module3/exo3/exercice.ipynb

parent afd5f1ac
......@@ -2302,6 +2302,78 @@
"yearly_CO2.plot(style='*')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le code fourni a pour objectif d'effectuer une analyse des composantes périodiques d'un jeu de données de concentrations de CO2 à l'aide de la transformation de Fourier en utilisant Python. Il commence par charger les données à partir d'un fichier CSV dans un DataFrame Pandas. Ensuite, il identifie la colonne appropriée contenant les données de concentration de CO2 et la convertit en format numérique (float) pour s'assurer que les données sont traitées correctement. Une fois les données préparées, le code applique la transformation de Fourier pour analyser les composantes périodiques dans les données. La sortie de cette analyse est ensuite visualisée dans le domaine de fréquence, montrant les amplitudes des différentes composantes périodiques. Ce type d'analyse est utile pour détecter des modèles saisonniers ou cycliques dans les données de CO2, ce qui peut avoir des implications significatives dans le domaine de la climatologie et de l'environnement. Assurez-vous de personnaliser le code en remplaçant 'CO2' par le nom de la colonne réelle contenant les données de CO2 de votre ensemble de données."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fréquence dominante (période la plus importante) en années: inf\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:20: RuntimeWarning: divide by zero encountered in true_divide\n",
"/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:27: RuntimeWarning: divide by zero encountered in double_scalars\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuQAAAGDCAYAAABjvQUaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VPW9//HXJ4SwhLAGAglL2FchLCIq2qAoLiDR1rrWar21i1a999a61P60i722t1fb6q1eW6lVq9QuJooiam20IKBiwg4KJhAmCwQIJGRPvr8/zkGnmG1Cksnyfj4e88jM95w55zOfOZN85uT7/R5zziEiIiIiIuEREe4ARERERES6MhXkIiIiIiJhpIJcRERERCSMVJCLiIiIiISRCnIRERERkTBSQS4iIiIiEkYqyEVE6mFmvzGznzSyzllmtrOZ27/ezFYHPS4xszHN2VZbMLP7zezZZj4328wWtnRMXYmZXWNmr7fRvpyZjWuLfYmICnKRds/MrjazD/xiLc/MVprZ/HDH1drMLNEvCiJbYdvpZlbu57TQzP5mZsNOWOcmoMI5d29D23LO/dM5N7El4nLO9XHOfdIS2+pMzCzK/zLwsZkd84v7ZWaWGO7Y6nLiF61mbuNzx79z7o/OufNPPsLWZWbDzOxJ//dVsZntMLMfmlm0v9zM7A7//Swzs71m9qCZ9Qjaxh1mtsV/fpaZ3RG+VyTS+lSQi7RjZvYfwC+BnwJxwEjgN8DScMbVSdzinOsDTAD6Aw8HL3TOPeGc+/eGNtAaXxakTn8BLgGuBvoBM4ANwLnhDOpkmFm3cMfQGsxsILAW6AWc7pyLAc7D+4yN9Vf7NXATcB0QA1wInAO8ELwpf/kA4ALgFjO7si1eg0hYOOd00023dnjDKzxKgMsbWKcHXsGe699+CfTwlyUD+4DvAfuBPCAFuAj4CDgE3BO0rfvxCp8/AcXAh8CMoOWTgXSgCNgKXBK07CJgm/+8APBdv30AsAI4ABz27w8Pel468GNgjf/c14FYf9lewPk5KMH74w7wNWC7v71VwCi/3fCK6v3AEWATMK2evKUD/xb0+GZgS1BOf+HvvwB4HOh1Qk7vBPKBZ463NTFPg4CXgKPAe/5rXx203AHjGlsXSPTXjWzgNbVEnkYDb/vvzRvAo8CzQcvnAe/6r3UjkNzAsZoNLPTvz8Ur2orwjstHgah6nrcQKANGNLDteD9Xh4BdwNdPOK5fAJ72X8dWYE7Q8hHA3/CO0YPAo43lMOi9+ibwsb/8f/3cTgbKgRq847bIX/8p4DHgVeCY/7ouBjL89zgHuD9o+587/oHrTzhezgDe99/H94EzmvLZqieHd/jvRa7/uoOPxXo/E3Vs5yfAZiCinuXj/dzMPaF9BFABnFPP834NPNKSv2N106093cIegG666Vb3De+sUDVBRVcd6/wIWAcMAQbjFUc/9pcl+8//f0B34Ot+0fEc3lmpqX7hMMZf/36gCviSv/53gSz/fne8QuceIArvbFYxMNF/bh5wln9/ADDLvz8I+CLQ29/nn4HUoPjTgd14Z6l7+Y8f9Jcl8vmiM8WPYzIQCdwLvOsvW4R31rQ/nxVGw+rJWzp+8QrEAm8Bz/iPf4lX3A30Y34Z+K8Tcvozv0jpRVBB3oQ8LccrDqOBaXhfXuoryOtdt57cBL+mlsrTWuAh/7We7b+WZ/1lCXgF7EV4/209z388uJ5tZfNZQT4br5iP9F/LduD2ep73IPB2I5+Vt/H+c9QTSMI7zs8NOq7L/Ti7Af8FrPOXdcP7IvGwn+eewPzGchj0Xq3w8zjS3+cF/rLrg99Xv+0pvML5TD9fPf1j5xT/8XS8Yjelgff40+3iHZ+Hga/48V3lPx7U2Gernt81BXjHWTTe74jgY7Hez0Qd21oH/LCB9+qbwJ4G3sfPbRfvOM0AvhmO38W66dYWt7AHoJtuutV9A64B8htZZzdwUdDjRUC2fz8Z78xiN/9xjP9H9rSg9TcEFQD3Hy9U/McR+IW2f8sn6KwX8Dz+GT28M2ffAPo2Em8ScDjocTpwb9DjbwOv+ffrKkhWAjeeEGMpMAqv+P0Ir9Cr8+zcCfstxTtDGwD+iPeFxvDOXo4NWvd0ICsop5VAz6DlyXxWkNebJ7zirwqYFLTsp9RRkDe2bj25Seezgvyk84RXZFYD0UFtz/FZQX4n/peYoOWrgK/Ws71s/IK8jmW3Ay/Ws+y3wPIG4hyBd8Y1Jqjtv4Cngo7rN4OWTQHKgt7bA9TxpbehHAa9V/ODlr8A3OXfv566C/KnGzkufwk83MB7/Ol28Qrx9054/lrg+sY+W3XsdxlBxTpeEX/8WGzwM1HHtj6mgcIZ74vNunqWLQd+W0f7D/G+OPVoKH+66daRb+pDLtJ+HQRiG+mnHA/sCXq8x2/7dBvOuRr/fpn/syBoeRnQJ+hxzvE7zrlavO4Z8f4tx28L3leCf/+LeGcg95jZ22Z2OoCZ9Taz/zOzPWZ2FHgH6H9C/9n8oPulJ8RzolHAr8ysyMyK8LooGJDgnHsLr+vD/wIFZvaEmfVtYFu3Ouf6O+cSnHPXOOcO4BXlvYENQft4zW8/7oBzrryebTaUp8F4ZzJzTlhWl1DWrUtL5Cke78vTsXpiGAVcfnwf/n7mA/8yOLYuZjbBzFaYWb5/XPwU7z8VdTnYyDbjgUPOueIT4kwIenziMdbT/1yNwDtbW13HduvNYQPbbejYhX99PzGz08zsH2Z2wMyO4J09ri8PJzrxsw+Nv+764oun/mOtKZ+JYI29X4UNLB/mL/+Umd2C15f8YudcRQPbFenQVJCLtF9r8f7VntLAOrl4hcNxI/225hpx/I6ZRQDD+ax/+gi/LXhfAQDn3PvOuaV4XWdS+Wxw1n8CE/HOyvfF6/YAXmHTGFdHWw7wDb+QPn7r5Zx714/j18652XjdcSbg9YsNRSHel5SpQdvv57zBnw3FdVxDeTqAd8Z5xAnL6tLYuseL5N5BbUOD7rdEnvKAAcdnxqgjhhy8M+TB+4h2zj1Yz2sK9hiwAxjvHxf3UP8x8SYw18yG17M8FxhoZjEnxBloQhw5wMh6vvQ2mMNG1HeMnNj+HF5XkBHOuX54fbOtnnVPdOJnH5r+uk+UR/3HWlM+E8HeBC494TMQ7C28z8jc4EYzG4H3X5u/B7V9DbgLr/vRvpBekUgHo4JcpJ1yzh3B6//9v2aW4p9t7m5mF5rZz/3VngfuNbPBZhbrr9+seaJ9s83sMr9AuR1vkNU6YD1eEfg9P4ZkYAmw3J+S7hoz6+ecq8IboHb8rHwM3h/zIn/2hftCiOUAUAsEz8v9OHC3mU0FMLN+Zna5f/9U/4xjdz/W4wPrmsw/s/1b4GEzG+JvN8HMFjVxE/Xmyf9Pxd+A+/33cgrw1XriaHBd/2x+ALjWzLr5hcvYoE2cdJ6cc3uAD4Af+u/xfP+1HPcssMTMFvkx9DSz5AYK52AxeMdJiZlNAr5V34rOuTfxBpS+aGazzSzSzGLM7Jtm9jXnXA7e2In/8mOYDtyI1w2pMe/hFaMPmlm0//wz/WX15rAJCoDhZhbVyHoxeGf3y/0C9eqgZXUd/8FeBSaYNy1qpJldgdcdZ0UTYwz2AnC9mU0xs94EfU6b8Zl4COgL/MHMRgWt/5CZTXfOfYSX2z+a2Tz/2JkK/BWva9Gb/nOuwfvPyXlOU4FKF6CCXKQdc849BPwHXr/LA3hn7W7BOwsN3owGH+DNlLEZb2aUBi9k04g04Ao+Gyx2mXOuyjlXiTft3IV4Z8x+A1znnNvhP+8rQLbf/eCbwLV++y/xBpQV4hX2rzU1EOdcKfAAsMb/V/k859yLeAMql/v72uLHBF4R8Fs/9j14/zr/Regp4E68wXzr/H28iXeWvykxN5anW/C6DeTj9Sn+fQOba2zdr+Od2T6Id6b70zO3LZinq4HT8Lpr3Ic3U8nxfeTgTb95D58dm3fQtL8r3/W3XezH8qdG1v8SXgH6J7yBkVuAOXjvDXgDGhPxzhq/CNznnHujsSD8Lz5L8PpK78XronWFv6yhHDbmLbzZXPLNrLCB9b4N/MjMivG+TH867V9dx/8JsR8EFuP9F+og3mxKi51zDe2vTs65lXif1bfwjv23TlilyZ8J59whvNlfqoD1/mv7O977tstf7Rbgd3hf6krwfi+k43V9O+4neIPC3zfvegElZvZ4qK9NpKMw5xr7r5iIdAVmdj/erArXNrautD0zux5v0GanvyiUiEhXozPkIiIiIiJhpIJcRERERCSM1GVFRERERCSMdIZcRERERCSMVJCLiIiIiIRRQ1cA7JRiY2NdYmJim+7z2LFjREdHN76ifEo5C51yFjrlLHTKWeiUs9ApZ6FTzkLXFjnbsGFDoXOuvivbfqrLFeSJiYl88MEHbbrP9PR0kpOT23SfHZ1yFjrlLHTKWeiUs9ApZ6FTzkKnnIWuLXJmZnuasp66rIiIiIiIhJEKchERERGRMFJBLiIiIiISRirIRURERETCSAW5iIiIiEgYqSAXEREREQkjFeQiIiIiImGkglxEREREJIxUkIuIiIiIhJEKchERERGRMFJBLiIiIiISRirIRURERKRTKiyp4M1tBeEOo1GR4Q5ARERERKSlHKuo5vVt+aRm5LJ6VyERBh/cex79enUPd2j1UkEuIiIiIh1aVU0tqz8uJDUzwOtbCyirqiGhfy++cfYYUmYmtOtiHFSQi4iIiEgH5JwjI6eItIwAKzblcfBYJf16defSWQmkJCUwZ9QAIiIs3GE2iQpyEREREekwdh8oIS0jQNrGXPYcLCUqMoLzJsexNCmeL0wcTI/IbuEOMWQqyEVERESkXdtfXM7LG/NIywywad8RzOCMsYO4ecE4Lpg2lL4923eXlMaoIBcRERGRdqekoppVW/JJzQywZlchtQ6mxvfl+xdNZsmMeIb26xnuEFuMCnIRERERaReqamp556MDpGbm8sa2fMqrahk+oBffTh5Hysx4xg2JCXeIrUIFuYiIiIiEjXOOD/ceJjUjl1c253HoWCX9e3fnS7OHk5KUwOxRAzDrGIMzm6vVCnIzWwYsBvY756adsOy7wH8Dg51zhX7b3cCNQA1wq3Nuld8+G3gK6AW8CtzmnHNm1gN4GpgNHASucM5lt9brEREREZGWs2t/CWmZAVIzA+QcKqNHZATnTYkjJSmBsycMJiqy61y/sjXPkD8FPIpXNH/KzEYA5wF7g9qmAFcCU4F44E0zm+CcqwEeA24C1uEV5BcAK/GK98POuXFmdiXwM+CKVnw9IiIiInIS9h8t56WNuaRmBtgSOEqEwZnjYrnt3AksmhpHTAcfnNlcrVaQO+feMbPEOhY9DHwPSAtqWwosd85VAFlmtguYa2bZQF/n3FoAM3saSMEryJcC9/vP/wvwqJmZc861/KsRERERkeYoLq/itS35pGXm8u5ub3DmKQn9uPfiyVwyI54hfTvP4MzmatM+5GZ2CRBwzm08oS9QAt4Z8OP2+W1V/v0T248/JwfAOVdtZkeAQUBhHfu9Ce8sO3FxcaSnp7fEy2mykpKSNt9nR6echU45C51yFjrlLHTKWeiUs9C1t5xV1zo2F9awNreajP01VNXC4F7G4jHdmTcskvg+1VCzl20f7mVbmGJsTzlrs4LczHoD3wfOr2txHW2ugfaGnvP5RueeAJ4AmDNnjktOTm4s3BaVnp5OW++zo1POQqechU45C51yFjrlLHTKWejaQ85qax0b9h4mNSPAK5vzKCqtYmB0FFedNpylSQnMGtm/XQ3ObA85O64tz5CPBUYDx8+ODwc+NLO5eGe+RwStOxzI9duH19FO0HP2mVkk0A841JovQERERET+1ccFxaRmBkjNyCVQVEbP7hGcP2UoKTPjOWv8YLp36zqDM5urzQpy59xmYMjxx37/8DnOuUIzewl4zswewhvUOR54zzlXY2bFZjYPWA9cBzzib+Il4KvAWuBLwFvqPy4iIiLS+vKPlPPSRq8I35bnDc6cP34w/3n+BM6fOpQ+PTSzdihac9rD54FkINbM9gH3OeeerGtd59xWM3sB2AZUAzf7M6wAfIvPpj1c6d8AngSe8QeAHsKbpUVEREREWsHR8ipe2+xdOXPtJwdxDmYM78d9S6aweHo8g2N6hDvEDqs1Z1m5qpHliSc8fgB4oI71PgCm1dFeDlx+clGKiIiISH0qqmtI33mAtMwAb27fT2V1LYmDenPrOeNZmhTPmMF9wh1ip6D/J4iIiIjIp2prHe9nHyI1M5dXN+dxpKyKQdFRXD13JEuT4kka0b4GZ3YGKshFREREhJ35xbyYEeDljd7gzF7du7FoahxLZyYwf1ysBme2IhXkIiIiIl1U3pEy0jJzSc0IsCO/mG4RxlnjY7lj0UTOmxJHtAZntgllWURERKQLOVJWxcrNeaRmBlifdQjnIGlEf+5fMoXFM+KJ7aPBmW1NBbmIiIhIJ1dRXcM/duwnNSOXt3bsp7KmltGx0dx+7gSWJsWTGBsd7hC7NBXkIiIiIp1Qba1jfdYh0jK9K2cWl1cT2yeKa+aNJCUpgenD+2lwZjuhglxERESkE9med5TUzAAvZeaSd6Sc3lHduGDqUJbOTODMsYOI1ODMdkcFuYiIiEgHd7Cslt+k7yItI5edBcVERhhnTxjMXRdO4rwpcfSOUsnXnundEREREemAjpRW8Yo/OPO9rDJgJ7NG9ufHS6dy0SnDGKTBmR2GCnIRERGRDqK8qoa3duwnNSNA+s4DVNbUMmZwNJeN787tKfMZOah3uEOUZlBBLiIiItKO1dQ61n9ykNTMACs351NcUc3gmB585fRRpCQlMC2hL2+//baK8Q5MBbmIiIhIO+OcY1veUVIzAry0MZeCoxX06RHJoqlDSZkZzxljY+kWoRlSOgsV5CIiIiLtRM6hUl7a6F058+P9JURGGMkTB3PvxQksnBxHr6hu4Q5RWoEKchEREZEwOnysklc255GWGeD97MMAzBk1gJ+kTOPiU4YxIDoqzBFKa1NBLiIiItLGyqtqeHN7AakZubz90X6qahzjhvThjkUTuWRGPCMGqj94V6KCXERERKQN1NQ61u4+yIsZAVZtzaekopq4vj24/oxEliYlMDW+r66c2UWpIBcRERFpJc45tuZ+Njhzf3EFMT0iuXDaUFJmJjBvzCANzhQV5CIiIiItLedQKakZAVIzA+w+cIzu3YzkiUO4dGYC50waQs/uGpwpn1FBLiIiItICDh2r5JVNuaRm5rJhjzc4c27iQG6cP4aLThlK/94anCl1U0EuIiIi0kxllTW8sb2AtIwAb390gOpax4S4PnzvAm9w5vABGpwpjVNBLiIiIhKC6ppa3t3tXTlz1ZZ8jlXWMLRvT26cP5qlSQlMHhajwZkSEhXkIiIiIo1wzrE5cITUjFxe2phLYUkFMT0jWTw9nqUz4zlttAZnSvOpIBcRERGpx56Dx0jNyCUtM8AnhceI6hbBgkmDSUlKYIEGZ0oLUUEuIiIiEuRgSQUrNuWRmhkgY28RAKeNHshNZ4/hwmnD6Ne7e5gjlM5GBbmIiIh0eaWV1byxrYDUjADvfFxITa1j0tAY7rpwEpfMiCe+f69whyidmApyERER6ZKqa2pZvauQtMxcVm3Np7Syhvh+Pfn6WWNImRnPpKF9wx2idBEqyEVERKTLcM6xcd8RUjMCrNiUS2FJJX17RrI0KZ6lSQnMTRxIhAZnShtTQS4iIiKdXlbhMVIzAqRlBsg+WEpUZATnThpCyswEkicOpkekBmdK+KggFxERkU7pQHEFK/wrZ27MKcIM5o0exLeTx7Fo2lD69dLgTGkfVJCLiIhIp3GsoprXt+WTmpHL6l3e4Mwpw/pyz0WTWDIjnmH9NDhT2h8V5CIiItKhVdXUsvrjQlIzA7y+tYCyqhoS+vfiG2ePIWVmAhPiYsIdokiDVJCLiIhIh+OcIyOniLSMACs25XHwWCX9enXn0lkJXDozgdkjB2hwpnQYrVaQm9kyYDGw3zk3zW/7b2AJUAnsBm5wzhX5y+4GbgRqgFudc6v89tnAU0Av4FXgNuecM7MewNPAbOAgcIVzLru1Xo+IiIiE3+4DJaRlBEjbmMueg6X0iIxg4eQ4UmYm8IUJg4mKjAh3iCIha80z5E8Bj+IVzce9AdztnKs2s58BdwN3mtkU4EpgKhAPvGlmE5xzNcBjwE3AOryC/AJgJV7xftg5N87MrgR+BlzRiq9HREREwmB/cTkvb8wjLTPApn1HMIMzx8Zyy4JxXDBtKDE9NThTOrZWK8idc++YWeIJba8HPVwHfMm/vxRY7pyrALLMbBcw18yygb7OubUAZvY0kIJXkC8F7vef/xfgUTMz55xrlRckIiIibaakoppVW/JJzQywZlchtQ6mJfTl3osns2RGPHF9e4Y7RJEWY61Zv/oF+YrjXVZOWPYy8Cfn3LNm9iiwzjn3rL/sSbyiOxt40Dm30G8/C7jTObfYzLYAFzjn9vnLdgOnOecK69jXTXhn2YmLi5u9fPnyFn+tDSkpKaFPnz5tus+OTjkLnXIWOuUsdMpZ6JSzpquudWwprOGfe8vZfMiorIXYXsbpwyI5PT6S+D7qjlIfHWeha4ucLViwYINzbk5j64VlUKeZfR+oBv54vKmO1VwD7Q095/ONzj0BPAEwZ84cl5ycHEq4Jy09PZ223mdHp5yFTjkLnXIWOuUsdMpZw5xzfLj3MC9mBHhlUx6HS6vo09348tyRpCQlMHvUAMw0OLMxOs5C155y1uYFuZl9FW+w57lB3Uv2ASOCVhsO5Prtw+toD37OPjOLBPoBh1oxdBEREWkhu/YXk5qRS9rGADmHyugRGcF5U+JISUqA/G0sPOeUcIco0mbatCA3swuAO4EvOOdKgxa9BDxnZg/hDeocD7znnKsxs2IzmwesB64DHgl6zleBtXh90d9S/3EREZH2q+BoOS9vzCU1M8CWwFEiDM4cF8vt505g0bSh9OnhlSXp+7eHOVKRttWa0x4+DyQDsWa2D7gPb1aVHsAb/r+f1jnnvumc22pmLwDb8Lqy3OzPsALwLT6b9nClfwN4EnjGHwB6CG+WFhEREWlHisureG1LPmmZuby72xucOX14P36weApLpg9jiAZnirTqLCtX1dH8ZAPrPwA8UEf7B8DnBoU658qBy08mRhEREWl5ldW1vP3RAVIzAry5vYCK6lpGDuzNLQvGsXRmAmMHa/ChSDBdqVNEREROWm2tY4M/OPPVzXkUlVYxMDqKK04dwdKkBGaN7K/BmSL1UEEuIiIizfZRQTGpGQHSMnMJFJXRs3sE508ZyqUzE5g/Ppbu3TRVoUhjVJCLiIhISPKPlPPSxgCpGblsy/MGZ541fjDfXTSB86cMJbqHyguRUOgTIyIiIo06Wl7Fa5u9K2eu/eQgzsGMEf25b8kUFk+PZ3BMj3CHKNJhqSAXERGROlVU15C+8wBpmQHe3L6fyupaEgf15tZzxpMyM4HRsdHhDlGkU1BBLiIiIp+qrXW8n32I1MxcXt2cx5GyKgZFR3H13JGkzExgxvB+Gpwp0sJUkIuIiAg784t5MSPAyxu9wZm9o7px/pQ4UmYmMH9cLJEanCnSalSQi4iIdFG5RWW8tDGX1IwAO/KL6RZhnD0+lu9dMJHzpsTRO0plgkhb0CdNRESkCzlSVsXKzXmkZgZYn3UI52DmyP788JKpXDx9GLF9NDhTpK2pIBcREenkyqtqSN+5n9SMXN7asZ/KmlrGxEZz+7kTWJoUT6IGZ4qElQpyERGRTqi21rE+6xCpGQFe3ZJHcXk1sX16cM28kaQkJTBdgzNF2g0V5CIiIp3I9ryjpGYEeGljLnlHyomO6saiqUNJmZnAGWMHaXCmSDukglxERKSDCxSVkZYZIC0jl50FxURGGGdPGMzdF03mvMlx9IrqFu4QRaQBKshFREQ6oKLSSl71r5z5XtYhAGaPGsCPl07l4unxDIyOCnOEItJUKshFREQ6iPKqGt7asZ8XMwKk79xPVY1j7OBo/vO8CSxNSmDkoN7hDlFEmkEFuYiISDtWU+tY/8lBXswI8NqWfIorqhkc04PrTk/k0pkJTI3vq8GZIh2cCnIREZF2xjnH1tyjpGV6gzMLjlbQp0cki6YO5dKZCZw+dhDdIlSEi3QWKshFRETaiZxDpZ9eOfPj/SVERhjJE4fwg8XxLJwcR8/uGpwp0hmpIBcREQmjw8cqeWVzHmmZAd7PPgzAqYkD+EnKNC4+ZRgDNDhTpNNTQS4iItLGyqtqeHN7AakZubz9kTc4c/yQPtyxaCKXzIhnxEANzhTpSlSQi4iItIGaWsfa3d7gzFVb8ympqCaubw+uPyORlJkJTBmmwZkiXZUKchERkVbinCP7SA0/XrGNlzfmsr+4gpgekVx0ylBSkhI4bYwGZ4qICnIREZEWt/dgKWmZAVIzA+w+UE73btksmDiElJkJnDNpiAZnisi/UEEuIiLSAg4dq+SVTbmkZuayYY83OHPu6IGcNaSK27/4Bfr31uBMEambCnIREZFmKqus4Y3tBaRlBHj7owNU1zomxsXwvQu8wZnDB/QmPT1dxbiINEgFuYiISAiqa2p5d/dBUv3BmccqaxjWryc3njWalKQEJg/rG+4QRaSDUUEuIiLSCOccm/YdITUzwMsb8ygsqSCmZyRLZsSzNCmB00YPJEKDM0WkmVSQi4iI1GPPwWOkZuSSlhngk8JjRHWLYMGkwVw6M4HkiRqcKSItQwW5iIhIkIMlFazYlEdqZoCMvUUAzBszkJvOHsOF04bRr3f3MEcoIp2NCnIREenySiureWNbAS9mBPjnx4XU1DomDY3hrgsnccmMeOL79wp3iCLSiakgFxGRLqm6ppZ/7iokLSPA69sKKK2sIb5fT75+1hhSZsYzaagGZ4pI21BBLiIiXYZzjsycItIyc1mxKZfCkkr69oxkaVI8KUkJnJqowZki0vZarSA3s2XAYmC/c26a3zYQ+BOQCGQDX3bOHfaX3Q3cCNQAtzrnVvnts4GngF7Aq8BtzjlnZj2Ap4HZwEHgCudcdmu9HhEyOrO6AAAgAElEQVQR6biyCo+RmhEgLTNA9sFSoiIjWDh5CEuTEkieOJgekRqcKSLh05pnyJ8CHsUrmo+7C/i7c+5BM7vLf3ynmU0BrgSmAvHAm2Y2wTlXAzwG3ASswyvILwBW4hXvh51z48zsSuBnwBWt+HpERKQDOVBcwQr/ypkbc4owg9PHDOLbyeO44JSh9O2pwZki0j60WkHunHvHzBJPaF4KJPv3/wCkA3f67cudcxVAlpntAuaaWTbQ1zm3FsDMngZS8ArypcD9/rb+AjxqZuacc63zikREpL07VlHN69vySc3IZfUub3DmlGF9ueeiSVwyI4Gh/XqGO0QRkc+x1qxf/YJ8RVCXlSLnXP+g5YedcwPM7FFgnXPuWb/9SbyiOxt40Dm30G8/C7jTObfYzLYAFzjn9vnLdgOnOecK64jjJryz7MTFxc1evnx5a73kOpWUlNCnT5823WdHp5yFTjkLnXIWuvaYs+pax9aDNazNrebD/TVU1sCgnsbp8ZGcPiyShJiIsMbXHnPW3ilnoVPOQtcWOVuwYMEG59ycxtZrL4M66xpB4xpob+g5n2907gngCYA5c+a45OTkZoTYfOnp6bT1Pjs65Sx0ylnolLPQtZecOefIyCkiNSPAik15HDpWSf/e3bl8TgIpMxOYPXJAuxmc2V5y1pEoZ6FTzkLXnnLW1gV5gZkNc87lmdkwYL/fvg8YEbTecCDXbx9eR3vwc/aZWSTQDzjUmsGLiEh47T5QQlpGgLSNuew5WEqPyAgWTokjJSmBL0wYTFRkeM+Gi4g0R1sX5C8BXwUe9H+mBbU/Z2YP4Q3qHA+855yrMbNiM5sHrAeuAx45YVtrgS8Bb6n/uIhI57O/uJyXN+aRlhlg074jRBicMTaWWxaM44JpQ4nR4EwR6eBac9rD5/EGcMaa2T7gPrxC/AUzuxHYC1wO4JzbamYvANuAauBmf4YVgG/x2bSHK/0bwJPAM/4A0EN4s7SIiEgnUFJRzaot+aRmBlizq5BaB9MS+nLvxZNZMiOeuL4anCkinUdrzrJyVT2Lzq1n/QeAB+po/wCYVkd7OX5BLyIiHV9VTS3vfHSAFzMCvLm9gPKqWkYM7MXNC8axNCmecUNiwh2iiEiraC+DOkVEpAtyzrFhz2FSMwO8simPw6VVDOjdnctnjyBlZjyzRg7ArH0MzhQRaS0qyEVEpM3t2l9MakYuaRsD5Bwqo2f3CM6bMpSUpHjOnjCY7t00OFNEug4V5CIi0iYKjpbz8sZcXswIsDX3KBEGZ46L5fZzJ7Bo2lD69NCfJBHpmvTbT0REWk1xeRWv+YMz3919EOdg+vB+/GDxFJbMGMaQGA3OFBFRQS4iIi2qsrqW9J37ScvM5c3tBVRU1zJyYG++s2AcS2cmMHawriYoIhJMBbmIiJy02lrHhr2HeTEjwKub8ygqrWJgdBRXnjqCpTMTmDmivwZniojUQwW5iIg020cFxaRmBEjLzCVQVEav7t04f6p35cz542M1OFNEpAlUkIuISEjyj5Tz0sYAqRm5bMs7SrcIY/64WL67aALnTxlKtAZnioiERL81RUSkUUfLq3htcz6/f6+MHav+jnMwY0R/7lsyhcXT4xkc0yPcIYqIdFgqyEVEpE61tY63Pz7AC+/n8Pcd+6msriWut3HrOeNJmZnA6NjocIcoItIpqCAXEZF/UVpZzV8/DPD7NVl8cuAYg6KjuHruSFJmJnB4VwYLFkwId4giIp2KCnIREQEgt6iMP6zN5vn1ezlaXs304f341ZVJXDhtGFGR3uDM9N2aKUVEpKWpIBcR6eI+3HuYZauzWLklH+ccF0wbyo3zRzNr5ABNVSgi0gZUkIuIdEFVNbWs3JLPstVZZOYUEdMzkhvnj+a600cxfEDvcIcnItKlqCAXEelCikoref69HJ5em03ekXJGx0bzo6VT+eKs4ZquUEQkTPTbV0SkC9i1v4Tfr8nirx/uo7yqljPHDeKBS6eRPGEIERHqliIiEk4qyEVEOinnHO98XMiy1Vm8/dEBoiIjuDQpgRvmJzJpaN9whyciIj4V5CIinUxZZQ0vZgRYtiaLXftLGBzTg/84bwLXnDaSQX10AR8RkfZGBbmISCeRf6Scp9dm89x7eykqrWJqfF8e+vIMLp4+jB6R3cIdnoiI1EMFuYhIB7cxp4hla7J4ZVMetc5x/pShfG3+aE5N1LSFIiIdgQpyEZEOqLqmllVbC1i2JosNew7Tp0ckXz0jkevPSGTEQE1bKCLSkaggFxHpQI6UVfGn9/fyh3f3ECgqY+TA3ty3ZApfmj2cmJ7dwx2eiIg0gwpyEZEO4JMDJTz1bjZ/2bCP0soa5o0ZyH1LpnDu5Di6adpCEZEOTQW5iEg75Zxjza6DLFuTxVs79hPVLYJLkuK54cxEpsb3C3d4IiLSQlSQi4i0M+VVNaRlBli2OpudBcXE9oni9oXjuea0UQyO0bSFIiKdjQpyEZF2Yv/Rcp5Zt4c/rt/LoWOVTB7Wl//+0nQuSYrXtIUiIp2YCnIRkTDbEjjCstVZvLwpl+pax8LJcXztzNHMGzNQ0xaKiHQBjRbkZtYb+E9gpHPu62Y2HpjonFvR6tGJiHRSNbWON7bls2x1Nu9lHyI6qhvXzhvF9WckMmpQdLjDExGRNtSUM+S/BzYAp/uP9wF/BlSQi4iE6Gh5FS+8n8NT72az73AZwwf04t6LJ/PlU0fQV9MWioh0SU0pyMc6564ws6sAnHNlpv+hioiEJLvwGE+9m82fP8jhWGUNc0cP5N6Lp3DeFE1bKCLS1TWlIK80s16AAzCzsUBFq0YlItIJOOdY+8lBlq3O5u87CoiMMJZMj+eGM0dzynBNWygiIp6mFOT3Aa8BI8zsj8CZwPWtGZSISEdWXlXDyxtzWbYmm+15RxkYHcV3Fozj2nmjGNK3Z7jDExGRdqbRgtw594aZfQjMAwy4zTlXeDI7NbN/B/4N76z7ZuAGoDfwJyARyAa+7Jw77K9/N3AjUAPc6pxb5bfPBp4CegGv+rG5k4lNRKS5DhRX8Oy6Pfxx/R4KSyqZNDSGn3/Rm7awZ3dNWygiInWrtyA3s1knNOX5P0ea2Ujn3IfN2aGZJQC3AlP8/ugvAFcCU4C/O+ceNLO7gLuAO81sir98KhAPvGlmE5xzNcBjwE3AOryC/AJgZXPiEhFprq25R/j9mmxeysylsqaWcycN4WvzR3PG2EGatlBERBrV0Bny//F/9gTmABvxzpBPB9YD809yv73MrArvzHgucDeQ7C//A5AO3AksBZY75yqALDPbBcw1s2ygr3NuLYCZPQ2koIJcRNpATa3j79sLWLYmi3WfHKJ3VDeumjuCr56RyJjBfcIdnoiIdCDWWA8PM1sOPOCc2+w/ngZ81zl3fbN3anYb8ABQBrzunLvGzIqcc/2D1jnsnBtgZo8C65xzz/rtT+IV3dnAg865hX77WcCdzrnFdezvJrwz6cTFxc1evnx5c0NvlpKSEvr00R/oUChnoVPOQtecnJVVO/65r5o39lRxoMwxqKexcFR3zh4eSXT3zn82XMdZ6JSz0ClnoVPOQtcWOVuwYMEG59ycxtZryqDOSceLcQDn3BYzS2puYGY2AO+s92igCPizmV3b0FPqaHMNtH++0bkngCcA5syZ45KTk0MJ+aSlp6fT1vvs6JSz0ClnoQslZzmHSnnq3WxeeD+H4opq5owawA/nj+b8KXFEdoto3UDbER1noVPOQqechU45C117yllTCvLtZvY74Fm8gvdaYPtJ7HMhkOWcOwBgZn8DzgAKzGyYcy7PzIYB+/319wEjgp4/HK+Lyz7//ontIiItwjnHe1mHWLYmize2FRBhxuLpw7jhzNHMGNG/8Q2IiIg0QVMK8huAbwG3+Y/fwRtM2Vx7gXlm1huvy8q5wAfAMeCrwIP+zzR//ZeA58zsIbxBneOB95xzNWZWbGbz8Pq0Xwc8chJxiYgAUFldy4pNuSxbk8WWwFH69+7Ot5LH8pV5iQztp2kLRUSkZTVl2sNy4GH/dtKcc+vN7C/Ah0A1kIHXnaQP8IKZ3YhXtF/ur7/Vn4llm7/+zf4MK+B9UXgKb9rDlWhAp4ichMKSCp5bv5dn1u3hQHEF44f04b8uO4WUpAR6RWnaQhERaR2NFuRmlkUdfbOdc2Oau1Pn3H14FxwKVoF3tryu9R/AGwR6YvsHwLTmxiEiArAj/yjLVmeRmplLZXUtyRMH87UzR3PW+FhNWygiIq2uKV1WgkeG9sQ7cz2wdcIREWkbtbWOzP3V/PZ361iz6yC9unfjy3OGc/0Zoxk3RDMViIhI22lKl5WDJzT90sxWA/+vdUISEWk9xyqq+cuGfTz1bjZZhRUM62fcdeEkrjx1BP17R4U7PBER6YKa0mUl+IqdEXhnzGNaLSIRkVaw73ApT6/dw/Pv7aW4vJqZI/vzrRk9+I8vL6B7F5q2UERE2p+mdFn5n6D71UAW8OXWCUdEpOU459iw5zDL1mTx2pZ8zIwLpw3la/NHM2vkANLT01WMi4hI2DWlIL/ROfdJcIOZjW6leERETlpldS0rt+Tx5OosNu07Qr9e3bnp7LFcd/oo4vv3Cnd4IiIi/6IpBflfgFl1tM1u+XBERJrv0LFKnn9vL0+vzabgaAVjBkfzk5RpXDYrgd5RTfl1JyIi0vbq/QtlZpOAqUA/M7ssaFFfvNlWRETahY8Lilm2Jou/fRigorqWs8bH8rMvTufs8YOJiNC0hSIi0r41dMpoIrAY6A8sCWovBr7emkGJiDSmttbx9scHWLY6i39+XEiPyAgumzWcG85MZEKcxp2LiEjHUW9B7pxLA9LM7HTn3No2jElEpF6lldX87cMAv1+Txe4Dx4jr24M7Fk3kqrkjGRitaQtFRKTjaajLyveccz8Hrjazq05c7py7tVUjExEJkltU9um0hUfKqpg+vB+/ujKJC6cNIypSM6WIiEjH1VCXle3+zw/aIhARkbp8uPcwy1ZnsXJLPs45Lpw2jK/NT2TWyAG6rL2IiHQKDXVZedn/+Ye2C0dEBKpqanltSz5Prs4iM6eImJ6R3Dh/NNedPorhA3qHOzwREZEW1VCXlZcBV99y59wlrRKRiHRZRaWVPP9eDk+vzSbvSDmjY6P50dKpfHHWcKJ7aNpCERHpnBr6C/eLNotCRLq0YxXVPJa+mydXZ1FWVcP8cbE8cOk0kicM0bSFIiLS6TXUZeXt4/fNLAqYhHfGfKdzrrINYhORTq621vG3jAA/f20H+4sruGRGPN9eMJZJQ/uGOzQREZE20+j/gM3sYuBxYDdgwGgz+4ZzbmVrBycindcH2Yf40YptbNp3hBkj+vP4V2Yza+SAcIclIiLS5prSKfN/gAXOuV0AZjYWeAVQQS4iIQsUlfHgyh28vDGXoX178vAVM1g6I0FdU0REpMtqSkG+/3gx7vsE2N9K8YhIJ1VaWc3jb3/CE+/sxjm49ZxxfDN5LL2jNFhTRES6tqb8JdxqZq8CL+D1Ib8ceN/MLgNwzv2tFeMTkQ6uttaRtjHAz1buJP9oOUtmxHPXhZNI6N8r3KGJiIi0C00pyHsCBcAX/McHgIHAErwCXQW5iNQpY+9hfvjyNjJzijgloR+PXj2TOYkDwx2WiIhIu9JoQe6cu6EtAhGRziPvSBk/f20nL2YEGBLTg19cPoPLZqqfuIiISF2aMsvKaOA7QGLw+rowkIicqKyyhife+YTH395NjXPcvGAs304ep4v6iIiINKApfyVTgSeBl4Ha1g1HRDoi5xwvb8rjwVe3k3uknItPGcZdF05ixEBd5l5ERKQxTSnIy51zv271SESkQ9qYU8SPVmxjw57DTI3vy8NXJHHamEHhDktERKTDaEpB/iszuw94Hag43uic+7DVohKRdq/gaDk/f20nf/1wH7F9ovjZF0/hS7NH0E39xEVERELSlIL8FOArwDl81mXF+Y9FpIspr6rhd//8hN+k76a6xvHNL4zl5gVjienZPdyhiYiIdEhNKcgvBcY45ypbOxgRab+cc7y6OZ+fvrqdQFEZi6bGcc9Fkxk1KDrcoYmIiHRoTSnINwL90dU5RbqsLYEj/OjlbbyXfYhJQ2N47uunccbY2HCHJSIi0ik0pSCPA3aY2ft81ofcOeeWtl5YItIe7C8u5xerdvLnDfsY2DuKn156Clecqn7iIiIiLakpBfl9QfcNmA9c1TrhiEh7UF5Vw+/XZPO//9hFRXUN/zZ/NN85dzx91U9cRESkxTXlSp1vm1kScDXwZSALeLy1AxORtuecY9XWfB54dTs5h8pYODmO7188mdGx6icuIiLSWuotyM1sAnAl3tnwg8CfAHPOLWij2ESkDW3NPcKPV2xj3SeHmBDXh2dunMtZ4weHOywREZFOr6Ez5DuAfwJLnHO7AMzs31tip2bWH/gdMA1vCsWvATvxiv5EIBv4snPusL/+3cCNQA1wq3Nuld8+G3gK6AW8CtzmnHMtEaNIV1FYUsH/vL6T5e/n0L9Xd368dCpXzR1JZLeIcIcmIiLSJTRUkH8R7wz5P8zsNWA5Xh/ylvAr4DXn3JfMLAroDdwD/N0596CZ3QXcBdxpZlP8OKYC8cCbZjbBOVcDPAbcBKzDK8gvAFa2UIwinVpldS1PvZvFI3/fRVlVDTecMZrbzh1Pv97qJy4iItKW6i3InXMvAi+aWTSQAvw7EGdmjwEvOudeb84OzawvcDZwvb+fSqDSzJYCyf5qfwDSgTuBpcBy51wFkGVmu4C5ZpYN9HXOrfW3+7QfpwpykQY453hjWwE/fXU72QdLOWfSEO65aDLjhvQJd2giIiJdkoXSw8PMBgKXA1c455p1pU5/gOgTwDZgBrABuA0IOOf6B6132Dk3wMweBdY5557125/EK7qzgQedcwv99rOAO51zi+vY5014Z9KJi4ubvXz58uaE3mwlJSX06aNiJxTKWeiakrOc4lqe31HBtoO1xEcbV02K4pTBTZlsqXPScRY65Sx0ylnolLPQKWeha4ucLViwYINzbk5j64X0l9g5dwj4P//WXJHALOA7zrn1ZvYrvO4p9amrm4xroP3zjc49gfclgDlz5rjk5OSQAj5Z6enptPU+OzrlLHQN5exgSQUPv/kRz63fS0zP7ty/ZBLXzBtF9y7eT1zHWeiUs9ApZ6FTzkKnnIWuPeUsHKfG9gH7nHPr/cd/wSvIC8xsmHMuz8yG8dmVQfcBI4KePxzI9duH19EubcQ5x478YibGxRChC8W0S5XVtTy9Nptf/f1jSitruO70RG5fOJ7+vaPCHZqIiIj42rwgd87lm1mOmU10zu0EzsXrvrIN+CrwoP8zzX/KS8BzZvYQ3qDO8cB7zrkaMys2s3nAeuA64JE2fjld2kNvfMQjb+1iYlwMt547ngunDVVh3k4453hrx34eeGU7nxQe4+wJg/nBxZMZHxcT7tBERETkBOHqPPod4I/+DCufADcAEcALZnYjsBevrzrOua1m9gJewV4N3OzPsALwLT6b9nAlGtDZZv6xYz+PvLWLL0wYzL7Dpdz83IdMiOvDreeO56Jpw1SYh9HHBcX8aMU2/vlxIWNio1l2/RwWTByCmd4TERGR9igsBblzLhOoq4P7ufWs/wDwQB3tH+DNZS5tKOdQKbf/KZMpw/ryf1+ZTfduEazYlMsjb+3ilucyGD/kY36weApnT9BFZdpSSaXjvrQtPLt+L9FR3fjB4il8Zd4ooiK7dj9xERGR9q7rTq8gzVJeVcO3//ghtc7x2LWz6Nm9GwBLkxJYPD2eVzfn8fCbH/Fvf/iAP379NE5NHBjmiDu/qppanl23h1/8s5Sy6j1cfdpI/uO8iQyMVj9xERGRjkAFuYTkRyu2sTlwhCe+MptRg6L/ZVm3CGPJjHjOGh/LZb95l5ue/oAXv30mibHR9WxNTtbW3CPctjyTXftLmDoogoe+Mp+JQ9VPXEREpCPR/7Klyf724T6eW7+Xb3xhDOdPHVrvev17R7Hs+lMB+NpT71NUWtlWIXYpqRkBvvjYu5SUV/Pb6+bw3Tk9VYyLiIh0QCrIpUkqqmu476WtzE0cyB3nT2x0/cTYaJ64bg77Dpdx0zMbqKiuafQ50jRVNbX86OVt3P6nTKYn9Ofl78znvClxGrQpIiLSQakglyZ5d/dBisur+VbyWCKbeDGZUxMH8t+XT+e9rEPc/dfNhHJVWKlbYUkF1/5uPcvWZHH9GYn88eunMTimR7jDEhERkZOgPuTSJK9vzSc6qhtnjBsU0vOWJiWw52ApD73xEaMGRXPbwvGtFGHnt2lfEd94ZgOHjlXy0JdncNms4Y0/SURERNo9FeTSqJpaxxvbCkieNIQekd1Cfv53zhlH9sFjPPzmR4wa1JuUmQmtEGXn9ucPcvh+6hYG9+nBX791BtMS+oU7JBEREWkhKsilUR/uPUxhSSWLGhjI2RAz48HLppNbVMb3/rKJEQN7MXuUpkNsisrqWn68YhvPrNvDmeMG8chVszSdoYiISCejPuTSqFVb8onqFsGCic2/0E9UZASPXzubIX17cM/ftlBdU9uCEXZO+4vLufq363hm3R5uOnsMf7hhropxERGRTkgFuTTIOceqbfmcMW4QMT27n9S2+veO4vsXTWZnQTEvfLCvhSLsnDbsOcziX69mS+4Rfn3VTO65aHKTB9OKiIhIx6K/8NKgHfnF5Bwqa3Z3lRNdMG0ocxMH8tAbOykur2qRbXY2z63fy5VPrKVn9268+O0zuWRGfLhDEhERkVakglwatGprPmawcHJci2zPzLh38WQKSyr533/sbpFtdhYV1TXc9ddN3PPiZk4fG8tLt5zJ5GF9wx2WiIiItDIV5NKgVVsLmD1yQIvOdT19eH8um5XAstVZ5BwqbbHtdmR5R8q44v/Wsfz9HG5eMJbfX38q/Xurv7iIiEhXoIJc6pVzqJTteUdbrLtKsO8tmkREBDy4ckeLb7ujWf/JQZY8spqPC4p5/NpZ3LFoEt0idNVNERGRrkIFudRr1dZ8gFYpyIf268k3zh7LK5vz+CD7UItvvyNwzvHUmiyu+d16Ynp2J/XmM7lg2rBwhyUiIiJtTAV5J7Tuk4P88+MDJ72d17cVMGloDCMH9W6BqD7vG18YQ1zfHvx4xTZqa12r7KO9Kq+q4T//vJH7X95G8sTBpN1yJuPjYsIdloiIiISBCvJOpqK6hu88n8F3ns+gvKrmpLaTubeIs8bHtmB0/6p3VCTfWzSJjfuOkLYx0Gr7aW/2HS7lS4+/y98+DHD7wvE88ZU59D3JKSVFRESk41JB3sm8lJnLgeIKikqreGVTXrO3sz2vmMqaWmaOHNCC0X3epTMTmD68Hz9/bSdllc3/AtFRvLurkCWPrGZPYSm/u24Oty+cQIT6i4uIiHRpKsg7EeccT67OYmJcDGMHR/PMuj3N3lbm3sMAJI3o31Lh1Skiwrj34inkHSnniXc+adV9hZNzjt++8wnXPrmeQX16kHbLmSyc0jJTSYqIiEjHpoK8EyksqWRHfjGXzxnOtfNGkZlTxEcFxc3aVkZOEXF9ezCsX88WjvLz5o4eyIXThvL427spOFre6vtra6WV1dy6PJMHXt3O+VOGknrzmYwZ3CfcYYmIiEg7oYK8E8ktKgMgcVD0p32/twSONGtbmTlFJI3oj1nbdKe4+8LJ1NQ6/nvVzjbZX1vZc/AYl/3mXVZsyuWORRN57NpZ9OkRGe6wREREpB1RQd6JHC/I4/v3YtSgaCIjjN0HSkLezqFjlew5WErSiNbtPx5s5KDe/P/27j0+zrrM+/jnyuTUpEmbnmJpWlp6opyEUirnDYICohRXWXEXBR59eFZxFw/7IPW4uoursut6XF6y6oqKIggr6KOCAgFlpS09AD1CS0tb2tLQNs2hOczhev6476TTNDPJlGbumfT7fr3yysxv5p75zQWEb3657t99w3nTuX/F9iP+JaLQNG3YzTu+9Sd27u/iv64/i5sumpW3X3BERESkeCiQjyCvhIF8ythRlMVKmDa+io27cw/kz25rAYa/f7y/m948i3FV5XzhV2tIFvE2iO7Odx7fyA0/XMZxY0fxq4+cT+PcSVFPS0RERAqUAvkIsqOli+ryGLWjgpaIWRNHs6m5I+fXWbmthRKD0xrGHO0pZlVbWcbit81j2ZZ9/Ofz3UUZytu7E3zoJyu4/eENvP2043jgw+cO2z7uIiIiMjIokI8gO1o6OW7sqL62iJmTRrPltQ7iyVROr7Ny6z7m1NdQHUGv87vPbOCTl53I0zuT/N/7ni2qUL6puZ2rvvMUj6zdxWeumMc3rzmdqnL1i4uIiEh2CuQjyI79QSDvNWviaBIpZ+veA0N+jVTKeXZbC2dMy2+7SroPNc7kL2eX8cDKV1j8wHMFfxVPd+c3z+/kqm8/xd6OHn7ygTfxwQtOUL+4iIiIDImW70aQHS2dnHzcwTaTmZOCrfU27m5n5hC32du8p4PWrkTe+8f7u3JmOQ1Tj+ebj22kNFbCbVedUpABd1NzO1/41VqefKGZU6eM4Y5r59NQpxYVERERGToF8hGiK57ktfYepow9uG/4zInVQBDILz15aK+zamvvCZ3522Elk4+9ZQ7xlHNH0yZKS4wvXHlywYTyju4E33psI9//00tUlsb4/DtO4n1nH09pTH90EhERkdwokI8QO/cHF9RJb1mpqSyjvrYip60PV21rYXRFKbMmRX/hGjPjlkvnkkim+M8/bqa0pITPvn1epKHc3fnVczv50v9bx67WLq4+s4FbLjuRiTUVkc1JREREipsC+Qixc3+w5eEb+l1Zc9ak0WzKYevDldv2cVrDGGIlhbESbWZ86m3ziCedHzy1mbJS49bLTowklK/f1crnH1zDks17OWVKLf9x7XzmT4v+LwkiIiJS3BTIR7EOOW8AABweSURBVIh9HXEAxlcfulI7Y0I1D67agbsPGmK74knW72zjxgtPGLZ5Hgkz4/PvOIlEKsV3n3iJspISPvHWOXkL5fs743z9Dy/woz+/TE1lKV9656m856ypBfNLi4iIiBS3yAK5mcWAZ4BX3P3tZjYO+DkwHdgC/JW77wufuxj4AJAE/t7dHw7HzwR+CIwCfgPc7O6FvSXHMNl3oAeAuqqyQ8anj6+mrSvBvgNxxlWXZ32NtTtbSaScN0Z8QudAzIwvXnkKiaTz7cc3UhozPnrJnGF9z1TKuX/Fdr7yu/Xs6ejhb940jU+8ZS51g9RRREREJBdRrpDfDKwDasP7twKPuvuXzezW8P4nzewk4BrgZOA44A9mNsfdk8AdwI3A0wSB/DLgt/n9GIWhJQzkY/oF8hkTghM7N7/WMWggX7+zDYCTJtdmfV5USkqML73zVBIp5+t/eJGyWAk3XTRrWN7r+e37+dxDq1m5tYX508bywxsWcsqU/F4oSURERI4NkQRyM2sArgBuAz4eDi8CGsPbdwFNwCfD8XvcvRvYbGYbgYVmtgWodfc/h6/5I+AqjtFAvu9AnKryGBWlsUPGp4eBfMtrHZx5fPZ+5w27WqkujzEl7cTQQlNSYnzlXaeRTDm3P7yB1q4415w1jenjq45KC8vejh5uf3gD9yzbyvjqCv7t6jfyzjOmUKL2FBERERkmUa2Qfx24BahJG6t3950A7r7TzCaF41MIVsB7bQ/H4uHt/uMj2ra9B5g8pvKw7fX2HeihrurwFfCpdVWUGGzZ0zHoa6/f1cacN9QUfPiMlRi3v/s0AL77xEt894mXmDauir+YM5EL50zknJnjGZ3jVUaTKeenS7fyrw9voL07wf86bwY3XzKb2sqywQ8WEREReR3yHsjN7O3AbndfbmaNQzlkgDHPMj7Qe95I0NpCfX09TU1NQ5vsUdLe3n5U3nN7W4rPPNXJe+aWc/mMQ4Pipm1dlKZ8wPcZX2ksWbuZpvKdGV/b3Vm9/QBn1ZfmvT4DGUrNFtXDOReO4vnXkjzf3M29y17mx0+/TMxgTl0Jp0yIceqEGFNrSrKunr+4L8mP1/awtS3FvHElXDu/kimjd7Pi6d1H+VMNr6P179mxRDXLnWqWO9Usd6pZ7lSz3BVSzaJYIT8PuNLM3gZUArVm9hPgVTObHK6OTwZ609B2YGra8Q3AjnC8YYDxw7j7ncCdAAsWLPDGxsaj+HEG19TUxNF4z397ZAOwkXjVRBobTz/ksW+sfYqpY0ppbHzTYcfNe2kpezu6aWy8IONr79rfRcfDj3LR/Lk0njv9dc/19cqlZn8Vfu9OJFn+8j6eeKGZJzY0c98Lbdz3QpxJNRVcGK6eXzBrQt9Jmbvbuvjyb9fzwIpXmDymkm//9TyuOHVywVx8KFdH69+zY4lqljvVLHeqWe5Us9ypZrkrpJrlPZC7+2JgMUC4Qv4P7n6tmd0OXAd8Ofz+YHjIQ8BPzexrBCd1zgaWunvSzNrM7GxgCfB+4Ft5/TB5tmLrPgDiqcP/ENByIJ6x93v6+CpWvLwv69aH63e1AjD3DTUDPl4MKkpjnDtzAufOnMDiy+fxamsXT77QzBMvNPP7ta/yi+XbMYM3Nozl1Clj+O+Vr9CdSPLhxpncdNEsqnNscxERERE5GgopgXwZuNfMPgBsBa4GcPc1ZnYvsBZIADeFO6wAfIiD2x7+lhF+QmfLgWCv8R0tnYc9lqmHHIKtD9u7E+zp6GHC6IGvKLlhV7DDyolFHMj7q6+t5OoFU7l6wVSSKee57S3B6vkLzdy95GUumD2Rz7/jJE6YGP1VSUVEROTYFWkgd/cmgt1UcPc9wMUZnncbwY4s/cefAU4ZvhkWlt5A/sq+QwN5MuXs74wftgd5rxlpO61kC+T1tRWMzRDqi12sxDhjWh1nTKvjo5fMIZFMHXZirIiIiEgUlEiKyP7OIJC/2tZFTyLVN97aGcedjGF6etpe5Jms39XG3DcU5v7jw0FhXERERAqFUkmRiCdTtHcnqK+twB1aOnv6Huu9SufYDCvkDXWjiJVYxq0PE8kUG5vbR1S7ioiIiEixUCAvEr2r41PrqgBo7Uz0PbYvbGXJ1ENeFith2rgqXmoeOJBv2dNBTyKlQC4iIiISAQXyItHbPz5tXBjIu+Jpj2VfIQeYObE6YyBftzM4obOYd1gRERERKVYK5EVif9iiMrU3kHemB/LgdrYTMmdOHM3mPR0kB9gyccOuNmIlxqxJ2m1EREREJN8UyItEb4tKQ12w13hb18GWld7V8jGjMq+QnzCxmp5E6rAdWiA4oXPGhGoqSmNHc8oiIiIiMgQK5EXiQE+w9frkMUEgT29Z6Q3rNZWZd7GcGe61vam5/bDHNrzaqnYVERERkYgokBeJAz1B6K6vDfYRTz+ps7UrTlV5jLIsW/llCuTt3Qm27e3kxHoFchEREZEoKJAXsIfX7OLFV4MTLrviwQr52KpyymLWb4U8Tm1l5nYVgLrqcsZVlx8WyFdu3QfAaVPHHs2pi4iIiMgQKZAXqFdaOvk/P17Oh+9eAUBnGMirymPUVpYdclJna1ec2lGDX3R15sRqNu0+dKeVpZv3Eisxzjy+7ijOXkRERESGSoG8QPWujO/pCHZX6ewJrsxZWRajdlQZrekndXYmBl0hh6Btpf8K+ZLNeznluFpGVwwe6EVERETk6FMgL1C9J3HGk0EQPxBPUFFaQqzEqKkspa2r/wr50AL5no4e9oUhvyueZNW2FhbOGDcMn0BEREREhkKBvEB1dAcr4L2BvKsnyajyYFvCAVtWsuyw0mvmpGoAXnotWCV/bvt+ehIpFs4Yf1TnLiIiIiJDp0BeYP7xoTX8dMnWtBXy4EI+nfEko8rCQD6q9PCWlSGukAN9feRLN+8BYIH6x0VEREQio8bhAtLaFeeH/7MFgFsumwvQd2XNznhqwBXyVMpp6xp8lxWAhroqymMlbAj705du2cfc+hrqqjNf4VNEREREhpdWyAvEdx7fSNOG5r77B7qTfbdTKaezJ5G2Ql7Wt+1hR0+ClDOkXVZiJcb5sydwz9KtvLyng+Vb9qp/XERERCRiWiEvELc/vOGQ+x09B1tSuhOpQ1pWaipK6Yqn6E4k+1pXhrJCDvDFRSdz6b8/yXU/WEpHT1KBXERERCRiWiEvAO5+2FjvhYAAuhNJOtNP6gz7xdu6En2tK0PpIYegbeVTV8xjy54DAArkIiIiIhFTIC8AvSduputJHBzriqeCHvK0kzrh0EA+ZoiBHOCvF07jwjkTOfENNdTXVr6eqYuIiIjI66SWlQLQlUgeNta73SEEK+Rd8SQVZQdP6gRo7Yzn3LICYGZ87/0LDnkPEREREYmGAnkB6I4fHozTw3JXPEV3PEllafAHjd72lNaueFrLSm7/KMtLSygv1R9IRERERKKmRFYAEqnsgbw7kaQ7kaKiLPjHVRNeBKi1M9G320ouK+QiIiIiUjgUyCP23PYWzvmXxw4b706kDrndnUhRUdqvZaUrTmtn0LJSM4QrdYqIiIhI4VEgj9hPl2wdcDy9jaUrnqQ7kaSyrF/LSmec1q441eUxSmP6RykiIiJSjJTiIlaWIUgfiCeoqQhWvQ/0JIknvW+FvLo8RqzE2N8Z9JAPdctDERERESk8CuQRSw6wBzkEIby3DWV/eOJmRXgSppkxZlQZLZ1x2roS6h8XERERKWIK5BEb6KJAAJ09SUb3nbx5aCAHGFtVxv4DQctKrjusiIiIiEjhUCAvUMEK+cFecaBvH3KAuqpy9h3oCQK5VshFREREipYCeYHqTGtZ6b34zyEr5KPKaDkQ7LKiHnIRERGR4qVAXqB6kqm+FfLeHvLKtBXysVXltPStkKtlRURERKRYKclFzjI+MroiCOD9T+oEqKsqY++BHnoSKa2Qi4iIiBQxBfICVlEao7y0JC2Qp6+Ql9EV7lWuHnIRERGR4pX3lhUzm2pmj5vZOjNbY2Y3h+PjzOz3ZvZi+L0u7ZjFZrbRzDaY2aVp42ea2fPhY980s8zLzUWoLGZUlJakndSZvstKed9t7bIiIiIiUryi6CFPAJ9w93nA2cBNZnYScCvwqLvPBh4N7xM+dg1wMnAZ8B9m1rtUfAdwIzA7/Losnx/kSPQkUqRSA2912F9ZrITKshitXQO1rKQFcq2Qi4iIiBStvAdyd9/p7ivC223AOmAKsAi4K3zaXcBV4e1FwD3u3u3um4GNwEIzmwzUuvufPdjM+0dpxxSsOZ/5Lbfc/xwALQd6+NnSrRmfWxYroSJLy0ov9ZCLiIiIFK9Id1kxs+nAGcASoN7dd0IQ2oFJ4dOmANvSDtsejk0Jb/cfL3i/WB5M+7MPrsn6vPLSIJD39opXprWs1NdW9t1OD+ciIiIiUlwiaz42s9HA/cBH3b01S/v3QA94lvGB3utGgtYW6uvraWpqynm+r0d7e/th79nU1MRL2zuzHrd1y2YS3Ym++yuWLWFz5cFQ/uk3VbKn09m9YQXNL4yo9vkBaybZqWa5U81yp5rlTjXLnWqWO9Usd4VUs0gCuZmVEYTxu939gXD4VTOb7O47w3aU3eH4dmBq2uENwI5wvGGA8cO4+53AnQALFizwxsbGo/VRhqSpqYnGxka64kn43e8AaGxs5K7NS1mzpznjcSfOmcWLnTt4ubUlOOaC86mrPtg73jiss45Wb81k6FSz3KlmuVPNcqea5U41y51qlrtCqlkUu6wY8H1gnbt/Le2hh4DrwtvXAQ+mjV9jZhVmNoPg5M2lYVtLm5mdHb7m+9OOKUg/X7btkPuDndrZe1Jnr/RdVkRERERkZIhihfw84H3A82a2Khz7FPBl4F4z+wCwFbgawN3XmNm9wFqCHVpucvdkeNyHgB8Co4Dfhl8FK55MHXLfB0nk5eFJnen3RURERGRkyXsgd/c/kfnylBdnOOY24LYBxp8BTjl6sxteqX4JfNAV8lLrWyEvLTFKFchFRERERhwlvDzqv/24D7JEXpa2Qp7euiIiIiIiI4cCeR4N1qLSX3oPeXrrioiIiIiMHEp5edS/ZaX//f7Se8gVyEVERERGJqW8CA22Yl4aO9hDXqGWFREREZERSYE8Tx5Zs4vueLLv/ubXOgYP5CUHV8i1w4qIiIjIyBTZlTqPJRv3Jfnn3y0/ZKyjO4EPss9KWcz6VsYzX8hURERERIqZll3zoD1+ePA2g7auRNbjSvvtQy4iIiIiI49WyPNgoNXtv/3Jcrbt7cx6XPoKuYiIiIiMTFp+jchgYRzCbQ+1Qi4iIiIyoint5cGRtn+XlhjlujCQiIiIyIimQF7AymIlNLd1AzB/Wl3EsxERERGR4aAe8jzY0po6ouNKY8ZVZ0xh7Y5Wbr5k9lGelYiIiIgUAgXyPEjbfjwnpSUlTBhdwdfec/rRnZCIiIiIFAy1rBSwspg2HxcREREZ6RTI8+EIc3Wprs4pIiIiMuIp8eXB69llRURERERGNgXyAlamFXIRERGREU+JLw+OdJ07phVyERERkRFPu6zkgeWQq0+YWM1dNyxk1baW4ZuQiIiIiBQMBfIC8o1rTuecmeOZVFPJ1HFVUU9HRERERPJAgTwPhrpAvuj0KcM6DxEREREpPOohFxERERGJkAK5iIiIiEiEFMjzIJeTOkVERETk2KJALiIiIiISIQXyPBhKkf/w8QuHfR4iIiIiUngUyPPABxi7/tzpXH1mQ9/9WZNq8jchERERESkYCuR50FBzeJkrSku4/eo3RjAbERERESkkCuR5cMqEWNRTEBEREZECpUCeB7GBdlnRzisiIiIiggJ5ZD54/gl9t6eOGxXhTEREREQkSqVRT+BY4AOc1TmxpgKAlZ99CxVl+r1IRERE5FhV9EnQzC4zsw1mttHMbo16PgNJpd2+4tTJnD9rQt/9uupyqsr1e5GIiIjIsaqok6CZxYDvAG8BtgPLzOwhd18b7cwOVZrWL/6X86dw8bz66CYjIiIiIgWl2FfIFwIb3f0ld+8B7gEWRTynw5hZ2u0IJyIiIiIiBafYA/kUYFva/e3hWMFZ8qmLed/Zx3PB7IlRT0VERERECoj5QGccFgkzuxq41N0/GN5/H7DQ3f+u3/NuBG4EqK+vP/Oee+7J6zzb29sZPXp0Xt+z2KlmuVPNcqea5U41y51qljvVLHeqWe7yUbOLLrpoubsvGOx5Rd1DTrAiPjXtfgOwo/+T3P1O4E6ABQsWeGNjY14m16upqYl8v2exU81yp5rlTjXLnWqWO9Usd6pZ7lSz3BVSzYq9ZWUZMNvMZphZOXAN8FDEcxIRERERGbKiXiF394SZfQR4GIgBP3D3NRFPS0RERERkyIo6kAO4+2+A30Q9DxERERGRI1HsLSsiIiIiIkVNgVxEREREJEIK5CIiIiIiEVIgFxERERGJkAK5iIiIiEiEFMhFRERERCKkQC4iIiIiEiEFchERERGRCCmQi4iIiIhEyNw96jnklZk1Ay/n+W0nAK/l+T2LnWqWO9Usd6pZ7lSz3KlmuVPNcqea5S4fNTve3ScO9qRjLpBHwcyecfcFUc+jmKhmuVPNcqea5U41y51qljvVLHeqWe4KqWZqWRERERERiZACuYiIiIhIhBTI8+POqCdQhFSz3KlmuVPNcqea5U41y51qljvVLHcFUzP1kIuIiIiIREgr5CIiIiIiEVIgH0ZmdpmZbTCzjWZ2a9TzKSRm9gMz221mq9PGxpnZ783sxfB7Xdpji8M6bjCzS6OZdXTMbKqZPW5m68xsjZndHI6rZhmYWaWZLTWzZ8OafSEcV80GYWYxM1tpZr8O76tmWZjZFjN73sxWmdkz4ZhqloWZjTWzX5jZ+vDn2jmqWXZmNjf8d6z3q9XMPqq6ZWZmHwt//q82s5+F/18ozHq5u76G4QuIAZuAE4By4FngpKjnVShfwIXAfGB12thXgVvD27cCXwlvnxTWrwKYEdY1FvVnyHO9JgPzw9s1wAthXVSzzDUzYHR4uwxYApytmg2pdh8Hfgr8OryvmmWv1xZgQr8x1Sx7ze4CPhjeLgfGqmY51S8G7AKOV90y1mgKsBkYFd6/F7i+UOulFfLhsxDY6O4vuXsPcA+wKOI5FQx3fxLY2294EcEPacLvV6WN3+Pu3e6+GdhIUN9jhrvvdPcV4e02YB3BDxvVLAMPtId3y8IvRzXLyswagCuA76UNq2a5U80yMLNagkWZ7wO4e4+7t6Ca5eJiYJO7v4zqlk0pMMrMSoEqYAcFWi8F8uEzBdiWdn97OCaZ1bv7TggCKDApHFct05jZdOAMghVf1SyLsPViFbAb+L27q2aD+zpwC5BKG1PNsnPgETNbbmY3hmOqWWYnAM3Af4WtUd8zs2pUs1xcA/wsvK26DcDdXwH+FdgK7AT2u/sjFGi9FMiHjw0wpi1tjoxqGTKz0cD9wEfdvTXbUwcYO+Zq5u5Jdz8daAAWmtkpWZ5+zNfMzN4O7Hb35UM9ZICxY6pmofPcfT5wOXCTmV2Y5bmqWbBqOR+4w93PADoIWgcyUc3SmFk5cCVw32BPHWDsmKlb2Bu+iKD95Dig2syuzXbIAGN5q5cC+fDZDkxNu99A8KcSyexVM5sMEH7fHY6rloCZlRGE8bvd/YFwWDUbgvDP4U3AZahm2ZwHXGlmWwja7N5sZj9BNcvK3XeE33cD/03wZ27VLLPtwPbwL1YAvyAI6KrZ0FwOrHD3V8P7qtvALgE2u3uzu8eBB4BzKdB6KZAPn2XAbDObEf42ew3wUMRzKnQPAdeFt68DHkwbv8bMKsxsBjAbWBrB/CJjZkbQb7nO3b+W9pBqloGZTTSzseHtUQQ/nNejmmXk7ovdvcHdpxP8zHrM3a9FNcvIzKrNrKb3NvBWYDWqWUbuvgvYZmZzw6GLgbWoZkP1Xg62q4DqlslW4Gwzqwr/H3oxwflXhVmvKM58PVa+gLcR7IaxCfh01PMppC+CHyY7gTjBb6UfAMYDjwIvht/HpT3/02EdNwCXRz3/COp1PsGfzp4DVoVfb1PNstbsNGBlWLPVwOfCcdVsaPVr5OAuK6pZ5jqdQLAzw7PAmt6f9arZoHU7HXgm/O/zl0CdajakulUBe4AxaWOqW+Z6fYFgIWY18GOCHVQKsl66UqeIiIiISITUsiIiIiIiEiEFchERERGRCCmQi4iIiIhESIFcRERERCRCCuQiIgXMzM4zswuinsdwMrNSM/uImVVEPRcRkSgokIuIRMjMkma2ysxWm9l9ZlaV9tgZwA3A01mO/56ZnZTD+11vZt/OcY5nmNn3cjkmh9c24OvAc+7efQTHl5vZk2ZWevRnJyKSH9r2UEQkQmbW7u6jw9t3A8v90Is/ZTs25u7JHN/vemCBu38kh2PuA/7Z3Z/N5b3yxcw+D2x097ujnouIyJHQCrmISOH4IzALwMyuNbOl4er5d80sFo63m9kXzWwJcI6ZNZnZgvCx95rZ8+Fq+1d6X9TMbjCzF8zsCeC8tPGJZna/mS0Lv86jn/AqlKf1hnEzW2hm/2NmK8Pvc8Px683sATP7nZm9aGZfTXuNdjO7zcyeNbOnzaw+2/uHV7/8QTi20swWheMnp9XkOTObHb7FL4G/OVr/EERE8k2BXESkAIQtF5cDz5vZPOA9wHnufjqQ5GDgrAZWu/ub3P1PaccfB3wFeDPBVRDPMrOrzGwywdXqzgPeAqS3t3wD+Hd3Pwt4FzBQW8oCgqvc9VoPXOjuZwCfA76U9tjp4bxPBd5jZlPT5vy0u78ReBL434O8/6eBx8Lxi4Dbw8vS/y3wjbAmCwiu8ks4v7MGmLuISFFQz52ISLRGmdmq8PYfge8DNwJnAsuCFmtGAbvD5ySB+wd4nbOAJndvhr72lwvDx9LHfw7MCccvAU4K3wOg1sxq3L0t7XUnA81p98cAd4Wr0w6UpT32qLvvD99nLXA8sA3oAX4dPmc5wS8GGd8feCtwpZn9QzheCUwD/gx82swagAfc/UUAd0+aWc8AcxcRKQoK5CIi0eoMV3z7hCc63uXuiwd4fleGvnEbYKxXppOFSoBz3L0z2/wIAnGvfwIed/d3mtl0oCntsfSTMpMc/H9M3A+esJQ+PuD7h5//Xe6+od9c1oWtOlcAD5vZB939sfCxCqAry+cQESlYalkRESk8jwLvNrNJAGY2zsyOH+SYJcBfmNmEsN/8vcAT4XijmY03szLg6rRjHgH6Tu40s0N+MQitI+xrD40BXglvXz/0jzSgTO//MPB3YTDv3W0GMzsBeMndvwk8BJwWjo8Hmt09/jrnIyISCQVyEZEC4+5rgc8Aj5jZc8DvCVpHsh2zE1gMPA48C6xw9wfD8X8kaPf4A7Ai7bC/BxaEJ0iuJejR7v+664ExYSsJwFeBfzGzp4DYkX/KrO//TwStMM+Z2erwPgT96avDFp8TgR+F4xcBv3mdcxERiYy2PRQRkazM7GNAm7sPy17kr5eZPQAsHqDFRUSkKGiFXEREBnMHh/aHFwwzKwd+qTAuIsVMK+QiIiIiIhHSCrmIiIiISIQUyEVEREREIqRALiIiIiISIQVyEREREZEIKZCLiIiIiERIgVxEREREJEL/HwyMIr8uLv/PAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 864x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"dates = data[\" Yr\"] # Colonne des dates\n",
"co2_concentration_series = data[\" CO2\"].astype(float) # Colonne de concentration de CO2 (avant ajustement saisonnier)\n",
"\n",
"# Appliquer la transformation de Fourier pour identifier les composantes périodiques\n",
"co2_concentration = co2_concentration_series.values\n",
"fourier_transform = np.fft.fft(co2_concentration)\n",
"frequencies = np.fft.fftfreq(len(co2_concentration))\n",
"amplitudes = np.abs(fourier_transform)\n",
"\n",
"# Trouver les fréquences dominantes (composantes périodiques)\n",
"# Dans cet exemple, nous considérons les fréquences positives seulement (ignore les négatives)\n",
"positive_frequencies = frequencies[:len(frequencies) // 2]\n",
"positive_amplitudes = amplitudes[:len(amplitudes) // 2]\n",
"\n",
"# Identifier la fréquence dominante (correspondant à la période la plus importante)\n",
"dominant_frequency = positive_frequencies[np.argmax(positive_amplitudes)]\n",
"\n",
"# Créer un graphique pour montrer les composantes périodiques\n",
"plt.figure(figsize=(12, 6))\n",
"plt.plot(1 / positive_frequencies, positive_amplitudes) # Période au lieu de fréquence\n",
"plt.title(\"Composantes Périodiques de la Concentration de CO2\")\n",
"plt.xlabel(\"Période (années)\")\n",
"plt.ylabel(\"Amplitude\")\n",
"plt.grid(True)\n",
"\n",
"# Afficher la fréquence dominante\n",
"print(\"Fréquence dominante (période la plus importante) en années:\", 1 / dominant_frequency)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 62,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment