{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# Sujet 1 : Concentration de CO2 dans l'atmosphère depuis 1958" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Traitement des données : pre-processing" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Extraction des données depuis l'url et création d'une copie locale :" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "data_url = 'https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "# read data from url (and delete header)\n", "raw_data = pd.read_csv(data_url, skiprows=44, names=['date','CO2'])\n", "# path for local copy\n", "file = '/home/jovyan/work/module3/exo3/weekly_in_situ_co2_mlo.csv'\n", "# check existing local copy\n", "try:\n", " local_data = pd.read_csv(file)\n", "# if no local copy, create it\n", "except FileNotFoundError:\n", " raw_data.to_csv('weekly_in_situ_co2_mlo.csv')\n", "# read local copy\n", "raw_data = pd.read_csv('weekly_in_situ_co2_mlo.csv')" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Vérification et suppression de données manquantes :" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "raw_data[raw_data.isnull().any(axis=1)]\n", "data = raw_data.dropna().copy()" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Conversion des semaines :" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "import dateutil.parser\n", "data['period'] = [dateutil.parser.parse(strdate) for strdate in data['date']]" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hideOutput": true, "hidePrompt": false }, "source": [ "Finalement, on obtient les émissions de CO2 en fonction du temps. On observe une superposition de deux effets : une évolution périodique et une évolution systématique." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Unnamed: 0 date CO2\n", "period \n", "1958-03-29 0 1958-03-29 316.19\n", "1958-04-05 1 1958-04-05 317.31\n", "1958-04-12 2 1958-04-12 317.69\n", "1958-04-19 3 1958-04-19 317.58\n", "1958-04-26 4 1958-04-26 316.48\n", "1958-05-03 5 1958-05-03 316.95\n", "1958-05-17 6 1958-05-17 317.56\n", "1958-05-24 7 1958-05-24 317.99\n", "1958-07-05 8 1958-07-05 315.85\n", "1958-07-12 9 1958-07-12 315.85\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd81dX5wPHPk71DFmEkkLC3IAFBURygOFpbtS391b3rav3pr4rVDkdLbWvtsmqHpdZZ6yooFgfiBMOQvWcY2SF7n98f53u/914IEiTj3pvn/Xrx4juv52vCk5Pzfc5zxBiDUkqp0BXW3Q1QSinVuTTQK6VUiNNAr5RSIU4DvVJKhTgN9EopFeI00CulVIjTQK+UUiFOA71SSoU4DfRKKRXiNNArpVSIi2jvhSISDuQDe40xF4jIL4GvAI3ANuAqY0yFc+0c4BqgBbjNGPPWF312enq6ycnJ+XJPoJRSPdTy5ctLjDEZR7uu3YEe+B6wAUhy9hcBc4wxzSLyC2AOcJeIjAJmA6OBfsDbIjLMGNNypA/OyckhPz//GJqilFJKRHa157p2Dd2ISBZwPvAXzzFjzH+NMc3O7qdAlrN9IfC8MabBGLMD2ApMbm/DlVJKdaz2jtE/CvwAaD3C+auBN53t/sAen3MFzjGllFLd4KiBXkQuAIqMMcuPcP6HQDPwjOdQG5cdVgtZRK4XkXwRyS8uLj6GJiullDoW7enRnwJ8VUR2As8DZ4rIPwFE5ArgAuA7xlvYvgDI9rk/C9h36IcaY540xuQZY/IyMo76LkEppdSXdNRAb4yZY4zJMsbkYF+yvmuMuVREZgF3AV81xtT63PI6MFtEokUkFxgKLOuEtiullGqH48mj/wOQCCwSkVUi8jiAMWYd8CKwHlgI3PxFGTdKKdWTbNhfSVev7Hcs6ZUYYxYDi53tIV9w3UPAQ8fTMKWUCjXzPt7Jj19fx12zRvDd0wd32X9XZ8YqpVQX+fHr6wD4xcKNXfrf1UCvlFJdbPowm4Dy7sZCPt9T0en/PQ30SinVSUqrG9ocj69paKa11XD13/N5/P1tnd4ODfRKKdUJ9lXUMfHBt3liyXYAPtjinS9UUF7HgjX7AViz92Cnt0UDvVJKdYIN+ysBmPumHY+/7K82yzwmMozCqnr3+H0XjOr0tmigV0qpTrCjpKbN4xOyUzAG9lbUATBlUFqnt0UDvVJKdYK31h0AID4q3G+c/qYz/NMqk2KOKcv9S9FAr5RSHWxrURWf7SwHoKaxxe293zFzGDlp8X7XirRVHqxjaaBXSqkO8Lt3tvDR1hIAZjyyxO/cWueF6+j+SWSlxBITaUPvjdO7ZtJU5//OoJRSIW5bcTWPLNoMwM655x923pNZk5USh4gQFR5GfVMrg9LjD7u2M2iPXimljtMj/93sbre0Hp43//G2UkQgOyUOgOtPGwTAxJyULmmfBnqllDpGNz2znD8t9k50amj2rslUUt3gbn/vrKEArNxdQb/kWGKjwgH47ulDWPOTsxmckdAl7dVAr5RSx2BzYRVvrDngV6/m7Q2F7vauUm/V9u/PGOpuj+iT6G6HhwmJMZGd3FIvDfRKKfUFDi1hUFrd6G43tRy+uuq18z5zt0WEGSN7AxAd2X3hVgO9UkodQVFlPblz3uDVlXvdYz96ba27vau0llWHFCWrrG8G4NnrTgJwe+4HDtZ3dnOPSAO9UkodQWGlHW///gur3JesW4qq3fN7ymv52h8/AuCBC0f73XtSrp3xOjk3FYDZkwZ0enuPRAO9UkodQUS4dzLTgcrDe+QF5XXu9lkjM0mOtb333PR4wsPsvbMnZTPv6sl8Iy+rk1t7ZBrolVLqCJpbvOPzu0praD5kTP79Td6KlP16xTK2fzIAWSmx7nERYfqwjC6ZAXskGuiVUuoIPt1e6m7vKq3l1VX73P0hvRP8sm3A9uQBslPjuqaB7aSBXimljuADp6QBQGFlPVuKqgB4+aaTGegTzJ+6ahIAKXF26KZXbNelTraHBnqllDqCJZu9QzN1jS3sKqllUEY8Jw5IoV8v7/BMrlOo7PKTc5gwoBeXT83p6qZ+IQ30SinleHdjIbe/sApjjF/+fEpcJMXVDSxcd4DtxbbOfGZStM/5KADSE6J55aZT6JMc07UNPwoN9Eop5bj67/m8snIvZTWNNPm8iC2vbeLlFTaX/vThdmHv3oneYJ4cF1hDNYfS6pVKKYX/LNddZbXEOXVpDnXVKbkApMZHdUm7OoL26JVSPZIxhkKf3PiahmZ3e8P+Sn7/zlbADsfcfe4I99yQ3rYQ2bSh6QCcMqTzlwI8Xu0O9CISLiIrRWS+s58qIotEZIvzd4rPtXNEZKuIbBKRczqj4UopdTx++OpaTvrZO25xMs8sWIC1eytZsGY/AO/cMd0vL76fM/4eExnO/Fun8adLJ3Zhq7+cY+nRfw/Y4LN/N/COMWYo8I6zj4iMAmYDo4FZwGMi0vbvQEop1U2eXbobwC03fOe/PnfPPbdstzvLNTk2kv69/CdAeYzpn0xSF1ah/LLaFehFJAs4H/iLz+ELgXnO9jzgaz7HnzfGNBhjdgBbgckd01yllDp+vjNcZ47KBGz5YV8H65rcCVCDuqhufGdpb4/+UeAHgO/830xjzH4A5+/ezvH+wB6f6wqcY0op1S0amlu48qllLN9VBsC7G4vcc+U1jbS0GnfxkK+c0M89t6PEplImx0byu29P4LnrpnRhqzvOUQO9iFwAFBljlrfzM9sq6HDY2loicr2I5ItIfnFxcRu3KKVUx1i+s5zFm4q5f74dfa5p9L54Layq5+Nt3hmwvuPxD18yzt3+6gn9mDo48F+8tqU9PfpTgK+KyE7geeBMEfknUCgifQGcvz0/IguAbJ/7s4B9HMIY86QxJs8Yk5eRkXEcj6CUUl9swwE7LBPvpExmJNgXqhmJ0RRWNrBw7QEAXrxhKovWe+vXZCYF1sSnL+uogd4YM8cYk2WMycG+ZH3XGHMp8DpwhXPZFcBrzvbrwGwRiRaRXGAosKzDW66UUu302Hs2VfLjbbZI2SfbbQ9+2pB0Gptb2V1ml/+bMKAXQ3zG41PjgidX/oscTx79XGCmiGwBZjr7GGPWAS8C64GFwM3GmJbjbahSSn1ZpTXe5f9qG5v543s20ybNmfS0u6yWEX0SiQwP49ffPMG9dmTfRELBMQV6Y8xiY8wFznapMeYsY8xQ5+8yn+seMsYMNsYMN8a82dGNVkqpI6lvauHaeZ+5S/wt31Xud37pDjdUcc6YPoAtQbyt2K4c5TsjNiI8NOaUhsZTKKWUY/7q/by9oYgH568H/BfrBvjbhzsA+M8t08hxqk4CDEq3QzYiQnREGBdNCJ1kQa11o5QKKW86M1rjom14K69tAmzN+Kue+oydpTZlMislll4+xciuPCXH3d704Lld1NquoYFeKRXU6ptaEIHoCDvkkuTMaF21u9xd0Btg6iCbGrmnzK7zmnJIUbKBaYG1KlRH0qEbpVRQG3HfQmY+ssTdf2WlLSdcWd/MHiebpldcJDGR4SREH7lvmzcwtXMb2o20R6+UClqe6pOe9MhDvePMgPVMguqTHMPWomq/a247aygNzS1ERYRuv1cDvVIqaGwtqqakuoEpzjDMqQ+/554rKK91Jz55vLvRTn568GtjAShz0ix/dMEo95r/nTmsU9scCDTQK6WCQmurYcYj7wOwc+75ADQ2e8tv/fKtTby2yjsJP0zgo612gtRQp4a8J9CfkJ3cJW0OFKH7u4pSKqRU1Xvr09Q3HT4Hc0w/b/D+5zUnkZXifbka74zN//u7Uzl1aDonDkg57P5Qpj16pVRQqKjzzm4tKK8lzKcufHiY+K0WNX5AL3fcfmx/7w+AiQNTefqak7qgtYFFe/RKqaBw32vr3O3dZbWc+ev33f2UuEg2OoXLbjtziF92TVpCaNSrOR4a6JVSAWn9vkpufnYFxhiaWlpZstlbztyTCw8w/9Zp9IqLYu2+gwBMcUoJ33LGEADOGtGbnk6HbpRSAem8330AwAVj+3LykHS/c3vKahmemUhBeS1j+ieTlRLrpk1mO2PzN0wfxLisZM4amdm1DQ9A2qNXSgWcJp+l/pZsKfHb75MUw+aiajYVVlHTaF/KemrWRIYL/Zz1XRNjIjl7dB/Cw9paC6ln0UCvlOp2e8pq+ftHOzDGlizYW+4dmokKF780ypF9E8nfaStQeoZlcpzyBU0tRgN7GzTQK6W63WOLt/GT/6xnxW5bUvgvH253z837ZBe/f3cLAA9+bQzZqXHUOj35q6flAnDu2L4AnDe2T1c2O2joGL1Sqts9t2w3ABf/6RN2zj2fcJFDzu8BYOaoTL8c+v7OME1mUgwr7pv5hbVsejLt0SulutTB2iaW7Shzh2naMu+TXQCcP7YvgzLiOWVIGr3iIslMivGbCOVbcTI1Piqk69UcD/3xp5TqUic+uIiWVsP3Zwzl+zOG+b1oHZQez0GnfjxASnwk5TWNbC+ucY8NSPUGdxEdj28P/fGnlOpSnhrxj75tx92vfGqZe257SQ1r9tp8+KyUWCLDw9yFQ2aMtC9eR/ZNZNboPjxzbc+b4fplaaBXSnWqN9bsp6S64YjnPYXHPNY5E5+eu24KbzirRQFcON4u7SciPH7ZRE45JLdeHZkGeqVUp1m/r5KbnlnBnf/63D3WJynG3fYdp790ygAAPi+oIDxM6JMcw3WnDnLPD85I6IIWhyYN9EqpTvP0pzsBWLzJli84cLCeAz7Fx4qrvD39M52c+Hc3FjGiTyKR4WFc46RPAgzK8C7krY6NBnqlVKeJDLchxhOkb3l2BQDJzrqunqGZv181iYwE29Ovb2p1ywj7vmyNiQzvmkaHIA30SqlOU1lnX6QWV9qee39nSb/rT7NDMv9aXgBAXk4q2amx7n0TB3rrxcdqgD9uGuiVUh2ipdWQc/cCbnZ67QCvOis+VTU009TS6q4ANX1YBgDr9lUSJpAQHUGvOG85Yd+FQT695yxW3DezKx4hZGmgV0p1iEse/xiABavtcMw7Gwr9zu8s8ebCpydEu9u+1SXf/t/TeOBrYxjgMxEqOTaS1HitKX88jhroRSRGRJaJyOcisk5EfuocHy8in4rIKhHJF5HJPvfMEZGtIrJJRM7pzAdQSnWP2sZmv2JjK3dXuNtV9U3c/sIqwFumYOZvlrjnfQP36H5J7vaQ3olcNmVgp7W5p2pPj74BONMYcwIwHpglIlOAh4GfGmPGAz9y9hGRUcBsYDQwC3hMRHSQTakQ0tpqGPWjtxh275vusVmjvQXFthXX4Emc/PPleX73bnpwll+pAt+ZrqpzHDXQG6va2Y10/hjnj+dHcTLgWX79QuB5Y0yDMWYHsBWYjFIqZHxeUOG339zSypq9B/FUCN5WVE1rq+GSiVmM6pfk5s6nJ0QRHWH7fbMnZQMwOTe16xreQ7VrjF5EwkVkFVAELDLGLAW+D/xSRPYAvwLmOJf3B/b43F7gHDv0M693hnzyi4uLDz2tlApgm5z1WQH2VdRRXN3A3oo67po1gvAw4dVVe6lpbHEX5s5MtoE+xeeF69yLx7Fz7vl+RcpU52hXoDfGtDhDNFnAZBEZA3wXuN0Ykw3cDvzVubytKkOHlakzxjxpjMkzxuRlZGR8udYrpbpEaXUDW4u8wf3ul9e428VVDZTX2DTKrJQ4slNi+XBrCQCTcmxvvckZyz9pkPbeu8MxZd0YYyqAxdix9yuAl51T/8I7PFMAZPvcloV3WEcpFYQmPvg2Mx5Z4lcL3qOwsp71+ysByE2PZ0BaPJ7KBv162Z6853xCdGTXNFj5aU/WTYaI9HK2Y4EZwEZs8J7uXHYmsMXZfh2YLSLRIpILDAWWoZQKeq+s3AtATKQ3dBRWNfDexiL6JMUwok8ifZ3x+LiocHcG7ILbpjE8M5E7zx7W9Y1W7apH3xeY52TOhAEvGmPmi0gF8FsRiQDqgesBjDHrRORFYD3QDNxsjDm8G6CUCgo1Dc3u9pyX1zA5N5X6Jm9a5X2vriUtPoppQ9MJc4qRAdQ2trglDEb3S+at20/r2oYr11EDvTFmNTChjeMfAhOPcM9DwEPH3TqlVLdbtcc/w+ZjZ/x9WGYCmwttQl5pTaP74tUT6FXg0JmxSik/B2ub+Ff+HreE8Hf+stTv/H2vrQPgH1efxKlDvTXh1++z4/BRTiGz850Fu1X306UElVJ+Trj/v4B9gfrjr4x2j584oBeFlTaNEiAzKZrBGQl8sMX28K91asd7MmuuPCWnC1utvoj26JVSbXrqo51U1XvXb52Uk+oGebAlhH1LGQzvkwjYFMudc893UytV99NAr1QP1tJqeHt9obuOq++KTwC/e8cm003KSXFLDPvaf9C7iEh4mC7UHag00CvVgz28cCPX/iOfB+avB6DIZ8WniDChzJkI9cy1U+iX7A30P79oLGALm6nAp4FeqR7s/c22/MiyHWUAnPSzdwBvaeCK2kYGZ8QTFRFGv17eQH/WSLvs34NfGwPA45ee2JXNVsdIA71SPVRrq2GjU7NmU2EVdY3e6S6XThlAaU0jW4ur3bF336Gb3ok2hTIxJpKdc89n1hjNsAlkGuiV6iH+8/k+cu5ewA9fsXVqFjjrtYItNlZSbYdtwgQyk2JoaTXsKq11i44lx0by29njee/O07u87er4aKBXKgQ9tngrOXcv8MuSufW5lQA8s3S3335MZBilNQ3uxKiXvnsyGT4rQHnWfQW4cHx/ctPjO739qmNpoFcqBD28cBMAp8x9t83zvtk1d549HGPggy3FhIld8al3knd262hnxqsKXjphSqkQ19DcQk2Df7mp4mpvdk1Omu2hf7ytlAGpcURHhJPmkx+fpuu1Bj3t0SsVAv6Vv4efv7nB3R+c4R1e+euHOzjxgUUAnDPaLsT9+3e2uucznd57QXmdOx7vm2Fzjs8SgSo4aaBXKsi1tBr+76XVPPH+dowxzF+9j23FNe75+CjvL+4zRtpA//SnuwB46capDEjzrvCUlmB771ERYbx4w1TuPX+kToQKARrolQpyT320w93ed7CexZv8l+b0DdQXju/v7qfERZKXk+rWjAfo5bM9OTfVrV+jgpsGeqWC3Kur9rrby3eVExtpF98e5AzfLFx7AIA7Zg5zJj7ZoZpxWb0O+6zTh/fu7OaqbqCBXqkgU1HbyAGfGjNr91a624+9t5VlO8romxzDy989GcBdv/VMZzbrwFT7A8A3TTIlzvbkB2ckdG7jVbfQrBulgogxhvH32xerO+eef9j5jMRoPthSwu0zhtErzpstEyYwpLcN4mHO0M1An7H5j+8+i30H6/zG61Xo0B69UgHMGOOX8+6bFtnY3Epzi3dJv2lD0lm63dasGZppg/qZI2wvvl+vWKIj7JCOZ8S+j0+ufGxUuPbmQ5gGeqUC2G8WbSZ3zhs0NNs8eN8hm61F1by9odDdT42PotEJ/J7ceM8MV9/e+58uPZGHLx7HrDGaNtlTaKBXKoD97l2b7/6T1+3yff5j8wf5aGspAH++PI+EGO9IbE66Dewv5O8BcK8DiIuK4JuTst2Fu1Xo00CvVIBoamll0fpCd6hmdYF3Ue7Kelv3/fqnl7vHtpfUsLO0hrH9k5k5KpNnnRo2YIO5r7yBKZ3ZdBXgNNArFSCG/vBNrvtHPnPf3AjAV//wkXuusbnVb6x+UEY824ur+WBLibuc32VTBgLQO9FbkOye80YA8MINUzu9/SpwaaBXKgD4BvGXV+71O3fy4DT2lte5aZS9E+2i3Ov22f0sp078tafmAnDFyTnuvdefNpidc8/X2a09nAZ6pbqBMcZvGb6GZm/2zNRBaX7XDsqIZ//BOm5+dgUAj3xzPIMy4t0SxBMG2GGZgWnxfHjXGdx0+uDObr4KMhroleoGTyzZzqgfvcUmZ4WnBau9i4BsLqyiqr4JEbjhtEHsKKmhvLaJ3WW1AEwbmk5mojc1MjLc21vPSonTl6zqMEcN9CISIyLLRORzEVknIj/1OXeriGxyjj/sc3yOiGx1zp3TWY1XKlh5xuEv++tSwFaY9NheXEP+rnKMgVOHZrDfJ9PmgnF2yT5P0Adbk0apL9KeHn0DcKYx5gRgPDBLRKaIyBnAhcA4Y8xo4FcAIjIKmA2MBmYBj4lIeKe0Xqkg8crKAoqq6g873uqMza/f7y1j0NjSynpn/D03I56ffX2se86TD3/q0HT3WN9kb0lhpdpy1EBvrGpnN9L5Y4DvAnONMQ3OdUXONRcCzxtjGowxO4CtwOQOb7lSAWBfRR17fHrXYNdm9ZQBBiipbuD2Fz7n8r8uO+z+6IhwvxexP7/IBvWPtpaQEB1Bn6QYhvb2zljNTbfbwzITO/Q5VGhr1xi9iISLyCqgCFhkjFkKDANOFZGlIvK+iExyLu8P7PG5vcA5duhnXi8i+SKSX1xcfOhppYLCyXPf5dSH33P3C8prufW5ldz36lr32K/essv6bXTG4ytqG91zxdUNlNV49/s7C358vK2Usf2TCQ8TN30SvIXIMn3KFyh1NO0qamaMaQHGi0gv4BURGePcmwJMASYBL4rIILylNPw+oo3PfBJ4EiAvL++w80oFOt+euMffP9rpbre2GsLCxO9FK8CPnVmuYPPj//mpnej0u29P8Avqw5x6Nb4vV08cYEsLR0WE8dRVkxiQqkXI1NEdU/VKY0yFiCzGjr0XAC8b+92+TERagXTneLbPbVnAvo5prlKB42Bdk7vtCep9kmP8zqfER1HV4E2jbGpp5bVV9p/D4Ix4thXX8MEW+xvttCHp1DV513bN8SkjfPe5IxD8g/4ZWjtetVN7sm4ynJ48IhILzAA2Aq8CZzrHhwFRQAnwOjBbRKJFJBcYChw+OKlUkLv/P+vd7R2ldum+Dfur3GOlNQ20tvr3+lft8ZY1+P23TwQgf1c52amxpMZHkepTWthTmAzgxumDuWG65serL6c9Pfq+wDwncyYMeNEYM19EooC/ichaoBG4wundrxORF4H1QDNwszP0o1RQe27Zbj7dXspvZ08A/GewbthfycDUOP69osA9VlLdSJjYHwADUuPYXVbL9mKb1/C/M4eRnerNlvGUCI6N8iaoDemtZYNVxzhqoDfGrAYmtHG8Ebj0CPc8BDx03K1TKoDMeXkNAHeePZzsQ8bGd5XWsrW42u9YaXUjs5/8FIDrTxvEva+u9aZNpseTGONdn3WITy34W84YwsG6psP+G0p9WTozVqk2LN9Vxms+a7E2+pQo2F5S43dtQnQEJdUNvO8syp3mvFAtrfEuEjJjZCZgh2nAfxk/gME+vfc7zxnOA18b0xGPoRSggV6pNl38p0/43vOr+HCLXW912L1vuufuePFzv2szEqMprmpwa7+/5KzVunRHGbGR4Vx9Si59kmNIi49yC5EdGuh1mEZ1Jg30Sn2BR9/efNixhuYW9wfA9acNIj0hipLqBpJjI8kbmOIG8QWr91PX1EKuswhIf6fKZGZSNPHRdtT01984gYFpcYzsm9QVj6N6KA30qsfbsL+SnLsX8Na6AwB+67B6hlp8VdU3c6lTo+bC8f3omxzLnrI6Nh2oYkz/5MOu9wzLeCZDhfmkSF48MYv3/+8MEqKPKdNZqWOigV71eOf+9gPAmy7pW0QMoK6xhchw4dppuYfdOzwzkcykaPZW1FHb2MLwPrY0wQ2nDXKv8ZQrqGm0yWfJsZGHfY5SnUkDverx+jmTnNIS7EtUT0kDz/HVBRU0tRimDErjwvH93PuG9k4gIjyMqnrvhChPUN9T7q1/43k5u63IZuU85FOkTKmuoIFe9WjLd5Wzz+nBF1bWU1LtzZSZPjwDgLc3FAIwLiuZ051jANc5vfbBPqmRE521WU8baq9LjI5wZ7M+cdlEbjhtkFvGQKmuooFe9Sj1TS3kPbiIjQds9sv7m4rcc0VVDX6VKM8aYVMi39lYRO/EaHonxZCe4F2P1VNnZtaYPof9d4Y5Qzg/v9jbex/TP5k5543UhUFUl9NAr3qU/3y+j5LqRmY9asflf/fuVvecMfAHZ/+pKye5FSK3F9dQVGV7+ik+JQr6OOcznMW4Tx7sXQLwxAEp5N87gwvGeYd6lOou+qpf9ShvrLGVJA/NcvnrFXlcMy+fxZvtpKdxWcm0+NSpmTLIruKU5DObtZ+TRRMTGc6i208jOc7/Jatv71+p7qQ9ehWyGptbybl7gd8yfe85s1cbnRTKrJRYLhzfz60U2dJqGNo7gbSEaNJ8ArWnoFjvJHvsvLF9iIrw/vMZmplI70StEa8Ck/boVcjwVIoMC7Nj4AudvPgH5q/nmkNSIxubWymqqmf/wXqyU+L8KkV6Xq6Gh3nH0j3j8TGR4eyce37nPYRSnUADvQoZg+55A8ANxLc9t9I9V9vYzK5S/yX/rvzbZ7S0GrJTY/2Cum+deY/ctPjDjikVLDTQq5DQ1iIgvvZV1POeT4YNeBfkHp+d4nf8jBHeFMp37phOQ1PrYZ+nVDDRMXoVlDYdqGLFbm95ggfmexcB8eTCT85NdY/tP1jHwwvt2q3/uWUaMZHeb33Pkn2eEgWXT81xzw3OSGBUP61Do4Kb9uhVUDrn0SWAd5jGtz7NnvI60hOiWbajjMToCKoamtnpM2wzvE8io/sls3xXOZNyUty89rduP40DB+uJiQxHqVCiPXoVdHwX5fYs5FFa00i8szrTtuJqVhXYJfuqGpqJigjjvY122OaiCf2JighzX656UiTBplxquWAVijTQq4DX0mr8ShP4Fh1b7QT0D7aUMH14BlHhYWwrruaixz4G7PBNRkI07zqB/hxnFqsnj95Tm0apUKaBXgW8H722lrwH32aD8/LUU74A7GpPy51Swm+sOUBmcjT7K7w/CP55zUlE+4zHnzjAvnj11Izvm6y57yr06Ri9Cnivr9oHwJLNxYzsm8SmA7YKZFp8FAXltVTUNgLwf+cM54MtxXzu9PIBoiLC2F7sXfov3alQecXJOfROiua8MX276jGU6jbao1cBZfmucq6dl0+T83LVGEN1oy0DvHK3DeC/WLgRsC9Vl+0o46mPdiICl04hzlbpAAAdy0lEQVQZSGZSjJsv/9DX7bqr358x1P18z4vX8DDhgnH9NG1S9Qga6FVAufhPH/P2hkKe/8yuv/rBlhI87173HaxzUypjI8MpqmqgpLqRD7eWEB8VQXJsJG+vL3Q/6/ThvQHvwtxK9VQa6FW3McawYne5XxaNx1trbfmCCp+JUKsLDrovWX8wazizRnvLA3uyZe69YJR7zLNwyJj+yVwyMYvXbj6l4x9CqSCggV51m9lPfspFj33Mj19fB+BXC95Tst23jAFATppNi7xiag6De3vLEnzPGZ45bZh3Vqtv3fdffeMETsjWBT9Uz6SBXnWZhuYWGpu9E5uW7igD4MMtJQC8unIvAGECy5xzHuOy7KLbO0trOXlwGmFh4lcy2JM9k+KUCo7VSU9KuY4a6EUkRkSWicjnIrJORH56yPk7RcSISLrPsTkislVENonIOZ3RcBVcquqbGH7vQobd+6Z7zDPByePXizYDcO7YvjQ0t7o9/F5xkYz36Y17FgRJivUN9HbiU1xUBHPOHcFrt+gwjVIe7enRNwBnGmNOAMYDs0RkCoCIZAMzgd2ei0VkFDAbGA3MAh4TEe1e9XBjf/Jfv/2NByqpaWwB7EtW30U+ZjovTxc64/QpcVF89/TB7vlRfW3tmQifjJlkn6B/w/TBOhFKKR9HDfTGqnZ2I50/nn+VvwF+4LMPcCHwvDGmwRizA9gKTO64Jqtg0Npq3Prwh6qobeTaefnufn1TK7ud3vvknFR3EZD/rLb58y/dOJW4SO+UjyFOETJPL17LFij1xdo1YcrpkS8HhgB/NMYsFZGvAnuNMZ8fsthxf+BTn/0C55jqIYwxh9WG97WtuNotaZASF0l5bRM/eOlzAC6bOtBdi3V1wUFiI8NJS4imvqnFvX+CM4zTJzmGz390NkmxOu9PqS/SrpexxpgWY8x4IAuYLCLjgB8CP2rj8rZmoBzWtROR60UkX0Tyi4uLj6XNKsC95azsBLgvXxOiI5g6yC6eXVjZ4C6o/ZcrJgHQ7PT+x/RPJiXeOwyT5sxkjYkM54SsZKYPy6CXzwLdyXGRHNLRUEod4pi6QsaYChFZjB2eyQU8vfksYIWITMb24LN9bssC9rXxWU8CTwLk5eW1/Tu+Cgq7SmtYtL6Qa6blIiLc+M8V7rmlO0ppaGqluqGZVidffm95HXvK6jh1aLpbC37l7griosIZmBqHb9z2XZf1tVumdc0DKRVi2pN1kyEivZztWGAGsNIY09sYk2OMycEG9xONMQeA14HZIhItIrnAUGBZpz2B6lYHa5uY/svFPLhgA3vK6g47X1zVwLX/yPc79ucPtgNwycQst4ok2AW2w8LEr4c+tn9yJ7VcqZ6jPUM3fYH3RGQ18BmwyBgz/0gXG2PWAS8C64GFwM3GmJYjXa+C20srCtztu/69+rDzBeXe4P+Pa+w7+aIqOz4/ITvFL6gPzzz8perMUVq+QKnj1Z6sm9XGmAnGmHHGmDHGmPvbuCbHGFPis/+QMWawMWa4MebNQ69Xweu+V9eSc/cCNx3y38u9gT4nPc6tD+/xiJMbn54QRXREON/Ks6N6afFRZKfarBlPr354H++SfZ74f8G4fp3zIEr1IDozVh2Tpz/dBcCqPTagexbYtuV/hSWb7Yv1q07J8bvve2fZEgXpifZF6uj+yW5vfnCGTacc6pMm+c7/Tucvl+d1zkMo1cNooFdH1NzSytvrC92iY9UNze65pTtK2XSgyt3vnRhDYWU9jS322nvOG8n/nDTAPT84wwbx1QUHASir8a4Yde5YWxN+eB/vJKdBGQnM0GEbpTqEBnp1RD9+fR3X/iOfRU7p350l3gU8Nh+oYmepd39Aahw7S2tYtaeC/r1iiQwP86tF45kEdfJgWynj7lkj3XPXnzqIFffNdEsbKKU6lgZ65SquavArRfDMUlvZ4qf/WQ/gBvbk2EgKyuv4qVN18r4LRjG4dzzbi2v4eGsJZ420deATY7wZNZ5JUDecNojXbzmFaUPd0kiEhQmp8d7ceKVUx9JArwB4Y81+Jj30Nt9/YRVgK016xDhrrnpWbpo2JJ2C8jr2OYt0XzIxy60t09xqmDjQrsu6fp93bVfPSk5hYcK4LC0XrFRX0kDfAx2sbSLn7gV+GTI3PWMnOS3eVATA/U4vHiAtPprWVsMv39oEwNDMBAqr6hmWmcBpwzJIjo0kKyXWvd5TdOycMd6FQZRS3UcDfQ/w0/+s455X1rj7P359LQBXPvXZYdemOUMonmEbgO0l1Ww4YHvnGYnR5KTFYwxsLqxmkDP23tZ4/KzRffj25Gw+mXNmBz+RUupYaKAPcVX1TTz10U6eXbrbzZ55dZWtSFFW0wjgNy6/3xmO8bhx+mBKqhv5x8c2rfKBC8f41Yb39N4TfQJ9ZLj9toqKCOPnF41zq0wqpbqHBvoQ5ztO7sl599XY3Mp9r6119xuaW9laZNMmvz6hvxvUCyrs+PzMUZmk+BQVG+us/JSZFM2g9HjuPndExz+EUuq4aH3XEPe3j3a42+v2VtK/l3/vesGafTzrM0wDcM/LNvBPykmll7M034pdFQzOiCc8TPyyaTy14EWEd+88vTMeQSl1nLRHH2LmfbyTN9bsd/drGrzZMwcq63ls8TYAejtlgh+cv8Gdmbro9tMA3FrxM0b1dsfs65pa3KAe5rOyk2eYRikVuPRfaQg5cLCeH7++zs2gaW01rNt3kG9MzKJPUgy7SmuJdsr+LvnBGQBMHZzGtuIa+iXHuIF8e0kNSTERZCREuzNawX8lp39/dyrPXHtSVz2aUuo46NBNEHvi/W0s3VHG3660i3d4luMDqKxvoqiynvLaJiblprK3oo51+w7y7xUFZCZFExMZTv9ese66rJfkZftVkqysb0ZE/GrDby/2zoSdODC1k59OKdVRtEcfJF5btZcH56/3O/bzNzfy7sYiXvxsDwCFld6MmcWbivlkWylgx9oHpsWz0alNU1hph2ayUmLdlZ2uOjnH77Mn5x4eyK+ZltsxD6OU6lIa6ANQfVOL33J8ra2G7z2/ir98uIMPt5Qcdv0PnDrw97zszZW/7bmVvL+5hN6J0eSkxZES501/nDbElh/om+ytLZNySAmCa32C+ndOGkD/XrHk5WgvXqlgpIE+AN30zApueHo5r6y0td59i4fd+pwdf/9oqzfgzxjZm4O1TVT5VJcEWLv3ICcPTkNE2FvhXQDkicsmApDgZM+cOaK3e+7vV00iJjKMqYPT3GMPfX0sH92tk56UClYa6APQuxttGYLbX/gcgDfXenv3eTmpGGP4zl+Wusfe3lDklyOfNzCFxJgIDlTWM7qfzXO/dMpA93y8s9DHzhI7pl9e2+ieO314bzY+cK7fBCilVHDTQB8AGppb3FmrbXnfWcwjIzGaoqoGv+X5PF74zObC//f20zghuxdV9bZ376nxnpNmUyjvu2CUe8+js8dz/ri+PHfdlI55EKVUQNJA38VaW/0DelFlPcPvXcj5v/sQsNkyvhqaW1i2owywQzR7ymrd1Z1+cfFYN+Xx1VX7GNo7gWGZidQ2eodwTnQqSWYkRrPxgVl+L1TTE6L54/+cSExkeAc/pVIqkGig70KFlfUMuucNbnx6uXvsrEfeB7zlCbYWVQNwqlOv/YPN3rH43PR4ymoa3Re1F4zrx43TB7vnPT8k3t5Q5B7zrMcKaEBXqofSQN+JNh2oIn9nmbv/udMTX+iTUeMZYgGbbfPnJdsBOHu0LfG7xQn8MZFhnOJky8xfvZ8TsnsRHx1BZlK0e/9ds2ydmd9+a3xnPI5SKkhpoO8k9U0tnPPoEi55/BP3mGds3aeCADlpce723oo698XruP72Jeon220u/Bu3nUrvRG865OQcOyTju/yepwCZJw3ytjOHdNjzKKWCl86M7SRLnBeoYIdUEqIiuN+Z8NRq7A+C1QUH2VlaS1p8FKU1jX4LgaQ7tWiWbC4mOTaS3PR4Gppb3fODnNIEvoE+16kDHxURxrqfnuOWO1BK9WwaCdrh0BeobdlTVkt5jTdNcVux/0LaV8/zX+Rje3EN1zjHrnZekL68Yi8AD35tjN8EpzH9kxARvzF2Tw2a5Fjvdb4lDOKjI4jQgmNKKTTQH9WTS7Yx6J43/GakVtU38fM3N3Cw1r78PFjbxKkPv8eEBxaxz5mYlL+zjAhnjGZTYRWLNxX7fe6SLcXu+LwnE2blbtuj/8oJ/Yj1Ceqe9VgBFtw2jScvm8gkZ+gGYNk9Z7Hk/87osGdWSoWWowZ6EYkRkWUi8rmIrBORnzrHfykiG0VktYi8IiK9fO6ZIyJbRWSTiJzTmQ/Q0RqbW/1y2n/2xkYAv5IEjyzazBPvb+fpT3cCsLW42j13y7MrqGts4Z2NReSkx5MQHcHmA1WMcPLZ1/70HKIiwnhumc17//bkAcREhpOVEkt1QzOp8VEkx0b69c49QzIAo/slc/boPn7neyfFMMBnrF8ppXy1p0ffAJxpjDkBGA/MEpEpwCJgjDFmHLAZmAMgIqOA2cBoYBbwmIgEZF7f53sqaG7xjns/MH89w+59k79+6F2sY3Q/u1RebaOt615R28hL+bY0wQ5nZunDCze61yfGRLrrq34rL5thmQls2F/Fvoo6vja+HwnREQzJSGBXqb33jrOHAd4Xtdk+i2zPv3Ua54zOZPakAR374EqpHuWogd5Yni5rpPPHGGP+a4zx5AZ+CmQ52xcCzxtjGowxO4CtwOQObvcxK6qqZ5NTvRFg44FKLvzjR8z8zRL3mCfAP7hgA+Cp526DdlmNrfj4tw93uDVl/r3CBvylzoSmvskxNDS3sKbgIGCHYAakxrFsZxmV9c2cOjQD8NaYSY6NdBf28Fjns/TfmP7JPHFZHlH6UlUpdRzaFUFEJFxEVgFFwCJjzNJDLrkaeNPZ7g/s8TlX4BzrNq2thskPvcM5jy5xh2W2FNqfXTtKatxrfFU3NPsVAttXUU99UwtPfbST88b2cY+X+byAHdEnkYraJhatL0TErqO62Cf7ZmimfYHqWcHpYF2TOwTjWbKvuR0vfpVS6li0K9AbY1qMMeOxvfbJIjLGc05Efgg0A894DrX1EYceEJHrRSRfRPKLi4vbuKXjvLxyr7td7fTGb31upbdxxrByT7nfPQcO1jF/tV2Sb1JOCnvKa9lRUkNVQzPnje3LGcNt73zFLnvf45eeSHhYGBsPVPHh1hKMsVkwFbXekgZ9nLLA54/te1gbn7tuCukJ0SzWdVeVUh3smMYEjDEVwGLs2DsicgVwAfAd432DWQBk+9yWBexr47OeNMbkGWPyMjIyvkTTjyzn7gXk3L3A7b1/6kw6Alixu+Kw6wvK61i/3w7r3H2unV26q7SWXzhj77PG9KW2scX9nNz0eM4cmQnAi/n2l5cJA1LY7vNS9mSnzO//nOQdX0+Pt7nxpzs/JC6f6q0oObJvEvn3ziDH58WrUkp1hPZk3WR4MmpEJBaYAWwUkVnAXcBXjTG1Pre8DswWkWgRyQWGAss6vunWJ9tKmfvmxjarP3pWUvIUBQN4aMF6Gppb/K57a90B7nt1LQBnj7IB3DPufuXJOQxIjXOvi4oIY3hmIidk2Zmr/11fyBnDM8hMimF7iTd3fu5F4wAYn+UmI7mLap84IIW/XpHHPeeNPI4nV0qp9mlPj74v8J6IrAY+w47Rzwf+ACQCi0RklYg8DmCMWQe8CKwHFgI3G2Na2v7o49PY3Mq3//wpj7+/zc1aefrTXe753WW1GGP81lI9eXA6q5xe/Tcm2vfHnpevAL3i7MvRJ52aM9/MyyY71WbCfLq9jNy0eCLCw8hO8aYzejJoXr/lFO/nxNsx94ud/8YPfYK6iHDWyEwtMqaU6hJHLYFgjFkNTGjj+BELqRhjHgIeOr6mHV1FnfdF6JaiKrJT49yeOcAun5WZAAalx1Nc1cAba+zY+3nj+vKv5QXu+TtmDvOr9hgfFc7QzAS/0gPjnJ58Yoz3unsvGOmc8/bek5yFO8LDhJ1zz//yD6mUUscpqPP2fF90bjpQfdjwze6yWn7y+jrAjr1nJsVwoLKeN9ceID0hijOG93Z76wDnju1DVEQY355sx9UnDEghMjzML/hPGGBnpPqWFzh9mHcpPoBBGTrOrpQKHEFd1KzRp6f9i4UbGetUfJw5KpMN+yvZXVbr1nm/cfpgNu6vZMGa/TS1GH7yFbvSUmZiDHvK7LDPkN529uqi9YUAfj8EPPokRx92LMynHOWG+2cRFtQ/PpVSoSaoQ9KY/sl+wyLPO8vpjeyTSK+4SF5b5Z/sk5kUQ1OL7fWPc0r65u/yT6sEu+YqQHaqdxz+2etOYnBGPCcPTnePfX1Cf+50ZrZ6xEaFEx2hY+9KqcAR1IHe44nLJgK4ee+3zxyGT2UDfn7RWMC/pO+ovra0QbjTG//xV7xrqT749THMnpTNFVNz3GMnD07nnTtO93uB+ptvjeeWM4d27MMopVQHC4lA3y/Zf4hFRBifnezuX3SinZg70gnu4F1W7707Tue6U3O53CeopydEM/ficcRHB/XIllJKAaES6Ht5e+qeCU93nj3cPeYZSomKOHzS7oC0OH54/ii3Z6+UUqEmJAJ9WkI0V56cA+DWaU9LsC9NfZfqG9vfjss/fMm4rm2gUkp1I2lrRmlXy8vLM/n5+cf1GcYYSqobyUj0ZsUUVzUQHx1OXJQOwSilQo+ILDfG5B3tupCJgCLiF+SBw/aVUqonComhG6WUUkemgV4ppUKcBnqllApxGuiVUirEaaBXSqkQp4FeKaVCXEDk0YtIMbDrqBcGrnSgpLsbcZyC/RmCvf0Q/M+g7e96A40xR12LNSACfbATkfz2TFoIZMH+DMHefgj+Z9D2By4dulFKqRCngV4ppUKcBvqO8WR3N6ADBPszBHv7IfifQdsfoHSMXimlQpz26JVSKsRpoFdKqRCngV4p1W4iktPdbTgewd7+L0sD/VGIyGQR+ZmIBO3/q2B/hmBvPwT/M4jIiSLyNnC/iIR3d3uOVbC3/3gF5TddVxCRJBH5I/AHoMAY0yoiQbWwbLA/Q7C3H4L/GcT6IfAc8Lwx5nJjTIvnXPe27uiCvf0dJWRWmOoEPwSmAGcZYyoATPClKM0huJ8hFL4G9xDEz2CMMSISA3xojPkLgIhMANYYY5q7t3VH57Q/kiBtf0fR9EofInIJ0McY8wcRGQ48CnwPGIf9x5oPfGyM2d2NzfxCInIRcLox5jYRGQk8QhA9g4icCNQaYzY6X4PfArcRJO0HEJFcoNAYUysio7Bfg6B5BhH5NjACWGmMeVVEEoCXgHXAaUAhcBB4xRjzUve1tG0iMh2oN8YsdfbjgX8Da4HpBHj7O4MO3QAikiAi/wbuBEpFJMIYswn4FHgTuAnYBHwD+D8Ryeq+1rZNREaJyLPAfcAtItLPGLMBWEoQPIOI5IrIAuCPwDwRmel8DYKi/WBf9InIm8BfgKdFZJQxZj3wAfAWAf4MzjDHjcAPgJ3AL0TkOmNMNfaZJgB3GGMuAJYAs0RkWLc1+BAikigiLwOvADeISAqAMaYGeBoYTwC3v1MZY3rkH5zfZpztkcBjPvvhzt9xwBU+x0cBTwGndnf7fZ8B28v6CLjN2X8EuNjZjg3UZzjka/BH4CFnew7wQqC3v41n+APwE2f7FmwvchAQFcjPcMjzzAO+5WzPAJ4FznH2e/lcNxh4DejX3W32aVO08//9POBB4PpDzqcGcvs7809P7tHH+GyPA7IAROQm4F4ROQNoNMbM82RKGNs76wMEyq/csc7f64GzjTG/E5EoYCjQBGCMqTPGzPPcEGDPEAPuS7EanDYDycBaERnpab/nxVmAtR+8z+B537UOwBjzB2AicD0QH6hfAxG5XESmi0iqc2gD0N/5rfZt4HPgdBHJNs47BsdMwADVXdxkPz7t72WMacD+5vE2sBnI8/TYRUSMMWU+twZE+7tKjwv0IjJTRBYBDztjkQArgP0i8jdgKnb87i7gWhEJNzZT4kIReQfYB5R15xv7Q55htjGmxBhTIyIxxphGYA3wnTbu+2ogPINP+38pIt80tov1ITBURFYCs4Bw4B8icrbzj9QE6NfA8wzNQBkwQUROEJETsGPCWUCmz33d/jVwhmj6ish7wBXY75Xfi0gSsAfoDQxxLn8BO16f5tx7hoisAM4F7jbGVAZI+/8oIunGmHrn38AnQBHwTXBfyoaJyGnO91i3tb9bdPevFF35B/vNuxS4EDve+AxwBzb76NfAciDSufYy4DEgCRv8lwNfC8Bn+Cdwj3PO0/bpzvEMn/tOCoRnaKP9zwJ3OueGAy/7XHsf8Btn++RAaP8RnuE57Ph7otPm+dgfXHnO890SKM+Ad1hyGPBPZzvC+V6fB0QCf3O+/5Od838H7vd59q8GYPt/D/z7kGu/7jzXEOxvXoIdsum29nfb/7fubkAXfGOEAWHO9nfwH4u/BqgAemHHud8F/sc5Nw77Uic8wJ/haucZevscmwH8B4jo7rYfQ/szgQxsls1I59w0bLZHWIA/g+f7KMPZH+Rz7hbg2gBofwTwM+AX2I7AV4B5hzxfIXCC8/3zB2COc+5vwPkB3n4B9gPTD7nvHmArcAAY1d1fh+76E9JDNyJyFVAAPOAcWgN8W7zToCOAHcDDxpgl2HTKO0TkLuB57AtO081DBEd7hkhgG/Arzz3Gjq3mYXuQ3aqd7d/unK8CUoHbROR7wBPY8dZA/xpEYL8Gv3H2dzj3XY/9Qbaiq9raFifdcDmQgg16D2Dfh5whIpMBjDGtwP3AL5zvnyeBaSKy1LlvcTc0HWh3+w22/T/xue8b2LkY7wHjjH030jN190+azvoDJACvYnPIVwAjnOOPYn/V/gg7vDEWeAObPw8wCbgBmBpkz7DA5xkisS8Bc4Ko/W8C8dgMqFuxwwhTgvBrkOmc/z7wGTApAJ7hVOAyn/3HgO8CVwLLnWNh2BfE//J832B/0+0fZO1/Ecj1uS/gMpu65f9hdzegk79BBjh/z8WbrheO7TVOc/azsWOQMd3d3uN8hqeA6O5u73G0fx4Q1d3t7YDvo2hnP6672+3T/jhs6qFnfPs7wM+d7VXArc52HvBcd7c31NofCH9CeujGeGcePgrkisg5xta5OGiM+dA5dyNQize1L6AcwzPUAQE3pfsY2l8DtHRHG4/mGL+Pmp17aru+pW0zxtQaYxqcNoNNLSx2tq8CRorIfOxvKN06zNSWYG9/IOgxJRBE5Absi9bpzv5k7PhdJHC1MeZAd7avPYL9GYK9/RDczyC2aqPBDjHdaozZKiJDgBJgDLDDGLO3O9v4RYK9/d2pRwR6EQkzNhf+Jeyb+QbsS74txpht3du69gn2Zwj29kPwP4PzQjsKO6noFeyL4lJs0Az4fPJgb3936hHVK51/nHHYiSCnY3OCF3Zvq45NsD9DsLcfgv8ZjDFGbOXG7wC5wFPGmL92c7PaLdjb3516RKB33IQdv5tp7FTpYBTszxDs7Yfgf4YC7FDTI9r+nqNHDN2A99fu7m7H8Qj2Zwj29kNoPIPqeXpMoFdKqZ4qpNMrlVJKaaBXSqmQp4FeKaVCnAZ6pZQKcRrolWoHEblRRC4/hutzRGRtZ7ZJqfbqSXn0Sn0pYpfVe7y726HUl6WBXvUITu34hdiVoSZg1xS9HFsW+RFsOeIS4EpjzH4RWQx8DJwCvC4iiUC1MeZXIjIeeBxbVXEbtsZNuYhMxC7SUYtdYUqpgKBDN6onGQ48aYwZB1QCN2OXoLvEGOMJ0g/5XN/LGDPdGPPrQz7nH8BdzuesAX7sHH8KuM0YM7UzH0KpY6U9etWT7DHGfORs/xO7zNwYYJGzgFU4tliZxwuHfoCIJGN/ALzvHJoH/KuN409jF6BWqttpoFc9yaHTwKuAdV/QA685hs+WNj5fqYCgQzeqJxkgIp6g/m3gUyDDc0xEIkVk9Bd9gDHmIFAuIqc6hy4D3jfGVAAHRWSac/w7Hd98pb4c7dGrnmQDcIWIPAFswY7PvwX8zhl6icCuIrXuKJ9zBfC4U7J4O3aVI5y//yYitc7nKhUQtKiZ6hGcrJv5xpgx3dwUpbqcDt0opVSI0x69UkqFOO3RK6VUiNNAr5RSIU4DvVJKhTgN9EopFeI00CulVIjTQK+UUiHu/wFuOltqFqNGXgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data = data.set_index('period').sort_index()\n", "sorted_data['CO2'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Détermination des modèles d'évolution\n", "### Etude de l'évolution périodique\n", "Calcul des émissions de CO2 pour l'année 1960 :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "absc = []\n", "ordo = []\n", "for i in range(len(data.period)):\n", " if '1960' in data.date[i]:\n", " absc.append(data.period[i])\n", " ordo.append(data.CO2[i])\n", "mean = np.mean(ordo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'oscillation périodique suit une évolution sinusoïdale :" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VNX5x/HPIWyKuKOCgLihdQHRmAZB0RY1WgWLQrGotfwoLlSlahUrtbjVpdhWkSpUrWtBUKwsUghrI4IQLFhwpSiKosYVFQRCzu+PZ9IEmCyTuTN35s73/XrlNcm9d+59ziR55s5zzz3Hee8REZFoahR2ACIikjpK8iIiEaYkLyISYUryIiIRpiQvIhJhSvIiIhGmJC8iEmFK8iIiEaYkLyISYY3DOOjee+/tO3ToEMahRUSy1tKlSz/13rdK5DmhJPkOHTpQWloaxqFFRLKWc25Nos9RuUZEJMKU5EVEIkxJXkQkwpTkRUQiTEleRCTClORFRCJMSV5EJMKU5CUSnnsO3nkn7ChEMk8oN0OJVPryS5gyBT74AD78ENats8cPP4Tu3eGJJ+rex0cfwbnnwk9+AuPGpT5mkWyiJC+h+eorOOUUWLbMft5tN2jdGtq0gVat4Mkn4Y47oG3b2vfzj3+A9zB9OmzZAk2apD52kWyRdLnGOdfcObfYObfcObfSOXdzEIFJtH33HZxzDqxYAc8+C998Y2f1r78Os2dXncE/+2zd+3r2WcjLszeNkpLUxi2SbYKoyW8CfuC97wwcAxQ55woD2K9koWeegX33hdtvh/Ly+Nts3QoDBsC8efDoo9CnD7Rose02hx0GnTrBxIm1H+/zz2HuXLj8cmjWzEo/IlIl6STvzTexH5vEvnyy+5Xs89hjVhdv1AiGD4cePWD16m238R6GDIFJk+BPf7JkX5O+fWHBAli7tuZtJk+2N40LL4SePeH55+0YImIC6V3jnMtzzi0DPgGKvfcvB7FfyR6jR8PFF1uNfdUqeOopWLkSOneGRx6pSrwjRsCYMTBsGAwdWvs++/a1x9pKNpMmQfv2kJ8PZ59tPWxeey2IFolEhPc+sC9gd2AucFScdYOBUqC0ffv2XqLjzju9B+979fJ+48aq5WvWeH/KKbbunHO8v+MO+37gQO8rKuq3706dvO/WLf669eu9b9bM+6FD7ee1a23/d9yRXHtEMhVQ6hPMy4H2k/fefwnMA4rirBvrvc/33ue3apXQmPeSoby3ssywYXD++VaPb968an379jBrFowcCS+8ADfcAL162Zm8c/U7Rm0lm2nTYNMmq+kD7L+/ndFPnpx820SiIojeNa2cc7vHvt8J6Am8kex+JfNdc41dYP3FL6w3TLyui40a2XZLlsDNN8P48dA4gY67tZVsJk2yi7wnnFC17OyzYdEi+OSTxNoiElVBnMm3BuY6514FlmA1+akB7Fcy2Btv2IXTSy+1M/O8vNq379QJbroJdtopseNU9rKZMGHb5Rs32qeDH/9422P36mWfMKZNS+w4IlEVRO+aV733Xbz3nbz3R3nvbwkiMMlsM2fa4/XX17/00lD9+sFLL21bspkxA779tqpUU6lzZ2jXTiUbkUoau0YapLgYDjkE0jEfe7ySzaRJsMcecPLJ227rnJVsZs60s32RXKckLwnbvNluZDr11PQcr2PHbUs2mzfbmXrv3vGvA/TqBRs2wJw56YlPJJMpyUvCFi2yYQhOOy19x6xespkzx4Yw2L5UU+nkk2GXXXT3qwgoyUsDFBfbxc5TTknfMauXbCZNsiRe0yeJZs3g9NMtyVdUpC9GkUykJC8JKy6GggIbNTJdOna0i6rjxtmok2edtW2f/O316mXDFb/ySvpiFMlESvKSkC++sD7v6arHV9e3L7z8MpSV1VyqqXTmmdZHXyUbyXVK8pKQOXOsBJLOenylypJN8+Zwxhm1b7v33naTlLpSSq5TkpeEFBdDy5ZWrkm3jh0tcffpYzX5upx9tk1I8t57qY9NJFMpyUtCiovtgmtYsy/NnWtj0NdH7972+PDDKQtHJOMpyUu9/fe/Nj58GPX4Sk2b1v8N5rDDbHz7u+6y2EVykZJ8DnrgAfjZzxKfXKO42B7DTPKJuucee1O48kpNJiK5SUk+B40aBY8/bhNlJ6K42IYP7tgxNXGlwv77wy232GBm//hH2NGIpJ+SfI55/32bLLtJE7j2Wps8uz62brWeNaeemvoByYJ2xRVw9NFw1VU2qJlILlGSzzGVJZeHHoJPP7VJP+qjtNTeELKpVFOpcWP4y1/sDe6228KORiS9lORzzIwZ0KaNTXx9+eVWn1+6tO7nzZxpZ/A//GHqY0yF7t1tDtp77rGx8EVyhZJ8Dtm61abjO+00S9i33gqtWlmyr2uMl+JiOPZYu8koW911F7RoAUOG6CKs5A4l+Rzyyivw+edVd6vuvrvNv7p4sZVvavL117BwYXaWaqrbZx/4/e/t2sLTT4cdjUh6KMnnkMrZnHr2rFo2YAD06GGTcZeVxX/e/PlQXp79SR5g8GCb7Pvqq+3NSyTqlORzyIwZVnJp1apqmXMwerQlvGHD4j9v5kybm7Vbt/TEmUp5efCHP8C6dTB9etjRiKRe47ADkPRYv95KLr/+9Y7rjjwShg610k1hofVGWbfOhupdt87KGyedZOO0R8EJJ9ggZy+/bJORiERZ0kneOdcOeBzYD6gAxnrv7012vxKsefOs5FLT6JG/+x2MH2/ljEq77249cY47Lv6bQ7Zq2tTatHBh2JGIpF4QZ/LlwDXe+1eccy2Bpc65Yu/9awHsWwIyc6b1LOnaNf76XXax6fXeew9at7avnXZKb4zp1LWr3fm7aVN0PqGIxJN0Td57v857/0rs+6+B14H9k92vBGvmTJv7tLaE1q6d1d0POijaCR6sLLVpEyxfHnYkIqkV6IVX51wHoAvwcpD7leS88w68/XY4E31kqsJCe1TJRqIusCTvnNsFeBYY6r1fH2f9YOdcqXOutKymvnqSEpVdJ08/Pdw4Msn++0PbtrBoUdiRiKRWIEneOdcES/BPee8nxdvGez/We5/vvc9vVb0Pn6TczJnZN3pkOnTtqiQv0Zd0knfOOeBh4HXv/R+TD0mCVF4Os2dXDWUgVQoL4d134aOPwo5EJHWCOJPvBlwI/MA5tyz2dWYA+5UALF4MX32lenw8lXV5nc1LlCXdhdJ7/yKgc8QMNXMmNGqUvaNHptKxx9q4+osWwTnnhB2NSGpoWIOImzkTjj8e9twz7EgyT/Pm0KWLzuQl2pTkI+zLL+3WfZVqalZYCEuW2LWLmnz+ubpaSvZSko+wOXNsnHgl+ZoVFsKGDfCf/9S8zaBBNt7NhAnpi0skKEryETZ7tg1X8P3vhx1J5qoc5qGmks3q1TYB+M47w0UXwYIF6YtNJAhK8hFWUmJJrEmTsCPJXAccAPvuW3M55v77bXjihQvtXoPeve3uYZFsoSQfUV98AStWwIknhh1JZnPOSjbxzuS//hoefhjOOw86dbLx552DM86oeYIVkUyjJB9RCxbYPKZK8nXr2tXOzj/7bNvljz1m4/APHWo/H3wwTJkCH3xgZ/QbN6Y/VpFEKclHVEmJlWlUj69b5U1RL1cbVq+iAu67z16/6q9hYSE89ZSd+V94Yd0ToIuETUk+okpKbC7TqA8ZHIT8fLthrHpdfvp0O7uvPIuvrk8fuOceePZZGD48fXGKNISSfARt3AilpSrV1FeLFlZzr16Xv/deG6ny3HPjP2foULjgAvjjH60fvUimUpKPoJdfhi1blOQT0bWrvW5bt8LKlVBcDJdfXnPPJOfg2mtt4pEnnkhvrCKJUJKPoJISS0LduoUdSfYoLLTeNK+/brX45s23ne82ns6doaAAxoyxi9wimUhJPoJKSuCoo2CPPcKOJHtUXnydNg0ef9xKMXvvXffzLrnE3hh0k5RkKiX5iCkvtwuIKtUk5tBDbRC3W2+F776DK6+s3/N+8hPYdVc7mxfJREryEbNsGXzzjZJ8oipvivr2WxuW+eij6/e8Fi3srH/iRF2AlcykJB8xJSX2qCSfuMqSzVVXJfa8wYN1AVYyl5J8xJSUwIEHWvc/Scwll8CoUfCjHyX2vM6d7YYpXYCVTKQkHyHew4sv6iy+ofbZB375S7sxKlGDB+sCrGQmJfksUlZmZ5urV8df/+abto2SfPrpAqxkKiX5LHLllTB2rI1rvnXrjutVjw+PLsBKpgokyTvnHnHOfeKcWxHE/mRHU6bA+PFw0klWErjvvh23KSmxkkPHjumPT6ouwD7+eNiRiFQJ6kz+UaAooH3Jdr76Ci67zG5wKi6Gs86C3/wG3npr2+1KSqB7d+sOKOlXeQF27FhdgJXMEUiS997/C9CH1BQZNgzWrbMJLJo2tbpv8+bw859XlW3WroV331WpJmyVd8C++GLYkYgY1eQz3Pz58OCDNuphQYEta9PGyjUvvVRVtlE9PjP062cXYB96KOxIREzakrxzbrBzrtQ5V1qmudPqZeNG+MUvrN/7Lbdsu+6CC+Dss6vKNiUlNml3587hxCqmRQvo2xcmTdLMUZIZ0pbkvfdjvff53vv8Vq1apeuwWe2WW2ziirFjLXlU59y2ZZv58+GEE6Bx43BilSr9+9vQEi+8EHYkIirXZKx//xv+8AdL4D17xt+mdeuqss1rr6lUkylOOQX23dd6Q4mELagulOOAhcBhzrm1zrn/C2K/uaqiAgYNglatbJq52lSWbUBJPlPk5VnJZupUmwhcJExB9a4533vf2nvfxHvf1nv/cBD7zVUrVsArr8DNN9c9Jrxz8Mgj8Oc/W/dJyQz9+9uQxZMnhx2J5DqVazLQvHn2ePrp9dt+771t5MS8vJSFJAnq2hXat1fJRsKnJJ+B5s2zHjUHHBB2JNJQjRrZeDYzZsBnn4UdjeQyJfkMU1FhPWVOPjnsSCRZ/fvbTF2TJoUdieQyJfkMs2KFDXClJJ/9unSxcYTGjQs7EsllSvIZprIe36NHqGFIAJyzs/l582xYCpEwKMlnGNXjo6V/fxusbOLEsCORXKUkn0FUj4+e733PhppQyUbCoiSfQVSPj6b+/WHRInjnnbAjkVykJB+w55+3m5gaQvX4aPrJT+xxwoRw45DcpCQfoC1bbCLoESNg6dLEn696fDQdeCAUFqpkI+FQkg/Q00/b5B15eXDHHYk9V/X4aOvfH5YvtwlFRNJJST4g3sPIkXDEEXD99XYDTCL/0KrHR1u/ftalUr1sJN2U5AMya5adqV1zDfzqV7DTTnDXXfV//ty59qgkH02tW9vMXhpjXtJNST4gI0fCfvvBgAE2YNjgwfDkkzbvan3MmwcHHWSDWkk0FRXB4sUay0bSS0k+AMuXw8yZcOWV0KyZLbvmGhukauTIup+venxuKCqysl5xcdiRSC5Rkg/APffY9HyXXlq1rG1b+NnPbELnjz6q/fn/+Q988YWSfNQdfzzsuSf8859hRyK5REk+Se+/b13jBg3acYKP666zbpV//nPt+1D/+NyQlwennWZJvqIi7GgkVyjJJ+m+++wj+NChO6479FDrVfGXv9iZek1Uj88dRUXw8cfw6qthRyK5Qkk+CV99BWPG2HyeHTrE3+aGG+Drr2H06PjrVY/PLaedZo/Tp4cbh+QOJfkk/PWvlsCvuabmbTp1grPOspLNt9/uuF71+NzSujUcc4zq8pI+SvINtHmzJe6TT4b8/Nq3/c1vrNvcjTfaDVJbt1atUz0+9xQVwUsv2SdBkVQLJMk754qcc28651Y554YFsc9MN24cfPAB/PrXdW/btSv06gX33mt3xO62G5x4ot009dRTqsfnmjPOsGkB58wJOxLJBUkneedcHjAaOAM4AjjfOXdEsvvNZJs2we9+Zx+7i4rq95xJk6w08+ij8POf29n8mDGwZAmcfnpKw5UM07UrtGypko2kR+MA9lEArPLerwZwzo0HegOvBbDvbQwdOpRly5YFvduErV0La9bYGfkPftCwfTRtav2mN260cWtUk88tzZrBY4/Bm2+GHYmk2zHHHMOf6+pXHaAgyjX7A+9X+3ltbNk2nHODnXOlzrnSsrKyAA4bjvJyS/C7775jv/hEOQc772x3xkpu2XNP+0S4YUPYkUjUBXEm7+Is8zss8H4sMBYgPz9/h/X1kc53v5rceCMsWACzZ8Oxx4YdjWSr996zeQP694errw47GomyIM4h1wLtqv3cFvgwgP1mnA8+gD/9Cc4/XwlektO+vV2EV11eUi2IJL8EONQ5d6BzrinQH5gcwH4zzs03W7nmttvCjkSioKjIboSLd/+ESFCSTvLe+3Lgl8AM4HVggvd+ZbL7DcIzz0BJSTD7ev11ePhhuOwy6/IokqyiIrvfYv78sCORKAvkkp/3/gXvfUfv/cHe+9uD2Geyli61cWNOPhnuvtvGl6lLeXnN637zGxtpcvjwwEKUHHfiiTa5zPYlm02bYPx4G7paF2ajpfqNkOkSyX4dFRVw+eWwzz7Qp49Nx3f++TV/LF63zib5aNYMunSxN4X33qtav2AB/OMfNqpkq1bpaYNEX/PmcMopVePYvPWW3VzXtq39vY4aFdwnUQnf6tV2HWbBgvQeN5JJ/qGHbAaekSNhwgSbhm/iRDjhBHuhK33zDYwYYaNFPvooXHSRJfrrr7eeDyeeCA88YP94++1nd6iKBKmoCFatgm7d4LDDbKiMHj3s7xHqP7OYZLbNm60n1ccfQ5s2aT649z7tX8cdd5xPlU8+8X6PPbzv0cP7ioqq5TNm2PI99vB+2jTvH3zQ+3339R6879vX+1WrqrZdtcr7227z/ogjbD3Y9iJBW73a+yZNvD/wQO9//3vv162z5eXl3jdu7P2wYeHGJ8G4+mrLI888k9x+gFKfYL6NXJIfOND+OVau3HHdqlXeH310VeLu3t37RYtq3ldFhffLl3v/6KP2TyeSCmVl3m/duuPygw7yvn//9McjwZo82fLNkCHJ76shST6Im6EyxksvwSOPWHnliDij5xx8MCxcCL//vQ0p0Lu33XVaE+dsqOBOnVIXs8jee8df3qGDyjXZ7v334eKLbZyr+sz3nAqRSfLl5XaxtW1buOmmmrdr0QJuz4j+PyK169ABXngh7CikocrL4ac/td5STz9tF9rDEJkkP3o0LF9ufeN32SXsaESS16GDTQK/caN1tZTsMmIEvPgiPPkkdOwYXhyR6F2zbh389rc2ZG+fPmFHIxKMyiklq3fnlexQXGxl4YEDYcCAcGOJRJIfPtw+Eo0aVXuNXSSbVCZ51eWzyxtvwAUXwOGHw333hR1NBJL8li1WohkwwPq7i0SFknz2WbYMTjrJTjaffdauAYYt65P8ggWwfr1Nli0SJW3aQOPGSvLZYtEiu4O5eXP417/ge98LOyKT9Ul+2jRo0gROPTXsSESClZdnQxIryWe+OXOgZ0/Yay8biiLMC63by/okP3Wq3QbesmXYkYgE78ADleQz3bRpcOaZVl4rKbEhUTJJVif51avtIodKNRJVuiEqsz39NJxzDhx1FMybB61bhx3RjrI6yU+bZo8/+lG4cYikSvW+8pI5Nmywmy/794fCQpsOtKY7l8OW9Um+Y0c45JCwIxFJDfWVzzxLltiQ5A88YPPzFhfDbruFHVXNsjbJf/MNzJ2rUo1Em7pRZo7ycrj1VhuyfMMGO3u/557whiuor6wd1mD2bBujWaUaiTIl+cywerXd4LRwoU3oMno07LFH2FHVT9Ym+WnTrEdN9+5hRyKSOq1bWxdhJfnwrFljk7p89x38/e+W5LNJViZ57y3Jn346NG0adjQiqaO+8uH68kvrHrlxow1lHm8I80yXVE3eOdfXObfSOVfhnMsPKqi6LFsGH36oUo3kBnWjDMfmzTbg4dtvw3PPZWeCh+QvvK4A+gD/CiCWeps2zcaGOOOMdB5VJBxK8unnPQwaZJ07HnnEhivIVkmVa7z3rwO4NA/9OHWqzey0775pPaxIKDSufPqNGAFPPGG9aS64IOxokpN1XSjLymDxYpVqJHeor3x6/e1vcMstNhb8jTeGHU3y6kzyzrlZzrkVcb56J3Ig59xg51ypc660rKyswQFPn24fpdQ/XnKFulGmz5w5MHiwDXj44IPRmJ+iznKN975nEAfy3o8FxgLk5+f7hu5n6lTrVtalSxBRiWS+yiT/zjuhhhF5FRXwy1/CQQfBxInWdTUKsqoL5ZYtMGMG9O0bjXdYkfpQX/n0mDoVXn8dnnoqs4cpSFSyXSh/7JxbC3QFpjnnZgQTVnyaIERykfrKp8ddd9mnpn79wo4kWMn2rnkOeC6gWOo0dard/NQzkAKSSPZQN8rUevFFu9lp1CibjStKsqo5RUWw336wyy5hRyKSXh062EmOpMadd9pQwQMHhh1J8LIqyffsqbN4yU0dOsDHH6uvfCqsWGE3WN58M+y8c9jRBC/r+smL5KLKHjZr1oQaRiTdfbcl9yFDwo4kNZTkRbKA+sqnxnvvwbhx1jd+r73CjiY1lORFsoCSfGr88Y/2ePXV4caRSkryIllAfeWD99ln8Ne/wk9/Cu3ahR1N6ijJi2QB9ZUP3ujRNo3fddeFHUlqKcmLZAn1lQ/Ohg3WJ/6ss+DII8OOJrWU5EWyhJJ8cB54AD79FIYNCzuS1FOSF8kS1fvKS8O9+y7cdJMNV96tW9jRpJ6SvEiWUF/55Hlv3SXz8uxsPhcoyYtkiQMPtEeVbBru8cehuNiGMYhyj5rqlORFsoT6yifn44/hV7+C7t3h0kvDjiZ9lORFsoT6yifniivg22+tb3yjHMp8WTVAmUgua9QIDjhASb4hnn/eZnu6/XY4/PCwo0mvHHo/E8l+6kaZuC+/hMsvh86d4de/Djua9FOSF8kiSvKJu+46+OgjeOih6MzbmgiVa0SySGVf+c8+i+6oiQ2xbh2ceqpND7q999+Ha6+F/Pz0x5UJlORFskivXvC738ENN8DYsWFHkznGjYOVK+HCC3ecvm+//WD48HDiygRK8iJZ5OijrRvgyJFw0UXWHVBgwgTo0sX6wcu2kqrJO+f+4Jx7wzn3qnPuOefc7kEFJiLxjRhhI1Jecgls3hx2NOF77z14+WXo2zfsSDJTshdei4GjvPedgLeAG5IPSURq06KFDZP72mt2Rp/rnnnGHpXk40sqyXvvZ3rvy2M/LgLaJh+SiNTlrLPgvPPg1lth1aqwowlXZanmkEPCjiQzBdmFciAwPcD9iUgt7r0XmjaFyy6zgbdy0Zo1KtXUpc4k75yb5ZxbEeerd7VtbgTKgadq2c9g51ypc660rKwsmOhFclibNnDHHTBrFvz972FHEw6VaurmfJKnAM65nwGXAj/03m+oz3Py8/N9aWlpUscVEdi61cZEX70a3ngD9twz7IjSq7DQLj6/8krYkaSHc26p9z6hHv/J9q4pAq4HetU3wYtIcPLyYMwY+PxzGDTILsbmSummslTTr1/YkWS2ZGvy9wMtgWLn3DLn3IMBxCQiCejc2W6Qeu45m6/0kEPgqqusjBPlLpYq1dRP0uWahlC5RiR4H3wAU6fClCkwezZ89x3suitccIFNktGyZdgRBquwELZsgaVLw44kfdJerhGRzLH//naD1NSpNrbN5MnQpw88+CAccwwsXBh2hMFRr5r6U5IXiaCdd4azz4a//Q3mz4eKChsC4be/tbPfbKdSTf0pyYtEXPfusHy5jXVz221wwgnw5pthR5WcCRPg2GPh4IPDjiTzKcmL5IBdd7Wz+meese6WXbpUnQ1nmzVrYPFincXXl5K8SA4591xYscJ65Pz855Yws41KNYlRkhfJMa1bw/jx9v2gQdnXr16lmsQoyYvkoAMOsBEsZ83KrslH7r/fSjXnnx92JNlDSV4kRw0eDD172tR42TBv7N/+BldcAb17281eUj9K8iI5yjmb3Boyv2zz9NMW42mn2fe5OCF3QynJi+SwyrLN7NmZW7aZMsXu2u3WzYZuaNYs7Iiyi5K8SI7L5LLNrFnWi+aYY+xO3p13Djui7KMkL5LjKss2zmVW2ebFF63+3rEjzJhhff0lcUryIrJN2SbMCUi2bLGSTFERnHQStG0LxcW5N05+kJTkRQSAX/zC+tD/85/pP/a778KNN0L79jao2ooVcNNNdja/777pjydKGocdgIhkBufg+9+3fujpdNVVMGqUHf/MM+0awRlnQGNlp0DoTF5E/qegAN56C774Ij3HmzAB7rsPBg60s/kpU2z0TCX44CjJi8j/FBTYYzrm9PnwQ7jsMjvmgw9Cu3apP2YuUpIXkf/Jj805lOqSjffWk2fjRnjiCZ25p5JeWhH5n912g8MPT32SHzMGpk+3sWg6dkztsXKdzuRFZBsFBTa1Xqr6y69aBddcA6eeauUaSa2kkrxz7lbn3KvOuWXOuZnOuTZBBSYi4SgogI8/hrVrg993ebnNUNW0qQ041kinmSmX7Ev8B+99J+/9McBU4KYAYhKREB1/vD2momRz9902ofhf/mITj0vqJZXkvffrq/3YAsiQG6JFpKE6d7ZRHoNO8suWwYgR0K8f9O8f7L6lZklfeHXO3Q5cBHwFnJJ0RCISqmbNbECwJUuC3e+IEbD77nYW71yw+5aa1Xkm75yb5ZxbEeerN4D3/kbvfTvgKeCXtexnsHOu1DlXWlZWFlwLRCRwBQXWV37r1mD2t369DZcwYADstVcw+5T6qTPJe+97eu+PivP1/Hab/h04t5b9jPXe53vv81u1apVs3CKSQgUF8PXX8OabwexvyhTYtEmTb4ch2d41h1b7sRfwRnLhiEgmqLzzNai6/MSJdqG1sDCY/Un9Jdu75s5Y6eZV4DRAMy+KREDHjjZ+exBJvrJU07evukyGIakLr977GsszIpK9GjWyrpRBJHmVasKl91URiaugAJYvh+++S24/EybY5B8q1YRDSV5E4ioosDtUly2Lv/6tt+DCC+GTT2rex/r1NnXfeeepVBMWvewiEldtF1+9t5mknnwSrr++5n1Ulmr69UtNjFI3JXkRiatNG+sREy/JP/kk/Otfdnfso4/xlJG/AAAF10lEQVTagGbxVJZqvv/9lIYqtVCSF5EaFRTsmOS//BKuvdZq7PPn27ywV1wBFRXbblfZq0almnDppReRGhUUwNtvw+efVy0bPhw+/dSGJ9htNxt0bMkSG1WyusmTYfNmlWrCpiQvIjXafjrApUvhgQdgyBDo0sWWDRgA3brBDTfYWX6liRNVqskESvIiUqPjjrPBxBYvtnLM5ZdDq1Zw661V2zgHo0bZ2f2IEbZMN0BlDr38IlKjyukAlyyBhx6yZD9ypC2vrksXuOQSm85vxYqqUo1ugAqf86ma46sW+fn5vjQd08GLSNIuvhimTrVuk0cfDXPnxh8q+LPP4NBDbZjili3h3/+Gd9/VmXyQnHNLvff5iTxHL7+I1KqgwBL4+vUwenTNY8HvtRfcdpu9CUyerF41mUK/AhGpVeVwBL/6FRx5ZO3bXnKJ9Z0HlWoyRdIzQ4lItB17LBQXw0kn1b1tXh48/jiMH69eNZlCSV5E6tSzZ/237dTJviQzqFwjIhJhSvIiIhGmJC8iEmFK8iIiEaYkLyISYUryIiIRpiQvIhJhSvIiIhEWygBlzrkyYE0Dnro38GnA4YRFbclMaktmUlvMAd77Vok8IZQk31DOudJER2DLVGpLZlJbMpPa0nAq14iIRJiSvIhIhGVbkh8bdgABUlsyk9qSmdSWBsqqmryIiCQm287kRUQkEd77lH4BjwCfACuqLesMLAT+A0wBdq22rlNs3crY+uax5cfFfl4F3EfsU0ic48XdDjgJeAUoB87L4nZcGlu+DHgROCKL23IxUBZryzJgUBa35U/V2vEW8GWW/78cAMwGXgXmAW2zoC23A+8D32y3PKn//YDbEjfGBH4vCbcl4cY24MU5CTh2uxdnCdAj9v1A4NbY941jf1SdYz/vBeTFvl8MdAUcMB04o4bjxd0O6BB74R9vyC86g9pR/Q+pF/DPLG7LxcD9Ufj72m6bK4BHsrk9wETgZ7HvfwA8kQVtKQRas2OS70AS//sBtyVujAn8XhJuS4P/uRJ8gTps9+Ksp+qdqR3wWuz7M4En4zy/NfBGtZ/PB8Y0ZDvg0SR+0RnTjmrLp2drWwggyWdKW7bb7iXg1GxuD3YG2jb2vQPWZ3JbtntO3ARKEv/7QbSlPjHWt82JtCWsmvwK7CwUoC/2AgF0BLxzboZz7hXn3HWx5fsDa6s9f21s2fbqu11QQmmHc26Ic+6/wN3AlUm3woT1OznXOfeqc+4Z51w7ghHa35dz7gDgQGBOUi3YVhjtWQ6cG/v+x0BL59xeSbXCpKotYUi0LfUVaJvDSvIDgSHOuaVAS2BzbHljoDswIPb4Y+fcD7Ezie35OMvqu11QQmmH93609/5g4HpgeMPD30YYbZkCdPDedwJmAY81PPxthPn31R94xnu/tSGB1yCM9lwL9HDO/RvoAXyA1YGTlaq2hCHRttRXoG0OZSJv7/0bwGkAzrmOwI9iq9YC8733n8bWvYDVwZ4E2lbbRVvgQ+dcHrA0tmwy8EC87VLUjExox/jYtlnZFu/9Z9WW/xW4K1vbUk1/YEgQ7agU0u/mQ6BPbL+7AOd677/K1LZ4729KNrZENaAts+PtJ+V5rKH1qSRrWfvEHhthFxAGxn7eA7tyvDP2BjQL+FFs3RLsokXlhYgzazhWrdsRbE0+7e0ADq22zdlAaRa3pXW1bX4MLMrWtsTWHQa8Sw29P7KpPdggWo1i398O3JLpbal2jHTV5BNuS10x1ufvLNG2NPgPMYEXZhywDtiCvcP9H3AV1s3sLeDO6v8UwAXYRZ8VwN3VlufHlv0XuL+mf6SatgOOjx3/W+AzYGWWtuPe2H6XAXOBI7P4d3JHbL/LY205PFvbEls3ArgzIv8v5wFvx475ENAsC9pyd+w4FbHHEUH87wfclrgxJvB7SbgtuuNVRCTCdMeriEiEKcmLiESYkryISIQpyYuIRJiSvIhIhCnJi4hEmJK8iEiEKcmLiETY/wNQ/EKYJLBPzQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(absc, ordo[:]-mean, color = 'b')\n", "plt.plot(absc, [0]*len(absc), color = 'k')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Etude de l'évolution systématique\n", "L'évolution systématique peut être affichée en calculant une moyenne annuelle des émissions de CO2. Dans un premier temps, on calcule les émissions totales de CO2 par an :" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "yearly_incidence = [sorted_data['CO2'][0]]\n", "year = ['1958']\n", "ct = 0\n", "week = [1]\n", "for i in range(len(sorted_data)):\n", " yr = sorted_data['date'][i][:4]\n", " if yr != year[ct]:\n", " year.append(yr)\n", " yearly_incidence.append(sorted_data['CO2'][i])\n", " ct += 1\n", " week.append(1)\n", " else:\n", " yearly_incidence[ct] += sorted_data['CO2'][i]\n", " week[ct] += 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chaque année ne comptant pas le même nombre de semaines, on calcule la moyenne annuelle des émissions en divisant par le nombre de semaines :" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "yearly_incidence = [yearly_incidence[i]/week[i] for i in range(len(week))]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut ensuite tracer l'évolution des émissions de CO2 annuelles :" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAADuCAYAAAA3IMxxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFTJJREFUeJzt3X+I3Pd54PH3o9VYXrtNNqWbw5KsiyG2hR0Hh+yJUFFaO7nKxKkdHO4QNGCuBtE736V3UCUWgbhXMFbq0h9wLYfoHRia4qqx4xoHozqV1ZCjtllVzg+78lWHrqlW5SwXb0DVVl6tnvtjvxuPZr+j+c7uzM58Z94vWDLz3c9MPgvJ48fP5/N5PpGZSJJG16ZBT0CS1F8GekkacQZ6SRpxBnpJGnEGekkacQZ6SRpxlQN9RExExImIeL54/0REnIyI70XENyJiqmnsgYg4FRFvRsSefkxcklRNNxn9rwJ/0/T+ReAjmflR4H8DBwAi4jZgL3A7cA/wBxEx0ZvpSpK6VSnQR8R24F7gD1eeZeafZ+al4u3LwPbi9f3AU5l5MTNPA6eAXb2bsiSpG5srjvtd4IvAT7b5/S8Df1K83sZy4F9xpnh2hYjYB+wDuP766z++c+fOilORJAEcP3787cyc7jSuY6CPiM8Ab2Xm8Yj4+ZLffxm4BHxt5VHJ16zqs5CZh4BDADMzMzk7O9tpKpKkJhHxd1XGVcnodwP3RcSngWuB90XEH2Xm5yPiQeAzwCfzvaY5Z4Abmz6/HThbfeqSpF7qWKPPzAOZuT0zP8TyIuvRIsjfA3wJuC8zLzR95Dlgb0RsiYibgJuBV/swd0lSBVVr9GX+G7AFeDEiAF7OzF/JzNcj4jDwBsslnYczc2n9U5UkrUVXgT4zjwHHitcfvsq4x4DH1jMxSVJveDJWkkbceko3kqQ1evbEHE8ceZOz8wtsnZpk/55b+ezHVu1E7wkDvSRtsGdPzHHgme+zsLi8fDk3v8CBZ74P0Jdgb6CXpD5rzd4vvHvpx0F+xcLiEk8cedNAL0l1U5a9t3P2Kr9bDxdjJamPnjjy5qrsvZ2tU5N9mYOBXpL6qGqWPtmYYP+eW/syBwO9JPVRuyx9arLBtqlJAtg2NcnjD9zhrhtJqoPWhde7dk7z9PG5K8o3k40Jfv2+2/sW2FuZ0UtSj6wsvM7NL5AsL7w+fXyOz31824Zl72XM6CWpR8oWXhcWl3jp5Dn+1yN3D2hWZvSS1DPtFl77tW2yKgO9JPVIu4XXfm2brMpAL0k9sn/PrUw2Jq541s9tk1UZ6CVpjZ49Mcfug0e56ZFvsvvgUQAef+COgS68lnExVpLWoF1jsscfuGOgC69lzOglaQ3a7bB54sibA5pRewZ6SVqDYd1hU8bSjSRV1HzqdVMES5mrxgx6h00ZA70kVdBaky8L8sOww6aMgV6SKmjXbngigsuZfb8OcD0M9JJUQbva++VMTh+8d4Nn0x0XYyWpgmE99VqFGb0klajabngYa/KtzOglqcWwthteKzN6SWoxrO2G18qMXpJa1OkwVBUGeklqUeeF1zIGeklqMazthtfKQC9p7NWl3fBauRgraazVqd3wWlXO6CNiIiJORMTzxfufiogXI+Jvi//8QNPYAxFxKiLejIg9/Zi4JPVCndoNr1U3pZtfBf6m6f0jwF9k5s3AXxTviYjbgL3A7cA9wB9ExASSNIRGbYdNmUqBPiK2A/cCf9j0+H7gyeL1k8Bnm54/lZkXM/M0cArY1ZvpSlJvjdoOmzJVa/S/C3wR+MmmZ/8iM/8BIDP/ISI+WDzfBrzcNO5M8ewKEbEP2AewY8eOLqctSWszSq0NquqY0UfEZ4C3MvN4xe+MkmerGjdn5qHMnMnMmenp6YpfLUlrN2qtDaqqktHvBu6LiE8D1wLvi4g/Av5fRNxQZPM3AG8V488ANzZ9fjtwtpeTlqS1GLXWBlV1zOgz80Bmbs/MD7G8yHo0Mz8PPAc8WAx7EPiz4vVzwN6I2BIRNwE3A6/2fOaS1KVxWHgts5599AeBwxHxEPBD4N8AZObrEXEYeAO4BDycmauvZZGkPmutx09d1+CdC4urxo3SwmuZrgJ9Zh4DjhWv/xH4ZJtxjwGPrXNukrRmZQehGpuCxkSwuPTesuGoLbyWsQWCpJFUVo9fvJxcf83mkV54LWMLBEkjqV3d/UcLi7z26C9s8GwGy4xe0kgah4NQVZnRSxoJ43gQqiozekm1N64Hoaoyo5dUe+N6EKoqM3pJtTeuB6GqMtBLqj0XXq/O0o2kWmpefH3/ZGMsD0JVZaCXVDutp17nFxZpbAo+cF2D+QuLbJ2aZP+eW8dy4bWMgV5S7bQ79XrdNZs58ZXxOgxVhYFe0tBr3SM/5+JrVwz0koZaWXOyoOQ2I1x8bcddN5KGWlmZJll9lZ2Lr+0Z6CUNtXblmARPvVZk6UbSUGtXk982Nemp14oM9JKGis3Jes/SjaShYXOy/jCjlzQ0bE7WH2b0koaGzcn6w4xe0sC01uOnrmvwzoXFVePcH78+BnpJA1F2EKqxKWxO1geWbiQNRLt+Nddfs9mF1x4zo5e0Iar2q/nRwiKvPWpjsl4y0EvqO/vVDJalG0l9Z7+awTLQS+o7+9UMlqUbST1Xdduk/Wo2hoFeUk+5bXL4WLqR1FNumxw+HTP6iLgW+DawpRj/9cx8NCLuBP47cC1wCfgPmflq8ZkDwEPAEvCFzDzSp/lLGjLt6vFumxycKqWbi8DdmXk+IhrAdyLiBeA3gP+amS9ExKeB3wR+PiJuA/YCtwNbgW9FxC2ZudTuv0BSvTXX5DdFsJSrN066bXJwOpZuctn54m2j+Mni533F8/cDZ4vX9wNPZebFzDwNnAJ29XTWkoZGa2vhsiBvPX6wKi3GRsQEcBz4MPD7mflKRPxn4EhE/BbL/8D4mWL4NuDlpo+fKZ5JGkFlNXmAiQguZ7J1apL9e261Hj9AlQJ9UXa5MyKmgG9ExEeAfcB/ycynI+LfAv8D+BSrz0BAyQG4iNhXfAc7duxY4/QlDVq7mvzlTE4fvHeDZ6MyXe26ycx54BhwD/Ag8Ezxqz/lvfLMGeDGpo9t572yTvN3HcrMmcycmZ6e7nLakoZFu9q7Nfnh0THQR8R0kckTEZMsZ+0nWQ7eP1cMuxv42+L1c8DeiNgSETcBNwOv9nrikgbj2RNz7D54lJse+Sa7Dx7lrp3TTDYmrhhjTX64VCnd3AA8WdTpNwGHM/P5iJgHfi8iNgP/TFGGyczXI+Iw8AbL2y4fdseNNBrKDkOt3On60slzPz4Ja01+uESWrJBvtJmZmZydnR30NCR1sPvg0dL2wrYyGIyIOJ6ZM53G2QJBUltVe8h7p+twM9BLKmUP+dFhrxtJpewhPzoM9JJK2UN+dFi6kVSqXU3ehdf6MdBLAlYvvN61c5qnj89dUb6xTFNPlm4krWpM1rw/3jJN/ZnRSypdeF1YXOKlk+cs04wAM3pJbRde3R8/GszopTFU9fJu98ePBgO9NGa8vHv8WLqRxoyXd48fM3ppxFXtV+Pl3aPLQC+NMPvVCCzdSCPNfjUCM3pp5DSXatrdNrHSr8aLQsaDgV4aIa2lmnbsVzNeLN1II6SsVNPKMs34MaOXaqzqjhpYrstbphlPBnqpprrZUWOpZrxZupFqyh01qspAL9WUN0CpKks3Uk15A5SqMqOXamr/nluZbExc8cwyjcoY6KWaePbEHLsPHuWmR77J7oNHAXj8gTss06gjSzdSDZTtsDnwzPd5/IE7LNOoIwO9NIRa98dfePdS6VV/Txx50wxeHRnopSFTlr2341V/qsIavTRkqrQxWGFrYVVhRi8NWDdtDJq5w0ZVGeilAeqmjcHUZIPrt2y2tbC61jHQR8S1wLeBLcX4r2fmo8Xv/hPwH4FLwDcz84vF8wPAQ8AS8IXMPNKf6Uv1drU2Bs3BfrIxwa/fd7uBXWtSJaO/CNydmecjogF8JyJeACaB+4GPZubFiPggQETcBuwFbge2At+KiFsys1rRURojndoYmL2rFzoG+sxM4HzxtlH8JPDvgYOZebEY91Yx5n7gqeL56Yg4BewC/qrHc5dqp7UeP3Vdg3cuLK4aZxsD9VKlXTcRMRERrwFvAS9m5ivALcDPRsQrEfGXEfGviuHbgL9v+viZ4lnrd+6LiNmImD137tz6/gqpBlbq8XPFFX9z8wuc/+dLNCau7DfpIqt6rVKgz8ylzLwT2A7sioiPsPxvAx8APgHsBw5HRLC6SyqUrC1l5qHMnMnMmenp6TX/AVJdlNXjFy8n11+z2TYG6quudt1k5nxEHAPuYTlTf6Yo7bwaEZeBny6e39j0se3A2d5MV6qvdvX4Hy0s8tqjv7DBs9E4qbLrZhpYLIL8JPAp4Kss1+3vBo5FxC3ANcDbwHPAH0fEb7O8GHsz8Gqf5i8Nteaa/KYIlnL1xkkPPanfqmT0NwBPRsQEy6Wew5n5fERcA/zPiPgB8C7wYJHdvx4Rh4E3WN52+bA7bjQOWhda79o5zdPH535crikL8tbjtREiS/7Ht9FmZmZydnZ20NOQ1qz14BOs3gu/YiKCy5lum9S6RcTxzJzpNM6TsdIaVOku2S6FupzJ6YP39n+SUsFAL3Wpm+6SZazJa6PZvVLqUjfdJVv3GluT1yCY0UsdrKe75Oc+vo2XTp6zlYEGykAvXYXdJTUKDPRSk6qLrHaXVJ0Y6KVCN4usdpdUnRjopUI3i6x2l1SdGOg1trzCT+PCQK+x5CKrxomBXmPJK/w0TjwwpbHU6Qo/e8NrlJjRayy1q8m7yKpRZKDX2GhefH3/ZIPGRLC49F6hxkVWjSoDvcZC6+Lr/MIijU3BB65rMH9h0UVWjTQDvcZCu/tar7tmMye+4jV+Gm0uxmostFt8bfdcGiVm9BpJrYehpq5r8M6FxVXj7A2vcWCg18gpOwzV2BQuvmpsGehVe1U6Ti5eTk+4amwZ6FVr3XSc/NHCIq896sKrxo+Lsaq1bjpOWo/XuDKjV63YcVLqnoFetWHHSWltDPSqDTtOSmtjoNfQqlqm8Vo/6eoM9BpK3ZRp7DgpXZ27bjSUrlamaeYiq9SZgV5DyYtBpN6xdKOhULU3jWUaqXsGeg2cvWmk/uoY6CPiWuDbwJZi/Ncz89Gm3/8a8AQwnZlvF88OAA8BS8AXMvNIH+auGmvO4DdFsJRXLrPam0bqnSoZ/UXg7sw8HxEN4DsR8UJmvhwRNwL/GvjhyuCIuA3YC9wObAW+FRG3ZGa1c+oaea0ZfGuQX2FvGqk3Ogb6zEzgfPG2Ufys/D/zd4AvAn/W9JH7gacy8yJwOiJOAbuAv+rVpFUvVbpLlrE3jdQblXbdRMRERLwGvAW8mJmvRMR9wFxmfrdl+Dbg75venymetX7nvoiYjYjZc+fOrXH6GnYr2fvc/ALJcv29bJG1lfV4qXcqBfrMXMrMO4HtwK6I+CjwZeArJcNbtzpDyTmXzDyUmTOZOTM9Pd3NnFUj3XSXnIhw26TUB13tusnM+Yg4xnJ55ibguxEBy/8A+OuI2MVyBn9j08e2A2d7MlvVTtU7WScbEwZ3qU+q7LqZBhaLID8JfAr4amZ+sGnM/wVmMvPtiHgO+OOI+G2WF2NvBl7ty+w1dKruh3dHjbRxqmT0NwBPRsQEy6Wew5n5fLvBmfl6RBwG3gAuAQ+742Y8dLMf3u6S0sapsuvme8DHOoz5UMv7x4DH1jUz1U5ZPd798NLgeTJWa1a1jbD74aXBMtBrTbppI+x+eGmw7F6pNbGNsFQfZvSqxNuepPoy0Ksjb3uS6s3SjTqyTCPVm4FeHXnbk1Rvlm5UqlO/eLBMI9WFgV6rFlrv2jnN08fnrtov3jKNVB8G+jFXttD6tZd/WLrQOhHB5Ux300g1Y6AfM1UuASm/7wkuZ3L64L39n6SknjLQj7BOJZl2e+Hb8YSrVE8G+hHVTUmmTOs+eWvyUn25vXJEtdv7XsVkY4Jf+sQOt05KI8KMfkRVvdkJvAREGnUG+hHVrh9NWUnGS0Ck0WagHxGdFl5hOah/7uPbeOnkObN3aYwY6EdA2cLr08fnDOqSAAN9LVXZC7+wuMRLJ8/ZokCSgb4OmgP7+ycb/NO7l3582fbV9sJ3syAraXQZ6Idca1lmfmGx8mc94CQJDPRDp0pZpgoPOElaYaAfImWLqlW5F15SOwb6IVJ2mrUK98JLuhoD/QBVvXC7VWNT8BPXbmb+wqLZu6SODPQD0s2F25ZlJK2HgX6DVO0Db4sCSb1moN8A3Syyrly4bfYuqVcM9H2wni2SXrgtqdcM9D22ni2S7n2X1A8dA31EXAt8G9hSjP96Zj4aEU8Avwi8C/wf4N9l5nzxmQPAQ8AS8IXMPNKn+Q/cerJ3F1klbYQqGf1F4O7MPB8RDeA7EfEC8CJwIDMvRcRXgQPAlyLiNmAvcDuwFfhWRNySmd1vEB9y683eXWSVtBE6XiWYy84XbxvFT2bmn2fmpeL5y8D24vX9wFOZeTEzTwOngF09nvdQ6OaA09Rkw6v5JA1EpRp9REwAx4EPA7+fma+0DPll4E+K19tYDvwrzhTPhlprCWalVn61Z93cwWr2LmlQKgX6ouxyZ0RMAd+IiI9k5g8AIuLLwCXga8XwKPuK1gcRsQ/YB7Bjx441TL13ykow+//0uxBc0Q649Vk71t4lDZOudt1k5nxEHAPuAX4QEQ8CnwE+mZkr0e8McGPTx7YDZ0u+6xBwCGBmZqZqctwTVRZQFy+vnlLZs1Zm75KGTccafURMF5k8ETEJfAo4GRH3AF8C7svMC00feQ7YGxFbIuIm4Gbg1d5PfW1Wsve5ovQyN7/AOxeq93hvx9q7pGFVJaO/AXiyqNNvAg5n5vMRcYrlLZcvRgTAy5n5K5n5ekQcBt5guaTz8CB33PSqv/vVeMhJ0jDrGOgz83vAx0qef/gqn3kMeGx9U1u/9Wx/bGyKVfX4smcecpI07Gp9MrY1W79r5zQvnTzXs8NLcPVdNy60SqqDeG8NdXBmZmZydna2q8+0ZuvrMdmYsLYuqXYi4nhmznQaV9uMfq23MYHbHyWNl9oG+rNd1Nubuf1R0rjpuL1yWG2dmqw0ztYDksZdbTP6/Xtu7VijN3uXpBpn9J/92DYef+COK7L1z39ih9m7JLWobUYPy8HeQC5JV1fbjF6SVI2BXpJGnIFekkacgV6SRpyBXpJG3FD0uomIc8DfreMrfhp4u0fTGQTnP1h1nz/U/29w/mvzLzNzutOgoQj06xURs1Ua+wwr5z9YdZ8/1P9vcP79ZelGkkacgV6SRtyoBPpDg57AOjn/war7/KH+f4Pz76ORqNFLktoblYxektSGgV6SRpyBXpJGnIFekkacgV6SRtz/B5YAVznONGw7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_inc = pd.Series(data=yearly_incidence, index=year)\n", "yearly_inc.plot(style='o')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut modéliser cette courbe par une interpolation polynomiale d'ordre 2 :" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import PolynomialFeatures\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.linear_model import LinearRegression\n", "deg = 2\n", "polyreg = make_pipeline(PolynomialFeatures(deg), LinearRegression())\n", "polyreg.fit(np.array([int(i) for i in year]).reshape(-1, 1), yearly_incidence)\n", "yearly_interp = pd.Series(polyreg.predict(np.array([int(i) for i in year]).reshape(-1, 1)), index = year)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAADuCAYAAAA3IMxxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuYjeX+x/H3d8ZhjFPSEI1ZanfY6aSSaqtEKR1JJ0UpRSFJiaR09LNVlEJMFJuVQwclIZFDOondTlG77JghahwizBhzuH9/rDXLrJnRDGZmHebzui6Xte7nXqt7uurj6/vcz/OYcw4REYleMaFegIiIlC0FvYhIlFPQi4hEOQW9iEiUU9CLiEQ5Bb2ISJQrcdCbWayZfWNms/3vnzezH81slZnNNLMj8s0daGZrzey/ZnZ5WSxcRERK5mAq+j7AD/nefwyc6pw7HfgJGAhgZk2AjsApQFtgjJnFls5yRUTkYJUo6M0sEbgKGJ835pyb75zL9r/9Ekj0v24HTHPOZTrn1gFrgealt2QRETkYlUo47yWgP1DzAMe7AtP9r4/BF/x5NvrHDuioo45yjRs3LuFSREQEYOXKlVudcwnFzSs26M3saiDNObfSzC4u4vggIBvw5g0V8TWF7rNgZt2B7gBJSUmsWLGiuKWIiEg+ZpZSknklad20AK41s/XANKC1mU3x/0O6AFcDndz+m+ZsBBrl+3wisKnglzrnkp1zzZxzzRISiv0DSUREDlGxQe+cG+icS3TONcZ3kvUT51xnM2sLDACudc6l5/vILKCjmVU1s2OBE4DlZbB2EREpgZL26IsyCqgKfGxmAF865+51zq02sxnAGnwtnV7OuZzDX6qIiByKgwp659xiYLH/9fF/MW8IMORwFiYiIqVDV8aKiEQ5Bb2ISAh4vdA8cRM1bTeNG/velxUFvYhIOfN64em7U3nz14v4gKvZkrKH7t3LLuwV9CIiZczrhcaNISbG9/sL961n3t6WHM//uJglvM0NpKc7Bg0qm3/+4ey6ERGRYni90L07pPs3ocem/I/3aI2HVAAyqcIYegJGamrZrEFBLyJShgYN2h/yx/Mzi2hFIr8CsJeqdOBd5nIlAElJZbMGBb2ISBnKq9JP4kc+oTUN2QxABnG0430+5jIA4uNhSBltSlePXkSkDCUlQRNWs5iLAyGfTjVurTWbnzyXYQYeDyQnQ6dOZbMGBb2ISCkqeOK1W/NvWczFHM3vAOymOh2qzuGGMZewfj3k5sL69WUX8qDWjYhIqSl44vWolBX0SLmMI/kDgF3UoGv9Odw2/MIyDfaCFPQiIqUk/4nX8/iCebSlNn/6BmrXpua8ebx13nnlvi61bkRESkneidcLWcp8LguE/DaOhIULIQQhDwp6EZFSk5QEl7CAebSlJrsBSCOBTg0Wwdlnh2xdCnoRkVIy8YbZzOZq4skAYDNHc0XcYm57/vSQrktBLyJyiPLvsOmZ8BYXvXQdcWQCsIFEbm24hAfHNynXE69F0clYEZFDkH+HTWcm88rWO4gh13fwuONotHAhixo3Duka86iiFxE5BHk7bLqRzCS6EOsP+f9VOgmWLvWV+mFCQS8icghSU6EvI0jmHmJwAKziNFpkL4Fjjgnx6oIp6EVESijQkzfHEzzFCB4KHPuaZlzMYuI89UO3wANQj15EpAT29+Qdz/Mw/dzwwLGlXMjVzCYnvlaZ3ZjscKiiFxEpgUGDICM9l1fpQT/2h/x8LuMK5nGkp1aZ3pjscKiiFxEpgU0pWfyLO+nM/uf9vct13MpU9rqqIVxZ8VTRi4gUIf8e+ZM8e3m/8g1BIT+ZztzEDI72hHfIgyp6EZFC8u+Rr8EuXk1tR2sWBY6P5R56MoZq8TFh2ZMvSBW9iEgBeXvk67CdBVwaFPKv1hpAT14lyRMTtj35glTRi4gUkJoKR7OZ+VzGaXwfGB/IUIbufIQeIVzboVBFLyJSQIsGv7CMCwIhn4vRgzFM9TwS4pUdGlX0IiL5ffcdH6VfTrz/+a7ZxNKFSbwX34nkCOjHF0UVvYhIni+/hJYtid/hC/m9FkcHZvKZp1PE9OOLoopeRCo8rxfmPvgx49LaUx3/swBr1SLugw+YddFFoV1cKVBFLyIVmtcLc7u+xetpVwVCfgsJzHl4EURByMNBBL2ZxZrZN2Y22//+SDP72Mx+9v9eJ9/cgWa21sz+a2aXl8XCRURKw5r7x/KvfTdThSwAUmnEBXxKz/FnhXhlpedgKvo+wA/53j8CLHTOnQAs9L/HzJoAHYFTgLbAGDOLLZ3lioiUEufgmWcYsr1H4DbDP/B3WvAZP3FS4EHf0aBEQW9micBVwPh8w+2ASf7Xk4D2+canOecynXPrgLVA89JZrohIKcjNhT59YPDgwNBXNOdCPmUjjQDfg76jRUkr+peA/pD3nCwA6jvnNgP4f6/nHz8G2JBv3kb/WBAz625mK8xsxZYtWw564SIih2LqpH28V/M2eOWVwNjCmDZcwkK2cRQA8fFExK0NSqrYoDezq4E059zKEn6nFTHmCg04l+yca+aca5aQkFDCrxYROXTTJ+wmoes1tE9/MzD2duxNvH/3BxzlqYEZeDxE9FbKopRke2UL4FozuxKIA2qZ2RTgdzNr4JzbbGYNgDT//I3g/7uPTyKwqTQXLSJy0LZs4aSeV9E09+vA0Bh60DvnFRp9FMv69aFbWlkrtqJ3zg10ziU65xrjO8n6iXOuMzAL6OKf1gV43/96FtDRzKqa2bHACcDyUl+5iEhJrV8PLVrQdN/+kB/MU/RiNLnERtWJ16Iczj76fwJtzOxnoI3/Pc651cAMYA0wD+jlnMs53IWKiBwsrxfaNlzFpmP/AT//DEAOMdzDWJ5hMHmd5mg68VqUg7oy1jm3GFjsf70NuOQA84YAUXQqQ0QijdcLk+9azLTM9hzBTgAyqcJtlabyVnaHwLxoO/FaFF0ZKyJR6bMH3uL9zMsDIb+TWlzGfD6p3QGPh6g98VoU3etGRKLPyy8zausDgQuhNtGAK5jLKs7AtsPWrSFeXzlTRS8i0SM3FwYMgD59AiH/IyfxDz5nFWcA0d+PL4oqehGJClMn7aNKr7u5fs/kwNhXMedxZe5stlMXqBj9+KKooheRiDf9tT+p3/WqoJD/MPYa3uy6kJqeuhWqH18UVfQiEtk2beL0Xldwcu6qwFAy3eiZM4bEjytF9YVQJaWKXkQi15o1cN55nJy1P+Qf4xnuYRw5VIr6C6FKSkEvIhHp48eXsvO0FrDBdw/FLCpxB28whMeoKBdClZRaNyIScZbdN42LRnehKvsA2EUNbuBt5rP/OUcV9cRrUVTRi0jkcA6GDeOC0bcEQv436tOSJczncmJjK9aFUCWlil5EIkN2NvTuDWPHBobWcDJXMocUGgO+bfS5uQf4fAWmil5Ewt70CbtZWKt9UMgvpiUt+CwQ8qCe/IEo6EUkrL0zajMndmvJJRkfBsam2q1cU/kjdlAnMKae/IEp6EUkfH33Hec9cC5nun8HhobwKJ3cZKrWqlrhbk52qNSjF5HwNH8+3Hgjx+T8CUA2sfRkDK/RHYDtFfDmZIdKQS8i4Wf8eLj3XsjxPbPoT2pyI28FbZ9UP77k1LoRkfCRm8vqawdCt26BkP+jeiJt4pZpj/xhUNCLSHhITyf1vJs45YN/Bob+zZk0y/mKs+88Xf34w6DWjYiE3m+/Qbt2JH29PDA0m6voyDT27K3BnDno5mSHQRW9iITWd9/BuefC8v0h/xJ9aMf77KEGgG5OdpgU9CISMov6z2XXGS0CSZ5DDL0YRV9eIpfYwDydeD08at2ISPlzjhVdXuGiyX2JxXfPgj+pSafY6cyPvQL/bWwAnXgtDaroRaR8ZWVBz540m9wnEPIpJNGCz5idcwU1a6ITr6VMFb2IlAuvF4YN3MHwDTfShgWB8S84j/a8Rxr1AV0IVRYU9CJS5rxeGHb3z0zfey0n82Ng/E1uoSuvk0lcYEz9+NKn1o2IlLnZD37C4r3nBoX8YJ6iM96gkFc/vmwo6EWkbI0dy+S0yziSPwDIII6OTOUZBuMw9ePLgVo3IlLqvF4Y/Gg2fVP7ch+jAkGziQa05z2+pjngC3ddCFX2FPQiUqq8XhjQbTtvZNwcdNJ1pZ3Nte59NnEMoDZNeVLrRkRK1ev9f2BRxrlBIT+DG2lfZymVPceoTRMCxVb0ZhYHLAWq+ue/7Zx7wsyaAmOBOCAb6OmcW+7/zEDgLiAHuN8591EZrV9EwsmHHzJz0y3UYldg6Ame5GkGY38YudtCuLYKrCStm0ygtXNut5lVBpaZ2VzgaeAp59xcM7sSeA642MyaAB2BU4CGwAIzO9E5l1NGP4OIhJh3imND7+fov2MgtXAA7CGe2/kX73I9oG2ToVRs0DvnHLDb/7ay/5fz/6rlH68NbPK/bgdMc85lAuvMbC3QHPiiFNctImFi2hsZxHbrxiM53sBYCklcyyxWcQagfnyolehkrJnFAiuB44HRzrmvzOwB4CMzewFfr/8f/unHAF/m+/hG/1jB7+wOvmeCJemPepHItGEDp9zbntNy9j/T9VMu4HreYXtsPSzXV8kPGaJ+fCiV6GSscy7HOdcUSASam9mpQA+gr3OuEdAXmOCfbkV9RRHfmeyca+aca5aQkHBoqxeR0Fm2DJo147R9+0M+mW5cwkK2UI/cXMjN9W2fVMiH1kHtunHO7QAWA22BLsC7/kNvgX9jrK+Cb5TvY4nsb+uISITzeuHRuuPYd2FrSEsDIItK9GAM9zCOLKoA6smHk2KD3swSzOwI/+tqwKXAj/jCu6V/WmvgZ//rWUBHM6tqZscCJwDLEZGIN3ViJhl33Mv/bb+XKmQBkEYCbSstZCw9yPsLvXry4aUkPfoGwCR/nz4GmOGcm21mO4CRZlYJ2Iu/3+6cW21mM4A1+LZd9tKOG5EosHkzJ957PWdn799X8W/OpD3vkV47CU8N3/ND1JMPP+bbVBNazZo1cytWrAj1MkTkQL74Aq6/HjZvDgxNpSN3MYEM4jHz9eOlfJnZSudcs+Lm6cpYETkgrxcG1k1m3z9aBkI+hxgeZDi38iYZxAPqx4c73etGRIo0dWIm++6+j6E54wNjW6lL50rT+Sj7ksCY+vHhT0EvIoVt2MDJ99xA05z9+yi+oSnXMZPdtRurHx9hFPQiEmzRIrj5Zpru2xIYmkInupPs68frUX8RRz16EfFxDkaMgDZtYIsv5LOoRG9e5jYmqx8fwVTRiwjs2kXKpXfhWf5WYGhntfrckPsWCzIvDIypHx+ZVNGLVHQ//MDOvzcPCvnPOZ+z3L85oeuFetRfFFBFL1KRzZgBXbtSe8+ewNAoevEgI8jaW4U5c/Sov2igil6kIsrKggcfhJtvBn/Ip1ONTkyhN6MC96tJTQ3lIqW0qKIXqWh+/ZUtrW4i4efPA0O/xBxPu9x3+Z7TgqbqxGt0UEUvUpEsWMDeJmcGhfx7tKN5zAp+qhIc8jrxGj0U9CIVQW4uPPssXHYZcX/6tk5mE0t/hnEdM9mWXZuaNdGJ1yil1o1IlHt77Fbq9r2dVnvnBsY2czQdmcbSwJ3GYbsuhIpaCnqRKPbRE59z3jM3k+g2BsYWcTG3MJXfOTporvrx0UutG5Eo4/VCY4+jnw2n9dMtg0J+KI/Qho9Js+CQVz8+uqmiF4kiXi/07/YHozPupD3vB8a3U4fbmMwcrvINOF8fXjcmqxgU9CJR5K1+X/FZxs00JiUw9iXncjPTScUTGPN4dCFURaLWjUg0cA6GD+et3y4ICvkXeYCLWBoU8mrTVDwKepEI5vVC00bb+CDmWujXj8pkA7CD2nTgHR7kRbKoQmystk1WZGrdiEQorxdev+szZmXeQhIbAuNf2znc5KaznmMBXwWvcK/YVNGLRKKcHDbdN4SPMlsGhfwI+nJtnWU4z7Gq4CVAFb1IpNm8GW67jYd3LAwMbacOdzCRD7gW+wNyt4VwfRJ2FPQikWTePLj99sAToACW0YJbeZMN+K540oVPUpBaNyKRYN8+1lzVD664IhDyuRj/rPQYF7M4EPLaUSNFUdCLhLuffmLbSefTZM7wwNBmjubqqgtI7fYMiZ5K6sfLX1LrRiQMeb0w6FFHq9RJjLL7qOv2PwFqDldwBxPZklkPj54AJSWgoBcJM14v9Ou2k+EZPbiVqeB845lUoT/P8TL3AwboCVBSMgp6kTAz86FlfJHROegK1x85iVuYyn84M2iuTrxKSahHLxIusrNh8GCm/94yKOQn0JWzWVko5HXiVUpKQS8SYl4vXHjML3xR+UJ45hliyQXgD47gRmZwNxNIpzp16+oJUHJoig16M4szs+Vm9q2ZrTazp/Id621m//WPP5dvfKCZrfUfu7ysFi8S6bxTHEu6TuLDTU05ny8D40usJaezire5EfBV7yNH+k685ub6flfIS0mVpEefCbR2zu02s8rAMjObC1QD2gGnO+cyzawegJk1AToCpwANgQVmdqJzLqdsfgSRCLVtG3XuuYfkfe8EhrKoxOM8w+t1Hia+Ziym+8VLKSg26J1zDtjtf1vZ/8sBPYB/Oucy/fPS/HPaAdP84+vMbC3QHPiilNcuErnmz4c77uDK9M2BoZ84gU54WcE5uo2BlKoS9ejNLNbM/gOkAR87574CTgQuNLOvzGyJmZ3jn34M5LvLEmz0j4lUeNPeyOD1Wg/A5Zf77lnj9yr3cibfsALf/0baTSOlqUTbK/1tl6ZmdgQw08xO9X+2DnAecA4ww8yOI2+Db4GvKDhgZt2B7gBJ+q9aKoC5z67kjMG3cbL7ITCWRgL3VprAzOxrAmPaTSOl7aB23TjndgCLgbb4KvV3nc9yIBc4yj/eKN/HEoFNRXxXsnOumXOuWUJCwiEuXyQCZGfDs89y6ePnBYX8bK7iNL5jae1rtJtGylSxFb2ZJQBZzrkdZlYNuBQYhq9v3xpYbGYnAlWArcAs4E0zG4HvZOwJwPIyWr9IWJs1/GcSH72ds/Z9SWX/2G6q8yAjeI1ugGHbYevWUK5Sol1JWjcNgElmFovvbwAznHOzzawK8LqZfQ/sA7r4T9yuNrMZwBogG+ilHTdS4eTm8vWdY7j0X/2JJyMw/DnncxuT+YW/BcbUuZSyVpJdN6ugwCV5vvF9QOcDfGYIoC6jVCheLwwaBKSk4I3rSou9nwSOZVGJJ3iK5+hPTr7/7dSPl/KgK2NFDoHXC40bQ0yM7/eePaF7N0erlDdYxWlBIf8dp9Kc5Qzl0UDIqx8v5Uk3NRM5SF4vdO8O6em+9ykp8P6rm5hOd67mw8C8HGJ4nod5gqfYR9XAuMejWwtL+VLQixykQYP2hzw4OjOFl7mfOuwIzPmZ4+nCJL7gH0GfVatGQkGtG5FiFGzTpPhvLFmf33iP9kzm9qCQH0UvmvIfvuAfuhGZhAVV9CJ/oag2jeG4hTd5mfupy/bA3HU0piuvs5hWwP4bkSnYJdRU0YvkU7B679Mnf5sGGrCJ92iHl85BIf9apXt5+a5VrPO0UvUuYUcVvYhfUdX7fo4uTOJF+ga1aVJI4tF6E7hyxKW82AleLNcVi5SMgl7EL/gk636JbGAc93Alc4MP9OiBZ9gwvDVrls8CRQ6RWjdSYR3oJGseI5d7eZU1NAkK+V/sOBY8+gmMGQMKeYkAquilQiryJKuB899n9QR+Yjx3cxGfBj6TizGpZm+qvfh/dLyreghWLXJoFPRSIRXVpnEOKpNFX0bwJE9Sjb37D550EjETJnBnixblu1CRUqCglwopNbXw2FmsZDx3cyb/CYzlxsQS88gAePxxiIsrxxWKlB716KVCyn/HyHj28AIPsZzmQSHPmWcSs3KF71JWhbxEMAW9VBj5T77u3g1VqkAb5vM9p/IQI4gl1zcxLg6GDYOvvoKmTUO6ZpHSoNaNVAgFT77GbEtjovXlFt4Mnti6NYwbB8cfX/6LFCkjquilQth/8tXRlQn8yN+5xeUL+Tp14I03YMEChbxEHVX0UiGkpsJJ/Mg47qElS4MP3norjBgB9euHZnEiZUwVvUSl/P34k5IyeD7uMVZxelDI/8Kx3F5vnm+yQl6imCp6iTr5+/GXM4/RG3rxN34JHM8mlhfoxwvVBjNyRHwIVypSPhT0EvHyntWamurbNrl7NxyR/itv0JebeCto7sqq59M1cyw7PaczcojuLikVg4JeIlrB3TS/pmRxPy/zJE9Sk92BedupwyMMIzn9Lr6NUcdSKhYFvUS0/LcyuIBPGUNPTuP7oDmTuJ2HeZ54Tz2dlZIKSf/ZS0RLTYV6/M5EuvApFwWF/GqacDGLuINJ7Imvp2e1SoWloJeIkn83zd882TxSbSQ/cSJd+Fdgzh7ieSp+GO2TvmGpXaynPUmFp9aNRIz8/fgLWcro1F6F2jRvcz2Pxr3IE8mN+FnBLgKoopcwVtTzW49I/5UpdGIpLYNC/pdKJ3AFc+nneZsnxjdS9S6Sjyp6CUsFd9NsTsnkQUYwiCHUYE9g3h7ieZbHGbq7L3OrVg3RakXCmyp6CUv5701zNR+wmlMYyqNBIT+dm/g7PzLV8wgo5EUOSBW9hKXUVPg7P/AifWnLR0HHvuNU7udlFtOK+HhI1m4akb+kil7CQv5+/BmNtjO26v18x2lBIb+dOvSvPor2Sd+wxFppN41ICamil5DL68dnpmfTk7E8tfEJ6rI9cDyHGF6jG/9X7VmGjjuK5xTsIgel2IrezOLMbLmZfWtmq83sqQLH+5mZM7Oj8o0NNLO1ZvZfM7u8LBYukS1/Bd+lC1yYPo9vOYNR9A4K+c+rtuIsvuGfnrEMfe0oVe8ih6AkFX0m0No5t9vMKgPLzGyuc+5LM2sEtAECj1o2syZAR+AUoCGwwMxOdM7llMH6JQLl31FzCt/zQk6/Qn34XziWh3mBdzKu41uzEK1UJDoUW9E7n7y7Q1X2/3L+9y8C/fO9B2gHTHPOZTrn1gFrgealt2SJNEXth6+ensYYevAtZwSF/C5qMJD/owlrWOnpAAp5kcNWoh69mcUCK4HjgdHOua/M7FrgV+fctxb8P+MxwJf53m/0jxX8zu5Ad4CkpKRDW72EvYL74dNS0unLiwxgGLXYFZiXQwzjuZvBPE0a9YmPR/emESklJdp145zLcc41BRKB5mZ2OjAIGFzE9KJKMFdowLlk51wz51yzhISEg1mzRJC8/fAx5NCFifzEiQzhsaCQn08bmvIfesWOY4vV124akVJ2ULtunHM7zGwxvvbMsUBeNZ8I/NvMmuOr4Bvl+1gisKlUVisRJzUV2jCf5+hPU74NOraaJjzM88zlCuLjjUkKd5EyUZJdNwlmdoT/dTXgUuAb51w951xj51xjfOF+lnPuN2AW0NHMqprZscAJwPIy+wkkrOTvx1/V4N98UqkN87k8KOR/oz59qydzbdK3zLMr8XhMFbxIGSpJRd8AmOTv08cAM5xzsw802Tm32sxmAGuAbKCXdtxUDHn9+Hrp65jCIG79bWrQ8T3E8wL9GF3tYV4cV4MXFewi5cKcK9Q+L3fNmjVzK1asCPUy5DCd3SiN2zcOoQevUoWswHg2scyocRcP736Cyp6GDNGzWkVKhZmtdM41K26eroyVQ5b3UO4/Uv7k6drDWbJzeNBNxwBm0p5HGcoPu/7OrSFap0hFp6CXQ+L1Qu9ue+mS8SqDGMJRO7cFHV9GCwYwjM9pgccTokWKCKCgl0ORlcX397/BqoynSeTXoEOrOI2BDGUOVwKm/fAiYUB3r5QS8XrhOE8Onc3L+viTGbr9nqCQX0djOjOZM/mG1Z6rMDPthxcJE6ropVjeybnMuftdZu17klNZ7dtL5beZoxnCIJLpThZV8Hhg/fqQLVVEiqCglwNzDmbN4sy7nqBTVvDFTtupwzAe4RXuI4N4ALVpRMKUWjdSmHMs6vchq+LOgfbtaZIv5HdRg6d5nGNZx3P0p54nHjPUphEJY6roZT/nYO5ctvZ+kla/fB10aA/xvEJvnudhtlMXQG0akQihoBe8UxwLHpxDjy1P0ZyvOSrfsQziGENPhjGALdQLjKtNIxI5FPQVWW4uSx6axckvP0un3JVBh/ZSlbHcy3P0ZzMNA+NmkJSErm4ViSAK+grG64XHHs3lnNR3eKrys7TMWhV0PIM4xnFPoYAHtWpEIpWCPorl3aIgNdVXhV/dNpu9b0zlw31DacIP5LsdTSDghzGA32hQ6LvUqhGJXAr6KJX/yU5V2UvblIk8OO45jmNd0LzdVGcMPRnOQ6RRPzBety7UqLH/Dwm1akQil4I+Sg0aBDHpu3iQZB5iOA3ZHHT8T2ryCr15kb5sCzr96qveR45UsItECwV9NEpL4+6UV+jFKOqwI+jQVuryEg8wml7soA6g6l0k2inoo8m6dTB8OEyYwGPsDTr0Kw15gX6Mpxu7qREYV/UuEv10ZWw0WLmS9ed3JOe442H0aNi7P+TX8je6M47j+IXk+L7c1qMGHg+6mlWkAlFFH6mcg3nz4PnnYdEiGhc4/I2dxYo2jzD0xw6s3xCrloxIBaagjzR79/LF/W9y5MQRnJS1utDhBVzCMAawwF2K57/G+pQQrFFEwoqCPgJ4vTD8kS1cs/FVetlozndpQceziWUGN/EC/fiGswLjqanlvVIRCUcK+jA3+5/fs++xkXyWM4Vq7IV8z3LfTXVeoxsv8QCpFH5eX1JSOS5URMKWgj7M5N2i4LTUD+kfN5Kr9y4sNGcDiYykD+O5m50cUeT36EpWEcmjoA8jM17byX96TWR+1ihOYC0FdkiygrMZzkO8zQ1kUznomPbCi8iBKOjDwZo1MGoUV439Fze5PUGHcojhXTowkj58RgvACn1ce+FF5K8o6EMlO5ul/WYRM24MF/jbM9XzHf6DI3iNboymV6H+e+XKUKsWbN+u6l1EiqegL2+bN8Nrr5H+UjIX/fFrocPfcwqv0Bsvndjjv4JVbRkRORwK+vKQm8uCxxazd+RYLk+fSWWy/Y/T9skhhvdozyv0ZiktcfnaM2rLiMjhUtCXpa1bYeJE/hyezKW//Vzo8O/U4zW6kUx3NrB/L6QgF/nhAAAFM0lEQVTHo+pdREqPgr60+av3PSPH0zb9Haqyj1oFpizlQsbQk3fpQBZVgo7pKU4iUtoU9KVl82aYOJFdL03g0rT/FTq8g9pM5jaS6c73nFbkV2jvu4iUhWKD3szigKVAVf/8t51zT5jZ88A1wD7gf8Cdzrkd/s8MBO4CcoD7nXMfldH6QysriyUD5pA59g1aZ8ymEjnULDDlK5ozjnuYzs2kB+2r0UlWESkfJanoM4HWzrndZlYZWGZmc4GPgYHOuWwzGwYMBAaYWROgI3AK0BBYYGYnOudyyuhnKH9r1sDrr5Px2mRa/plW6PAOajOFzoznbr6laZFfoZOsIlJeir0fvfPZ7X9b2f/LOefmO+ey/eNfAon+1+2Aac65TOfcOmAt0LyU110uvF5o3BhiYuCMRttZfscYOPdcOOUUGD6cagVCfgkX0ZnJNGAzvRkVFPJ166L7wItISJSoR29mscBK4HhgtHPuqwJTugLT/a+PwRf8eTb6xwp+Z3egO0BSGNx9y+v1PWc1r41y5ZXgnZjFRRnzeIFJXLPxA6pO2lfoc7/SkEl0YSJ38DMnFvndqt5FJJRKFPT+tktTMzsCmGlmpzrnvgcws0FANuD1Ty98jX7QPRcD35kMJAM0a9as0PHy5PVC9+6Qng7gqJ+ynCavTmEt00hga6H5+6jMLK5lAnfxMW3IKfCvUb13EQknB7Xrxjm3w8wWA22B782sC3A1cIlzLi+sNwKN8n0sEdhUCmstNQWr99274Zj0n7iFqXRmiu+GYkVYzjlMogvT6Mh26hY5R9W7iISbkuy6SQCy/CFfDbgUGGZmbYEBQEvnXHq+j8wC3jSzEfhOxp4ALC/9pZdMUS2ZSZN81XtDfqVDynRuYSrnsKLIz28gES+dmEQXfuTkA/5zzFS9i0h4KklF3wCY5O/TxwAznHOzzWwtvi2XH5sZwJfOuXudc6vNbAawBl9Lp1eodtwEt2QgJQXefnULt/EONzOdliwhpnBXiZ3U4m1uwEtnFtMS5z9nbeZ7VGtBushJRMJZsUHvnFsFnFnE+PF/8ZkhQLlf+lNUSyY9HeqwnQ68y81MpxWLqEThP3cyqcJcruBNbuUDriEmvhpdusAvc4r+20AeXeQkIuEuoq+MzR/sRx4Ju3bBPv/GmPSUNDrwHtfzDq35hMpkF/p8LsYntGYqt7C4TgdyatUp9gRqixbBf5ioVSMi4S5ig75gW2bbNl/Pvb0/3FuyhFhyi/zsp1zADG7ibW7gNxoQHw/Jr5QssDt1UrCLSGSJ2KAfNMgX8ifwE9cxkw68y7l/cc73C85jBjcxO+5G2tyZyJw58HsqeFSVi0iUi9igj0/5ge+4kVNZXeTxXIxlXMDc+BtYVKcDyzclqtUiIhVSxAa9a5TE3zYE3yUym1gW0YqZXMd7tGdnfEOSk2Gogl1EKrCIDfrHhlZnYZfLuCRnPvNoy0yu46NKV5NT+8jAs1STVb2LiERu0HfqBDO3vsJZw+vy343VSUqCEQp2EZFCIjboAa7rk8R1fUK9ChGR8FbsbYpFRCSyKehFRKKcgl5EJMop6EVEopyCXkQkyinoRUSinLmibrBe3osw2wKkHMZXHAVFPPMvcmj9oRXp64fI/xm0/kPjcc4lFDcpLIL+cJnZCudcs1Cv41Bp/aEV6euHyP8ZtP6ypdaNiEiUU9CLiES5aAn65FAv4DBp/aEV6euHyP8ZtP4yFBU9ehERObBoqehFROQAFPQiIlFOQS8iEuUU9CIiUU5BLyIS5f4fA2V+68fxlOYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "yearly_inc.plot(style='bo')\n", "yearly_interp.plot(linewidth=3, style='r')" ] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }