{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data\n", "file = '/home/jovyan/work/module3/exo1/incidence-PAY-3.csv'\n", "# check existing local copy\n", "try:\n", " local_data = pd.read_csv(file)\n", "# if no local copy, create it\n", "except FileNotFoundError:\n", " raw_data.to_csv('incidence-PAY-3.csv')\n", "# read local copy\n", "raw_data = pd.read_csv('incidence-PAY-3.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
1656165619891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " Unnamed: 0 week indicator inc inc_low inc_up inc100 inc100_low \\\n", "1656 1656 198919 3 0 NaN NaN 0 NaN \n", "\n", " inc100_up geo_insee geo_name \n", "1656 NaN FR France " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210532249118436.026546.03428.040.0FRFrance
120210432580421491.030117.03932.046.0FRFrance
220210332181017894.025726.03327.039.0FRFrance
320210231732013906.020734.02621.031.0FRFrance
420210132179917778.025820.03327.039.0FRFrance
520205332122016498.025942.03225.039.0FRFrance
620205231642812285.020571.02519.031.0FRFrance
720205132161917370.025868.03327.039.0FRFrance
820205031684513220.020470.02620.032.0FRFrance
92020493129399923.015955.02015.025.0FRFrance
1020204831380410641.016967.02116.026.0FRFrance
1120204731908515285.022885.02923.035.0FRFrance
1220204632480120503.029099.03831.045.0FRFrance
1320204534251636857.048175.06556.074.0FRFrance
1420204434456738521.050613.06859.077.0FRFrance
1520204334373737523.049951.06657.075.0FRFrance
1620204233514529812.040478.05345.061.0FRFrance
1720204132787723206.032548.04235.049.0FRFrance
1820204032044316381.024505.03125.037.0FRFrance
1920203931981015900.023720.03024.036.0FRFrance
2020203832556221142.029982.03932.046.0FRFrance
2120203731848514649.022321.02822.034.0FRFrance
222020363103907646.013134.01612.020.0FRFrance
23202035399186842.012994.01510.020.0FRFrance
24202034360843090.09078.094.014.0FRFrance
25202033361063411.08801.095.013.0FRFrance
26202032359183330.08506.095.013.0FRFrance
27202031343512269.06433.074.010.0FRFrance
28202030381795442.010916.0128.016.0FRFrance
29202029386875860.011514.0139.017.0FRFrance
.................................
186319852132609619621.032571.04735.059.0FRFrance
186419852032789620885.034907.05138.064.0FRFrance
186519851934315432821.053487.07859.097.0FRFrance
186619851834055529935.051175.07455.093.0FRFrance
186719851733405324366.043740.06244.080.0FRFrance
186819851635036236451.064273.09166.0116.0FRFrance
186919851536388145538.082224.011683.0149.0FRFrance
18701985143134545114400.0154690.0244207.0281.0FRFrance
18711985133197206176080.0218332.0357319.0395.0FRFrance
18721985123245240223304.0267176.0445405.0485.0FRFrance
18731985113276205252399.0300011.0501458.0544.0FRFrance
18741985103353231326279.0380183.0640591.0689.0FRFrance
18751985093369895341109.0398681.0670618.0722.0FRFrance
18761985083389886359529.0420243.0707652.0762.0FRFrance
18771985073471852432599.0511105.0855784.0926.0FRFrance
18781985063565825518011.0613639.01026939.01113.0FRFrance
18791985053637302592795.0681809.011551074.01236.0FRFrance
18801985043424937390794.0459080.0770708.0832.0FRFrance
18811985033213901174689.0253113.0388317.0459.0FRFrance
188219850239758680949.0114223.0177147.0207.0FRFrance
188319850138548965918.0105060.0155120.0190.0FRFrance
188419845238483060602.0109058.0154110.0198.0FRFrance
1885198451310172680242.0123210.0185146.0224.0FRFrance
18861984503123680101401.0145959.0225184.0266.0FRFrance
1887198449310107381684.0120462.0184149.0219.0FRFrance
188819844837862060634.096606.0143110.0176.0FRFrance
188919844737202954274.089784.013199.0163.0FRFrance
189019844638733067686.0106974.0159123.0195.0FRFrance
18911984453135223101414.0169032.0246184.0308.0FRFrance
189219844436842220056.0116788.012537.0213.0FRFrance
\n", "

1892 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202105 3 22491 18436.0 26546.0 34 28.0 \n", "1 202104 3 25804 21491.0 30117.0 39 32.0 \n", "2 202103 3 21810 17894.0 25726.0 33 27.0 \n", "3 202102 3 17320 13906.0 20734.0 26 21.0 \n", "4 202101 3 21799 17778.0 25820.0 33 27.0 \n", "5 202053 3 21220 16498.0 25942.0 32 25.0 \n", "6 202052 3 16428 12285.0 20571.0 25 19.0 \n", "7 202051 3 21619 17370.0 25868.0 33 27.0 \n", "8 202050 3 16845 13220.0 20470.0 26 20.0 \n", "9 202049 3 12939 9923.0 15955.0 20 15.0 \n", "10 202048 3 13804 10641.0 16967.0 21 16.0 \n", "11 202047 3 19085 15285.0 22885.0 29 23.0 \n", "12 202046 3 24801 20503.0 29099.0 38 31.0 \n", "13 202045 3 42516 36857.0 48175.0 65 56.0 \n", "14 202044 3 44567 38521.0 50613.0 68 59.0 \n", "15 202043 3 43737 37523.0 49951.0 66 57.0 \n", "16 202042 3 35145 29812.0 40478.0 53 45.0 \n", "17 202041 3 27877 23206.0 32548.0 42 35.0 \n", "18 202040 3 20443 16381.0 24505.0 31 25.0 \n", "19 202039 3 19810 15900.0 23720.0 30 24.0 \n", "20 202038 3 25562 21142.0 29982.0 39 32.0 \n", "21 202037 3 18485 14649.0 22321.0 28 22.0 \n", "22 202036 3 10390 7646.0 13134.0 16 12.0 \n", "23 202035 3 9918 6842.0 12994.0 15 10.0 \n", "24 202034 3 6084 3090.0 9078.0 9 4.0 \n", "25 202033 3 6106 3411.0 8801.0 9 5.0 \n", "26 202032 3 5918 3330.0 8506.0 9 5.0 \n", "27 202031 3 4351 2269.0 6433.0 7 4.0 \n", "28 202030 3 8179 5442.0 10916.0 12 8.0 \n", "29 202029 3 8687 5860.0 11514.0 13 9.0 \n", "... ... ... ... ... ... ... ... \n", "1863 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1864 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1865 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1866 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1867 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1868 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1869 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1870 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1871 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1872 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1873 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1874 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1875 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1876 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1877 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1878 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1879 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1880 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1881 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1882 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1883 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1884 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1885 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1886 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1887 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1888 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1889 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1890 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1891 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1892 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 40.0 FR France \n", "1 46.0 FR France \n", "2 39.0 FR France \n", "3 31.0 FR France \n", "4 39.0 FR France \n", "5 39.0 FR France \n", "6 31.0 FR France \n", "7 39.0 FR France \n", "8 32.0 FR France \n", "9 25.0 FR France \n", "10 26.0 FR France \n", "11 35.0 FR France \n", "12 45.0 FR France \n", "13 74.0 FR France \n", "14 77.0 FR France \n", "15 75.0 FR France \n", "16 61.0 FR France \n", "17 49.0 FR France \n", "18 37.0 FR France \n", "19 36.0 FR France \n", "20 46.0 FR France \n", "21 34.0 FR France \n", "22 20.0 FR France \n", "23 20.0 FR France \n", "24 14.0 FR France \n", "25 13.0 FR France \n", "26 13.0 FR France \n", "27 10.0 FR France \n", "28 16.0 FR France \n", "29 17.0 FR France \n", "... ... ... ... \n", "1863 59.0 FR France \n", "1864 64.0 FR France \n", "1865 97.0 FR France \n", "1866 93.0 FR France \n", "1867 80.0 FR France \n", "1868 116.0 FR France \n", "1869 149.0 FR France \n", "1870 281.0 FR France \n", "1871 395.0 FR France \n", "1872 485.0 FR France \n", "1873 544.0 FR France \n", "1874 689.0 FR France \n", "1875 722.0 FR France \n", "1876 762.0 FR France \n", "1877 926.0 FR France \n", "1878 1113.0 FR France \n", "1879 1236.0 FR France \n", "1880 832.0 FR France \n", "1881 459.0 FR France \n", "1882 207.0 FR France \n", "1883 190.0 FR France \n", "1884 198.0 FR France \n", "1885 224.0 FR France \n", "1886 266.0 FR France \n", "1887 219.0 FR France \n", "1888 176.0 FR France \n", "1889 163.0 FR France \n", "1890 195.0 FR France \n", "1891 308.0 FR France \n", "1892 213.0 FR France \n", "\n", "[1892 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXm8HUWZ93/PWe6a3JvtJmQlAQLIvsSAAiKggOIYRlHjqERlZMbBbd55nQGdGRyUV1FnQFwQ1LA4KCAuoIAYwiKEEEjYEkhC9n2/S27uepZ6/+iqPt19qrr7nNNny32+nw/ck+ru6urqqnrqWaqahBBgGIZhmFKJVbsADMMwzOEBCxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDREKi2gWoJBMmTBAzZ86sdjEYhmHqihUrVuwXQnQEnTeiBMrMmTOxfPnyaheDYRimriCiLWHOY5MXwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSWKAwDMMwkRAoUIhoIRHtJaJVjrRxRLSIiNbJv2Mdx64jovVEtJaILnGkn0lEK+WxW4mIZHojEd0v05cR0UzHNQvkPdYR0QJH+ix57jp5bUPpVcEwDMOUQhgN5S4Al3rSrgWwWAgxG8Bi+W8Q0QkA5gM4UV7zEyKKy2tuA3A1gNnyP5XnVQC6hBDHALgZwE0yr3EArgdwFoC5AK53CK6bANws798l82AYhmGqSKBAEUL8FUCnJ3kegLvl77sBXO5Iv08IMSSE2ARgPYC5RDQZQJsQYqmwvjl8j+caldeDAC6S2sslABYJITqFEF0AFgG4VB67UJ7rvf9hzx9e2YFDQ+lqF4NhGCaPYn0ok4QQuwBA/p0o06cC2OY4b7tMmyp/e9Nd1wgh0gB6AIz3yWs8gG55rjevw5rXt3fjK/e/in///cpqF4VhGCaPqJ3ypEkTPunFXOOXV36BiK4mouVEtHzfvn2m0+qCnoEUAGDfoaEql4RhGCafYgXKHmnGgvy7V6ZvBzDdcd40ADtl+jRNuusaIkoAaIdlYjPltR/AGHmuN688hBB3CCHmCCHmdHQEbkVT06SzltxMxDg4j2GY2qPYkelhACrqagGAhxzp82Xk1ixYzvcXpVmsl4jOlj6QKz3XqLyuAPCk9LM8DuBiIhornfEXA3hcHntKnuu9/2FNJqMEik5JYxiGqS6Bm0MS0a8BvBvABCLaDivy6jsAHiCiqwBsBfARABBCvEFEDwB4E0AawDVCiIzM6vOwIsaaATwm/wOAXwD4JRGth6WZzJd5dRLRNwG8JM+7QQihggP+DcB9RPQtAK/IPA570tksACDOAoVhmBokUKAIIT5uOHSR4fwbAdyoSV8O4CRN+iCkQNIcWwhgoSZ9I6xQ4hGFbfKKs0BhGKb2YGN8HZGRAiXOPhSGYWoQHpnqCFugsILCMEwNwgKljiApSIwx0gzDMFWEBUodQXIJjmCJwjBMDcICpY5gDYVhmFqGBUodIlhFYRimBmGBUkfIHf9ZQ2EYpiZhgVJH2OsZWaIwDFODsECpI2ynPEsUhmFqEBYodQi7UBiGqUVYoNQRdpQXCxSGYWoQFih1RM6FwhKFYZjagwVKHWFHebE8YRimBmGBUkfwwkaGYWoZFih1SK1rKMs2HsDMax/Bhn2Hql0UhmEqCAuUOkIJklpfKf/wa9YXmZ9fv7/KJWEYppKwQKkraluQKIi312eYEQkLlDqkPsQKwzAjDRYodUS9mLwU9VFKhmGiggVKHZLlkZphmBqEBUodUW9yhF0pDDOyYIHClI16E4AMw5QGC5Q6ok5cJ/auyAzDjCxYoNQR9baHV70IQIZhooEFChM5vA6FYUYmLFDqCJ7xMwxTy7BAYcpGvayXYRgmGlig1BH1MjyzxYthRiYsUOoInvEzDFPLsEA5zPjh4nX4wA+frXYxANSPRsUwTDSUJFCI6J+J6A0iWkVEvyaiJiIaR0SLiGid/DvWcf51RLSeiNYS0SWO9DOJaKU8divJTxMSUSMR3S/TlxHRTMc1C+Q91hHRglKe43Divxe9hVU7Dla1DMRhXgwzIilaoBDRVABfAjBHCHESgDiA+QCuBbBYCDEbwGL5bxDRCfL4iQAuBfATIorL7G4DcDWA2fK/S2X6VQC6hBDHALgZwE0yr3EArgdwFoC5AK53Ci6GYRim8pRq8koAaCaiBIAWADsBzANwtzx+N4DL5e95AO4TQgwJITYBWA9gLhFNBtAmhFgqLCfBPZ5rVF4PArhIai+XAFgkhOgUQnQBWIScEDpsqTcXSr2Vl2GY0ihaoAghdgD4PoCtAHYB6BFC/AXAJCHELnnOLgAT5SVTAWxzZLFdpk2Vv73prmuEEGkAPQDG++TFMAzDVIlSTF5jYWkQswBMAdBKRJ/0u0STJnzSi73GW86riWg5ES3ft2+fT/Fqn7rbeqXaBWAYpqKUYvJ6D4BNQoh9QogUgN8BeCeAPdKMBfl3rzx/O4DpjuunwTKRbZe/vemua6RZrR1Ap09eeQgh7hBCzBFCzOno6CjyUWsDNiExDFPLlCJQtgI4m4hapF/jIgCrATwMQEVdLQDwkPz9MID5MnJrFizn+4vSLNZLRGfLfK70XKPyugLAk9LP8jiAi4lorNSULpZpTA3BsV4MM7JIFHuhEGIZET0I4GUAaQCvALgDwCgADxDRVbCEzkfk+W8Q0QMA3pTnXyOEyMjsPg/gLgDNAB6T/wHALwD8kojWw9JM5su8OonomwBekufdIIToLPZZ6oV601DqrLgMw5RI0QIFAIQQ18MK33UyBEtb0Z1/I4AbNenLAZykSR+EFEiaYwsBLCywyIcFtT5Q8zIUhhmZ8Er5OqLWBQnDMCMbFihM2eC9xxhmZMECpY6olwGaPwHMMCMTFih1hN/iHIZhmGrDAqUOqQ89pTT2HxrCR29fir29g9UuCsMwIWGBUk/UiSSJIsrr3he24sVNnfjl0i2lZ8YwTEVggcLUNGzeY5j6gQVKHVF3e3nVV3EZhikRFihM5LBWwTAjExYodUS9zfhL0ajqTRtjGIYFSl1RL0NsFE55W3jyPi4MUzewQDlMqZdFkEGwOGGY+oEFSh1RiIzIHh7yhGGYOoIFymHK4aKhMAxTP7BAqSMKcVTXuzip9/IzzEiEBUodUYjSUQsKShRlYJ88w9QPLFAOU6oZdkssBRhmRMICpY4oRETUgoZSEnX/AAwz8mCBUoeEcbjXwngcRRH42yoMUz+wQKknCpASVTV5RZBHDchDhmEKhAXKYUotaChRwO4YhqkfWKDUEYXIiGwNSJQaKALDMBWEBUodoQboMFFUVR3LWatgmBEJC5Q6pH6c8iXsNlwD5WcYpjBYoNQRBW2nUsUBOYrILCWMWNlhmPqBBcphSi34UKLAz7rX1TeMgeFM5QrDMIwvLFAK4I2dPXj8jd1Vu39BCxvLVorwlFumnf7NRXj/rc+W9yYMw4QmUe0C1BOX3focAGDzdy6rckmCqeZuw5UM9d20v69yN2MYxhfWUOqIOnGhsEOdYUYoLFDqiJG0l1e9l59hRiIsUA5T6t3klfukPMd5MUy9UJJAIaIxRPQgEa0hotVE9A4iGkdEi4honfw71nH+dUS0nojWEtEljvQziWilPHYryVGEiBqJ6H6ZvoyIZjquWSDvsY6IFpTyHPVCIUKCJ/gMw1SaUjWUHwD4sxDieACnAlgN4FoAi4UQswEslv8GEZ0AYD6AEwFcCuAnRBSX+dwG4GoAs+V/l8r0qwB0CSGOAXAzgJtkXuMAXA/gLABzAVzvFFwMm4wYhqk8RQsUImoD8C4AvwAAIcSwEKIbwDwAd8vT7gZwufw9D8B9QoghIcQmAOsBzCWiyQDahBBLhTUFv8dzjcrrQQAXSe3lEgCLhBCdQoguAIuQE0IMDoPdhlkgMkzdUYqGchSAfQDuJKJXiOjnRNQKYJIQYhcAyL8T5flTAWxzXL9dpk2Vv73prmuEEGkAPQDG++TFSLI1MCBH4cdhFwrD1A+lCJQEgDMA3CaEOB1AH6R5y4BuaBA+6cVe474p0dVEtJyIlu/bt8+neLVPYd+Ur2+nPMMw9UcpAmU7gO1CiGXy3w/CEjB7pBkL8u9ex/nTHddPA7BTpk/TpLuuIaIEgHYAnT555SGEuEMIMUcIMaejo6OIx6wdCjFj1bvJqJomO4ZhiqNogSKE2A1gGxEdJ5MuAvAmgIcBqKirBQAekr8fBjBfRm7NguV8f1GaxXqJ6GzpH7nSc43K6woAT0o/y+MALiaisdIZf7FMqwjZWrAn1QFRCDX+BDDD1A+lbr3yRQD3ElEDgI0APgNLSD1ARFcB2ArgIwAghHiDiB6AJXTSAK4RQqid/T4P4C4AzQAek/8BlsP/l0S0HpZmMl/m1UlE3wTwkjzvBiFEZ4nPEpqMEIhVYaArZICu5uaQkQgBltkMU3eUJFCEEK8CmKM5dJHh/BsB3KhJXw7gJE36IKRA0hxbCGBhIeWNikxWIBkPPq+a1LvJS8H+GIapH3ilfBFkqmTyqrvdhqtdgBHGD55Yh5nXPlLtYjAjGBYoRZCp0vSfo7wYP25+4q1qF4EZ4bBAKYJ6cMrXfgn9CSp/NQVmpenuH8bzG/aHPn8k1Q1TW7BAKYLqmbwKCRuu/qBSShFU+U3KTh3I9Mj49J0v4e9+tgyDqXBfpxxJdcPUFixQiqBaJq9CqIMihsJkPjtcPnEchjW7DwIA0iElRTXrZjCVwVNr9wafyByWsEApgmy2Ovetlw9sKcrpS6nUoLn/0BC+ct8r6BtKV+R+OlQYdiodruFVU6D81x/fxGfufAlv7OypWhmY6sECpQhYQ6l+GSr1fD94Yh3+8OpO/Pbl7cEnl4mYFMypTDiBUs13v1ZqU2HNc8zhBQuUIshkamC0DqC6CxvLT6WerzFhdZFqDpDqI2PDIQVKNd+9KmNDvMYXaoXgY7cvxZxvPVHtYtQVpa6UH5FUL2y4vvbyKmU/rqDyR/l8BwdTyGQExrY25B1rkitYB1NVsnMiJ6BTIScy1XTKD0uzXEOi/ueqyzZVbPONwwYWKEVQrSivQqjq5ooROE9y203r84pyFn76DYuQyQps/s5lecdqQUNRDNeBD2VIljFe//KEKQJ+7UVQrQ5b2MLG8pWjkphkU5SP5zdBaExaXSTsYF5O0iGjQUQVi6rq8nBpf0xhsEApgrrQUGqgiIeDUz4es7pI2JDdcqAmMGGfuRZCqqtfAqYasEApgvrYy6u+nfKBY2KFHi8hQ6xKfedL1u9H/3BxoccxKqwMVQ3IoOqXgakeLFCKoB46Sx0UsSQqJTDjUqCUoqFs6+zHJ36+DF998PXiMpCDdNhgkFJk32vbuvHmzoPFZyA53Nsfo4ed8kVQNQ2lzhY2lrMMlXoFOQ2leMeEcuiv3d1b1PVK4wsb5VfKtjvzfrwEALQBCmFQQRT1MOliooc1lCLwEyj3LtuC17d3l+W+9bKXVxQr5IOetVLPl5DhSukS1h7FpFAqdlPRmC3U/M/LmZuKuk2kVFue/PzZjfjQT5ZEklct7ItXL7CGUgBEVkfxEyhf//0qAMXP8KKimoNKlP2PDNKpUo+nwl9LMXnZPpAiK6YefSjVHoO/9cjqyPISgj/JEBbWUAqg1IGhVAq7bQ3Mqkqop0oubAxzn1LMnPECBYKXWEhHtxrzamGXhMPJ5HU4PUu5YYFSAHbHrvKShDDtu5p9QHj+loJpYhiVGSJokFe3KSUIoPRZe2F+iWq+e6VRmoqwdncv0iG3kImCsPuf+VELJsR6gQVKAVC1NZQCzq2FTlDWdSgR5RO0WLBSCyj9UBOZoOtV+6xVDWXVjh5ccstfcftfN1asPF39wyXnwRpKeFigFEBOQ6luAwszW66qI7EC947qFkH5FLqo0O8exQ5Mha7tqNXJxKod1pb2G/f1lf3+4+S+bFsO9JecF8uT8LBAKYAg52jZB/ECBreqOuXtv+UrRFR5Bw7SEdxG3aNogaJMXkFRXp77VQXbvJdfhpRslGo7m3LSJPdgi2LyxxpKeFigFECQU77c61PqZaW8XYY62Hol6JVFoaGoPIqNFLNNXhVYhxIVuhLk1tOU//4581/pebFACQ8LlAKgAFt2pXwrNe+Utx3ZpeQhfPOIqpMH5ROFtlVqSe3BMdCHYv2tpnZqa0maQuRCbytXwCiEay2YEOsFFigFEA/Y16nsGkoB2Vc3yqv0Wb2dlyGTSvlQyvkMYSlUUNTCjFqvocgIsAoWL4ouWQsaX73AAqUAYgFRNJXakiXMbLk2BpXqlyGIoMEiinosNYuwTvmwvpZy4hdpVsnFgVSgmdAP1lDCwwKlAILCN8vdkQuZ+VezD9jli2R2WFh6oQQNFvajlORDKf5aJ2GzqYXJhK6wlfWhWH+jqIuaqM86gQVKAVBAlFfYDyAVSyHtupqdIAp5EnRtxXwoEQ5IxWYV+roa2PYk5mOesxd41p0PhQVKWFigFEDQFhgVc8pHdlJ5KaUzB61Qj+rxggVK6fcrtVnYZQi9DqV6Lz/MbsMV0VAiNP+xPAkPC5QCyK1D0R8vv8nL+8NMVTUU4f4bRV756dE8X7BTPkoNpbzvpCbWoUh8nfIVLAebvCpLyQKFiOJE9AoR/Un+exwRLSKidfLvWMe51xHReiJaS0SXONLPJKKV8titJG1LRNRIRPfL9GVENNNxzQJ5j3VEtKDU5whDTqDoJUe5TV6FUBNRXpHkVVh6oQQNFtkIhWOlqGrYsJ8WXwWTXDTrUErPY6QQhYbyZQDOvaKvBbBYCDEbwGL5bxDRCQDmAzgRwKUAfkJEcXnNbQCuBjBb/nepTL8KQJcQ4hgANwO4SeY1DsD1AM4CMBfA9U7BVS7k58Wr55QPMAO5ylIDI2BJ25UEfg+l+LydhHXKlyLCSn0XYTWb3CaU1X/3vk75CugoUdZFtbdaqidKEihENA3AZQB+7kieB+Bu+ftuAJc70u8TQgwJITYBWA9gLhFNBtAmhFgqrLd/j+caldeDAC6S2sslABYJITqFEF0AFiEnhMpGbqW8/ni1No3UUdWSFCD4ArMqs8kraLCopYVxYYtSC+NfLUxogKjWoZSex0ihVA3lFgD/CsA5N58khNgFAPLvRJk+FcA2x3nbZdpU+dub7rpGCJEG0ANgvE9eZSUesGK5lM/EhqGQsOEb/vhm1WeqkfhQyuyUD7uwsbTNIUvUUOy/te+UV+iKUIgPsFSi9CfVQn3WC0ULFCL6AIC9QogVYS/RpAmf9GKvcd+U6GoiWk5Ey/ft2xeqoCaCFkuV/TMPBUQc7egeQO9QuqzFMRGJ7yRgII/O5BWgoUTwNNkC3lsUVPeLjeYor6DtdMpBvQsUIQRuf2YDdvUMVK0MhVCKhnIOgA8S0WYA9wG4kIj+F8AeacaC/LtXnr8dwHTH9dMA7JTp0zTprmuIKAGgHUCnT155CCHuEELMEULM6ejoKO5JJUG7DVdqpXytYw8cZeyIldptOBphUKoPxf3XRDW2NjGhK0Kh4c+lYH/oq86d8lsO9OPbj63BP/wy7Ly9uhQtUIQQ1wkhpgkhZsJytj8phPgkgIcBqKirBQAekr8fBjBfRm7NguV8f1GaxXqJ6GzpH7nSc43K6wp5DwHgcQAXE9FY6Yy/WKaVlViAyavcMxnb9FELI0aZCXrCqKyLQfeJYhAsdUAqVHhWs3nkVsPnF6LSmpp1zyj8eNWrULVD9aHB6lgbCiVRhjy/A+ABIroKwFYAHwEAIcQbRPQAgDcBpAFcI4TIyGs+D+AuAM0AHpP/AcAvAPySiNbD0kzmy7w6ieibAF6S590ghOgsw7O4CDJ5Fbs9eaGEvUuxWyct23gAE0Y34uiOUUVdH8ViwFxeJh9KNHUddi8vKmEjqmxEI2l4p3z52mEmK7C3dxCT25u1x/0+dxzFpwDCkvOhlJ4XGx7CE4lAEUI8DeBp+fsAgIsM590I4EZN+nIAJ2nSByEFkubYQgALiy1zKVRvt+HKtOyP3fECAGDzdy4r6vqcJlV6Waq+l1cUM9xSrw+ZQZT7V5m46c9rcMdfN+Klr78HHaMbfcqQf63w/K0E9e5DqTd4pXwRGNehVGrrlTpp35GEDUdQDj/C+lAiuUeJu+2GLUo528fi1XsAAD0D/t9q93PKV5L638srmrZTKVigFIBqV0Npw0p50wKViO8fllLMNKVQia1XItscMsAXE+n29UVmVaiJs5wDoC0bDW3Lb3sVZfqriGCxdwYvPat6mcDVAixQCkDNuPsM4bgVc8qX9S6lE8XWK2HXh5RK+K1Xir9hVGUNvzlkNPfT521lHjMJFJ8V6pV0yvM6lOrAAqUAVLvqG85oj1csbLhOGnhpxVRCyeSUj4awm0OW8mptZ3SR14cNcvBbAxIVKiAlHqD9Vn1hox02HIVAKTmLkqkTixcLlEJQ7WqgSgKl0L5RrXBHEeHIUfatV0JGeZUySFfak1TO9x5kIvTTDKrRHiP1gVWBWhBmhcACpQBUhzBtsVK5TwDXB6VtVyL/mo4Xn7WLSuw2HNmAFJBNlKGyJsIKWN+w4UpsDum5ZylUcx1KvZnbWKAUgHq1pvUm5d4cspC9vKzzq0sUAsWUSXQaStDxCDSUEsta6OXlHIRU3sa27mN2U3Vdya881Ps6lHrbfYMFSiGoDmHoTPX28suFiGAmWqnt64MGexHwzsPdo+hL3fmEVFEiGUSNa61kWQwPlduiPp9KTrYPl+3rlfCtVsRmobBAKQBbQzGEB1fKh+I3sDTEc6+02tpyfZi8Ao5no3DKW3+LHdwKvaqcay9yZl/9df5RXpUzeXnvWVoeERSk6HvX1ySVBUoB5DqT/iXXwstPxh0zmSoVR3j+FkOQ76K+woajKWxQNtGGyprSi/eh5DYNLaloBRHN91Cq169r6RtLYWCBUgCBPpSIpjJZuV+SsRw+tzGtD6gkUSxszK1lKV14pzJZXHPvy3hrT69vPn6z6ig0lGIpdECLwkdhql/1LKa27hcYEDb8OQrUAsu611Dkzavfq8PBAqUAREBnimpzyFufXIe5Ny7Gzm73NxDCzPCE63d1Zzcl3T/g0kLGiVU7evDIyl346oOv++ajHwSjc8oXm0NYjS/KdShGgZINboOA/t1XY2COYoJfTctDvfllWaAUgOokJsERlfPu6bXWh8B29Zi1FBPCNeOOpDiFl6GQL4EZ85B/TSavAjJXW+U0JvKbe7CG4v5bDFG9htDRfZGYefTpmQABmxNq+cfC7jb8tz9Zgu89viZcQQ3Ym1RG0CdrYR1KDRgeQsECpQByGophHUpEDU/5QbyzkzAz1VqYz0QzoAXM6gu4h79A8c8yNwgW/1D2FvhFXh/21lHuNmw2eUk/YlCUl8/CxqDyvbK1Gz9+akPIkvpT7m/Kv7ipE6d843H09KdKv5GGWvDLFgILlAJQ77YUH8r2rn5sOdDne47yg6Q9oTQ534T5PiJggKwkpdw/WEMJz1DK2tmgMRHPO+bssL5rJ0oSKNbfUt9H+G/Kl3gjnzyyQWHDPt9DUUmVHCTLvZfXrYvX4eBgGq9t7y443xVbunD5j5dgMKXfeQNgk9eIoJTvoZx701M4/3tP+56TkBpKMT6ZavtNrDLIvxGs3YjGKW+d25DI1xGCTIT2rLoER3fpCxvDXV9qlJcIMRuxNRRT2LCPMzx3bfnbaJjJV1j8imsL0CLy/c+HVuHVbd1Yv/eQz72r358LgQVKAQSFDUfVURIx67V4zQphhIVrTChjYxRC4LGVu7TPHEU0TzFhqSbSUhrEYxqTV8jt66NY2Fjq6wjvQynuRs5XGWTyKm7rFfOx3HXhyr63dxCPrtxlzgeqnKGy8y1HuQb1MCZKFiiHMerVhhEopQzmiZgyeRWjoeh/R80jK3fh8/e+jNv/arZ1lxY27P1hOB4C1SnjGidGJmDgiGIvr1K1xrBX+znEQ93Hqa0Zzsltn+J/k2I1lLBlX7DwJfzTvS/jkPFTEtbfYv2aLt9aiDyK6e/2t2N8LlWaINVJ4DALlAII9KG4Bqfi72MK/4xqphsFBw5ZX+zb1a2LRBOO/xdJgJZTSAdWnTIWK9zkFWZ1987uAXz09qXo7td/xbDkdSEFanzFzmrDaCi6c0PfWwSf4zxm2tUbALZ39gMIXmRcfF2E68v2NvlF3CMWwlzGPpTDGDWoGBuxI72cDcF3xuuaWZWtCI7OYL5JST4UeyNMfR6FZL1iSxcA/Tc8gqK8hMg/z8ttT2/Ai5s68dCrO7XHSzVbhNZQ7PsVex9/4erENPP3G8jDDPLOfrNhn9m3YGOcccg/RWtrud9+5bVbVDH3CbFuSLV/Dhs+DLE1FINH0qm5lDKImCJlwuRYMae8j3klCh9KkDYW9jkPHBrCr1/cCgCIazSU8CvlfQaVgI0II3sjIdtU0XuGFWDmCVpJ7+dD8ZtshR3I7U/8Bgm2IqVrWA1FHdI908BwBj/760bjeBELaDcAb71yWOPXeAB34w1qB36NyDQZCWPycgfqlK8x5tYb+JShhNsH11+4fNQaFEBv8nKbefKvD+ND8dth17o22GwWhqCrS12HIgLqwn2uSXNUAticv1/ezgE0TJRj2mBPVFeWey8vtSZNV+e3LH4LNz66Go8YggdiFMaHwgLlsKUwH0pxNmjPHQtI1RwrY1sMsz14KQNo0Gdzw86mnVpJIsCHortZOA3Ff2AoPbqrsAxMbUsIgT+8ssPom3CZvALenSlsOLfmpnSTl99gSgHnROtDCS6vrhhbD1h+HtPlYUyUdaagsEApDOvthtnLK0hVNc2sAOdMU39/3xJWqAX6za4K/RCYDlvJMZq8cvg6TR2/dRtnukxemvotZC8v0xlRTTKDi+Bvk391Wze+cv+r+I+HVmmPB2lr7nP9B3K95hpcl872G2Z2boqEzGnzxQoUx2+foAq/hZ69g1YEWsogfcNMylhDOYwJ0lCcJq/AsEqfRqpCBE2NyV8r0P+OGj+nfCHRaHt7B3H6DX/Bmt0H9XmEWNjoa5N3/NZpKM73oDV5ZfPPK5S5YN7tAAAgAElEQVSwe1iZCHuZGqAyhkFWPZ9pIZ074i2o/frfQ3c850Mx5xtaQ6GgPuK+Z6GEXYeiJoa6CaQSJOadmYPDvNmHchjjfLW6RuLsKEEzCz8NRWEKG/bDbQoKPt8/Lz+TQ3BnCGPyWrx6L7r6U7jzuc15V1tlMJUt9ztsGGopTnnfuiizUz7sbFtFsaUML6W10dp6JmjthvOeJvzMaoD+mYMi97z5+vlQVJ2bzil1l+iwdaFkt99mmKYy2hMAv3U5rKEcvgSp465Zc+AMz3zM1NCiiJ4qBN+2HGLPpjB9OSgAwUzuBL+Bx1mHus+oBrhQcjNuX7Oaf0xnGLPLUDqDW554S7uvU1hflDrPZGKxNWyTilCAQCkubFhe67uw0dnHgiddZh+K+2+hhNVQctv56yaYwreMOaFofs46kycsUAohSENxNoxSNBSTQMkWKFFKjSoKs0jN1+RVwL28+QRd6yxa2DBUPw3E+9t7TbiwYf3xMLPM+17chlueWIfbnvbZeSAgD3WbVFrftvwcyFZ6uEEUMAtJv6i4MHXpFijm+ysRbo7yCtaG/Agb8Zb2ERpKewkyefm1XyW4+ZvyhyHORqZryIWYvPw0GNMGe8GDbLTTGb9nSNszM3M5QmkohsE4yNTkLFrYGa/frNm6mfn6MI5/kwAP81bUfbo0q+3DvlZ1XpCGYvQ7aMpjIih0Xr99vco7XL7RaCjF9YnwUV4qbFiTR4CGoraWS/lssVTNzw8XAwuUAgg0ebmc8v55hYne8I4LQTN/b9srpi2G/UCXEqjagUOTlwl7P6O8ckCbnruH/7vQHfOzc5vulZtxl6ChhNDYmpOWf8Nvu5Gg6lRlHDYMUEEfxwqzl5fCVOX2REN7jf8AC7j7jb8PxX9Hbr/1MGFw+1CC25euTtUxUxljAYEFQcdqERYoBSCQc+zqTV6OQa7IGR4A4yrg3Mw/3EzYrwTLN3fidc03HFymJL/olox54LB3ZS7BiaKuNA9+ud/+JhT/84Js5YWsZzBZJcII1kRc7jAdMmLN77hJQ/Eb/Kx0R15BPkDDcf8B1v9awN1mwk269OeoWX/RizzhbBfm88JMOILKwD4UAEQ0nYieIqLVRPQGEX1Zpo8jokVEtE7+Heu45joiWk9Ea4noEkf6mUS0Uh67leT0g4gaieh+mb6MiGY6rlkg77GOiBYU+xwFIXKhp4FO+SCTV4hFW17be+CAUkDnueKnS/HBHy3Jz8PxO8yCLj+nfCGdIV+78p9hOpP9ZrLBmz+ay+BMK6VjFyJXtQI65H3U+xo2+FCCzHeF7OVl8gv5tYsw26FkQvohbR+KQRtTgQfFWozCTljssGFNlaurTGUMo6GMpCivNIB/EUK8DcDZAK4hohMAXAtgsRBiNoDF8t+Qx+YDOBHApQB+QkTqE3q3AbgawGz536Uy/SoAXUKIYwDcDOAmmdc4ANcDOAvAXADXOwVXuRAAGuRMUjeIuc0rQbOSwmdfQZ/FzdNQiuhNrhl7CB+K/5bvIWb16r6m9SYBJo2gcgZvTx+dhmIiTDCFr881ZH0G+VBUPZnr1HFukEAxHM+1C901/gLNeb33twmjhhKgjQHAqf/1F3z99yu1x8Ls5SWEwLbOAeN9cj4U/4WNfs8Zpt0t3XAAT67ZE3heJShaoAghdgkhXpa/ewGsBjAVwDwAd8vT7gZwufw9D8B9QoghIcQmAOsBzCWiyQDahBBLhdVj7vFco/J6EMBFUnu5BMAiIUSnEKILwCLkhFDZyAphf01Rvw4lvIbiNwiatq/3i6DxSy+EbMhBxW8GWOoaAOe1YUxeYW3yQU55v1l1KXVbyKV6n1S4HFRZjSavAFNk0K4BurxMeeiut8NoQ2i+3t9egkJugxYVAkDPQAr3LtuqPSZc7UKfx4AjxFsbNhxQ30Hbx/hd6+TjP3sBn71reeB5lSASH4o0RZ0OYBmASUKIXYAldABMlKdNBbDNcdl2mTZV/vamu64RQqQB9AAY75OXrmxXE9FyIlq+b9++4h5QYgkUs627EIHi63A05KH+ZRxkvaG3RQyCYZ3dOeerbgAMvj6IXAy//rjzvmFneFqzhPDPJ0y0UKB5KMSLiMSyIfMwOeVzq/71x10adkBQiWmQ9ZtohFkk6ixDsRpKJisK2q1BR5gor0ODuQWifuNBkFPeuC4II8vkBQAgolEAfgvgK0KIg36natKET3qx17gThbhDCDFHCDGno6PDp3jBCBFg8orIh6LLDwi2QUehoYSZmQG58mtDHu1BOPh+dny951y/PZK85Qw72AetQ9GZJgrRtkwLHMO8F3Vv3alh36utoZjWoQRoW0F1GmafLVsAa6Mg/a/1HvMfTM1RXk4NrZw7Lx90CBTdObaWZBDwSTmWDBnel9+9a5WSBAoRJWEJk3uFEL+TyXukGQvy716Zvh3AdMfl0wDslOnTNOmua4goAaAdQKdPXmVFCCAZ1uQV0JDDqPN5HUqEy7sUXKYkX2eknH1pZldhZqIKkzM62DzjKItPHH/YT/wCQRqK8RY2xnUoIepBCWa/U4OyUYeDfCimOg0004YYZNM+gtF+pyEFShgNRSd0ovguUZgJi3MLG7+wYVN9NySs4bffJ1R8xIQNS1/GLwCsFkL8j+PQwwAWyN8LADzkSJ8vI7dmwXK+vyjNYr1EdLbM80rPNSqvKwA8Kf0sjwO4mIjGSmf8xTKtrDhNXvqFjf6zq2xIgZMzebnTc1+MDFfeYvqSs2P4DdRKkOg0FJVFKX0hMCIphEnCe8zPUQzon7cQ4Wgqq+378vFL2NFRmmNhq9GO8jIJlIABPWyAAmDWHmyzmo+T2q8qXaH3IXaT0GooaaeGYr6XH+493vTn9A6mtOcr/FbRA7kNVgc02+3k7h2+/dUCiRKuPQfApwCsJKJXZdrXAHwHwANEdBWArQA+AgBCiDeI6AEAb8KKELtGCKFq8vMA7gLQDOAx+R9gCaxfEtF6WJrJfJlXJxF9E8BL8rwbhBCdJTxLKLJC2Gqqrq0HhQ0XHGPvNXkFxPF7k4vZeiXsCmHVWXSDV9CnknX383aYQiKS/Lde8X8eZ5JWQ/GJWvIStPOtHyatwrpeCRv/jNR9TOXwC+kFggfRMG0jt+BVc/8ArRPwTLpCTJx0zzqY9neWe++jw3nUdO6hAJNXkA9FzV8ODqS0x61zVPs7zAWKEOI5mPf2u8hwzY0AbtSkLwdwkiZ9EFIgaY4tBLAwbHmjICtyJi+dhuKc4eo6TVinvckOHTRQR/GFRmfWfltC2J1FJ1DUjDzUrF4/Mw/qSC7NwteEkl8uVz4BM+IwHVodMW8TEzwzzw32fsLRfL3zeLEfnXLWVZDw1d1CCOEbMv7yli7f+wMFaCia8xXO3QZMTSMVEHUQJmzYuauz7pnUJMGszVnpG/bpPyfgvHcok6sQVd/zi1fKh0R1kKRflJcQ9kp6XXsNL1D0Hd82JYWcCRczqXEOBJv29xnPUx1ZJ3QK6QSmWahKL3XfqUL28tKZvNIO30aQgDRGpBmEpus+flqW712d54UTGGGEdJB50M9nYJUlH+XE9hvLC/0EsE7oOE1IRk3KZ7IEhDOpOu+t65NBGorK18+HktOQw9RF9bUYFighUe9TrZQ3mUf8NJiwJi/b1u01A6kZqMnkZcwxPM5ife4ec2x7zoeiGx0K6QR6E0mQqSmsr6eQQTJo9wPT44iQ78VPIPltZePNx4TdPgI1FP317uv8ha92AC3Cr5WXR8b/fSj8fCjOTwAYv64aKFCcv4Pz0N0myIei0n0FinpnIYSFn0WhUrBACYl6sSoyw9ShVFixn1MSCLcYL/8e/g3U2/CLaV5hbbW5sGGzyauQvZi8Z+ZCXE2Do/O3z+w+aBB0pOk+TBUmYiio04dbIW42j4TVNIO2qwl6t0EmraAoRpeG4nOrMNGD3vy8+G39PpTKtUnTrYI+cJcNqAvvvX2jvII0FMMHz6xr/cvgJMiMVwlYoIREvVA/DSWTFWhIxOXv/DzCdpZcNI473TZ5BcyET57aLs8vXKSEFSj+Ji8lDILzMU2qgkJcnZmH3204/zxnUIHOfOLaQTpgYDFqKGFmuz71qctHR5CGUsgnFYL8TUECx3vcK2yC/E1hygvoNY0h+U6TcTJrKAF5hwtAcJzj9XcKEUKgWH/7faK8giLznJjWH1USFighUfZpXx9KVqDBZ52Ks9GFWd2dv/VKkIZi/Q3yy/lHRflf681D65SXfwszebnPzTnD9dc508MIZ1N5nBsp6ganMGYctR7BrMHofztR9Rjm09Dae4SYrASvM/F/Vr8BND9/93GvJmush5B9xO/zuUpDaUrEje/EL6rOm2/QO9Od434O/92f+4eCBUoha5mqCQuUkKj3mQzYHDKZMJu8wvtQ9OcIx3FtA7MFiv4bIwr/7bLDNUrVIXXbfARpUk5Un/SeaW+DHmAucJ6rI8iM41ylrJ0kOJ5P9zj7eofw+1d2+JY1jIM3t1DU51n81rGEuEeghhNgsgrS9vw0cO8AbhZ64b966r2nQmmdTQ1mgRLkQ0m76iKEhuKdEIUQ8M51QwcH9aHDJn+qjiAhWQlYoIRgW2c/nlht7eYZtFK+IexeXyGclvnfQ3GeYy5vUOBgGGEWRC6CxU9DCc7H7oiecwPNe47ksN+U1w0MTg1F50MJGqi3dfU77qUvg/OqoAHOtCgxiDADWNCg5LzMb7ND77l2mo92cfI3/gIAOKKtSV5vEijO3z4ain1Ofn2pd9qcjIfShPTlCN6+xa8/hzFvO/P961v6fQYL8qHUgEApZWHjiOH9P3gWvdKs4bs5pBBokj6UoLBKvxh70+zcOytXIcoKNYMN+oKgn2rsvOe5x0wwnmfb/DV220L2vwoyzxS7qtt7LEb6TjmcyYLIqivtOpSAtRnuVdmGsoZwVpu2sgnt6A7QHrznBOehOZ7xv4dzEDV9k6UxadbgrTI4TJDFaigOgWL2ofgPvqmACC7nvWOU/26c79G4sDErMLopgd7BtLmdy3Q2eR1G9DqiMGwNxRDFpaLAAjUUn/asZqthfQMKlRQj0w5Z+eUw5WG6hzcP/61Xwg8IXnNOIRsZhtG4ErGYwYeSQYv8/K7Wh5I128kBr1PfoE0Zyu0k50PxznTDzTrDmFODo7wcwku3/bxTiAe0b5NAyU249GVQ1RmjgEmXUAJY/04BoCkZCxXyq9XGChDQDYlYXn2E0lCywMTRjQDcG026zgn0m+bSa0FDYYFSILmFi/oZmhIo+o0GC9NQ/ExeugamUoJMXr7bZTtu4mdnVo03lc1qwpWVhhVQEDiiubzamKEOvPfQXevKR16fMET8DKWzaG5IGPNxpWluE2Zn2zDalElAB9n67XxDDWC59L0HB/OOu30CujI6hGfAIGwy3SkNJciH0pCIhTJl6kJlbR9KMm5sP6mAiYDbh6IvgzrHmqx4joVYT5MVAqMarbY3aFiLEhSc4mwvLFDqkERM3yGEENjeNZBb2Kid7ep/ezGtSXAJJK2GolRw6ZQP6Ag6nPfwi2vPbRWiq4v8vEyoe3jzCN56Jb8s+vOsY8l4THvecDqLlgapoRgEigoV15sx8+/lxTURMA1wBpNXGOewKidgadDG2b8jfbdWoDjXbwS1X38NJkhDCXJ0NybiAZ8KFsb7qCiv5oa4cVITFE0WzoeSRSJG0pzqPidIYAFWfbXIyYxpg0i7L4Uw3bHJqw4xmbwefs3aPX/J+gMA9LOFtCuCxTxY2ytsPe3DZY7y6dBKizI1r7BOed/dhn06ZNCeUU5SaaHNI6ooL3XINON1CRTNO8uI3Fc6/fZr8iuHq6yGOlXtIc/k5ch/b++Q9lpVTsAsOAF3XR7SmFhSARFtzvarG8jDmLyCNRQrPUhDya3b0WsoRNa3i0xt0Ln4UZdHKsBfpMoQjxHiMco7J0z4szKRN8RjxtXydj8walqsodQ1ibh+pfw+T2fXvdxswAxPoQbyIKe8F3XY66z3EmZn26Dz/MwbOQ3FtxgAcoOUyeRlyiPMrN86Tw5Q8ZhWYAxn/DWUbDYXKq71objCjvVlcOZr0vrUwOCtc+e19yzdor8B3AOx8XsnjnSdzd7lV/D5hC8QQqA4TYGO9Ea18DfIL+EjGJ15qgmJk+F0Fg3xGOIx88LG4UxuANdbE5wCRV+GTEZIDSVfoITRcLLC6qtNyZhruxj3OWpyaRBqjnr+xM+X6QtaQVigFIgyfwSFYOrUz3TICBZThJPQnKO7LhbzN3n5hdK6NBSfMjoHPm+kl7oq3P5Dcmbuqa+gjzGF+Xqg81ijj4bS2mj2oaSzWVug6Mw0Q+ngjQid9WAyS+QWippnun6o6xOxfAex9xzAXe7cvZxCIP96Z1mGdNqcan/k1gB0i/yMbVP4vy+FMhHqfDVD6SwaEjHENJqDwh0urtNQ/M1/QE5DIaK8yYTzPZs0/UxWIEaWaa5/2N8pb6qKsO2jUrBAKZCkQUPxtjmtKh4ixBRw+BW85wTMylWHjgd45f0iUJx7lvk57zOuQUJfzjAmr+G0XnBkA/Jwnt7VN2zM32Xy0kYEZdGc1Gsoajv2pG3yys9/KMQ7dWkoBlOQai/egcXvHThRY2JDnIyTHWf70312Nh1g5nHOov00lJaGhDH67fgj2vLSXHlkcu3Pb0Ki6kUnUIYzWTQm4lJz0F8/FLBDgnMLfD+BkIjHEI/lCx11jZ+WlBUCMSK0NCQwkNK/56BPYdeCmcsJC5QQOE1IowyzWecsh0g/EDgbfxgNpVSTl2lltd93W9Q9GuOxUN9DAfIHlzCbIdplsX0HnjwCbMcqfWxLEls6+7XnOM9LxmPaENwhhw8lLzDAMes3lUU9+/jWhkC/ABC8DcfBwbRrkAitoajnTMSMe2U589UJBJdTXnMPNcjGyCCQZFmbG+JaDeDr738bjupoBRAsfP00lEw2990Vk1O+MRFDXOMst88JECjKpzG2JYlBwyRAaSgxyhca6pmbfEyQWSGkySuOAYOGEqSpq7JPH9cMoLj9+6KEBUoInC4Je/BxvLfv/nkNvvvntQCsBpiMx7Rbkrjs7X4huWm9huLeSyn/ujynvFFNNjuSVQNt9FkUBlgdMm7YKFP9K5RT3rD+IihcUmU9qa0JPT5fvFOCyeiUz2TRbHDK5xzdZqe8GphGNSVCLSgc1tj8rXvn0p0aV9iwYWWz99trzilQdALB7ZQ3D7JjWhrstR5O1PO3NMTdW9pkcvWoIhBNMSnWrN1/Zu8ytxombg2JmHagVwwFmLxU1NXY1gajf0NFeVmTFX0/avLpR5bJi9DSEPeJ8goyeVllb5XRYrr3WklYoITA2VjOPmo8ALf28JOnN9i///fvz0IyRnoNxdnJjCGmAp391oCSN+vJ+F9vm7wCnPJ+2kVulqmf0Sv6htMY25LMK5d6BiCcD0Vn8hJChPiYmAAR0Nac9BUoytbenIxrB+d9vUNIxmNIxCg/Wk0+Vs6Hkp//kBwIGhNmJ3IYDcWZfsApUEIubFT1qMx3uvYxnM6iSUZZ6Xwo+w/lAkt0z6o0lDHNSb2Gk8mVwSlw1ICtzEOAv4aSiMWQiJnbn8uEqO1nGTTEY0jEySiQgzYFHRjOIEZAW1PSKFCUhpKMU57pTfX/pmTc+BxZYfk7m5PxwCgvwLz2DYDtByx2656oYIESAtX2Lzt5Mia2WStbnR024RjAZ01oRTIR0zb0r9z/qv3bNPj0DKQwKO2peaGIAYulwq5Dcc5EvQODyrcpEfc1efUNpdHenNTmkdNQjJc7ypIf5RVmlXJWWAs425uTvt/kznXs/AF/o/z06j1Lt2gXPqYdA6GpLEMZy7ySiIUTKCabdzorbGHQWYSGknI8J6B/98OZ3EK6IY3N/pYn1tm/dY+i/DvtLUntwKXqp7khrvWhqIgowDyhymYdobiGsdHph9IJtmHplG9Oxl3fl3fiFKi6dzKQyqA5GUdTMqatK/VcSkPx+sbURKYxEfPVxuLSKT9gXNjoPt+LinJr9XmvlYQFSgGcMKUt1yEcPS7mECiNiTgSsVjeRoOpTDZwZ1sAuP7hN4znpDJZ2/zmt5txkIbiWk/gN7MyDH7D6SxSGYExLQ0yP4+5KsD/oSuLSfvyWylPRGhr8tdQ7CivZDxv4HCGzlozYr2G0uDnlE9Zg1dLg3mW6Z5Rm01earKys3tAe60fKcd7A/TtazhtOasb4rHAmazO/6a+22HUUGynvOVDURMcJRQT8ZjD5GXWUOIxsrQLU4i1q/3qzZiNiRiafAZql4aiKUv/cAbNDQk0+QilVCaLRDyGhkR+faq+0+ijoSiTV3PSbPJKB1glVNnGqMkdayi1z/nHdgAA/vH8o7VbrzgbZzxGaIhT3ozF+c2DhkTMuPBrs/yO+7jWhrzZqYpeAfzDhoOc8oMp8wxPda6mZL5QVPTJvc1UI/Z2Wud32INIaUxezv5nXOks1wCMbkpoF+nZ+TvMMCan+w/mn6a12YfRUO57aSt6B9NobUzY9eLFuSbBrKFkcdSEVhABa3f3Op7TOj+34ae/CcdvnUcqk0UyTmhMmGfdCt2rHxjOgAgY3ZTU2upVn1C7/NobXhagoWR8HN2553AI6AANZSidNQpXhW7iNDCcRnODlYefUGqIWwsTve9VldHPFJrNCsRi0odiuIeznv3MkMpaMOTzsa5KwAIlBP/vQyfjma++25o5ycHaL1xPZ/Lqk+aC73zoZAyns/j5c5vyrusbSuO17T1oa0rgtOlj8mZG6YzAGOm30A1edpRXgMnLORvyzmhsk5ePhqKeZfq4FgDAJikE7XKawp41qPu7Qpkd1/mtEG6IxzCqMYG+4bTPJoA5U5D3najOd0RbExIxyv9mh8gNhIB+MFfCeVRTwrWJqDufnEDwM3m1NibQMarRrl+VDgDnzbYmNaYZqEpXAQY6DcASKDE0JmNaH8q0sc04dfoYAGanvJ8ZKOd/k/Z8ORiqd5CIU26vO79QXNnPTNqZMyJK9xxDDoECQOsDcfYBndY4kMqgJemvoaj7WCYv/WTFT6CkswJxUlFewaY5XV9Qz6HGBdZQ6oCpY5px5Hgr3JGI5CDm1jgA4N8vexsAawDyzu6VAFAdHsjvtO/9n2cAWPZQ3SwylcmiQ+5O2qlZe+FcLe38txe/9QRO00lW6AemPqltnTDZWlNwaMhtcrJX+hdg8nI5rkNsuGiZGwgtjVY5Bw0zbvUemhL5GorqjE3JuDUoGIRro2GdipPRPhpKyrHWxc/klZCz1T6HNqvuOarRut4UxaPybfJ592rm3hCPafMZTGXQ2qD22sq/R/9wBi0NcYxuSqJX80EopYmp3ZttgeLQUBoT5qAAdW5M+lBM7bffMSvXvXelOai+pjMn9Q46hXZ+HpbJKy5XsZvq3LpPUmfyyub6kandDGesIAm/KC/nvXX1ofpyTkNhgVJ3jGp0m1lUx/nsObMAQOuk6+q3OuBY6XcA4BJKALCzx9qw76pzZ2lnRoOpDI6dNBrxGGHVjp68cqkZdZM9eOkbV/9QftntPLKePDSdTW0zM03Gvg8Mex2S1r9N6yFc52r28lJlSsYJA8MZXH3Pcpz/vadc16Wzlv1aOZkPGQbzdMYK7UzE8014qrM2JeNoaYznvQ91fLS8h5+DfDCVwZ6DQ9jdk7/p4qGhtP3eTQte9xwcRDwWQ3NDwrW4UbUz5a8yRRypa+xV/7ooL1tDiWsFiiUwrOt1gvyVrV1WWZqT6BvOaASw9bdFCj/Vfm0fSiyWEyiGgW8olUFjQj9IK5TAHd/aoBVMwx4NRTf7d/Zf3XsdlE75xkTcWOdOAZ0/McuZjo2hy6lcOdNZoV9T49JQ8vPwmrxYQ6lDmhvieHad9YU1ZyNQzvnRTYm8T3p29lmD8LjWBnz3w6cAcK83+MydL9q/k/FYnoZyzb0vo284gyPamjBjXAs2eMxMQgj8QX6KVkX66BrXyu09+MYf37T/ndcRssEzXbVT7ZT2ZjQkYuhPeVd3O7SNAKeyMu84tRJV7omjm3BwMI2/vLkHWw64Fy8qk5eKvzdpB+mstbljQhPKrWaFzcl43iQByHXmUSFCMp+WX9zzCr7hdBYrd/Rg/CgZwKAZvG5/ZgOG0lkMpNKY0t6EbZ05p/y+XquuZ0jzomkg/vJ9VgShGlh0vqeUXJ/RmIjlrSMRQmAglUFbs154DqUzWLO7F/sPDdsbPC7f3OU6Rwm1SfKrjEoLUBOMeJxsbc+kaR0cTKG9OWlFaBnMQI+u3AUA6BjdqBcWQ2k0J+O2hqITCL1DKd9+orSxpmTcWOdqvUtDIt9cajvlE3oNRQiBoXQGjYk4RjWZ27BTW9UJzwGPhuLsz8s2HsB9L27Vlr1csEApgk37+7CzZxAb9h3Cv/zmNQDA+046wj4+fVwLVu/qdQ3Gj67cDQCYMKrRHlzUeoOe/hSeWpv7BGiMrFmzsyM8IjvRwcEUxrTkh8ouXr3X3jxQOWZ15pVn17s/Nerdk0lpL23Nao1Jfh5v7LS0o0ltTdqO7+xAvb4O8yy2dw3kXaM6hTLv6UhLk5eakfcZVhoPpqxOm5DbujtNeIO2yUv6YjwdesjhHwHyHcBf+/1K+/cjXzoPADB31jjXOTc/8RYA4MAh6117NxEFgIVLLH/awYE0xrU2uCYje3uHkIgRpo+1BIrp2+MK09qgfb1DeGFjJwaGM2hI5Ju8htJZCGG1TyB/CxinsH1j50EAwFcffM11jjJFTW63BIpa16IG/ZZk3NZQTCaegwNpjG5K+EY+/fIFq51PHduMgVTGpQUfODSEvb1DOHbSaLtt6OqsdzCNcS16IS+EwMZ9fZg2thlNSUtT0k2sNu/vx6S2Rq251J6YJfVbyKSz1mr/xoRZy05lsujsG7Y1ZF1fci42BdxC52N3vIBrf7fSqL2XAxYoJdA3lJEAXSAAABr6SURBVMYf5bb17z95sp0+58hx6BlIYVePNVhu3t9nb28/tjWJsa3Wy1cayoE+9yATk7Zm3Szu0pOOwOimZN5usb0OP8ZowwAI5Gsk3hmeWlSpvv2tmxU9sXoPzj1mApob4lr7bzqTtTuBX0jvJ+XuqKMaExh0DAxKiE1qMwuUlHTeqs7onMkplm08gHuWbsHopoS9ODGtESiNyThaGxN5HU8dV/fwCtdfLbNmf1+6aDamjmnG8UeMtk2Fiq0OzWpyexNW7z6Y/ywOn5M3oGNv7xA6RjfadbH/kNl3BgAT5XvzPsttcvHtyh09Wv+cagfjZNvs97xTZ35/e/pUALlFvt5zTp1mOfZX77Ki1ZS/ZXRTEtPGNiPmiWRzcnAwhbampDEMO5MVtlA6akIrssKtYahteI6e2Iop7ZZJdkd3vhmydzDtCHvPN08PpDKYNaHVNpt5+8FwOotDQ2lMaW+WAsWj0cn6a2lIIJ0VeabfXNuL2f3VKzBWbLE0QOUT1QmUO+VkROWhM5t1atpMuWCBUgQqEkb5RQC3b2TmeGs2qQaT636Xm8k2JuIYLzutcqx/57E1rvzjRLadW4icbfWLFx6Ddx49QYbKugfqA45GM8YwS3WWSfF/f5ObZXb1DdtbyEwb25yXLwB8/fcrsa1zAKdObwcAOZPMtx9PkNpFd7++Mb+4qRPLNnUCAGZPGoVURtgDUsph8jIxnLb8Aa3SXq8zF3zsjhcAANu7BrTReUoItTTEMdojUHb1DODJtXsBOAS0YQfapMy7tTGRN7NXmt6sCa2YNaE1LyIOyA2IU8Y059njH1yxHbt6Bm1tTafhrNubG5x1g9NQOmMP6h84ZTIaE/G8AVIJkLEtSRC5w9yd+d3+qTPtiLOpY5pd53T3D6MpGcOMcS2IkfVvIQT+6d6X7bKNbkpi4ugm/On1nXnPoe7T1py0TE3pbN7s/ufPbsRQOotjJ42yo8kGHT48pbm3NzdgbKtV9z2eNjiYymDT/j67jXuFgfKDTWprsicI3onXxv3WotiWxoR2HYoShup9eJWUHrucSYxussrpnQR0y/HlmguOkXXj7vODqYw9wcgFO+QHuXQPsECpab53heUDeXVrt52mZnZALpxWzZbUrHTeaVMAwNZQVmztwuvbu/GXN/e48o8RuRqIakhKELU1JfJmK3scX+Ab0ywFlmYw33zAGtAuPH4iALhmgf/229ft37oBbDCVwb1yVj5NmmA27u+ztTTAMin1DaftwcakoXz09qX274/NmW6VVwpYpfEc0e4WKE7TRU+/ZWsPcsorlJDtknXy1Nq9+MOrO9AmtRevhnLFbUtx+zMbAegFijNEeFtXv/2sS9YfsJ/5u39eg19LG/atHz/dKFCOmmBFEP7bpce7Bidlhx/dmLCF66I3d7uuve/Frbj0lmcBAO8+rsMenFSbOTiYwtu/9QR+s2I7AOCWj52GJs1WH2rAbG5IYMKoRuztdc/qVd2Mbkogbm8X4m2DQziirQmxGGHi6Cas3d2L3qG0PZiqNrX74CA27OvThqUfHMhpKEC+aewpKeS3dw3knO6Oc5wDdZusC682/6fXLfOxMk+6/HfpLJ7fsB+Ape2pdtPtaceX/3iJfb7OKd8/bG3/0mLvseV+Dmc5c23Y63e12qraUPPggPs59h7M9c0Gj0BRmgsA3LVkM6647flQWyGVCguUIpg9cRTGtTbY9nEAmCG1EsCaaSbjhK2OXXDPmz0Bt3zsNADWAJGIEX61bCs++KMlmP92a0C94Dhr5heLkR2+ubtn0BYearAY1ZjAgb5h1yx5t2xcLQ1xnDTV0h6+/vtV2CIFiBACn77zRby8tRufPHsGFn767Xjb5DaXzd/ZMXUCxfk8p0ktzcvKHT0QAjhS1scezadmnQ376+9/m71CvFM+k/IFzZIDrWKzYzDu6h/GuNYGu06eXLPXda4yRwGWwFLP878vbIUQAp+58yVs2t9na1KjmiwfiqpT5ydylWnEKXC6+3Kd/4Hl1mCtZrwvb+nCnUs2ufZ4G9fagBOmtKG7P4X1ew/Z6Wt2H8Sa3b1Y8I4j0TG6Eck42TNmNfu89v3H2w7mx9/Yg22O93CtQ/v93hWn5mkoz7613x5Qx7YkkYjHMGtCCzbtzw3om/b34T0yZL05Gcf0sc22b0uhtAw1+FkC2D1I7jk4aJvczjxyLN7a0+vSdLzmwF2eiLj/+uMb6B1Ko605oQ35XbGlEy9stLTan37yTDQ3uP0xz6/fbwcnHNHehEYZgeX1oSit/PxjO5CIETbsy72PXy3bgm89shqAZXId32q1D6em/sSbe+wIwJjcT653MOXSCrZ19qOtOWmHe3tNsj0OTUppsV197nIu32I961ETRgHI1zRWSV/mbz//Dkce1jnqGQDgd6/swPItXVhjMDNGSV0LFCK6lIjWEtF6Irq2gvfF5847yv73Fy44xu5ogPwKWyKO257egAOHhtDdn8K5x0wAydVtRO5FW/EYYWxL0m4U8Rhw0dsmAbCc8TmBkuvMmazArOsexcrtPRBCYE/PIM6YMQbPX3uhy5mtoqP29g7haen4VyaLKe1NeHFTp90IlV39ux8+xXbOOreG3yAHwv/+yKl4m1yD8uEzprnqZp6cuXWMbsS41gYsXu0e6H/81Hoc9bVHAQDXXHA0Pveuo9AxyhqEHnp1J17d1m1rPDPHt+LUae04WQpINbsXQmDd3kNobUzYvoXfv7IDq3dZmuCungHbYX7+sR246Yrc8/z0mQ34jRQAADBBDhijGhNIZYQ9w7vguIn2OTPlGqSHX9uJu5ZsghDC1nQA4GdXzgFgaSExAu5Zuhn/5YikU8w50hLe7/mfZ7B49R7c/swGW7tQ65zUJ3wzWYGXZZjuJI/p73P3LM/LGwAmjGqw24gaRJ2axvy5MwAAsyeOxlA6aw/ov3s5Vx9HtDVh2tgWW+sCgAde2mbPllXbam3M11CWbepEh6znmRNasK1rAL9Zvg0A7MkUANz2iTMAwBW5t+fgIO5cstmuAyV8nALpw7fltNp3HduBca3uSc/X/7DKPj6qMQEiayeF25/ZaLfLB1fknvWojlF4+8xxeNERreYMjukY7QigkQEGmazA3zvqf/7bZ6BjdCOyIucLfXlrFx5ZuQtnHTXO1lCcJtkXNh7A3/3M8h+2NyftIAbnljsAsGFfH6aOacbUsVY0pTfS8ZWtXWhIxHDy1DFoa0piUluj7XeZ3J5vLj5m4qi8tKipW4FCRHEAPwbwPgAnAPg4EZ1Qqft//t1H278njGrIO65MIu/+/tMAgMkee7Nzv617l23FUR2jcNIUa+CcMa4F08e1oK0pge89vhZ/86PnAADjZWdVCwoB4G9+9Bx+9OR6vLi5E1PHttizaWWWW7GlC8+u2+eahb1HCqszjhwLAJh/xwvo7h/Gnt5BfOCUyfjo26ejtTGBtqYEbl28zh6cXtrchUSM8L6TcxFtyl9005/XuBZbfuacWbjo+IlYsaULu3sGbae7c/D6wgWzAeS+5XDX85ux0+FAPaK9CQ994Vzc/w9nI0bA69utGdms6yyBtGl/H4jINpl9WoZev+IwRSohrQQKAPyrw7T3nhMswaEG4q7+Ybyw8QCeWJ0zQ6oor6fX7sM3/vgm7lm6xRYo11xwNN57glWfbU1JnDilHUs3HoCTt8+06nmiQ9BfdfdyfNvhO3vnMZaDW5lxfrl0M1bKtUZK4zxxivXe1+zuxYd+sgSvbcs958UnTAIR2ZFLP392E7JZYfv5Ljp+Iq4611onpcw4z623TDsvbe608zl5Wjumj2vGzu5B/PWtfchmBe57ydL2po5pxmTp6G5vTmLjPkvAbz3Qj5v+bD3LdimIZo5vRSYr8N+LLC3eOeFSzvzHVu1Cd/8wnl+/344cBCzz29Ed1uCnZulOLeP6vznBLg8A7OjuRyqT1ZoT1Xt9bVs3evpTtnby8bnTEY8RZk5oxaZ9h+yItGdk+PeV7zgSjYm4LUB3yMH+x0+tt/P+1efOQntL0haiSrB96CfPO+rLGthVZBoAfPHXr9i/p45pRlMyjtFNCdcu00+8uQevbevG+046AvEYYdb4VnszUwBYvesgfvbsJjTKvcQA4N3HTsSyTZ24Z+lm7OoZxGWnTLbb/evfuNg+r5wkgk+pWeYCWC+E2AgARHQfgHkA8qeGZeL//e3J+NrvV+JE2eGd3H/12fjYHS/Y2sXcme5w0r/887sw70dLbDPKyVPbcdW5s3DOMRNwghw4/vb0qbjb8R1xtRbhvSdMwjUXHI0fP2WZVFSnVZ0HAD4yZzq++uDr+MFiawfZi6TP5Nl/vcAWZledOwvfe3wt1u7pxWk3LAJgOW0VX730ePzHH1bhlG/8xU5ra0rYsy4AGCeF6W1Pb7Ajie789NvR3pzE2ya34TcrtuPsby/Oq5+HrjnHNmuMaWnAu4/rwNNr9+Fnz1p+i9f+82K0y4GvpSGBc46ZgF88twlv7sxFSalZ75ffMxv3L9+GPQeHMPPaR1z3+dx51iA6XiP077v6bHtwU2aFd3z7Sdc5DYmY7btSODfwvOLM6a5jBwdTrtXNHzpjKq7/wIkAcsLNy/1Xn21/yfBMKeSda4WUL+kP15yD2V9/DADw8tZue9Z9y8dOw+Uy8krtO7a1s9/WBAHgF59+u/1bmQmv+91K7JfhxADw5YssAT91TAsyWYErF+bWRo1uTGDJtRfa/z5pajt+tWxrXn1/+0PWRObc2RNc6Rccn9P4xrY24JRp7bh32VbbJ6eYOb4Ff3fWDDvK8P888Br+zwPu8ORPv3MmgJyJ8Z/vfw3/fH/unE3ffr/9+5iJo7BZzuxPvSHXjv/1kuMBAB2jGnBwMI0533rCPtbSEMcN804CkPNbfuuR1RAC+OGTVn96/toLMUUKtCljrLJedutzrnJ+9pxZtm/1F89tQltTEotW77YFz3GTRttt/NBQGnc9vxmrdvTgvNkdtjn9XXIfwaM6WvHYqt347YrtGNuaxFV3W1rSpY7lCnNnjcP9y7fhPx+y2uc7jx6Pmz96mr17cyWoWw0FwFQA2xz/3i7TKsbfnTUDL//He/F2j7AAgLOOGo+PnGmZg2ZPHJXnYD66YxQelWsXZk1oxVfeMxuxGNnCBAC+8cETcdyk0QCAq991lD1bIiJ89ZLj8dy/XYDjjxhtn3/FmW7zkzMKZ/GavWhrSrjSmpJx/OmL57rSjp2Uy+8Tc2fYGojiy+851vXv9580GV7UIH3ZKfnHAMv5fKrHB/N/Lz4OAPDqtm6846jx9gI7xeWnWa9Wzf5/+skz7OCHKWOa7cHQyaZvvx+nyBDWxkQcX7poNi45cZJ9/CyH/+hkw6TgrW+9D03JOFbfcClOn5HvN1KDmuLz5x/t+vc3PniiPWjEY4SvvMddzstPm4KzHOG3czxtyanVJOMxPPbl81waKgBbQ1JcdrK+3hVvm5x7x2oy8q+XHmeX7TyPMABg+7kUV77jyLxzvjnvRLv9Tm5vxh+uOQdnzBiDV/7jvXkD2s8XzMm7/sLjJ+Lpr16AKWOaEYsRvvE3boPD1DHNWHrdhbbpuCkZz8v3kS+dax8HciHMTl782kV2YIxT0AHWO3r8K++y/01Edlu98dHVSGUE5p02xRYmgGUxOPcYd509/IVzcER7ExoSMXziLMvUePMTb2HVDmtC9I/nH43f/dM77fPVe16+pQs3P/EW2poS+OHHT7ffxTzZ/v/lN6/hs3cthxDAv7z3WNwkF0mrZ1HBPBcc14EPnzENDYlYxYQJAFC1PxlZLET0EQCXCCH+Xv77UwDmCiG+6DnvagBXA8CMGTPO3LJlS15e5WIoncFDr+zEWUeNs23kXvqH064Zf6GkMlk8uWYvLjx+or3WQtE7mMI9S7egpSGOB1dsxw3zTrJnwF5+tWwrpo9rdvl6AMtfobbZzgiRdw/F3t5BDKezmNLe7NrOHwCeXLMHv315BzpGNeKLFx6Dca0NrnsodnYP4KFXd+Ljc6fbpjsnm/b34Xcvb0dTMu7a+RmwHP3r9h7Cm7t6sLN7EH9/3ix7gacTIQQeWbkL5x3TYQ/0ikG57ceKLV2YPXF03nF1/Rd+9Qr2HRrCD+afZpuAnAwMZ3D9w6vwrmM78IFTpuQdz2QFnnlrL3Z0DWDe6VPtaCRF/3AaWw7047Vt3TjzyLGY7RDyTnZ0DyCTEa6AEJV/KpPFc+v2Y1tXPz4+d0aeQxwAXt/ejQ/+aAkuOK4Dt39qjssk0t0/jDd3HsR3/rwGzck4vv2hk3FUh9sGv3l/Hx5ZuQvnHDMB6UwWp88YW9DgdWgoje1d/di8vx9v7OzBly+abWtYgPzYXN8wlmw4ACEELjt5sus4YPk29hwcQlYITB/XYq8YVwymMnh67V40JuPY1zuEOUeOzXuOTFZg0/5DOKK9Gft7hzBzQn5fPTSUxlt7evHYyl34+NwZeXmoez3y+i6cOLXN1jgBy6e38LlNSMZjOP/YDhzRbu124ewDPQMpfP/xtXjXsR1IZbI4aUq7670KIfDoyt1Ys/sgskLg6I5R+NvTp+b1IyGEtYtExOYtIlohhMifBXjPq2OB8g4A3xBCXCL/fR0ACCG+bbpmzpw5YvlyvUOTYRiG0RNWoNSzyeslALOJaBYRNQCYD+DhKpeJYRhmxFK3TnkhRJqIvgDgcQBxAAuFEG8EXMYwDMOUiboVKAAghHgUwKOBJzIMwzBlp55NXgzDMEwNwQKFYRiGiQQWKAzDMEwksEBhGIZhIoEFCsMwDBMJdbuwsRiIqBfAWp9T2gH0+ByfASDoI81BeQQdjyIPLme0eXA5o82DyxltHpUo53FCCP2WDU6EECPmPwDLA47fEXB8X4h7BOXhezyKPLicXE4uJ5cz4nv4jp3qPzZ5ufljwPHugONh8gg6HkUeXM5o8+ByRpsHlzPaPCpVzkBGmslruQixH025rq8UXM5o4XJGC5czWipRzrD3GGkayh1Vvr5ScDmjhcsZLVzOaKlEOUPdY0RpKAzDMEz5GGkaCsMwDFMmRrxAIaKFRLSXiFY50k4loqVEtJKI/khEbTI9SUR3y/TV6hss8tjTRLSWiF6V/03U3a9C5Wwgojtl+mtE9G7HNWfK9PVEdCvpvnRVG+UsW30S0XQiekq+wzeI6MsyfRwRLSKidfLvWMc118k6W0tElzjSy1afEZezZuqTiMbL8w8R0Y88edVMfQaUs5bq871EtELW2woiutCRV1n7ex5hQsEO5/8AvAvAGQBWOdJeAnC+/P1ZAN+Uv/8OwH3ydwuAzQBmyn8/DWBOjZTzGgB3yt8TAawAEJP/fhHAOwAQgMcAvK9Gy1m2+gQwGcAZ8vdoAG8BOAHAdwFcK9OvBXCT/H0CgNcANAKYBWADgHi56zPictZSfbYCOBfAPwL4kSevWqpPv3LWUn2eDmCK/H0SgB2VqE/dfyNeQxFC/BVApyf5OAB/lb8XAfiwOh1AKxElADQDGAZwsAbLeQKAxfK6vbDCCucQ0WQAbUKIpcJqbfcAuLzWyhlleQxl3CWEeFn+7gWwGsBUAPMA3C1Puxu5upkHayIxJITYBGA9gLnlrs+oyhlVeaIqpxCiTwjxHIBBZz61Vp+mcpabIsr5ihBip0x/A0ATETVWor97GfECxcAqAB+Uvz8CYLr8/SCAPgC7YK1M/b4Qwjl43inV3/8ou2rpX87XAMwjogQRzQJwpjw2FcB2x/XbZVqtlVNR9vokopmwZnjLAEwSQuwCrE4NS2sCrDra5rhM1VvF6rPEcipqpT5N1Fp9BlGL9flhAK8IIYZQhf7OAkXPZwFcQ0QrYKmcwzJ9LoAMgCmwTAr/QkRHyWOfEEKcDOA8+d+nqljOhbAaz3IAtwB4HkAaltrrpRJhfoWWE6hAfRLRKAC/BfAVIYSfpmmqt4rUZwTlBGqrPo1ZaNKqWZ9+1Fx9EtGJAG4C8A8qSXNaWfs7CxQNQog1QoiLhRBnAvg1LFs0YPlQ/iyESEkTzRJIE40QYof82wvgV6iMqUFbTiFEWgjxz0KI04QQ8wCMAbAO1uA9zZHFNAA7vfnWQDnLXp9ElITVWe8VQvxOJu+RZgJlftkr07fDrTmpeit7fUZUzlqrTxO1Vp9Gaq0+iWgagN8DuFIIocarivd3FigaVMQGEcUA/DuAn8pDWwFcSBatAM4GsEaabCbIa5IAPgDLzFOVchJRiywfiOi9ANJCiDelmtxLRGdLFf1KAA/VWjnLXZ/y2X8BYLUQ4n8chx4GsED+XoBc3TwMYL60S88CMBvAi+Wuz6jKWYP1qaUG69OUT03VJxGNAfAIgOuEEEvUyVXp71F7+evtP1gz5l0AUrAk+lUAvgwrsuItAN9BbgHoKAC/geX4ehPAV0UuGmQFgNflsR9ARtdUqZwzYe2qvBrAEwCOdOQzB1bj3wDgR+qaWipnuesTVuSOkPm/Kv97P4DxsIIE1sm/4xzXfF3W2Vo4ImXKWZ9RlbNG63MzrOCNQ7KdnFCj9ZlXzlqrT1iTtD7Hua8CmFiJ/u79j1fKMwzDMJHAJi+GYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKw9QIRPSPRHRlAefPJMeuzgxTbRLVLgDDMNZiOSHET4PPZJjahQUKw0SE3Mjvz7A28jsd1kLOKwG8DcD/wFoYux/Ap4UQu4joaVj7l50D4GEiGg3gkBDi+0R0GqwdBVpgLUr7rBCii4jOhLUHWj+A5yr3dAwTDJu8GCZajgNwhxDiFFifNrgGwA8BXCGsvcwWArjRcf4YIcT5Qoj/9uRzD4B/k/msBHC9TL8TwJeEEO8o50MwTDGwhsIw0bJN5PZT+l8AX4P10aNFcofzOKytaRT3ezMgonZYguYZmXQ3gN9o0n8J4H3RPwLDFAcLFIaJFu9eRr0A3vDRKPoKyJs0+TNMzcAmL4aJlhlEpITHxwG8AKBDpRFRUn63wogQogdAFxGdJ5M+BeAZIUQ3gB4iOlemfyL64jNM8bCGwjDRshrAAiK6HdausD8E8DiAW6XJKgHrY2JvBOSzAMBPiagFwEYAn5HpnwGwkIj6Zb4MUzPwbsMMExEyyutPQoiTqlwUhqkKbPJiGIZhIoE1FIZhGCYSWENhGIZh/n97dSwAAAAAMMjfehI7S6KFUABYCAWAhVAAWAgFgIVQAFgEs24sEjTX87QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYnGWZ6P/vXdX7lvSarQNZIQkBgokBBEcFBMQFHMGJx5GMgwcHccY5M2ccmfEMKj9mxKOi6IERBQnoCAgqiCyGbZQtG0JCEkI6+96d9L5VdVXdvz/epzrV3dXV1d3V3dVV9+e6+urqp973yVtvuuuu+1lFVTHGGGOS4ZvoCzDGGDN5WNAwxhiTNAsaxhhjkmZBwxhjTNIsaBhjjEmaBQ1jjDFJs6BhjDEmaRY0jDHGJM2ChjHGmKTlTPQFpFpVVZXOmTNnoi/DGGMmlU2bNh1X1eqhjsu4oDFnzhw2btw40ZdhjDGTiojsS+Y4a54yxhiTNAsaxhhjkpZ00BARv4j8SUSecD9XiMhaEdnpvpfHHHuTiNSJyA4RuSymfLmIbHHP3SEi4srzReQhV75ORObEnLPa/Rs7RWR1Kl60McaYkRlOpvElYHvMz18BnlPVhcBz7mdEZAmwCjgDuBy4U0T87py7gOuBhe7rcld+HdCkqguA24HbXF0VwM3AucBK4ObY4GSMMWZ8JRU0RKQW+DDwk5jiK4E17vEa4KqY8gdVNaCqe4A6YKWIzADKVPVV9TbxuL/fOdG6HgEudlnIZcBaVW1U1SZgLScDjTHGmHGWbKbxPeDLQCSmbJqqHgFw32tc+SzgQMxxB13ZLPe4f3mfc1Q1BLQAlQnq6kNErheRjSKysaGhIcmXZIwxZriGDBoi8hGgXlU3JVmnxCnTBOUjPedkgerdqrpCVVdUVw85zNgYY8wIJZNpXAB8TET2Ag8CF4nIz4BjrskJ973eHX8QmB1zfi1w2JXXxinvc46I5ABTgMYEdRmTll7f38Rbh1om+jKMGTNDBg1VvUlVa1V1Dl4H9/Oq+pfA40B0NNNq4DH3+HFglRsRNRevw3u9a8JqE5HzXH/Ftf3OidZ1tfs3FHgGuFREyl0H+KWuzJi09G+PvcX/fWbHRF+GMWNmNDPCvwk8LCLXAfuBawBUdauIPAxsA0LAjaoadufcANwHFAJPuS+Ae4AHRKQOL8NY5epqFJFbgA3uuG+oauMortmYMXWiPUhhrn/oA42ZpIYVNFT1ReBF9/gEcPEgx90K3BqnfCOwNE55Ny7oxHnuXuDe4VynMRNBVTnREaSqJH+iL8WYMWMzwo1Jkc5gmGAoQndPeOiDjZmkLGgYkyKNHUEAukMWNEzmsqBhTIo0dbqg0RMZ4khjJi8LGsakyIlopmHNUyaDWdAwJkWaXNAIWKZhMpgFDWNSJNqnEQxHCEcGLFxgTEawoGFMikT7NAAC1hluMpQFDWNSJJppgHWGm8xlQcOYFOkbNCzTMJnJgoYxKdLU0dP72IKGyVQWNIxJkcbOIDk+bzV/a54ymcqChjEp0tgRZFpZAWCzwk3msqBhTAqEI0pzZ5CZU13QsOYpk6EsaBiTAq1dPUQUZkwpBGyCn8lcFjSMSYFGN0dj5lQvaFimYTKVBQ1jUiA63La3ecr6NEyGGjJoiEiBiKwXkTdFZKuIfN2Vf01EDonIG+7riphzbhKROhHZISKXxZQvF5Et7rk73LavuK1hH3Ll60RkTsw5q0Vkp/tajTFpKLru1PRoR7g1T5kMlczOfQHgIlVtF5Fc4CURiW7Teruqfjv2YBFZgrdd6xnATOBZETnNbfl6F3A98BrwJHA53pav1wFNqrpARFYBtwF/ISIVwM3ACkCBTSLyuKo2je5lG5NagZAXJKYW5QHWPGUy15CZhnra3Y+57ivRamxXAg+qakBV9wB1wEoRmQGUqeqrqqrA/cBVMeescY8fAS52WchlwFpVbXSBYi1eoDEmrQRd0Cgr9D6HWaZhMlVSfRoi4heRN4B6vDfxde6pL4rIZhG5V0TKXdks4EDM6Qdd2Sz3uH95n3NUNQS0AJUJ6up/fdeLyEYR2djQ0JDMSzImpYJhL0iUFuQClmmYzJVU0FDVsKouA2rxsoaleE1N84FlwBHgO+5wiVdFgvKRnhN7fXer6gpVXVFdXZ3wtRgzFqKZRkGOjzy/zzrCTcYa1ugpVW0GXgQuV9VjLphEgB8DK91hB4HZMafVAoddeW2c8j7niEgOMAVoTFCXMWklGjRyc3zk5/psnobJWMmMnqoWkanucSFwCfC266OI+jjwlnv8OLDKjYiaCywE1qvqEaBNRM5z/RXXAo/FnBMdGXU18Lzr93gGuFREyl3z16WuzJi0Em2eyvP7KMj1234aJmMlM3pqBrBGRPx4QeZhVX1CRB4QkWV4zUV7gc8DqOpWEXkY2AaEgBvdyCmAG4D7gEK8UVPRUVj3AA+ISB1ehrHK1dUoIrcAG9xx31DVxlG8XmPGRDTT8IKGzzrCTcYaMmio6mbgnDjln0lwzq3ArXHKNwJL45R3A9cMUte9wL1DXacxEykYjpDrF3w+oSDHbx3hJmPZjHBjUiAYipDn9/6cCnItaJjMZUHDmBQIhiLk5kSDhjVPmcxlQcOYFOgJ98s0rCPcZCgLGsakQDAUIc9lGvk5fss0TMayoGFMCgTCJ4NGQa6PgPVpmAxlQcOYFLCOcJMtLGgYkwLBUIT82I7wkDVPmcxkQcOYFOgJR8iNZho2T8NkMAsaxqRAbEd4tHnKWwnHmMxiQcOYFAj26wiPKPSELWiYzGNBw5gU6N8RDrZPuMlMFjSMSYHYTCM/GjSsX8NkIAsaxqRAn0zDBQ/bU8NkIgsaxqRAnxnhlmmYDGZBw5gU6NMR7r7bUiImE1nQMCYFrCPcZItktnstEJH1IvKmiGwVka+78goRWSsiO9338phzbhKROhHZISKXxZQvF5Et7rk73LavuK1hH3Ll60RkTsw5q92/sVNEVmNMGuqJ7Qh333tsVrjJQMlkGgHgIlU9G1gGXC4i5wFfAZ5T1YXAc+5nRGQJ3natZwCXA3e6rWIB7gKux9s3fKF7HuA6oElVFwC3A7e5uiqAm4FzgZXAzbHByZh0EIkoPWHtnREe3Vcjum+4MZlkyKChnnb3Y677UuBKYI0rXwNc5R5fCTyoqgFV3QPUAStFZAZQpqqvqjdV9v5+50TregS42GUhlwFrVbVRVZuAtZwMNMakhWhwiGYauT6XadjkPpOBkurTEBG/iLwB1OO9ia8DpqnqEQD3vcYdPgs4EHP6QVc2yz3uX97nHFUNAS1AZYK6zAhsOdjCbU+/bctbpFg0aESbpXJzBPCarIzJNEkFDVUNq+oyoBYva1ia4HCJV0WC8pGec/IfFLleRDaKyMaGhoYEl5bdnt56hLte3EXA2tpTKhjql2n4o5mG3WeTeYY1ekpVm4EX8ZqIjrkmJ9z3enfYQWB2zGm1wGFXXhunvM85IpIDTAEaE9TV/7ruVtUVqrqiurp6OC8pq3QGw32+m9SIBofo6Kk8vzVPmcyVzOipahGZ6h4XApcAbwOPA9HRTKuBx9zjx4FVbkTUXLwO7/WuCatNRM5z/RXX9jsnWtfVwPOu3+MZ4FIRKXcd4Je6MjMCXS5YdARCE3wlmSWaafR2hFumYTJYThLHzADWuBFQPuBhVX1CRF4FHhaR64D9wDUAqrpVRB4GtgEh4EZVjX60vQG4DygEnnJfAPcAD4hIHV6GscrV1SgitwAb3HHfUNXG0bzgbBbNMDqCFjRSqX/zVI7f+jRM5hoyaKjqZuCcOOUngIsHOedW4NY45RuBAf0hqtqNCzpxnrsXuHeo6zRD6w0aAWueSqXAIH0aQes7MhnIZoRnkU6XYXRappFS/YfcRvs0QhHr0zCZx4JGFrFMY2xEZ37n9/ZpSJ9yYzKJBY0sYh3hY6N/puH3CSLWp2EykwWNLNLZY81TY6H/6CkRIdfnI2hDbk0GsqCRRXozDZunkVL9R0+B10RlmYbJRBY0skjv5D5rnkqp/s1T4C1aGLKgYTKQBY0sEYlob9Bot47wlOrNNPyxmYY1T5nMZEEjS8RuCGR9GqnVf8FC8AKINU+ZTGRBI0vErjdlfRqp1b8jHLxZ4RY0TCayoJElumIChfVppFb8jnDLNExmsqCRJWIzjXYLGinVE68j3O+zVW5NRrKgkSWiixT6fWJLo6dYMBRBBHJ8J7d/ybPmKZOhLGhkiWjzVEVxnq1ym2KBcIQ8vw9vxX+PNU+ZTGVBI0tEs4vqknw6bchtSgVDkT7DbcF1hIesecpkHgsaWSI6zLa6NN/WnkqxYCjSpz8DovM0LNMwmceCRpaINk9VleTTEQzhbYxoUqEnPDBo5Pl9hCIWNEzmSWa719ki8oKIbBeRrSLyJVf+NRE5JCJvuK8rYs65SUTqRGSHiFwWU75cRLa45+5w277itoZ9yJWvE5E5MeesFpGd7ms1ZkSizVNVpXlE9OTGQWb0Bss0rHnKZKJktnsNAf+oqq+LSCmwSUTWuuduV9Vvxx4sIkvwtms9A5gJPCsip7ktX+8CrgdeA54ELsfb8vU6oElVF4jIKuA24C9EpAK4GVgBqPu3H1fVptG97OzT2zxVkg94y6MX5Pon8pIyRjA8sE8jN8c6wk1mGjLTUNUjqvq6e9wGbAdmJTjlSuBBVQ2o6h6gDlgpIjOAMlV9Vb22kfuBq2LOWeMePwJc7LKQy4C1qtroAsVavEBjhqkzGCbHJ0wtygNsI6ZUiptp+MT6NExGGlafhms2OgdY54q+KCKbReReESl3ZbOAAzGnHXRls9zj/uV9zlHVENACVCaoywxTZzBMYZ6fknwvu7Bht6kTCEX6LCECNuTWZK6kg4aIlACPAn+vqq14TU3zgWXAEeA70UPjnK4Jykd6Tuy1XS8iG0VkY0NDQ8LXka26gmGK8vwU5XktkrZoYerE6wjPzRFCNiPcZKCkgoaI5OIFjJ+r6q8AVPWYqoZVNQL8GFjpDj8IzI45vRY47Mpr45T3OUdEcoApQGOCuvpQ1btVdYWqrqiurk7mJWWdzp4wxXk5FEczDWueSplgKNJnhVuwIbcmcyUzekqAe4DtqvrdmPIZMYd9HHjLPX4cWOVGRM0FFgLrVfUI0CYi57k6rwUeizknOjLqauB51+/xDHCpiJS75q9LXZkZps5AiMKYTMPmaqROvI5wWxrdZKpkRk9dAHwG2CIib7iyfwE+JSLL8JqL9gKfB1DVrSLyMLANb+TVjW7kFMANwH1AId6oqadc+T3AAyJSh5dhrHJ1NYrILcAGd9w3VLVxZC81u3W65qmSfBc0bP2plInXEe4tjW7NUybzDBk0VPUl4vctPJngnFuBW+OUbwSWxinvBq4ZpK57gXuHuk6TWGdPmCmFuRTlec1T1qeROsFBOsLDESUSUXy+eH8+xkxONiM8S3QFQxTl+imOZhrWp5EygVCEgtyBQQOgx2aFmwxjQSNLdAbDFOX7yc/x4RPr00glL2j0nSgZ7eOwJiqTaSxoZInokFsRYUphLi1dPRN9SRmjuyc8YPRUjt9rkuqx5VpMhrGgkSU6gqHekVPlxXk0dgQn+IoyRyAUIT+nb6bR2zxlI6hMhrGgkQUiEaW7J0Kha0KpLM7jREdggq8qM4TCEcIRHdCnEW2esrkaJtNY0MgC0RVto+3uFZZppEy3u7cDMo0cr3nKZoWbTGNBIwsEQt5Iqein4YrifAsaKRLo8e5t/mCjpyzTMBnGgkYWCPb7NFxZnEdTZw+RiH0KHq1A773t1xHus+Ypk5ksaGSB/m9s5cV5hCNqI6hSoLsnmsX1G3LrmqdsyK3JNBY0skC0eSq61EVlsbenRmOnNVGN1mCZhjVPmUxlQSMLdPf0fWOriAYN69cYtcBgHeEWNEyGsqCRBXrf2GJGTwGcaLegMVrdQ3aEW/OUySwWNLJAtHkqmmlUllimkSqDZxo2I9xkJgsaWSDYvyO8KBo0bILfaPUOubU+DZMlLGhkgein4WhHeEGun+I8Pycs0xi1kxMnB1vl1pqnTGaxoJEF4jWhVJTYrPBU6O3TyBlklVtrnkqaqvKn/U14m3aadJXMdq+zReQFEdkuIltF5EuuvEJE1orITve9POacm0SkTkR2iMhlMeXLRWSLe+4Ot+0rbmvYh1z5OhGZE3POavdv7BSR1Zhhi9eEYrPCU+PkIIN+mUbvPA0LGsl6dfcJPn7nK2zY2zTRl2ISSCbTCAH/qKqLgfOAG0VkCfAV4DlVXQg8537GPbcKOAO4HLhTRKIfw+4CrsfbN3yhex7gOqBJVRcAtwO3uboqgJuBc4GVwM2xwckkJ94bW6WtP5USg3WER2eEW9BI3rbDrQDsamif4CsxiQwZNFT1iKq+7h63AduBWcCVwBp32BrgKvf4SuBBVQ2o6h6gDlgpIjOAMlV9Vb388/5+50TregS42GUhlwFrVbVRVZuAtZwMNCZJ/ZcRAVu0MFVOzggfbJVba2pJVjRY7G/snOArMYkMq0/DNRudA6wDpqnqEfACC1DjDpsFHIg57aArm+Ue9y/vc46qhoAWoDJBXWYY4s1a9pZHD1r78Sj1DjLov0d47yq3lmkka+cxCxqTQdJBQ0RKgEeBv1fV1kSHxinTBOUjPSf22q4XkY0isrGhoSHBpWWn3mVE/LF9GnkEQxHabdvXUQmEvF37XPdcLxtyOzyqys56L2gcsKCR1pIKGiKSixcwfq6qv3LFx1yTE+57vSs/CMyOOb0WOOzKa+OU9zlHRHKAKUBjgrr6UNW7VXWFqq6orq5O5iVllUAoQp7fh8938o1tdkURAPtO2B/oaAR6IgPmaADkuHttzVPJOd4epKWrhzy/zzKNNJfM6CkB7gG2q+p3Y556HIiOZloNPBZTvsqNiJqL1+G93jVhtYnIea7Oa/udE63rauB51+/xDHCpiJS7DvBLXZkZhnhvbPOrSwDrdBytQCg8YIVbABEh1y+WaSRpZ30bAOfOq6C5s4fWbluBOV0lk2lcAHwGuEhE3nBfVwDfBD4oIjuBD7qfUdWtwMPANuBp4EZVDbu6bgB+gtc5vgt4ypXfA1SKSB3wD7iRWKraCNwCbHBf33BlZhgCofCAIaGnVhYhArsbOiboqjJDoCcy4N5G5fp9Nk8jSbtc09RFi7yuUWuiSl85Qx2gqi8Rv28B4OJBzrkVuDVO+UZgaZzybuCaQeq6F7h3qOs0gwu65qlYBbl+ZpcXWaYxSoFQZMBw26hcv4+QzQhPys76dkryc3j3nArACxpnzJwywVdl4rEZ4VkgEIr0rnAba151sWUao9TdEx4w3DYq1++znfuSVFffzvyaEk6p9PrarF8jfVnQyALRET79za8uYffxdtv2dRQSZRp5frHmqSQ1dfZQU5pPWUEuUwpzLWikMQsaWcB7Yxv4Xz2vupjunghHWrsn4Koyw2ABGSDH77OO8CR1BkMU53nB95SKIvY3dk3wFZnBWNDIAt7oqYGfhntHUNVbv8ZIdQ8y5BZwo6csi0tGRyBMYZ7XxTp9SgH19kEmbVnQyALBcKR3WfRY0aCx2zrDR2ywIbfgRk9ZppGU2EyjvCiXJtu/Pm1Z0MgCgzWhVJXkMbUol8fePGwzw0dosKY/8PYvsaAxtEhE6QyGKcr3Mo3y4jyaOntsiZs0ZUEjCww2l0BE+MaVS9l8sIVP/2SdvcGNQHdPOOGQW2ueGlqXW/QxmmlUFHlL3HQGw4lOMxPEgkYWSDTC52Nnz+TrHzuDNw80s/VwoiXFTDzecOZBOsJ9YkNuk9AR9LLc3kzDbUdsTVTpyYJGFgiEwgMm98W6cEEVAO8cbRuvS8oYgZ7IoH0aeTm+3mXpzeC6gn0zjfJiFzQ6bCmRdGRBIwsk+jQM3uKFBbk+dhyzoDEcqkp3giG3+Tn+3qXTzeA6Al7QKMqLZhq5ADRappGWLGhkgWCCzloAv09YWFPKOxY0hqUnrKgy6L0tyPX1brVrBtfpmqeK8/tmGs0WNNKSBY0skKhPI+q0aaW8bc1TwxLdp2Sw5qnCXH9vJ68ZXEewb6ZR4fo0bGfJ9GRBI8OFwhHCEU2YaQAsml5KQ1vA/lCHId6OiLEKcv2928GawXW64d5Frk+jrDAXEW9pEZN+LGhkuN7tSIcIGqdNLwWwJqphiAaEwbK4glwf3T3WpzGUjt6OcC/T8PuEqYW5NNkHmLRkQSPDDfVpOOr0aRY0hqv33g4yyKAg1093KGyT1IbQ2Tvk9mTwLS/Ks47wNGVBI8MFe9/YEvdpTCvLp6wgx/o1hiHQEw3Ig2UaflSxEVRDiI6eimYa4HWGW0d4ekpmu9d7RaReRN6KKfuaiBzqt5Nf9LmbRKRORHaIyGUx5ctFZIt77g635StuW9iHXPk6EZkTc85qEdnpvqLbwZphiHbWDpVpiAgLp5VSd8zWoUpWd/TeJsg04GRwMfF1BkOI0GdfkvKiPBptnkZaSibTuA+4PE757aq6zH09CSAiS4BVwBnunDtFJPox7C7gerw9wxfG1Hkd0KSqC4DbgdtcXRXAzcC5wErgZrdPuBmGk81TiTMNgIU1JdTZ4oVJO5lpDD7kFk4GFxNfRyBMcV4O7nMk4M3VsEwjPQ0ZNFT1D0Cy+3JfCTyoqgFV3YO3F/hKEZkBlKnqq+o18N4PXBVzzhr3+BHgYpeFXAasVdVGVW0C1hI/eJkEom9sQ3WEAyyoKaGxI2gjqJI01JDbAheobQRVYl09od6RU1EVxXn2e5imRtOn8UUR2eyar6IZwCzgQMwxB13ZLPe4f3mfc1Q1BLQAlQnqMsOQbPMUwPwab6n0OttfIyndQ2Qahe6N0OZqJNYRCFOcn9OnbGpRHoFQpHeJEZM+Rho07gLmA8uAI8B3XLnEOVYTlI/0nD5E5HoR2SgiGxsaGhJdd9YJJjl6CmBBtQWN4TgZkAcfcgvYsNshdAZDFOb2zzRsKZF0NaKgoarHVDWsqhHgx3h9DuBlA7NjDq0FDrvy2jjlfc4RkRxgCl5z2GB1xbueu1V1haquqK6uHslLyliBJEdPAcyaWkhhrt+CRpKG7NOw5qmkeJlG39/P3pVurYkq7YwoaLg+iqiPA9GRVY8Dq9yIqLl4Hd7rVfUI0CYi57n+imuBx2LOiY6Muhp43vV7PANcKiLlrvnrUldmhmE4zVM+nzCvutg6w5PUO78gL35AjgZqCxqJdQZDvUuIREXXn7J+jfSTM9QBIvIL4P1AlYgcxBvR9H4RWYbXXLQX+DyAqm4VkYeBbUAIuFFVo38xN+CNxCoEnnJfAPcAD4hIHV6GscrV1SgitwAb3HHfUNVkO+SNk+yM8KgFNSVs3NvE6/ubKCvIZYHr5zADdfb0XTOpv0ILGknpCIaZVd438FZa0EhbQwYNVf1UnOJ7Ehx/K3BrnPKNwNI45d3ANYPUdS9w71DXaAY3VBNKfwuqS3jsjcP8+Z2vsHhGGU996b1jeXmTWlcwPGB+QSzr00hOZ2BgplFVmg9AQ1tgIi7JJGAzwjPcUJ21/S07ZSrgZRzbj7Sy53jHmF3bZNcZDFOY6+8zvyBWgWUaSekIhns3YIoqzc8hP8fH8XYLGunGgkaGG2p9pP7eu7CaV75yEff/tTe24cktR8bs2ia7zmB40P4MsOapZHUGQ71bvUaJCFUl+ZZppCELGhku2QULY82cWsjMqYUsmz2Vp96yoDGY7p5w71yMeKKZRpc1Tw0qGIrQE9YBmQZAdWk+DZZppB0LGhmutyM8wR7hg7nizOm8daiVA42dqb6sjNAZDFGUO3i3YDRQW6YxuJMj0AbeR8s00pMFjQwXCIXJy/EN2u6eyPnzqgDYergl1ZeVETqDiTMNn0/Iy/HZ2lMJdPbu2hc/07A+jfRjQSPDBXoiFAyjaSrWKRVFABxo7ErlJWWMriH6NMDr17BVbgd3ci+NgZlGdYm3/lQ4YvuRpBMLGhmuIxAasK5PsqYU5VJWkMN+a56Ka6iOcPCG3dr6SYM7uZdG/EwjonCiw7KNdGJBI8Ml88aWyOyKIg40WdCIp6snTOEgE/uiorv3mfg6EvRpVLu5GsfbbIJfOrGgkeE6giPPNMBrorJMIz5vob3Ef0IFOX7rCE8gmmnE+2BTVeIm+Fm/RlqxoJHhOgOjzzQONnURsXblAbwsbohMI89vM8ITaO3yduebUpg74LlqmxWelixoZLiOYKjP3svDNbuiiGAoQr394Q7QNcToKYCCHJ/tp5FAiwsaU4sGBo1opmEjqNKLBY0M1xUMxx2ZkqzZ5YUA1q/RTzAUIRRRioZYcr4g10/Agsagmrt6EIHSgoFBozg/h6I8v2UaacaCRobrCIaGfGNLJDrsdv8JCxqxotnDkJlGrs+apxJo6QxSmp+D3xd/HlFVic3VSDcWNDJcZyBMUf7Ig8as8kJELNPoryuYeFn0qEIbPZVQc1cPU92GS/FUl9qs8HRjQSODqeqo+zTyc/xMLyuwEVT9DLUBU1RBrt/maSTQ0tUTtz8janpZAXX17b3bFpuJZ0EjgwVCESLKqDIN8DrDrXmqr+jyF0M3T9mQ20SaO3vijpyKumZFLfVtAX6xfj/gfRD67ZuH+T+/eYv/90LdeF2miTFk0BCRe0WkXkTeiimrEJG1IrLTfS+Pee4mEakTkR0icllM+XIR2eKeu8Nt+4rbGvYhV75ORObEnLPa/Rs7RSS6JaxJUkfA+zQ8mkwDYPH0UrYfabXlHGJ09Qw+vyBWfq6PbvuUPKiWIZqn3ndaNefNq+AHz++kIxDixXca+Ntf/Imfr9vHd36/w4aCT4BkMo37gMv7lX0FeE5VFwLPuZ8RkSV427We4c65U0Sif1V3Adfj7Ru+MKbO64AmVV0A3A7c5uqqwNta9lxgJXBzbHAyQ0u0GNxwnFk7lY5gmD3Hbe/wqGTvbWGun2AoYm9ug2juDDKlcPAPNSLCly9fxPH2IP/0yJt888m3mVNZxE0fWkxEvT4RM76GDBqq+ge8vbtjXQmscY/XAFfFlD+oqgFV3QPUAStFZAZQpqqvqqoC9/c7J1rXI8DFLgu5DFirqo0yIbw5AAAgAElEQVSq2gSsZWDwMglE39hGMyMc4KzaKQBsPmir3UZ1uT6NwgRLo0PM7n3WGT5AJKJeplE4eKYB8K5Tyvnqhxfz5Jaj7DjWxj9dtohpUwoAaLR1qcbdSPs0pqnqEQD3vcaVzwIOxBx30JXNco/7l/c5R1VDQAtQmaAuk6SOJDtrhzK/uoTCXD9bDlnQiEq6TyPH9gkfTHswRETjT+zr73PvncdNH1rEJ95VyxVnTqeq2As0x9ttXarxNrqPoAPFG2ytCcpHek7ff1TkerymL0455ZShrzJLdAaSGxY6FL9POGNmGVss0+iVdPNUnm35OpiWzsGXEInn8++b3/u4osQLGicsaIy7kWYax1yTE+57vSs/CMyOOa4WOOzKa+OU9zlHRHKAKXjNYYPVNYCq3q2qK1R1RXV19QhfUuZJVaYBcGbtFLYebiUUtk/McHKeRjKjp8CCRjzNndElRBI3T8VTWewtMWLNU+NvpEHjcSA6mmk18FhM+So3ImouXof3eteE1SYi57n+imv7nROt62rgedfv8QxwqYiUuw7wS12ZSVJ0LsFo+zTA69fo6gmzq6Fj1HVlgt7RU0PMts/Pie4TbkGjv+YuL0tINtOIVe6atKx5avwN+W4iIr8A3g9UichBvBFN3wQeFpHrgP3ANQCqulVEHga2ASHgRlWN/rXcgDcSqxB4yn0B3AM8ICJ1eBnGKldXo4jcAmxwx31DVft3yJsEEm1wM1yLZ5QBsLO+jdOnl466vsmuMxgmz+8jZ4i91wtyrU9jMIkWKxxKjt9HeVEujR0WNMbbkEFDVT81yFMXD3L8rcCtcco3AkvjlHfjgk6c5+4F7h3qGk18ibbSHK4ZZd7ChUdbukddVyboCoaGbJoCb8gtYIsWxtHbPDWCTAOgsiTfdvWbADYjPIP1jvAZxYKFUWWFORTm+i1oOMnuiBjt07DmqYGimUbZCINGRXGeNU9NAAsaGawzGKYw1z/oCqLDISJMn1LA0VYLGgCdPUPvpQEn3xBbu20SWn/NnUEKc/29gXW4qkryrHlqAljQyGAdgVBKRk5FTS8rsEzD6Uoy06gotqGhg2npSrzu1FAqivM4YcumjzsLGhmsMzi6ZdH7mz6lgCMWNACvv6hoiNngAGUF3l4RTZ0WNPpr7ky8wu1QKovzae7qsWHg48yCRgbrCIxuWfT+pk8poL6t29ZRIrmtXsFr1isvyqOxw5qn+mseZaZRVZKHKjR12r0dTxY0MliynbXJml5WQE9YOWHtyL39RcmoKM6lye7ZAC1DLIs+lAo3wc9GUI0vCxoZrCMYSsnEvqjpbpG4Y9YZPqyA7GUaFjT6O9LS1fs7NRKVbimRRusvGlcWNDJYsp21yZpe5v2BW78GtHb1JD1UtLIkj0br0+ijtbuH1u4Qs6YWjriOyuiihRaQx5UFjQw22q1e+5vhPhVm+7Dblq4e2gIhZk5N7lNyeVGeNU/1c6ipC4Da8qIR11FZ4tafshFU48qCRgbrDKR29FRlST5+n3C0pStldU5G0Te8WVOTe8OrKM6jqTNoAwhi9N7D8pFnGlMLc/H7hAYLGuPKgkYG6wiGRr0seiy/T6gpzedoS3b/kR5qHt4bXnlRHhG1CX6xDjZ5e87XjiJo+HxCdUk+9a3Z/fs43ixoZKhwROnuiaS0TwNws8KzO9M4HA0aSbbH907wsyaqXoeauyjI9fX2S4xUTVk+x9osaIwnCxoZqndZ9BRmGgAzpxay93hnSuucbA41d5GX46OqJLk3vHL3xmj9GicdbOpi5tRCvJ0SRq6mtID6LO9jG28WNDJU8zB3RUvWstqpHGruyuo/1ENNXcwaxhte9NO0Dbs96VBz16g6waNqyvKpt0xjXFnQyFDRdveZoxjSGM+KOeUAbNzXlNJ6J5ODzV3DGiram2nYsNteB5uGdw8HM620gMaOIMGQLSUyXixoZKjDvUFj5JOn4jlj5hTyc3xs3Ju9QePQMN/wKoqsTyNWZzBEY0dwVJ3gUTVl3rBbG0E1fkYVNERkr4hsEZE3RGSjK6sQkbUistN9L485/iYRqRORHSJyWUz5cldPnYjc4baExW0b+5ArXycic0ZzvdkkOgFvxpTUZhp5OT6WzZ7Kxn3ZuYlid0+Y4+2BYQ0VLczzU5Drsz4NJ/qBJhVBY5oLGtncXDreUpFpfEBVl6nqCvfzV4DnVHUh8Jz7GRFZgreV6xnA5cCdIhId2nMXcD3enuIL3fMA1wFNqroAuB24LQXXmxUONXdRUZyX1KJ6w7ViTjlbD7f2drZnk+GOnIqqsEULex1oGtk9jKemNLq0jWUa42UsmqeuBNa4x2uAq2LKH1TVgKruAeqAlSIyAyhT1VdVVYH7+50TresR4GIZ7XCLLHG4uSvlTVNRK+ZUEI4ob+xvHpP609lw52hElbsJfgb2Hu8A4JSK1HSEAzS0WaYxXkYbNBT4vYhsEpHrXdk0VT0C4L7XuPJZwIGYcw+6slnucf/yPueoaghoASpHec1Z4UhzNzNT3DQVdXbtVAC2HWkdk/rT2aERfkquKM6zPg3n7SNtVBTnUV2aP+q6Kovz8YllGuNptIP4L1DVwyJSA6wVkbcTHBsvQ9AE5YnO6VuxF7CuBzjllFMSX3GWONzcxfnzxya+VhTnUVGcx66G9jGpP529ebCF0oKcYY9Kqykt4O2jDWN0VZPL9qOtLJ5ROuo5GuCtUlBVkk+9ZRrjZlSZhqoedt/rgV8DK4FjrskJ973eHX4QmB1zei1w2JXXxinvc46I5ABTgAE9sKp6t6quUNUV1dXVo3lJGaG1e3gL6o3E/OpidtV3jFn96WrdnhOsnFMx7H3XF04roaEtQEuWbxgUjig7jraxeHpZyuqcVlZgmcY4GnHQEJFiESmNPgYuBd4CHgdWu8NWA4+5x48Dq9yIqLl4Hd7rXRNWm4ic5/orru13TrSuq4HnXb+HSeDwGM3RiDW/uiTrMo36tm52N3Rw7ryKYZ972rQSAN6pb0v1ZU0qe453EAhFWDQjdUGjpnTyTPDbfLCZ/3n/Rs7/j+e47em3CYTCE31JwzaaTGMa8JKIvAmsB36nqk8D3wQ+KCI7gQ+6n1HVrcDDwDbgaeBGVY3esRuAn+B1ju8CnnLl9wCVIlIH/ANuJJZJ7Eizl6qPZdBYUFPCiY5gVg0jXb/HS3JXzh1+s9/CmlIA3jmW3UFju+sHWzyjNGV11pRNnqVEvvzIZjbubWRBTQl3vbiLz63ZONGXNGwj7tNQ1d3A2XHKTwAXD3LOrcCtcco3AkvjlHcD14z0GrNV72zwMeoIBy/TANjV0M6K4uF/8p5MuoJhdjW0s253I8V5fpbOHP6n5FlTCynK87PzWHZlZ/29fbSVHJ+woKYkZXVOLyvgREeQ7p4wBUluwTsRdhxt4+2jbXzto0v4qwvm8h9PbufuP+5O++vuz2aEZ6DDzV3k+CQlo1MGExs0Mt2dL9bxkR+8xM/W7WP5nApy/MP/s/H5hIU1JezM8uap7UfamF9dQn5O6t4kowGorj69fxcfe+MQfp/wkbNnArBs9lRU0/+6+7OgkYHq6tupLS8cdmftcMwqLyQ/xzfpfuFH4sUdDZxaWcSKU8v5ixWzhz5hEAunlfJOFmcakYiy5VBLSpum4GRT1/Y0HgIeiSiPvXGYCxdUUeV2HDxtunfdO45Org8SFjQyjKqyYW8jK+aMbZOR3yfMrSpmV0Nmj6Bq6gjy1uEW/vycWn75N+/hw2fNGHFdp7kRVM1ZMsnvtd0n+IeH3+jt7N24r4mGtgAfWFQzxJnDc2plMQW5Pt5O4zffdXsaOdTcxZXLZvaWnVpRRF6Ob9L1c1nQyDB19e00dfawcu7Y9zPMrymZdJ+ShuvV3SdQhQsXjn7Oy8Jp3ifLnVmQnQHc+eIufvX6IW5fuxOAx988RGGun0sWT0vpv+P3CadPK03rTONnr+1jSmEuH1p68kNHjt/HguoSdljQMBNpnRvhc+44BI1z51ZwqLkro/s1Xqo7Tkl+Dme5WfCjscQNM82GFYLr27p5aWcD5UW53P2HXTy15Qi/23yES5ZMozg/tRuDASyaXsb2I62k44j8Y63dPLP1KNcsrx2wFtzp00t5Z5J98LKgkWHW72lkWll+Stb1GcrF7hPjs9uOjfm/NVFerjvOefMqyB1B53d/08oKOKt2Ck9vPZqCK0tvT7x5hIjCfZ9dyfzqEm74+es0dfbwsbNnDn3yCCyaUUpTZw8NaThf48H1BwhFlL8879QBz502rZTDLd2Tav94CxoZRFVZv6eRlXMrU7JEw1BmTS1kyYwyntteP/TBk9C2w63sO9HJ+05L3SoDly+dzpsHmnuHRWciVeU3bxzijJllnD17Kk/83YV89cOLuWrZzJTey1iLXRa3fYI/tQdCYZ7acoRIxMt4esIR/mv9Pv7stGrmVBUPOP706d7Ir52jaKJqD4T46ct7aOkan8BjQSOD7G/s5GhrNyvnlA99cIpcsmQaG/c1ZuRWpr/cdIA8v4+PnJW6T8fRNu2n38rcbOP7z+1k88EW/uLd3kiz/Bw/n3vvPL636hzycsbmLWeRG4m09XDLmNSfrDWv7OWGn7/OI5u8NVif236MY60BPhMnywAv0wDYMMImS1Xly4+8ydd/u43/uWYj3T1jP8PcgkYGebnuBADnz68at3/zg4unEVH4fYY1uQRDER574zCXLKnp3a41FeZWFbNoeilPbjmSsjrTyc9e28f3nt3J1ctrB32jHAtTi/I4c9YUHt5wgFB4YrZ+DUeUNa/sA+B7z75Dd0+YB17bx6yphVw0yIixWVMLOX9eJXf/YXfcJqqWrh5eeLseVUVV+ePOBu58sY5NbhO0n768lye3HOWyM6axYV8jX/yv1wlHxrZfx4JGBnm57jjTyvKZXz0wDR4rS2eVsWh6KT/+4+7elHwyU1VeeLuef39yO40dQa5ZPvJ5GYO5enktm/Y18cqu4ymveyK9Unecmx/fykWLavjmn585Lk2ksf72ogXsPdHJb944PPTBY+DZ7cc41NzFteefyuGWblbd/Rov153gf5x7yqBzpkSEf/3wYho7gtz14q4+z6kq//jwm3z2vg2s3XaM25/dyWfuWc+3nt7B59Zs5JW643zzqbe5eFEN//mXy/nGlUt59wgW0xwuCxoZIhJRXtl1nAsWVI3rH6uIcOMHFrCroYNnMiDb+OnLe/nsfRu475W9LKwp4b0LU5+1/eV5pzJzSgG3Pb0jLUf7jMSmfY3c8PPXmV9dzPdXLRvRrPnR+uCSaSyZUcb3n3uH3RMwom/NK3uZNbWQf/vIEj569kyOtwf4xLtq+cz5iTOupbOm8OfnzOKel/b06et66q2jPLv9GAW5Pv7tsa3c9WIdHzlrBr+58QI6g2E+fc86SgpyuO3qsxARPnPeqXz+ffPH+mVa0Eh3ya6Cuf1oK02dPVwwjk1TUVecOYO5VcXc2e+T0mTzwtv13PK7bVy6ZBqbv3Ypv/9ffzYmb34FuX7+/oOn8eaBZn71+qGU1z/eXthRz6d+vI7yolzuWf1uSgtyJ+Q6RISvfmQxje1BLr39Dzzw2r5x+7f3n+jklV0nWPXu2eT4ffzgU+fw0j9fxHc+eTZlSdyPf7zsdAT49jM7AG/P83977C2WzirjR59ZwdHWbkryc/j6x85g2eyp/PPli1CFf//40t4Z5uPFgkYa++HzOznz5t9z9x92Ddr00x4I8fXfbuX2te8AcMGC8Q8afp/w6XNPYcuhlkk7KqipI8g/PfImi6aX8b1VyygryB3TjO0T76plxanlfPU3b6X1pLShBEJhvvrrt5hXVcyvvnABs8dhqHci75lfxYv/9AHOn1/JLU9sG7c5RI++fhAR+MTy2qEPjmPW1EKuu3Auv/7TIR7ecIAv/Px1OgJhvvvJZbzvtGq+9tEl3Pnp5VS6APHXF85lw79ewuVLR75CwUhZ0EhTD284wLd//w7Vpfn8+5Nvs+wbv+djP3yJNw/03Zf7zhfq+OnLe3l2ez1LZpQxfcrYbbyUyHsXekMpX66bXO30oXCE7Uda+epjb9Hc2cN3rjmborzUTz7rz+8T7vzLd1FakMMXfv76hHXejtZDGw5wqLmLf/3wYipSOGBgNKpL8/nOJ8+mIMfHVx7dTDA0tvc2ElEe2XSQCxdUjWo7ghveP585lUV8+dHNbNzXxDc/cWbv6Kq/umDugJ04x3JB0kQsaKSZ4+0BPrdmA19+dDMXLKjkhf/9fr6/ahlXnTOLE+1BPvmjV/ndZm/kzaHmLu55aQ9XLZvJ6//ngzz0+fMm7LpPm1ZCVUn+pAoakYjyVz/dwIe+/0d+t/kIX/jAApaMYNnzkaopLeD/u2ope4538OQkGYIbDEV4ddcJOgIhjrR08YPn61g5t4ILJyDDTaSmtICbP3oGG/Y28akfv8bRlrHZb+PB9fv57H0bONTcxdUjzDKiSgtyefYf3sejN7yHn3723Vy5bFaKrjK1xv4jlRmWbz+zgz+8c5x/vnwRn71gDnk5Pq5cNosrl83i7y4O8PkHNnHjf73Ohr1z2LSvCQX+92WnT/inPBHhggWVvFx3HFUd95EzsYKhCK/vbyLX7yMUjnC0tZstB1vo7AkzvayAK86cwYKaEu57ZS8v1R3nSxcv5M9Oq+Jdp4zf/JaoSxZPY151MT/+w24+etaMCb1vsVSVV3ed4J6X9uD3CZ9cMZtjbd3c88c97D7eQXVpPuGIEugJ869XLE6b6471ieW15OX4+OdHN/PJH73KL//mfKaVDZ2J/+ZPh7jrxV0ca+umuiSfPzutmn+5YvGAUUmPbjrIV361hVMri/jUytlcdsb0UV9zjt/H8lPH//dwOCZF0BCRy4HvA37gJ6r6zQm+pCFFIsq2I63k5/ioLS8asOZMPCfaA/zqT4f4xPJabnj/wFEQVSX5/Pxz53LTr7Zwnxup8a1PnEVt+cS2I0ddsKCKx944zI5jbSxK4R7Qw1Hf2s0NP3+dTfv6TpbKz/FRnJ9DU2eQ7659h2ll+ZxoD3Lxohr+/pKFE/am5/MJn7twHv/y6y08t72eS5akdjG/kWjp6uFff72FJzYfoaokn4gqv3dLxcyvLubfP34mj71xiM5gmO+tWta7t0o6+ujZM5ldUcSnf/wan/7JOh64biUzEmxOtu1wK19+ZDPzqov58JkzONjkZfP5OT7eM7+KZ7cfIxAKEwhF+N3mI5w3r4KfXXfuhIwWmyiS7kP+RMQPvIO3dexBYAPwKVXdFu/4FStW6MaNqdtCUVXZtK+JkoIcTqspxZdgDLSqt1/Ay3Un+OWmA+x2y4YX5/m58pxZvHtOOXOrSphbVcyUwoEjKu54biffXfsOz/7Dn7GgZvA9B1SVd461s6CmZMzHZA/H4eYu3vPN5/nQ0uncctVSth9pZfGMsj6jO1SVQ81dVBbnU5jnp76tm/te3svabcdYNKOMd88p5/RppawY5njznnCEX6zfz/ee3UlXMMy/fXQJ06cUkOf3UVWSz7zqYnL9Po63B3h000F2NbRTWpDLF94/v7dzcaJ094T50Pf/yL4THax+zxwuWlTDyrkV5Of4qW/tpi0QYlpZASVjsNBfrGAowm/fPMy3nnmb4+1B/tclC/nce+ehCuv3NnJqRRGnVhalZVYxlHW7T3Ddmo0U5vm5enktR1u6ec/8yt6+uCc2H2b7kTbW7z1Bd0+Ep7/03t7fi5t+tZlfrD8AQFGen+L8HPL8PmZXFPLD//GucR+9NFZEZJOqrhjyuEkQNM4Hvqaql7mfbwJQ1f+Id/xog8bx9gCv7jrB+j2NtHb3sO1wa+9S1tPLCvhfH1zI8lPLOdTczdGWLoKhCKUFuSyZWcaP/ns3j77uLR9wdu0UPn3uqeTn+vjDO8d5YvNhAjEdcpXFeVSV5NPVE6YzGKIzGKYzGOZ9p1Wz5q9Xjvj6J9r/e6GOb/9+B9Ffq+rSfG58/3we3HCA+rYAEVWaO3uoKc3nmhW1rHllHx3BECvnVLCroYPj7d6Cc6dPK+XDZ82gqTMYd4arALMriji1spjGjgA/+sNudjd0cP68Sr5+5Rm9HYiTRVt3D7c8sY1fbjqIKpxSUcT7TqvmwQ376Ql7r78oz8+0sgJqSvOpKSvgrFlTuGTJNA40drLvRAfHWgO8ebCZXL+PK5fNZN+JTvae6KAg18/xtgA94QjLTy1nalEeEVXCEeWUiiIKcv08uOEAL7xdT3sgxNm1U/j6lUtZNnv0K/umk3eOtfG5NRs52NRJeVEeJ/otfTNjiheYv3Hl0j6dzoFQmFue2MbCmlJWrZyd0l0H00kmBY2rgctV9XPu588A56rqF+MdP9Kgcbi5i7++b0PvRi4l+TlUluRRWZzHqpWnIMAv1u/n9f3Ng9YhAl/8wAKuPX/OgJENgVCYA41d7DnewZ7j7ew53sHx9iDFeX4K83IozvNTlJ/Dn58zK+7CZpPJut0n+MPOBhZNL+Nbz7zNgcYu5lcXc968SiLqdZo/tOEAbx9t4/x5ldz68aXMqy5BVTnWGuC13Se447md7D7eQXGeP+56ReGI0tod6v15XlUx/3LFYi5eXDMpPwlHtXb38OquE/zfZ3ZQV9/OJ95Vy4ULK6lvDXCsNUB9Wzf1rQGOtnazv7Gzz7k+8dYyau7s4WhrNyIwo6yAQChCRXEeyuBbi04pzOWKM6dzyeJpfOD0moQZ9WQWjig94Qj5OT5e39/E9iNtdPd4H9YWTrIPGqmWSUHjGuCyfkFjpar+bcwx1wPXA5xyyinL9+0b/qSeUDjC5x/YxLtOLec98ys5c9aUAe2UqsqLOxpo7e5hxpRCZkwpoCDXT1NnkD/tb2J+dcmY75g32TR3Btm4t4n3n17d534GQxG2HGrhnNlT475BRSJKIBRJ2BfU0BbgSEsXRXl+5lQWZ1S7ck84QktXT8Kmj10N7bxSd5x51SUsrCmhvDivt/P/9f3NzKsuHnB+S1cPgZ4wPp8gwK6GDk60B3j/6TVJ9buZzJVJQWNcm6eMMSYbJRs0JsNHsw3AQhGZKyJ5wCrg8Qm+JmOMyUppP+RWVUMi8kXgGbwht/eq6tYJvixjjMlKaR80AFT1SeDJib4OY4zJdpOhecoYY0yasKBhjDEmaRY0jDHGJM2ChjHGmKRZ0DDGGJO0tJ/cN1wi0gbsGOZpU4CWFF1CKusai/qiqoBUbH4xGV5vqutM1b2LSvd7aPcvfeobq3tXBRSravWQZ6hqRn0BG0dwzt0p/PdTVtdY1Dea+zRZX+8YXGNK7t1kuYd2/9KnvrG6d8Op15qnPL9N07rGor5Umwyv1+5hetWXaun+etP5/g372jKxeWqjJrF+Sraz+zRydu9Gx+7fyI3VvRtOvZmYadw90RcwSdh9Gjm7d6Nj92/kxureJV1vxmUaxhhjxk4mZhrGGGPGiAWNDCEis0XkBRHZLiJbReRLrrxCRNaKyE73vdyVV7rj20Xkh/3q+pSIbBGRzSLytIhUTcRrGi8pvnd/4e7bVhH51kS8nvE2gvv3QRHZ5H7HNonIRTF1LXfldSJyh0zmbRiTkOJ7d6uIHBCR+Nszpkoqh2/Z18R9ATOAd7nHpcA7wBLgW8BXXPlXgNvc42LgQuBvgB/G1JMD1ANV7udv4W2CNeGvcRLcu0pgP1Dtfl4DXDzRry8N7985wEz3eClwKKau9cD5eNvAPwV8aKJf3yS6d+e5+trH8pot08gQqnpEVV93j9uA7cAs4Eq8Ny/c96vcMR2q+hLQ3a8qcV/F7lNeGXB47F/BxEnhvZsHvKOqDe7nZ4FPjPHlT7gR3L8/qWr0d2orUCAi+SIyAyhT1VfVexe8P3pOpkrVvXPPvaaqR8b6mi1oZCARmYP3iWQdMC36i+S+1yQ6V1V7gBuALXjBYglwzxhebloZzb0D6oBFIjJHRHLw/tBnj93Vpp8R3L9PAH9S1QDem+XBmOcOurKsMMp7N24saGQYESkBHgX+XlVbR3B+Ll7QOAeYCWwGbkrpRaap0d47VW3Cu3cPAX8E9gKhVF5jOhvu/RORM4DbgM9Hi+IclhXDO1Nw78aNBY0M4t7wHwV+rqq/csXHXNqP+14/RDXLAFR1l2sieBh4zxhdctpI0b1DVX+rqueq6vl4a6DtHKtrTifDvX8iUgv8GrhWVXe54oNAbUy1tWR40yik7N6NGwsaGcL1P9wDbFfV78Y89Tiw2j1eDTw2RFWHgCUiEl247IN47awZK4X3DhGpcd/LgS8AP0nt1aaf4d4/EZkK/A64SVVfjh7smmHaROQ8V+e1JHHPJ7NU3btxNdGjB+wrNV94o3kUrznpDfd1Bd6InufwPvE+B1TEnLMXaATa8T7lLXHlf4MXKDbjrU1TOdGvbxLdu18A29zXqol+bel4/4CvAh0xx74B1LjnVgBvAbuAH+ImIGfqV4rv3bfc72LEff/aWFyzzQg3xhiTNGueMsYYkzQLGsYYY5JmQcMYY0zSLGgYY4xJmgUNY4wxSbOgYcw4E5G/EZFrh3H8HBF5ayyvyZhk5Uz0BRiTTUQkR1X/c6Kvw5iRsqBhzDC5heWexltY7hy85ayvBRYD3wVKgOPAX6nqERF5EXgFuAB4XERK8Zav/raILAP+EyjCm9D216raJCLLgXuBTuCl8Xt1xiRmzVPGjMzpwN2qehbQCtwI/AC4WlWjb/i3xhw/VVXfp6rf6VfP/cA/u3q2ADe78p8Cf6feGlbGpA3LNIwZmQN6cu2fnwH/grcpzlq32ZwfiN3b4KH+FYjIFLxg8t+uaA3wyzjlDwAfSv1LMGb4LGgYMzL9199pA7YmyAw6hlG3xKnfmLRgzVPGjMwpIhINEJ8CXgOqo2Uikuv2PBiUqrYATSLyXlf0GeC/VbUZaBGRC135p1N/+caMjGUaxr/OKGQAAAB+SURBVIzMdmC1iPwIbyXSHwDPAHe45qUc4Ht4W3Imshr4TxEpAnYDn3XlnwXuFZFOV68xacFWuTVmmNzoqSdUdekEX4ox486ap4wxxiTNMg1jjDFJs0zDGGNM0ixoGGOMSZoFDWOMMUmzoGGMMSZpFjSMMcYkzYKGMcaYpP3/HFIeSbjSZ3AAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }