Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
715d998f42c58555b2fbdb5aca4064cb
mooc-rr
Commits
a0424708
Commit
a0424708
authored
Jul 21, 2020
by
715d998f42c58555b2fbdb5aca4064cb
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_orgmode_R_fr.org
parent
3b117af7
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
1 deletion
+0
-1
toy_document_orgmode_R_fr.org
module2/exo1/toy_document_orgmode_R_fr.org
+0
-1
No files found.
module2/exo1/toy_document_orgmode_R_fr.org
View file @
a0424708
...
@@ -37,7 +37,6 @@ theta = pi/2*runif(N)
...
@@ -37,7 +37,6 @@ theta = pi/2*runif(N)
: [1] 3.14327
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
* Avec un argument "fréquentiel" de surface
SCHEDULED: <2020-07-21 mar.>
Sinon, une méthode plus simple à comprendre et ne faisant pas
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
intervenir d'appel à la fonction sinus se base sur le fait que si
$X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2 \leq 1] = \pi/4$ (voir
$X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2 \leq 1] = \pi/4$ (voir
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment