From 68d356e3946922dcc9243d61925a5a1a4a09194a Mon Sep 17 00:00:00 2001 From: NourElh <734092651fcdd5add927271f472626a6@app-learninglab.inria.fr> Date: Wed, 18 Jan 2023 20:45:30 +0000 Subject: [PATCH] Upload New File --- DoE/DoE.html | 766 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 766 insertions(+) create mode 100644 DoE/DoE.html diff --git a/DoE/DoE.html b/DoE/DoE.html new file mode 100644 index 0000000..ff266ff --- /dev/null +++ b/DoE/DoE.html @@ -0,0 +1,766 @@ + + + + + + + + + + + + + + + +Design of Experiments + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+

Playing with the DoE Shiny Application

+

The model studied in this experiment is a black-blox, where x1, x2, +…, x11 are controlable factores, z1,…,z11 are uncontrolable factors and +y is the output. In order to approximate this unknown model, we need +first to determine which variables are the most significant on the +response y, using screening designs.

+

Then, define and fit an analytical model of the response y as a +function of the primary factors x using regression and lhs & optimal +designs.

+
+

1. First intuition

+

My first intuition was to run an lhs design using the 11 factors to +have a general overview about the response behavior.

+
library(DoE.wrapper)
+ set.seed(45);
+design <- lhs.design(type= "maximin", nruns= 500 , nfactors= 11, digits=NULL, seed= 20523, factor.names=list(X1=c(0,1),X2=c(0,1),X3=c(0,1),X4=c(0,1),X5=c(0,1),X6=c(0,1),X7=c(0,1),X8=c(0,1),X9=c(0,1),X10=c(0,1),X11=c(0,1)))
+
+design.Dopt <- Dopt.design(30, data=design, nRepeat= 5, randomize= TRUE, seed=19573); design.Dopt
+

Once data was generated, I tested it on the DoE shiny app and got a +csv file containing the generated data with the corresponding +response.

+
df <- read.csv("exp.csv",header = TRUE, colClasses=c("NULL", NA, NA, NA, NA, NA, NA, NA,NA, NA, NA, NA, NA));
+df
+
##            x1         x2         x3         x4          x5         x6
+## 1  0.99947246 0.02323586 0.01041495 0.92758385 0.405715999 0.96732174
+## 2  0.04848198 0.09642373 0.32764357 0.09601540 0.095546909 0.15338152
+## 3  0.94423611 0.39096927 0.11929524 0.40408465 0.934471510 0.37732404
+## 4  0.23554733 0.97640699 0.82210862 0.76493711 0.117375133 0.57908885
+## 5  0.03450041 0.24211967 0.04198608 0.28516554 0.241993050 0.31437907
+## 6  0.90467968 0.97548797 0.55360886 0.17696613 0.867162465 0.48496169
+## 7  0.05065056 0.01818887 0.60924413 0.95601520 0.448485376 0.69625769
+## 8  0.76961950 0.20821603 0.98666699 0.01839787 0.007111332 0.80098393
+## 9  0.99702075 0.92300916 0.94747204 0.49589108 0.744617010 0.02878196
+## 10 0.44149406 0.19504098 0.78658170 0.78465226 0.001755782 0.05836366
+## 11 0.01803940 0.85952905 0.47851799 0.05199098 0.245971032 0.76737971
+## 12 0.79507995 0.12549151 0.86682214 0.23872548 0.034331251 0.27697563
+## 13 0.01620349 0.21154352 0.15991234 0.99492808 0.984350656 0.93669917
+## 14 0.83452798 0.02420187 0.97402625 0.88712762 0.909108593 0.16447802
+## 15 0.26547643 0.87864987 0.12016306 0.95044120 0.013099241 0.83484864
+## 16 0.05461335 0.24687019 0.14160278 0.03868864 0.803510236 0.09732755
+## 17 0.76072420 0.86439767 0.93660569 0.07267420 0.927266422 0.02473151
+## 18 0.91358330 0.15037229 0.84170975 0.02888531 0.896672602 0.77572634
+## 19 0.77436158 0.88778810 0.28763308 0.94534297 0.320167265 0.06204175
+## 20 0.76260426 0.06148193 0.10968400 0.02090904 0.849605474 0.86390842
+## 21 0.03072968 0.66305584 0.90460102 0.87067431 0.951323499 0.29598197
+## 22 0.85448616 0.99732905 0.89493945 0.46002165 0.113846141 0.84767510
+## 23 0.45856606 0.24450849 0.29138303 0.04447944 0.022780510 0.90731968
+## 24 0.98654900 0.95545206 0.05199728 0.50020307 0.912256007 0.25399299
+## 25 0.72941264 0.84726694 0.02996853 0.83298626 0.144377987 0.97311178
+## 26 0.64733055 0.81697627 0.97715863 0.70086724 0.819694117 0.90442736
+## 27 0.97023434 0.33634894 0.08136717 0.95946763 0.080633877 0.10405929
+## 28 0.07221227 0.39804243 0.63569917 0.96903787 0.921338058 0.73734465
+## 29 0.00275796 0.97003381 0.19024957 0.11480417 0.723956371 0.08387815
+## 30 0.96594488 0.42137377 0.05228119 0.84771475 0.147307147 0.12740675
+## 31 0.99947246 0.02323586 0.01041495 0.92758385 0.405715999 0.96732174
+## 32 0.04848198 0.09642373 0.32764357 0.09601540 0.095546909 0.15338152
+## 33 0.94423611 0.39096927 0.11929524 0.40408465 0.934471510 0.37732404
+## 34 0.23554733 0.97640699 0.82210862 0.76493711 0.117375133 0.57908885
+## 35 0.03450041 0.24211967 0.04198608 0.28516554 0.241993050 0.31437907
+## 36 0.90467968 0.97548797 0.55360886 0.17696613 0.867162465 0.48496169
+## 37 0.05065056 0.01818887 0.60924413 0.95601520 0.448485376 0.69625769
+## 38 0.76961950 0.20821603 0.98666699 0.01839787 0.007111332 0.80098393
+## 39 0.99702075 0.92300916 0.94747204 0.49589108 0.744617010 0.02878196
+## 40 0.44149406 0.19504098 0.78658170 0.78465226 0.001755782 0.05836366
+## 41 0.01803940 0.85952905 0.47851799 0.05199098 0.245971032 0.76737971
+## 42 0.79507995 0.12549151 0.86682214 0.23872548 0.034331251 0.27697563
+## 43 0.01620349 0.21154352 0.15991234 0.99492808 0.984350656 0.93669917
+## 44 0.83452798 0.02420187 0.97402625 0.88712762 0.909108593 0.16447802
+## 45 0.26547643 0.87864987 0.12016306 0.95044120 0.013099241 0.83484864
+## 46 0.05461335 0.24687019 0.14160278 0.03868864 0.803510236 0.09732755
+## 47 0.76072420 0.86439767 0.93660569 0.07267420 0.927266422 0.02473151
+## 48 0.91358330 0.15037229 0.84170975 0.02888531 0.896672602 0.77572634
+## 49 0.77436158 0.88778810 0.28763308 0.94534297 0.320167265 0.06204175
+## 50 0.76260426 0.06148193 0.10968400 0.02090904 0.849605474 0.86390842
+## 51 0.03072968 0.66305584 0.90460102 0.87067431 0.951323499 0.29598197
+## 52 0.85448616 0.99732905 0.89493945 0.46002165 0.113846141 0.84767510
+## 53 0.45856606 0.24450849 0.29138303 0.04447944 0.022780510 0.90731968
+## 54 0.98654900 0.95545206 0.05199728 0.50020307 0.912256007 0.25399299
+## 55 0.72941264 0.84726694 0.02996853 0.83298626 0.144377987 0.97311178
+## 56 0.64733055 0.81697627 0.97715863 0.70086724 0.819694117 0.90442736
+## 57 0.97023434 0.33634894 0.08136717 0.95946763 0.080633877 0.10405929
+## 58 0.07221227 0.39804243 0.63569917 0.96903787 0.921338058 0.73734465
+## 59 0.00275796 0.97003381 0.19024957 0.11480417 0.723956371 0.08387815
+## 60 0.96594488 0.42137377 0.05228119 0.84771475 0.147307147 0.12740675
+##            x7          x8          x9         x10        x11           y
+## 1  0.84503189 0.394353251 0.917277570 0.426533959 0.01447272 -0.71959133
+## 2  0.09260289 0.583933518 0.057360351 0.002306756 0.44842306  1.00222100
+## 3  0.79539751 0.963142799 0.015531428 0.111805061 0.90193135  1.00733833
+## 4  0.06339440 0.244377105 0.131221651 0.119161275 0.05375979  1.60667020
+## 5  0.37508288 0.959322703 0.869314007 0.980955361 0.28117288 -0.46736899
+## 6  0.99017368 0.117951640 0.956844011 0.121355357 0.88851783 -0.64166381
+## 7  0.24199329 0.034833848 0.370941672 0.001192110 0.91462615  1.17554290
+## 8  0.98443527 0.202810030 0.280972042 0.703396084 0.82243106  2.09940585
+## 9  0.81327254 0.066411848 0.859554949 0.908110495 0.13107158 -0.91633571
+## 10 0.09051193 0.819929237 0.994056284 0.991800176 0.30408971  0.24243486
+## 11 0.19218221 0.163608765 0.768295896 0.926162640 0.99424095 -0.46534643
+## 12 0.85859604 0.789628485 0.767144314 0.048362733 0.05012624  1.13823441
+## 13 0.41394232 0.493911991 0.872465127 0.034815668 0.03030974  0.14521729
+## 14 0.10997367 0.028360326 0.066462914 0.969474933 0.15750639  2.80919025
+## 15 0.95348609 0.713065300 0.786374649 0.011630352 0.90448781  0.25334172
+## 16 0.90375913 0.450435088 0.004159208 0.660080503 0.92087664  1.04593518
+## 17 0.26711889 0.630150879 0.429992650 0.818564421 0.99997453  1.88363486
+## 18 0.60182548 0.970759916 0.608452309 0.101032550 0.02980918 -0.15918283
+## 19 0.85129034 0.021645674 0.030618433 0.902453779 0.08730313  3.26934335
+## 20 0.05358418 0.135862966 0.481783923 0.386720357 0.87722008  1.73108285
+## 21 0.89261596 0.599283924 0.920637280 0.149939033 0.08428514 -0.18385625
+## 22 0.60848095 0.905863727 0.695638333 0.069318383 0.89530425  0.80978109
+## 23 0.94218233 0.001120312 0.267075388 0.598658408 0.04167006  1.01183223
+## 24 0.04277122 0.333192510 0.971492197 0.453813455 0.16506041 -0.98053985
+## 25 0.15230159 0.920069823 0.043056139 0.828114612 0.12660472  3.42841616
+## 26 0.01832533 0.888808352 0.037813449 0.963918908 0.10416447  3.02941185
+## 27 0.15640768 0.683962808 0.834437925 0.243924631 0.81368127 -0.21212084
+## 28 0.99991691 0.710155810 0.814793769 0.988010561 0.91993764  0.07912545
+## 29 0.72975848 0.099525899 0.113546940 0.238410641 0.29531121  0.87539175
+## 30 0.81096716 0.988539539 0.077358901 0.744459103 0.82871555  1.06231366
+## 31 0.84503189 0.394353251 0.917277570 0.426533959 0.01447272 -0.71722974
+## 32 0.09260289 0.583933518 0.057360351 0.002306756 0.44842306  1.00494328
+## 33 0.79539751 0.963142799 0.015531428 0.111805061 0.90193135  1.00938298
+## 34 0.06339440 0.244377105 0.131221651 0.119161275 0.05375979  1.60521011
+## 35 0.37508288 0.959322703 0.869314007 0.980955361 0.28117288 -0.46177590
+## 36 0.99017368 0.117951640 0.956844011 0.121355357 0.88851783 -0.64251023
+## 37 0.24199329 0.034833848 0.370941672 0.001192110 0.91462615  1.16741000
+## 38 0.98443527 0.202810030 0.280972042 0.703396084 0.82243106  2.09774303
+## 39 0.81327254 0.066411848 0.859554949 0.908110495 0.13107158 -0.91786672
+## 40 0.09051193 0.819929237 0.994056284 0.991800176 0.30408971  0.24010067
+## 41 0.19218221 0.163608765 0.768295896 0.926162640 0.99424095 -0.47362237
+## 42 0.85859604 0.789628485 0.767144314 0.048362733 0.05012624  1.13599619
+## 43 0.41394232 0.493911991 0.872465127 0.034815668 0.03030974  0.14060717
+## 44 0.10997367 0.028360326 0.066462914 0.969474933 0.15750639  2.81151136
+## 45 0.95348609 0.713065300 0.786374649 0.011630352 0.90448781  0.25268772
+## 46 0.90375913 0.450435088 0.004159208 0.660080503 0.92087664  1.04696958
+## 47 0.26711889 0.630150879 0.429992650 0.818564421 0.99997453  1.89070960
+## 48 0.60182548 0.970759916 0.608452309 0.101032550 0.02980918 -0.15243809
+## 49 0.85129034 0.021645674 0.030618433 0.902453779 0.08730313  3.26912826
+## 50 0.05358418 0.135862966 0.481783923 0.386720357 0.87722008  1.72776002
+## 51 0.89261596 0.599283924 0.920637280 0.149939033 0.08428514 -0.18233387
+## 52 0.60848095 0.905863727 0.695638333 0.069318383 0.89530425  0.80516917
+## 53 0.94218233 0.001120312 0.267075388 0.598658408 0.04167006  1.01924947
+## 54 0.04277122 0.333192510 0.971492197 0.453813455 0.16506041 -0.98362770
+## 55 0.15230159 0.920069823 0.043056139 0.828114612 0.12660472  3.42559363
+## 56 0.01832533 0.888808352 0.037813449 0.963918908 0.10416447  3.03522536
+## 57 0.15640768 0.683962808 0.834437925 0.243924631 0.81368127 -0.20782722
+## 58 0.99991691 0.710155810 0.814793769 0.988010561 0.91993764  0.08086296
+## 59 0.72975848 0.099525899 0.113546940 0.238410641 0.29531121  0.87965510
+## 60 0.81096716 0.988539539 0.077358901 0.744459103 0.82871555  1.06098869
+
+
+

2. Designing experiments to run

+
+

2.1 Screening design using Plackett-Burman screening designs

+

Now, we’re interested to see the factors effects in more in details. +This will allow us to define the most efficient factor that influence +the response. Since running a large number of such experiments is +tedious, we gonna use the Plackett-Burman designs to see the different +possible interactions.

+
library(FrF2)
+d<-pb(nruns= 12 ,n12.taguchi= FALSE ,nfactors= 12 -1, ncenter= 0 , replications= 1 ,repeat.only= FALSE ,randomize= TRUE ,seed= 26654 ,factor.names=list( X1=c(0,1),X2=c(0,1),X3=c(0,1),X4=c(0,1),
+X5=c(0,1),X6=c(0,1),X7=c(0, 1),X8=c(0,1),X9=c(0,1),X10=c(0,1),
+X11=c(0,1)));d
+

Here are the results (run on the website):

+

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

+

1 1 0 1 1 0 1 1 1 0 0 0

+

2 1 0 0 0 1 0 1 1 0 1 1

+

3 0 0 1 0 1 1 0 1 1 1 0

+

4 0 1 1 0 1 1 1 0 0 0 1

+

5 0 1 0 1 1 0 1 1 1 0 0

+

6 1 1 0 1 1 1 0 0 0 1 0

+

7 1 1 1 0 0 0 1 0 1 1 0

+

8 1 0 1 1 1 0 0 0 1 0 1

+

9 0 0 0 0 0 0 0 0 0 0 0

+

10 1 1 0 0 0 1 0 1 1 0 1

+

11 0 0 0 1 0 1 1 0 1 1 1

+

12 0 1 1 1 0 0 0 1 0 1 1

+
+
+

2.2. Regression and Analyse of Variance

+

In order to vizualise the correlation between factors and the +response, we do a linear regression on the data generated by the +application, and analyse the variance to see the effect.

+
+

Experiment 1: X1, X3, X4, X6, X7, X8 taken into account

+
y<-df$y
+summary(lm(y~df$x1+df$x3+df$x4+df$x6+df$x7+df$x8,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x1 + df$x3 + df$x4 + df$x6 + df$x7 + df$x8, 
+##     data = df)
+## 
+## Residuals:
+##     Min      1Q  Median      3Q     Max 
+## -2.0563 -0.9079  0.0845  0.6693  2.6284 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)
+## (Intercept)   0.6376     0.5677   1.123    0.266
+## df$x1         0.3327     0.4232   0.786    0.435
+## df$x3         0.5420     0.4427   1.224    0.226
+## df$x4         0.2155     0.4350   0.495    0.622
+## df$x6         0.2991     0.4675   0.640    0.525
+## df$x7        -0.7373     0.4443  -1.659    0.103
+## df$x8        -0.2206     0.4721  -0.467    0.642
+## 
+## Residual standard error: 1.24 on 53 degrees of freedom
+## Multiple R-squared:  0.09633,    Adjusted R-squared:  -0.005968 
+## F-statistic: 0.9417 on 6 and 53 DF,  p-value: 0.4734
+

Nothing interesting :/, even R^2 is too small wich is too bad.

+
+
+

Experiment 2: X1, X5, X7, X8, X10, X11 taken into account

+
y<-df$y
+summary(lm(y~df$x1+df$x5+df$x7+df$x8+df$x10+df$x11,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x1 + df$x5 + df$x7 + df$x8 + df$x10 + df$x11, 
+##     data = df)
+## 
+## Residuals:
+##     Min      1Q  Median      3Q     Max 
+## -2.1328 -0.9092  0.1487  0.6941  2.0707 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)  
+## (Intercept)  1.02680    0.54801   1.874   0.0665 .
+## df$x1        0.30183    0.41698   0.724   0.4723  
+## df$x5       -0.42006    0.42052  -0.999   0.3224  
+## df$x7       -0.65771    0.44176  -1.489   0.1425  
+## df$x8       -0.22215    0.46419  -0.479   0.6342  
+## df$x10       0.71464    0.42558   1.679   0.0990 .
+## df$x11      -0.08727    0.41089  -0.212   0.8326  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## Residual standard error: 1.22 on 53 degrees of freedom
+## Multiple R-squared:  0.1252, Adjusted R-squared:  0.02621 
+## F-statistic: 1.265 on 6 and 53 DF,  p-value: 0.2894
+

Very small improvement in R^2, but still too bad.

+
+
+

Experiment 3: X3, X5, X6, X8, X9, X10 taken into account

+
y<-df$y
+summary(lm(y~df$x3+df$x5+df$x6+df$x8+df$x9+df$x10,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x3 + df$x5 + df$x6 + df$x8 + df$x9 + df$x10, 
+##     data = df)
+## 
+## Residuals:
+##      Min       1Q   Median       3Q      Max 
+## -1.02781 -0.54536  0.03159  0.34813  1.33800 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)    
+## (Intercept)   1.3807     0.3086   4.474 4.09e-05 ***
+## df$x3         0.7045     0.2414   2.918  0.00515 ** 
+## df$x5        -0.2770     0.2337  -1.185  0.24124    
+## df$x6         0.5971     0.2577   2.317  0.02440 *  
+## df$x8         0.1094     0.2548   0.429  0.66945    
+## df$x9        -2.6861     0.2415 -11.125 1.78e-15 ***
+## df$x10        0.5314     0.2383   2.230  0.02999 *  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## Residual standard error: 0.6723 on 53 degrees of freedom
+## Multiple R-squared:  0.7343, Adjusted R-squared:  0.7042 
+## F-statistic: 24.41 on 6 and 53 DF,  p-value: 1.211e-13
+

It seems that X9 is a significant factor that influences the model, +and the determination coefficient R^2 is 0.73 now, which is pretty +good.

+
+
+

Try the combination X3*X6:

+
y<-df$y
+summary(lm(y~df$x3+df$x9+df$x6+df$x3:df$x6,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x3 + df$x9 + df$x6 + df$x3:df$x6, data = df)
+## 
+## Residuals:
+##      Min       1Q   Median       3Q      Max 
+## -1.18415 -0.57451  0.06863  0.38570  1.55104 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)    
+## (Intercept)   1.3097     0.2448   5.350 1.76e-06 ***
+## df$x3         1.5566     0.4043   3.850  0.00031 ***
+## df$x9        -2.9189     0.2445 -11.938  < 2e-16 ***
+## df$x6         1.3043     0.3958   3.296  0.00172 ** 
+## df$x3:df$x6  -1.7163     0.6824  -2.515  0.01485 *  
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## Residual standard error: 0.6633 on 55 degrees of freedom
+## Multiple R-squared:  0.7316, Adjusted R-squared:  0.7121 
+## F-statistic: 37.48 on 4 and 55 DF,  p-value: 4.142e-15
+

Not too much interesting. Let’s try another experiment where X9 and +X3 are set to 1.

+
+
+

Experiment 8: X1, X3, X4, X5, X6, X9, X11 taken into account

+
y<-df$y
+summary(lm(y~df$x1+df$x3+df$x4+df$x5+df$x6+df$x9,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x1 + df$x3 + df$x4 + df$x5 + df$x6 + df$x9, 
+##     data = df)
+## 
+## Residuals:
+##      Min       1Q   Median       3Q      Max 
+## -0.95146 -0.36333 -0.09012  0.39626  1.26471 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)    
+## (Intercept)   1.2744     0.2824   4.512  3.6e-05 ***
+## df$x1         0.3293     0.2199   1.498  0.14017    
+## df$x3         0.7894     0.2327   3.393  0.00131 ** 
+## df$x4         0.6057     0.2273   2.665  0.01018 *  
+## df$x5        -0.2703     0.2243  -1.205  0.23361    
+## df$x6         0.5019     0.2460   2.040  0.04632 *  
+## df$x9        -2.8278     0.2327 -12.151  < 2e-16 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## Residual standard error: 0.6487 on 53 degrees of freedom
+## Multiple R-squared:  0.7526, Adjusted R-squared:  0.7246 
+## F-statistic: 26.87 on 6 and 53 DF,  p-value: 1.921e-14
+

Removing X11 doesn’t have any effect. We decide to keep X9, X6, X4, +combine X5 with X7, combine X1 with X3.

+
y<-df$y
+summary(lm(y~df$x3:df$x1+df$x6+df$x5:df$x7+df$x4+df$x9,data=df))
+
## 
+## Call:
+## lm(formula = y ~ df$x3:df$x1 + df$x6 + df$x5:df$x7 + df$x4 + 
+##     df$x9, data = df)
+## 
+## Residuals:
+##      Min       1Q   Median       3Q      Max 
+## -0.96904 -0.38017 -0.04281  0.40090  1.07561 
+## 
+## Coefficients:
+##             Estimate Std. Error t value Pr(>|t|)    
+## (Intercept)   1.5565     0.2251   6.914 5.67e-09 ***
+## df$x6         0.4247     0.2303   1.844 0.070699 .  
+## df$x4         0.7251     0.2152   3.369 0.001397 ** 
+## df$x9        -2.7265     0.2177 -12.524  < 2e-16 ***
+## df$x3:df$x1   0.9932     0.2522   3.938 0.000237 ***
+## df$x5:df$x7  -0.7790     0.2618  -2.975 0.004373 ** 
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## Residual standard error: 0.5996 on 54 degrees of freedom
+## Multiple R-squared:  0.7847, Adjusted R-squared:  0.7647 
+## F-statistic: 39.35 on 5 and 54 DF,  p-value: < 2.2e-16
+

We can say that our model is: y= -2.72*X9 + 0.72*X4 + 0.42*X6 + +0.99*X1*X3 -0.77*X5*X7 + 1.55

+
+
+
+
+ + + + +
+ + + + + + + + + + + + + + + -- 2.18.1