change cells

parent b643e827
...@@ -50,13 +50,7 @@ ...@@ -50,13 +50,7 @@
"hidePrompt": true "hidePrompt": true
}, },
"source": [ "source": [
"## En utilisant la méthode des aiguilles de Buffon" "## En utilisant la méthode des aiguilles de Buffon\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
] ]
}, },
...@@ -92,13 +86,7 @@ ...@@ -92,13 +86,7 @@
"hidePrompt": true "hidePrompt": true
}, },
"source": [ "source": [
"## Avec un argument \"fréquentiel\" de surface" "## Avec un argument \"fréquentiel\" de surface\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
] ]
}, },
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment