From b862e46a5ba40f2b002c14213cea8388a2b096d0 Mon Sep 17 00:00:00 2001 From: 71d5def4c7627f037492744421db8d5d <71d5def4c7627f037492744421db8d5d@app-learninglab.inria.fr> Date: Sun, 29 Sep 2024 10:23:09 +0000 Subject: [PATCH] other little modifications --- module2/exo1/toy_notebook_en.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 5f135ce..43c0f28 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "source": [ "## Buffon's needle\n", - "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -71,7 +71,7 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then P$[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { -- 2.18.1