{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# Sujet 1 : Concentration de CO2 dans l'atmosphère depuis 1958" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Traitement des données : pre-processing" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Extraction des données depuis l'url et création d'une copie locale :" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "data_url = 'https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "# read data from url (and delete header)\n", "raw_data = pd.read_csv(data_url, skiprows=44, names=['date','CO2'])\n", "# path for local copy\n", "file = '/home/jovyan/work/module3/exo3/weekly_in_situ_co2_mlo.csv'\n", "# check existing local copy\n", "try:\n", " local_data = pd.read_csv(file)\n", "# if no local copy, create it\n", "except FileNotFoundError:\n", " raw_data.to_csv('weekly_in_situ_co2_mlo.csv')\n", "# read local copy\n", "raw_data = pd.read_csv('weekly_in_situ_co2_mlo.csv')" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Vérification et suppression de données manquantes :" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0dateCO2
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [Unnamed: 0, date, CO2]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]\n", "data = raw_data.dropna().copy()" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Conversion des semaines :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "import dateutil.parser\n", "data['period'] = [dateutil.parser.parse(strdate) for strdate in data['date']]" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hideOutput": true, "hidePrompt": false }, "source": [ "Tri des données et affichage" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Unnamed: 0 date CO2\n", "period \n", "1958-03-29 0 1958-03-29 316.19\n", "1958-04-05 1 1958-04-05 317.31\n", "1958-04-12 2 1958-04-12 317.69\n", "1958-04-19 3 1958-04-19 317.58\n", "1958-04-26 4 1958-04-26 316.48\n", "1958-05-03 5 1958-05-03 316.95\n", "1958-05-17 6 1958-05-17 317.56\n", "1958-05-24 7 1958-05-24 317.99\n", "1958-07-05 8 1958-07-05 315.85\n", "1958-07-12 9 1958-07-12 315.85\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd81dX5wPHPk71DFmEkkLC3IAFBURygOFpbtS391b3rav3pr4rVDkdLbWvtsmqHpdZZ6yooFgfiBMOQvWcY2SF7n98f53u/914IEiTj3pvn/Xrx4juv52vCk5Pzfc5zxBiDUkqp0BXW3Q1QSinVuTTQK6VUiNNAr5RSIU4DvVJKhTgN9EopFeI00CulVIjTQK+UUiFOA71SSoU4DfRKKRXiNNArpVSIi2jvhSISDuQDe40xF4jIL4GvAI3ANuAqY0yFc+0c4BqgBbjNGPPWF312enq6ycnJ+XJPoJRSPdTy5ctLjDEZR7uu3YEe+B6wAUhy9hcBc4wxzSLyC2AOcJeIjAJmA6OBfsDbIjLMGNNypA/OyckhPz//GJqilFJKRHa157p2Dd2ISBZwPvAXzzFjzH+NMc3O7qdAlrN9IfC8MabBGLMD2ApMbm/DlVJKdaz2jtE/CvwAaD3C+auBN53t/sAen3MFzjGllFLd4KiBXkQuAIqMMcuPcP6HQDPwjOdQG5cdVgtZRK4XkXwRyS8uLj6GJiullDoW7enRnwJ8VUR2As8DZ4rIPwFE5ArgAuA7xlvYvgDI9rk/C9h36IcaY540xuQZY/IyMo76LkEppdSXdNRAb4yZY4zJMsbkYF+yvmuMuVREZgF3AV81xtT63PI6MFtEokUkFxgKLOuEtiullGqH48mj/wOQCCwSkVUi8jiAMWYd8CKwHlgI3PxFGTdKKdWTbNhfSVev7Hcs6ZUYYxYDi53tIV9w3UPAQ8fTMKWUCjXzPt7Jj19fx12zRvDd0wd32X9XZ8YqpVQX+fHr6wD4xcKNXfrf1UCvlFJdbPowm4Dy7sZCPt9T0en/PQ30SinVSUqrG9ocj69paKa11XD13/N5/P1tnd4ODfRKKdUJ9lXUMfHBt3liyXYAPtjinS9UUF7HgjX7AViz92Cnt0UDvVJKdYIN+ysBmPumHY+/7K82yzwmMozCqnr3+H0XjOr0tmigV0qpTrCjpKbN4xOyUzAG9lbUATBlUFqnt0UDvVJKdYK31h0AID4q3G+c/qYz/NMqk2KOKcv9S9FAr5RSHWxrURWf7SwHoKaxxe293zFzGDlp8X7XirRVHqxjaaBXSqkO8Lt3tvDR1hIAZjyyxO/cWueF6+j+SWSlxBITaUPvjdO7ZtJU5//OoJRSIW5bcTWPLNoMwM655x923pNZk5USh4gQFR5GfVMrg9LjD7u2M2iPXimljtMj/93sbre0Hp43//G2UkQgOyUOgOtPGwTAxJyULmmfBnqllDpGNz2znD8t9k50amj2rslUUt3gbn/vrKEArNxdQb/kWGKjwgH47ulDWPOTsxmckdAl7dVAr5RSx2BzYRVvrDngV6/m7Q2F7vauUm/V9u/PGOpuj+iT6G6HhwmJMZGd3FIvDfRKKfUFDi1hUFrd6G43tRy+uuq18z5zt0WEGSN7AxAd2X3hVgO9UkodQVFlPblz3uDVlXvdYz96ba27vau0llWHFCWrrG8G4NnrTgJwe+4HDtZ3dnOPSAO9UkodQWGlHW///gur3JesW4qq3fN7ymv52h8/AuCBC0f73XtSrp3xOjk3FYDZkwZ0enuPRAO9UkodQUS4dzLTgcrDe+QF5XXu9lkjM0mOtb333PR4wsPsvbMnZTPv6sl8Iy+rk1t7ZBrolVLqCJpbvOPzu0praD5kTP79Td6KlP16xTK2fzIAWSmx7nERYfqwjC6ZAXskGuiVUuoIPt1e6m7vKq3l1VX73P0hvRP8sm3A9uQBslPjuqaB7aSBXimljuADp6QBQGFlPVuKqgB4+aaTGegTzJ+6ahIAKXF26KZXbNelTraHBnqllDqCJZu9QzN1jS3sKqllUEY8Jw5IoV8v7/BMrlOo7PKTc5gwoBeXT83p6qZ+IQ30SinleHdjIbe/sApjjF/+fEpcJMXVDSxcd4DtxbbOfGZStM/5KADSE6J55aZT6JMc07UNPwoN9Eop5bj67/m8snIvZTWNNPm8iC2vbeLlFTaX/vThdmHv3oneYJ4cF1hDNYfS6pVKKYX/LNddZbXEOXVpDnXVKbkApMZHdUm7OoL26JVSPZIxhkKf3PiahmZ3e8P+Sn7/zlbADsfcfe4I99yQ3rYQ2bSh6QCcMqTzlwI8Xu0O9CISLiIrRWS+s58qIotEZIvzd4rPtXNEZKuIbBKRczqj4UopdTx++OpaTvrZO25xMs8sWIC1eytZsGY/AO/cMd0vL76fM/4eExnO/Fun8adLJ3Zhq7+cY+nRfw/Y4LN/N/COMWYo8I6zj4iMAmYDo4FZwGMi0vbvQEop1U2eXbobwC03fOe/PnfPPbdstzvLNTk2kv69/CdAeYzpn0xSF1ah/LLaFehFJAs4H/iLz+ELgXnO9jzgaz7HnzfGNBhjdgBbgckd01yllDp+vjNcZ47KBGz5YV8H65rcCVCDuqhufGdpb4/+UeAHgO/830xjzH4A5+/ezvH+wB6f6wqcY0op1S0amlu48qllLN9VBsC7G4vcc+U1jbS0GnfxkK+c0M89t6PEplImx0byu29P4LnrpnRhqzvOUQO9iFwAFBljlrfzM9sq6HDY2loicr2I5ItIfnFxcRu3KKVUx1i+s5zFm4q5f74dfa5p9L54Layq5+Nt3hmwvuPxD18yzt3+6gn9mDo48F+8tqU9PfpTgK+KyE7geeBMEfknUCgifQGcvz0/IguAbJ/7s4B9HMIY86QxJs8Yk5eRkXEcj6CUUl9swwE7LBPvpExmJNgXqhmJ0RRWNrBw7QEAXrxhKovWe+vXZCYF1sSnL+uogd4YM8cYk2WMycG+ZH3XGHMp8DpwhXPZFcBrzvbrwGwRiRaRXGAosKzDW66UUu302Hs2VfLjbbZI2SfbbQ9+2pB0Gptb2V1ml/+bMKAXQ3zG41PjgidX/oscTx79XGCmiGwBZjr7GGPWAS8C64GFwM3GmJbjbahSSn1ZpTXe5f9qG5v543s20ybNmfS0u6yWEX0SiQwP49ffPMG9dmTfRELBMQV6Y8xiY8wFznapMeYsY8xQ5+8yn+seMsYMNsYMN8a82dGNVkqpI6lvauHaeZ+5S/wt31Xud37pDjdUcc6YPoAtQbyt2K4c5TsjNiI8NOaUhsZTKKWUY/7q/by9oYgH568H/BfrBvjbhzsA+M8t08hxqk4CDEq3QzYiQnREGBdNCJ1kQa11o5QKKW86M1rjom14K69tAmzN+Kue+oydpTZlMislll4+xciuPCXH3d704Lld1NquoYFeKRXU6ptaEIHoCDvkkuTMaF21u9xd0Btg6iCbGrmnzK7zmnJIUbKBaYG1KlRH0qEbpVRQG3HfQmY+ssTdf2WlLSdcWd/MHiebpldcJDGR4SREH7lvmzcwtXMb2o20R6+UClqe6pOe9MhDvePMgPVMguqTHMPWomq/a247aygNzS1ERYRuv1cDvVIqaGwtqqakuoEpzjDMqQ+/554rKK91Jz55vLvRTn568GtjAShz0ix/dMEo95r/nTmsU9scCDTQK6WCQmurYcYj7wOwc+75ADQ2e8tv/fKtTby2yjsJP0zgo612gtRQp4a8J9CfkJ3cJW0OFKH7u4pSKqRU1Xvr09Q3HT4Hc0w/b/D+5zUnkZXifbka74zN//u7Uzl1aDonDkg57P5Qpj16pVRQqKjzzm4tKK8lzKcufHiY+K0WNX5AL3fcfmx/7w+AiQNTefqak7qgtYFFe/RKqaBw32vr3O3dZbWc+ev33f2UuEg2OoXLbjtziF92TVpCaNSrOR4a6JVSAWn9vkpufnYFxhiaWlpZstlbztyTCw8w/9Zp9IqLYu2+gwBMcUoJ33LGEADOGtGbnk6HbpRSAem8330AwAVj+3LykHS/c3vKahmemUhBeS1j+ieTlRLrpk1mO2PzN0wfxLisZM4amdm1DQ9A2qNXSgWcJp+l/pZsKfHb75MUw+aiajYVVlHTaF/KemrWRIYL/Zz1XRNjIjl7dB/Cw9paC6ln0UCvlOp2e8pq+ftHOzDGlizYW+4dmokKF780ypF9E8nfaStQeoZlcpzyBU0tRgN7GzTQK6W63WOLt/GT/6xnxW5bUvgvH253z837ZBe/f3cLAA9+bQzZqXHUOj35q6flAnDu2L4AnDe2T1c2O2joGL1Sqts9t2w3ABf/6RN2zj2fcJFDzu8BYOaoTL8c+v7OME1mUgwr7pv5hbVsejLt0SulutTB2iaW7Shzh2naMu+TXQCcP7YvgzLiOWVIGr3iIslMivGbCOVbcTI1Piqk69UcD/3xp5TqUic+uIiWVsP3Zwzl+zOG+b1oHZQez0GnfjxASnwk5TWNbC+ucY8NSPUGdxEdj28P/fGnlOpSnhrxj75tx92vfGqZe257SQ1r9tp8+KyUWCLDw9yFQ2aMtC9eR/ZNZNboPjxzbc+b4fplaaBXSnWqN9bsp6S64YjnPYXHPNY5E5+eu24KbzirRQFcON4u7SciPH7ZRE45JLdeHZkGeqVUp1m/r5KbnlnBnf/63D3WJynG3fYdp790ygAAPi+oIDxM6JMcw3WnDnLPD85I6IIWhyYN9EqpTvP0pzsBWLzJli84cLCeAz7Fx4qrvD39M52c+Hc3FjGiTyKR4WFc46RPAgzK8C7krY6NBnqlVKeJDLchxhOkb3l2BQDJzrqunqGZv181iYwE29Ovb2p1ywj7vmyNiQzvmkaHIA30SqlOU1lnX6QWV9qee39nSb/rT7NDMv9aXgBAXk4q2amx7n0TB3rrxcdqgD9uGuiVUh2ipdWQc/cCbnZ67QCvOis+VTU009TS6q4ANX1YBgDr9lUSJpAQHUGvOG85Yd+FQT695yxW3DezKx4hZGmgV0p1iEse/xiABavtcMw7Gwr9zu8s8ebCpydEu9u+1SXf/t/TeOBrYxjgMxEqOTaS1HitKX88jhroRSRGRJaJyOcisk5EfuocHy8in4rIKhHJF5HJPvfMEZGtIrJJRM7pzAdQSnWP2sZmv2JjK3dXuNtV9U3c/sIqwFumYOZvlrjnfQP36H5J7vaQ3olcNmVgp7W5p2pPj74BONMYcwIwHpglIlOAh4GfGmPGAz9y9hGRUcBsYDQwC3hMRHSQTakQ0tpqGPWjtxh275vusVmjvQXFthXX4Emc/PPleX73bnpwll+pAt+ZrqpzHDXQG6va2Y10/hjnj+dHcTLgWX79QuB5Y0yDMWYHsBWYjFIqZHxeUOG339zSypq9B/FUCN5WVE1rq+GSiVmM6pfk5s6nJ0QRHWH7fbMnZQMwOTe16xreQ7VrjF5EwkVkFVAELDLGLAW+D/xSRPYAvwLmOJf3B/b43F7gHDv0M693hnzyi4uLDz2tlApgm5z1WQH2VdRRXN3A3oo67po1gvAw4dVVe6lpbHEX5s5MtoE+xeeF69yLx7Fz7vl+RcpU52hXoDfGtDhDNFnAZBEZA3wXuN0Ykw3cDvzVubytKkOHlakzxjxpjMkzxuRlZGR8udYrpbpEaXUDW4u8wf3ul9e428VVDZTX2DTKrJQ4slNi+XBrCQCTcmxvvckZyz9pkPbeu8MxZd0YYyqAxdix9yuAl51T/8I7PFMAZPvcloV3WEcpFYQmPvg2Mx5Z4lcL3qOwsp71+ysByE2PZ0BaPJ7KBv162Z6853xCdGTXNFj5aU/WTYaI9HK2Y4EZwEZs8J7uXHYmsMXZfh2YLSLRIpILDAWWoZQKeq+s3AtATKQ3dBRWNfDexiL6JMUwok8ifZ3x+LiocHcG7ILbpjE8M5E7zx7W9Y1W7apH3xeY52TOhAEvGmPmi0gF8FsRiQDqgesBjDHrRORFYD3QDNxsjDm8G6CUCgo1Dc3u9pyX1zA5N5X6Jm9a5X2vriUtPoppQ9MJc4qRAdQ2trglDEb3S+at20/r2oYr11EDvTFmNTChjeMfAhOPcM9DwEPH3TqlVLdbtcc/w+ZjZ/x9WGYCmwttQl5pTaP74tUT6FXg0JmxSik/B2ub+Ff+HreE8Hf+stTv/H2vrQPgH1efxKlDvTXh1++z4/BRTiGz850Fu1X306UElVJ+Trj/v4B9gfrjr4x2j584oBeFlTaNEiAzKZrBGQl8sMX28K91asd7MmuuPCWnC1utvoj26JVSbXrqo51U1XvXb52Uk+oGebAlhH1LGQzvkwjYFMudc893UytV99NAr1QP1tJqeHt9obuOq++KTwC/e8cm003KSXFLDPvaf9C7iEh4mC7UHag00CvVgz28cCPX/iOfB+avB6DIZ8WniDChzJkI9cy1U+iX7A30P79oLGALm6nAp4FeqR7s/c22/MiyHWUAnPSzdwBvaeCK2kYGZ8QTFRFGv17eQH/WSLvs34NfGwPA45ee2JXNVsdIA71SPVRrq2GjU7NmU2EVdY3e6S6XThlAaU0jW4ur3bF336Gb3ok2hTIxJpKdc89n1hjNsAlkGuiV6iH+8/k+cu5ewA9fsXVqFjjrtYItNlZSbYdtwgQyk2JoaTXsKq11i44lx0by29njee/O07u87er4aKBXKgQ9tngrOXcv8MuSufW5lQA8s3S3335MZBilNQ3uxKiXvnsyGT4rQHnWfQW4cHx/ctPjO739qmNpoFcqBD28cBMAp8x9t83zvtk1d549HGPggy3FhIld8al3knd262hnxqsKXjphSqkQ19DcQk2Df7mp4mpvdk1Omu2hf7ytlAGpcURHhJPmkx+fpuu1Bj3t0SsVAv6Vv4efv7nB3R+c4R1e+euHOzjxgUUAnDPaLsT9+3e2uucznd57QXmdOx7vm2Fzjs8SgSo4aaBXKsi1tBr+76XVPPH+dowxzF+9j23FNe75+CjvL+4zRtpA//SnuwB46capDEjzrvCUlmB771ERYbx4w1TuPX+kToQKARrolQpyT320w93ed7CexZv8l+b0DdQXju/v7qfERZKXk+rWjAfo5bM9OTfVrV+jgpsGeqWC3Kur9rrby3eVExtpF98e5AzfLFx7AIA7Zg5zJj7ZoZpxWb0O+6zTh/fu7OaqbqCBXqkgU1HbyAGfGjNr91a624+9t5VlO8romxzDy989GcBdv/VMZzbrwFT7A8A3TTIlzvbkB2ckdG7jVbfQrBulgogxhvH32xerO+eef9j5jMRoPthSwu0zhtErzpstEyYwpLcN4mHO0M1An7H5j+8+i30H6/zG61Xo0B69UgHMGOOX8+6bFtnY3Epzi3dJv2lD0lm63dasGZppg/qZI2wvvl+vWKIj7JCOZ8S+j0+ufGxUuPbmQ5gGeqUC2G8WbSZ3zhs0NNs8eN8hm61F1by9odDdT42PotEJ/J7ceM8MV9/e+58uPZGHLx7HrDGaNtlTaKBXKoD97l2b7/6T1+3yff5j8wf5aGspAH++PI+EGO9IbE66Dewv5O8BcK8DiIuK4JuTst2Fu1Xo00CvVIBoamll0fpCd6hmdYF3Ue7Kelv3/fqnl7vHtpfUsLO0hrH9k5k5KpNnnRo2YIO5r7yBKZ3ZdBXgNNArFSCG/vBNrvtHPnPf3AjAV//wkXuusbnVb6x+UEY824ur+WBLibuc32VTBgLQO9FbkOye80YA8MINUzu9/SpwaaBXKgD4BvGXV+71O3fy4DT2lte5aZS9E+2i3Ov22f0sp078tafmAnDFyTnuvdefNpidc8/X2a09nAZ6pbqBMcZvGb6GZm/2zNRBaX7XDsqIZ//BOm5+dgUAj3xzPIMy4t0SxBMG2GGZgWnxfHjXGdx0+uDObr4KMhroleoGTyzZzqgfvcUmZ4WnBau9i4BsLqyiqr4JEbjhtEHsKKmhvLaJ3WW1AEwbmk5mojc1MjLc21vPSonTl6zqMEcN9CISIyLLRORzEVknIj/1OXeriGxyjj/sc3yOiGx1zp3TWY1XKlh5xuEv++tSwFaY9NheXEP+rnKMgVOHZrDfJ9PmgnF2yT5P0Adbk0apL9KeHn0DcKYx5gRgPDBLRKaIyBnAhcA4Y8xo4FcAIjIKmA2MBmYBj4lIeKe0Xqkg8crKAoqq6g873uqMza/f7y1j0NjSynpn/D03I56ffX2se86TD3/q0HT3WN9kb0lhpdpy1EBvrGpnN9L5Y4DvAnONMQ3OdUXONRcCzxtjGowxO4CtwOQOb7lSAWBfRR17fHrXYNdm9ZQBBiipbuD2Fz7n8r8uO+z+6IhwvxexP7/IBvWPtpaQEB1Bn6QYhvb2zljNTbfbwzITO/Q5VGhr1xi9iISLyCqgCFhkjFkKDANOFZGlIvK+iExyLu8P7PG5vcA5duhnXi8i+SKSX1xcfOhppYLCyXPf5dSH33P3C8prufW5ldz36lr32K/essv6bXTG4ytqG91zxdUNlNV49/s7C358vK2Usf2TCQ8TN30SvIXIMn3KFyh1NO0qamaMaQHGi0gv4BURGePcmwJMASYBL4rIILylNPw+oo3PfBJ4EiAvL++w80oFOt+euMffP9rpbre2GsLCxO9FK8CPnVmuYPPj//mpnej0u29P8Avqw5x6Nb4vV08cYEsLR0WE8dRVkxiQqkXI1NEdU/VKY0yFiCzGjr0XAC8b+92+TERagXTneLbPbVnAvo5prlKB42Bdk7vtCep9kmP8zqfER1HV4E2jbGpp5bVV9p/D4Ix4thXX8MEW+xvttCHp1DV513bN8SkjfPe5IxD8g/4ZWjtetVN7sm4ynJ48IhILzAA2Aq8CZzrHhwFRQAnwOjBbRKJFJBcYChw+OKlUkLv/P+vd7R2ldum+Dfur3GOlNQ20tvr3+lft8ZY1+P23TwQgf1c52amxpMZHkepTWthTmAzgxumDuWG65serL6c9Pfq+wDwncyYMeNEYM19EooC/ichaoBG4wundrxORF4H1QDNwszP0o1RQe27Zbj7dXspvZ08A/GewbthfycDUOP69osA9VlLdSJjYHwADUuPYXVbL9mKb1/C/M4eRnerNlvGUCI6N8iaoDemtZYNVxzhqoDfGrAYmtHG8Ebj0CPc8BDx03K1TKoDMeXkNAHeePZzsQ8bGd5XWsrW42u9YaXUjs5/8FIDrTxvEva+u9aZNpseTGONdn3WITy34W84YwsG6psP+G0p9WTozVqk2LN9Vxms+a7E2+pQo2F5S43dtQnQEJdUNvO8syp3mvFAtrfEuEjJjZCZgh2nAfxk/gME+vfc7zxnOA18b0xGPoRSggV6pNl38p0/43vOr+HCLXW912L1vuufuePFzv2szEqMprmpwa7+/5KzVunRHGbGR4Vx9Si59kmNIi49yC5EdGuh1mEZ1Jg30Sn2BR9/efNixhuYW9wfA9acNIj0hipLqBpJjI8kbmOIG8QWr91PX1EKuswhIf6fKZGZSNPHRdtT01984gYFpcYzsm9QVj6N6KA30qsfbsL+SnLsX8Na6AwB+67B6hlp8VdU3c6lTo+bC8f3omxzLnrI6Nh2oYkz/5MOu9wzLeCZDhfmkSF48MYv3/+8MEqKPKdNZqWOigV71eOf+9gPAmy7pW0QMoK6xhchw4dppuYfdOzwzkcykaPZW1FHb2MLwPrY0wQ2nDXKv8ZQrqGm0yWfJsZGHfY5SnUkDverx+jmTnNIS7EtUT0kDz/HVBRU0tRimDErjwvH93PuG9k4gIjyMqnrvhChPUN9T7q1/43k5u63IZuU85FOkTKmuoIFe9WjLd5Wzz+nBF1bWU1LtzZSZPjwDgLc3FAIwLiuZ051jANc5vfbBPqmRE521WU8baq9LjI5wZ7M+cdlEbjhtkFvGQKmuooFe9Sj1TS3kPbiIjQds9sv7m4rcc0VVDX6VKM8aYVMi39lYRO/EaHonxZCe4F2P1VNnZtaYPof9d4Y5Qzg/v9jbex/TP5k5543UhUFUl9NAr3qU/3y+j5LqRmY9asflf/fuVvecMfAHZ/+pKye5FSK3F9dQVGV7+ik+JQr6OOcznMW4Tx7sXQLwxAEp5N87gwvGeYd6lOou+qpf9ShvrLGVJA/NcvnrFXlcMy+fxZvtpKdxWcm0+NSpmTLIruKU5DObtZ+TRRMTGc6i208jOc7/Jatv71+p7qQ9ehWyGptbybl7gd8yfe85s1cbnRTKrJRYLhzfz60U2dJqGNo7gbSEaNJ8ArWnoFjvJHvsvLF9iIrw/vMZmplI70StEa8Ck/boVcjwVIoMC7Nj4AudvPgH5q/nmkNSIxubWymqqmf/wXqyU+L8KkV6Xq6Gh3nH0j3j8TGR4eyce37nPYRSnUADvQoZg+55A8ANxLc9t9I9V9vYzK5S/yX/rvzbZ7S0GrJTY/2Cum+deY/ctPjDjikVLDTQq5DQ1iIgvvZV1POeT4YNeBfkHp+d4nf8jBHeFMp37phOQ1PrYZ+nVDDRMXoVlDYdqGLFbm95ggfmexcB8eTCT85NdY/tP1jHwwvt2q3/uWUaMZHeb33Pkn2eEgWXT81xzw3OSGBUP61Do4Kb9uhVUDrn0SWAd5jGtz7NnvI60hOiWbajjMToCKoamtnpM2wzvE8io/sls3xXOZNyUty89rduP40DB+uJiQxHqVCiPXoVdHwX5fYs5FFa00i8szrTtuJqVhXYJfuqGpqJigjjvY122OaiCf2JighzX656UiTBplxquWAVijTQq4DX0mr8ShP4Fh1b7QT0D7aUMH14BlHhYWwrruaixz4G7PBNRkI07zqB/hxnFqsnj95Tm0apUKaBXgW8H722lrwH32aD8/LUU74A7GpPy51Swm+sOUBmcjT7K7w/CP55zUlE+4zHnzjAvnj11Izvm6y57yr06Ri9Cnivr9oHwJLNxYzsm8SmA7YKZFp8FAXltVTUNgLwf+cM54MtxXzu9PIBoiLC2F7sXfov3alQecXJOfROiua8MX276jGU6jbao1cBZfmucq6dl0+T83LVGEN1oy0DvHK3DeC/WLgRsC9Vl+0o46mPdiICl04hzlbpAAAdy0lEQVQZSGZSjJsv/9DX7bqr358x1P18z4vX8DDhgnH9NG1S9Qga6FVAufhPH/P2hkKe/8yuv/rBlhI87173HaxzUypjI8MpqmqgpLqRD7eWEB8VQXJsJG+vL3Q/6/ThvQHvwtxK9VQa6FW3McawYne5XxaNx1trbfmCCp+JUKsLDrovWX8wazizRnvLA3uyZe69YJR7zLNwyJj+yVwyMYvXbj6l4x9CqSCggV51m9lPfspFj33Mj19fB+BXC95Tst23jAFATppNi7xiag6De3vLEnzPGZ45bZh3Vqtv3fdffeMETsjWBT9Uz6SBXnWZhuYWGpu9E5uW7igD4MMtJQC8unIvAGECy5xzHuOy7KLbO0trOXlwGmFh4lcy2JM9k+KUCo7VSU9KuY4a6EUkRkSWicjnIrJORH56yPk7RcSISLrPsTkislVENonIOZ3RcBVcquqbGH7vQobd+6Z7zDPByePXizYDcO7YvjQ0t7o9/F5xkYz36Y17FgRJivUN9HbiU1xUBHPOHcFrt+gwjVIe7enRNwBnGmNOAMYDs0RkCoCIZAMzgd2ei0VkFDAbGA3MAh4TEe1e9XBjf/Jfv/2NByqpaWwB7EtW30U+ZjovTxc64/QpcVF89/TB7vlRfW3tmQifjJlkn6B/w/TBOhFKKR9HDfTGqnZ2I50/nn+VvwF+4LMPcCHwvDGmwRizA9gKTO64Jqtg0Npq3Prwh6qobeTaefnufn1TK7ud3vvknFR3EZD/rLb58y/dOJW4SO+UjyFOETJPL17LFij1xdo1YcrpkS8HhgB/NMYsFZGvAnuNMZ8fsthxf+BTn/0C55jqIYwxh9WG97WtuNotaZASF0l5bRM/eOlzAC6bOtBdi3V1wUFiI8NJS4imvqnFvX+CM4zTJzmGz390NkmxOu9PqS/SrpexxpgWY8x4IAuYLCLjgB8CP2rj8rZmoBzWtROR60UkX0Tyi4uLj6XNKsC95azsBLgvXxOiI5g6yC6eXVjZ4C6o/ZcrJgHQ7PT+x/RPJiXeOwyT5sxkjYkM54SsZKYPy6CXzwLdyXGRHNLRUEod4pi6QsaYChFZjB2eyQU8vfksYIWITMb24LN9bssC9rXxWU8CTwLk5eW1/Tu+Cgq7SmtYtL6Qa6blIiLc+M8V7rmlO0ppaGqluqGZVidffm95HXvK6jh1aLpbC37l7griosIZmBqHb9z2XZf1tVumdc0DKRVi2pN1kyEivZztWGAGsNIY09sYk2OMycEG9xONMQeA14HZIhItIrnAUGBZpz2B6lYHa5uY/svFPLhgA3vK6g47X1zVwLX/yPc79ucPtgNwycQst4ok2AW2w8LEr4c+tn9yJ7VcqZ6jPUM3fYH3RGQ18BmwyBgz/0gXG2PWAS8C64GFwM3GmJYjXa+C20srCtztu/69+rDzBeXe4P+Pa+w7+aIqOz4/ITvFL6gPzzz8perMUVq+QKnj1Z6sm9XGmAnGmHHGmDHGmPvbuCbHGFPis/+QMWawMWa4MebNQ69Xweu+V9eSc/cCNx3y38u9gT4nPc6tD+/xiJMbn54QRXREON/Ks6N6afFRZKfarBlPr354H++SfZ74f8G4fp3zIEr1IDozVh2Tpz/dBcCqPTagexbYtuV/hSWb7Yv1q07J8bvve2fZEgXpifZF6uj+yW5vfnCGTacc6pMm+c7/Tucvl+d1zkMo1cNooFdH1NzSytvrC92iY9UNze65pTtK2XSgyt3vnRhDYWU9jS322nvOG8n/nDTAPT84wwbx1QUHASir8a4Yde5YWxN+eB/vJKdBGQnM0GEbpTqEBnp1RD9+fR3X/iOfRU7p350l3gU8Nh+oYmepd39Aahw7S2tYtaeC/r1iiQwP86tF45kEdfJgWynj7lkj3XPXnzqIFffNdEsbKKU6lgZ65SquavArRfDMUlvZ4qf/WQ/gBvbk2EgKyuv4qVN18r4LRjG4dzzbi2v4eGsJZ420deATY7wZNZ5JUDecNojXbzmFaUPd0kiEhQmp8d7ceKVUx9JArwB4Y81+Jj30Nt9/YRVgK016xDhrrnpWbpo2JJ2C8jr2OYt0XzIxy60t09xqmDjQrsu6fp93bVfPSk5hYcK4LC0XrFRX0kDfAx2sbSLn7gV+GTI3PWMnOS3eVATA/U4vHiAtPprWVsMv39oEwNDMBAqr6hmWmcBpwzJIjo0kKyXWvd5TdOycMd6FQZRS3UcDfQ/w0/+s455X1rj7P359LQBXPvXZYdemOUMonmEbgO0l1Ww4YHvnGYnR5KTFYwxsLqxmkDP23tZ4/KzRffj25Gw+mXNmBz+RUupYaKAPcVX1TTz10U6eXbrbzZ55dZWtSFFW0wjgNy6/3xmO8bhx+mBKqhv5x8c2rfKBC8f41Yb39N4TfQJ9ZLj9toqKCOPnF41zq0wqpbqHBvoQ5ztO7sl599XY3Mp9r6119xuaW9laZNMmvz6hvxvUCyrs+PzMUZmk+BQVG+us/JSZFM2g9HjuPndExz+EUuq4aH3XEPe3j3a42+v2VtK/l3/vesGafTzrM0wDcM/LNvBPykmll7M034pdFQzOiCc8TPyyaTy14EWEd+88vTMeQSl1nLRHH2LmfbyTN9bsd/drGrzZMwcq63ls8TYAejtlgh+cv8Gdmbro9tMA3FrxM0b1dsfs65pa3KAe5rOyk2eYRikVuPRfaQg5cLCeH7++zs2gaW01rNt3kG9MzKJPUgy7SmuJdsr+LvnBGQBMHZzGtuIa+iXHuIF8e0kNSTERZCREuzNawX8lp39/dyrPXHtSVz2aUuo46NBNEHvi/W0s3VHG3660i3d4luMDqKxvoqiynvLaJiblprK3oo51+w7y7xUFZCZFExMZTv9ese66rJfkZftVkqysb0ZE/GrDby/2zoSdODC1k59OKdVRtEcfJF5btZcH56/3O/bzNzfy7sYiXvxsDwCFld6MmcWbivlkWylgx9oHpsWz0alNU1hph2ayUmLdlZ2uOjnH77Mn5x4eyK+ZltsxD6OU6lIa6ANQfVOL33J8ra2G7z2/ir98uIMPt5Qcdv0PnDrw97zszZW/7bmVvL+5hN6J0eSkxZES501/nDbElh/om+ytLZNySAmCa32C+ndOGkD/XrHk5WgvXqlgpIE+AN30zApueHo5r6y0td59i4fd+pwdf/9oqzfgzxjZm4O1TVT5VJcEWLv3ICcPTkNE2FvhXQDkicsmApDgZM+cOaK3e+7vV00iJjKMqYPT3GMPfX0sH92tk56UClYa6APQuxttGYLbX/gcgDfXenv3eTmpGGP4zl+Wusfe3lDklyOfNzCFxJgIDlTWM7qfzXO/dMpA93y8s9DHzhI7pl9e2+ieO314bzY+cK7fBCilVHDTQB8AGppb3FmrbXnfWcwjIzGaoqoGv+X5PF74zObC//f20zghuxdV9bZ376nxnpNmUyjvu2CUe8+js8dz/ri+PHfdlI55EKVUQNJA38VaW/0DelFlPcPvXcj5v/sQsNkyvhqaW1i2owywQzR7ymrd1Z1+cfFYN+Xx1VX7GNo7gWGZidQ2eodwTnQqSWYkRrPxgVl+L1TTE6L54/+cSExkeAc/pVIqkGig70KFlfUMuucNbnx6uXvsrEfeB7zlCbYWVQNwqlOv/YPN3rH43PR4ymoa3Re1F4zrx43TB7vnPT8k3t5Q5B7zrMcKaEBXqofSQN+JNh2oIn9nmbv/udMTX+iTUeMZYgGbbfPnJdsBOHu0LfG7xQn8MZFhnOJky8xfvZ8TsnsRHx1BZlK0e/9ds2ydmd9+a3xnPI5SKkhpoO8k9U0tnPPoEi55/BP3mGds3aeCADlpce723oo698XruP72Jeon220u/Bu3nUrvRG865OQcOyTju/yepwCZJw3ytjOHdNjzKKWCl86M7SRLnBeoYIdUEqIiuN+Z8NRq7A+C1QUH2VlaS1p8FKU1jX4LgaQ7tWiWbC4mOTaS3PR4Gppb3fODnNIEvoE+16kDHxURxrqfnuOWO1BK9WwaCdrh0BeobdlTVkt5jTdNcVux/0LaV8/zX+Rje3EN1zjHrnZekL68Yi8AD35tjN8EpzH9kxARvzF2Tw2a5Fjvdb4lDOKjI4jQgmNKKTTQH9WTS7Yx6J43/GakVtU38fM3N3Cw1r78PFjbxKkPv8eEBxaxz5mYlL+zjAhnjGZTYRWLNxX7fe6SLcXu+LwnE2blbtuj/8oJ/Yj1Ceqe9VgBFtw2jScvm8gkZ+gGYNk9Z7Hk/87osGdWSoWWowZ6EYkRkWUi8rmIrBORnzrHfykiG0VktYi8IiK9fO6ZIyJbRWSTiJzTmQ/Q0RqbW/1y2n/2xkYAv5IEjyzazBPvb+fpT3cCsLW42j13y7MrqGts4Z2NReSkx5MQHcHmA1WMcPLZ1/70HKIiwnhumc17//bkAcREhpOVEkt1QzOp8VEkx0b69c49QzIAo/slc/boPn7neyfFMMBnrF8ppXy1p0ffAJxpjDkBGA/MEpEpwCJgjDFmHLAZmAMgIqOA2cBoYBbwmIgEZF7f53sqaG7xjns/MH89w+59k79+6F2sY3Q/u1RebaOt615R28hL+bY0wQ5nZunDCze61yfGRLrrq34rL5thmQls2F/Fvoo6vja+HwnREQzJSGBXqb33jrOHAd4Xtdk+i2zPv3Ua54zOZPakAR374EqpHuWogd5Yni5rpPPHGGP+a4zx5AZ+CmQ52xcCzxtjGowxO4CtwOQObvcxK6qqZ5NTvRFg44FKLvzjR8z8zRL3mCfAP7hgA+Cp526DdlmNrfj4tw93uDVl/r3CBvylzoSmvskxNDS3sKbgIGCHYAakxrFsZxmV9c2cOjQD8NaYSY6NdBf28Fjns/TfmP7JPHFZHlH6UlUpdRzaFUFEJFxEVgFFwCJjzNJDLrkaeNPZ7g/s8TlX4BzrNq2thskPvcM5jy5xh2W2FNqfXTtKatxrfFU3NPsVAttXUU99UwtPfbST88b2cY+X+byAHdEnkYraJhatL0TErqO62Cf7ZmimfYHqWcHpYF2TOwTjWbKvuR0vfpVS6li0K9AbY1qMMeOxvfbJIjLGc05Efgg0A894DrX1EYceEJHrRSRfRPKLi4vbuKXjvLxyr7td7fTGb31upbdxxrByT7nfPQcO1jF/tV2Sb1JOCnvKa9lRUkNVQzPnje3LGcNt73zFLnvf45eeSHhYGBsPVPHh1hKMsVkwFbXekgZ9nLLA54/te1gbn7tuCukJ0SzWdVeVUh3smMYEjDEVwGLs2DsicgVwAfAd432DWQBk+9yWBexr47OeNMbkGWPyMjIyvkTTjyzn7gXk3L3A7b1/6kw6Alixu+Kw6wvK61i/3w7r3H2unV26q7SWXzhj77PG9KW2scX9nNz0eM4cmQnAi/n2l5cJA1LY7vNS9mSnzO//nOQdX0+Pt7nxpzs/JC6f6q0oObJvEvn3ziDH58WrUkp1hPZk3WR4MmpEJBaYAWwUkVnAXcBXjTG1Pre8DswWkWgRyQWGAss6vunWJ9tKmfvmxjarP3pWUvIUBQN4aMF6Gppb/K57a90B7nt1LQBnj7IB3DPufuXJOQxIjXOvi4oIY3hmIidk2Zmr/11fyBnDM8hMimF7iTd3fu5F4wAYn+UmI7mLap84IIW/XpHHPeeNPI4nV0qp9mlPj74v8J6IrAY+w47Rzwf+ACQCi0RklYg8DmCMWQe8CKwHFgI3G2Na2v7o49PY3Mq3//wpj7+/zc1aefrTXe753WW1GGP81lI9eXA6q5xe/Tcm2vfHnpevAL3i7MvRJ52aM9/MyyY71WbCfLq9jNy0eCLCw8hO8aYzejJoXr/lFO/nxNsx94ud/8YPfYK6iHDWyEwtMqaU6hJHLYFgjFkNTGjj+BELqRhjHgIeOr6mHV1FnfdF6JaiKrJT49yeOcAun5WZAAalx1Nc1cAba+zY+3nj+vKv5QXu+TtmDvOr9hgfFc7QzAS/0gPjnJ58Yoz3unsvGOmc8/bek5yFO8LDhJ1zz//yD6mUUscpqPP2fF90bjpQfdjwze6yWn7y+jrAjr1nJsVwoLKeN9ceID0hijOG93Z76wDnju1DVEQY355sx9UnDEghMjzML/hPGGBnpPqWFzh9mHcpPoBBGTrOrpQKHEFd1KzRp6f9i4UbGetUfJw5KpMN+yvZXVbr1nm/cfpgNu6vZMGa/TS1GH7yFbvSUmZiDHvK7LDPkN529uqi9YUAfj8EPPokRx92LMynHOWG+2cRFtQ/PpVSoSaoQ9KY/sl+wyLPO8vpjeyTSK+4SF5b5Z/sk5kUQ1OL7fWPc0r65u/yT6sEu+YqQHaqdxz+2etOYnBGPCcPTnePfX1Cf+50ZrZ6xEaFEx2hY+9KqcAR1IHe44nLJgK4ee+3zxyGT2UDfn7RWMC/pO+ovra0QbjTG//xV7xrqT749THMnpTNFVNz3GMnD07nnTtO93uB+ptvjeeWM4d27MMopVQHC4lA3y/Zf4hFRBifnezuX3SinZg70gnu4F1W7707Tue6U3O53CeopydEM/ficcRHB/XIllJKAaES6Ht5e+qeCU93nj3cPeYZSomKOHzS7oC0OH54/ii3Z6+UUqEmJAJ9WkI0V56cA+DWaU9LsC9NfZfqG9vfjss/fMm4rm2gUkp1I2lrRmlXy8vLM/n5+cf1GcYYSqobyUj0ZsUUVzUQHx1OXJQOwSilQo+ILDfG5B3tupCJgCLiF+SBw/aVUqonComhG6WUUkemgV4ppUKcBnqllApxGuiVUirEaaBXSqkQp4FeKaVCXEDk0YtIMbDrqBcGrnSgpLsbcZyC/RmCvf0Q/M+g7e96A40xR12LNSACfbATkfz2TFoIZMH+DMHefgj+Z9D2By4dulFKqRCngV4ppUKcBvqO8WR3N6ADBPszBHv7IfifQdsfoHSMXimlQpz26JVSKsRpoFdKqRCngV4p1W4iktPdbTgewd7+L0sD/VGIyGQR+ZmIBO3/q2B/hmBvPwT/M4jIiSLyNnC/iIR3d3uOVbC3/3gF5TddVxCRJBH5I/AHoMAY0yoiQbWwbLA/Q7C3H4L/GcT6IfAc8Lwx5nJjTIvnXPe27uiCvf0dJWRWmOoEPwSmAGcZYyoATPClKM0huJ8hFL4G9xDEz2CMMSISA3xojPkLgIhMANYYY5q7t3VH57Q/kiBtf0fR9EofInIJ0McY8wcRGQ48CnwPGIf9x5oPfGyM2d2NzfxCInIRcLox5jYRGQk8QhA9g4icCNQaYzY6X4PfArcRJO0HEJFcoNAYUysio7Bfg6B5BhH5NjACWGmMeVVEEoCXgHXAaUAhcBB4xRjzUve1tG0iMh2oN8YsdfbjgX8Da4HpBHj7O4MO3QAikiAi/wbuBEpFJMIYswn4FHgTuAnYBHwD+D8Ryeq+1rZNREaJyLPAfcAtItLPGLMBWEoQPIOI5IrIAuCPwDwRmel8DYKi/WBf9InIm8BfgKdFZJQxZj3wAfAWAf4MzjDHjcAPgJ3AL0TkOmNMNfaZJgB3GGMuAJYAs0RkWLc1+BAikigiLwOvADeISAqAMaYGeBoYTwC3v1MZY3rkH5zfZpztkcBjPvvhzt9xwBU+x0cBTwGndnf7fZ8B28v6CLjN2X8EuNjZjg3UZzjka/BH4CFnew7wQqC3v41n+APwE2f7FmwvchAQFcjPcMjzzAO+5WzPAJ4FznH2e/lcNxh4DejX3W32aVO08//9POBB4PpDzqcGcvs7809P7tHH+GyPA7IAROQm4F4ROQNoNMbM82RKGNs76wMEyq/csc7f64GzjTG/E5EoYCjQBGCMqTPGzPPcEGDPEAPuS7EanDYDycBaERnpab/nxVmAtR+8z+B537UOwBjzB2AicD0QH6hfAxG5XESmi0iqc2gD0N/5rfZt4HPgdBHJNs47BsdMwADVXdxkPz7t72WMacD+5vE2sBnI8/TYRUSMMWU+twZE+7tKjwv0IjJTRBYBDztjkQArgP0i8jdgKnb87i7gWhEJNzZT4kIReQfYB5R15xv7Q55htjGmxBhTIyIxxphGYA3wnTbu+2ogPINP+38pIt80tov1ITBURFYCs4Bw4B8icrbzj9QE6NfA8wzNQBkwQUROEJETsGPCWUCmz33d/jVwhmj6ish7wBXY75Xfi0gSsAfoDQxxLn8BO16f5tx7hoisAM4F7jbGVAZI+/8oIunGmHrn38AnQBHwTXBfyoaJyGnO91i3tb9bdPevFF35B/vNuxS4EDve+AxwBzb76NfAciDSufYy4DEgCRv8lwNfC8Bn+Cdwj3PO0/bpzvEMn/tOCoRnaKP9zwJ3OueGAy/7XHsf8Btn++RAaP8RnuE57Ph7otPm+dgfXHnO890SKM+Ad1hyGPBPZzvC+V6fB0QCf3O+/5Od838H7vd59q8GYPt/D/z7kGu/7jzXEOxvXoIdsum29nfb/7fubkAXfGOEAWHO9nfwH4u/BqgAemHHud8F/sc5Nw77Uic8wJ/haucZevscmwH8B4jo7rYfQ/szgQxsls1I59w0bLZHWIA/g+f7KMPZH+Rz7hbg2gBofwTwM+AX2I7AV4B5hzxfIXCC8/3zB2COc+5vwPkB3n4B9gPTD7nvHmArcAAY1d1fh+76E9JDNyJyFVAAPOAcWgN8W7zToCOAHcDDxpgl2HTKO0TkLuB57AtO081DBEd7hkhgG/Arzz3Gjq3mYXuQ3aqd7d/unK8CUoHbROR7wBPY8dZA/xpEYL8Gv3H2dzj3XY/9Qbaiq9raFifdcDmQgg16D2Dfh5whIpMBjDGtwP3AL5zvnyeBaSKy1LlvcTc0HWh3+w22/T/xue8b2LkY7wHjjH030jN190+azvoDJACvYnPIVwAjnOOPYn/V/gg7vDEWeAObPw8wCbgBmBpkz7DA5xkisS8Bc4Ko/W8C8dgMqFuxwwhTgvBrkOmc/z7wGTApAJ7hVOAyn/3HgO8CVwLLnWNh2BfE//J832B/0+0fZO1/Ecj1uS/gMpu65f9hdzegk79BBjh/z8WbrheO7TVOc/azsWOQMd3d3uN8hqeA6O5u73G0fx4Q1d3t7YDvo2hnP6672+3T/jhs6qFnfPs7wM+d7VXArc52HvBcd7c31NofCH9CeujGeGcePgrkisg5xta5OGiM+dA5dyNQize1L6AcwzPUAQE3pfsY2l8DtHRHG4/mGL+Pmp17aru+pW0zxtQaYxqcNoNNLSx2tq8CRorIfOxvKN06zNSWYG9/IOgxJRBE5Absi9bpzv5k7PhdJHC1MeZAd7avPYL9GYK9/RDczyC2aqPBDjHdaozZKiJDgBJgDLDDGLO3O9v4RYK9/d2pRwR6EQkzNhf+Jeyb+QbsS74txpht3du69gn2Zwj29kPwP4PzQjsKO6noFeyL4lJs0Az4fPJgb3936hHVK51/nHHYiSCnY3OCF3Zvq45NsD9DsLcfgv8ZjDFGbOXG7wC5wFPGmL92c7PaLdjb3516RKB33IQdv5tp7FTpYBTszxDs7Yfgf4YC7FDTI9r+nqNHDN2A99fu7m7H8Qj2Zwj29kNoPIPqeXpMoFdKqZ4qpNMrlVJKaaBXSqmQp4FeKaVCnAZ6pZQKcRrolWoHEblRRC4/hutzRGRtZ7ZJqfbqSXn0Sn0pYpfVe7y726HUl6WBXvUITu34hdiVoSZg1xS9HFsW+RFsOeIS4EpjzH4RWQx8DJwCvC4iiUC1MeZXIjIeeBxbVXEbtsZNuYhMxC7SUYtdYUqpgKBDN6onGQ48aYwZB1QCN2OXoLvEGOMJ0g/5XN/LGDPdGPPrQz7nH8BdzuesAX7sHH8KuM0YM7UzH0KpY6U9etWT7DHGfORs/xO7zNwYYJGzgFU4tliZxwuHfoCIJGN/ALzvHJoH/KuN409jF6BWqttpoFc9yaHTwKuAdV/QA685hs+WNj5fqYCgQzeqJxkgIp6g/m3gUyDDc0xEIkVk9Bd9gDHmIFAuIqc6hy4D3jfGVAAHRWSac/w7Hd98pb4c7dGrnmQDcIWIPAFswY7PvwX8zhl6icCuIrXuKJ9zBfC4U7J4O3aVI5y//yYitc7nKhUQtKiZ6hGcrJv5xpgx3dwUpbqcDt0opVSI0x69UkqFOO3RK6VUiNNAr5RSIU4DvVJKhTgN9EopFeI00CulVIjTQK+UUiHu/wFuOltqFqNGXgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data = data.set_index('period').sort_index()\n", "sorted_data['CO2'].plot()\n", "print(sorted_data[:10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Détermination des modèles d'évolution\n", "Calcul des émissions de CO2 pour l'année 1960 :" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "absc = []\n", "ordo = []\n", "for i in range(len(data.period)):\n", " if '1960' in data.date[i]:\n", " absc.append(data.period[i])\n", " ordo.append(data.CO2[i])\n", "mean = np.mean(ordo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'oscillation périodique suit une évolution sinusoïdale." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4lNXZ+PHvnT2BrJBAQhLCvgUSILK4IYiKCypa616tbX1tbe2mXV7tW21rtbZv7aJvlbZY61q1RUUEfijKJluAJCQkLCEsIYHsCdmXOb8/MoEAWSZkJrPdn+uai5lnzjNzn5Dcc+Z+znMeMcaglFLKO/g4OwCllFIDR5O+Ukp5EU36SinlRTTpK6WUF9Gkr5RSXkSTvlJKeRFN+kop5UU06SullBfRpK+UUl7Ez9kBAAwdOtQkJSU5OwyllHIrO3fuLDPGRPdlH5dI+klJSaSnpzs7DKWUcisicqSv+2h5RymlvIgmfaWU8iKa9JVSyoto0ldKKS+iSV8ppbyIJn2llPIimvSVUsqL9Jr0RSRIRLaLSKaI5IjIU9btvxWRPBHJEpHlIhLRaZ+fishBEdknItc4sgNKdSW/tJZPc086OwylXI4tJ2c1AQuMMbUi4g9sEpFVwFrgp8aYVhH5DfBT4MciMhm4A5gCxAGfiMh4Y0ybg/qgPIgxho0HyjhYUkvJqSZKahopOdXEyZpGmtssvPH12cRHhvT6Or/6aC+bDpax62dXERrkPwCRK+Ueeh3pm3a11of+1psxxvw/Y0yrdftWIN56/ybgbWNMkzGmADgIzLJz3MpD/XndQb6ybDu/+Ggvf990iG0FFdQ1tzJq6CCOlNfzQUZRr69R09jCpoNltLS1f4Aopc6waRkGEfEFdgJjgReNMdvOafIA8C/r/RG0fwh0KLRuU6pHb2w7wu/X7ueW6SN44obJRIb4IyKnn1/yf5tZmVXMw/PH9vg663JLaGkz+PoIn+w9yXVTYx0dulJuw6YDucaYNmNMKu2j+VkiktzxnIg8DrQCb3Rs6uolzt0gIg+KSLqIpJeWlvY9cuUWTtY0csOfN3Lv37dRVNXQbbvV2cX87P1sFkyM4TdfmkbUoICzEj7A9VNj2VtcQ0FZXY/vuTr7BDGhgSyeFstn+0pobbPYpS9KeYI+zd4xxlQBnwOLAETkPuAG4G5jTEdiLwQSOu0WD5z3ndwYs9QYk2aMSYuO7tMiccpNHKuo58svb+FQaR07j1Sy6A8b+DDz/PLMlvxyHnkrg9SECF68awb+vl3/WnaM2D/eU9zte9Y3t/L5/hKumTKcq6cMp7K+hV1Hq+zTIaU8gC2zd6I7ZuaISDCwEMgTkUXAj4EbjTH1nXb5ELhDRAJFZBQwDthu/9CVK8svreXLL2+hsq6Z178+m48fuYwxMYN55K3dfPft3VQ3tACQU1TNg/9MZ+SQEJbdfxHBAb7dvmZcRDAzEiNYmdV90t+wv5TGFgvXJg/nsnFD8fcVPtFZPEqdZstIPxb4TESygB3AWmPMR8ALQCiwVkQyROQlAGNMDvAOsBdYDTysM3e8S25xDbe/vIXmVgtvPziXGYmRJA0dxLv/NZcfXjWej7KKufYPG/jPrkLuW7aD0CA//vm1WUSEBPT62tf1UuJZlX2CyBB/Zo2KIjTInzmjh2jSV6oTW2bvZBljphtjphljko0xv7BuH2uMSTDGpFpvD3Xa52ljzBhjzARjzCpHdkC5loxjVdyxdCv+vj6889BcJseFnX7Oz9eH71w5jv9882KC/H35wTuZtFos/PNrs4gND7bp9Xsq8TS1trEut4SrJg/Dz1oiumryMA6V1pFfWntee6W8kZ6Rq+xmx+EK7v7rVsKD/Xnnv+YyJnpwl+1SEiL46JFLeeyaCbz+tdmMjQm1+T16KvF8cbCcU02tXJt8ZrbOgokxAHqillJWmvSV3Ty9MpeowQG8+9BcEqJ6PoEqJMCPh+ePJXlEeJ/fp7sSz6rsYkID/bh47JDT2+IjQ5gUG8YnuSV9fh+lPJEmfWUX1fUtZBVWccv0eIaFBTn0vboq8bS2WVi79yQLJsUQ6Hf2weCFk2JIP1xBZV2zQ+NSyh1o0ld28UV+GRYDl40b6vD36qrEs72ggsr6Fq5NHn5e+4WThmEx8Nk+He0rpUlf2cXGg2UMDvQjJSGi98Z2cG6JZ1X2CYL8fZg3Pua8tlNHhBMTGqizeJRCk76yk40HSpk7Zki3J1bZW+cSj8ViWJNzgivGx3Q5z9/HR7hyUgwb9pfR1Kqzh5V306Sv+u1IeR3HKhoGpLTToXOJZ/exSkpONXHt1PNLOx0WThpGbVMr2w5VDFiMSrkiTfqq3zpWsrx07MAlfYDrp8Wxt7iGv3yeT4Cvz+npmV25ZOxQgvx9tMSjvJ4mfdVvmw6UMSIimFFDBw3o+15nHdl/klvCJWOH9LhufpC/L5eOjebT3BLOLBOllPfRpK/6pbXNwub8Mi4bN/S8VTEdLTa8vcQDnHVCVneumhzD8aoGcotPOTo0pVyWJn3VL1nHqznV2MqlA1jP7+y2tARCA/1YOHlYr23nW8s/WuJR3kyTvuqXTQfKEIFLxjgn6d9xUQLbH19I1KDeF2uLCQ1iemIE/9lVqLN4lNfSpK/6ZdOBMpLjwom0Iek6goj0uBzzub575TgOl9fzt40FDoxKKdelSV9xrKKeW//yRZ9XoqxtamXX0UqnlXYuxBUTYlg0ZTh/XneAYxX1ve+glIfRpK9YuaeYnUcq+dn72X2a2bI1v5xWixnQ+fn28D+LJ+MjwlMr9jo7FKUGnCZ9xcYDpfj7Cl/kl3d5OcPubDpYRrC/LzNHRjowOvuLiwjmkSvH8UnuSV1yWXkdTfperqG5jR0Fldw7J4mpI8J5emUupxpbbNp344FSZo2KOm9VS3fwwCWjGBszmCdX5NDYogd1lffQpO/lthaU09xm4YoJ0fzq5mRKa5t4fu2BXvcrqmogv7TO7Uo7HQL8fPjlTckcq2jg/z476OxwlBowmvS93Mb9ZQT6+TBrVBQpCRHcOSuRf3xRwN6imh7322RdeuGycdEDEaZDzB0zhJtT43hp/aFur7mrlKfRpO/lOko0Qf7tJZofXTOBiJAAfvZBNhZL9wd1Nx4sIyY0kPHDur4korv47+snEejnw88/zNHlGZRX6DXpi0iQiGwXkUwRyRGRp6zbb7M+tohIWqf2ASLyiojsse5zhQPjV/1QXN3AgZJaLu80Wo8ICeAn105k55FK3ttV2OV+Foth88EyLh078Esv2FtMaBA/uHo8G/aXsjr7hLPDUcrhbBnpNwELjDEpQCqwSETmANnALcCGc9p/A8AYMxW4CvhfEdFvFC5o435riWb82XX5L82IZ+bISJ5dlUdV/fmXGNxbXENFXbNbzc/vyb1zRpIYFcK/0o85OxSlHM6vtwam/Ttvx1k7/tabMcbkAl2N9CYDn1r3LRGRKiAN2G6nmJWdbDhQSkxoIBOGhZ613cdH+OVNydzw5438/MMcFk4axsmaRkpPNXGyppG8E+0Llg30UsqO4ufrw9zRQ1iz9wTGGLf/9qJUT3pN+gAi4gvsBMYCLxpjtvXQPBO4SUTeBhKAmdZ/Nem7kDaLYdPBMq6cOKzLJDc5Loz7Lx7Fss0FfJDRPnc/wM+HmNBAhoUF8a0rxhDj4AugD6TpiRH8K/0YBWV1jI527+MUSvXEpqRvjGkDUkUkAlguIsnGmOxumi8DJgHpwBHgC6D13EYi8iDwIEBiYuIFhK76I6eomqr6Fi4f3/1o/SfXTuTqKcOIGhRATGgg4cH+HjsKnmE9wWz30SpN+sqj9anWboypAj4HFvXQptUY831jTKox5iYgAjhv4rcxZqkxJs0YkxYd7b7T/txVx9WuLumhRBPg58Oc0UMYPyyUiJAAj034AGOjBxMa6MfuY5XODkUph7Jl9k60dYSPiAQDC4G8HtqHiMgg6/2rgFZjjC5y4mLW7y9lSlwYQwcHOjsUl+DjI6QkRLDrSJWzQ1HKoWwZ6ccCn4lIFrADWGuM+UhElohIITAXWCkia6ztY4BdIpIL/Bi41xGBqwtX29TKriOVXD5ev2F1Nj0xgrwTNdQ3n1eNVMpj2DJ7JwuY3sX25cDyLrYfBibYIzjlGO66OqajzUiMxGIgq7CaOaOHODscpRxC5897oY0HSt1ydUxHS01ov97u7qNa4lGeS5O+F9pwoIw5o91zdUxHihwUwKihg9h1VA/mKs+lSd/LHKuop6CsTuv53ZieGMHuo1W6Do/yWJr0vcxGD1gd05GmJ0ZSVttEYWWDs0NRyiE06XuZjQdKiQsPYkz0IGeH4pKmW+v6PZV4jDF8cbBML76i3JImfS/S2mZh88EyLhsX7dEnWvXHxOGhBPv79ngw95PcEu762za+/eYu2npYflopV6RJ34vkFNVQ09jKJTpVs1t+vj5Miw9n97Huk/6yTQUE+/vySW4Jv1ih6/Ar96JJ34vsOFwBwOxRUU6OxLVNT4xkb1F1l+Wb3OIathwq57sLx/GNy0bx6pYj/H1TgROiVOrC2LTgmvIM2wsqSIwKYZgHrY7pCNMTI2hpM+QUVTNz5NkfkK9sLiDI34c7LkogLMifwsoGnv44lxERwVw7NdZJEStlOx3pewljDOlHKrkoSUf5vZme2PVJWuW1TbyfUcStM+KJCAnAx0d4/vZUpidE8L1/Zej8fuUWNOl7ifzSWirqmpk1Ss/C7U1MaBDxkcHnJf03tx2ludXCVy9JOr0tyN+Xv34ljeHhQXz91XSOlOsF1pVr06TvJbYXtI9CdaRvm+mJkWeN3JtbLby29QiXj49mbMzZVxobMjiQf3x1FsYY7n9lB7VNumCbcl2a9L3EjsMVDB3cvsyA6t30hAiKqxsprm4/SWtVdjElp5rOGuV3NmroIF64awYFZXUs3318ACNVqm806XuJ7QUVXJQUpfPzbdRxJa0M65IMyzYVMHroIOb1cCbzxWOGMDk2jDe3HdVpnMpladL3AkVVDRyvatDSTh9Mjg0jwM+HXUcr2XW0iszCar56SRI+Pt1/aIoId85OJLe4hszC6gGMVinbadL3Ah3z82fp/HybBfj5kBwXxu6jVSzbXEBokB+3zIjvdb+bU+MI9vflrW1HByBKpfpOk74X2F5QweBAPybFhjk7FLcyIzGSrMJqVmef4I6LEhgU2PtpLaFB/tyYEseHmUXUNLYMQJRK9Y0mfS+w43AFM0ZG4ttDaUKdb3piJM1tFowxfGVuks373TU7kYaWNj7IKHJccEpdIE36Hq6yrpn9J2uZlaTz8/uq4yStqycPJyEqxOb9psWH6wFd5bI06Xu49CM6P/9CxUUE8+wtU3n8+kl92k9EuEsP6CoX1WvSF5EgEdkuIpkikiMiT1m332Z9bBGRtE7t/UXkVRHZIyK5IvJTR3ZA9WzH4QoCfH1Isa4Tr/rmjlmJfRrld7gpNY6QAD2gq1yPLSP9JmCBMSYFSAUWicgcIBu4BdhwTvvbgEBjzFRgJvBfIpJkt4jVWZZuyOf9Hk4G2l5QwbT4cIL89Xq4A0kP6CpX1WvSN+1qrQ/9rTdjjMk1xuzrahdgkIj4AcFAM1Bjr4DVGZ/vK+HXH+fx2HuZ5J04/0dc39xK9vFqLtKpmk5x5yw9oKtcj001fRHxFZEMoARYa4zZ1kPz94A6oBg4CvzOGFPR70jVWWqbWnl8eTajowcRFuTPo+9m0tJmOatNxtEqWi2GWVrPd4pp8eFMidMDusq12JT0jTFtxphUIB6YJSLJPTSfBbQBccAo4IciMvrcRiLyoIiki0h6aWnpBYTu3X63Zh9F1Q389kvT+NXNyWQfr+Glz/PParP9cAUiZ5YUUANLRLhzlh7QVa6lT7N3jDFVwOfAoh6a3QWsNsa0GGNKgM1A2rmNjDFLjTFpxpi06Oju1zNR59t5pIJXtxzmK3NGMnNkFNdOjeWGabH8ad0BcovPlHl2HK5g4vAwwoP9nResl+s4oPvmtiPODkUpwLbZO9EiEmG9HwwsBPJ62OUosEDaDQLm9NJe9UFTaxs//vce4sKDeWzRxNPbf3FTMuHB/jz2XnuZp6XNwq4jVTo/38k6DuiuyCzWJZeVS7BlpB8LfCYiWcAO2mv6H4nIEhEpBOYCK0VkjbX9i8Bg2mf37ABeMcZkOSB2r/TiuoMcLKnl6SXJDO60LEDUoICzyjw5RTU0tLTpQVwXcOvMeBpa2vhk70lnh6JU79fItSbs6V1sXw4s72J7Le3TNpWd5Z2o4f8+z2fJ9BFcMSHmvOcXJceyOCWOP607wJGKegA9iOsCZiZGEhsexIrMIm6ePsLZ4Sgvp2fkuok2i+HH72URFuzPz26Y3G27p26cQniwP+/tLGTkkBBi9CLoTufjIyxOiWPDgVKq6pudHY7ycpr03cSrXxwms7CaJ2+cQtSggG7bdZR5QJdecCWLp8XR0mZYnX3C2aEoL6dJ3038e1chMxIjWDwttte2i5Jj+d1tKXzrijEDEJmyRfKIMJKGhLAiS0/UUs6lSd8NVNe3sLe4hnnjY2y+3OGXZsYzOnqwgyNTthIRbkyJY0t+OSWnGp0djvJimvTdwPbDFRgDc0ZrucadLU6Jw2Lg46xiZ4eivJgmfTew9VA5gX66Uqa7GzcslInDQ1mhSV85kSZ9N7D1UDkzEiN1pUwPsDgljp1HKimsrHd2KMpLadJ3cR31/Dmjhzg7FGUHi6fFAfCRjvaVk2jSd3Faz/csiUNCSEmIYEWmzuJRzqFJ38VpPd/z3JgSR05RDfmltb03VsrONOm7OK3ne57rp8Yigo72lVNo0new8tomfvhOJiU1fZ+brfV8zzQ8PIhZSVGsyCzSi6uoAadJ38H+tqmAf+8q5P/OucCJLbSe77luTI0jv7SOvcV6JVE1sDTpO1BtUyuvbz2Cr4/w1vajlNU29Wl/red7rmuTY/HzEVZk6iweNbA06TvQv3Yc41RjK7+7bRrNbRaWbSro0/5az/dcUYMCuHTcUFbu0RKPGlia9B2kxZrkZyVFsWR6PNdNjeW1LUeobmixaf+q+mb2Ftcwd4zW8z3VwknDOFbRQH5pnbNDUV5Ek76DfLynmONVDXzj8vZrwn/rijGcspZ7bLG9oKOer0nfU80b335t6PX7S50cifImmvQdwBjD0g2HGB09iCsntl/hakpcOPMnRPP3TQU0NLf1+hpbD1VY6/nhjg5XOUlCVAijowdp0lcDSpO+A2zJLyenqIZvXDYaH58zSyE/PH8sFXXNvL3jaK+vsfVQOTNHRhLop/V8T3bF+Bi2HSqnsaX3gYBS9qBJ3wFe3nCIoYMDWHLO9VDTkqKYNSqKpRsO0dxq6Xb/qvpmck/o/HxvMG9CNE2tFrYeKnd2KMpLaNK3s30nTrF+fyn3zU3qctbNw/PHUlzdyPu7j3f7GlrP9x6zR0UR6OejJR41YHpN+iISJCLbRSRTRHJE5Cnr9tusjy0iktap/d0iktHpZhGRVEd2wpX8deMhgv19uWfOyC6fv3zcUJJHhPGX9fm0Wbqeqqf1fO8R5O/LnNFDWL9Pk74aGLaM9JuABcaYFCAVWCQic4Bs4BZgQ+fGxpg3jDGpxphU4F7gsDEmw85xu6QT1Y18kHGcL6fFE9nNxctFhIevGEtBWR2rsrs+MUfr+d5l3vhoDpXVcbRc19hXjtdr0jftOpYD9LfejDEm1xizr5fd7wTe6meMbuMfXxymzWL42qWje2x3zZThjIkexJ8/PciOwxXUNbWefk7r+d5n3gTr1M0DOtpXjudnSyMR8QV2AmOBF40x22x8/duBm7p5zQeBBwESExNtfDnXVd3QwhvbjnBtciyJQ0J6bOvjI/zw6gk8/OYubntpCyIwJnowU0eEE+Tvo/V8LzN66CASooJZv6+Ue7spCyplLzYlfWNMG5AqIhHAchFJNsZk97SPiMwG6rtrZ4xZCiwFSEtLc/vz0F9en8+pxla+ecUYm9pfNzWWbT+9kj3Hq9lzvJrs49VsPlhGyakmQoP8tJ7vRUSEeeOj+c+u4zS3Wgjw0/kVynGkr+t+iMjPgTpjzO+sjz8HHjXGpJ/T7nmg1Bjz695eMy0tzaSnp/fWrGurfgIn9lzYvnbS3GYh41glkSEBjIsJ7fdrGQyBvlrP9yYV9c3sP3mKSbFhhAf5OzscNZCGT4Vrn72gXUVkpzEmrfeWZ9gyeyfaOsJHRIKBhUBeL/v4ALcBb/clGHdVWFmPMe1nWPZXgK+PJnwvFB7sj9B+TEcpR7KlvBMLvGqt6/sA7xhjPhKRJcCfgWhgpYhkGGOuse5zOVBojDnkkKg7u8BPSHs5WHKKq5/fwH0XJzF78RSnxqLcly/wh6VbqaxvZvVXL3d2OMqD9Zr0jTFZwPQuti8Hlnezz+fAnP4G5w5+s3ofIQF+fHv+WGeHotzcFROieWZVHieqGxkeHuTscJSH0iNG/ZB+uIK1e0/y0LzRDBkc6OxwlJvrmLq5Qc/OVQ7kVUn/cFkdr205TEtb9+ve2MoYwzOr8ogJDeSBS0f1Pzjl9SYMC2VYWKAuyaAcymuSfpvF8O23dvGzD3K49+/bKLfh0oUWi+l2qYS1e0+y80gl31s4npAAm2a+KtWjjqmbGw+U0nrOwCT7eDVPr9zL9oIKJ0WnHKG7/OJIXpOt3th2hOzjNdyelsD7Gce58YXNvHzvTJJHnD8fvrXNwrs7C/n92v20tlm4bmosN6bEcVFSFD4+Qmubhd+szmN09CC+nBbvhN4oTzVvfAzvpBeScayKSbFhfJhZxFvbj5JVWA3AiZomZo2KcnKUyh6MMTz0+k7GDxvMY9dMHLD39YqkX3qqid+u2celY4fy7K1TuWfOSP7rtXRu/csXPHvrVJZMb0/cxhjW5ZXw7Ko8DpTUMnNkJHERwfxn13He2HaU2PAgFqfEEejnQ35pHS/dMxM/X6/5sqQGwKVjh+Ij8MT72RyrqKeuuY0Jw0J56sYpvJ9xnMJKXZ/HU7yy+TBr954c8LPvvSLpP/NxLo0tbTx10xREhKnx4az4zqU8/OYuvv+vTPYU1rA4JZbfrM5j66EKRg0dxEv3zOCaKcMREeqbW1m79yQfZhSxbFMBrRbDjMQIrpkyzNldUx4mPMSfS8YOZcfhCm6YFsedsxKZkRiBiJBTVM1nuhqnR8gqrOKZVbksnDSMBy5JGtD39vikv+1QOf/ZfZyH549hTPTg09uHDA7kta/N5tcf57JscwHLNhcQNSiAX9w0hTtnJeLfaQQfEuDHTakjuCl1BFX1zazLK+GipChEpKu3VKpflt6bRpsxDA48+88zPjKE0lNNNLa0dXmtBuUeahpb+Pabu4keHMjvbps24HnEo5N+S5uFn32QzYiIYL49f9x5z/v7+vDzxVOYkRjJ4bI67r8kidBeToGPCAnglhlax1eOExzQdUKPjwwG4HhVw1kDGOU+jDH89D97OF7VwL8enENESNdLsDuSRyf9f2w+zP6TtSy9d2a3f0gAi1PiBjAqpS5MfGT7Mh+FlZr03dVb24+xMquYx66ZQFqScw7Ie+xRyOLqBp7/ZD9XTozhqslae1fur2Okrwdz3VNucQ1PrcjhsnFD+eY821bjdQSPTfq/+iiXNovhyRunaO1deYRhYUH4+QiFlQ3ODkX1UV1TK99+cxdhwf78/sup+Pg4Lyd5ZNLfXlDByj3FPDx/rF1WvlTKFfj6CHERwZr03UxLm4VH383kUFkdf7g9lehQ5y7Z4pE1/RWZRQT7+/Lg5T1ftlApdxMfGazlHTfS2NLGt9/cxSe5JTxx/SQuGTvU2SF53ki/4wSrS8YO0WltyuO0J30d6buDuqZWvvbqDj7JLeGXN03h65e5xiDU45L+gZJajlc1sGCiHrxVnqfzXH3luqobWvjKsu1syS/nf29L4d65Sc4O6TSPS/qf5pYAMH9itJMjUcr+EqLOzNVXrqm8tom7/rqVrMIqXrxrBrfOdK3zejwu6X+WV8Lk2DBiw4OdHYpSdtd5rr5yPcXVDdy+dCsHS2pZ+pU0rp0a6+yQzuNRSb+6voWdRytZMDHG2aEo5RA6V991rdpTzLV/3EhxVQOvPjCL+RNcMw951Oyd9QdKabMY5mvSVx4qJjQIf1+dq+9KTjW28OSHe/n3rkKmxYfz+y+nMjbGdc+Y9qikvy73JFGDAkhNiHB2KEo5hM7Vdy3bCyr4wTsZFFU18J0FY3nkynFnLdboinqNTkSCRGS7iGSKSI6IPGXdfpv1sUVE0s7ZZ5qIbLE+v0dEHH6V5zaLYf3+Uq4YH42vE892U8rRdK6+87W0WXhudR63L92CjwjvPjSXH149weUTPtg20m8CFhhjakXEH9gkIquAbOAW4OXOjUXED3gduNcYkykiQ4AWO8d9noxjlVTWt2hpR3m8+IgQ1u0rcXYYXstiMTz6biYfZBRxx0UJPHHD5POWwXZlvUZqjDFArfWhv/VmjDG5QFfr2lwNZBljMq37l9st2h58mluCr49w+Xidqqk8W3xksK6r70T/u3YfH2QU8dg1E3h4/lhnh9NnNn0XERFfEckASoC1xphtPTQfDxgRWSMiu0TkR/YItDfr8kpIGxlJeHDP6+Er5e7ida6+07y9/SgvfpbPnbMS+NYVzlspsz9sSvrGmDZjTCoQD8wSkeQemvsBlwJ3W/9dIiJXnttIRB4UkXQRSS8t7d8l4IqqGsg7cYorJ2lpR3k+navvHOv3l/L4+9nMGx/NL29KdtvVe/t01MEYUwV8DizqoVkhsN4YU2aMqQc+BmZ08VpLjTFpxpi06Oj+lWTW5bXXN3V+vvIGOld/4O0tquFbr+9k/LBQXrx7Bn5ucMC2O7bM3okWkQjr/WBgIZDXwy5rgGkiEmI9qDsP2GuPYLvzWV4JCVHBejUh5RV0rv7AKq5u4IF/7CAs2J9X7r/IrQ7adsWWj6tY4DMRyQJ20F7T/0hElohIITAXWCkiawCMMZXA761tM4BdxpiVjgm/fenSzfllXDlxmNt+3VKqL3Su/sCpa2rlq6/soLaplWX3X8TwcIfPPnc4W2bvZAHTu9i+HFjcQiZkAAASdUlEQVTezT6v0z5t0+G25JfT2GLRqZrKq8RHBnOsQss7jvbPLUfIO3GKf3z1IibFhjk7HLtw38KU1bq8EoL9fZk9yjkXGVbKGeIjQnSk72CNLW0s21zAZeOGcoWLrqNzIdw66XdcMOXScUN1vrLyKvGRwZTV6rr6jrR893FKTzXxkBMvYu4Ibp3095/suGCK53wKK2WLjrn6Otp3jDaLYemGQ0wdEc7FY4Y4Oxy7cuukHxbsxyMLxmrSV17nzFx9res7wpqcExSU1fHQvDEeN0HErecexYYH84OrJzg7DKUG3Jm5+jrStzdjDC+tzydpSAiLkoc7Oxy7c+uRvlLeSufqO86W/HKyCqv5xuWjPXLFXk36SrmhM3P1tbxjb39Zn8/QwYHcOsO1rm1rL5r0lXJT7evq60jfnrKPV7PxQBkPXJrksTMCNekr5aZ0rr79vbzhEIMD/bh79khnh+IwmvSVclM6V9++jpbXszKriLtnJ3r0Eu2a9JVyUzpX377+uvEQfj4+PHDpKGeH4lCa9JVyUzpX336Kqhp4J/0Yt8wYwbAw919UrSea9JVyUzpX3z6MMTzxfjY+Im55+cO+0qSvlJvSufr28WFmEevySnjsmgkkRIU4OxyH06SvlJvy9RFG6Fz9fqmoa+apFXtJTYjgvouTnB3OgNCkr5Qbi4/UaZv98YsVOZxqbOG5L03zyLNvu6JJXyk3pidoXbh1eSd5P6OIb10xlvHDQp0dzoDRpK+UG9O5+hemtqmVJ5ZnM37YYL4137PWy++NJn2l3NiZaZs62u+L51bnUVzTyLO3TiPQzzOXW+iOJn2l3NiZaZt6MNdWOw5X8M8tR7j/4iRmJEY6O5wB1+t6+iISBGwAAq3t3zPG/FxEbgOeBCYBs4wx6db2SUAusM/6EluNMQ/ZPXKl1OmR/oGTtR51HVd7eHz5Hj7LKzlve1VDCyMignnUS6/FYctFVJqABcaYWhHxBzaJyCogG7gFeLmLffKNMal2jFMp1YVhYYGkJkTw8oZ8bkuLJyIkwNkhuYSy2ibe2n6UlIQIxkYPPus5Xx/h3rkjGRTo1teQumC99toYY4Ba60N/680YY3IBj7uUmFLuRER4ekkyN76wmd+szuOZW6Y5OySXsDr7BBYDv14ylUmxYc4Ox6XYVNMXEV8RyQBKgLXGmG297DJKRHaLyHoRuazfUSqlujUlLpyvXTqKt7YfY8fhCmeH4xI+3lPM6KGDmDjce6Zi2sqmpG+MabOWa+KBWSKS3EPzYiDRGDMd+AHwpoic91ErIg+KSLqIpJeWll5I7Eopq+8tHMeIiGD++z97aG61ODscpyqrbWLroXKumxqrlYgu9Gn2jjGmCvgcWNRDmyZjTLn1/k4gHxjfRbulxpg0Y0xadHR0n4JWSp0tJMCPX948hQMltfx14yFnh+NUHaWd66fFOjsUl9Rr0heRaBGJsN4PBhYCeb2097XeHw2MA7z7t1CpAbBg4jCunxrLHz89wOGyOmeH4zRa2umZLSP9WOAzEckCdtBe0/9IRJaISCEwF1gpImus7S8HskQkE3gPeMgYo4VGpQbA/yyeTKCvD0+8n037HAzv0lHauX6alna6Y8vsnSxgehfblwPLu9j+b+DfdolOKdUnw8KC+NGiCfzsgxw+yCji5ukjnB3SgOoo7Vw3VUs73dEzcpXyMHfNHklqQgS//Ggv6/eX0tTqPevyfLynmNHRWtrpiSZ9pTyMr4/wzC1TaWmzcN+y7cz4xVoeem0n76Qfo6y2ydnhOczp0o7O2umRd56SppSHmxQbxvbHF7Ilv5xPck+yLq+E1TknEIG0kZH8fPEUkkeEOztMu9JZO7bRpK+Uhwry92X+xBjmT4zBGMPe4ho+zS3hjW1HuPnFzXz/qvE8NG+Mx1w8ZGVWe2lnghetjX8htLyjlBcQEabEhfPIleNY873LuSZ5OL9ds487lm7hWIX7r9BZeqqJbQVa2rGFJn2lvExESAAv3Dmd529PIa/4FNf+cSPvph9z6ymeq3O0tGMrTfpKeSERYcn0eFZ97zKmxIXx2HtZfOet3bRZ3DPxf6ylHZtp0lfKi8VHhvDmN+bw/YXj+SirmFc2Fzg7pD7rKO3coKUdm2jSV8rL+foIj1w5loWTYvjtmn0cKq3tfScX0lHauU5LOzbRpK+UQkT49ZKpBPn78th7WW5T5ikoq+NPnx5g/LDBWtqxkSZ9pRQAMWFBPHnjZHYeqXSLMk9hZT13/3UrbRbDi3fN0NKOjTTpK6VOuzl1xOkyT74Ll3lKahq552/bONXUyj8fmMU4HeXbTJO+Uuq0zmWeH7lomaeirpl7/r6NklNN/OOrszzuzGJH06SvlDqLK5d5ahpb+MqybRwpr+dv96Uxc2Sks0NyO5r0lVLnaS/zDHOpMk9tUysPvLKDfSdO8dI9M7l4zFBnh+SWNOkrpc7TXuZJJsjfl59/kOPUWPafPMWTH+Zw8TOfsutoJX+8YzrzJ8Y4NSZ3pguuKaW6FBMWxN2zE1m64RCNLW0E+fsO2Hs3trSxMquYN7cfZeeRSgJ8fbgmeTj3X5ykJZ1+0qSvlOpWakIErRZDTlHNgCXbL/LL+Obru6huaGH00EE8ft0kbpkxgiGDAwfk/T2dJn2lVLdSEyIAyDxWNSBJv6q+me//K4MhgwN46Z6ZzBkdpfPv7UyTvlKqWzFhQcSGB5FZWDUg7/c/H+RQXtvM3++7SKdiOkivB3JFJEhEtotIpojkiMhT1u23WR9bRCSti/0SRaRWRB51ROBKqYGREh9B5jHHJ/0VmUV8mFnEd68cpwnfgWyZvdMELDDGpACpwCIRmQNkA7cAG7rZ73lglV2iVEo5TUpCBIfL66mqb3bYe5yobuSJ97NJTYjgm1eMcdj7KBuSvmnXMVHX33ozxphcY8y+rvYRkZuBQ4Bz53oppfotJaF91J1ZWO2Q1zfG8KN/Z9HU2sbvv5yCn6/OJHckm366IuIrIhlACbDWGLOth7aDgB8DT9knRKWUM00dEY4IDivxvL7tKBv2l/L4dZMYHT3YIe+hzrAp6Rtj2owxqUA8MEtEknto/hTwfKdvB10SkQdFJF1E0ktLS22PWCk1oEKD/BkTPdghSb+grI5fr8zl8vHR3DNnpN1fX52vT9+jjDFVwOfAoh6azQaeE5HDwPeA/xaRb3fxWkuNMWnGmLTo6Oi+hKGUGmAp8RFkFlbZ9Tq6rW0WfvBOBgF+Pjx36zSdmjlAbJm9Ey0iEdb7wcBCIK+79saYy4wxScaYJOAPwK+NMS/YKV6llBOkJoRTVttMUXWj3V7z07wSdh+t4skbJzM8PMhur6t6ZstIPxb4TESygB201/Q/EpElIlIIzAVWisgaRwaqlHKelE4nadnLyqxiIkP8WTwtzm6vqXrX68lZxpgsYHoX25cDy3vZ98kLjkwp5TImDg8jwNeHzGNVXDe1/9eibWxp49Pck9yYGqezdQaY/rSVUr0K8PNhclwYGXYa6a/fX0pdc5tdPkBU32jSV0rZJDUhgj3Hq+1yNa2O0s7c0UPsEJnqC036SimbpCSEU9/cxsGS/l1UpaO0syh5uJZ2nEB/4kopm6TE2+dg7uf72ks710/VA7jOoElfKWWTpCGDCAvyI6ObFTctFsNTK3L4ZO/JHl/n4z3FRA0KYM7oKEeEqXqhSV8pZRMfHyElofsVN9/bWcgrmw/z6HuZVNZ1vThbR2nnmila2nEW/akrpWyWEh9B3olTNLa0nbW9sq6ZZ1blMn7YYGoaWvj92v1d7n+mtKOzdpxFk75SymYpCRG0WQw5RWevuPncmn3UNLbypzunc++ckbyx7Qh7i2rO219LO86nSV8pZbOU+PZlljOOnUn6GceqeHvHUe6/OImJw8P4wVUTiAgJ4MkPc85aq6expY1PtLTjdPqTV0rZLCYsiLjwoNN1/TaL4Yn39xATGsj3Fo4DIDzEn8eumcD2wxV8mFl0et/P95VSr6Udp9Okr5Tqk5SEiNPXzH1j2xGyj9fwxPWTCQ3yP93my2kJTB0Rzq8/zqWuqRXQ0o6r0KSvlOqTlIQIjpTXc7DkFL9ds49Lxw7lhmlnj959fYQnb5zCyZomXvjsoJZ2XEivC64ppVRnHSdpPfjPnTS2tPHUTVO6XAt/5shIbpkxgr9tPER4sD/1zW3nfTiogacfuUqpPpka3375xENldXzjstGM6eEShz+5diKBfr48uyqPqEEBzB6lpR1n06SvlOqTwYF+TBgWyoiIYL6zYFyPbWNCg/jule1ttLTjGrS8o5TqsxfumkGArw/BAb69tr3/kiTKapu4/aKEAYhM9UaTvlKqz8bGdF/SOZe/rw8/vW6SA6NRfaHftZRSyoto0ldKKS+iSV8ppbyIJn2llPIivSZ9EQkSke0ikikiOSLylHX7bdbHFhFJ69R+lohkWG+ZIrLEkR1QSillO1tm7zQBC4wxtSLiD2wSkVVANnAL8PI57bOBNGNMq4jEApkissIY02rXyJVSSvVZr0nftK+N2nElZH/rzRhjcoHzTr82xtR3ehgEGJRSSrkEm2r6IuIrIhlACbDWGLOtl/azRSQH2AM81NUoX0QeFJF0EUkvLS29kNiVUkr1kXS+yEGvjUUigOXAd4wx2dZtnwOPGmPSu2g/CXgVuNwY09jD65YCR/oW+mlDgbIL3NeVeEo/QPviyjypP9oXGGmMie7LDn06I9cYU2VN8otor9331j5XROqAZOC8D4VO7foUdGcikm6MSeu9pWvzlH6A9sWVeVJ/tC8XxpbZO9HWET4iEgwsBPJ6aD9KRPys90cCE4DDdolWKaVUv9gy0o8FXhURX9o/JN4xxnxknYr5ZyAaWCkiGcaYa4BLgZ+ISAtgAb5ljPGUr2BKKeXWbJm9kwVM72L7ctrr++dufw14zS7R2WbpAL6XI3lKP0D74so8qT/alwvQpwO5Siml3Jsuw6CUUl5kwJO+iCwTkRIRye60LUVEtojIHhFZISJhnZ6bZn0ux/p8kHX7TOvjgyLyJ+nqIp09tBORy0Vkl4i0isiX3LgfD1m3Z4jIJhGZ7MZ9uV9ESjst4/F1N+7L8536sV9EqvraFxfrz0gR+VREskTkcxGJd4O+PC0ix0Sk9pzt/frbt3Nfuoyxi/ezXx4zxgzoDbgcmAFkd9q2A5hnvf8A8EvrfT8gC0ixPh4C+FrvbwfmAgKsAq7t5v26bAckAdOAfwJfcuN+hHVqcyOw2o37cj/wgif8fp3T5jvAMnfuD/AucJ/1/gLgNTfoyxzaJ6LUnrM9iX787du5L13G2If/lz735YL/uPpzswba+YdVw5njCwnAXuv964DXu9g/Fsjr9PhO4OULaQf8ox//8S7Tj07bV7lrX7BD0neVvpzT7gvgKnfuD5ADxFvvC1Djyn05Z58uEyr9+Nu3R19sidHWPvelL65S08+mfZQKcBvtPzCA8YARkTXWrzA/sm4fARR22r/Quu1ctrazF6f0Q0QeFpF84DngkX73op2z/k9utZYQ3hMRe11U1Wm/X9J+rsooYF2/enA2Z/QnE7jVen8JECoiQ/rVi3aO6osz9LUvtrJrn10l6T8APCwiO4FQoNm63Y/2ef93W/9dIiJX0j7SOFdX05BsbWcvTumHMeZFY8wY4MfAExce/lmc0ZcVQJIxZhrwCe1LeNiDM3+/7gDeM8a0XUjg3XBGfx4F5onIbmAecBywx8q5juqLM/S1L7aya59d4sLoxpg84GoAERkPXG99qhBYb6wnd4nIx7TX0V4HOh9IigeKpP0Esp3WbR8Cf+mqnYO64Qr9eNva1i37Yowp77T9r8Bv3LUvndwBPGyPfnRw0v9NEe1LqSMig4FbjTHVrtoXY8z/9De2vrqAvnza1es4PI9daD2rPzfOr4XFWP/1of2AxAPWx5HALiCE9g+oT4Drrc/toP0gSMeBjeu6ea8e22Hfmv6A9wMY16nNYiDdjfsS26nNEmCru/bF+lzHEiTi7n8vtC8I5mO9/zTwC1fvS6f3GKiafp/70luMtvye9bUvF/yL2I8f1FtAMdBC+yfg14DvAvutt2c7/5EA99B+ECkbeK7T9jTrtnzghe7+sLprB1xkff86oBzIcdN+/NH6uhnAZ8AUN/4/ecb6upnWvkx0175Yn3sSeNZD/l6+BBywvuffgEA36Mtz1vexWP990h5/+3buS5cx9uH/pc990TNylVLKi7jKgVyllFIDQJO+Ukp5EU36SinlRTTpK6WUF9Gkr5RSXkSTvlJKeRFN+kop5UU06SullBf5/8WLew3E4y+XAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(absc, ordo)\n", "plt.plot(absc, [mean]*len(absc))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }