diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 7a1930592dccd385a6f70a9f3a3668594485a68b..ee6c524dd5158f51c8fad87b748bf66428f0a7b0 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,7 +1,7 @@ --- -title: "Votre titre" -author: "Ana Sodan" -date: "La date du jour" +title: "À propos de pi" +author: "*Ana Sodan*" +date: "*8 Mai 2020*" output: html_document --- @@ -10,24 +10,45 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +## En demandant à la lib Maths -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Mon ordinateur m’indique que $π$ vaut *approximativement* -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: -```{r cars} -summary(cars) +```{r} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## En utilisant la méthode des aiguilles de Buffon + +Mais calculé avec la **méthode** des [aiguilles de Bouffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon),on obtiendrait comme **approximation**: + +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` + +## Avec un argument “fréquentiel” de surface + +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)) +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() -```{r pressure, echo=FALSE} -plot(pressure) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +Il est alors aisé d’obtenir une approximation (pas terrible) de $π$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: + +```{r} +4*mean(df$Accept) -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +``` +