqevgoDEHEZGO1W1w\n0JiDiEhmdRsc1K0kIpKZgoOIiKSp6+CgMQcRkY7VbXDo0QPcYffu0rdJRKTS1W1wAA1Ki4hkUtfB\nQeMOIiIdq/vgoHEHEZF0dR8clDmIiKSr6+CgMQcRkY7VdXBQ5iAi0rG6Dw4acxARSVf3wUGZg4hI\nupoODu4hM9CYg4hIbmo6OOzcCd27Q7cMr1KZg4hIx2o6OHTWpQQKDiIimdR9cNCAtIhIuroPDsoc\nRETSZQ0OZtbbzJ43s5fN7DUzmxyVDzKzBjNbYGYzzWxgyjaTzGyRmb1pZuellI8xs3lmttDMbk0p\n72VmD0TbPGtmI1OemxDVX2Bm43N5cdmCgwakRUQ6ljU4uPt24Ex3/xjwUeACMxsLXAvMcvejgNnA\nJAAzOwa4FDgauAC43cws2t0dwER3Hw2MNrNxUflEYL27jwJuBW6O9jUIuA44CTgZmJwahLJR5iAi\nkp9Y3Uru/n70sDfQA3DgImBaVD4NuDh6fCHwgLvvcvdlwCJgrJkdBPR39zlRvXtStknd10PAWdHj\ncUCDu7e6ewvQAJwf98VpzKHyLFwITzxR7laISDaxgoOZdTOzl4HVwFPRF/wQd18D4O6rgQOj6sOA\n5SmbN0dlw4AVKeUrorK9tnH33UCrmQ3uZF+xKHOoPI89BrfdVu5WiEg2cTOHtqhbaTghC/gIIXvY\nq1oB22XZq2SnMYfKs2IFLF5c7lZIPfn5z2HXrnK3ovr0yKWyu280syZC184aMxvi7muiLqN3o2rN\nwIiUzYZHZZnKU7dZaWbdgQHuvt7MmoFEu20aO2rblClTPnicSCRIJBLKHCpQczMsXRo+rD1yeveJ\n5OerX4Wzz4bDDit3S8qvqamJpqamWHWzfjzNbH9gp7u3mlkf4FzgO8AjwJXATcAE4OFok0eA6WZ2\nC6EL6EjgBXd3M2uNBrPnAOOBH6ZsMwF4HriEMMANMBP4n2gQulv0u6/tqJ2pwSEpTnDYtCnbEZBC\nam4OgWH5cn1Ypfh27oQtW2D9er3fYM+Jc9LUqVMz1o1z7nYwMM3MuhG+oB9098fN7DlghpldBbxN\nmKGEu883sxnAfGAncLW7J7ucrgHuBvYBHnf3J6Pyu4B7zWwRsA64LNrXBjO7HphL6LaaGg1Mx6LM\nofI0N8OIEaFrSR9WKbaW6Nti/frytqMaZQ0O7v4aMKaD8vXAORm2uRG4sYPyF4HjOijfThRcOnju\nbkJAydm2bbDPPpmfV3AoLXdYuRIuuSQEh3PPLXeLpNZt2BD+V3DIXU1fIb1tG/Tpk/l5DUiX1rp1\n0LcvHHccLFlS7tZIPUhmDuvWlbcd1aimg8PWrdkzB13nUDrNzTB8OBxxhGYsSWkoc8hfTQeHbJmD\nupVKq7kZhg2DI49UcJDSUHDIX00HhziZg4JD6axYEYLDEUfAW29BW1u5WyS1rqUlfM4VHHJX08Eh\n24C0xhxKK5k57LsvDBwIq1aVu0VS6zZsCLPiFBxyV/PBIVu3ksYcSicZHEBdS1IaLS0hU9WAdO5q\nOjioW6mypAaHIUNg7drytkdq34YNITgoc8hdTQcHXedQWVKDQ79+sHlzedtTyf70J7jjjnK3ovop\nOOSvple32bpVs5UqSWpw2HffsKyBpGtpgcsvD8Hziiugf/9yt6h6tbTA4YeH4OAOVpAlPetDXWcO\nvXppzKFUtm4NwWD//cPPyhwy++pX4dOfDovF/epX5W5NdduwIXRh9u6t91uuaj44KHOoDEuXwiGH\n7DlzU+bQsR/9CJ57Dm6+Ga6+Gn7843DGK/nZsAEGDYL99tOgdK5qOjhoQLpyLF4Mo0bt+blfPwWH\n9n77W7jxxnCnvH33hTPPDNeCPPNMuVtWvVpa4EMfgsGDNe6Qq5oODhqQrhyLFoXpq0nqVkr33e/C\nz362Z7VaMzj5ZFiwoLztqlZtbdDaquCQr5oPDtkW3tOYQ2ksXrx3cFC3UrqFC+HEE/cuGzxY3SH5\n2rQpfP579FBwyEdNBwd1K1WOjrqVlDnssX59OFE58MC9y/fbT19q+WppCeMNoDGHfNR0cMjWrdS9\ne0jddX/Z4uuoW0mZwx6LFoXg2X6qpTKH/CUHo0GZQz5qOjhku84BlD2UwvbtsHp1mK2UpG6lvSWD\nQ3vKHPKXHIwGBYd81HRwyJY5gBbfK4WlS2HkyND3m6Rupb0tWgSjR6eX60stf8ocuqbmg0O2zKFP\nn1BPiqf9YDQoc2ivs8xB3Ur52bBhT+agDCx3NRscdu8OYwk9e3ZeT19Sxdd+vAGUObSXKTjojDd/\nqQPSgwfDe++Vtz3VpmaDQ7JLKdtaKvvuG6a8SfG0n6kEGpBO5R6msWbqVlLmkJ/UzGH4cFi+vLzt\nqTY1GxziDEZDCA46gy2uxYvDypip+vaF99/X3eAgLF2enIvfXr9+IQveurX07ap2qZnD8OFhUsTO\nneVtUzWp2eAQZzAaFBxK4a230oND9+7h76MvvcxdShAyX3Ut5WfjRhgwIDzu2TMswNfcXN42VZOa\nDg7KHMpv9+6QzqdOY03SeE/QWXAADabma8uWkHklHXIIvP12+dpTbWo2OGS7OjpJwaG4Vq4MX24d\n/S00KB0sWxbuOZCJxh3ys3lz+HwnKTjkpmaDQ9xupf79NSBdTG+9tWchufY0KB0sW9ZxZpWkzCE/\nyhy6pqaDg7qVym/p0szBQcc+ePttOPTQzM8rc8iPMoeuqdngoG6lytBZcFDmEChzKI4tWxQcuiJr\ncDCz4WY228zeMLPXzOwrUfkgM2swswVmNtPMBqZsM8nMFpnZm2Z2Xkr5GDObZ2YLzezWlPJeZvZA\ntM2zZjYy5bkJUf0FZjY+7gvTbKXKsHRp5v50DUiHCzVXroQRIzLXUeaQn82b1a3UFXEyh13Av7v7\nR4CPA9eY2YeBa4FZ7n4UMBuYBGBmxwCXAkcDFwC3m31wKdodwER3Hw2MNrNxUflEYL27jwJuBW6O\n9jUIuA44CTgZmJwahDqj6xzKZ9cuaGwMj7ONOdT7sV+5Eg44IKzxlYmmsuanfbfSyJFh5pxuuxpP\n1uDg7qvd/ZXo8WbgTWA4cBEwLao2Dbg4enwh8IC773L3ZcAiYKyZHQT0d/c5Ub17UrZJ3ddDwFnR\n43FAg7u3unsL0ACcH+eF5ZI5aEC6sB5+GM45J3zxqVupc9m6lEDdSvlwTx+Q7tcvfN7ffbd87aom\nOY05mNmhwEeB54Ah7r4GQgABkrcpGQakXqjeHJUNA1aklK+Iyvbaxt13A61mNriTfWUVd0C6f3+d\nvRbanXfC0KHwi1+E9WyGZfiLKWvLPhgN6lbKx7Zt4cK31JWAQV1LuYgdHMxsX8JZ/b9GGUT75KyQ\nyVqWFZGy04B0eSxeDC+/DHfdBbfcEvrSu3fvuK4yB2UOxdJ+MDpJwSG+HtmrgJn1IASGe9394ah4\njZkNcfc1UZdRMllrBlKH14ZHZZnKU7dZaWbdgQHuvt7MmoFEu20aO2rjlClTPnicSCTYti2h4FAG\nP/sZTJgQupUGDMjcpQTh2Le0lK5tlejtt2Hs2M7rKHPIXfvB6KTDDgsnMPWqqamJpqamWHVjBQfg\nF8B8d/9BStkjwJXATcAE4OGU8ulmdguhC+hI4AV3dzNrNbOxwBxgPPDDlG0mAM8DlxAGuAFmAv8T\nDUJ3A84lDISnSQ0OEAZENSBdWu7w4IPw6KPQrRtceWVYVC6Tfv1gxYrMz9eDZcvgkks6r5PMHNyz\nrzIsQabM4aST4L77St+eSpFIJEgkEh/8PHXq1Ix1swYHMzsNuBx4zcxeJnQffYMQFGaY2VXA24QZ\nSrj7fDObAcwHdgJXu38wP+Aa4G5gH+Bxd38yKr8LuNfMFgHrgMuifW0ws+uBudHvnRoNTGe1bdue\nFRk7owHpwlmyJKx6+ZGPhJ+/+c3O78+tbqV4Yw59+oTAEHccTTJnDqedBl/+sgJtHFmDg7v/GcjQ\na8w5Gba5Ebixg/IXgeM6KN9OFFw6eO5uQkDJia5zKL0//AHOPnvPh65Hj/QBwVT1fuzb2sLUypEj\ns9dNXhOi4BBP+2msScOHh+XiM92WVfao6Suk43yQ+vYNdXfvLn6bat0f/hDGGuKq98xh7dowWy7O\n+7Tej1WuMnUrAZx6Kvz5z6VtTzWq2eAQN3Po1i188N5/v/htqmVtbTB7dsgc4qr3i+Deew/23z9e\n3XrPsnKVqVsJQteSgkN2NR0c4qbg+uB13auvhit9M13T0JF6Xz5j3bow2ByHMofcdJY5nHYaPPNM\nadtTjWo2OMS9zgE0KF0IjY1w1lnZ66Wq9y+8XIKDTmBy01nmcNxxYZbc88+Xtk3VpmaDQ9xuJdAH\nrxDmz4fjj89tm3o/7sociqezzKFHD/j5z+HCC+H660vbrmpSs8Eh7oA06EuqEPKZ/VHvX3jKHIqn\ns8wB4NJLw5X83/0u7NhRunZVk5oNDsocSmvhwtyDQ/K41+sqmQoOxZNpKmuqoUPDe/aFF0rTpmqj\n4IAW3+uqjRvDmM3Qoblt16tXmC22bVtx2lXp1K1UPJ11K6U666wwy07S1WxwyLVbSQPS+Vu0CEaN\nyu+K04EDobW18G2qBsociidbt1LSmWcqOGRSs8FB3Uqlk0+XUpKCQ7y6yhxyEzdzOP10mDs3nEzK\n3mo2OGhAunS6Ghw2bixse6qFMofiiZs59O8PJ5yg6x46UrPBQZlD6ShzyI8yh+KJmzlA6Fpq7PBG\nAPWtJoNDcgVLBYfSUHDInXtYhnvw4Hj19R7NTZzZSklnnAH/93/FbU81qsng0NoazrQy3YGsvf79\nNSCdL/cQHEaNym/7AQPqMzhs3Ai9e4d/cdT7UiO5itutBPDxj8OLL8L27cVtU7WpyeCwZg0cdFD8\n+jory9+774YpqXHPgNur18whly4l0CKFucqlW2nAADjqqDAwLXvUbHAYMiR+fQWH/K1alfv1Danq\nNTisX59bcNB7ND733DIHUNdSRxQcCB+8ep0x01UtLfHuuJdJvQaHfDIHdSvFs2NH6FLu2TP+NgoO\n6WoyOKxenVtwGDIkdI9I7lpa4EMfyn/7ep3KmmtwUOYQXy6D0Umnnx7u8XDbbXD55eH+JPWuJoND\nrmMOBx8MK1fW7xo/XdHaGr7g86XMIR4NSMe3ZUtuXUoQThBHjoSZM2HePHjkkeK0rZrUbHDIJXPo\n3z8s41uPX1Jd1dXMoV5nK2lAunjyyRwAXnkFHn00LON9/fU6WVRwiAwdGrIHyU0hupUUHLLr1Sus\nXaXlpbPLdTA6qVv0bXjhhbBzJzzxRGHbVW1qMjjkOuYACg75UnDIT67BAZQ9xJXLNNaOdOsGX/oS\nPPhg4dpUjWoyOChzKB0Fh/zkExw07hBPa2voruyKsWPDzYDqWc0FB3cFh1LSgHR+1q6F/ffPbRtl\nDvFs2JD/RZlJxx4LixfX771GoAaDw8aNYX5zrn2OCg756Wrm0Ldv6N+tt770fE5gNJ01nlzWrMqk\nd++wXthrrxWmTdWo5oJDPh86UHDIV1eDg1noAqinax3a2kLmcOCBuW2nbqV41q/v2oWZSR/7WH13\nLdVccMhnMBoUHPLV1eAA9de1tGFDyJjirhqcpG6leArRrQQwZgy89FLX91Otai445HoBXJKCQ35a\nWro25gD1FxzyzW6VOcSjzKEwsgYHM7vLzNaY2byUskFm1mBmC8xsppkNTHlukpktMrM3zey8lPIx\nZjbPzBaa2a0p5b3M7IFom2fNbGTKcxOi+gvMbHycF5TvB+/gg8MicvV+4Usu3EN3kIJDbvJ9jypz\niKcQYw4Q7hD3+uthTKwexckcfgmMa1d2LTDL3Y8CZgOTAMzsGOBS4GjgAuB2sw9uO38HMNHdRwOj\nzSy5z4nAencfBdwK3BztaxBwHXAScDIwOTUIZZLvB69Pn/DhW7cu923r1ebN4bj16NG1/Sg4xKPM\nIZ5CdSv17w8jRsCbb3Z9X9Uoa3Bw96eBDe2KLwKmRY+nARdHjy8EHnD3Xe6+DFgEjDWzg4D+7j4n\nqndPyjap+3oIOCt6PA5ocPdWd28BGoDzs7U33zEHUNdSrgox3gAKDnEpc4inUN1KAIkENDQUZl/V\nJt8xhwPdfQ2Au68GkvMuhgHLU+o1R2XDgBUp5Suisr22cffdQKuZDe5kX51atSq/MQcIwWHVqvy2\nrUeFCg71Nlsp33ExTWWNp1DdSgCf/jT8/veF2Ve1KdSAdCF76i17lczeegsOPzy/bZU55KYQg9Gg\nzCEudStlt3t3uOVvId6XAGedFRbkq8fu5nx7i9eY2RB3XxN1GSXvhtAMjEipNzwqy1Seus1KM+sO\nDHD39WbWDCTabdOYqUFTpkz54H7Gzc0Jjj8+kalqRiNGwNtv57xZ3Spkt9J773V9P9VC3UrF09oa\nxgri3j8+mz594MwzwyJ8V1xRmH2WU1NTE01NTbHqxg0Oxt5n9I8AVwI3AROAh1PKp5vZLYQuoCOB\nF9zdzazVzMYCc4DxwA9TtpkAPA9cQhjgBpgJ/E80CN0NOJcwEN6hKVOmsGIF3HknXHBBzFfVzlFH\nwWOP5bdtPSpkcFiypOv7qRbKHIqnkF1KScmupVoIDolEgkQi8cHPU6dOzVg3zlTW+4BnCDOM3jGz\nzwPfAc41swXA2dHPuPt8YAYwH3gcuNr9g8mh1wB3AQuBRe7+ZFR+F7C/mS0CvkoUANx9A3A9MJcQ\nOKZGA9MZLVkCRxyR7RVldtRR8Je/5L99vWltLVxwaOn0L1tb8g0OAweGmTiS2YYNhRuMTrrgApg1\nq/6muWfNHNz9cxmeOidD/RuBGzsofxE4roPy7YTprx3t627g7mxtTCpEcFi4MCxv0K3mLg8svEJl\nDvV0m1b38FrzCQ6HHgpLlxa8STWlGJnD0KFhmZd8/27Vqqa+ArsaHAYMCF92K1ZkryuFG5Cup4kA\nra3hxj19+uS+7WGHwTvvhEFX6VihrnFo7+ij6+96h5oKDl2ZqZR01FGwYEFh2lPrCpU5DB0Kzc31\nkbZ35TqcffYJy3w3N2evW68KeY1Dqg9/WMGhqnU1c4DwJtC4QzyFvM6hW7f6uNYh3/GGpMMPDydB\n0rFidCuBMoeqV4jgoMwhvkIFB6ifriUFh+JSt1Lh1ExwaGmB7dtzXyO/PWUO8RVqthIoOMSl4NC5\nYnUrKTiBNze3AAATbElEQVRUsWTWYF26vlqZQy5Wr4YDDijMvuolOCxfDiNHZq+XiYJD54rVrTRy\nZMhK6qHrM6lmgsP8+V3vUoLwJli3TleiZrNlS7iqecSI7HXjqJfgsHRpmJKaLwWHzhXjOgcIY2Kj\nR9fXiWPNBIcbb4QJE7q+n27d4JhjYN687HXr2eLF4YuqUMsUDBtWH7Nwli1TcCimYmUOUH9dSzUT\nHIYPhwsvLMy+TjkFnnuuMPuqVYsWhTOpQqmXzGHZsnC9Qr6GDAlZ26ZNBWtSTSl2cJg/vzj7rkQ1\nExxuvbXr4w1JH/84PPtsYfZVqxYuVHDI1ebN4Yu9K5MmzEJw0ZXS6XbvLm5wOOMMmDmzOPuuRDUT\nHI45pnD7UnDITsEhd8uWwSGHdP0k5vDD62uhwriWLAm3+83n6vM4zjgjzDarl9mMNRMcCumww2DH\nDi2j0ZliBIdav4d3V8cbko48UsGhI6+/DsceW7z9d+8Ol14KDz5YvN9RSRQcOmCm7CGbQgeHffYJ\nS1LX8k1VujrekFRvs2biev11OC5tac/C+uxn4f77a/skJknBIYNTTlFwyGT9+pBZdfWCw/aSayzV\nqkJlDqNHh+Aseyt25gAwdmx479fDbEYFhwyUOWSWnKlUqAkASbU+7lCo4KALNTtWiuBgBuefD3/4\nQ3F/TyVQcMhg7Fh47TV4//1yt6TyFLpLKemww8L1E7WqqxfAJQ0dGmY+1dN9t7PZvj0c36OOKv7v\nOv10ePrp4v+eclNwyKBvXzj+eF3v0N6LL8KPf1ycvt0xY8L+a1WhxhzM1LXU3oIF4dj27l3833X6\n6fDnP9f+uIOCQyc+8Qn405/K3YrK8eKLMG4c/MM/wNe+Vvj9n3hi7QaHjRth27ZwP4ZCUHDYWym6\nlJJGjgxBqJazXFBw6NRf/7WCQ6onnghLlFxzTbibWaEde2yYolmLXXnz5oUrbAs1TqNxh72VYqZS\nqnroWlJw6MSpp8KcOWF2gsDs2XD22cXbf+/e4Qv01VeL9zvK5Y9/DJlooShz2FtTE5x0Uul+32mn\nKTjUtYEDw4dw7txyt6T8tm4NgfKMM4r7e048EV56qbi/oxyamiCRKNz+lDnssWRJ+FfME5f2Tj8d\n/u//Svf7ykHBIYu//uv6mLbWnnvoI0965pkwQN+/f3F/by2OO+zYAc8/X9jAOnp0mFJc64OicUyf\nDp/5DPTsWbrfeeyxsHNnbU9YUXDI4jOfgXvuqa8P4c6dMHEifPSjYTEzCF1KZ51V/N9dizOW5s4N\nS14U6q55EO67fcAB9bPOTybu8KtfwRVXlPb3du8OX/0qfO97pf29paTgkMXJJ4elHZqayt2S0mhp\ngYsuCguMDRwIv/lN+AA++WRpgsPxx4dZILV0x61CdyklnXsuNDQUfr/VZM6c8H8pxxuSrroKGhtr\n9/4aCg5ZmME//iP87GflbknxvfFG+JAdcQQ8/DB885vhJkpTp0KPHmEQrth69w5fev/7v8X/XcXW\n1hbmw8+YUdjB6KTzzquvJaQ78otfwPjxhb9aP47+/cN3w3e+U/rfXQrmNdBfYmZezNexfn1YJnnR\nosLdM7kUtm0LbR86NHvdJUtCn3jqHfXa2sKZ/KZN8MIL4UYzpfCb38APf1jd2drOnfB3fxeyoMsu\ng2uvLfz03w0bwhLga9eW5uKvSrNlS7hN7WuvhTsJlsOGDXDCCfDTn4ZlNaqNmeHuHYZWZQ4xDB4c\nvjC/8Y1ytyS+bdvCm3XUKPj7v888cOYevvjPPx8mT977VqvdusF994XxhlIFBoBPfSrMW1+2rHS/\ns1Dcw9LjV14ZHr/6Klx3XXGuCxk0CD7ykdqfUpnJr38dstlyBQYIf4N77gljdGvXlq8dxaDgENO3\nvw2PPx5m7VSyNWvC7KrPfS58oa9aFbo0Pve5MH7yzW/Co4+G8p/+NGRE48fDv/87fPGL6fs7/vjQ\nzVRKvXuHiQD33lva3xvXsmUhaH7/++E90dISytetC7NYjjsuDOTPmFH8GTTnnRcuTqx2S5fCJz8J\nX/86rF7ded1HHoEf/CBkl1/4Qmna15lEItyi+Ec/KndLCszdK/4fcD7wF2Ah8PUOnvdSuP9+92OP\ndd+ypSS/LmcvvOB+wAHun/iE+5e/7L51657ndu50f/JJ9299y/3cc90HDnQ/+2z3Z55xb2srW5Mz\nmjcvvJZXXil3S/bYvt19yhT3/fZzv/TScIzPPju08+GH3c87z/1rXyvt8Xz9dfcDD3Q/+mj3++4r\n3e8tlNZW95/8JLyGG25wv+Ya97593Xv3Du/jOXP2rv/44+4HHeR+9dXuV1zhvmNHWZqdZt489+HD\n3XftKndLchN9d3b8vZvpiUr5R8huFgOHAD2BV4APt6vj7u6NjY2FPG5p2trCG/KKKyrjC/WOO9z/\n+7/dv/c9929/O3zAHnmkeL+v2Me3vQceCB+4ZctK+ms7tH27+4UXhgDwzjt7P/fnP7sffLB7IhGC\ncD66cmx373b/05/cR44Mwf/228P/DQ2h3ZXqhRfcBw1y/9u/dX/uuT3lbW3hBOznPw/Hdfx49/nz\n3R98MATip5/O7/cV+/178snujz5a1F/RJcnj+pe/uM+c6T57dufBoRq6lcYCi9z9bXffCTwAXNRR\nxaYij2CawZ13hv7wa68N/fpz54b5zg0NsHx5SHnnzy/+dRFPPAE33RRmEb3zTliP6MEH4dOfLt7v\nLPbxbe8znwndDKecAk89Fcra2sJSFD/7WegWe+qpMOi7cGG4rev27aHe9u1hxlMhLmBcuBAuuST8\nTX//+zAImurUU8Pf/NFHw98jH105tt26hckEzz4bBmfnzg0D4l//Olx+eXHfi2vXhvXHXn45LCMe\n1/bt8PnPh66Y3/wmdHkmmYVVkSdODFeBDxsWukbvvjvMTsp31lyx379f+EJlzWrcuTN8L119dejq\n7NkT9tsvjOnddFOYhdipTFGjUv4Bfwf8NOXnK4Aftqvj7u6TJ0/OGDU7O2vIdkbR/vnm5nC2c9BB\n7oMGNfqkSe5jxoQz9/POcx8xwn30aPf/+i/3KVMaffr0cNbz6KPujY3uzz8fugPuv7/RV61yX7LE\n/aWX3Juawpn/gw+6T5+euU2tre4HHNDos2bl9nrinDl1Vqez45tt23zalHxu9uyQQQwZEv4/7jj3\niRPDvxNOaPTDDnM/8kj3YcPce/YMXWb9+jV6IuF+yCHuX/pSyD527AjdP//xH+6XX+7+z//c6MuW\nhTOqtjb3Vavcf/1r90mT3L/xjUb/1a9CNnDgge7XXuu+bVvXjmFXjm0++9261f3QQxt92rT057Zs\ncV+71n3atEb//vfDa54+PZR1tt9du0L31d/8TaOPHRuO9amnuh9/vPu++4auoIkT3a+4otFvv939\nt791f/bZ0H05e3boFvr2txv9n/7J/dOfTs/Ac/0s5rJtob8f2pdv2hTen5de6n7vve7/+Z/u3/pW\no7e1ua9Z4/7YY+6zZoWM+HvfC8d+x47w88UXu/fv737EEe6nntroX/6y+y9/GT7rSbt2hb9bS4v7\nzJlhvzt27N2VNWtWozc2un/xi+777+9+yinuN90UsrRkFpnabjrJHPI8z6k+TU1NJDJcidTZcx09\nP3RoONt58UX49a+buOGGBDfcsKe+e1gf6Le/hfvvb+JjH0uwa1eYerdlSzjL37IFmpub6N07Qb9+\n4YKzAQPCv169oKGhiX/7twT77BOi/ahR4V/37uGK0EMOaeLss3N7PdleZ9w6+WybT5uSz515ZsiO\nVqwIZ6cf/vCeee1TpjQxZcqe7d3DAPENNzTx3e8maG2FSZPC9Rtbt4Zph5/6FBxzDNx2WxMnnZRg\n8+Zwxt+rVziD/au/Cn/XV15JcPXV4aLA5GyjrhzDrhzbfPa7zz4wblwTX/tagqefDjNr3nwzZBer\nV0O/frBrVxOXXJJg+HB46KFwlnnSSbBrF7zxRhM9eiRoa4M+fcJV3suXh+nc/fuH43vyyXum0W7a\nFCZsvPMOTJ/exKuvJnjiiTBJolu30J7evWHZsibGjk3wk5+kX5+Q62cxl207U4j37r77huN7++3w\nu9+FyRx33NHEffcleO+9cAOxXbvC3+GAA+Bb32riP/4jwdFHhyzpJz8JU2MnT27iyCMT/O538C//\nEo7R1q1hkkPv3iED2LKliba2BN26hffuyJHhPbp0aROjRyf47GdDBnnIIfkfp4q/zsHMTgGmuPv5\n0c/XEqLdTSl1KvtFiIhUKM9wnUM1BIfuwALgbGAV8ALwWXd/s6wNExGpYRXfreTuu83sy0ADYebS\nXQoMIiLFVfGZg4iIlF41TGVNY2abyt2GXGVrs5k1mtmYUrWnk3ZU3bEFHd9iqpZjm1Rtx7hSj29V\nBgegGtOdamlztbSzvWppd7W0M1W1tVntLYBqDQ6YWV8zm2Vmc83sVTO7MCo/xMzmm9lPzex1M3vS\nzCphzUozs0+Y2e9TCm4zs/HlbFRHqvDYgo5vMVXNsU2qsmNckce3aoMDsA242N3/CjgLSL0n05HA\nbe5+LNBKuJCuEjgVepbQTjUeW9DxLaZqObZJ1XaMK+74VvxspU4Y8B0zOwNoA4aa2YHRc0vd/bXo\n8YvAoWVoXzXTsS0uHd/i0zHuomoNDkZYRmM/4GPu3mZmS4F9oue3p9TdnVJebruA7ik/V0q7UlXr\nsQUd32KqhmObVI3HuOKObzV3Kw0A3o3+8GcSVm1NKsNNA7Ny4G3gGDPraWYfIlzYV4mq7diCjm8x\nVdOxTaqmY1yRx7fqMofoiultwHTgUTN7FZgLpF4YV1F9d1Gbt7t7s5nNAF4HlgIvpVQre5ur8diC\njm8xVcuxTaq2Y1zJx7fqLoIzsxOAO939lHK3Ja5qaXO1tLO9aml3tbQzVbW1We0tnKrqVjKzLxLO\nCL5Z7rbEVS1trpZ2tlct7a6WdqaqtjarvYVVdZmDiIgUX1VlDiIiUhoVHRzMbLiZzTazN8zsNTP7\nSlQ+yMwazGyBmc00s4FR+eCo/iYz+2G7fTWa2V/M7GUze8nM9i/Ha6okBT6+Pc3szmib+Wb2t+V4\nTZWiUMfWzPZNec++bGZrzez75XpdlaTA79/Pmtk8M3vFzB43s8HleE2VpKK7lczsIOAgd3/FzPYl\nXLByEfB5YJ2732xmXwcGufu1ZtYX+ChwLHCsu38lZV+NwL+7+8ulfyWVqcDHdwrQzd2vi34e7O7r\nS/ySKkYhj227/c4F/tXd/1yaV1K5CnWMoxlDK4EPu/sGM7sJ2OLu3y7H66oUFZ05uPtqd38leryZ\nMB1tOOENMC2qNg24OKrzvrs/w94XuaSq6NdbagU+vlcBN6bsu24DAxTlvYuZjQYOUGAICniMk9c9\n9DczI1wjsbLIza94VfNlaWaHEqL+c8AQd18D4Q0CHJh5y73cHaXn/12URlaxrhzfZNoO/D8ze9HM\nHjSzA4rY3KpSoPcuwGeABwvdvlrQlWPs7ruAq4HXgBXA0cBdRWxuVaiK4BCljA8R0unNpF8UEqdv\n7HPufhxwBnCGmV1R4GZWrQIc3x6EM7an3f1Ewgf0e51vUh8K9N5Nugy4v1BtqxVdPcZm1gP4EnCC\nuw8jBIlvFKOt1aTig0P0h3sIuNfdH46K15jZkOj5g4B3s+3H3VdF/28B7gPGFqfF1aUQx9fd1xH6\naH8bFf0a+FiRmlw1CvXejeoeD3TXmNneCnSMPwq4uy+Lfp4BfLwIza0qFR8cgF8A8939BylljwBX\nRo8nAA+334iU9VPMrLuZ7Rc97gn8DeEydSnA8Y383sIaNgDnAPML2cgqVahjC/BZlDV0pBDHuJmw\nrtF+0c/nsvdyG3Wp0mcrnQb8iZDmJdc7/wbwAiG6jyAsWHWpu7dE2ywF+gO9gBbgPOCdaD89CCsf\nziLMXKrcF18ChTq+7v4XMxsJ3AsMBNYCn3f3FaV9RZWjkMc2em4x8El3X1jil1KxCvz+/Sfgq8CO\naJsr3X1DaV9RZano4CAiIuVRDd1KIiJSYgoOIiKSRsFBRETSKDiIiEgaBQcREUmj4CAiImkUHERK\nwMy+mMuSLWZ2iJm9Vsw2iXSmR7kbIFLrzKy7u9+Zx6a6CEnKRsFBJAYzOwR4knDPgDGE5VfGA8cA\n3wf6Ae8RrqxdE90/5BXgNOB+MxsAbHL375vZR4E7gD7AEuAqd281sxMJq4E68FRJX6BIO+pWEonv\nKOBH7n4MsBH4MnAb8HfufhLwS+CGlPo93X2su9/Sbj/TgP90948SgszkqPwXwDXuXveLFkr5KXMQ\nie8dd38uejydsI7PR4CnopvEdGPvm8Sk3XshyiAGuvvTUdE0YEZ0T4yBKTfyuRc4vwivQSQWBQeR\n/G0C3nD30zI8vyVDeUerrnZWLlJy6lYSiW+kmZ0cPf4c8CxwgJmdAuHeAmZ2TGc7cPeNwPpoRVGA\nfwD+6O6twAYzOzUqv7zwzReJT5mDSHwLgGvM7JfAG4TxhpnAbVG3UHfgVsK9LDqbaXQl8BMz6wO8\nBXw+Kr8K+IWZtQENRXkFIjFpyW6RGKLZSo9Gt5oVqXnqVhKJT2dSUjeUOYiISBplDiIikkbBQURE\n0ig4iIhIGgUHERFJo+AgIiJpFBxERCTN/wc5WnA5n1htNAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'][-200:].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Etude de l'incidence annuelle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
"entre deux années civiles, nous définissons la période de référence\n",
"entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
"1er août de l'année $N+1$.\n",
"\n",
"Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
"pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
"de référence: à la place du 1er août de chaque année, nous utilisons le\n",
"premier jour de la semaine qui contient le 1er août.\n",
"\n",
"Comme l'incidence de syndrome grippal est très faible en été, cette\n",
"modification ne risque pas de fausser nos conclusions.\n",
"\n",
"Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
"rend la première année incomplète. Nous commençons donc l'analyse en 1985."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
" for y in range(1985,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
"\n",
"Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_august_week[:-1],\n",
" first_august_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Voici les incidences annuelles."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEACAYAAABPiSrXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+UldV97/H3B+OPpEEKpEoFDOYGGqBpFC/YXnNXTumS\nH4nLXyzNrGrAqwk0yMVWVm5mTG4YEqvBLgxhrYuyEoOA1sEAuZpbApMsmWV7K4oRf0WK096SAgq2\nwEzNTekF53v/OHvgAWaYZ4YznDlnPq+1zmKzn733PJuHOd+zn/3sfRQRmJmZ5TGg3CdgZmaVw0HD\nzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHLLFTQk7ZL0qqTtkl5MeQsl7ZH0cnpNy5Svk9QsaYek\nKZn8CZJek/SWpKWZ/PMkNaQ6z0u6NHNsViq/U9LMTP4oSVvTsSclfeBM/zHMzOz08o402oBCRFwR\nEZMy+Q9FxIT02gQgaSxwCzAWmA4sl6RU/mHgzogYA4yRNDXl3wkcjIjRwFLgwdTWYOAbwETgKmCh\npEGpzmJgSWqrJbVhZma9KG/QUCdl1UHe9UBDRByNiF1AMzBJ0jBgYERsS+VWAzdk6qxK6XXA5JSe\nCjRGRGtEtACNQPuIZjKwPqVXATfm7IuZmfVQ3qARwE8lbZP0pUz+PEmvSPp+ZgQwHNidKbM35Q0H\n9mTy96S8E+pExPtAq6QhnbUlaShwKCLaMm1dkrMvZmbWQ3mDxtURMQH4LHCXpE8Dy4GPRcTlwD5g\nSQnPq6MRTE/KmJlZCeWaPI6Id9Kf/yzpR8CkiPibTJHvAT9O6b3AyMyxESmvs/xsnbclnQNcGBEH\nJe0FCifV2RIRByQNkjQgjTaybZ1AkjfXMjPrgYg45cN5lyMNSR+S9OGU/g1gCvBGmqNodxPwRko/\nA9SkJ6IuAz4OvBgR+yjedpqUJsZnAk9n6sxK6ZuBZ1N6M3BNChCDgWtSHsCWVJZUt72tjjp+Vl9t\nbW089dRGRo6sBYKRI2v54Q9/Qltb22nrLVy48Kyf69l4uV+V9XK/KuvVW/3qTJ6RxsXAj9In9g8A\nT0REo6TVki6n+GTVLmBOeoN+U9JTwJvAEWBuHD+Du4DHgAuAjZGeuAIeBdZIagYOADWprUOSvgW8\nRHFeZVEUJ8QBaoGGdHx7aqNPkIQkWloOM27cPeze3XYsz8ysknUZNCLiH4HLO8if2UHx9mMPAA90\nkP9z4JMd5P87xcd0O2rrMYqBpqPzuqrzMy+v5ubdrFw5jZtumsKGDY00N+/uupKZWR/nBXG9pK7u\n+ENmM2ZMPU3J4wqFQi+dTXm5X5XF/aosZ7tfOt29q2ogKaq9j2ZmpSaJ6MlEuJmZWTsHDTMzy81B\nw8zMcnPQMDOz3Bw0zMwsNweNPiIiqK198LQrMc3Mys1Bo49Yv34zy5e/w4YNjeU+FTOzTjlolNmK\nFY8zfvy13HvvX/Peew9RV/cc48dfy4oVj5f71MzMTuEV4WU2e/atDBkylAULngPE4cNt3H//vNyr\nyM3MziaPNMrs5M0NW1r+zZsbmlmf5ZFGH+DNDc2sUnjvKTMzO0W/3nvKQcPMrDT6RdDwY6xmZqXR\nL4KGH2M1MyuNfjER7sdYzcxKo1+MNPwYq5lZaeQKGpJ2SXpV0nZJL6a8wZIaJe2UtFnSoEz5OknN\nknZImpLJnyDpNUlvSVqayT9PUkOq87ykSzPHZqXyOyXNzOSPkrQ1HXtSUqejppUrp/sxVjOzEsj1\nyK2k/wNcGRGHMnmLgQMR8aCkrwKDI6JW0jjgCWAiMAL4GTA6IkLSC8C8iNgmaSPw3YjYLOnLwCcj\nYq6kzwM3RkSNpMHAS8AEQMDPgQkR0SppLbAuIn4o6WHglYhY0cG5+5FbM7NuOtNHbtVB2euBVSm9\nCrghpa8DGiLiaETsApqBSZKGAQMjYlsqtzpTJ9vWOmBySk8FGiOiNSJagEZgWjo2GVif+fk35uyL\nmZn1UN6gEcBPJW2T9MWUd3FE7AeIiH3ARSl/OJC9F7Q35Q0H9mTy96S8E+pExPtAq6QhnbUlaShw\nKCLaMm1dkrMvZmbWQ3mfnro6It6R9FtAo6SdFANJVinvAeWZsfastpnZWZYraETEO+nPf5b0P4FJ\nwH5JF0fE/nTr6d1UfC8wMlN9RMrrLD9b521J5wAXRsRBSXuBwkl1tkTEAUmDJA1Io41sW6eor68/\nli4UChQKhc6Kmpn1S01NTTQ1NXVZrsuJcEkfAgZExK8k/QbFeYVFwB8BByNicScT4VdRvL30U45P\nhG8F5gPbgL8ClkXEJklzgd9NE+E1wA0dTIQPSOkrI6IlTYRviIi1aSL81Yh4pIPz90S4mVk3dTYR\nnidoXAb8iOLtpw8AT0TEt9Ocw1MURwi/BG5Jk9VIqgPuBI4Ad0dEY8q/EngMuADYGBF3p/zzgTXA\nFcABoCZNoiPpduBr6effFxGrM+fVAAwGtgO3RcSRDs7fQcPMrJt6HDQqnYOGmVn39etdbs3MrDQc\nNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vN\nQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLLXfQkDRA0nZJz6S/\nL5S0R9LL6TUtU7ZOUrOkHZKmZPInSHpN0luSlmbyz5PUkOo8L+nSzLFZqfxOSTMz+aMkbU3HnpT0\ngTP5hzAzs651Z6RxN/CLk/IeiogJ6bUJQNJY4BZgLDAdWC6p/cvJHwbujIgxwBhJU1P+ncDBiBgN\nLAUeTG0NBr4BTASuAhZKGpTqLAaWpLZaUhtmZtaLcgUNSSOAzwLfP/lQB8WvBxoi4mhE7AKagUmS\nhgEDI2JbKrcauCFTZ1VKrwMmp/RUoDEiWiOiBWgE2kc0k4H1Kb0KuDFPX8zMrOfyjjS+A3wFiJPy\n50l6RdL3MyOA4cDuTJm9KW84sCeTvyflnVAnIt4HWiUN6awtSUOBQxHRlmnrkpx9MTOzHupyHkDS\n54D9EfGKpELm0HLgmxERku4DlgBfLNF5dTSC6UkZAOrr64+lC4UChUKh+2dkZlbFmpqaaGpq6rJc\nnsnjq4HrJH0W+CAwUNLqiJiZKfM94McpvRcYmTk2IuV1lp+t87akc4ALI+KgpL1A4aQ6WyLigKRB\nkgak0Ua2rVNkg4aZmZ3q5A/UixYt6rBcl7enIuLeiLg0Ij4G1ADPRsTMNEfR7ibgjZR+BqhJT0Rd\nBnwceDEi9lG87TQpTYzPBJ7O1JmV0jcDz6b0ZuCaFCAGA9ekPIAtqSypbntbZmbWS87kMdUHJV0O\ntAG7gDkAEfGmpKeAN4EjwNyIaJ8LuQt4DLgA2Nj+xBXwKLBGUjNwgGJwIiIOSfoW8BLF+ZRFaUIc\noBZoSMe3pzbMzKwX6fj7eXWSFNXeRzOzUpNERJwyd+wV4WZmlpuDhpmZ5eagYWZmuTlomJlZbg4a\nZmaWm4OGmZnl5qBhZma5OWiYmVluDhpmZpabg4aZmeXmoGFm1ssigtraB6mGLY0cNMzMetn69ZtZ\nvvwdNmxoLPepnDEHDTOzXrJixeOMH38t997717z33kPU1T3H+PHXsmLF4+U+tR47k63RzczsNGbP\nvpUhQ4ayYMFzgDh8uI3775/HjBlTy31qPeaRhplVvXLNKUhCEi0thxk37h5aWv7tWF6lctAws6pX\nzjmF5ubdrFw5jTfeWMLKldNpbt591s+hlPwlTGZWtVaseJxlyxo4cuRTNDffx+jRX+fcc19l/vwa\n5sy5rdyn16d19iVMntMws6pVjXMK5ebbU2ZWtapxTqHccgcNSQMkvSzpmfT3wZIaJe2UtFnSoEzZ\nOknNknZImpLJnyDpNUlvSVqayT9PUkOq87ykSzPHZqXyOyXNzOSPkrQ1HXtSkkdNZnaKaptTKLfc\ncxqS/gy4ErgwIq6TtBg4EBEPSvoqMDgiaiWNA54AJgIjgJ8BoyMiJL0AzIuIbZI2At+NiM2Svgx8\nMiLmSvo8cGNE1EgaDLwETAAE/ByYEBGtktYC6yLih5IeBl6JiBUdnLfnNMzMuqmzOY1cIw1JI4DP\nAt/PZF8PrErpVcANKX0d0BARRyNiF9AMTJI0DBgYEdtSudWZOtm21gGTU3oq0BgRrRHRAjQC09Kx\nycD6zM+/MU9fzMys5/LenvoO8BUg+5H94ojYDxAR+4CLUv5wIDv+25vyhgN7Mvl7Ut4JdSLifaBV\n0pDO2pI0FDgUEW2Zti7J2RczM+uhLucBJH0O2B8Rr0gqnKZoKe8B5Zmlyj2TVV9ffyxdKBQoFArd\nPyMzsyrW1NREU1NTl+XyTB5fDVwn6bPAB4GBktYA+yRdHBH7062nd1P5vcDITP0RKa+z/GydtyWd\nQ3He5KCkvUDhpDpbIuKApEGSBqTRRratU2SDhpmZnerkD9SLFi3qsFyXt6ci4t6IuDQiPgbUAM9G\nxBeAHwO3p2KzgKdT+hmgJj0RdRnwceDFdAurVdIkFZ93m3lSnVkpfTPwbEpvBq5JAWIwcE3KA9iS\nyp788816pJq2rzbrLWeyTuPbFN/QdwJ/lP5ORLwJPAW8CWwE5mYeX7oLeBR4C2iOiE0p/1HgI5Ka\ngT8FalNbh4BvUXyC6gVgUZoQJ5W5R9JbwJDUhlmPVdP21Wa9xduIWL/nrSbMTuVtRMw64a0mzPLz\nNiLW73mrCbP8HDTM6P5WE9U6aV6t/bLS8ZyGWQ+sW7eJO+7YzMqV06rqNla19su674y2ETGzomr8\nzmeo3n5Z6Xki3KwbqnXSvFr7ZaXnkYZZN1TrpHm19stKzyMNs25qnzS/6aYpbNjQWDXfz1Ct/bLS\n8kS4mZmdwhPhZmZ2xhw0zMwsNwcNMzPLzUHDzKxClWMFv4OGmVmFKsd2/g4aVpG8R5L1Z+Vcwe+g\nYRXJX5hk/dns2bdSX38Xhw+30b6Cf9GiecyefWuv/2wHDaso3iOp+zwqqz7lXMHvoGEVpZyfsCqV\nR2XVqbvb+ZeKg4b1GXk+EXuPpPw8KqtudXVfYsaMqUhixoyp1NZ+8az83C6DhqTzJb0gabuk1yUt\nTPkLJe2R9HJ6TcvUqZPULGmHpCmZ/AmSXpP0lqSlmfzzJDWkOs9LujRzbFYqv1PSzEz+KElb07En\nJXkfrbOkt2535P1EXK5PWJXGozLrFRHR5Qv4UPrzHGArMAlYCNzTQdmxwHaKmyGOAv6e43tcvQBM\nTOmNwNSU/jKwPKU/DzSk9GDgH4BBwG+2p9OxtcDNKf0wMKeTcw8rrR/+8CcxcOCfxrp1m0rS3iOP\nrIlx4z4Xo0ffG9AWo0ffG+PGfS4eeWRNSdrvz9qv1bhxfxYDB95dsmtm1S+9d57ynprr9lRE/Dol\nz0/BoP0jZkf3BK5Pb/pHI2IX0AxMkjQMGBgR21K51cANmTqrUnodMDmlpwKNEdEaES1AI9A+opkM\nrE/pVcCNefpiPddbtzv8ibj3eFRmpZbrlo6kAcDPgf8A/I+I2Cbps8A8SV8AXgIWREQrMBx4PlN9\nb8o7CuzJ5O9J+aQ/dwNExPuSWiUNyeZn25I0FDgUEW2Zti7J2Wfrod76op6T5yl2727zPEWJ1NV9\n6VjaX6hkpZAraKQ35yskXQj8SNI4YDnwzYgISfcBS4BSzcTkebfI/Y5SX19/LF0oFCgUCt0/I+vV\nN3d/l4N1V0RQV/cXPPDAV/wBowSamppoamrqsly3Jo8j4l8lNQHTIuKhzKHvAT9O6b3AyMyxESmv\ns/xsnbclnQNcGBEHJe0FCifV2RIRByQNkjQgBbRsW6fIBg07M7315u5PxNZd7Q9OTJzY6P8zJXDy\nB+pFixZ1WK7LL2GS9BHgSES0SvogsBn4NvByROxLZf6M4gT3H6dRyBPAVRRvL/0UGJ1GJFuB+cA2\n4K+AZRGxSdJc4HcjYq6kGuCGiKiRNJjira8JFJ/0egm4MiJaJK0FNkTEWkkPA69GxCMdnH901Ucz\nqxwrVjzOsmUNHDnyKZqb72P06K9z7rmvMn9+DXPm3Fbu06sanX0JU56Rxm8Dq9K8xgBgbURslLRa\n0uVAG7ALmAMQEW9Kegp4EzgCzM28a98FPAZcAGyMiE0p/1FgjaRm4ABQk9o6JOlbFINFAIvShDhA\nLdCQjm9PbZhZleutuTXLx1/3amYVZ926Tdxxx2ZGjhS7d7excuV0B40SO5ORhplZn+IHJ8rHIw0z\nMztFZyMN7z1lZma5OWiYmVluDhpmZpabg4aZmeXmoGFmZrk5aJiZWW4OGmZmlpuDhpmZ5eagYWZm\nuTlomJlZbg4aZmaWm4OGWR8SEdTWPoj3S7O+ykHDrA9p/za6DRsay30qZh1y0DDrA1aseJzx46/l\n3nv/mvfee4i6uucYP/5aVqx4vNynZnYCf5+GWR/gb6OzSuGRhlkfIAlJtLQcZty4e2hp+bdjeWZ9\niYOGVbVKmlhu/za6N95YwsqV0/1tdNYndfnNfZLOB54DzqN4O2tdRCySNBhYC3wU2AXcEhGtqU4d\ncAdwFLg7IhpT/gTgMeACYGNE/GnKPw9YDVwJ/Avw+Yj4p3RsFvA1IIA/j4jVKX8U0AAMAX4OfCEi\njnZw/v7mvn6s/bukV66c5ls9Zt3Q42/ui4h/B/4wIq4ALgemS5oE1AI/i4jfAZ4F6tIPGgfcAowF\npgPLdXyM/TBwZ0SMAcZIav8tvhM4GBGjgaXAg6mtwcA3gInAVcBCSYNSncXAktRWS2rDDPDEsllv\nyXV7KiJ+nZLnUxxtBHA9sCrlrwJuSOnrgIaIOBoRu4BmYJKkYcDAiNiWyq3O1Mm2tQ6YnNJTgcaI\naI2IFqARmJaOTQbWZ37+jXn6Yv3D7Nm3Ul9/F4cPt9E+sbxo0Txmz7613KdmVtFyBQ1JAyRtB/YB\nP01v/BdHxH6AiNgHXJSKDweyN2P3przhwJ5M/p6Ud0KdiHgfaJU0pLO2JA0FDkVEW6atS/L0xfoH\nTyxXpkqag+qvcj1ym96cr5B0IfAjSeMpjjZOKFbC88rzm537t7++vv5YulAoUCgUun9GVnHaJ5Zv\numkKGzY0emK5ArQvbpw4sdFzUGdZU1MTTU1NXZbrciL8lArSfwd+DXwRKETE/nTraUtEjJVUC0RE\nLE7lNwELgV+2l0n5NcBnIuLL7WUi4gVJ5wDvRMRFqUwhIv4k1XkktbFW0rvAsIhok/T7qf70Ds7X\nE+FmfdyKFY+zbFkDR458iubm+xg9+uuce+6rzJ9fw5w5t5X79PqlHk+ES/pI++SzpA8C1wA7gGeA\n21OxWcDTKf0MUCPpPEmXAR8HXky3sFolTUoT4zNPqjMrpW+mOLEOsBm4RtKgNCl+TcoD2JLKnvzz\nzazCeA6qcuS5PfXbwCpJAygGmbURsVHSVuApSXdQHEXcAhARb0p6CngTOALMzXzUv4sTH7ndlPIf\nBdZIagYOADWprUOSvgW8RPH216I0IQ7Fp7ca0vHtqQ0zq0Anz0Ht3t3mOag+qtu3pyqNb0+ZVYYH\nHvgeY8ZcesIcVG3tF8t9Wv1WZ7enHDSSiKCu7i944IGv+NONWT9Wre8F3e1Xj+c0+gtvSW1mUL3v\nBaXqV78PGl45bGZQve8Fpe5Xv98a3VtSmxlU73tBqfvV70caXjls1vsqYaV3tb4XlLpf/T5oQPe2\npK6E//xmfU2lzBNU6/b0peyXn57qJm+1bZafV3pXLj89dYaqdZLMrDd5pXf16fcT4XlV6ySZWW/y\nSu/q45FGTtU6SdbOczXWW6p1nqC/8pxGN1TzNgeeqzGzLG8jYh3yRKWZdaSzoOE5jX7OczVm1h2e\n0+jnqn2uxsxKyyMN89eimlluntMwM7NTeHFfP+VHac2slBw0qlyl7PljZpXBQaNKeduTvsOjPasm\nXQYNSSMkPSvpF5Jel/RfU/5CSXskvZxe0zJ16iQ1S9ohaUomf4Kk1yS9JWlpJv88SQ2pzvOSLs0c\nm5XK75Q0M5M/StLWdOxJSZ7Uz/CeP32HR3tWTfKMNI4C90TEeOAPgHmSPpGOPRQRE9JrE4CkscAt\nwFhgOrBcx5/ffBi4MyLGAGMktS8GuBM4GBGjgaXAg6mtwcA3gInAVcBCSYNSncXAktRWS2rDEj9K\nW34e7Vk16jJoRMS+iHglpX8F7ACGp8MdvQNdDzRExNGI2AU0A5MkDQMGRsS2VG41cEOmzqqUXgdM\nTumpQGNEtEZEC9AItI9oJgPrU3oVcGNXfelvvOdPeXm0Z9WoW7d0JI0CLgdeAD5NcdTxBeAlYEFE\ntFIMKM9nqu1NeUeBPZn8PRwPPsOB3QAR8b6kVklDsvnZtiQNBQ5FRFumrUu605f+oK7uS8fSXuF9\n9nmHV6tGuYOGpA9THAXcHRG/krQc+GZEhKT7gCVAqXbvy/Nblfs3r76+/li6UChQKBS6f0ZmPeCF\nk1YpmpqaaGpq6rJcrsV9aZL5fwE/iYjvdnD8o8CPI+L3JNUCERGL07FNwELgl8CWiBib8muAz0TE\nl9vLRMQLks4B3omIi1KZQkT8SarzSGpjraR3gWER0Sbp91P96R2cmxf3mZl105ku7vsB8GY2YKQ5\ninY3AW+k9DNATXoi6jLg48CLEbEPaJU0KU2MzwSeztSZldI3A8+m9GbgGkmD0qT4NSkPYEsqS6rb\n3paZmfWSLkcakq4GngNeByK97gX+mOL8RhuwC5gTEftTnTqKTzMdoXg7qzHlXwk8BlwAbIyIu1P+\n+cAa4ArgAFCTJtGRdDvwtfRz74uI1Sn/MqABGAxsB26LiCMdnL9HGmZm3eTv0zAzs9y895SZmZ0x\nBw0zM8vNQcPMzE5wulv6Dhpm1iPeiLF6rV+/udNjDhpm1iPeiLH6ZPdL64yDhpl1izdirF4n7pfW\nMW8nbmbdMnv2rQwZMpQFC56jfSPG+++f5/3NqkB2v7TOeKRhVoHKOZ/gbferW/t+aZ3xSMOsArXP\nJ0yc2FiWT/jeiLF6ZXfH7ohXhJtVkBUrHmfZsgaOHPkUzc33MXr01zn33FeZP7+GOXNuK/fpWRXx\ninCzKuAvdupb+uNjxw4aZhXE8wl9S3987NhBw6zC+Gt8y68/P3bsOQ0zs26KCNat28SCBc+xe/cD\njBxZx0MPfYYZM6ZWzajPcxpmZiXSn28T+pFbM7Me6K+PHfv2lJmZncK3p8zM7Ix1GTQkjZD0rKRf\nSHpd0vyUP1hSo6SdkjZLGpSpUyepWdIOSVMy+RMkvSbpLUlLM/nnSWpIdZ6XdGnm2KxUfqekmZn8\nUZK2pmNPSvKtNjOzXpZnpHEUuCcixgN/ANwl6RNALfCziPgd4FmgDkDSOOAWYCwwHViu47NDDwN3\nRsQYYIyk9v0P7gQORsRoYCnwYGprMPANYCJwFbAwE5wWA0tSWy2pDTMz60VdBo2I2BcRr6T0r4Ad\nwAjgemBVKrYKuCGlrwMaIuJoROwCmoFJkoYBAyNiWyq3OlMn29Y6YHJKTwUaI6I1IlqARqB9J63J\nwPrMz78xb6fNzKxnujWnIWkUcDmwFbg4IvZDMbAAF6Viw4HsYwR7U95wYE8mf0/KO6FORLwPtEoa\n0llbkoYChyKiLdPWJd3pi5mZdV/uoCHpwxRHAXenEcfJjySV8hGlPA87V/8D0WZmfUyuyeM0ybwO\nWBMRT6fs/ZIujoj96dbTuyl/LzAyU31EyussP1vnbUnnABdGxEFJe4HCSXW2RMQBSYMkDUijjWxb\np6ivrz+WLhQKFAqFzoqamfVLTU1NNDU1dVku1zoNSauBf4mIezJ5iylOXi+W9FVgcETUponwJyhO\nXA8HfgqMjoiQtBWYD2wD/gpYFhGbJM0Ffjci5kqqAW6IiJo0Ef4SMIHiqOgl4MqIaJG0FtgQEWsl\nPQy8GhGPdHDuXqdhZtZNna3T6DJoSLoaeA54neItqADuBV4EnqI4QvglcEuarEZSHcWnmY5QvJ3V\nmPKvBB4DLgA2RsTdKf98YA1wBXAAqEmT6Ei6Hfha+rn3RcTqlH8Z0AAMBrYDt0XEkQ7O30HDzKyb\nehw0Kp2DhplZ93lFuJmZnTEHDTMzy81Bw3pVf/w6TLNq5qBhvao/fh2mWTVz0LBe0Z+/DtOsmnln\nWOsVs2ffypAhQ1mw4DlAHD7cxv33z2PGjKld1jWzvssjDesV/fnrMM2qmUca1mv669dhmlUzL+4z\nM7NTeHGfmZmdMQcNMzPLzUHDzMxyc9CoQF5lbWbl4qBRgbzK2szKxUGjgniVtZmVm4NGBZk9+1bq\n6+/i8OE22ldZL1o0j9mzby33qZlZifT1288OGhXEq6zNql9fv/3soFFh2ldZv/HGElaunO5V1mZV\nolJuP3tFuJlZHxARrFu3iQULnmP37gcYObKOhx76DDNmTC3L3YQerwiX9Kik/ZJey+QtlLRH0svp\nNS1zrE5Ss6QdkqZk8idIek3SW5KWZvLPk9SQ6jwv6dLMsVmp/E5JMzP5oyRtTceelOQ9tMysolXK\n7ec8t6dWAh3tZ/1QRExIr00AksYCtwBjgenAch3v8cPAnRExBhgjqb3NO4GDETEaWAo8mNoaDHwD\nmAhcBSyUNCjVWQwsSW21pDYqXlNTU7lPoVe4X5XF/Sqfntx+Ptv96jJoRMTfAIc6ONRR+LseaIiI\noxGxC2gGJkkaBgyMiG2p3GrghkydVSm9Dpic0lOBxohojYgWoBFoH9FMBtan9Crgxq76UQkq4T91\nT7hflcX9Kp+6ui8dux01Y8ZUamu/2GWdPhc0TmOepFckfT8zAhgOZEPj3pQ3HNiTyd+T8k6oExHv\nA62ShnTWlqShwKGIaMu0dckZ9MPMzHLqadBYDnwsIi4H9gFLSndKHY5gelLGzMxKLSK6fAEfBV7r\n6hhQC3w1c2wTxfmIYcCOTH4N8HC2TEqfA7ybKfNIps4jwOdT+l1gQEr/PvCT05x7+OWXX3751f1X\nR++peZ86EplP95KGRcS+9NebgDdS+hngCUnfoXh76ePAixERklolTQK2ATOBZZk6s4AXgJuBZ1P+\nZuDP062aupIdAAAEBUlEQVSvAcA1FIMSwJZUdm2q+3RnJ97RI2NmZtYzXa7TkPSXQAEYCuwHFgJ/\nCFwOtAG7gDkRsT+Vr6P4NNMR4O6IaEz5VwKPARcAGyPi7pR/PrAGuAI4ANSkSXQk3Q58jWLUuy8i\nVqf8y4AGYDCwHbgtIo6c2T+FmZl1peoX95mZWel4G5Fe1MnCyN+T9LeSXpX0tKQPp/xzJf0gLYDc\nLukzmTodLowslxL2a4ukv0v5L0v6SDn6kzmfEZKelfQLSa9Lmp/yB0tqTItMN2eeFuz2YtZyKHG/\n+sw1626/JA1J5d+TtOyktir2enXRr9JfrzwT4X717AV8muJtvNcyeS8Cn07p24FvpvRc4NGU/i3g\npUydF4CJKb0RmFol/doCXFHu65Q5n2HA5Sn9YWAn8AmKi0n/W8r/KvDtlB5H8fboB4BRwN9zfPTe\nZ65ZifvVZ65ZD/r1IeA/AbOBZSe1VcnX63T9Kvn18kijF0XHCyNHp3yAn1F8kACKv6jPpnr/DLRI\n+o9dLIwsi1L0K1Ovz/wfjIh9EfFKSv8K2AGM4MQFqKs4/u9/Hd1fzHrWlapfmSb7xDXrbr8i4tcR\n8bfAv2fbqfTr1Vm/Mkp6vfrExe9nfiHpupS+BRiZ0q8C10k6J030X5mOnW5hZF/S3X61eywNm79+\nFs+1S5JGURxNbQUujvSgRxSfGrwoFevJYtayOsN+tetz1yxnvzpT6derKyW9Xg4aZ98dwF2StgG/\nAfy/lP8Dir+c24CHgP8NvF+WM+yZnvTrjyPik8B/Bv6zpNvO7il3LM3HrKP49N+vKD69l1WRT4+U\nqF997pr5ep1Wya+Xg8ZZFhFvRcTUiJhI8bHhf0j570fEPVHcAPJGio8Tv0XxDTf7yXxEyutTetAv\nIuKd9Of/Bf6SE2+BlIWKOyavA9ZERPv6n/2SLk7Hh1FcXAqdX5s+d81K1K8+d8262a/OVPr16lRv\nXC8Hjd538sLI30p/DgC+TnGlO5I+KOlDKX0NcCQi/i4NQ1slTZIkigsjO13MeBadUb/S7aqhKf9c\n4FqOLxItpx8Ab0bEdzN5z1Cc3IcTF5M+A9SouL3/ZRxfzNoXr9kZ96uPXrPu9Cvr2P/dKrheWdnf\nyd65XmfriYD++KIY2d+mOEH1T8B/AeZTfBri74D7M2U/mvJ+QXFH35GZY1cCr1OckPxuNfSL4hMf\nLwGvpL59h/SEThn7dTXFW2evUHx66GWKOysPoTi5vzP14TczdeooPl20A5jSF69ZqfrV165ZD/v1\nj8C/AP+a/u9+okqu1yn96q3r5cV9ZmaWm29PmZlZbg4aZmaWm4OGmZnl5qBhZma5OWiYmVluDhpm\nZpabg4aZmeXmoGFmZrn9f1gAJxPxoq2fAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2014 1600941\n",
"1991 1659249\n",
"1995 1840410\n",
"2012 2175217\n",
"2003 2234584\n",
"2006 2307352\n",
"2017 2321583\n",
"2001 2529279\n",
"1992 2574578\n",
"1993 2703886\n",
"1988 2765617\n",
"2007 2780164\n",
"1987 2855570\n",
"2016 2856393\n",
"2011 2857040\n",
"2008 2973918\n",
"1998 3034904\n",
"2002 3125418\n",
"2009 3444020\n",
"1994 3514763\n",
"1996 3539413\n",
"2004 3567744\n",
"1997 3620066\n",
"2015 3654892\n",
"2000 3826372\n",
"2005 3835025\n",
"1999 3908112\n",
"2010 4111392\n",
"2013 4182691\n",
"1986 5115251\n",
"1990 5235827\n",
"1989 5466192\n",
"dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
" française, sont assez rares: il y en eu trois au cours des 35 dernières années."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4BJREFUeJzt3X+YZFV95/H3d2aQ30MTQUZhpZVgAiI2KBrFaC1qYiDi\nE8KzIBptjYYYDa5md+VxJYhZE8Ffq7uYLIkyaARcCdkVf0SM5BJBAyg0oIK4CyO/BH8AIrABRr77\nx7k1VDdTVbdn7q3vOV2f1/PMM3Wrqut86lR1nbrf761qc3dERESGWRUdQERE8qaFQkRERtJCISIi\nI2mhEBGRkbRQiIjISFooRERkpE4WCjN7m5l928yuMbNPm9njuhhHRES61/pCYWZPAv4YONjdDwTW\nAMe2PY6IiEzGmo5udzWwo5k9AuwA3N7ROCIi0rHW9yjc/Xbgg8DNwG3APe7+j22PIyIik9FF6WkG\neAWwN/AkYCczO67tcUREZDK6KD29BLjR3e8CMLPzgecDZw9eycz0JVMiIlvA3W2S43Vx1NPNwK+Z\n2XZmZsCLges2d0V3z/7fySefHJ4hKmf9KLX47+Qt+JnJP0+m+TFXzvgc4/5F6KJHcTlwHnAVcDVg\nwBltjzMpGzZsiI7QSBk5N0QHaKSMuVTOtpWSM0InRz25+ynAKV3ctoiITJY+mT3G/Px8dIRGysg5\nHx2gkTLmUjnbVkrOCBZV8zIzjxpbmkktpujHyMLqsiI5MjN8BTSzV5SqqqIjNFJGzio6QCNlzKVy\ntq2UnBG0UIiIyEgqPclQKj2J5EelJxERyY4WijFKqVuWkbOKDtBIGXOpnG0rJWcELRQiIjKSehQy\nlHoUIvlRj0JERLKjhWKMUuqWZeSsogM0UsZcKmfbSskZQQuFiIiMpB6FDKUehUh+1KMQEZHsaKEY\no5S6ZRk5q+gAjZQxl8rZtlJyRtBCISIiI6lHIUOpRyGSH/UoREQkO1ooxiilbllGzio6QCNlzKVy\ntq2UnBFaXyjM7GlmdpWZXVn//zMzO6HtcUREZDI67VGY2SrgVuC57n7LksvUo8icehQi+VmJPYqX\nAP936SIhIiLl6HqhOAY4p+MxOlVK3bKMnFV0gEbKmEvlbFspOSN0tlCY2TbAkcBnuxpDRES6t6bD\n2/4t4Fvu/uNhV5ifn2d2dhaAmZkZ5ubm6PV6wKOru7abbffPa/v2H9Xf7m3l9nJvj2XlbWO71+tt\n2j722HnuvPMHRNljj725444NYx+f6Odf0/nMIc+o7b5c8vTnbv369QCbXi8nrbNmtpmdA/yDu581\n5HI1szOnZnYOc6Bmviy2YprZZrYDqZF9fhe3P0mPfWedpzJyVtEBGiljLpWzbaXkjNBJ6cndHwB2\n7+K2RURksvRdTzJUfNkFoksv8XOg0pMstmJKTyIisnJooRijlLplGTmr6ACNlDGXytm2UnJG0EIh\nIiIjqUchQ8XX5yG6Rh8/B+pRyGLqUYiISHa0UIxRSt2yjJxVdIBGyphL5WxbKTkjaKEQEZGR1KOQ\noeLr8xBdo4+fA/UoZDH1KEREJDtaKMYopW5ZRs4qOkAjZcylcratlJwRtFCIiMhI6lHIUPH1eYiu\n0cfPgXoUsph6FCIikh0tFGOUUrcsI2cVHaCRMuZSOdtWSs4IWihERGQk9ShkqPj6PETX6OPnQD0K\nWUw9ChERyY4WijFKqVuWkbOKDtBIGXOpnG0rJWeEThYKM9vFzD5rZteZ2XfM7LldjCMiIt3rpEdh\nZuuBi939TDNbA+zg7vcuuY56FJmLr89DdI0+fg7Uo5DFInoUrS8UZrYWuMrd9xlzPS0UmYt/kYTo\nF8r4OdBCIYutlGb2U4CfmNmZZnalmZ1hZtt3MM5ElFK3LCNnFR2gkTLmUjnbVkrOCF0sFGuAg4HT\n3f1g4AHgxA7GERGRCVjTwW3eCtzi7t+st88D3rG5K87PzzM7OwvAzMwMc3Nz9Ho94NHVXdvNtvvn\ntX37j+pv97Zye7m3x7LytrHd6/U6vP/L3WZk3nGX57A9OJ855Bm13ZdLnv7crV+/HmDT6+WkddXM\nvhh4o7vfYGYnk5rZ71hyHfUoMhdfn4foGn38HKhHIYutlB4FwAnAp81sAXgm8OcdjdO5x76zzFMZ\nOavoAI2UMZfK2bZSckboovSEu18NHNLFbYuIyGTpu55kqPiyC0SXXuLnQKUnWWwllZ5ERGSF0EIx\nRil1yzJyVtEBGiljLpWzbaXkjKCFQkRERlKPQoaKr89DdI0+fg7Uo5DF1KMQEZHsaKEYo5S6ZRk5\nq+gAjZQxl8rZtlJyRtBCISIiI6lHIUPF1+chukYfPwfqUchi6lGIiEh2tFCMUUrdsoycVXSARsqY\nS+VsWyk5I2ihEBGRkdSjkKHi6/MQXaOPnwP1KGQx9ShERCQ7WijGKKVuWUbOKjpAI2XMpXK2rZSc\nEbRQiIjISOpRyFDx9XmIrtHHz4F6FLKYehQiIpIdLRRjlFK3LCNnFR2gkTLmUjnbVkrOCJ38zWwz\n2wD8DHgEeNjdn9PFOCIi0r1OehRmdiPwLHe/e8R11KPIXHx9HqJr9PFzoB6FLLaSehTW4W2LiMgE\ndfVi7sBXzOwKM3tjR2NMRCl1yzJyVtEBGiljLpWzbaXkjNBJjwI41N1/aGa7kxaM69z9ko7GEhGR\nDnWyULj7D+v/f2xmfw88B3jMQjE/P8/s7CwAMzMzzM3N0ev1gEdXd2032+6f1/btP6q/3dvK7eXe\nHsvK28Z2r9fr8P4vd5uRecddnsP24HzmkGfUdl8uefpzt379eoBNr5eT1noz28x2AFa5+31mtiNw\nIXCKu1+45HpqZmcuvpEL0c3c+DlQM1sWWynN7D2AS8zsKuBfgAuWLhIleew7yzyVkbOKDtBIGXOp\nnG0rJWeE1ktP7n4TMNf27YqISAx915MMFV92gejSS/wcqPQki62U0pOIiKwgWijGKKVuWUbOKjpA\nI2XMpXK2rZScEbRQiIjISOpRyFDx9XmIrtHHz4F6FLKYehQiIpIdLRRjlFK3LCNnFR2gkTLmUjnb\nVkrOCFooRERkJPUoZKj4+jxE1+jj50A9CllMPQoREcmOFooxSqlblpGzig7QSBlzqZxtKyVnBC0U\nIiIyknoUMlR8fR6ia/Txc6AehSymHoWIiGRHC8UYpdQty8hZRQdopIy5VM62lZIzghYKEREZST0K\nGSq+Pg/RNfr4OVCPQhZTj0JERLKjhWKMUuqWZeSsogM0UsZcKmfbSskZobOFwsxWmdmVZva5rsYQ\nEZHuddajMLO3Ac8C1rr7kZu5XD2KzMXX5yG6Rh8/B+pRyGIrpkdhZnsBhwN/08Xti4jI5HRVevow\n8B+Jfzu61UqpW5aRs4oO0EgZc6mcbSslZ4TWFwozOwK4090XAKv/iYhIodZ0cJuHAkea2eHA9sDO\nZvZJd3/N0ivOz88zOzsLwMzMDHNzc/R6PeDR1T1y+6ijjuXuu+9sfMfbtuuue3DXXXdsygPD8/bP\na3s+HtXf7m3l9nJvj2XlbWO71+t1eP+Xu83IvOMuz2F7cD5zyDNquy+XPP25W79+PcCm18tJ6/QD\nd2b2IuBPSm1mT3sjM/7+g+ZAzWxZbMU0s1eWKjpAI2XUV6voAI2UMZfK2bZSckboovS0ibtfDFzc\n5RgiItItfdfTCNNedoi//6A5UOlJFlPpSUREsqOFYqwqOkAjZdRXq+gAjZQxl8rZtlJyRtBCISIi\nI6lHMcK016fj7z9oDtSjkMXUoxARkexooRirig7QSBn11So6QCNlzKVytq2UnBG0UIiIyEjqUYww\n7fXp+PsPmgP1KGQx9ShERCQ7WijGqqIDNFJGfbWKDtBIGXOpnG0rJWcELRQiIjKSehQjTHt9Ov7+\ng+ZAPQpZTD0KERHJjhaKsaroAI2UUV+togM0UsZcKmfbSskZQQuFiIiMpB7FCNNen46//6A5UI9C\nFlOPQkREsqOFYqwqOkAjZdRXq+gAjZQxl8rZtlJyRmj9b2ab2bbAPwOPq2//PHc/pe1xRERkMjrp\nUZjZDu7+gJmtBi4FTnD3y5dcRz2K8QmmvD4PmgP1KGSxFdOjcPcH6pPbkvYq9EwXESlU66UnADNb\nBXwL2Ac43d2vWO5t3H///WzcuLH1bE2tWdOfmgroheVoqqoqer1edIwxKjSX7VHOdpWSM0InC4W7\nPwIcZGZrgf9lZvu7+3eXXm9+fp7Z2VkAZmZmmJubo9frcfPNN7PPPk8DVrNqVYr4yCNp0Zjc9oNL\n0lb1/70Jbm9Tlz5yUNX/97Zie2ELfr7eqhuN/V/kSW0PJGiYt+1thuZbWFiY+Hys5O1h87lu3Sx3\n3vkDIm233Y4cc8zRm14vJ63zz1GY2UnA/e7+oSXnD+1RXHvttbzgBcdx773XdpptlLVrD6zHj61P\nT/f4KYN6FNGPwXSLfw7A4PNgRfQozGw3M9ulPr098FLg+rbHERGRyeiimf1E4J/MbAG4DPiyu3+x\ng3EmpIoO0FAVHaCBKjpAI6UcT6+c7SolZ4TWexTufi1wcNu3KyIiMbL8rif1KPqia6PR46cM6lFE\nPwbTLf45ACuuRyEiIiuLFoqxqugADVXRARqoogM0UkqtWjnbVUrOCFooRERkJPUohlCPIofxUwb1\nKKIfg+kW/xwA9ShERCRrWijGqqIDNFRFB2igig7QSCm1auVsVyk5I2ihEBGRkdSjGEI9ihzGTxnU\no4h+DKZb/HMA1KMQEZGsaaEYq4oO0FAVHaCBKjpAI6XUqpWzXaXkjKCFQkRERlKPYgj1KHIYP2VQ\njyL6MZhu8c8BUI9CRESypoVirCo6QENVdIAGqugAjZRSq1bOdpWSM4IWChERGUk9iiHUo8hh/JRB\nPYrox2C6xT8HQD0KERHJmhaKsaroAA1V0QEaqKIDNFJKrVo521VKzgitLxRmtpeZXWRm3zGza83s\nhLbHEBGRyWm9R2Fm64B17r5gZjsB3wJe4e7XL7meehRjRddGo8dPGdSjiH4Mplv8cwBWXI/C3e9w\n94X69H3AdcCebY8jIiKT0WmPwsxmgTngsi7H6VYVHaChKjpAA1V0gEZKqVUrZ7tKyRlhTVc3XJed\nzgPeWu9ZPMb8/Dyzs7MAzMzMMDc3R6/XA2DjxvtILyy9+tpV/f9kttP4gyY7/mNfVMddfyF4/Cbb\nC1vw89vWu/7Rqvr/3oS34+//HnvszbnnrgfY9PvZf1FdSdsLCwtDL497/HubTg++Xk5aJ5+jMLM1\nwOeBL7n7R4ZcRz2KsaJro9Hj55Bh2sdPGaa5T6IeRXelp08A3x22SIiISDm6ODz2UOBVwGFmdpWZ\nXWlmL2t7nMmpogM0VEUHaKCKDtBQFR2goSo6QCOl1P5LyRmh9R6Fu18KrG77dkVEJIa+62kI9Shy\nGD+HDNM+fsqgHkX0/V+ZPQoREVkhtFCMVUUHaKiKDtBAFR2goSo6QENVdIBGSqn9l5IzghYKEREZ\nST2KIdSjyGH8HDJM+/gpg3oU0fdfPQoREcmYFoqxqugADVXRARqoogM0VEUHaKiKDtBIKbX/UnJG\n0EIhIiIjqUcxhHoUOYyfQ4ZpHz9lUI8i+v6rRyEiIhnTQjFWFR2goSo6QANVdICGqugADVXRARop\npfZfSs4IWihERGQk9SiGUI8ih/FzyDDt46cM6lFE33/1KEREJGNaKMaqogM0VEUHaKCKDtBQFR2g\noSo6QCOl1P5LyRlBC4WIiIykHsUQ6lHkMH4OGaZ9/JRBPYro+68ehYiIZEwLxVhVdICGqugADVTR\nARqqogM0VEUHaKSU2n8pOSN0slCY2cfN7E4zu6aL2xcRkcnppEdhZi8A7gM+6e4HDrmOehRjRddG\no8fPIcO0j58yqEcRff9XYI/C3S8B7u7itkVEZLLUoxirig7QUBUdoIEqOkBDVXSAhqroAI2UUvsv\nJWeENZGDz8/PMzs7C8DMzAxzc3P0ej0ANm68j/SL0KuvXdX/T2Y7jT9osuM/9kVg3PUXgsdvsr0Q\nPP6WbOc8/pbM55Zt919E+7+fK3F7YWFh6OVxj39v0+nB18tJ6+xzFGa2N3CBehRbI7o2Gj1+Dhmm\nffyUQT2K6Pu/AnsUNav/iYhIwbo6PPZs4OvA08zsZjN7XRfjTEYVHaChKjpAA1V0gIaq6AANVdEB\nGiml9l9Kzgid9Cjc/bgubldERCZP3/U0hHoUOYyfQ4ZpHz9lUI8i+v6v3B6FiIisAFooxqqiAzRU\nRQdooIoO0FAVHaChKjpAI6XU/kvJGUELhYiIjKQexRDqUeQwfg4Zpn38lEE9iuj7rx6FiIhkTAvF\nWFV0gIaq6AANVNEBGqqiAzRURQdopJTafyk5I2ihEBGRkdSjGEI9ihzGzyHDtI+fMqhHEX3/1aMQ\nEZGMaaEYq4oO0FAVHaCBKjpAQ1V0gIaq6ACNlFL7LyVnBC0UIiIyknoUQ6hHkcP4OWSY9vFTBvUo\nou+/ehQiIpIxLRRjVdEBGqqiAzRQRQdoqIoO0FAVHaCRUmr/peSMoIVCRERGUo9iCPUochg/hwzT\nPn7KoB5F9P1Xj0JERDLW1d/MfpmZXW9mN5jZO7oYY3Kq6AANVdEBGqiiAzRURQdoqIoO0Egptf9S\nckZofaEws1XAfwd+E3g68Eoz+9W2x5mchegADZWQs4SMoJztWlhQztJ1sUfxHOD77v4Dd38YOBd4\nRQfjTMg90QEaKiFnCRlBOdt1zz3KWbouFoo9gVsGtm+tzxMRkQKtiQ4wzEMP3Q38bdj4Dz98d31q\nQ1iG5dkQHaCBDdEBGtoQHaChDdEBGtmwYUN0hEZKyRmh9cNjzezXgHe7+8vq7RMBd/dTl1wv+ngz\nEZEiTfrw2C4WitXA94AXAz8ELgde6e7XtTqQiIhMROulJ3f/hZm9BbiQ1AP5uBYJEZFyhX0yW0RE\nyqBPZouIyEhFLhRmtqeZZX/IrZk91czebmaHRWcZpoSMoJxtKyFnCRn7Ssm6pTmLWijMbNbMLga+\nDLzfzH49OtMwZvYC4CvAfsAfmtmbgiM9RgkZQTnbVkLOEjL2lZJ1q3K6e9b/gO0GTh8FfKA+/Vrg\ns8Az6m0LznkY8JR+FuBPgVfX288FLgB6kVlLyKic05mzhIylZW0zZ5Z7FGa21sz+ysxuAD5gZnvX\nF/0OcHN9+lzg/wBv6P/YhGOmQc32N7NrgHcDZ5rZYZ5mfn9gHYC7XwZ8HXh9RNYSMirndOYsIWNp\nWbvImeVCAbwM2I50xx4C/tTMtiftNr0cwN0fBM4DXlhvPzKJYGa2l5mtHTjrGODv3P2FpMXrODPb\nFzi7n7X298ABZrZt11lLyKic05mzhIylZZ1EzrCFwpI1Zvb7ZvY1M3urme1TX/zLwEPuvhH4MHA3\n8CrSZzOeaGa/VF/vBuBmM3veBPLuZ2ZfBC4B3mNm/S86/Fdgh/r0/wTuAI4grdaPH9gbugu4Hnjm\nNGdUzunMWULG0rJOMmfYQlHvCr0IeA1wGrAt8Nf1xXcAP6pXultIn/TelzQB3wH+oL7eNsBP6/Nb\nZ2Y7DmzOAbe6+yxwEfCB+vy7gAfNbGd3vwv4PulLEP+V9MC8vb7e44Bf0PIX9JSQUTmnM2cJGUvL\nGpVzYguFmT3PzE41s/l620jd939w9wvc/TRgbzN7PnAbaUXcv/7x64Ad6/NOBw43s5eTFpk9gKtb\nzLmrma03syuA95nZ7nXWZwCXmpm5++eAe8zsCNJezc715dTbuwOPkPaGnmBmfw2cA2x09x9NQ0bl\nnM6cJWQsLWsOOSeyUJjZ04G/BH4O/Dsze3s99p7Az+s7DbCeVGK6GngY6JeUriR18B9w938GTgTm\ngUOBP3P3RwZuY2u9sB77cFKD553AWmA1sK7eEwI4q856eX2/fgvA3b9R38YaT19dcjxpL+jP3f11\nU5RROaczZwkZS8san3PY4VBb+g/YiXQk0lwdDOBDwAn16WcDHwWOBl5K2qPo/+y/Ie1KQVoYrgJ+\nBTgI+N/AEweuu1WHndWTfDxwMamUtVt9/mcHsj4FeF99+SHA14DVA/fzx/Xt7Ena63kLcCbwMWDH\nFuYy+4zKOZ05S8hYWtacc7a6R2Fmc6SG8yuAk4F31RfdRjpuF9JKdinwu8A/AuvM7EAz28ZTP+I2\nM/t1d78IOAM4FTgfOMfdf9gfy+uZ2Qq/DRwJnELaczmtPv9C4Pn16VtID8Th7n4FaTX/t/X49wGX\nAYe4+23A75HKYHcA73L3+7c02MDe0ctzzbhEtnMJms82cxY4l5DxfEIZc7pV3x5rZs8hNZkvdPcf\nk/YWbnD3eTM7GHivmT2btEL+ppnt4O4PmNnVpEO41pHqZG8EPmpm/w+4FripHuKvgLPd/WdbmM/c\n3c3sEOA40gR/wdOhtU8DbnT3i8zsJtInvX8D+BbwO2a2m7v/xMy+D9xnZk8m/S3wV5vZE4C9SI30\nywHc/ZvAN7ckZ5312aQ9sZ8D7wd+BDw1l4wlzWWdV/M5Jc/NOmMx81nnzX5OBy1rj8KSbczsNWZ2\nFakxMgP0X8h/AWyo9w6uJO36PA+4j/S3KY6or/cwaWL2IO01fJvUn7gY+Im73wppr6GFReKFwCdI\nHf+XAH9RX+UR4AYz297db6qzHgjcC9xOWsj692k1aa7+rs77KuBZwBm+lcdJm9kuZnZmfds3AR9x\n9x+Z2SrSu4UcMq6u5/JFpN3YXOfSzGwnM1tP3vO5fT2fPTJ9bprZtma2Y+5zWWddm/t81jl3MrPt\nzOwsMp/Tx2hSnyIdcfT8+vRMHeyjm7neW0kfE9+z3j6a1I/Ym/SVGxfX528HfJW6BlefdxDwuCZ5\nRuTcgVTjO5u0l7IN8O+BN9eX7wpcU491DKnWN1tfdgTp8NzdSLuq1wC7kHolXxzMBqxqIeM5wOtI\ndcVTgeMHrtPv7bwF+C+TzjjwmL+B9ET8E1LzLKu5XJLz/Pr5t3uO81nfxs7AF4BP1Ntvy3A+d65v\n83/U26dlOpc7kF5Tvkr6cFmu89nPeRHwmfq8LJ+fo/6N3aMws3cCNwJfMLM93P0eUh3s9rq3cKQ9\n+oG3b5B2f/ofnLuU1NR+wN3PAu4ys0+RmtTfAzbVzNz9Knd/aFyeETnXAZ8HesCnSM2eo0h7NBvr\nMe4GPkd6QfkK6UVlv/omvkY6MuAhd/886Z3JeaTDcc8i7QX1s27Rir0k4yeBN9UZbwB+xczeV7+D\ne72lDxV+iVSem1jGOueOpF/Aw0hP1N8g9ZQOIb07C5/LzeQ8g3SUx1HAd4H9cpnPAduTPi+0j5nt\nRvo9WV3ffvh8DmR8HOn5+KR67GeY2V/kMpdmtg2p13k08H53/936ooMGxgifzyU5T3P3/h7BtcD+\nOc3pWA1WxB5p9+dvgLfV5x1CesG7rQ5+NvDB+rL3Au8Z+PkrgIPq09uSDvE6pO0Vj/QEf+7A9jzp\n3dBrgcsHzn8ScHt9+s2kj7jvWv/8BcCTB667W8cZX0M6GmFf4DOkT1G+Eviv1EeDTTrjwO3ODJz+\nT8AJ1Ife5TCXQ3L+B9Khg0/NbT7r234tqR59EvD7pOblFZnNZz/ju0gvso+v5/Ezmc3l+cCrlpx3\nDHBZZvO5uZxPrrNk9fwceT8a3NH+oVfHAFV9ehvSu7hd6u29SXsTh5B2Xc8jvcP7Emnl27bzO5Lq\newab/mrfwTxa6vop6Xjj/nW/Qv2CTdrVu7C+zjsmnPEg4JL+k3rgetsAFXBYvf3eSWVcknctqXd0\nJ/CeevunwB7Rczkk5x11hh2py585zOfA4/064A9Jez2frs/7SQ7zOSTjufV5g4el5/Lc/G3SnviH\ngH8ilbz3Jn0q+QnR8zki57tJVZdsnp+N7scy7vDjSR98e3q9vWbJ5euBo/tPLFJZ5XgmsEgsydF/\nwp8FvLU+/Sng1Pr0L5H2jp488CAdwMDXmU8445sHz6tPr6vn88CojANZ/oh07PYZpF7A1+tfSsth\nLjeT83TS4YW/nNt8ko6HX02qM19Metf+beCkjJ6bgxm/Sjry8ODc5rIe+8vAfyZ9/uozpD2gb+T2\n/FyS89Okr9rYN8c5HfZvWX8z28w+Btzr7ifW26tIRy69GXg6cIxvRZ+hLWa2F/Bx4I/d/QZLXzb4\nB6SMewJXufvrR93GBDO+yd1vrM87iFSaOwJYcPc/Coy4iJk9k7Tw/wuphnoA6Z1R+FwOMrMDSOWn\n/wY8QHpHFz6fZrYTqaSzLWn+fpX0ZW7vJL2L35fg+dxMxn1J/Z6XknqNLybNZxbPTasPt69PP5P0\nO34p6asrsnl+Lsl5AOmbJT5C+mbsLJ6f4yz3cxRnAB+pmzT7kZ7gh5IenHfmsEjUDqL+PIaZvQG4\nlfQLeQxwvadDd6P1M95cZ7yJ9ITZSNrLuCoy3GbcRfpW35Pc/ZNm9mrgOxnmvId0lMi3SY/5NuQx\nnxtJR8A8TNqT+AXpd+Za4O31fH43+Lk5LOODZnYkaQHJYS4B6L/41u4hfV7iJHc/O6fn55KcPye9\nub6OtJeRy/NzpOXuURxLalw/SPoGwovc/XsdZdtiZnYpqaG5gXT88Snufk1oqCWWZLwDODG3uTSz\nXUjvIo8jfUHjGcDp7v7wyB+csM3k/Li7fzA21Wj1h6X6fYA7ovNsTp3xaOBMT0cRZcXMtiX97Zrf\nI1UL/hL4mKc/T5CNzeQ8w90/HJtqeRovFGZ2IOn43/NIjbhOvtp7a9V7OyeT3qH/radPZmalhIwA\nZraGVG56kJQz18e8iJyQPrwIPOLLeYc2YSVk7DOz40mHbH8q88e9iJzDLGuPQkREpk+ufwpVREQy\noYVCRERG0kIhIiIjaaEQEZGRtFCIiMhIWihERGQkLRQiIjKSFgoRERnp/wOdoYFI5JlUBgAAAABJ\nRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.hist(xrot=20)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}