From 065e47f208145d31c31d54d6ef695359191e07ce Mon Sep 17 00:00:00 2001 From: 71d5def4c7627f037492744421db8d5d <71d5def4c7627f037492744421db8d5d@app-learninglab.inria.fr> Date: Sun, 29 Sep 2024 10:21:29 +0000 Subject: [PATCH] Minor corrections --- module2/exo1/toy_notebook_en.ipynb | 39 +++++++++--------------------- 1 file changed, 12 insertions(+), 27 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 60e78cb..5f135ce 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -4,21 +4,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# 1 On the computation of $\\pi$" + "# On the computation of $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 1.1 Asking the maths library" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My computer tells me that $\\pi$ is approximatively" + "## Asking the maths library\n", + "My computer tells me that $\\pi$ is *approximatively*" ] }, { @@ -43,14 +37,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 1.2 Buffon's needle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" + "## Buffon's needle\n", + "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -82,14 +70,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 1.3 Using a surface fraction argument" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$, then P$[X^2 +Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach" + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then P$[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { @@ -111,14 +93,17 @@ } ], "source": [ - "%matplotlib inline\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", + "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", + "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", @@ -129,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" + "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" ] }, { -- 2.18.1