module3/exo3/exercice.ipynb

parent c588a7a1
...@@ -2235,6 +2235,14 @@ ...@@ -2235,6 +2235,14 @@
"print(data.columns)" "print(data.columns)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Objectif: regrouper et analyser les émissions de dioxyde de carbone (CO2) en fonction des années.\n",
"On commence par extraire les années uniques à partir d'un ensemble de données, puis somme les émissions de CO2 pour chaque année. Les résultats sont ensuite stockés dans une série pandas pour une analyse ultérieure. Enfin, le code génère un graphique de dispersion pour visualiser l'évolution des émissions annuelles de CO2 au fil du temps. Cette approche permet de mettre en évidence les tendances et les variations annuelles des émissions de CO2, facilitant ainsi une compréhension plus approfondie de l'impact environnemental sur une période donnée."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 61, "execution_count": 61,
...@@ -2276,7 +2284,6 @@ ...@@ -2276,7 +2284,6 @@
} }
], ],
"source": [ "source": [
"#question1\n",
"# Grouper par année (Yr) et sommer les valeurs de CO2\n", "# Grouper par année (Yr) et sommer les valeurs de CO2\n",
"annees = data[' Yr'].unique() # Obtenir la liste des années uniques\n", "annees = data[' Yr'].unique() # Obtenir la liste des années uniques\n",
"\n", "\n",
...@@ -2410,62 +2417,76 @@ ...@@ -2410,62 +2417,76 @@
"plt.show()" "plt.show()"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On réalise une analyse des données de concentration de CO2 en utilisant des techniques de traitement de séries chronologiques. On commence par extraire les données d'année et de concentration de CO2, puis appliquer la transformation de Fourier pour identifier les composantes périodiques. Les fréquences principales sont détectées pour caractériser ces oscillations. Pour modéliser la tendance à long terme, une régression linéaire est employée, et ses paramètres sont estimés. L'extrapolation de cette tendance est effectuée jusqu'en 2023 à l'aide du modèle. Le résultat est illustré dans deux graphiques : le premier expose la concentration de CO2 avec ses oscillations périodiques, tandis que le second dépeint la contribution lente avec une extrapolation jusqu'en 2023. Cette analyse permet de visualiser les tendances périodiques et à long terme dans les données de CO2, offrant un aperçu utile pour des analyses et des prévisions futures."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 45,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"ename": "ValueError", "data": {
"evalue": "to assemble mappings requires at least that [year, month, day] be specified: [month,year] is missing", "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAGoCAYAAACwmRWfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XucZHdd5//Xp+va1V3V95r7ZAYSyAVCgJkxLqzLrrBERUFXXUQBFzTKA1Z2FcG4+9gf7hplXUUXFXaDF0DAbFRc0QUUwbiLBiYTCOQyEwhkkkxmerpnunu6+lbXz++P863u6p6+TdLVVd39fj4e53HO+Z7zPedb1acmqU99v5+vuTsiIiIiIiIiIu2so9UNEBERERERERFZiwIYIiIiIiIiItL2FMAQERERERERkbanAIaIiIiIiIiItD0FMERERERERESk7SmAISIiIiIiIiJtTwEMERGRJjOzg2Y2ZWaxTbjX3Wb2E82+j6zOzP6pmT3SsH/azF4ett9tZh99Btd+yMxetgHNfLr3f7+Z/fIa5yx6/Vd4/R83sy807E+Z2bOezrVERGR7UQBDRESaysxeZ2YnwpeQc2b2aTN7aavbtRwzO2RmbmbxZ3id+S+rAO7+hLt3u3v1mbeyecwsGb5cf8PMpsPr+AMzO9RwzqvM7Hg4ftHMPmZm+xuOf4+ZfcHMJsxs2Mw+aGbZVrye9TKz683sk2Z2ycwKZvZ3ZvZPnsk13f3/uftzN6BtH1oaLHD3G9z97md67WXudbeZzYXP6gUz+4SZ7Vlyzq1A0d3/42rX2qjXH67V7e7f2ohriYjI1qYAhoiINI2Z/SzwW8CvALuAg8D7gVe3sl3PxDMNbrS5PwW+D3gd0AO8ALgP+E4AM/tB4OPAfwcGgRuAIvAFM+sL1+gBfhnYC1wH7Af+2+a9hCtjZs8G/gF4ADhM1O4/B/7GzL69lW1rkbe5ezfwHKAX+M3Gg+5+h7v/+9UusM0/IyIi0kIKYIiISFOYWQ/wn4G3uvsn3H3a3cvu/pfu/vPhnJSZ/ZaZnQ3Lb5lZKhx7mZmdMbOfM7OR0Hvj3zRcv9PMfsPMHg+/nH/BzDrDsZvN7B9DL4CvNna3D78y/xcz+4fwa/vfmNlgOPx/w3oi/Ar97aE7+z+Y2W+a2RjwbjN7tpl9PvRAuBB6IfSG6/8RUaDmL8M13rm0Z4eZ7Q2/+I+Z2aNm9pMN7Xu3md1lZh8J7XvIzI6s8j6/wsxOhffgdwBbcvxNZnbSzMbN7K/N7KoVrvNy4BXAq939XnevuPsld/9dd/99MzPgN4BfdvePufusuw8DPwFMAf8ewN0/7u6fcfcZdx8HPgi8ZJX2/4KZfTO81ofN7Psbno0JM3tew7lDZjZrZvmw/yozuz+c949mdmPDuQdCD4LR8Hf6nRWa8G7gHnf/D+4+5u4Fd38f8EfAfw3XSpvZR8N1JszsXjPbFY71m9kfhud33Mz+dyh/mZmdWel1L3kP/sSi3iqXzOz/mtkNofxW4EeBd4Zn6S9DeeNwlKf9GVqNu48BfwY8r+E+v25mT5jZeTP7Hw2ft/p93mVmw8AfLn39ZnZd+OxNhGf6+xqODYTPw6SZHQeeveT9cTO7erlzLfosfyEcu6wHlS0ZUrXez4OIiLQnBTBERKRZvh1IE/2avZL/ANwM3ET0a/8xoLFr+m6iX/T3AW8GftcWfun/deDFwD8B+oF3AjUz2wf8H6JeAP3AO4A/M7Ohhuu+Dvg3QB5IhnMAviOse0O39XvC/rcB3wrn304UJPhVFnoZHCD6Ioy7vx54AvjecI1fW+Z1/zFwJtT/QeBXzOw7G45/H3An0S/gnwSW/fJtUeDlz8J7Ngh8k4ZggZm9BvhF4AeAIeD/hXsv5+XAcXd/coXjzyUKzPxJY6G710IbXrFCve8AHlrhGKHN/5To7/xLwEfNbI+7F4FPAD/ScO4PA3/v7iNm9iLgD4CfAgaA/wl8MnzRjgF/BTwOHCJ6fu5c4f6vWPqagruAl5hZBnhjaN+BcK+fBmbDeX8EZIh6o+RZ0mNhnT4NXBPqfxn4GES9HcL2r4Vn6XuXqftMPkMrCs/WvwK+Eor+K1GvjJuAq8P1/tOS+/QDVwG3LrlWAvhL4G/Ca/y3wMfMrD7E5HeBOWAP8KawrORKzl36mq7k8yAiIm1IAQwREWmWAeCCu1dWOedHgf/s7iPuPkr0Bfb1DcfL4XjZ3T9F9Ev/c82sg+iLy9vd/Sl3r7r7P4YvvT8GfMrdP+XuNXf/LHAC+O6G6/6hu3/d3WeJvqjetMZrOevuvx16Jcy6+6Pu/ll3L4Z2vxf4Z+t5U8zsAPBS4F3uPufu9wO/t+R1fyG0v0r0BfkFK1zuu4GH3f1P3b1MNFxnuOH4TwG/6u4nw9/hV4CbVvjVeQA4t0rT671UljvnXMPxeWb2CqIv///pshqBu/+Ju58Nf6v/BXyD6Es4RMNVGgMYrwtlAD8J/E93/1L4+3+YaDjLzaH+XuDnQ8+fOXf/AssbXOU1dQB9RM/hAHB1uNd97j5pUX6I7wJ+2t3Hw3P69yu91lXegz8IPT+KRIGwF1jUg2k9ntZnaJXrvc/MJoCvEr0HPxt63/wk8O/rvVSInqXXNtSrAf9f+EzMLrnmzUA38B53L7n754kCTD8Sgk3/CvhP4W/1IPDh5Rp2Jeeu4Eo+DyIi0oYUwBARkWa5CAza6uPh9xL9Sl73eCibv8aSAMgM0RehQaLeHd9c5ppXAT8UuqpPhC9jLyX6xbau8Ut+/ZqrWdQrwczyZnanmT1lZpPAR1nmC/wK9gL1L4F1jxP9or1S+9IrvI97G9vm7r6krVcB/73hfRgj6j2yj8tdZPF7tNSFsF7unD0Nx4FoGA9RsOEH3f3rK13UzN7QMAxkgmjIQv29/DzQaWbfFr5k3sRCj56rgJ9b8nc+QPSeHAAeXyN41vi6VnpNNWCcKIj018CdYZjGr4VeBQeI/pbj67jPsswsZmbvsWgYzSRwOhy6kufp6XyGVvIz7t7r7vvc/UdDUGSIqJfJfQ3v9WdCed2ou8+t0sYnQ2+dxnbuC9eIs/i5bXw9ja7k3OVcyedBRETakAIYIiLSLPcQdfV+zSrnnCX6UlF3MJSt5UK49rOXOfYk8EfhS1h96XL396zjur7O8l8NZTe6e46o14etcn6js0C/LZ6Z4yDw1Drat9Q5oi/RAIRfyg80HH8S+Kkl70Wnu//jMtf6W+CYNcwossQjRMNefqixMPSG+VfA5xrKXkg09OVN7v45VhCCEh8E3gYMuHsv8CDhvQxfeO8i6oXxOuCvGgI/TwK3L3ltGXf/43Ds4BrBs8bX/UPLlP8wUW6MmdB74Zfc/XqiIUuvAt4Q7tNvIf/J0/Q6oqS2Lyca6nEolNefp9WeJXj6n6ErcYFoyMwNDe91j0fJPuvWeuYPhGelsZ1PAaNAhcXP7cEVrrPWudNhnWko292wfSWfBxERaUMKYIiISFO4+yWioQO/a2avMbOMmSXM7LvMrJ4X4o+B/2hRcsbBcP5H13HtGlH+g/dalBAzZlHCzVSo/71m9spQng4JBVf6Yt5olOhX92etcV6WqCv+RMi58fNLjp9f6Rohx8Q/Ar8a2nYjUW6Cj62jfUv9H+AGM/uB8GX9Z1j8he1/ALfZQlLIHjNb7ss67v63wGeBPzezF5tZ3MyyZvbTZvam0LvjHUR/r9dZlER1N9Hwlxwh94NFSTc/A/xbd//LNdrfRfTFdzTU/TeEpJENPg78a6KhEh9vKP8g8NOhd4aZWZdFU7hmgeNEwZ33hPK0ma2USPSXgH9iZrdblJAza2b/lihA8a7Qrn9uZs8PQxgmiYZlVN39HFH+ivebWV94vr9jhfusJEs09OUi0RfvX1lyfMVnKXhan6ErET5vHwR+0xYSqO4zs1eu8xJfIgouvDO8Ry8Dvhe4MwyT+gRRctyMmV1PNOxouXasem7oLfIU8GPhs/8mFgc51/15EBGR9qQAhoiINI27vxf4WaKkgqNEv4C+Dfjf4ZRfJspP8TWiaSy/HMrW4x2hzr1EXcH/K9ARAgSvJkrWV7/nz7OO/+a5+wxRks5/CN3Mb17h1F8CXgRcIgoifGLJ8V8l+lI5YWbvWFqZqEfBIaJfpv+cKHfAZ9dq3zLtvUDUe+A9RF+AryGaErR+/M+J3pc7w/CEB4lyNqzkB4FPAf8rvLYHgSNEvRQIOSpeTzTjyAXgYaATeIm7XwzX+Dmirv6/b9HMGVNmtmwST3d/mGhmk3uIvqg/v7H94Zz6l9+9RMGCevkJorwMv0M0zONR4MfDsSrRF+SriRKqniEKgizXhm8QDTF6AdHwjXNEPUpe6e71tuwmmmJ2EjgJ/D0LQYLXEwU0TgEjwL9b7j6r+AjRMIiniN7PLy45/vvA9eFZ+t9LK/PMPkNX4l1E7/EXw7P0t6yeS2Oeu5eIEtN+F9Fz837gDe5+KpzyNqJhLcPAh4A/XOVya537k0Sf94tEiVXne1c8jc+DiIi0GYt+UBERERER2VrM7MeBn3D3l7a6LSIi0nzqgSEiIiIiIiIibU8BDBERERERERFpexpCIiIiIiIiIiJtTz0wRERERERERKTtrWd+9C1pcHDQDx061OpmiIiIiIiIiMgq7rvvvgvuPrTWeds2gHHo0CFOnDjR6maIiIiIiIiIyCrM7PH1nKchJCIiIiIiIiLS9hTAEBEREREREZG2pwCGiIiIiIiIiLS9pgYwzOy0mT1gZveb2YlQ1m9mnzWzb4R1X8P5t5nZo2b2iJm9sqH8xeE6j5rZ+8zMmtluEREREREREWkvm9ED45+7+03ufiTs/wLwOXe/Bvhc2MfMrgdeC9wA3AK838xioc4HgFuBa8Jyyya0W0RERERERGRTzZWrlKu1VjejLbViFpJXAy8L2x8G7gbeFcrvdPci8JiZPQocM7PTQM7d7wEws48ArwE+vbnNFhEREREREbkyxUqVsekSF6dKXJwuMTZd5OJUiQtTC9sXp0tcnC4yNlViulTluj05Pv32f9rqpredZgcwHPgbM3Pgf7r7HcAudz8H4O7nzCwfzt0HfLGh7plQVg7bS8tFRERERERENlWt5kzOlbkwVeTCVD0wUeRCociF6RIXp+oBimhdKFaWvU4iZgx0pejvSjLQneTQQIaB7hQPn53kS49dpFpzYh3KntCo2QGMl7j72RCk+KyZnVrl3OX+Mr5K+eUXMLuVaKgJBw8evNK2ioiIiIiIyA41V64yWihyfnKOkbA+P1lkZHKO0flgRZGx6RKV2uVfSc2gPxMFIwa6Ujx/fy8DXclo6Y4CFYPdC9u5dJzl0jt+5J7T3POti4xNlxjKpjbhlW8dTQ1guPvZsB4xsz8HjgHnzWxP6H2xBxgJp58BDjRU3w+cDeX7lylf7n53AHcAHDlyZNkgh4iIiIiIiOwctZozOlXkqYlZRkJQYj44UZhjZLLI+cIcEzPly+omYkY+m2Ywm2Jfb5ob9/UwmI0CFAPdSQa7F9Z9meSG9JgY6o6CFiOFOQUwlmhaAMPMuoAOdy+E7X8J/Gfgk8AbgfeE9V+EKp8EPm5m7wX2EiXrPO7uVTMrmNnNwJeANwC/3ax2i4iIiIiIyNZRmCtzdmKOsxOzPDUxy7lLs5ydmOOpiVnOTsxyfnKOcnXx79vxDiOfTZHPpblqIMOxw/3sykX7u3LpaDubpi+TWLaXRDPlc/UARpEbNvXO7a+ZPTB2AX8e/thx4OPu/hkzuxe4y8zeDDwB/BCAuz9kZncBDwMV4K3uXg3XegvwIaCTKHmnEniKiIiIiIhsU3PlKhenS4xPLyS+HJsuh3WJ4Utz80GLpTkmYh3G7lyafb2dHLmqjz29nezt7WRvT5rdPVGAoj+TpKNN80vks2kARieLLW5J+2laAMPdvwW8YJnyi8B3rlDnduD2ZcpPAM/b6DaKiIiIiIhI85WrNcamS4wWitEyFa3HGoIU4zNRQsyx6RKz5eqy14l1GH2ZBLt70hwcyPDtzx5gb2+aPT1RkGJfbydD2dSWTn5ZHzYyUphrcUvaTyumURUREREREZFtYKpY4cz4zEJgolDkwtRCkOJCocRoSHy5nEwyRl9IfNmXSXL1UDf9XUn6QvLL/iVLLp1o254TGyWdiJFLxxkpqAfGUgpgiIiIiIiIyLJqNed8YY4nLs7w+NgMT47N8ER9uTjDxWUCE+lEB0PZFIPdKa4ayHDkUB+D3SmGsqn58nxYdyZjLXhV7S+fSzOiISSXUQBDRERERERkh5otVbkwFfWaGCkUebIhSPH42AxnxmYpVWvz53cY7Ovr5GB/hn95wy4O9Gc40JdhVy4dghNJulPLTw8q65fPphidUgBjKQUwREREREREtolKtcb4TJmL00UuTpW4MBWtL05HwzkuThe5EPYvTpWYKV2eayKbinNwIMO1u7O84vpdHOzPzC97eztJxDpa8Mp2lqFsii8/Md7qZrQdBTBERERERETaVKlSW5Tcsh54GFs0O0d9u8Sl2TLul18n3mEMdCcZ6Eox0J3k8GAXA11JBrOpaN0dDek40N9JT+fmTx0qi+WzKUYmi7i7/hYNFMAQERERERHZZO7O+EyZc5dmGb40x7lLc5yfjNbDl+YYnoz2C3OVZet3GIuSW163Oze/PdAdBSQGupIMdEfDOhSU2Fry2TTFSo3JuQo9nYlWN6dtKIAhIiIiIiKyQdydyblKlFeiEA3XGCnMzQcphicXAhSlSm1R3Q6DXbk0u3Jprsl389KrBxeCEiEYUd/u6dz+s3HsZPlcNJXqaGFOAYwGCmCIiIiIiIisolKNfgkfmy4yGqYFvRCmC42W0kLAYrp0WWACIBnvYHcuze6eNC882Du/vacnze6eTnbn0gx2J4krv4QQ5cAAGJkscnU+2+LWtA8FMEREREREZEdwdy7Nlrk4XWJipsTETDlaZssL+2H70myZ8VC20jCOel6Jev6Ia/JZBrNJhsL+YHdqfr+/K6khHLJu+WwaQDORLKEAhoiIiIiIbHkzpQrnJ4sMX5pjpBDljxi+VOR8YY6RyXpOieKyvSMgGr7R05mgNxMNzxjoSvLsoe5QlqAvk6SvK8lg90KAQsM4pFnqQ0hGJhXAaKQAhoiIiIiItJ1SpcbETInxmTJj0yXGZ6JZNiZmSoxNR70jokBFccVkl52JGLt70uzKpXjRwT525dLksymGsqn5YEVfJkFvZ5JsOq5ghLSNbCpOKt7BSGGu1U1pKwpgiIiIiIhIU82WqozPlOaHZIyHwMTEdFjPlBibKTEe9senSxSKyw/bAOhOxenNJMhnU/PJLqPkl6lF6+5UXMM2ZEsyM/K5FCMF9cBopACGiIiIiIisS6lS49JsmUuz9UDE4nwR9f3x6fKiYEVxhWEbEAUj+rrCEI1MkmcNdYftBH1hBo7eTCKajSOTpCeTIBWPbeKrFmmNfDatISRLKIAhIiIiIrID1WrOxGx50UwaF6eKXJwKPSVmy1yaWQhEXJotM7VKr4hYh9HbkC9if1+G5++LghC9mQT9meT8kI16WW9nkmRcs26ILCefTfH184VWN6OtKIAhIiIiIrJNlKs1xqZLjBaKjIZgxIWpIhcbp/oM67HpEtWaX3aNeiCiJ5OgtzPBrlya5+7O0tuZDMGJBD2Z5KJgRU8mQXdSOSRENlI+m+ILj15odTPaStMDGGYWA04AT7n7q8zs3cBPAqPhlF9090+Fc28D3gxUgZ9x978O5S8GPgR0Ap8C3u7ul/9rKyIiIiKyzZSrtflARD0wcWGqyIXCQlm9F8X4THnZa6TiHWFKzxT7etPcuK+HwWw0/edAd2p+Zo2B7hS9mllDpC3kc2kKcxXmylXSCQ2bgs3pgfF24CSQayj7TXf/9caTzOx64LXADcBe4G/N7DnuXgU+ANwKfJEogHEL8OlNaLuIiIiIyIaYLVWZmF0YjhGtG/bDkI1oO5TPlFdMZplJxhjKRtN5Pmuoi2OH++eDFEPdKYYaAhRdyZiSWYpsMUPZaCrV0UKRA/2ZFremPTQ1gGFm+4HvAW4HfnaN018N3OnuReAxM3sUOGZmp4Gcu98TrvkR4DUogCEiIiIibWCuXGVkssj5whznJxem9awvI2F/ulRd8RrxDqM3kyDXGQ3byGfTXJPPhqk+E/OBisHuKDgxmE2SSWo0uMh2Vg9gjBTmFMAImv2v3m8B7wSyS8rfZmZvIBpa8nPuPg7sI+phUXcmlJXD9tLyy5jZrUQ9NTh48OBGtF9EREREdqC5cpWx6RJj0wv5IqLtaH8hQFHk0uzlwzaS8Y5oKs9smuv25njZc/MMZpPzeSTqOSaiAEVSPSRE5DL5egBDM5HMa1oAw8xeBYy4+31m9rKGQx8A/gvgYf0bwJuA5f7F9lXKLy90vwO4A+DIkSPKkSEiIiKyw9VqzlSpwuRsmcnZCpNz5Wh7rsLETImL09HMG2PT9e0oULHSbBuJmDHQlWJXT5rDg13c/KwBduXS5LMpduXSYUnR05lQQEJEnpF8Ng3ASEEBjLpm9sB4CfB9ZvbdQBrImdlH3f3H6ieY2QeBvwq7Z4ADDfX3A2dD+f5lykVERERkG3J35so1pksVZorVaF2qMFOqMl2sMlOqMF2qMlOsMF2sUChWLgtOFMJ2oVhhtdTv8Q5joDtJf1eUyPJgf4b+rih3RH9XkoGu5Pzxge4k2VRcgQkR2RQDXUliHcZIYa7VTWkbTQtguPttwG0AoQfGO9z9x8xsj7ufC6d9P/Bg2P4k8HEzey9REs9rgOPuXjWzgpndDHwJeAPw281qt4iIiIg8c3PlKpdmG5NV1rdLTM42JK2sLzNlpoohSFFaPejQyAy6U3Fy6QTZdJxcZ4J9vZ3kOrPk0lFOiVw6HrbjDWXREI5cWgEJEWlPHR3GYHdSQ0gatCLzz6+Z2U1Ew0BOAz8F4O4PmdldwMNABXhrmIEE4C0sTKP6aZTAU0RERKQl3J0LUyXOXZrl7MQcZydmF7YvzXJuYo7xmRLFSm3Fa5hBLh0lp+zpjJa9vZ3k0nEyyThdyRiZVFgn43SlonVmyX5XKkY6HtOUnyKybeWzaUanFMCo25QAhrvfDdwdtl+/ynm3E81YsrT8BPC8JjVPREREZMeq1rxheEa0nilVmSqWGb5U5NylWZ6aiAITZy/Ncu7SHKUlwYl0ooO9PZ3s7e3kpdcMMtCVnE9Q2dOZoLczOb/dk0mQTcUVdBARWYd8NsW5SxpCUqe5l0RERES2qEq1Np+MciIMz5iYiYZs1PcvzZbn80ZEwYkK08Uqs+UoYLFaTwmADoPduTR7eju5cX8vt9yQZm9vJ3t6ovXe3k76MkpYKSLSDEPZFF89c6nVzWgbCmCIiIiItIFKtcbEbDmaDWOqxHiYIWMsbI9NLw1SlJicW36mDFgYptHTmaArDMfIpuPszqXJpGJkkjG6kvGFoRmpaL+zXp6KsTvMrhGPdWziOyEiInX5bIqL00Uq1Zr+LUYBDBEREZENV605k7NlxmdKjIdgw/hMmfHphWDEoiX0lFgpcWU2Hae/K0lvJklfJsmzBrvozUTDMnozCfoy0ZCN3s4EvZkkvZ1RosqYhmmIiGxpQ7k07nBxusSuXLrVzWk5BTBERERkR6pUaxQr0VKqL9Xqkv3F243HZsvVEJCIAhRjoWfE+BrBiHiH0deVpD+TpL8ryXV7cvR3JRctA11J+sK6N5MkGdevbiIiO1E+mwJgZLKoAAYKYIiIiEibcndmy1Wm5ipMzlWYKlaYmqtQmCtTKFYozEX7U8UyhbkKs+UqxXKNYqU6H5goVuplDeXlKBhRra1zns5VdCZi9GWiXg99XdFMGv2Z5KKyeq+Jepmm7RQRkfWaD2AU5oCe1jamDSiAISIiIhvG3Zkr1yjMlaOAQ1imi1HCyIX9hfV0sbqovDC3cN56ggydiRjd6SjHQyoeI5XoIBXvoDMRo7czEfZjpOJReSrRsB2PkYx3REssWidi0bGl5Yu2Yx10JmOkE7FNeFdFRGSnyodeF6MFTaUKCmCIiIjIErWaMz5TYnSqyGihyKXZqIdDYa6+rjA5d3lZfbuyjqCDGXQl43Sn4nSlYmEdp78rQzYVJ5uO052O051KkE3H55fuVILuVON+XEnNRERk2xrsTgIwogAGoACGiIjIjjFXrjJaKDJSiAITo4W5Rfv19YWp4opBCDPoTsXJpRcCC7tyaa7Jx8nOlyXmgwv1wMTSQEVnIkaHEkyKiIisKhWP0ZtJhCEkogCGiIjIFlIfojExGyWKjKbTLDM5W15cNhvKZqLyiZmod8RSHQYD3SmGulMMZVNcuzvLUDZFPptiKJtmsDtKIlkPVnQl4wo8iIiIbKJ8NsXIpHpggAIYIiIiTefuTJeqixJOLuSBWMgNMVNayAcxXawwXaqGHBGL80WUqrUV7xXvMHo6E/NTag52J7k6301PZ4KhbGp+yYf1QFdKU22KiIi0sXw2rSEkgQIYIiIiayhValyaLYdloZfDpdkyk7MLQYlCsT4rRpQPYqpeVqysOKVmo1iH0ZVcGGbRFYZdDHRlFpX1dCboDQGK+WBFJklPZ4KuZEwzXIiIiGwj+WyKxy5Mt7oZbUEBDBER2RHK1RqT80GIhWVyrjJfPjGzNDgRDcWYKVVXvXYmBB266/kfUnGGulNhP042tTghZXdjfohkFKToSsVJxTsUfBAREZFFhnIpRgtF3H3H/3+CAhgiItK23J1ipTY/dGK6FA2zmCpWmWkcYlGqMBOGXhTmKiEwUV4UsFgrCJFOdEQ9GzqjngwH+jNhf6GXQ0/Yrvd26O2MAhKaBUNERESaJZ9NU6pGvUF7M8lWN6elFMAQEZENN1euMj5TYny63JDrodKQ66G6pCzaj4ITjcGKKtV1TMkJUTLKrmTUu6GnM0EuBCGe17kQeMil44sCEfXzcukE6USsye+KiIiIyJXLZ1NANJWqAhhNZmYx4ATwlLu/ysz6gf8FHAJOAz/s7uPh3NuANwNV4Gfc/a9D+YuBDwGdwKeAt7uvZzSxiIg8XbWaM1NeSDxZn+1ifKY0vx6fiXJCjE8vLi9WVk6GTeQiAAAgAElEQVQyWZeKdyzK69CditHXlWR/X2Z+SEU0vCIaYpFJxulKxpbsa/iFiIiIbG9D9QDGZJHn7Mq2uDWttRk9MN4OnARyYf8XgM+5+3vM7BfC/rvM7HrgtcANwF7gb83sOe5eBT4A3Ap8kSiAcQvw6U1ou4jIllSu1haGUszneogSThbmykwXFyecrA+9qPeKmJqrMFVaPfFkrMPoDckk+zJR4OH5+xL0dSVDgskkfZkE2XSCrtSSxJTJmIZdiIiIiKzDQg+MuRa3pPWaGsAws/3A9wC3Az8bil8NvCxsfxi4G3hXKL/T3YvAY2b2KHDMzE4DOXe/J1zzI8BrUABDRLa5ShjrODGfVLI03wvi0qKgRBSYqO+vJ9+DGfNJJBeST8bZ05Ne2K/3jAgJJ3s6o0BFXyZJb1eUqFI9HkRERESaK59LA2gqVZrfA+O3gHcCjf1cdrn7OQB3P2dm+VC+j6iHRd2ZUFYO20vLRUTairszV64xW65GS6nCbGnJfrnKbKnGTKnCXLnKdKkaBSNmykw0BCgmZ8sUipVV75dNx8ml63kc4hwazDTsL+R7WFwWJZ3MaKpNERERkS2hOxX9v9vIpAIYTQtgmNmrgBF3v8/MXraeKsuU+Srly93zVqKhJhw8eHCdLRWR7cTdmZyLhkmUq065WqNUqVGu1ihXnUq1RilsR2X14wvnzpWrzFWiQMNcpRrtl6vMlaNjs2G7GMrr+7Pl1Xs9LCfeYfMzXPR2JtiVS/PcXdmwH4ZiZBZmvqgP2cimE8Q6FIAQERER2Qny2RSjUwpgNLMHxkuA7zOz7wbSQM7MPgqcN7M9offFHmAknH8GONBQfz9wNpTvX6b8Mu5+B3AHwJEjR5TkU2SbqNac8ZkSF6aKXCiE9VSRC1ML2xfD9sWpEqXq2gkk1xLrMDoTMdKJDtKJWFg66ExEuRwGumJ0JmOk4x0Lx5JRdLwzES3psJ1JRvU7E1GdxnUiZuoJISIiIiKrymfTjEwqB0bTAhjufhtwG0DogfEOd/8xM/tvwBuB94T1X4QqnwQ+bmbvJUrieQ1w3N2rZlYws5uBLwFvAH67We0WkStXq3no1bDQm6FUiXo61Ndz5SozYVrMmYYpMmdK0ZSZs6XFZfVpNi/NlhmbLrHcTJqJmDHYnWKwO8VAd5Ln7s6G/SS5zgTJWAeJWAeJmJGId5CMdRDvWNieP9awnQwBiYQSTIqIiIhImxjKpTh5drLVzWi5zZiFZKn3AHeZ2ZuBJ4AfAnD3h8zsLuBhoAK8NcxAAvAWFqZR/TRK4ClyRWo1Z6pUmU/2ODlXXggmlKLgQbQOZeV6WYXZcm2+fLZUpdgQmKgHLCrLRRfWKdZhZJIxukLvhUyYHrO/K8mBvgy5zvh8kKIenBjMphjsSpHrVBJJEREREdn+hrpT/L2SeG5OAMPd7yaabQR3vwh85wrn3U40Y8nS8hPA85rXQpH2Ug49Fuo5F4qVhe35dSgrzC0EJSYbZqFoLCsUV58Os86MRUMeMslYNCwiEWN3LkE6GSMdj5GM23wPhmR8YZ1cuh/vIBl6OHQmYmTC9Jmd9YBFKkYy1qEghIiIiIjIKvK5FFPFCjOlCplkK/ohtIed+8pFnoZqzZkuVZguVpiaq1AoLmxPhe1ipRYleKxUw3a0LlZC0sewrh8rhWPziSIrNapPo0dDdypOLh2fn2lib2+aa9PZaD/MSFE/lktH02N2NuRoyCTjpBMKJoiIiIiItJt8NkylOlnk0ODO/Rq/c1+5tLVazSnXalTCzBDdqTjxTcpJ8OBTl/idzz/K5FyZqWIUmKgHKGZK659lIt5hpBMxUvEOUiGvQj2/QireQa4zQT6bIhX204kO0vGFZJHpRIxUYiFJZCq+OJlkOhH1hsh1xjf1/RERERERkc2Vz6YAGCkUOTTY1eLWtI4CGDKvUo16AtR7BETrhd4D9f3GHgPzPQvCcIZipUpx0XrxscbpKis1n8+jUKk55UqNci06vrQHwkuvHuSjP/Ftm/I+fOSe03z+kRFu3NcT5WHoz5BNRT0WulNxsumF7e5UnO70wnYmDI9IxjoUUBARERERkQ2Rz0UBjNEdngdDAYxt4HMnz3N2YpbZkB9htj4Uob5fivIlROsacw37jYGJZ5CHcV4y3kE63tHQq2ChB0IqHiOTiS+a+SEeW8ilUN+OL5kV4ovfGuP/fn1008Z7nTg9zndcM8jvvfFo0+8lIiIiIiKylvkhJIWdPZWqAhhb3OMXp3nzh08sKkvELBqKkIyGGnTODzuI0dOZYHcuNT/8IJ2IEi2m4rGwXml/obw+3KG+nYrHSCWiBI4dHRufP+GaXVk+f2qErzwxwUuuHtzw6zcaLRT51oVpfvjogabeR0REREREZL16OxMkYsaIemDIVvZQmAv44z/xbdx4oJd0fPsNXXjxVX2YwZceG2t6AOO+x8cAOHqov6n3ERERERERWa+ODmOwO8XIpAIYsoWdOjdJh8GLruojnYi1ujlNkUsnuH5PjnsfG2v6vY4/Nk4q3sHz9/U0/V4iIiIiIiLrlc+mdvwQku31U/0OdHK4wLOGurdt8KLu6KF+vvLkOKVKran3OfH4GDcd6CUZ10dDRERERETax1A2veOTeOpb2hZ3aniSa3dnW92Mpjt2uJ+5co0Hz15q2j2mixUeOjup4SMiIiIiItJ28rnUjs+BoQDGFlaYK/Pk2CzX7cm1uilNVw8qNHMYyVeemKBac44eVgBDRERERETaSz6bYmy6RLna3F7p7UwBjC3s6+cLADuiB8ZQNsXhwS7uPd28AMbx02NRPpGDvU27h4iIiIiIyNNRn0r1wtTO7YWhAMYWdvJcCGDsgB4YAMcO9XPv6XFqNW/K9e99bIzr9uTIphNNub6IiIiIiMjTNZRNAezomUgUwNjCTg1Pkk3H2duTbnVTNsXRw/1cmi3z9ZHChl+7XK3xlSfHlf9CRERERETaUr4ewNjBeTAUwNjCTp0rcN3uHGbW6qZsimNNzIPx4FOXmCvXFMAQEREREZG2lM/VAxg7dypVBTC2KHfn1HCBa/ds//wXdQf6O9mVS3H89PiGX/tEuObRQ30bfm0REREREZFnarA7hZmGkDSFmaXN7LiZfdXMHjKzXwrl7zazp8zs/rB8d0Od28zsUTN7xMxe2VD+YjN7IBx7n+2ULgerODM+y1SxwrW7d0b+CwAz4+ihfu59bAz3jc2Dcfz0GFcNZMjndsZwHBERERER2VoSsQ76M0kNIWmSIvAv3P0FwE3ALWZ2czj2m+5+U1g+BWBm1wOvBW4AbgHeb2axcP4HgFuBa8JySxPbvSWcGq4n8Nw5PTAAjh3uZ3hyjjPjsxt2TXfnxOkxDR8REREREZG2NpRNMaoAxsbzyFTYTYRltZ/NXw3c6e5Fd38MeBQ4ZmZ7gJy73+PRz+4fAV7TrHZvFafOTQLw3F07L4ABcHwD82B8c3SK8ZnyfI4NERERERGRdpTPpRlVDozmMLOYmd0PjACfdfcvhUNvM7OvmdkfmFk96cA+4MmG6mdC2b6wvbR8ufvdamYnzOzE6Ojohr6WdnNquMBVAxm6UvFWN2VTPSefpaczwb2nNy6AcfyxKP/FEeW/EBERERGRNjbUndIQkmZx96q73wTsJ+pN8Tyi4SDPJhpWcg74jXD6cnktfJXy5e53h7sfcfcjQ0NDz7j97ezk8CTX7t5ZvS8AOjqMI1f1bWgPjBOnxxjsTnJ4sGvDrikiIiIiIrLR8rloCEmttrE5AbeKTZmFxN0ngLuBW9z9fAhs1IAPAsfCaWeAAw3V9gNnQ/n+Zcp3rNlSldMXpndUAs9GRw/3860L0xs29uv46TGOXNW/Y6ajFRERERGRrSmfTVGpOeMzpVY3pSWaOQvJkJn1hu1O4OXAqZDTou77gQfD9ieB15pZyswOEyXrPO7u54CCmd0cZh95A/AXzWr3VvCNkQI1h+t2WALPunqyzRMbMIzk3KVZzozPcvSw8l+IiIiIiEh7y2ejWRN36jCSZiZQ2AN8OMwk0gHc5e5/ZWZ/ZGY3EQ0DOQ38FIC7P2RmdwEPAxXgre5eDdd6C/AhoBP4dFh2rFPnwgwkO7QHxvP39ZBOdHD89Bjf9fw9a1dYxb2no/wXR5X/QkRERERE2lw+lwKiAMZ1z+yr0JbUtACGu38NeOEy5a9fpc7twO3LlJ8AnrehDdzCTg5P0pmIcbA/0+qmtEQy3sELD/RtSCLPE6fHyCRjXL9nZwaDRERERERk68hnowDGTp1KdVNyYMjGOnWuwHN3Z+no2Lk5G44e7ufhs5MU5srP6DrHHxvjRQf7iMf0URARERERkfY2lK33wNiZU6nqW9sW4+6cGp7csfkv6o4d6qfmcN/j40/7GpdmyzxyvjCfU0NERERERKSdZZJxulNxRibVA0O2gJFCkfGZ8o7Nf1H3woO9xDrsGQ0j+fLj47jD0cPKfyEiIiIiIltDPpvSEBLZGk4N1xN47uweGF2pOM/bm+Pex55+D4zjp8eIdxgvPKAAhoiIiIiIbA1D2ZSGkMjWcOrcJLBzZyBpdPRQP/efmaBYqa598jJOnB7jeft66EzGNrhlIiIiIiIizZHPpXfsNKoKYGwxp4YL7O1J05NJtLopLXfscD+lSo2vnbl0xXXnylW++uQlTZ8qIiIiIiJbioaQyJZx8twk12rKT4D55JvHH7vyPBgPPHWJUrWmBJ4iIiIiIrKl5LMpZkpVpoqVVjdl0ymAsYWUKjW+OTq14/Nf1PV1Jbkm3/20EnnWgx5HFMAQEREREZEtJJ8LU6lO7rw8GApgbCHfujBFuerqgdHg6OF+7js9TrXmV1TvxOkxrs5309+VbFLLRERERERENt5QdxpgR+bBUABjCzl1LpqB5Dr1wJh37FA/hWKFkyG56XpUa86Jx8c1fERERERERLac+R4YCmBIOzs5PEky1sHhwa5WN6VtHD0cBSGuZBjJI8MFCnMVJfAUEREREZEtJ5/VEBLZAk6dK3DNrm7iMf3Z6vb1drKvt/OKAhgnHo/OVQ8MERERERHZano6EyTjHTtyJhJ9E95CTg1Pcu1u5b9Y6tjhfo4/No77+vJgHH9sjN25NPv7OpvcMhERERERkY1lZgx178ypVBXA2CLGpkucnyxy3R7lv1jq6KF+LkwVOX1xZs1z3Z17T49x9HA/ZrYJrRMREREREdlY+VxKOTA2kpmlzey4mX3VzB4ys18K5f1m9lkz+0ZY9zXUuc3MHjWzR8zslQ3lLzazB8Kx99kO/OZ5ajhKUqkeGJc7djh6hO59bO1hJGfGZzk/WVT+CxERERER2bLy2RQjBeXA2EhF4F+4+wuAm4BbzOxm4BeAz7n7NcDnwj5mdj3wWuAG4Bbg/WYWC9f6AHArcE1Ybmliu9tSfQaSa9UD4zLPHoqmQ/3SOgIY9VwZyn8hIiIiIiJb1VBWPTA2lEemwm4iLA68GvhwKP8w8Jqw/WrgTncvuvtjwKPAMTPbA+Tc/R6Pkhx8pKHOjnFqeJLB7hSD3alWN6XtmBlHD/WtK5HnvafHyKbjPHeXAkEiIiIiIrI15bNpJmbKFCvVVjdlUzU1B4aZxczsfmAE+Ky7fwnY5e7nAMI6H07fBzzZUP1MKNsXtpeW7yinhgvKf7GKo4f6eWJshvNrTCV0/LExjlzVR0fHjhuFJCIiIiIi20R9KtWdlsizqQEMd6+6+03AfqLeFM9b5fTlvlH6KuWXX8DsVjM7YWYnRkdHr7zBbapacx4ZLnDtbgUwVnLscDQk5Pgqw0guThX55ug0Rw9r+IiIiIiIiGxd+VwUwNhpw0g2ZRYSd58A7ibKXXE+DAshrEfCaWeAAw3V9gNnQ/n+ZcqXu88d7n7E3Y8MDQ1t6GtopdMXpylWakrguYrr9+ToSsZWHUZy4vFxQPkvRERERERka8tn04B6YGwYMxsys96w3Qm8HDgFfBJ4YzjtjcBfhO1PAq81s5SZHSZK1nk8DDMpmNnNYfaRNzTU2RGUwHNt8VgHL7qqb9UeGCdOj5GMd3Dj/p5NbJmIiIiIiMjGqg8hUQ+MjbMH+Dsz+xpwL1EOjL8C3gO8wsy+Abwi7OPuDwF3AQ8DnwHe6u71jCRvAX6PKLHnN4FPN7HdbefU8CSxDuPqfHerm9LWjh7q55HzBS7NlJc9fvz0OC/Y30MqHlv2uIiIiIiIyFYw0J2iw2B0jRyA2028WRd2968BL1ym/CLwnSvUuR24fZnyE8Bq+TO2tZPnCjx7qEtfvNdw7HA/7nDi8TG+87pdi47NlCo89NQlbv2OZ7WodSIiIiIiIhsj1mH0d+28qVQ3JQeGPDOnhieV/2IdbjrQSyJmHF8mD8b9T0xQqbkSeIqIiIiIyLaQzyqAIW1mcq7MmfFZ5b9Yh3Qixo37e7l3mTwY954exwxedLCvBS0TERERERHZWPlcipHCzhpCogBGm/v6cJTA8zr1wFiXo4f6eeCpS8yVq4vK7z09xrW7c/R0JlrUMhERERERkY2Tz6YYmVQPDGkjJ4c1A8mVOHa4j3LV+coTE/NllWqNLz8xztFD6n0hIiIiIiLbQz6b5uJ0iWrNW92UTaMARps7dW6Sns4Eu3PpVjdlS3jxVf2YRT0u6h4+N8lMqcrRQ8p/ISIiIiIi20M+l6Jac8amS61uyqZRAKPNnRoucO3uLGbW6qZsCT2dCa7dnVsUwDgecmIogCEiIiIiIttFPpsC2FF5MBTAaGO1mvNICGDI+h071Md9j49TqdYAOHF6nAP9nezuUS8WERERERHZHobmAxg7Jw+GAhht7KmJWaaKFa7dowSeV+Lo4X5mSlUeOjuJu3Pv6TH1vhARERERkW0ln41+oB3dQYk8461ugKzs5LlJAPXAuELHQrDi3tNjZNNxLk6XFMAQEREREZFtZWgHDiFRAKONnRouYAbP2aUAxpXI59JcNZDh+GNRAAOU/0JERERERLaXdCJGLh3fUUNIFMBoY6eGJ7mqP0NXSn+mK3X0UD+fPzVCdzpOf1eSZw91tbpJIiIiIiIiGyqfSzO6gwIYyoHRxk6dK3DtbuW/eDqOHe5nbLrEZx4c5shVfZrFRUREREREtp18NrWjemAogNGmZktVHrs4zbV7NHzk6ajnwZgpVTV8REREREREtqUogLFzcmAogNGmvn6+gDvqgfE0XTWQmU9qc/SwAhgiIiIiIrL9DGVTjEwWcfdWN2VTKIDRpk4NRzOQXKceGE+LmXHscD+ZZIwb9ioIJCIiIiIi208+m6ZYqTE5V2l1UzZF0wIYZnbAzP7OzE6a2UNm9vZQ/m4ze8rM7g/LdzfUuc3MHjWzR8zslQ3lLzazB8Kx99kOSGhw8lyBTDLGgb5Mq5uyZd32Xdfyhz9+lERMcToREREREdl+8rmo1/noDhlG0szpLSrAz7n7l80sC9xnZp8Nx37T3X+98WQzux54LXADsBf4WzN7jrtXgQ8AtwJfBD4F3AJ8uoltb7lTw5M8d3eWjo5tH6tpmv19GfYrACQiIiIiIttUfdj8SKHI1fnt33u/aT9Nu/s5d/9y2C4AJ4F9q1R5NXCnuxfd/THgUeCYme0Bcu5+j0cDez4CvKZZ7W4H7s6pYc1AIiIiIiIiIivLZ9MAO2Yq1U3pW29mh4AXAl8KRW8zs6+Z2R+YWV8o2wc82VDtTCjbF7aXli93n1vN7ISZnRgdHd3AV7C5zk8WmZgpK/+FiIiIiIiIrKg+hGRkUgGMDWFm3cCfAf/O3SeJhoM8G7gJOAf8Rv3UZar7KuWXF7rf4e5H3P3I0NDQM257q5wMCTzVA0NERERERERWkk3FSSc6dsxUqk0NYJhZgih48TF3/wSAu59396q714APAsfC6WeAAw3V9wNnQ/n+Zcq3rVPnCgA8d7d6YIiIiIiIiMjyzCyaSlVDSJ6ZMFPI7wMn3f29DeV7Gk77fuDBsP1J4LVmljKzw8A1wHF3PwcUzOzmcM03AH/RrHa3g1PDk+zr7aSnM9HqpoiIiIiIiEgby2fTO2YISTNnIXkJ8HrgATO7P5T9IvAjZnYT0TCQ08BPAbj7Q2Z2F/Aw0Qwmbw0zkAC8BfgQ0Ek0+8j2noHkXIFr1ftCRERERERE1pDPpvj6+UKrm7EpmhbAcPcvsHz+ik+tUud24PZlyk8Az9u41rWvYqXKN0enePn1+VY3RURERERERNpcPpviHx690OpmbIpNmYVE1u+bI9NUaq4EniIiIiIiIrKmfC7N5FyFuXJ17ZO3OAUw2sypMAOJplAVERERERGRtQxlo6lUR3dAIk8FMNrMqeECyXgHhwa6Wt0UERERERERaXP5EMDYCVOpKoDRZk6em+Q5u7qJx/SnERERERERkdXVe2DshJlI9C25zZwaLij/hYiIiIiIiKxLPpsGYERDSGQzXZgqMlooagpVERERERERWZeBriSxDtMQEtlcjwxHc/det0c9MERERERERGRtHR3GYHdSSTxlc508F81Aoh4YIiIiIiIisl75bFpDSGRznRouMJRNMdCdanVTREREREREZIvIZ1NK4imb69TwpHpfiIiIiIiIyBUZyqbUA0M2T6Va4+vnp5T/QkRERERERK5IPpvi4nSRSrXW6qY0lQIYbeL0xWlKlZp6YIiIiIiIiMgVGcqlcYeL06VWN6WpFMBoE2bGD7xoHzfu7211U0RERERERGQLyWejPIrbPQ9GvNUNkMizh7p57w/f1OpmiIiIiIiIyBZTD2CMTs0BPa1tTBM1rQeGmR0ws78zs5Nm9pCZvT2U95vZZ83sG2Hd11DnNjN71MweMbNXNpS/2MweCMfeZ2bWrHaLiIiIiIiIbCX5XBrY/j0wmjmEpAL8nLtfB9wMvNXMrgd+Aficu18DfC7sE469FrgBuAV4v5nFwrU+ANwKXBOWW5rYbhEREREREZEtY7A7CbDtZyJpWgDD3c+5+5fDdgE4CewDXg18OJz2YeA1YfvVwJ3uXnT3x4BHgWNmtgfIufs97u7ARxrqiIiIiIiIiOxoqXiM3kyCkcJcq5vSVJuSxNPMDgEvBL4E7HL3cxAFOYB8OG0f8GRDtTOhbF/YXlouIiIiIiIiIkR5MDSE5Bkys27gz4B/5+6Tq526TJmvUr7cvW41sxNmdmJ0dPTKGysiIiIiIiKyBeWzaQ0heSbMLEEUvPiYu38iFJ8Pw0II65FQfgY40FB9P3A2lO9fpvwy7n6Hux9x9yNDQ0Mb90JERERERERE2lg+m2JUAYynJ8wU8vvASXd/b8OhTwJvDNtvBP6iofy1ZpYys8NEyTqPh2EmBTO7OVzzDQ11RERERERERHa8oVwUwIhSR25P8SZe+yXA64EHzOz+UPaLwHuAu8zszcATwA8BuPtDZnYX8DDRDCZvdfdqqPcW4ENAJ/DpsIiIiIiIiIgIcOO+Xl5x/S6KlRrpRGztCluQbdfozJEjR/zEiROtboaIiIiIiIiIrMLM7nP3I2udtymzkIiIiIiIiIiIPBMKYIiIiIiIiIhI21MAQ0RERERERETangIYIiIiIiIiItL2FMAQERERERERkba3bWchMbNR4PFWt+NpGAQuqJ7qtfE9Va896rXinqq3teu14p6qt7XrteKeqtce9VpxT9Xb2vVacU/V29h6rXaVuw+teZa7a2mjBTiheqrXzvdUvfaot5XaqnrtUW8rtVX12qPeVmqr6ulvr3p6ZlTvmf8Nt8KiISQiIiIiIiIi0vYUwBARERERERGRtqcARvu5Q/VUr83vqXrtUa8V91S9rV2vFfdUva1drxX3VL32qNeKe6re1q7Xinuq3sbW2xK2bRJPEREREREREdk+1ANDRERERERERNqeAhgiIiIiIiIi0v5aPQ3Kdl+APwBGgAcbyl4A3AM8APwlkAvlh4BZ4H7gYth+MBz7EeAbwDRQAP56nfX+NfB1YAYYbbxfOH5jaMs4UAEeCuUvDvebJZpHeL31bgeGgerS17dSPSAD/B/gsdDOkVXqPQSM1d9T4DPAV4FHw33Xdc8lf4sxYO4KXuPdwOnwt5ht/FusUS8J/GmoMwfcu473Jhv+rqfC/SrAt9Z5vxWfmTXqrfjMAD8a2lN/1hx4dK1nZo16Kz4zK9VjjWdmSb37Q70x1vHMrNbW1Z6ZNV7j3azwzKxRb8VnZpX3ZtVnZo37rfbvzGr1VntmEsCHw/s8AUyx8O/Tas/MavVWe2aWrcfaz0xjvZPACdb578xqbV3jmVntNd7Nys/MavVWe2ZWem/WemZWu99qz8xq9VZ7ZpLAH4Z6Y0T/Rq3nmVmt3mrPTGO9rwKfCn/7h4iemVPhb//UGnWX3vMzwCPhNV5cb701npnV7nc3Kz8zq9Vb7ZlZth5rPzOr3W+1Z6ax3sPAV4g+jw8BHwK+Fu55Olzjs0Bfw/t2Wzg2AzwR6r2d6Ll5OJRPXEG924n+7pUruN87iJ6brxM982NXcL/PhPd36kraGY71Ez23xRXqPQp8k+gZr7+n3yB6Rh8If4tvXUFbk0Sf72mgFK67Vr13Ej039ftVgcfXeb8fCX/DQrjn3eus96/D9mV/C2AA+LtwvTMN78uqz8wa9VZ8Zlapt+ozs8b9VnxmVqu32jPTUG+K6HP3d6zzmVmjrSs+M6vUW/WZWeN+Kz4za9Rb7Zl5BXAf0b9DhdCW9Twzq9Vb7ZlZqd5az0y93gNh/S8aPiv1/6d5CPgfQKx+bKssLW/Adl+A7wBexOL/MbkX+Gdh+03Afwnbh1j4D/x8PeD/Z++8w6Uorwb+O7d3OkhTbKAoRaXYCyrEqBGxFxSJJnbQmFiiBlSMPQaxxN6waxDbZ4vGaFSKhagoKiIiKB1ur+/3x5m9O7t3Z2avcuGC5/c889zZ950zb5mzc3fOnPecLPQG8yGwD3Ad8Gwach3Qm3hM7gHgep9cFvpjYIAnt6mlwgcAACAASURBVJ/vPDO8L+E+wEvA39KU2xW90VSkGF9KOfTBYj9vXvYH/hPUnvf5EGCQJ1vim9N/A8em06bvWnwJvOadKy059Ab4acA1DJObCCz25jQDOLcZ/Zzpyc0GrkljTqN0JkguVGeSdHsMetOP1JkIuUCdCZIjQmeS5Pp58x77XoTqTFhfw3QmYoyBOhMhF6gzafQzpc6EzGmozoTIRd1njgce8/YP9MbzRRr3mTC5sPtMSrkonUmSKwCWAAenozNhfY24z4SN8U2C7zNhcmH3mah+Bt1nguY06j4TJBelM2cB93n7v0F1JJ3/TWFyYTrjl+vs9XEXb/7388pnoffMg0Jkk9ss8c3p0+gPxUi5CJ0Ja+9NgnUmTC5MZ6L6GaQzKeWI1hm/3I6eXAawBVAL7OHJzEa/xxcB13rH90V/lG+B/k74GmiD/sCfAzzsHf8S+nIpHbljgVuBau/YdNr7Er1HXgf8Gb3XpNveYE/uIlRnHklTri/wT1THPwnoZy4wBPgOyESNUBXAUbE2mzHGed68/Nc7PgO4ohl9jY1xNvq9SEduBXCLJ3cd+v2IkvsK1e2Y3APAXT65QmBP9CH5ca+smGidCZML05kguSidCWsvTGfC5MJ0JiZ3utePnX2yUToT1maYzkT1NUhnwuTCdCZILkpndgK6AV29efie9HQmTC5MZ4LkonRmJ6Cb7176ve++HftNI6jOHJv8O6+1b7aEpIVxzr2FWsX89AHe8vZfBY6IkBNv28aTK0FvAFFyW6FfjK09udeALj654cAc59zHntw3ACLS1Wujhyf3INApSs5r/z2v3YYU40sp55yrcM694c3Lv4AP0IeHJnLe8c+jb95wzq31zela9K1wZJveOIuALdEfa2n11ccWpL6GYXJjgSLgLedcA/qPI932+qA31M7oTS5KLkpnguSidMZPb2AapKUzKeUgUmdSyqWhM36OQ9/orfRko3QmsK8ROhMo5xGkM2FyYToT1V6QzgTJpX2fSZKL0hkHFIpIFnqdqoCGNHQmpRxE6kxKuTR0xi+Xj77pWOS1F6UzgX2N0JlAOY8gnQmTC9OZqPaCdCZILkpnguSidKYv8DqAc246+vY+Pw2dSSnnfQ7TGb/cUvS699CP7g3vmN7o27oeIbLJba715vS/6JvHOenIRehMoJxHkM6EyYXpTFR7QToTJBelM365T9Dv6CDv/KtR4+Jh6D39CPThYqQnexhqMPvW+53wlXe++UBb9EHvAVRvstOQm4s+AB2AvhklzfY+Qx8yDkMfKD7wytJpr61XPxXVmX+nKbc1MIK4zqTqZ7VzLmYAHOKcK0UfRjt5xzzQjDHORR+mOgIPeHpze5py3b36t9DrOjENuc9Ro8uvvf6VoJ47UXLfo55Xwz251/Bde+dcuXPubdSotswri3kVBOpMiFyozoTIhepMRHuBOhMhF6gzPrkq1Oj7gU82VGci2gzUmQi5QJ0JkQvVmRC5KJ350Dm32Dm3BPVcy0O9SaJ0JkguSmeC5KJ05kPn3GLvfJ8CeSKS69XFftNkoTrj2MgwA8aG4RP0jQTol7mnr25LEflQRP6NfglwztUCZ6D//FegN+W6KDn0Br4daqUb6W27+OR6A05EXhaRD4Dfe+Xdib9d/Y23v1Macv7xZaYYXzpyxwGHojealHIi8ie/kIi8jP6oKUG/3Om2eaU3R3v8hL4K8LWIXJaOnIi09erLgK9E5EnglGbOzUTg8XTaS0NngtqL0hk/xwDTvf0onQmS848vlc6kI5dKZ5LlHvUXROhMWJthOhPV1yCdSSmXhs5EtRekMynl0rzPpGovSmeeQl00l6Bv3e9CXUCjdCZIzj++VDqTjlwqnUmWuwFYExOK0JmwNsN0JqqvQTqTUi4NnUlnblLpTEq5NHQmqL0onfkYOExEskRkS9SLKptonQmS848vlc4ky+2Cvu3yMxfV+9cjZJPbrEcf3ku9eUpHLkxnotoL0pmUcmnoTDpzmkpnUsqloTOprkVP1MW9HapLXVBvqp7ej/rOnmx31LsgxiJgoLd9DXTxjl/knStKbifgfa89B5Bme365SvRe80wz5LZCjV2lwN1pyv3K6+PCNPvZXUR6oYars1CD0qkiImmOcWf0IWpz4AVPbxqaOTcHoG++072G53hz8wGqNzelIbeV11ZX9CF1JOoB1pkAvHmJ0pkguSidSUculc5EyQXpTJhcmM6EyUbpTJBclM5EjTFIZ4LkonQmSK45OnME6k3WlebpjF+uOToTJBelM0cAHzrnqn1jfRk13pSi/6s3KsyAsWEYC5wlIrNRN6Aar3wJsLlzbifgfODvQIaIZKP/8A9C3Vi3Qy2KoXLOuVWeXBb6tmJP9JrH5LK8shO8vyNQlyrx9xO9GWalIecfX3aK8UXJnQZMRn8c1YbIHQ7sHhNyzo1Ab4zboT8yI9sUkYHozXckMBq1RKfb1xPQH1XfAH/06qPkstA3d9egN7hd0RtKc+b0N6hLezrji9KZlHJp6AwAIjIUtcLPixX5+plKZ4Lk/ONLpTNRckE6kyDnvclrJEJnUraZhs6E9TVMZ4LkonQmam6CdCZofFE6k1IuDZ0Zgj7EdUPfKp+KXq8onQmS848vlc5EyQXpTLLcH/AZbyJ0JmWbaehMWF/DdCZILkpn0pnTVDoTNL4onUkpl4bO3Iv++JsF3Iy6DDuidSZIzj++VDqTLPdffIYdz4OkGvUAeDJCNrnN3YD3vDnqHyWXhs6EtRemM0FyUTqTzpym0pmg8UXpTKprEdOT64B70AeoBcTfVsaQpM9Z6Drxm0g01JE0hiC58b43lalIR+5RYLJzbn4z5MrRB5RcYFgacjejD4W1afYT79xPA2c753ZAH2L2QnUuTDbW5qWo0aDeObczGk/rhjTk/HNzLEkvF0Lk/oC6y5ei95M5aMyLKLlx6DKIAtTFfgFN9SZ+EvV+epponQmSi9KZdORS6UyUXJDOBMlF6UyYbJTOBMlF6UyQXJTOBMlF6UyQXFo6IyI7ANcC59EMnUkhl5bORMgF6oxPLuHFqPebJlJnWitmwNgAOOc+d84Nd87tgird1155tXNuhbc/G7WK5qBWPZxzrzrnhgNHom+RouRwzj3nnBvgnGsLXAa8HZNDfyT82zm33DlXgbrH5nvlPWL9BCagFr8oucbxAVXJ44uSQ282jzjnekbIvYiu5/LP6Rx0Hdsraba5G/pD7/9Qa2vMzSyyr86577252R91vatIQ26Fd9wUb053R2+O6c5NLrDYObd9muML1ZmI8YXpTIzkfyJROhMkh9dmkM6EyhGsM1FyYToTJBulM4FtRuhMkFyUzkSNMUhnguSidCZsfGE6czzwf865Wqfu+bNJ7z4TJBdrM0hnQuUI1plkuXfQB07/OIN0JqjNKJ0J7GuEzgTJRelM1NwE6UyQXJTOhI0vUGecc3XOufOccwOdc4ehXi81ROhMiFzs+qXUmRRybUlcxncn8JFzbrs0ZJu06Zw7ABhP4v/tILlQnQlrL0xnQuRCdSZqfEE6EyIX9XsmWa4d+hZ1qnPuEufcUO/YH4AvvWVFS72+LMIzOnqGkoOB54GHUCPNj97xPVBjVKicc+4Zr/5HvAfkdNrzyQm67vzmZsr96I17OuotFjW+SlRnClGDT28R+W8qOY+evjm929fmC8CQNOf0QVRvFnnHP4kaLNMd42og1zk3O832Fnj1S4DNgCdQL5zI9pxzz6E6MwqNb7PYJ+cnA30wnEq0zqSUS0NnouSCdCad9lLpTND4onQmAW9OY21G6UxQm1E6EzXGIJ0Jam+BVxakM4HtRemMiPRAl9qdghph0tKZVHLp6EyEXKDO+OROcs4l/5bDOVeF6sxhKeakVWMGjA2AiHT2/magFsk7vM+dRCTT298KDc5Zi65x6isi23unOBBdfxYlh4h09rZ2wJno2rM7vPO8DPQXkQLvDdNQ9MfdEqBURA4SEQFO8rcXJBc1vjA5EbkKdXsan4bcPqjrcYb3ZY192X+N3mgi23TO3e6c64bePPdE3yZ/ESXnubV29OY0Gw0WtU0a7Tk0knxsveYB6JvPtOYU+C3waDPmNFRnIq5FmM7ErutRwGOxsjR0JqWcry5IZwLlInQmSC4dnQkaY5TOpJRLQ2eC2ovSmdA5JVhnguSidCbsWoTpzEJgmCiFqNtjdRo6k1LO36avT5emIxehM8lyu6I/YNLRmaAxRulMSrk0dCaovSidCZ1TgnUmSC5KZ8KuRaDOePelQm//QPTtV6TOBMnFBhekMwFyX3mfr0KDAU5qhmy1iBSJSFdvjFmo3mybxhhDdSakvVCdCWkvVGei5pQAnQmRi/o9kyy3FTDLOXdT7Pqh/7/OQz1wTkaDgIL+ED9WdJ334944zo/pDRpw9GRUb+qi5HxjnI6+0Sed9ry+X4U+kHydrlxMZ7z6U1Cd6ZDG+GI6czP6EDXPO7aJnOiynN1Q1/PJItLRO+Z51EPqkzTnNKY3H3nH749e33Tn9EfiRsJ05vR7dAnAq97xB3p16VyLzl796ei9ptIn52cYMNc5d1MaOpNSzlcWpDOBchE6k1IuDZ0JGl+UziRzD+p5mI7OBLUZpTMp5XxlQToTJBelM4HthemM6LK7F1BvjlNJU2eC5Hx9SKkzYXJhOuOXc869E2vEpzMx78Jfo/FCNi5cK4gkuilv6BuJJahBYRH6z34cerOYh7ptinfsEWiglY/RgIMrfXIPom8cqtG1qjenKfe+T26Jvz1P9kRPdrV33pjcFd7xNej63XTlXvLKnFf2dhpyS7zjf0AfoqtQL4tUcp+gQWpic1qDrntc4vUzYU4j+hq7FvO9+UlH7nvUqvu9J7MKdc1Kp70/oT+Kq1Er9G3N6Ody9MbdnPEF6kyEXJTO7Iu6RCfrdpTOBMlF6UwquXR0Zl/gvRTfw3R0JqivUTqTSi4dnQlqL0pnwvoZpjNBclE6EyQXqDOou/eTqK6tQYNgRupMhFygzoTIhepMktxn6Jv9tHQmoq+BOhMiF6ozEe0F6kwa/UypMxFyYf+bwuTCdKYX+tA+1ztmKenpTJhcmM745V5DfwDGrr1D374tQnXmhzTbXOzNZdA1DOtrmM4EyUXpTFh7YToT1c8gnQmTC9MZv9xMb/7noA89q1Cj2Bfob4Ev0Zgk7X33qD97c+C8fn3kbed656xA9SBduae8axnTm/lpyH3qfZ6HPtBUe21HyX3iycTSN65GAw6n08/Yg+s7Xnupxve1N3+xOZ3jzcc36APMwmbO6Rj07X0ssOPbzejrAnQJQXPau8U3p2VosMp05N5EdSYWjye5vQXEgzPHgiqmozNBclE6k0ouHZ1JJZeOzgT1M0pnFqDPExWe7BekrzNBbY4hXGfC+rqAYJ0JkovSmSC5NwnQGdRQW+71w6HGjU+I0JkIuUCdCZEL1Rmf3Ee+rTMaM2Omdy0/9eYoqyWegVtyi/3DMAzDMAzDMAzDMAzDaLXYEhLDMAzDMAzDMAzDMFo9ZsAwDMMwDMMwDMMwDKPVYwYMwzAMwzAMwzAMwzBaPWbAMAzDMAzDMAzDMAyj1WMGDMMwDMMwDMMwDMMwWj1mwDAMwzAMwzAMwzAMo9VjBgzDMAzDMAzDMAzDMFo9ZsAwDMMwDMMwDMMwDKPVYwYMwzAMwzAMwzAMwzBaPWbAMAzDMAzDMAzDMAyj1WMGDMMwDMMwDMMwDMMwWj1mwDAMwzAMwzAMwzAMo9VjBgzDMAzjF4OIfCoi+3r7E0Tk4XV47ktE5O51dT6j9SIiTkS2+YmyJ4jIKy3Qp71E5It1fd6fg4hMFpHrN3Q/DMMwjE0HM2AYhmEY6w0ROV5EZolImYgsEZGXRGTPdXDe+0XkqqjjnHM7OOfeXAft7Ssii5LOfbVz7tSfe+4UbY0Rkbdb4Lxvisg676937sg+e+1XeboQ255L49y9PANC1rrrccuQqq/OuanOueHrui3n3H+cc33W9Xmbg/c9HOMr+gOwm4gMiZDrLCKPishiEVkjIu+IyNCkY44XkW9FpFxEpolIe1/dDSLypYiUisjnInJSkqzz5GJ6ZoZGwzCMjRQzYBiGYRjrBRE5H7gZuBroAmwO3AYcth7abvUPu79QznbOFfm2Q9fFSe16tw6cc7XAscBWEYcWATOBXYD2wAPACyJSBCAiOwD/AEaj944K9N4Roxw4FGgDnAz8XUR2T2pjgE/PWsRwZxiGYbQ8ZsAwDMMwWhwRaQNcAZzlnHvGOVfunKt1zj3nnPujd0yuiNzsvYVd7O3nenX7isgiEfmDiCz1vDdO8ep+B5wA/Mn/Fl9EFojIhSIyBygXkSyv7ABf1/JE5HHvze0HIjLA1+eEZQIxLw8RKQReArr53uh2S16SIiK/8ZasrPa8Dbb31S0QkQtEZI73xvlxEcn7KfMqIvd48/G9179Mr26MiLztvZ1eJSLfiMhBXt0kYC9gitf/KV75diLyqoisFJEvROTo5rbtjfMO9M17mYis/gnjulBE3osZIkTkDG8u84C3vMNWe+ffzRvrOyLyNxFZCUwQka1F5F8iskJElovIVBFp62tjgYhcLCKfefNzn/8aiMhpIvKVNxfTRaRbQF8PFpEPRWStiHwnIhN81UF9fdsnv7uIzPT0YKb/wdvTmyu9sZWKyCsi0jGgHwleQUH66+13FJHnPd1cKSL/EZEMr24n77tQ6unlYz65Jp41ye34yrcWkX8BH6N6ljD/fpxz851zNznnljjn6p1zdwI5QMyj5ATgOefcW865MuAyYJSIFHvyf3HOfe6ca3DOvQ/8B9gtVVuGYRjGxo0ZMAzDMIz1wW5AHvDPkGP+DOwKDAQGAEOAS331m6FvWLsDvwVuFZF23sPOVOC6FG/xjwMOBto65+pStHkY8CT61vcRYJqIZIcNxDlXDhwELPa90V3sP0ZEegOPAuOBTsCLwHMikuM77GjgV8CWQH9gTFi7ATwA1AHbADsBwwH/2+WhwBdAR+A64B4REefcn9GHvJgHxNmeYeZVdB46o3N3m+jb77Tbds7NBU4H3vXOnfKhNYLrgRrgUhHZFvXaOdE5VwXs7R3T1jv/u76xzvf6PgkQ4K9AN2B7oCcwIamdE4ARwNZAbzx9E5FhnuzRQFfgW+CxgL6WAycBbVFdO0NERnp1QX3Fa6c98AIwGegA3IR6HnTwHXY8cIo3rhzggoB+NIc/AItQ3ewCXAI4Tz+nAQ+h34kngSPSPalzboxz7n7vYzrznxIRGYiO9SuvaAfUEBJr52tUP3qnkM0HBgOfJlW9JSI/iMgzItIrrQEZhmEYrQ4zYBiGYRjrgw7A8gAjQowTgCucc0udc8uAiajLeIxar77WOfciUEb8DW0Qk51z3znnKgPqZzvnnvJc3W9CjSy7pjOgCI4BXnDOveqd+wYgH/C7tU92zi12zq0EnkMNN2kjIl1QQ8p4z6NlKfA31GU/xrfOubucc/WowaEr+sCaikOABc65+5xzdc65D4CngSN/YtvpMNnzAohtVwI45xpQo8C5wHTUOPVhxLkWO+du8fpe6Zz7ypv/ak+fbgL2SZKZ4unHStTocZxXfgJwr3PuA+dcNXAx6lHSK7lR59ybzrn/eW//56CGq+R2gjgY+NI595DX70eBz9HlEDHuc87N83T4CZqpJwHUorqwhfd9+o9zzqG6nw3c7JU/hS7taDZpzn8TRKQENaBMdM6t8YqLgDVJh64BilOc4g7U2PGyr2wfoBewHbAYeF5smZFhGMZGid28DcMwjPXBCqCjiGSFGDG6oW+6Y3zrlTWeI0m2An2wCeO7dOudcw2eC37KpQLNJGEs3rm/Q71HYvzg26/4Ce1ugT5sLhGRWFkGiWNubMM5V+EdFzRnWwBDk5Z8ZKEPkz+l7XQ41zmXMqCic26BiLwB/Bq4NY1zJbQtIp1Rz4a90AfdDGBViIxf37oBH/j6UiYiK9DrtyCpnaHANcCOqNdALuq5kA7JOh/rR5ieROl8OlyPekO84l2/O51z13j9+d4zZvj702zSnP9kmXzUmPeec+6vvqoyoCTp8BKgNEn+evQ67Ocfg3MutpSnRkTGAWtRr5D/NXNYhmEYxgbGPDAMwzCM9cG7QBUwMuSYxeiDcYzNvbJ0cM0sj9EztuPFAOjha7MCKPAdu1kzzpswFtGnxJ7A9xFyzeE7oBro6Jxr620lzrmgJR/JJI/hO+DfvnPFlj2c8RPajpqfSETk1+jSo9fRB+6gfgeV/9Ur6++cKwFORJc1+Onp2/frW/L1K0S9iFJdv0dQL5Gezrk2qAdArJ1m6YmvH+tCTwL11zlX6pz7g3NuK9Tb43wR2R9YAnQXn1XK60+Mcv85RcT/nUgmnflvRDTezTR07L9Pqv4UXVYWO3Yr1FA0z1c2EfUKGu6cWxvSL7x+BfbFMAzDaL2YAcMwDMNocTxX8MvRuBUjRaRARLJF5CARuc477FE05kEnL1Dh5cDDQedM4keiMx2kYhcRGeW5k49HH8rf8+o+Ao4XDUz5KxLd338EOogGJ03FE8DBIrK/F1PjD965//sT+ghqA8nzb865JcArwI0iUiIiGV7gxHSXLyTP2fNAbxEZ7V2bbBEZLL7gozHSaPtHoEdSzI/mDLYjcA8az+Nk4FDPoAGwDGgg+noXo2/uV4tId+CPKY45S0R6eLEoLgEe98ofAU4RkYHeg/XVwPvOuQUB7ax0zlWJpgs93lcX1dcX0Tk/XjTI7DFAX/Ra/FwC9VdEDhGRbTxDxVqg3tveReOanOv1ZxQaiybGx8AO3rzkER7TIp35j/UnG3gKqARO8pYQ+ZmK6sBenjHpCuAZ51ypJ38xOu8HOudWJJ071t9M0awmN6JGkrkhfTcMwzBaKWbAMAzDMNYLzrmbgPPRQInL0Lf4Z6NvXQGuAmYBc1DX7g+8snS4B+jrxVGYFnl0nGfReBWr0Hgbo7yYFQDj0LfTq9GYCI3ndc59jhpc5nttJiz/cM59gb5xvgVY7p3nUOdcTTP65md39OGucfOMLiehyxY+88bwFBrbIB3+DhwpmoFjsvcwOByNY7EYXbpwLfqmOxVhbf8LfWv+g4gsD+lDLAtKbJvtld8JPOuce9F7IP0tcLeIdHDOVaDxKt7x5j4oZslEYGc0VsILwDMpjnkENcTM97arAJxzr6OZLp5GvRK2Jji+x5nAFSJSihrdnohVRPXVG9shqIFrBfAn4BDnXNicpUug/gLbAq+hBoZ3gdu8WB41wCg0oOwq9LvROG/OuXmo8eA14EsgISNJEunMf4zd0XkYTjxjS5mI7OW1+ykaGHYqsBQ1jpzpk78a9RT50id7iVfXBTVMrUWvcS90jmsxDMMwNjokcZmjYRiGYRjGpo+ILECzpry2ofuyLhDNnHK3tyxkXZ73fmCRc+7SqGMNwzAMo6UxDwzDMAzDMIyNnx2BbzZ0JwzDMAyjJbEsJIZhGIZhGBsxIvJ34DdovBDDMAzD2GSxJSSGYRiGYRiGYRiGYbR6bAmJYRiGYRiGYRiGYRitnk12CUnHjh1dr169NnQ3DMMwDMMwDMMwDMMIYfbs2cudc52ijttkDRi9evVi1qxZG7obhmEYhmEYhmEYhmGEICLfpnOcLSExDMMwDMMwDMMwDKPVYwYMwzAMwzAMwzAMwzBaPWbAMAzDMAzDMAzDMAyj1bPJxsBIRW1tLYsWLaKqqmpDd8XYwOTl5dGjRw+ys7M3dFcMwzAMwzAMwzCMNGhRA4aItAXuBnYEHDAW+AJ4HOgFLACOds6t8o6/GPgtUA+c65x72SvfBbgfyAdeBMY551xz+7No0SKKi4vp1asXIvKzxmZsvDjnWLFiBYsWLWLLLbfc0N0xDMMwDMMwDMMIxjmoroaysvjWtSt06ABLl8Irr8TLjz4aNt98Q/e4xWhpD4y/A//nnDtSRHKAAuAS4HXn3DUichFwEXChiPQFjgV2ALoBr4lIb+dcPXA78DvgPdSA8SvgpeZ2pqqqyowXBiJChw4dWLZs2YbuimEYhmEYhmEYmxLOQUWF7hcWQm0tzJiRaHwoK4NBg2DoUFi+HC6+GEpLE+vPOw9OOAE++QQGDoT6+sR27r0XTjkFvv4aRo+Ol/fvbwaMn4KIlAB7A2MAnHM1QI2IHAbs6x32APAmcCFwGPCYc64a+EZEvgKGiMgCoMQ596533geBkfwEA4Yn/9MGZGxSmB4YhmEYhmEYhgHADz/A2rWJRoSOHdXAAHDddbB6tZbHjtlnHzj7bGhogD594nLl5WrEOP98uPFGqKqCPfds2uZll+n56+vhxRehqCi+demixg+AzTaDCy9MrC8qgsGDtX7gQPjyy3h5QcH6mbMNREt6YGwFLAPuE5EBwGxgHNDFObcEwDm3REQ6e8d3Rz0sYizyymq9/eRyIw3q6uq44447OO2008jNzd3Q3TEMwzAMwzAMw2g+NTWJHgoNDbDjjlr38svw7beJ9V26wB/+oPWnngqffppoZNh9d5g2TeuHDoWFCxPbO/xweOYZ3b/uOjVc+A0IfftqXUaGnisvL15XWAhDhmh9YaEu8Ug2QJSUaH2XLvD998Hj7tgRJk0Krs/Ph222SX8eN3Ja0oCRBewMnOOce19E/o4uFwki1StxF1Le9AQiv0OXmrB5K3WbyczMpF+/ftTW1pKVlcXJJ5/M+PHjychY9wlhnHOMHz+eo48+er0aL0499VTOP/98+sa+1Cm44447KCgo4KSTTmr2+RcsWMAhhxzCJ5988nO6aRiGYRiGYRjGusY59TooK4NOnbTsq6/gm28SDQy1tXDuuVp/553w5puJ9YWF8MYbWv+b38BzzyW207s3fPGF7l9zjcrHyMuDXXeNGzCcg+Ji9WYoLlYDQsz4AXD99VBXl2hg6Nw5Xr9kCYQF/3/ggeC6jAw4L3XSKAAAIABJREFU8MDgeqNZtKQBYxGwyDn3vvf5KdSA8aOIdPW8L7oCS33H9/TJ9wAWe+U9UpQ3wTl3J3AnwKBBg5od5HN9kJ+fz0cffQTA0qVLOf7441mzZg0TJ05c522JCFOmTFnn5w2jvr6eu+++O/K4008/fT30xjAMwzAMwzCMSEpLdRlFcpyGX/9aDQlvvw0vvdS0/rHH1CBw/fVw882J3hGggSdzcrTu1lsT28zOjhswPv8cZs6MGw86dFDPhBjHHqteEn4Ph5hxBODhh/VvrC4r6TH3nnvCx3/00eH1lrmw1dBiBgzn3A8i8p2I9HHOfQHsD3zmbScD13h/n/VEpgOPiMhNaBDPbYEZzrl6ESkVkV2B94GTgFtaqt/rk86dO3PnnXcyePBgJkyYQHV1NWeccQazZs0iKyuLm266if3224/777+f6dOnU1FRwddff83hhx/OddddB0BRURHjxo3j+eefJz8/n2effZYuXbqwbNkyTj/9dBZ6rlA333wze+yxB+Xl5Zxzzjn873//o66ujgkTJnDYYYfx6aefcsopp1BTU0NDQwNPP/002267bUJ/H330Ua6++mqccxx88MFce+21jX04//zzefnll7nxxhu59NJLueGGGxg0aBD33HMP1157Ld26dWPbbbclNzeXKVOmMGHCBIqKirjgggvYd999GTp0KG+88QarV6/mnnvuYa+99mLBggWMHj2a8vJyAKZMmcLuu++e0Kf6+nouuugi3nzzTaqrqznrrLP4/e9/z5IlSzjmmGNYu3YtdXV13H777ey1114tfUkNwzAMwzAMo2Woq2tqQNhqK2jfHr77TpdRJNefe656Krz2GkyY0LT+7bc1hsLUqXDGGU3b/OILlX//fbj22rj3QmyrrtayrbeGgw6Kl8eOi3HuuXDccU2XUTgHInDTTboFcfzx4XPT3SIM/FJo6Swk5wBTvQwk84FTgAzgCRH5LbAQOArAOfepiDyBGjjqgLO8DCQAZxBPo/oSPzGAp5+Jz33KZ4vX/tzTJNC3Wwl/OXSHZslstdVWNDQ0sHTpUh72LIf/+9//+Pzzzxk+fDjz5s0D4KOPPuLDDz8kNzeXPn36cM4559CzZ0/Ky8vZddddmTRpEn/605+46667uPTSSxk3bhznnXcee+65JwsXLmTEiBHMnTuXSZMmMWzYMO69915Wr17NkCFDOOCAA7jjjjsYN24cJ5xwAjU1NdQnRbldvHgxF154IbNnz6Zdu3YMHz6cadOmMXLkSMrLy9lxxx254oormshceeWVfPDBBxQXFzNs2DAGDBiQch7q6uqYMWMGL774IhMnTuS1116jc+fOvPrqq+Tl5fHll19y3HHHMWvWrAS5e+65hzZt2jBz5kyqq6vZY489GD58OM888wwjRozgz3/+M/X19VTEIgEbhmEYhmEYRkviXDxeQ06OPsxXVsJ//xs3HMQCQe67r2ajWLgQLrmkqYHhqqtg5Eg1NKR6GffMMxqr4bPP4LTT4uWxdo86Sg0QWVm6rKJjx0QDQvv2evywYfDQQ+q94DdSbLGF1p93ngalDAqEP2qUbkH07q2bYfxMWtSA4Zz7CBiUomr/gOMnAU0ilDjnZgE7NpXYNHBOV7u8/fbbnHPOOQBst912bLHFFo0GjP333582bdoA0LdvX7799lt69uxJTk4OhxxyCAC77LILr776KgCvvfYan332WWMba9eupbS0lFdeeYXp06dzww03AJpaduHChey2225MmjSJRYsWMWrUqCbeFzNnzmTfffelk+eqdcIJJ/DWW28xcuRIMjMzOeKII5qMa8aMGeyzzz60926MRx11VON4khnl3fB22WUXFixYAEBtbS1nn302H330EZmZmSllX3nlFebMmcNTTz0FwJo1a/jyyy8ZPHgwY8eOpba2lpEjRzJw4MDgC2AYhmEYhmEY8+c3TWXZs6cGY2xogL/8pamB4Te/UcPB2rWwww7x8ro6PecVV2i2iRUr4IADmrZ5441qwKithXffjRsO2rRRr4JYoMctt4Qrr4wvkYgdN8h71NprLzWCFBdrffKSh3331S2IKANDC8TrM4yfQkt7YLRamusp0VLMnz+fzMxMOnfu3GjISIU/CGdmZiZ13k0xOzu7MSWov7yhoYF3332X/Pz8hPM453j66afp06dPQvn222/P0KFDeeGFFxgxYgR33303w4YNS5ALIi8vj8zMzCblYTJB4/OP4W9/+xtdunTh448/pqGhgby8vJRt3HLLLYwYMaJJ3VtvvcULL7zA6NGj+eMf//iTAoYahmEYhmEYrYT6es0e4TcgZGZCzMP36ac1m0PyEovx47V+1KimgSQPPljjOADsvDOsWZPY5imnqAFDROM8xDwbYoaEsjI9Lj8fhg9vukRi1121vnNneOutpvWxlJdbbw1ffx089u7d4dJLg+sLCjb59JmGAb9gA0ZrIBan4uyzz0ZE2HvvvZk6dSrDhg1j3rx5LFy4kD59+vDBBx80+9zDhw9nypQp/PGPfwR0CcrAgQMZMWIEt9xyC7fccgsiwocffshOO+3E/Pnz2WqrrTj33HOZP38+c+bMSTBgDB06lHHjxrF8+XLatWvHo48+2ugtEsSQIUM477zzWLVqFcXFxTz99NP069cv7TGsWbOGHj16kJGRwQMPPNBkWQvAiBEjuP322xk2bBjZ2dnMmzeP7t27s3z5crp3785pp51GeXk5H3zwgRkwDMMwDMMw1hc1NWpsqKiIxyeYMwcWLGhqgBg3Tuuvvx7eey9xiUXXrhrbAWDvvXUZhp9BgzT4I+hyCy9YPllZamjYf/+4AaOwUD0q/Mskdtopfq677tL++OM4xDJRiOgykKAlFNnZ4YEic3JSLwExDKNZmAFjPVNZWcnAgQMb06iOHj2a888/H4AzzzyT008/nX79+pGVlcX999//k9OfTp48mbPOOov+/ftTV1fH3nvvzR133MFll13G+PHj6d+/P845evXqxfPPP8/jjz/Oww8/THZ2NpttthmXX355wvm6du3KX//6V/bbbz+cc/z617/msMMOC+1D9+7dueSSSxg6dCjdunWjb9++jctg0uHMM8/kiCOO4Mknn2S//fajsLCwyTGnnnoqCxYsYOedd8Y5R6dOnZg2bRpvvvkm119/PdnZ2RQVFfHggw+m3a5hGIZhGMYvhpjHrAisXNnUg6GsDI45Rh/AX34ZXnmlaf0rr+iD/8UXwz/+EU+RCeqZEItFdt11GizST4cOcQPG/Pkwb17cuLDZZvEYDKBBJkeNSsxEsdlm8fr/+z81JBQVaX+Teeih8Lk46qjw+iDjhWEY6w1pjpv/xsSgQYNccsDHuXPnsv3222+gHv0yKSsro6ioiLq6Og4//HDGjh3L4YcfvqG7BZg+GIZhGIaxkdHQoMaAZAPCjjtC27bw5ZepM1FcfjlsvrkGfJw0Scv8SzHmzdOlFtdeCxdd1LTdH37QlJYTJsANNzTNNPHKK2qoePxxDTaZvExi7Fh9+J83Tz0r/HWpUl4ahvGLQ0RmO+dSxc9MwO4WRosyYcIEXnvtNaqqqhg+fDgjR47c0F0yDMMwDMNoefwpL4uLNSjj2rUaB8FvXCgvh0MO0TgOc+dqwMdkA8Rtt2l8hZde0mOTee01XSrx4YcQW+KbmRlfKnH22WrAKCjQJRnJBoZYusvDDtNYDMmZKDp00PoJE3QL4phjdAvCslAYhvEzMQOG0aLEsp0YhmEYhmG0Wurr9YHfOU1HmWxA6N0bBg9W74dUmShGj4aTToJFizSmQlkZVFXFz//3v8O552r9oYc2bX+zzdSAUVsLn38e90zo0EH327bV4/r21WUYfuOCP47DoYfCsmValpvbdMnDr36lWxDbbaebYRhGK8UMGIZhGIZhGMbGQ2Vl01SXBQUQS5l+//3w44+J9QMGqBcCaCrJpUsT68eMgTvvVANGv37xuBAxxo9XA4aIekMkeyjEAo2XlGgcBf/yiqIi2H13rd9yS5gxo+kSili8hv794ZNPgse+5ZbgBWhPSX6+boZhGJsoZsAwDMMwDMMw1j0NDfE4C9XV0KuXlr//PixcmGiEKCpSDwWAP/9Zl0L4DQzbbw/PPqv1Q4Y0fcg/4AB49VXdv+IKTZUpEjcS+GMsdOummSVixoPiYhg6VOsyMuDJJ9UI4DcydOqk9fn5OqYgSkrUwBFEfr4aQgzDMIyfhBkwDMMwDMMwfunU1upDvggsWaJLHZKXSZx6qtY/9RS88UZiXUND3IDwu99ppolY5gnQuAuLF+v+pEnw3HOJ7ffuHTdgLF4cXwbRvbv+9Qfd/tOfEgNBFhbq+WPMnBn3REiVNeKRR8Ln4ogj0pszwzAMY71jBgzDMAzDMIyNidpaWLOmqYFhyBD1APj443iqS3+miZtuUs+De++FG29MlK2pgeXLNebC5MlwzTVN2z3xRDUKvP8+PPFEoodCSYkuuxCBvfbSgJX++nbt4ue56Sb4618T6/0pL++7L3z8o0eH18cCThqGYRibHGbAWM9kZmbSr1+/xs/HHnssF6VKV+Vx9dVXc8kll7R4vyZMmEBRUREXXHBB4DHTpk2jd+/e9O3bF4DLL7+cvffemwMOOKDF+2cYhmEYGx3OJaa87NhRH+yXL4c332xqgDj+eA3SOHOmLoNIjvPw+OOwxx5qPDjxxKbtzZwJgwapgeFPf9KywsL4MonSUjVgtG+vHg3JWShiRoQTT9R2/HEeios1KCTA9dfrFkSUgWGbbZo9lYZhGIYBZsBY7+Tn5/PRRx+lfXyQAcM5h3OOjIyMddm9UKZNm8YhhxzSaMC44oor1lvbhmEYhtGi1NVpIMbcXN3/+OOmBoaBA2GXXWDFCk0l6a8rLdUlEEcfDZ9+Crvuqt4P/mCQ992nwSK//FIDPfrJyICdd1YDRm2tLuMoKtLsFDEDQywTxeDB6iXhNz4UF0OfPlp/0klqDCko0PMmM3KkbkHssINuhmEYhtHKCDVgiEgJ0Mk593VSeX/n3JwW7dkviDVr1jBkyBCmT59Onz59OO644xg2bBhff/01lZWVDBw4kB122IFJkyZx0EEHsd9++/Huu+8ybdo0rrnmGmbOnEllZSVHHnkkEydOBKBXr14cc8wxvPHGGwA88sgjbLPNNnz77beMHTuWZcuW0alTJ+677z4233zzhP7cdddd3HnnndTU1LDNNtvw0EMP8dFHHzF9+nT+/e9/c9VVV/H0009z5ZVXcsghh3DkkUfy+uuvc8EFF1BXV8fgwYO5/fbbyc3NpVevXpx88sk899xz1NbW8uSTT7KdpecyDMMwfi6rVjX1UGjXLp5O8pZb9Bi/gWHPPeH3v9d4DQMGxJdYlJZqyssLLlDPgspK9WRI5vLL1YBRV6cxHpIzTWRm6nGdOmkciGQPh1gmiv79Yc6cxLq8vHi8ht13h1mzgsfeu7duQeTlNX8+DcMwDGMjINCAISJHAzcDS0UkGxjjnJvpVd8P7Nzy3Wth9t23adnRR8OZZ6rL569/3bR+zBjdli+HI49MrHvzzcgmYwaJGBdffDHHHHMMU6ZMYcyYMYwbN45Vq1Zx2mmnATBlypRGj40FCxbwxRdfcN9993GbF+F60qRJtG/fnvr6evbff3/mzJlD//79ASgpKWHGjBk8+OCDjB8/nueff56zzz6bk046iZNPPpl7772Xc889l2nTpiX0cdSoUY3tX3rppdxzzz2cc845/OY3v2k0WPipqqpizJgxvP766/Tu3ZuTTjqJ22+/nfHjxwPQsWNHPvjgA2677TZuuOEG7r777sh5MgzDMDYBnFPDQMyAUF8P226rdf/6V9NAkZ07x1NdnnUWzJ2bWL/rrrp8AtQA8d13ie0dcYQGmASYOFE9JfzZJHr21LqMDF1CkZeXmIkiZmAoLITp0/Wv38jQvr3Wd+kCK1cGj7tzZ40xEURhoabqNAzDMAyjWYR5YFwC7OKcWyIiQ4CHROQS59wzQIqQzkY6BC0hOfDAA3nyySc566yz+PjjjwPlt9hiC3bdddfGz0888QR33nkndXV1LFmyhM8++6zRgHHcccc1/j3vvPMAePfdd3nmmWcAGD16NH+KrZH18cknn3DppZeyevVqysrKGDFiROiYvvjiC7bcckt6e2+DTj75ZG699dZGA8aoUaMA2GWXXRrbNgzDMFoZsZSXxcX6ecECNRD4DQi1tepZABoI8p13EusLC+HFF7X+yCPhn//U88bo0wc+/1z3J06Et96K14moASFmwFizRj0dOnaELbZQA8KAAfHjJ03S/vgzUXTrFq//5htdQhHzikgmZghJRUYGHHpo5JQZhmEYhrF+CTNgZDrnlgA452aIyH7A8yLSA3AhchsPYR4TBQXh9R07puVxkS4NDQ3MnTuX/Px8Vq5cSY8ePVIeV1hY2Lj/zTffcMMNNzBz5kzatWvHmDFjqKqqaqwXX+owSZVGLKB8zJgxTJs2jQEDBnD//ffzZsQ4nQtXh1wv6FdmZiZ1dXWhxxqGYRhpUlmpHgbJcRqGDdP/Ye+9B6+9lriEoqwMHnhAH/hvugluvTVeH0t5GUunef314Hn7NZKTEzdgzJ6tmS78HgqxGA0AhxzSNFBkp07x+vvvV+NGrC4/PzFew8MPh48/KlBkzBBjGIZhGMYmQ5gBo1REto7Fv/A8MfYD/glYZKd1zN/+9je23357rr76asaOHcu7775LdnY22dnZ1NbWkp2d3URm7dq1FBYW0qZNG3788Udeeukl9vUti3n88ce56KKLePzxx9ltt90A2H333XnssccYPXo0U6dOZc8992xy3tLSUrp27UptbS1Tp06le/fuABQXF1NaWtrk+O22244FCxbw1VdfNcbM2GeffdbRzBiGYWzEOAfV1YkGhp49NRPF99+rITw5jsMZZ8DWW+sSi6uvbhoo8o03NIbCfffpMotkvvxSszy8/TZcdpkGpfQbESor9W/37rDbbk3jOMQ8Js48Ew4/PDETRVFRvJ1bb9UtiDFjwudmyy2bO5uGYRiGYfzCCTNgnAEkhK52zq0VkV8BR7dorzZhkmNg/OpXv2Ls2LHcfffdzJgxg+LiYvbee2+uuuoqJk6cyO9+9zv69+/PzjvvzKRJkxLONWDAAHbaaSd22GEHttpqK/bYY4+E+urqaoYOHUpDQwOPPvooAJMnT2bs2LFcf/31jUE8k7nyyisZOnQoW2yxBf369Ws0Whx77LGcdtppTJ48madia4yBvLw87rvvPo466qjGIJ6nn376OpszwzCM9UIs5aWIejBUVamXQbKHwx57aDaK777TVJfJ9ZdfrssP3nkH9tlH4z74eeYZNQzMmdM0FWZBARx8sBowGhrU2NCmjRobYoaGkhI9dt994a67mgaKjHnwnXsujBsHKQzgABxzjG5BWCYKwzAMwzBaGRLl/i8iW6IeFw6Y65ybvz469nMZNGiQm5UUwXvu3Llsv/32G6hH65devXoxa9YsOnbsuKG70mr5JemDYWyyLF7cdIlE166ajrK+Hq65JtG4UF6uAZrHjNEYC4MGaVms3jk1Slx2mRookrI0ARqc8fzz1dNhn32aeiicdx4ceKDK33FH6kwU3btre7FUmUVF4fEaDMMwDMMwNmFEZLZzLkUKsETCspCUAHcDg4CP0MCdA0RkNvBb59zaddVZwzAMYxOmtjbRiCACsXTKzz2nD/H++i231GUUAMcdB99+m1h/0EEaxwH0PMlL2045RQNMZmTAX/6i7fkNDIMH63H5+TBkSGIQyKIi2Gsvre/cGV5+uekSizZttH7bbdWAEkTPnhpoMoiionhGDsMwDMMwDCOSsCUkk4HPgGOdcw0AohEfLwOmACe1fPeMn8qCBQs2dBcMw9jYiKW8LC/XQMWgGSOSM1FkZMDvf6/1f/87zJiRGMeha1d49lmt32efxEwToEaD99/X/csuA3/mpbw8GD48bsCor9cH/c02ixsQBvmM87feql4Lfg+Hrl21TkSXhOTkpB5vTg5MnRo8H7m52hfDMAzDMAyjVRBmwNjDOTfGX+B0vckVIvJli/bKMAzDSI+1a+HHH5vGYRg5UmMfvP66Bn30L7EoK1PPh4wMNSDce2+8vKFBlzKUl+v5r7qq6UN+p05xA8acOWqMiHkodOigyyNinHyyGgFixoXiYjVGxJg+PW6AKCzU7Bd+wlJdQnQmiiDjhWEYhmEYhrHREWbASJ13cyPHOReYUtT45RAV+8Uw1il1dU0NDL17azDG+fM120Ry/UUXaTDGZ5/VdJbJ9Z98Ar16aZrLiy9u2uaPP+oSiDff1DgQ/mUSxcVQU6PeDr1765KM5DgNMS6+WL0hgjJR3HNP+NjHjg2vTxVjwjAMwzAMwzBSEGbAeEdELgeudL6nPRG5DHivxXvWAuTl5bFixQo6dOhgRoxfMM45VqxYQV5e3obuitHacE4f7MvK9OG+sFD333+/qQFhxAjYcUf44gu48srEQJBlZbq0YtgweP55zUiRzL/+BfvtBzNnwmmnxctjKS9/+1s1YGRkaF86dkyM01BQoMcffLAel2yAaNdO6ydM0KCUQfe80aPDvRgsC4VhGIZhGIbRSggzYJwD3AN8JSIfoVlIdgI+BE5dD31b5/To0YNFixaxbNmyDd0VYwOTl5dHj1iqQWPjxjn1Ykg2MGy9taa6rKiAv/61af3xx2uAyEWLYLfd4uV1dXreyZPhnHNgwQI44ICm7bZrpwaMigp49924h0JJCXTrFjcwbL+9GhCSDQz9+mn9wQfDwoVx40TykodDD01tAInRr1/8XKmwrBaGYRiGYRjGJkI6aVS3BvqiS0o+dc59vT469nNJlUbVMIwNRH19Uw+F3Nz42/1HH4VlyxLr+/WLeyaMGJFYX1oKJ54It9+uMRtSPaSfdx7cdJO2W1IS91yIbWecoedfs0aPjS2PiBki9t4bBgxQA8Xs2U0NEJby0jAMwzAMwzDWCesijeoIoNg59xTwta/8BGCpc+7VddJTwzBaF7GUl1VV8WwOH37YNBNFYWE8kOPEiRrM0V/fp088AGP//vDZZ4ntHHAAvOrdRi65RD0dQIM4FhfDqFFxA0ZBgQaG9Kez3H13rcvIgIcf1pSYfgNDLFBkQYF6VQQtoWjTRoNYBlFQEE+raRiGYRiGYRjGBiNsCclEIJXf8uvAP4FIA4aILABKgXqgzjk3SETaA48DvYAFwNHOuVXe8RcDv/WOP9c597JXvgtwP5APvAiMcxaF0filE/sKiMDy5fDDD4keCmVl6qUgAtOmwX/+k2hgaGjQTBQAZ50Fjz2m5TU1Wta1KyxerPuXXQYvvJDY/tZbxw0Y8+bpFjMedO4M224bP3b8eM2W4TcwdOsWr//vf+OxH1JljfjnP8Pn4oQTguss3o1hGIZhGIZhbBKEGTAKnHNNgkU4534QkcJmtLGfc2657/NFwOvOuWtE5CLv84Ui0hc4FtgB6Aa8JiK9nXP1wO3A79DgoS8CvwJeakYfDGPD0tCgSxGS4zAMHKgP7Z9+Gk916d+uuUaDNz74oMZkSK5fuhTat4cbb9Rjkzn6aDUM/Otf6mXgz0TRtm38uF12UU8Gf5DI9u3j9dddp14W/kwUhb7bQHKazWT8QSpTEfP0MAzDMAzDMIxNmPoGR2lVLWsr61hbVcvaylrvr35eU6llfTYr4fihlq0tmTADRp6IZDnn6vyFIpKNekL8VA4D9vX2HwDeBC70yh9zzlUD34jIV8AQz4ujxDn3rtf+g8BIzIBhtBR1dfF4DW3a6MP6ypXqJVBWlhjL4cgjdanE7NmpA0VOnQpDh2qMhxNPbNrWrFlqPHjnHQ0YCWpIKC5WA8HFF6sBo6BAl0Qkx2HI8r7Cxx2n50muz87W+r//XQ0gQUSluuzbt/nzaBiGYRiGYRibGM45KmvrWVMZMzbUNRodGsuq4nWNRorKWtZW1VFWXRd6fhHIyhAyM4TjhvS07JlJhBkwngHuEpGznXPlAJ7nxWSvLh0c8IqIOOAfzrk7gS7OuSUAzrklItLZO7Y7ielZF3lltd5+cnkTROR3qKcGm29u1qpfBA0N+sBfV6fpLJMNDDvsoIEYV65UDwX/8oqyMg3kOGqUxmfYZ5947IcYDzwAJ50En3+eOhNEnz66VVbC3LlxD4UOHRK9FHbeWb0Y/MaF4uL4MosTTtB+FBWpx0TyjerII3ULon9/3YKwG59hGIZhGIZhJFBVW8/qilpWVdSwqqKG1RW1rCyvYXVFDasqallVXuPV1SYYKeoawqMZFOVm0SY/m+K8LErys+nZvoCSvGxK8rO8v9m0yc+mxKtvrMvPpigni4fe+5a/TP+U5WU1dCrOXU+zsXEQZsC4FLgK+FZEvvXKNkdTq16W5vn3cM4t9owUr4rI5yHHpnrCciHlTQvVQHInaBaSNPtorC8qKxONB2Vlmh1ixx21/s47YfXqxDgOu+8Op5yiWSz8qS5j2/jxahgoL4+fx8+ECWrAqK6GKVMSg0AWFcVTZrZvD0cdFa+PGSJ23VXr+/eHGTMSDRD+lJd77qnLQILYfnvdgigsTFySYRiGYRiGYRhGs6iqrWdFeQ0ryqpZXlbN8rIaVpTp5xXlNSwvq/YMFGq0qKipDzxXYU4mbQtyaFeYTbuCHHq0y1ejg2d8aOMZHrQsq/FzcV4WWZkZP2scPdvrgoeFKyvMgJFEoAHDWzpykYhMBLbxir9yzlWme3Ln3GLv71IR+ScwBPhRRLp63hddgaXe4YuAnj7xHsBir7xHinKjpWhoiHsx1NVBT++yvPMOfP99ogGhU6d4fIPzzmvqBTF0qMZvAOjdGxYtSmzryCPhySd1/6KLYNUq9RaIGQnatdO6zExdQpGXl2hE2HtvrS8qgscfb7qEorPn4NO1q8agCGKzzeC6wNgmAAAgAElEQVS224Lri4pg8OD059AwDMMwDMMwjGbjnKOqtkHjRFTpsovSqjrWVtZSWlXXWL6yvJblZdWNxokVZTWByzPysjPoWJRLh8IcupTk0WezYtoV5NCuIJt2hTm0K8ihbUE27X37uVmZ63nkcTZvXwDAolUV7LJFuw3Wj9ZImAcGAJ7B4n/NPbG33CTDOVfq7Q8HrgCmAycD13h/n/VEpgOPiMhNaBDPbYEZzrl6ESkVkV2B94GTgFua259NltraeJyD77/XrBF+A0NdHYwerfUPPQTvvdc0FeYz3oqgY4/VrBT+B/3tt4+nv7z4Ys1k4Wfw4LgB47vvYNmyeIaJoiLo1y9+7OWXqyeE3wOih8829cUXGushP1+XhSQzfXrwPGRmasBKwzAMwzAMwzA2KM45yqrrWF0RjwsR219dWcOainjZ2io1TMT+llbVUlsf7kyfmSG0K8ihY1EOHYpyGNCuLR2KcuhYlKtlhbmNnzsU5VCQE/nY26ro0U4NGN+tDHkB+wulJa9kF+CfXtCRLOAR59z/ichM4AkR+S2wEDgKwDn3qYg8AXwG1AFneRlIAM4gnkb1JTbVAJ4zZ8K//910mcQ//qGGhsmTdZmFP45DTY0aMbKy4Kqr4I47Es+Zlxc3YLz1lqbTjC1/SF62MGyYeluk8mAAbbu+PjEThT/l5VNPhY8vKhNFp07Rc2QYhmEYhmEYxnqntr6BZaXV/Li2iqWl1Sz1/v64toplpdWsqtAYEas9g0V9SJyInMwM2hTEl2J0KMphy46FjTEjivOyKM7zYkR48SH0s9YV5GRu0sEt87Iz6VScy0IzYDShxQwYzrn5wIAU5SuA/QNkJgGTUpTPAlIEONjEeOMNuPBC3Y+lsiwqUo+IwkKN07Dddk2XSTQ0qMzvfw8HH9y0PsZdd+kWxO9+F96/7bb7eeMzDMMwDMMwDKNVEPOSWFtVxxrPE2J1RS3LSqv4cW3cUBEzUKwor2lyjgyBjkW5dC7JTYgT0bYgm7b5OWqg8AwV/rK87IxN2gCxLti8fQHfrUw7esMvBnEu3D1HVLNOALZyzl0hIpsDmznnZqyPDv5UBg0a5GbNmrWhu9E8KirUGFFQkHoJhWEYhmEYhmEYBk1jRaypjC/DWOtL57nWl+ozMcVnLUFOEhkCnYpz6VycR5eSXDqX5NG5OJcuSX87FOWSmWGGiJZg/GMfMuvbVbx94bAN3ZX1gojMds4NijouHQ+M24AGYBgaw6IUeBqwiIbrmoKCDd0DwzAMwzAMwzDWIw0NzgtKWcPK8hpWlNewyvu7uqKmMT7E2iQDxdo0YkXkZGZ4WTN0aUZsqYY/c0ZiNo1sOpfk0qHQDBMbmp7tC5j+8WJq6xvI/plZTTYl0jFgDHXO7SwiHwI451aJSE6UkGEYhmEYhmEYxi+J2vqGRu+HWCyItZW1rCqvYWVFLSvLqxsNFbppOs+geBF52RleDAiNB9GuIIctOhRqbAgvVkSsPrbfxosX0SY/m9wsW6qxsdKzXQENDpasrmLzDvaiO0Y6BoxaEckEHICIdEI9MgzDMAzDMAzDMDYJnHNU1tZTVlVHWbVv8z6Xx+JFVNaypsLLplHpLd2orGV1RQ3lNfWB5xeBtvmaqrN9oXpC7LJFLu0Ls2lfqCk+2xXmJPzNy95wqTyNDUtPL5Xqd6sqzIDhIx0DxmTgn0BnEZkEHAlc2qK9MgzDMAzDMAzDaCbOOSpq6llZXsOqihpWVXjeD95yjJVe2drK2kajRFlVHaXefkjijEbysjMal160yc+me9t8+nYtafzc1pddo8RX1q4gx5ZlGGnTs30+AAtXVrDHBu5LayLSgOGcmyois9HMIQKMdM7NbfGeGYZhGIZhGIbxi6O2vkGNCl7sh7Jq3S/14j9o5gzdX1NR6zNW1LCqvJaa+tTO4jEPiHYFObQpyKYoN4vNSvIozM2iKDeL4rysxv3GLa/pvnlFGOuDrm3yycoQvrNUqgkEGjBEpL3v41LgUX+dc25lS3bMMAzDMAzDMIyNh7r6Bsqr6ymtrm1celHqeTfoMozaRm+H0qr40gz9XNtopKiqjV6tnpOZQXFeFm0KsmlfkEOPdgX079GGdoU5tCvIoX2BLsNoX5hNW+9zSX62eUAYGw2ZGUL3dvl8t8pSqfoJ88CYjca9EGBzYJW33xZYCGzZ4r0zDMMwDMMwDKNFaWhw6s3gS7NZ6ov7EPOASLXvjxNRWRsc/yGGCOrt4Hk0xIJN9miXT0lezBNCA1LG9ku84/R43XKzzAvC2PTp2a7APDCSCDRgOOe2BBCRO4DpzrkXvc8HAQesn+4ZhmEYhmEYhhFFfYNrzH6RaktVt7ZKg1GWVtfhImI/ZGeKGhFydZlFcW4WnYpz6dWxML78IicrbmTwLbkojhkgcrMoyMm0rBiGkSY92+fzyqc/buhutCrSCeI52Dl3euyDc+4lEbmyBftkGIZhGIZhGL8YnHNU1zUkeDyUV9frkotqzYqhaTlrEgwRqyvi+6VVdaFt5GZlNAaUbJOfTZeSPHp3KU4INFmSl9VYX5SXRXGu/i3MzTSPB8PYAPRsX8CK8hrKq+sozE3n0X3TJ51ZWC4ilwIPo0tKTgRWtGivDMMwDMMwDGMjoqHBsbaqllVeUMnVFbHMF7WsrNDPMUNDeaOBIr5Moy6N9BfZmUKb/Bza5Gc1MUIkb8mZMCzwpGFsfPRsp+lTF62qpM9mxRu4N62DdAwYxwF/QVOpOuAtr8wwDMMwDMMwNhmcc1TW1rO2UrNcrPWWWSR+rmO1Lz1nLFXn6oqawBScWRlC2wI1PBTlZVOUm0nHotzGJRb+zBe6n5mYDcPzjMjPtuUXhvFLomd7NWAsXFlhBgyPdNKorgTGrYe+GIZhGIZhGEbaxJZeVNbUU15TR0VNPeXV8b+VtfWUV9dTUVMX/+sdV+F5QPgNE2srayM9IfKyM2jjpeJsV5BDn82KG/c1A0Z2QiaMtoXZFOdmmeHBMIxms7lnwLBAnnFsIY3x/+3deZxcV33n/c+vtl7V6m6tltSyZGMwkgZjWzJmGcBgbEEymDxAYpIZIBBgGCaBkAwBkpknJOH1MJDwMCQTCEOYmISwk2GXwMZmjyV5wZa82xKWbC22Wntv1VVn/jjndl+16y5tq1S9fN+vV73q1q361Tn31q+rq06dRURERKQpkuZ2ODU6/sR9Y+MMj9UYqdYYGa8zUq0xGl1Xa4xU64yMh/urk/dPR1upQFeYSLKr4ud2WNRVYe3iLnray/R0lMJ1+bTbC9pL9HSUtfqFiJxVfZ1luipF9h5RA0ZEDRgiIiIiksk5x8nRcQ6fHOPwqVEePznmt0+OcvjUGI+fHOXwST/vw4mRqm+YGKtRyzG3A/jGhY5KkfZSkfZygfZykbZykfZSgd7OysS+6P7ovrZycaJBorMtXFeKkw0V4bqzUqJYUC8IEZk9zIyBfi2lGqcGDBEREZE5xjnH0NjkJJFRr4XR8Rqj1dN7N0xu+x4Oo1FPh7Eag0OTjRSPnxpjLKHHQ097icXdbSzqrrBmcWdsuc3JuRx8j4cp+9pKdIeGh3KxcJbPkojIzLeqTw0YcZkNGGa2BHgLsCb+eOfcm5pXLREREZH5J2p4OD7iV6s4EZtA8sTI5LCL+PbJcDvaPjkyzsmxcVy+jg+nKReN9lKRttDbob+rwuJuP8/Dou4Ki7t8I8Wi7jYWdVVY3N1GX1dZwypERJpkdX8nP3vwcZxzmkuHfD0wvg78GLgeqDW3OiIiIiKzU63uQmNCdaIh4UTU2DAyzsnRKidHxv1kkVMaKE6MRrfHM4dcFAy62kosCKtTdLWVWNBeYkVvO12V0sTKFtHqFV2Vkh96US7QFh+eUQpDMmL3aYiFiMjMMtDfwdBYjcOnxljc3dbq6rRcngaMTufcHzW9JiIiIiLTUKv7JS+HxsYZGfPDI8Zqdao1R7VWpzpeP/12rc7Y+JTbtTrVccd43W+P1xzjtTrVur8er7mJ7ShuvO63R8frnAyNFSdG/MoWWcyguy02MWR7mRW97SxoX0BPe4kFUyaMXNBentjf0+4bJLSUpojI/DHQN7kSiRow8jVgfMvMXuGc+07TayMiIiJzQtS4EK0qMRzmWhgei22HeRlO2xe2h8dqDMW3q36FCr/tr6e7AkUaMygXCpSLRqkYrgsFSkWjXCxQKsT3+3097SVW9XbQHXpARD0fetrLE9u+EaJEd5tvkOisqPFBRETyW70oNGAcGebi1X0trk3r5WnAeCfwfjMbA6phn3PO9TSvWiIiInI2OecYqdY5MjTG0aEqR4fD9VCVoTHfu8Bf/PZwbDvaHzUuDI3VEid7TGMG7SW/okRHpUhHeXJ76YJ2Osp+O9rXWS7RUSnQUSnRGYZClItGuVSYaIwolwpUigXKofGhXCxQKZ1+u1wsaOiEiIjMSKv6OgA0kWeQ2YDhnFtwNioiIiIiT17UABGf2HHq9rHhKseGqrFGiipHY9tZjQ6VYuG0BoSuSomOSpFF3RUGKh10lP0KE6c1LoSGhahBIppzoeO0fZNzMqh3goiIyKTOSonF3RU1YAS5llE1s1cCLww3b3LOfat5VRIREZl7nPNzJsSHRUwdWjEyXmdkrMbIeHR/feL+kdiwi1OjtSc0UJwaHSdj7kcA2koF+jor9HaWWdhRZu3iLno7KvR2lf11Z5nejjK9scd0tfmhD1rmUkRE5Owb6O9k7xE1YEC+ZVQ/BGwCPhd2vdPMXuCce29TayYiItIiY+P1yYaBsaiRoHZaY0G0b2JIRXVyWMVwtc5w2D9SnZzL4cksa1kpFmgrx3oylIt0tRVZ0F7inIXtdLVNrjjht4t0TWzH95fo7SzTXtZylyIiIrPJQF8nt+090upqzAh5emC8Ani2c64OYGbXAbcBasAQEZGWino1jFbrjIxPNhacGh3nVHQdXeK3Gz1mbHyiZ0Pe+RvKRaOzUpqckyEMiVjYUeacnnY/RGLKXA7RdnwYRbQdDaWYvK1lLUVEROa7gf4Ovn3nfsZrdUrzvDdkriEkQC8wGLYXNqkuIiIyR9TrjqFqjZMj436JyzAUYjS+8kTYHp0YPlFjeCw0RMRWpRiZaJyonzaUIto/nV4NpYL53gmVyV4KXW1FFnV1Tmx3tZXorkz2Woj2x3syRPvaSurNICIiIs21ur+TWt2x/9gIA/2dra5OS+VpwPj/gNvM7EbA8HNhvC9vAWZWBHYAjzjnftXM+oEvAmuAPcCvO+eOhMe+D3gzUAN+zzm3Ney/FPgHoAP4DvBO555MR1wREWmkWgtzLYSGg2jIw0hsKcto+MSJkTApZLg+MTrOyZHqxL4TI+OcHBuf9nCJUsHoKBdpCz0RJid8LNDdVmJxd7hdKkzsb49NCtleLtBeCpNLxodSVCYbHCpFTRIpIiIis8tAX7SU6pAaMLIe4Jz7vJndhJ8Hw4A/cs4dmEYZ7wTuBqJlV98L3OCc+5CZvTfc/iMzWwdcC6wHVgDXm9nTnXM14BPAW4F/xTdgbAa+O406iIjMCfW6mxjqEM3NcCrMwxAfDjE0Nnn/UHjs0JgfHjE8ZV6GkWqNam16rQ3R3Ard7f56QXuJZT3tE/sWtJdZMKWnQkfFNz6cPmRisiFCE0SKiIiIPFHUaLF3cAjOb3FlWiyxAcPMLnTO3WNml4Rd+8L1CjNb4Zy7NevJzWwV8CvAB4F3h93XAC8O29cBNwF/FPZ/wTk3Cuw2sweAy8xsD9DjnPt5eM7PAq9CDRgiMgON1+qM1fycDKPjdcbG64yO1/w8DbHtsXB7pDrZ6HBidLJB4sTI5LwMUU+HaM6GvNpKhYnVI7oqJTrb/PXi7raJuRray5PzNsTna4gvcRldR40VXZUSBc3LICIiInJWnLOwnWLB2Ds43OqqtFxaD4x343s9/FWD+xzwkhzP/zHgPcCC2L5lzrn9AM65/Wa2NOxfie9hEdkX9lWZbDyJ738CM3trqDOrV6/OUT0RmQvGxuscG65OXI4PVxkaqzFer1OrO8ZrjvG6Y7xeZ7zmqNUd1XqdWs1RrTtq9bq/v+YmGyBCI8PYuL/daHu0wX21POtYJqgUC3S3R/MtlOluK9LfVWF1f+dp8y/E52CID4/orMSuK8V5P8mTiIiIyFxQKhZY0duupVRJacBwzr01bL7cOTcSv8/M2rOe2Mx+FTjknLvFzF6coy6Nfs5zKfufuNO5TwGfAti4caPmyBCZgaauGhFfPSLqkTBS9T0VRqp+Kct440S8kSLaHppGr4RGigWjFF2KBSqlgl+6shS2w+1KyTcwVIqn75t4fLlAW6k4EXf6doG2cjH2uOgyOTlkpaQGBxERERF5ooG+Th4eVANGnkk8fwZckmPfVM8HXmlmrwDagR4z+yfgoJmdE3pfnAMcCo/fBwzE4lcBj4b9qxrsF5Gc6nXnJ2Ecm5wPIWosiBoTThvmUJ0y5KE6uT027nsZVGuTPRqqtagHQ31yf6xHQ7XuGIuV92R0VfzSlD0dZRZ2lFnd38nCsL2wo8zCzvLE/T3tZbraipQKBcpFo1gwysXCZENFsTDRYFEsmCZ1FBEREZEZbaCvkxvuOZT9wDkubQ6M5fihGh1mdjGTPSF6gMypT51z7yOsVhJ6YPyhc+7fm9lHgDcAHwrXXw8h3wD+2cw+ip/E8wJgm3OuZmYnzOxy4Gbg9cBfT/dARVrNOT+MoVqrUx13fuhBrU51vE61NjkcoRobllCNDWWo1hxj4zX/mJqb2D8cJm8cGotN5jhlUsen0kOhbUrvgUqpMNEIUC5ONgi0lwuU2kphX4Fi0SjHHlcp+oka28q+V0J81Yi2cO3vj7YLE/Mz9HSUNcGjiIiIiMxbqxd18vjJUYbHanRU5u8y7mk9MK4G3ojv8fDR2P4TwPufQpkfAr5kZm8GHgZeC+Cc22VmXwLuAsaBd4QVSADezuQyqt9FE3hKE41Ua9zyyyOcHB1npFpjOKzUMBxtx25PrOQQVnUYDqs5RI0P1Vp94vZY7cn1PEhTKRYmJmbsrBTpbPNzH6zorZw2F0K0f+I6rALRFhoP2mLDHdpCw0FbGBah3gkiIiIiIq21qq8D8EupPn3ZgoxHz11pc2BcB1xnZq92zn31qRTinLsJv9oIzrnDwEsTHvdB/IolU/fvADY8lTpIunqY1DAaDjBWm9yuTlxP3a4zFnoSVGNf2MemfIGP9yaIJlOs1aPremyCxcnbk/f76yuesYT3bL7wrJyLv/nBA/zNjQ80vM8MOsqTDQDRCg3t5SK9nRWWlwtUSkXKRaOtVKBcnLxUin4YQyXaX5rcVy4+ca6FSuyxbbH7ytF1UUMfRERERETmg/hSqmrASOGc+6qZ/QqwHj+XRbT/z5pZMcmnXnd88kcPcuDYyOTKCGEJR99wUHviKgrjk6ssRI0ST2XlhDRmvpdA9MV7YnhBbP6BYsEohf3RvrZygc5we9+RIT794928/cXns6C93JR6RpxzfPvO/Wxa08f/++/W++UlY8tNtpXUI0FERERERM6u1bEGjPksswHDzD6Jn/PiCuDTwGuAbU2ul+R05yPH+PCWe1nQVqKjUjx9RYQwLKCzUqJ36ooJsceUYr0Ayjm2S2E+g0op3rugQLk02cOgEvYXC0/9y/72PYO89pM/58Z7H+OVF604A2ct2f2HTrL78VO86QVr2bByYVPLEhERERERyWNRV4WOcpGHB4dbXZWWyrMKyfOcc88yszuccx8ws78Cvtbsikk+23YPAnDDH7yIpT2Zq9vOSpes7mNxdxtbdx5oegPG1p0HALhq3bKmliMiIiIiIpKXmTHQ38HeI/O7B0aeaf1HwvWQma0AqsDa5lVJpmPbnkHWLOqcs40XAMWCcdX6Zdx47yFGqk9+NY08tt51gItX97JsDp9PERERERGZfVb3d877ISR5GjC+aWa9wEeAW4E9wOebWSnJp153bN8zyGVr+1tdlabbvH45Q2M1fnz/400rY9+RIXY+cpzN65c3rQwREREREZEnY1Wfb8BwrjnzF84GqQ0YZlYAbnDOHQ0rkZwLXOic+29npXaS6v5DJzk6VGXTmrnfgHH5eYvoaS+xJQzxaIbv7ToIwNVqwBARERERkRlmoL+TU2M1jgxVW12VlkltwHDO1YG/it0edc4da3qtJJdte/z8F89Zu6jFNWm+SqnAlc9cxvV3H6RaqzeljK27DvCMZQtYs7irKc8vIiIiIiLyZGklknxDSL5nZq82rR0542zbPciynjYG+jtaXZWz4uoNyzk2XOXmhwbP+HMfPjnK9j2DXL1ek3eKiIiIiMjME33vm88TeeZpwHg38GVg1MyOm9kJMzve5HpJBucc23cPctnaRcyXtqUXXrCEjnKRLbv2n/Hnvv7ug9QdXKXhIyIiIiIiMgMN9PkeGA+rB0Yy59wC51zBOVdxzvWE2z1no3KSbO/gMAeOj8yLCTwjHZUiL37GErbuOki9fmYnrtm66yAreztYv0KpLSIiIiIiM09XW4n+rgp7B4dbXZWWyWzAMLMb8uyTs+vm3YcBuGweTOAZt3nDch47Mcpte4+csec8OTrOT+5/nM0bls+b3iwiIiIiIjL7DPR3sk9DSJ7IzNrNrB9YbGZ9ZtYfLmuAFWergtLY9j2D9HaWuWBpd6urclZdceFSykU7o6uR3HTvIcZqda0+IiIiIiIiM9pAX4eGkCR4G3ALcGG4ji5fB/5n86smabbtHmTTmn4KhfnVY6Cnvczzn7aYrbsOnrH1j7fuOsiirgqXntt3Rp5PRERERESkGQb6O3n06DC1MzykfrZIbMBwzv0P59xa4A+dc+c559aGy0XOub85i3WUKQ4dH2HP4aF5N3wksnn9ch4eHOLu/See8nONjte48Z5DvGzdMorzrDFIRERERERml9X9nVRrjgPHR1pdlZbIM4nnX5vZ88zsN83s9dHlbFROGtu2xy8jOp8m8Iy7ct0yCgZbdj31YSQ/e+AwJ0fHNXxERERERERmvImVSA7Pz2EkeSbx/EfgL4EXAJvCZWOT6yUptu0epLNSnLcrZizubmPTmn62noF5MLbuOkB3W4nnPW3RGaiZiIiIiIhI8wz0dwCwd55O5FnK8ZiNwDp3piYckKds2+5BLj23j1Ixs/1pztq8YTkf+OZdPPTYSc5b8uQmMq3VHd+/6yBXXLiUtlLxDNdQRERERETkzFrR20HBYN88ncgzzzfgnYD6188QR4fGuPfgiXk7/0XkqjDkY+uug0/6OW755REOnxrj6vXLzlS1REREREREmqZcLHDOwvm7EkmeBozFwF1mttXMvhFdml0xaWzHniM4B5vm6fwXkZW9HTxr1cKnNA/G1l0HqJQKvPgZS89gzURERERERJpnoL+DvUeGW12NlsgzhORPm10JyW/7nkEqxQLPHuhtdVVa7ur1y/nI1nt59OgwK3o7phXrnGPLzgO84GmL6W7L82cgIiIiIiLSeqv7O7np3sdaXY2WyLMKyQ+BPUA5bG8Hbm1yvSTBzbsHuWhgIe1lzdmweYMfRvK9J9ELY9ejx3nk6LCGj4iIiIiIyKwy0NfJoROjjFRrra7KWZdnFZK3AF8B/i7sWgn8n2ZWShobGhtn5yPH2DTP57+InL+kmwuWdj+pYSTf23WAgsGVz1QDhoiIiIiIzB4D/X4p1X3zcCWSPHNgvAN4PnAcwDl3P6BJA1rgtoePMl53XDbP57+I27xhOdt2D3L45Oi04rbuOsimNf0s6m5rUs1ERERERETOvImlVAfn3zwYeRowRp1zY9ENMysBWlK1BW7ePUjB4NJz+1pdlRnj6vXLqTu4/u78q5HsefwU9x48wdXrtbiOiIiIiIjMLlEPjPm4EkmeBowfmtn7gQ4zexnwZeCbza2WNLJt92HWrehhQXu51VWZMdav6GFVXwdbduYfRrI1DDm5SvNfiIiIiIjILLOku432coG9asBo6L3AY8CdwNuA7wB/0sxKyRONjde57eGjXLZmUaurMqOYGZvXL+enDxzm+Eg1V8yWXQfYsLKHVX2dTa6diIiIiIjImWVmrOrrZK/mwGioA/iMc+61zrnXAJ8J+1KZWbuZbTOzX5jZLjP7QNjfb2bfN7P7w3VfLOZ9ZvaAmd1rZlfH9l9qZneG+z5uZjb9Q53d7nzkKKPjdc1/0cDmDcsZq9W58Z5DmY89eHyE2x4+ytXrNHxERERERERmp9X9nZoDI8ENnN5g0QFcnyNuFHiJc+4i4NnAZjO7HN+j4wbn3AXhud8LYGbrgGuB9cBm4G/NLFor9BPAW4ELwmVzjvLnlG27jwCwaY3mv5jqktV9LFnQNjE0JM337vJzZVy9QQ0YIiIiIiIyOw30dbB3cAjn5tf0lHkaMNqdcyejG2E7s++986K4crg44BrgurD/OuBVYfsa4AvOuVHn3G7gAeAyMzsH6HHO/dz5V+ezsZh5Y9vuwzxtabdWzWigUDCuWreMG+95LHMt5O/tOsB5i7u4YGn3WaqdiIiIiIjImTXQ38mJ0XGODecbRj9X5GnAOGVml0Q3zOxSIFdfFTMrmtntwCHg+865m4Flzrn9AOE6WpJ1JbA3Fr4v7FsZtqfub1TeW81sh5nteOyxx/JUcVao1R079hxh0xoNH0myecNyhqs1fnRf8ut+bKjKzx88zFXrlzMPRyGJiIiIiMgcEa1EMt+GkeRpwHgX8GUz+7GZ/Rj4IvCf8zy5c67mnHs2sArfm2JDysMbfaN0Kfsblfcp59xG59zGJUuW5KnirHDPgeOcGB3nOZr/ItHl5y2ip73E1l3Jy6n+4N6DjNcdV2v1ERERERERmcUG+ubnUqqlrAc457ab2YXAM/CNCfc456bVT8U5d9TMbsLPXXHQzM5xzu0Pw0OimRf3AQOxsFXAo2H/qgb7541tuwcBNMTLO+cAAB9ISURBVIFninKxwJXrlnH93Qep1uqUi09sm9uy8wDLetq4aFVvC2ooIiIiIiJyZgz0+2kq59tKJHl6YABsAp4FXAy8zsxenxVgZkvMrDdsdwBXAvcA3wDeEB72BuDrYfsbwLVm1mZma/GTdW4Lw0xOmNnlYfWR18di5oVtuwdZ2dvBit7MxV/mtc3rl3NsuMrNDw0+4b7hsRo/vO8xrlq3nEJBw0dERERERGT2WtBepq+zzF71wDidmf0jcD5wOxDNkBhNppnmHOC6sJJIAfiSc+5bZvZz4Etm9mbgYeC1AM65XWb2JeAuYBx4h3MuKu/twD/gV0D5brjMC845tu8Z5IUXzJ0hMc3ywqcvoaNcZMuu/bzggsWn3fej+x9jpFrn6vVafURERERERGa/gf5ODSFpYCOwzk1zfRbn3B34HhtT9x8GXpoQ80Hggw327wDS5s+Ysx56/BSPnxzT8JEc2stFrrhwCVt3HeTPXrnhtJ4WW3cdYGFHmeecp/MoIiIiIiKz30BfJ3ftP97qapxVeYaQ7AT0s3WLRPNfbFIDRi5Xr1/OYydGuW3vkYl91VqdG+4+xEufubTh3BgiIiIiIiKzzar+Dh45MkytPq2+BrNanh4Yi4G7zGwbMBrtdM69smm1kgnbdw+yuLvCeYu7Wl2VWeElFy6lUiywZecBLj3XN/ps2z3IseGqho+IiIiIiMicsbq/k7FanYPHR+bNfIl5GjD+tNmVkGQ37x7ksrX9+PlLJcuC9jLPf9oituw6wPtf8UzMjC07D9BeLmgeERERERERmTOipVT3Dg7NmwaMzP70zrkf4lcPWRAud4d90mSPHB3mkaPDbFqj4SPTsXnDcvYODnPX/uPU647v3XWAFz19CR2VYqurJiIiIiIickYM9IcGjCPDLa7J2ZPZgGFmvw5sw68W8uvAzWb2mmZXTPzwEUATeE7Tlc9cRsFg684D/GLfUQ4eH9XwERERERERmVNW9nZgxrxaiSTPEJI/BjY55w4BmNkS4HrgK82smPjhIwvaSly4vKfVVZlVFnW3cdnafrbsOsBYzVEqGC+9cFmrqyUiIiIiInLGVEoFzulpZ988asDIsyRDIWq8CA7njJOnaPueQTau6aNY0PwX07V5/XLuO3iSL25/mOeev4iFneVWV0lEREREROSMWtXfyd4jasCI22JmW83sjWb2RuDbwHebWy15/OQoDxw6yWVrF7W6KrPSVWHIyJGh6sS2iIiIiIjIXLK6v3NeDSHJM4nnfwH+DngWcBHwKefce5pdsflux55o/ou+FtdkdlrR28FFA70AXLVOw0dERERERGTuGejr5ODxUUaqtVZX5axInAPDzJ4GLHPO/dQ59zXga2H/C83sfOfcg2erkvPRtt1HaCsV+Dcre1tdlVnrXVdewB17j7Gsp73VVRERERERETnjBvr98qmPHB3m/CXdLa5N86X1wPgYcKLB/qFwnzTRtj2HuWR1H5WSpht5sq54xlLeeeUFra6GiIiIiIhIU6yOllKdJ8NI0r4dr3HO3TF1p3NuB7CmaTUSToxUuevR42zS8qkiIiIiIiKSYEANGBPS+t13nOmKyKRbfnmEuoPnqAFDREREREREEizpbqNSKrD3yHCrq3JWpDVgbDezt0zdaWZvBm5pXpVk2+5BSgXj4tWa/0JEREREREQaKxSMVX0d86YHRuIknsC7gH8xs99issFiI1ABfq3ZFZvPtu8ZZMPKhXRW0l4eERERERERme/m01Kqid+QnXMHgeeZ2RXAhrD72865H5yVms1TI9Uav9h7jN9+/ppWV0VERERERERmuIG+Tm795ZFWV+OsyPyJ3zl3I3DjWaiLALfvPcpYrc5lmv9CREREREREMgz0d3B8ZJxjQ1UWdpZbXZ2m0hqdM8z23YOYwcZz1YAhIiIiIiIi6SaWUj0y94eRqAFjhtm2Z5BnLFsw51vORERERERE5Klb1Td/llJVA8YMMl6rc8svj2j4iIiIiIiIiOQyoB4Y0gq7Hj3O0FhNDRgiIiIiIiKSy8KOMgs7yvNiJRI1YMwg23YPAnDZGjVgiIiIiIiISD4D/R3sHRxudTWaTg0YM8i2PYOsWdTJ0p72VldFREREREREZomBvk4NIZGzp153bN8zqOEjIiIiIiIiMi2r+zvZNzhMve5aXZWmUgPGDHH/oZMcHapy2dpFra6KiIiIiIiIzCKr+jsZq9U5dGK01VVpKjVgzBCdlSJve9F5PPd8NWCIiIiIiIhIfgN9HcDcX4mkaQ0YZjZgZjea2d1mtsvM3hn295vZ983s/nDdF4t5n5k9YGb3mtnVsf2Xmtmd4b6Pm5k1q96tMtDfyfte/kxW9na0uioiIiIiIiIyi0wspTrHVyJpZg+MceAPnHPPBC4H3mFm64D3Ajc45y4Abgi3CfddC6wHNgN/a2bF8FyfAN4KXBAum5tYbxEREREREZFZY2VvB2bM+aVUm9aA4Zzb75y7NWyfAO4GVgLXANeFh10HvCpsXwN8wTk36pzbDTwAXGZm5wA9zrmfO+cc8NlYjIiIiIiIiMi81l4usmxB+5xfSvWszIFhZmuAi4GbgWXOuf3gGzmApeFhK4G9sbB9Yd/KsD11f6Ny3mpmO8xsx2OPPXYmD0FERERERERkxhro79AcGE+VmXUDXwXe5Zw7nvbQBvtcyv4n7nTuU865jc65jUuWLJl+ZUVERERERERmoYH+Ts2B8VSYWRnfePE559zXwu6DYVgI4fpQ2L8PGIiFrwIeDftXNdgvIiIiIiIiIsBAXycHjo8wOl5rdVWappmrkBjw98DdzrmPxu76BvCGsP0G4Oux/deaWZuZrcVP1rktDDM5YWaXh+d8fSxGREREREREZN571cUr+ac3P4fC3Fu0c0Kpic/9fOA/AHea2e1h3/uBDwFfMrM3Aw8DrwVwzu0ysy8Bd+FXMHmHcy5qOno78A9AB/DdcBERERERERERYO3iLtYu7mp1NZrK/MIec8/GjRvdjh07Wl0NEREREREREUlhZrc45zZmPe6srEIiIiIiIiIiIvJUqAFDRERERERERGY8NWCIiIiIiIiIyIynBgwRERERERERmfHm7CSeZvYY8MtW1+NJWAw8rjjFzeAyFTcz4lpRpuJmd1wrylTc7I5rRZmKmxlxrShTcbM7rhVlKu7MxrXauc65JZmPcs7pMoMuwA7FKW4ml6m4mRE3m+qquJkRN5vqqriZETeb6qo4vfaKU84o7qm/hrPhoiEkIiIiIiIiIjLjqQFDRERERERERGY8NWDMPJ9SnOJmeJmKmxlxrShTcbM7rhVlKm52x7WiTMXNjLhWlKm42R3XijIVd2bjZoU5O4mniIiIiIiIiMwd6oEhIiIiIiIiIjOeGjBEREREREREZOZr9TIoc/0CfAY4BOyM7bsI+DlwJ/BNoCfsXwMMA7cDh8P2znDf64D7gVPACWBrzrjfAO4DhoDH4uWF+58V6nIEGAd2hf2XhvKG8esI5437IHAAqE09vqQ4oBP4NrA71PNQStwuYDA6p8AW4BfAA6HcXGVOeS0GgZFpHONNwJ7wWgzHX4uMuArwlRAzAmzPcW4WhNf1nlDeOPBQzvIScyYjLjFngN8K9YlyzQEPZOVMRlxiziTFkZEzU+JuD3GD5MiZtLqm5UzGMd5EQs5kxCXmTMq5Sc2ZjPLS3mfS4tJypgxcF87zUeAkk+9PaTmTFpeWMw3jyM6ZeNzdwA5yvs+k1TUjZ9KO8SaScyYtLi1nks5NVs6klZeWM2lxaTlTAf53iBvEv0flyZm0uLScicf9AvhOeO134XPmnvDaP5IRO7XMLcC94RgP543LyJm08m4iOWfS4tJypmEc2TmTVl5azsTj7gJuw/897gL+AbgjlLknPMf3gb7YeXtfuG8IeDjEvROfN3eF/UenEfdB/Os+Po3y/hCfN/fhc35wGuVtCef35HTqGe7rx+ftaELcA8CD+ByPzun9+By9M7wWD02jrhX83/cpYCw8b1bce/B5E5VXA36Zs7zXhdfwRCjzppxxvxG2n/BaAIuAG8Pz7Yudl9ScyYhLzJmUuNScySgvMWfS4tJyJhZ3Ev93dyM5cyajrok5kxKXmjMZ5SXmTEZcWs68DLgF/z50ItQlT86kxaXlTFJcVs5EcXeG65fE/laizzS7gE8Cxei+2XJpeQXm+gV4IXAJp38w2Q68KGy/CfjzsL2GyX/wE3FACf8GcxvwIuDDwNdzxC3Cv4lHcdcBH4nFlfAfBi4KcVfEnmdb+CN8EfBd4P/PGXc5/o1mqMHxNYzDf7G4IpyXlwI/Tiov3P5VYGOI7Ymd0x8C1+YpM/Za3A9cH54rVxz+DXBXwmuYFvcB4NFwTgvA702jnttD3C3Ah3Kc06ycSYpLzZkpuf1G/Jt+Zs5kxCXmTFIcGTkzJe7fhPMe/V2k5kxaXdNyJuMYE3MmIy4xZ3LUs2HOpJzT1JxJict6n/lN4Ath+2XheO7N8T6TFpf2PtMwLitnpsR1AvuBX8mTM2l1zXifSTvGm0h+n0mLS3ufyapn0vtM0jnNep9JisvKmXcA/ztsvxKfI3n+N6XFpeVMPG5pqOOl4fxfEfbvwL9nvjwldmqZPbFz+lX8B8XMuIycSSvvJpJzJi0uLWey6pmUMw3jyM6ZeNyGEFcAzgWqwPNDzC34v+P3Av89PH4d/kP5ufjPCQ8CC/Ef8O8A/ik8/rv4H5fyxF0L/E9gNDw2T3n3498jPwz8Mf69Jm95m0Lce/E5888549YB/4LP8Z0J9WwDLgP2AkV8I9QQ8NqozGkc433hvPwsPL4A/Nk06hod4y34v4s8cYeBvw5xH8b/fWTFPYDP7SjuOuB/xeK6gBfgvyR/MexbQHbOpMWl5UxSXFbOpJWXljNpcWk5E8X9x1CPS2KxWTmTVmZazmTVNSln0uLSciYpLitnLgZWAOeE8/AI+XImLS4tZ5LisnLmYmBF7L30kdj7dvSZxvA5c+3Uz3kz/aIhJE3mnPsRvlUs7hnAj8L294FXZ8RZuDwtxPXg3wCy4s7D/2GcH+KuB5bF4q4C7nDO/SLE7QYws3NCGatC3GeBJVlxofx/DeXWGxxfwzjn3JBz7sZwXn4A3Ir/8vCEuPD4b+F/ecM5dzx2To/jfxXOLDMcZzewFv9hLVddY86l8WuYFvcmoBv4kXOujv/Hkbe8Z+DfUJfi3+Sy4rJyJikuK2fing78H8iVMw3jIDNnGsblyJm41+F/0RsMsVk5k1jXjJxJjAuSciYtLi1nsspLypmkuNzvM1PisnLGAV1mVsK/TiNAPUfONIyDzJxpGJcjZ+JxHfhfOvaF8rJyJrGuGTmTGBck5UxaXFrOZJWXlDNJcVk5kxSXlTPrgBsAnHPfwP9635EjZxrGhdtpOROPO4R/3Vf5m+7G8Jin43+tW5USO7XM4+Gc/gz/y+MdeeIyciYxLkjKmbS4tJzJKi8pZ5LisnImHrcT/ze6MTz/UXzj4jX49/RX479cvCrEXoNvMPtl+JzwQHi+h4Be/Be96/B5U84Rdzf+C9CV+F9GyVneXfgvGdfgv1DcGvblKa833P85fM78MGfc+cDVTOZMo3qOOueiBsDLnHMn8F9Gl4THXDeNY7wb/2VqMXBdyJtP5IxbGe7/Ef51/UCOuHvwjS6vCPXrwffcyYp7BN/z6qoQdz2x1945d8o59xN8o9pjYV/UqyAxZ1LiUnMmJS41ZzLKS8yZjLjEnInFjeAbfW+NxabmTEaZiTmTEZeYMylxqTmTEpeVM7c55x51zu3H91xrx/cmycqZpLisnEmKy8qZ25xzj4bn2wW0m1lbuC/6TFPC54xjllEDRmvsxP8iAf6PeSB231ozu83Mfoj/I8A5VwXejv/nfxj/pjyeFYd/A78Q30r3qnC5NBb3dMCZ2VYzuxV4W9i/kslfV18Zti/OERc/vmKD48sT9zrg3+HfaBrGmdl74kFmthX/oaYH/8edt8w/D+fo+U+irgY8aGb/NU+cmfWG+08CD5jZl4Hfnua5+QDwxTzl5ciZpPKycibuN4BvhO2snEmKix9fo5zJE9coZ6bGfT6+IyNn0spMy5msuiblTMO4HDmTVV5SzjSMy/k+06i8rJz5Cr6L5n78r+7/C98FNCtnkuLix9coZ/LENcqZqXF/CRyLgjJyJq3MtJzJqmtSzjSMy5Ezec5No5xpGJcjZ5LKy8qZXwDXmFnJzNbie1GVyc6ZpLj48TXKmalxl+J/7Yq7G5/3N2TETi2zhv/yfiKcpzxxaTmTVV5SzjSMy5Ezec5po5xpGJcjZxq9FgP4Lu59+Fxahu9NNRA+1C8NsSvxvQsi+4Bnh8uDwLLw+H3hubLiLgZuDuU5gJzlxeOG8e81X5tG3Hn4xq4TwKdzxm0OdXw4Zz1XmtkafMPVO/ANSr9jZpbzGC/Bf4laDXw75E19mufmSvwv33lfw98N5+ZWfN58NEfceaGsc/BfUl+F7wG2lAThvGTlTFJcVs7kiWuUM1lxSTmTFpeWM2mxWTmTFJeVM1nHmJQzSXFZOZMUN52ceTW+N9k5TC9n4nHTyZmkuKyceTVwm3NuNHasW/GNNyfw/6tnFTVgtMabgHeY2S34bkBjYf9+YLVz7mLg3cD/AApmVsb/w385vhvrhfgWxdQ459yREFfC/1rxAvxrHsWVwr7fCtdX47tUWbye+DfDUo64+PGVGxxfVtxbgI/jPxxVU+J+DXheFOScuxr/xngh/kNmZplm9mz8m++rgP+Ab4nOW9ffwn+o2g38l3B/VlwJ/8vdh/BvcJfj31Cmc05fie/Snuf4snKmYVyOnAHAzJ6Db4W/L9oVq2ejnEmKix9fo5zJikvKmdPiwi95EzJypmGZOXImra5pOZMUl5UzWecmKWeSji8rZxrG5ciZy/Bf4lbgf1X+HfzrlZUzSXHx42uUM1lxSTkzNe4PiDXeZORMwzJz5ExaXdNyJikuK2fynNNGOZN0fFk50zAuR858Bv/hbwfwMXyXYUd2ziTFxY+vUc5MjfsZsYad0INkFN8D4MsZsVPLfC7wr+EcPSsrLkfOpJWXljNJcVk5k+ecNsqZpOPLyplGr0WUJx8G/h7/BWoPk79WRmzK7RJ+nPhHOb2hjinHkBT3rtgvlY3kifs88HHn3EPTiDuF/4LSBrwkR9zH8F8KqznrSXjurwL/2Tm3Hv8l5t/icy4tNirzT/CNBjXn3CX4+bT+Mkdc/Nxcy5QfF1Li/gDfXf4E/v3kDvycF1lx78QPg+jEd7HfwxPzZvJJfO+nr5KdM0lxWTmTJ65RzmTFJeVMUlxWzqTFZuVMUlxWziTFZeVMUlxWziTF5coZM1sP/Hfg95lGzjSIy5UzGXGJOROLO+2H0fCZJjNnZio1YLSAc+4e59xVzrlL8Un3YNg/6pw7HLZvwbeKVvCtejjnvu+cuwp4Df5XpKw4nHPfdM5d5JzrBf4r8JMoDv8h4YfOucedc0P47rEdYf+qqJ7An+Jb/LLiJo4PGJl6fFlx+Debf3bODWTEfQc/nit+Tu/Aj2P7Xs4yn4v/oLcF39oadTPLrKtz7pFwbl6K73o3lCPucHjc34Rz+jz8m2Pec9MGPOqce2bO40vNmYzjS8uZyNR/Ilk5kxRHKDMpZ1LjSM6ZrLi0nEmKzcqZxDIzciYpLitnso4xKWeS4rJyJu340nLmN4Etzrmq893zbyHf+0xSXFRmUs6kxpGcM1Pjfor/whk/zqScSSozK2cS65qRM0lxWTmTdW6SciYpLitn0o4vMWecc+POud93zj3bOXcNvtfLGBk5kxIXvX4Nc6ZBXC+nD+P7FHC7c+7CHLFPKNM5dyXwLk7/v50Ul5ozaeWl5UxKXGrOZB1fUs6kxGV9npka14f/FfVzzrn3O+eeEx57ALg/DCs6FOqyj9DoGBpKfgX4FvCP+Eaag+Hxq/CNUalxzrmvhfsPEr4g5ykvFmf4cecfm2bcwXDc38D3Fss6vmF8znThG3yebmY/axQXDMTO6adjZX4buCznOf0sPm/2hcd/Gd9gmfcYjwJtzrlbcpa3J9y/H1gOfAnfCyezPOfcN/E58//g57d5NBYXV8B/Mfwc2TnTMC5HzmTFJeVMnvIa5UzS8WXlzGnCOY3KzMqZpDKzcibrGJNyJqm8PWFfUs4klpeVM2a2Cj/U7rfxjTC5cqZRXJ6cyYhLzJlY3Oudc1M/y+GcG8HnzDUNzsmMpgaMFjCzpeG6gG+R/GS4vcTMimH7PPzknFX8GKd1ZvbM8BQvw48/y4rDzJaGSx/wn/Bjzz4Znmcr8Cwz6wy/MD0H/+FuP3DCzF5uZga8Pl5eUlzW8aXFmdlf4Ls9vStH3IvwXY8L4Y81+mN/Bf6NJrNM59wnnHMr8G+eL8D/mnxvVlzo1ro4nNMyfrKop+Uoz+Fnko/Ga16J/+Uz1zkF3gx8fhrnNDVnMl6LtJyJXtfXAl+I9uXImYZxsfuSciYxLiNnkuLy5EzSMWblTMO4HDmTVF5WzqSeU5JzJikuK2fSXou0nHkYeIl5Xfhuj6M5cqZhXLzMWJ3+JE9cRs5Mjbsc/wEmT84kHWNWzjSMy5EzSeVl5UzqOSU5Z5LisnIm7bVIzJnwvtQVtl+G//UrM2eS4qKDS8qZhLgHwu2/wE8G+MFpxI6aWbeZnROOsYTPmwtyHGNqzqSUl5ozKeWl5kzWOSUhZ1Lisj7PTI07D9jhnPto9Prh/3/9Pr4Hzhvwk4CC/yB+rflx3l8Mx/HuKG/wE46+AZ8341lxsWP8Bv4XffKUF+r+F/gvJA/mjYtyJtz/2/icWZTj+KKc+Rj+S9R94bFPiDM/LOe5+K7nHzezxeEx38L3kNqZ85xGeXN7ePxL8a9v3nN6kMlGwjzn9BH8EIDvh8e/LNyX57VYGu7/j/j3muFYXNxLgLudcx/NkTMN42L7knImMS4jZxrG5ciZpOPLypmp/h7f8zBPziSVmZUzDeNi+5JyJikuK2cSy0vLGfPD7r6N783xO+TMmaS4WB0a5kxaXFrOxOOccz+NConlTNS78BX4+UJmFzcDZhKdyxf8LxL78Q0K+/D/7N+Jf7O4D99t08JjX42faOUX+AkHB2Nxn8X/4jCKH6v6sZxxN8fi9sfLC7H/PsQeDc8bxf1ZePwYfvxu3rjvhn0u7PtJjrj94fEH8F+iR/C9LBrF7cRPUhOd0zH8uMf9oZ6nndOMukavxUPh/OSJewTfqvtIiDmC75qVp7z34D8Uj+Jbof92GvV8HP/GPZ3jS8yZjLisnHkxvkv01NzOypmkuKycaRSXJ2deDPxrg7/DPDmTVNesnGkUlydnksrLypm0eqblTFJcVs4kxSXmDL6795fxuXYMPwlmZs5kxCXmTEpcas5MibsL/8t+rpzJqGtizqTEpeZMRnmJOZOjng1zJiMu7X9TWlxazqzBf2m/OzzmEPlyJi0uLWficdfjPwBGr73D//q2D58zB3KW+Wg4l0mvYVpd03ImKS4rZ9LKS8uZrHom5UxaXFrOxOO2h/N/B/5LzxF8o9i9+M8C9+PnJOmPvUf9cTgHLtTr9nD5vfCcQ/g8yBv3lfBaRnnzUI64XeH2ffgvNKOh7Ky4nSEmWr7xKH7C4Tz1jL64/jSU1+j4HgznLzqnd4TzsRv/BebhaZ7TN+J/vY8mdvzJNOq6Bz+EYDrl/XXsnJ7ET1aZJ+4mfM5E8/FMLW8Pk5MzR5Mq5smZpLisnGkUlydnGsXlyZmkemblzB7894mhEHsv+XMmqcw3kp4zaXXdQ3LOJMVl5UxS3E0k5Ay+ofZUqIfDN27sJCNnMuIScyYlLjVnYnG3xy5L8XNmbA+v5a5wjkrN+A7czEv0D0NEREREREREZMbSEBIRERERERERmfHUgCEiIiIiIiIiM54aMERERERERERkxlMDhoiIiIiIiIjMeGrAEBERkVnPzN4WlmUVERGROUoNGCIiInLWmdmvmZkzswvPwHP9N2DQOXfkDFRNREREZigtoyoiIiJnnZl9CTgHuME596ctro6IiIjMAuqBISIiImeVmXUDzwfeDFwb9r3YzG4ys6+Y2T1m9jkzs3DfHjP7gJndamZ3Rr02zKzLzD5jZtvN7DYzuybsL5rZR8L+O8zsbS06VBERETmD1IAhIiIiZ9urgC3OufuAQTO7JOy/GHgXsA44D9/IEXncOXcJ8AngD8O+PwZ+4JzbBFwBfMTMuvANI8fC/k3AW8xsbbMPSkRERJpLDRgiIiJytr0O+ELY/kK4DbDNObfPOVcHbgfWxGK+Fq5vie2/Cnivmd0O3AS0A6vD/teH/TcDi4ALmnEgIiIicvaUWl0BERERmT/MbBHwEmCDmTmgCDjgO8Bo7KE1Tv+cMtpgvwGvds7dO6UMA37XObf1zB+BiIiItIp6YIiIiMjZ9Brgs865c51za5xzA8Bu4AVP4rm2Ar8bmyvj4tj+t5tZOex/ehhaIiIiIrOYGjBERETkbHod8C9T9n0V+M0n8Vx/DpSBO8xsZ7gN8GngLuDWsP/vUK9TERGRWU/LqIqIiIiIiIjIjKceGCIiIiIiIiIy46kBQ0RERERERERmPDVgiIiIiIiIiMiMpwYMEREREREREZnx1IAhIiIiIiIiIjOeGjBEREREREREZMZTA4aIiIiIiIiIzHj/FwRcgHQXfAQsAAAAAElFTkSuQmCC\n",
"output_type": "error", "text/plain": [
"traceback": [ "<Figure size 1080x432 with 2 Axes>"
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", ]
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", },
"\u001b[0;32m<ipython-input-26-803ed48c5d4a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mJr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Créez une colonne de date en combinant Year et Month\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Date'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_datetime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m' Yr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m' Mn'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Jr'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Supprimez les colonnes Year et Month si nécessaire\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "metadata": {
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/tools/datetimes.py\u001b[0m in \u001b[0;36mto_datetime\u001b[0;34m(arg, errors, dayfirst, yearfirst, utc, box, format, exact, unit, infer_datetime_format, origin)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mABCDataFrame\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mMutableMapping\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_assemble_from_unit_mappings\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mABCIndexClass\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_convert_listlike\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "needs_background": "light"
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/tools/datetimes.py\u001b[0m in \u001b[0;36m_assemble_from_unit_mappings\u001b[0;34m(arg, errors)\u001b[0m\n\u001b[1;32m 453\u001b[0m raise ValueError(\"to assemble mappings requires at least that \"\n\u001b[1;32m 454\u001b[0m \u001b[0;34m\"[year, month, day] be specified: [{required}] \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 455\u001b[0;31m \"is missing\".format(required=','.join(req)))\n\u001b[0m\u001b[1;32m 456\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0;31m# keys we don't recognize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", },
"\u001b[0;31mValueError\u001b[0m: to assemble mappings requires at least that [year, month, day] be specified: [month,year] is missing" "output_type": "display_data"
]
} }
], ],
"source": [ "source": [
"#question2\n", "from numpy.fft import fft\n",
"from statsmodels.tsa.seasonal import seasonal_decompose\n", "from scipy.signal import find_peaks\n",
"data = data.assign(Jr=1)\n", "from scipy.optimize import curve_fit\n",
"# Créez une colonne de date en combinant Year et Month\n", "import matplotlib.pyplot as plt\n",
"data['Date'] = pd.to_datetime(data[[' Yr', ' Mn', 'Jr']].assign(day=1))\n", "# Extraire la colonne des dates et de CO2\n",
"dates = year\n",
"co2_data = yearly_CO2.astype(float).values\n",
"#co2_data = np.pad(co2_data, (0, 2), 'constant', constant_values=(0, 0))\n",
"\n", "\n",
"# Supprimez les colonnes Year et Month si nécessaire\n", "# Appliquer la transformation de Fourier aux données pour identifier l'oscillation périodique\n",
"data = data.drop([' Yr', ' Mn', 'Jr'], axis=1)\n", "co2_fft = fft(co2_data)\n",
"frequencies = np.fft.fftfreq(len(co2_data))\n",
"amplitudes = np.abs(co2_fft)\n",
"\n", "\n",
"# Assurez-vous que 'Date' est un objet DateTime pour définir la fréquence\n", "# Trouver les fréquences principales (les périodes des oscillations)\n",
"data['Date'] = pd.to_datetime(data['Date'])\n", "peaks, _ = find_peaks(amplitudes)\n",
"periods = 1 / frequencies[peaks]\n",
"\n", "\n",
"# Décomposez les données en tendance, saisonnalité et résidus en spécifiant la fréquence\n", "# Créer un modèle simple pour la contribution lente: une régression linéaire\n",
"decomposition = seasonal_decompose(data[' CO2'], model='additive', freq=12) # Ici, 'freq=12' indique une fréquence mensuelle\n", "def linear_model(x, a, b):\n",
" return a * x + b\n",
"\n", "\n",
"# Extraire la tendance, la saisonnalité et les résidus\n", "# Adapter le modèle aux données pour estimer les paramètres a et b\n",
"tendance = decomposition.trend\n", "popt, _ = curve_fit(linear_model, np.arange(len(co2_data)), co2_data)\n",
"saisonnalite = decomposition.seasonal\n",
"residus = decomposition.resid\n",
"\n", "\n",
"# Créer un graphique pour visualiser l'oscillation périodique\n",
"plt.figure(figsize=(15, 6))\n",
"plt.subplot(2, 1, 1)\n",
"plt.plot(dates, co2_data)\n",
"plt.title('Concentration de CO2 avec Oscillation Périodique')\n",
"\n", "\n",
"# Extrapoler la tendance lente jusqu'à 2025\n",
"years = np.arange(1958, 2024)\n",
"extrapolated_data = linear_model(len(co2_data)+ years - 1958, *popt)\n",
"\n", "\n",
"# Tracer les composantes\n", "# Créer un graphique pour visualiser la contribution lente et l'extrapolation\n",
"plt.figure(figsize=(12, 6))\n", "plt.subplot(2, 1, 2)\n",
"plt.subplot(411)\n", "plt.plot(dates, co2_data, label='Données originales')\n",
"plt.plot(data[' Yr'], data[' CO2'], label='Données originales')\n", "plt.plot(dates, extrapolated_data, label='Extrapolation', linestyle='--', color='red')\n",
"plt.legend()\n", "plt.title('Contribution Lente et Extrapolation jusqu\\'à 2025')\n",
"plt.subplot(412)\n", "plt.xlabel('Année')\n",
"plt.plot(data[' Yr'], tendance, label='Tendance')\n", "plt.ylabel('Concentration de CO2')\n",
"plt.legend()\n",
"plt.subplot(413)\n",
"plt.plot(data[' Yr'], saisonnalite, label='Saisonnalité')\n",
"plt.legend()\n",
"plt.subplot(414)\n",
"plt.plot(data[' Yr'], residus, label='Résidus')\n",
"plt.legend()\n", "plt.legend()\n",
"\n",
"plt.tight_layout()\n", "plt.tight_layout()\n",
"plt.show()" "plt.show()"
] ]
...@@ -2475,28 +2496,7 @@ ...@@ -2475,28 +2496,7 @@
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": []
"#question3\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"# Créer un modèle de régression linéaire\n",
"regression = LinearRegression()\n",
"\n",
"# Ajuster le modèle aux données de tendance\n",
"regression.fit(data['Date'].values.reshape(-1, 1), data['CO2'])\n",
"\n",
"# Obtenir les paramètres du modèle\n",
"pente = regression.coef_\n",
"intercept = regression.intercept_\n",
"\n",
"# Extrapoler les valeurs jusqu'en 2025\n",
"annee_2025 = 2025\n",
"co2_2025 = regression.predict([[annee_2025]])[0]\n",
"\n",
"# Afficher les résultats\n",
"print(f\"Équation de la régression linéaire : CO2 = {pente[0]} * Année + {intercept}\")\n",
"print(f\"Concentration de CO2 estimée pour 2025 : {co2_2025} ppm\")\n"
]
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment