diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..ec9f0a500fa1a5ee1f63d5718845c3c10861e744 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,3487 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import isoweek" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202106713642991417370211527FRFrance
1202105712210898815432181323FRFrance
2202104712026882615226181323FRFrance
32021037891363751145113917FRFrance
42021027779554301016012816FRFrance
5202101710525775013300161220FRFrance
6202053711978840615550181323FRFrance
7202052712012828515739181224FRFrance
8202051710564757413554161121FRFrance
9202050770634744938211715FRFrance
1020204975026314569078511FRFrance
11202048766834312905410614FRFrance
1220204774999296370358511FRFrance
132020467375219635541639FRFrance
142020457369620165376639FRFrance
1520204474391237564077410FRFrance
1620204374376250562477410FRFrance
172020427400019796021639FRFrance
182020417396120995823639FRFrance
19202040720786753481315FRFrance
20202039710492371861213FRFrance
21202038722537823724315FRFrance
22202037715844052763204FRFrance
2320203679191001738102FRFrance
24202035782801694102FRFrance
25202034722723714173306FRFrance
26202033712841772391204FRFrance
27202032726506894611417FRFrance
28202031713031002506204FRFrance
2920203071385752695204FRFrance
.................................
15461991267176081130423912312042FRFrance
15471991257161691070021638281838FRFrance
15481991247161711007122271281739FRFrance
1549199123711947767116223211329FRFrance
1550199122715452995320951271737FRFrance
1551199121714903897520831261636FRFrance
15521991207190531274225364342345FRFrance
15531991197167391124622232291939FRFrance
15541991187213851388228888382551FRFrance
1555199117713462887718047241632FRFrance
15561991167148571006819646261834FRFrance
1557199115713975978118169251832FRFrance
1558199114712265768416846221430FRFrance
155919911379567604113093171123FRFrance
1560199112710864733114397191325FRFrance
15611991117155741118419964271935FRFrance
15621991107166431137221914292038FRFrance
1563199109713741878018702241533FRFrance
1564199108713289881317765231531FRFrance
1565199107712337807716597221529FRFrance
1566199106710877701314741191226FRFrance
1567199105710442654414340181125FRFrance
15681991047791345631126314820FRFrance
15691991037153871048420290271836FRFrance
15701991027162771104621508292038FRFrance
15711991017155651027120859271836FRFrance
15721990527193751329525455342345FRFrance
15731990517190801380724353342543FRFrance
1574199050711079666015498201228FRFrance
15751990497114302610205FRFrance
\n", + "

1576 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202106 7 13642 9914 17370 21 15 \n", + "1 202105 7 12210 8988 15432 18 13 \n", + "2 202104 7 12026 8826 15226 18 13 \n", + "3 202103 7 8913 6375 11451 13 9 \n", + "4 202102 7 7795 5430 10160 12 8 \n", + "5 202101 7 10525 7750 13300 16 12 \n", + "6 202053 7 11978 8406 15550 18 13 \n", + "7 202052 7 12012 8285 15739 18 12 \n", + "8 202051 7 10564 7574 13554 16 11 \n", + "9 202050 7 7063 4744 9382 11 7 \n", + "10 202049 7 5026 3145 6907 8 5 \n", + "11 202048 7 6683 4312 9054 10 6 \n", + "12 202047 7 4999 2963 7035 8 5 \n", + "13 202046 7 3752 1963 5541 6 3 \n", + "14 202045 7 3696 2016 5376 6 3 \n", + "15 202044 7 4391 2375 6407 7 4 \n", + "16 202043 7 4376 2505 6247 7 4 \n", + "17 202042 7 4000 1979 6021 6 3 \n", + "18 202041 7 3961 2099 5823 6 3 \n", + "19 202040 7 2078 675 3481 3 1 \n", + "20 202039 7 1049 237 1861 2 1 \n", + "21 202038 7 2253 782 3724 3 1 \n", + "22 202037 7 1584 405 2763 2 0 \n", + "23 202036 7 919 100 1738 1 0 \n", + "24 202035 7 828 0 1694 1 0 \n", + "25 202034 7 2272 371 4173 3 0 \n", + "26 202033 7 1284 177 2391 2 0 \n", + "27 202032 7 2650 689 4611 4 1 \n", + "28 202031 7 1303 100 2506 2 0 \n", + "29 202030 7 1385 75 2695 2 0 \n", + "... ... ... ... ... ... ... ... \n", + "1546 199126 7 17608 11304 23912 31 20 \n", + "1547 199125 7 16169 10700 21638 28 18 \n", + "1548 199124 7 16171 10071 22271 28 17 \n", + "1549 199123 7 11947 7671 16223 21 13 \n", + "1550 199122 7 15452 9953 20951 27 17 \n", + "1551 199121 7 14903 8975 20831 26 16 \n", + "1552 199120 7 19053 12742 25364 34 23 \n", + "1553 199119 7 16739 11246 22232 29 19 \n", + "1554 199118 7 21385 13882 28888 38 25 \n", + "1555 199117 7 13462 8877 18047 24 16 \n", + "1556 199116 7 14857 10068 19646 26 18 \n", + "1557 199115 7 13975 9781 18169 25 18 \n", + "1558 199114 7 12265 7684 16846 22 14 \n", + "1559 199113 7 9567 6041 13093 17 11 \n", + "1560 199112 7 10864 7331 14397 19 13 \n", + "1561 199111 7 15574 11184 19964 27 19 \n", + "1562 199110 7 16643 11372 21914 29 20 \n", + "1563 199109 7 13741 8780 18702 24 15 \n", + "1564 199108 7 13289 8813 17765 23 15 \n", + "1565 199107 7 12337 8077 16597 22 15 \n", + "1566 199106 7 10877 7013 14741 19 12 \n", + "1567 199105 7 10442 6544 14340 18 11 \n", + "1568 199104 7 7913 4563 11263 14 8 \n", + "1569 199103 7 15387 10484 20290 27 18 \n", + "1570 199102 7 16277 11046 21508 29 20 \n", + "1571 199101 7 15565 10271 20859 27 18 \n", + "1572 199052 7 19375 13295 25455 34 23 \n", + "1573 199051 7 19080 13807 24353 34 25 \n", + "1574 199050 7 11079 6660 15498 20 12 \n", + "1575 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 27 FR France \n", + "1 23 FR France \n", + "2 23 FR France \n", + "3 17 FR France \n", + "4 16 FR France \n", + "5 20 FR France \n", + "6 23 FR France \n", + "7 24 FR France \n", + "8 21 FR France \n", + "9 15 FR France \n", + "10 11 FR France \n", + "11 14 FR France \n", + "12 11 FR France \n", + "13 9 FR France \n", + "14 9 FR France \n", + "15 10 FR France \n", + "16 10 FR France \n", + "17 9 FR France \n", + "18 9 FR France \n", + "19 5 FR France \n", + "20 3 FR France \n", + "21 5 FR France \n", + "22 4 FR France \n", + "23 2 FR France \n", + "24 2 FR France \n", + "25 6 FR France \n", + "26 4 FR France \n", + "27 7 FR France \n", + "28 4 FR France \n", + "29 4 FR France \n", + "... ... ... ... \n", + "1546 42 FR France \n", + "1547 38 FR France \n", + "1548 39 FR France \n", + "1549 29 FR France \n", + "1550 37 FR France \n", + "1551 36 FR France \n", + "1552 45 FR France \n", + "1553 39 FR France \n", + "1554 51 FR France \n", + "1555 32 FR France \n", + "1556 34 FR France \n", + "1557 32 FR France \n", + "1558 30 FR France \n", + "1559 23 FR France \n", + "1560 25 FR France \n", + "1561 35 FR France \n", + "1562 38 FR France \n", + "1563 33 FR France \n", + "1564 31 FR France \n", + "1565 29 FR France \n", + "1566 26 FR France \n", + "1567 25 FR France \n", + "1568 20 FR France \n", + "1569 36 FR France \n", + "1570 38 FR France \n", + "1571 36 FR France \n", + "1572 45 FR France \n", + "1573 43 FR France \n", + "1574 28 FR France \n", + "1575 5 FR France \n", + "\n", + "[1576 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_up
count1576.0000001576.01576.0000001576.0000001576.0000001576.0000001576.0000001576.000000
mean200578.8585037.012567.8908637918.39847717254.60406120.66180213.01840128.367386
std872.1123550.06659.3935115180.0470638424.45603011.0336508.57661913.974450
min199049.0000007.0161.0000000.000000597.0000000.0000000.0000001.000000
25%199825.7500007.07228.5000003541.75000010709.50000012.0000006.00000017.000000
50%200601.5000007.012526.5000007826.50000017241.50000021.00000013.00000029.000000
75%201330.2500007.017142.25000011622.00000022757.50000028.00000019.00000038.000000
max202106.0000007.036298.00000025490.00000054240.00000061.00000044.00000090.000000
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up \\\n", + "count 1576.000000 1576.0 1576.000000 1576.000000 1576.000000 \n", + "mean 200578.858503 7.0 12567.890863 7918.398477 17254.604061 \n", + "std 872.112355 0.0 6659.393511 5180.047063 8424.456030 \n", + "min 199049.000000 7.0 161.000000 0.000000 597.000000 \n", + "25% 199825.750000 7.0 7228.500000 3541.750000 10709.500000 \n", + "50% 200601.500000 7.0 12526.500000 7826.500000 17241.500000 \n", + "75% 201330.250000 7.0 17142.250000 11622.000000 22757.500000 \n", + "max 202106.000000 7.0 36298.000000 25490.000000 54240.000000 \n", + "\n", + " inc100 inc100_low inc100_up \n", + "count 1576.000000 1576.000000 1576.000000 \n", + "mean 20.661802 13.018401 28.367386 \n", + "std 11.033650 8.576619 13.974450 \n", + "min 0.000000 0.000000 1.000000 \n", + "25% 12.000000 6.000000 17.000000 \n", + "50% 21.000000 13.000000 29.000000 \n", + "75% 28.000000 19.000000 38.000000 \n", + "max 61.000000 44.000000 90.000000 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "data = raw_data.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_nameperiod
0202106713642991417370211527FRFrance2021-02-08/2021-02-14
1202105712210898815432181323FRFrance2021-02-01/2021-02-07
2202104712026882615226181323FRFrance2021-01-25/2021-01-31
32021037891363751145113917FRFrance2021-01-18/2021-01-24
42021027779554301016012816FRFrance2021-01-11/2021-01-17
5202101710525775013300161220FRFrance2021-01-04/2021-01-10
6202053711978840615550181323FRFrance2020-12-28/2021-01-03
7202052712012828515739181224FRFrance2020-12-21/2020-12-27
8202051710564757413554161121FRFrance2020-12-14/2020-12-20
9202050770634744938211715FRFrance2020-12-07/2020-12-13
1020204975026314569078511FRFrance2020-11-30/2020-12-06
11202048766834312905410614FRFrance2020-11-23/2020-11-29
1220204774999296370358511FRFrance2020-11-16/2020-11-22
132020467375219635541639FRFrance2020-11-09/2020-11-15
142020457369620165376639FRFrance2020-11-02/2020-11-08
1520204474391237564077410FRFrance2020-10-26/2020-11-01
1620204374376250562477410FRFrance2020-10-19/2020-10-25
172020427400019796021639FRFrance2020-10-12/2020-10-18
182020417396120995823639FRFrance2020-10-05/2020-10-11
19202040720786753481315FRFrance2020-09-28/2020-10-04
20202039710492371861213FRFrance2020-09-21/2020-09-27
21202038722537823724315FRFrance2020-09-14/2020-09-20
22202037715844052763204FRFrance2020-09-07/2020-09-13
2320203679191001738102FRFrance2020-08-31/2020-09-06
24202035782801694102FRFrance2020-08-24/2020-08-30
25202034722723714173306FRFrance2020-08-17/2020-08-23
26202033712841772391204FRFrance2020-08-10/2020-08-16
27202032726506894611417FRFrance2020-08-03/2020-08-09
28202031713031002506204FRFrance2020-07-27/2020-08-02
2920203071385752695204FRFrance2020-07-20/2020-07-26
....................................
15461991267176081130423912312042FRFrance1991-06-24/1991-06-30
15471991257161691070021638281838FRFrance1991-06-17/1991-06-23
15481991247161711007122271281739FRFrance1991-06-10/1991-06-16
1549199123711947767116223211329FRFrance1991-06-03/1991-06-09
1550199122715452995320951271737FRFrance1991-05-27/1991-06-02
1551199121714903897520831261636FRFrance1991-05-20/1991-05-26
15521991207190531274225364342345FRFrance1991-05-13/1991-05-19
15531991197167391124622232291939FRFrance1991-05-06/1991-05-12
15541991187213851388228888382551FRFrance1991-04-29/1991-05-05
1555199117713462887718047241632FRFrance1991-04-22/1991-04-28
15561991167148571006819646261834FRFrance1991-04-15/1991-04-21
1557199115713975978118169251832FRFrance1991-04-08/1991-04-14
1558199114712265768416846221430FRFrance1991-04-01/1991-04-07
155919911379567604113093171123FRFrance1991-03-25/1991-03-31
1560199112710864733114397191325FRFrance1991-03-18/1991-03-24
15611991117155741118419964271935FRFrance1991-03-11/1991-03-17
15621991107166431137221914292038FRFrance1991-03-04/1991-03-10
1563199109713741878018702241533FRFrance1991-02-25/1991-03-03
1564199108713289881317765231531FRFrance1991-02-18/1991-02-24
1565199107712337807716597221529FRFrance1991-02-11/1991-02-17
1566199106710877701314741191226FRFrance1991-02-04/1991-02-10
1567199105710442654414340181125FRFrance1991-01-28/1991-02-03
15681991047791345631126314820FRFrance1991-01-21/1991-01-27
15691991037153871048420290271836FRFrance1991-01-14/1991-01-20
15701991027162771104621508292038FRFrance1991-01-07/1991-01-13
15711991017155651027120859271836FRFrance1990-12-31/1991-01-06
15721990527193751329525455342345FRFrance1990-12-24/1990-12-30
15731990517190801380724353342543FRFrance1990-12-17/1990-12-23
1574199050711079666015498201228FRFrance1990-12-10/1990-12-16
15751990497114302610205FRFrance1990-12-03/1990-12-09
\n", + "

1576 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202106 7 13642 9914 17370 21 15 \n", + "1 202105 7 12210 8988 15432 18 13 \n", + "2 202104 7 12026 8826 15226 18 13 \n", + "3 202103 7 8913 6375 11451 13 9 \n", + "4 202102 7 7795 5430 10160 12 8 \n", + "5 202101 7 10525 7750 13300 16 12 \n", + "6 202053 7 11978 8406 15550 18 13 \n", + "7 202052 7 12012 8285 15739 18 12 \n", + "8 202051 7 10564 7574 13554 16 11 \n", + "9 202050 7 7063 4744 9382 11 7 \n", + "10 202049 7 5026 3145 6907 8 5 \n", + "11 202048 7 6683 4312 9054 10 6 \n", + "12 202047 7 4999 2963 7035 8 5 \n", + "13 202046 7 3752 1963 5541 6 3 \n", + "14 202045 7 3696 2016 5376 6 3 \n", + "15 202044 7 4391 2375 6407 7 4 \n", + "16 202043 7 4376 2505 6247 7 4 \n", + "17 202042 7 4000 1979 6021 6 3 \n", + "18 202041 7 3961 2099 5823 6 3 \n", + "19 202040 7 2078 675 3481 3 1 \n", + "20 202039 7 1049 237 1861 2 1 \n", + "21 202038 7 2253 782 3724 3 1 \n", + "22 202037 7 1584 405 2763 2 0 \n", + "23 202036 7 919 100 1738 1 0 \n", + "24 202035 7 828 0 1694 1 0 \n", + "25 202034 7 2272 371 4173 3 0 \n", + "26 202033 7 1284 177 2391 2 0 \n", + "27 202032 7 2650 689 4611 4 1 \n", + "28 202031 7 1303 100 2506 2 0 \n", + "29 202030 7 1385 75 2695 2 0 \n", + "... ... ... ... ... ... ... ... \n", + "1546 199126 7 17608 11304 23912 31 20 \n", + "1547 199125 7 16169 10700 21638 28 18 \n", + "1548 199124 7 16171 10071 22271 28 17 \n", + "1549 199123 7 11947 7671 16223 21 13 \n", + "1550 199122 7 15452 9953 20951 27 17 \n", + "1551 199121 7 14903 8975 20831 26 16 \n", + "1552 199120 7 19053 12742 25364 34 23 \n", + "1553 199119 7 16739 11246 22232 29 19 \n", + "1554 199118 7 21385 13882 28888 38 25 \n", + "1555 199117 7 13462 8877 18047 24 16 \n", + "1556 199116 7 14857 10068 19646 26 18 \n", + "1557 199115 7 13975 9781 18169 25 18 \n", + "1558 199114 7 12265 7684 16846 22 14 \n", + "1559 199113 7 9567 6041 13093 17 11 \n", + "1560 199112 7 10864 7331 14397 19 13 \n", + "1561 199111 7 15574 11184 19964 27 19 \n", + "1562 199110 7 16643 11372 21914 29 20 \n", + "1563 199109 7 13741 8780 18702 24 15 \n", + "1564 199108 7 13289 8813 17765 23 15 \n", + "1565 199107 7 12337 8077 16597 22 15 \n", + "1566 199106 7 10877 7013 14741 19 12 \n", + "1567 199105 7 10442 6544 14340 18 11 \n", + "1568 199104 7 7913 4563 11263 14 8 \n", + "1569 199103 7 15387 10484 20290 27 18 \n", + "1570 199102 7 16277 11046 21508 29 20 \n", + "1571 199101 7 15565 10271 20859 27 18 \n", + "1572 199052 7 19375 13295 25455 34 23 \n", + "1573 199051 7 19080 13807 24353 34 25 \n", + "1574 199050 7 11079 6660 15498 20 12 \n", + "1575 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name period \n", + "0 27 FR France 2021-02-08/2021-02-14 \n", + "1 23 FR France 2021-02-01/2021-02-07 \n", + "2 23 FR France 2021-01-25/2021-01-31 \n", + "3 17 FR France 2021-01-18/2021-01-24 \n", + "4 16 FR France 2021-01-11/2021-01-17 \n", + "5 20 FR France 2021-01-04/2021-01-10 \n", + "6 23 FR France 2020-12-28/2021-01-03 \n", + "7 24 FR France 2020-12-21/2020-12-27 \n", + "8 21 FR France 2020-12-14/2020-12-20 \n", + "9 15 FR France 2020-12-07/2020-12-13 \n", + "10 11 FR France 2020-11-30/2020-12-06 \n", + "11 14 FR France 2020-11-23/2020-11-29 \n", + "12 11 FR France 2020-11-16/2020-11-22 \n", + "13 9 FR France 2020-11-09/2020-11-15 \n", + "14 9 FR France 2020-11-02/2020-11-08 \n", + "15 10 FR France 2020-10-26/2020-11-01 \n", + "16 10 FR France 2020-10-19/2020-10-25 \n", + "17 9 FR France 2020-10-12/2020-10-18 \n", + "18 9 FR France 2020-10-05/2020-10-11 \n", + "19 5 FR France 2020-09-28/2020-10-04 \n", + "20 3 FR France 2020-09-21/2020-09-27 \n", + "21 5 FR France 2020-09-14/2020-09-20 \n", + "22 4 FR France 2020-09-07/2020-09-13 \n", + "23 2 FR France 2020-08-31/2020-09-06 \n", + "24 2 FR France 2020-08-24/2020-08-30 \n", + "25 6 FR France 2020-08-17/2020-08-23 \n", + "26 4 FR France 2020-08-10/2020-08-16 \n", + "27 7 FR France 2020-08-03/2020-08-09 \n", + "28 4 FR France 2020-07-27/2020-08-02 \n", + "29 4 FR France 2020-07-20/2020-07-26 \n", + "... ... ... ... ... \n", + "1546 42 FR France 1991-06-24/1991-06-30 \n", + "1547 38 FR France 1991-06-17/1991-06-23 \n", + "1548 39 FR France 1991-06-10/1991-06-16 \n", + "1549 29 FR France 1991-06-03/1991-06-09 \n", + "1550 37 FR France 1991-05-27/1991-06-02 \n", + "1551 36 FR France 1991-05-20/1991-05-26 \n", + "1552 45 FR France 1991-05-13/1991-05-19 \n", + "1553 39 FR France 1991-05-06/1991-05-12 \n", + "1554 51 FR France 1991-04-29/1991-05-05 \n", + "1555 32 FR France 1991-04-22/1991-04-28 \n", + "1556 34 FR France 1991-04-15/1991-04-21 \n", + "1557 32 FR France 1991-04-08/1991-04-14 \n", + "1558 30 FR France 1991-04-01/1991-04-07 \n", + "1559 23 FR France 1991-03-25/1991-03-31 \n", + "1560 25 FR France 1991-03-18/1991-03-24 \n", + "1561 35 FR France 1991-03-11/1991-03-17 \n", + "1562 38 FR France 1991-03-04/1991-03-10 \n", + "1563 33 FR France 1991-02-25/1991-03-03 \n", + "1564 31 FR France 1991-02-18/1991-02-24 \n", + "1565 29 FR France 1991-02-11/1991-02-17 \n", + "1566 26 FR France 1991-02-04/1991-02-10 \n", + "1567 25 FR France 1991-01-28/1991-02-03 \n", + "1568 20 FR France 1991-01-21/1991-01-27 \n", + "1569 36 FR France 1991-01-14/1991-01-20 \n", + "1570 38 FR France 1991-01-07/1991-01-13 \n", + "1571 36 FR France 1990-12-31/1991-01-06 \n", + "1572 45 FR France 1990-12-24/1990-12-30 \n", + "1573 43 FR France 1990-12-17/1990-12-23 \n", + "1574 28 FR France 1990-12-10/1990-12-16 \n", + "1575 5 FR France 1990-12-03/1990-12-09 \n", + "\n", + "[1576 rows x 11 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2020-07-20/2020-07-2620203071385752695204FRFrance
2020-07-27/2020-08-02202031713031002506204FRFrance
2020-08-03/2020-08-09202032726506894611417FRFrance
2020-08-10/2020-08-16202033712841772391204FRFrance
2020-08-17/2020-08-23202034722723714173306FRFrance
2020-08-24/2020-08-30202035782801694102FRFrance
2020-08-31/2020-09-0620203679191001738102FRFrance
2020-09-07/2020-09-13202037715844052763204FRFrance
2020-09-14/2020-09-20202038722537823724315FRFrance
2020-09-21/2020-09-27202039710492371861213FRFrance
2020-09-28/2020-10-04202040720786753481315FRFrance
2020-10-05/2020-10-112020417396120995823639FRFrance
2020-10-12/2020-10-182020427400019796021639FRFrance
2020-10-19/2020-10-2520204374376250562477410FRFrance
2020-10-26/2020-11-0120204474391237564077410FRFrance
2020-11-02/2020-11-082020457369620165376639FRFrance
2020-11-09/2020-11-152020467375219635541639FRFrance
2020-11-16/2020-11-2220204774999296370358511FRFrance
2020-11-23/2020-11-29202048766834312905410614FRFrance
2020-11-30/2020-12-0620204975026314569078511FRFrance
2020-12-07/2020-12-13202050770634744938211715FRFrance
2020-12-14/2020-12-20202051710564757413554161121FRFrance
2020-12-21/2020-12-27202052712012828515739181224FRFrance
2020-12-28/2021-01-03202053711978840615550181323FRFrance
2021-01-04/2021-01-10202101710525775013300161220FRFrance
2021-01-11/2021-01-172021027779554301016012816FRFrance
2021-01-18/2021-01-242021037891363751145113917FRFrance
2021-01-25/2021-01-31202104712026882615226181323FRFrance
2021-02-01/2021-02-07202105712210898815432181323FRFrance
2021-02-08/2021-02-14202106713642991417370211527FRFrance
\n", + "

1576 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 \\\n", + "period \n", + "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", + "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", + "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", + "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", + "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", + "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", + "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", + "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", + "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", + "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", + "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", + "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", + "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", + "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", + "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", + "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", + "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", + "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", + "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", + "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", + "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", + "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", + "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", + "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", + "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", + "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", + "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", + "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", + "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", + "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", + "... ... ... ... ... ... ... \n", + "2020-07-20/2020-07-26 202030 7 1385 75 2695 2 \n", + "2020-07-27/2020-08-02 202031 7 1303 100 2506 2 \n", + "2020-08-03/2020-08-09 202032 7 2650 689 4611 4 \n", + "2020-08-10/2020-08-16 202033 7 1284 177 2391 2 \n", + "2020-08-17/2020-08-23 202034 7 2272 371 4173 3 \n", + "2020-08-24/2020-08-30 202035 7 828 0 1694 1 \n", + "2020-08-31/2020-09-06 202036 7 919 100 1738 1 \n", + "2020-09-07/2020-09-13 202037 7 1584 405 2763 2 \n", + "2020-09-14/2020-09-20 202038 7 2253 782 3724 3 \n", + "2020-09-21/2020-09-27 202039 7 1049 237 1861 2 \n", + "2020-09-28/2020-10-04 202040 7 2078 675 3481 3 \n", + "2020-10-05/2020-10-11 202041 7 3961 2099 5823 6 \n", + "2020-10-12/2020-10-18 202042 7 4000 1979 6021 6 \n", + "2020-10-19/2020-10-25 202043 7 4376 2505 6247 7 \n", + "2020-10-26/2020-11-01 202044 7 4391 2375 6407 7 \n", + "2020-11-02/2020-11-08 202045 7 3696 2016 5376 6 \n", + "2020-11-09/2020-11-15 202046 7 3752 1963 5541 6 \n", + "2020-11-16/2020-11-22 202047 7 4999 2963 7035 8 \n", + "2020-11-23/2020-11-29 202048 7 6683 4312 9054 10 \n", + "2020-11-30/2020-12-06 202049 7 5026 3145 6907 8 \n", + "2020-12-07/2020-12-13 202050 7 7063 4744 9382 11 \n", + "2020-12-14/2020-12-20 202051 7 10564 7574 13554 16 \n", + "2020-12-21/2020-12-27 202052 7 12012 8285 15739 18 \n", + "2020-12-28/2021-01-03 202053 7 11978 8406 15550 18 \n", + "2021-01-04/2021-01-10 202101 7 10525 7750 13300 16 \n", + "2021-01-11/2021-01-17 202102 7 7795 5430 10160 12 \n", + "2021-01-18/2021-01-24 202103 7 8913 6375 11451 13 \n", + "2021-01-25/2021-01-31 202104 7 12026 8826 15226 18 \n", + "2021-02-01/2021-02-07 202105 7 12210 8988 15432 18 \n", + "2021-02-08/2021-02-14 202106 7 13642 9914 17370 21 \n", + "\n", + " inc100_low inc100_up geo_insee geo_name \n", + "period \n", + "1990-12-03/1990-12-09 0 5 FR France \n", + "1990-12-10/1990-12-16 12 28 FR France \n", + "1990-12-17/1990-12-23 25 43 FR France \n", + "1990-12-24/1990-12-30 23 45 FR France \n", + "1990-12-31/1991-01-06 18 36 FR France \n", + "1991-01-07/1991-01-13 20 38 FR France \n", + "1991-01-14/1991-01-20 18 36 FR France \n", + "1991-01-21/1991-01-27 8 20 FR France \n", + "1991-01-28/1991-02-03 11 25 FR France \n", + "1991-02-04/1991-02-10 12 26 FR France \n", + "1991-02-11/1991-02-17 15 29 FR France \n", + "1991-02-18/1991-02-24 15 31 FR France \n", + "1991-02-25/1991-03-03 15 33 FR France \n", + "1991-03-04/1991-03-10 20 38 FR France \n", + "1991-03-11/1991-03-17 19 35 FR France \n", + "1991-03-18/1991-03-24 13 25 FR France \n", + "1991-03-25/1991-03-31 11 23 FR France \n", + "1991-04-01/1991-04-07 14 30 FR France \n", + "1991-04-08/1991-04-14 18 32 FR France \n", + "1991-04-15/1991-04-21 18 34 FR France \n", + "1991-04-22/1991-04-28 16 32 FR France \n", + "1991-04-29/1991-05-05 25 51 FR France \n", + "1991-05-06/1991-05-12 19 39 FR France \n", + "1991-05-13/1991-05-19 23 45 FR France \n", + "1991-05-20/1991-05-26 16 36 FR France \n", + "1991-05-27/1991-06-02 17 37 FR France \n", + "1991-06-03/1991-06-09 13 29 FR France \n", + "1991-06-10/1991-06-16 17 39 FR France \n", + "1991-06-17/1991-06-23 18 38 FR France \n", + "1991-06-24/1991-06-30 20 42 FR France \n", + "... ... ... ... ... \n", + "2020-07-20/2020-07-26 0 4 FR France \n", + "2020-07-27/2020-08-02 0 4 FR France \n", + "2020-08-03/2020-08-09 1 7 FR France \n", + "2020-08-10/2020-08-16 0 4 FR France \n", + "2020-08-17/2020-08-23 0 6 FR France \n", + "2020-08-24/2020-08-30 0 2 FR France \n", + "2020-08-31/2020-09-06 0 2 FR France \n", + "2020-09-07/2020-09-13 0 4 FR France \n", + "2020-09-14/2020-09-20 1 5 FR France \n", + "2020-09-21/2020-09-27 1 3 FR France \n", + "2020-09-28/2020-10-04 1 5 FR France \n", + "2020-10-05/2020-10-11 3 9 FR France \n", + "2020-10-12/2020-10-18 3 9 FR France \n", + "2020-10-19/2020-10-25 4 10 FR France \n", + "2020-10-26/2020-11-01 4 10 FR France \n", + "2020-11-02/2020-11-08 3 9 FR France \n", + "2020-11-09/2020-11-15 3 9 FR France \n", + "2020-11-16/2020-11-22 5 11 FR France \n", + "2020-11-23/2020-11-29 6 14 FR France \n", + "2020-11-30/2020-12-06 5 11 FR France \n", + "2020-12-07/2020-12-13 7 15 FR France \n", + "2020-12-14/2020-12-20 11 21 FR France \n", + "2020-12-21/2020-12-27 12 24 FR France \n", + "2020-12-28/2021-01-03 13 23 FR France \n", + "2021-01-04/2021-01-10 12 20 FR France \n", + "2021-01-11/2021-01-17 8 16 FR France \n", + "2021-01-18/2021-01-24 9 17 FR France \n", + "2021-01-25/2021-01-31 13 23 FR France \n", + "2021-02-01/2021-02-07 13 23 FR France \n", + "2021-02-08/2021-02-14 15 27 FR France \n", + "\n", + "[1576 rows x 10 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXfcXUWZ//e59y3pvRCSQAKEkoAECJGqQkAiuAso7AYVWGVFEdvCTwUL6kqsKCuusIKwlJUmoCC995gQICGkmZAE0nt5U9565/fHOXPOnDnTzr3nviXvfD+f5L137pyZOefMzDNPJ8YYPDw8PDw8RBQ6egAeHh4eHp0Pnjh4eHh4eKTgiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwo1HT2AcjFkyBA2ZsyYjh6Gh4eHR5fCm2++uYkxNtRWr8sShzFjxmD27NkdPQwPDw+PLgUiet+lnhcreXh4eHik4ImDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDx16L3c2t+Mvbqzp6GB4eXRJd1gnOw8OGHz48H39+cxVGD+yFSWMGdfRwPDy6FDzn4LHXYt2ORgDArua2Dh6Jh0fXgycOHns9GGMdPQQPjy4HTxw89loQUUcPwcOjy8JKHIioBxHNIqK5RDSfiH4clv+IiFYT0Zzw35nCNVcT0VIiWkxEZwjlxxDRvPC3GyhcvURUT0T3heUziWhM/rfq4eHh4eEKF86hCcCpjLEjAUwEMJWIjgt/u54xNjH89zgAENF4ANMATAAwFcCNRFQM698E4FIA48J/U8PySwBsZYwdBOB6AL+o/NY8PDw8PMqFlTiwADvDr7XhP5MQ92wA9zLGmhhjywEsBTCZiEYA6McYm8ECIfCdAM4Rrrkj/PwAgCnkZQIeHh4eHQYnnQMRFYloDoANAJ5hjM0Mf/oqEb1DRLcR0cCwbCSAlcLlq8KykeFnuTxxDWOsFcB2AIMV47iUiGYT0eyNGzc63aCHh4eHR3Y4EQfGWBtjbCKAUQi4gMMRiIgORCBqWgvg12F11YmfGcpN18jjuJkxNokxNmnoUGsiIw+PslAqMTz6zhqUSt7KyaP7IpO1EmNsG4AXAUxljK0PiUYJwC0AJofVVgEYLVw2CsCasHyUojxxDRHVAOgPYEumO/Hw0CDrFn/3rA/w1bvfxt2zPqjKeDw8ugJcrJWGEtGA8HNPAKcBWBTqEDjOBfBu+PkRANNCC6SxCBTPsxhjawE0ENFxoT7hIgAPC9dcHH4+D8DzzBune1SIcpVWGxqaAACbdjblNxgPjy4Gl/AZIwDcEVocFQDczxh7lIjuIqKJCA5mKwB8CQAYY/OJ6H4ACwC0AricMcZdVC8DcDuAngCeCP8BwK0A7iKipQg4hmk53JuHR0XwxxOP7gwrcWCMvQPgKEX5hYZrpgOYriifDeBwRXkjgPNtY/HwaA94MzkPD+8h7dFNsGrrbpz66xexPoy3ZAI3ovaMg0d3hicOHt0Cd/39fSzbuAsPvbXaWpc47+DlSh7dGJ44eHh4eHik4ImDh4cGnm/w6M7wxMFj70fGXb49A7e8t3EnrrhvDlrbSu3XqYeHAzxx8Nhrkdjky2AD2kPlcMX9c/HQ26sxb/X26nfm4ZEBnjh4eEjwpqweHp44eHh4eHgo4ImDR7dCFn0C8yppj24MTxw8PCT4TCIeHp44eHho4X3gPLozPHHoImCM4dUlm+CD1WYHyygg8kkIPTw8cegy+L+ZH+Bzt87Eo++s7eihdBnwLd7TUw+P7PDEoYtg5ZbdAIA12/Z08Ei6DirlADxN8ejO8MShi8CLk/KBC7kgH3fPw8MTBw8PHdrFlNVToHbF0/PXYcGaHR09jC4Bl0xwHp0AXknafiDvI73X4tK73gQRsPxnZ3X0UDo9POfg0S3QacVynui3OzrrVOhssBIHIupBRLOIaC4RzSeiH4flg4joGSJaEv4dKFxzNREtJaLFRHSGUH4MEc0Lf7uBwuMwEdUT0X1h+UwiGpP/rXp4ZMRevIl8+a43cdB3H+/oYXh0YrhwDk0ATmWMHQlgIoCpRHQcgKsAPMcYGwfgufA7iGg8gGkAJgCYCuBGIiqGbd0E4FIA48J/U8PySwBsZYwdBOB6AL/I4d5yxc6mVvzf39/vvCdQDyOyiOW6w2H+yfnr0Fryc9lDDytxYAF2hl9rw38MwNkA7gjL7wBwTvj5bAD3MsaaGGPLASwFMJmIRgDoxxibwYId9k7pGt7WAwCmUCcTsv/w4fn4/l/fxYxlmzt6KB4ZUS4991vn3gV/sMsGJ50DERWJaA6ADQCeYYzNBDCcMbYWAMK/w8LqIwGsFC5fFZaNDD/L5YlrGGOtALYDGFzODVULW3Y1AQAaW9o6eCQerij3dNGpTiUeHh0EJ+LAGGtjjE0EMAoBF3C4obpqbTFDuemaZMNElxLRbCKavXHjRtuw9yr4U09l6LTPr7OOay+Ef9TZkMlaiTG2DcCLCHQF60NREcK/G8JqqwCMFi4bBWBNWD5KUZ64hohqAPQHsEXR/82MsUmMsUlDhw7NMnSPTo6tu5rR0NjS0cNIoNMSFAfMX7Md89f47HIiuu7b7Bi4WCsNJaIB4eeeAE4DsAjAIwAuDqtdDODh8PMjAKaFFkhjESieZ4WipwYiOi7UJ1wkXcPbOg/A86yTrswZ723G7a8tb/d+O5kKJncc9ZNncOz0Z53rz1y2GZ/740yn3MtZJ1K7PuoqdXbWDa/irBterUrbXRWddEvptHBxghsB4I7Q4qgA4H7G2KNENAPA/UR0CYAPAJwPAIyx+UR0P4AFAFoBXM4Y44L6ywDcDqAngCfCfwBwK4C7iGgpAo5hWh43Vw3c8kpAGP7txLG5tLds404M7FWHgb3rcmmvK6Oxxb7Rc3zzvjlYu70RGxqasO+Ansa64qaQKdlPF9tLGGN4/b3NOOHATqWu6zToYq+zw2ElDoyxdwAcpSjfDGCK5prpAKYrymcDSOkrGGONCIlLd8Opv34Jg3vX4c0fnN7RQ9lrMfv9rZnqt6uHdI4U6P7ZK/GdB+fh+n89Mrc29yZ0NWLf0fAe0p0Am3c1d/QQuixM670U7gY3v7ws97Y7I1Zu2ZP465GET/uaDZ44eOy1aGqNxVRZTo3tGpU1R51DIWyq5I/IHjnAE4cy4aIIzRNemZYde7qCT0qe7zUkNOU0ed8bH+Cht1bZK3Zh+CWUDT4qa5lobiuhptj+tHUvN1pyhstj2NNcGXHoamIIzjnYRv3exp2psu88OA8A8KmjR6V+8+ie8JxDmWjKYFnj0TEY2rc+VeaibG5Xs+Ec++L3ZuIy3/5gK6b8+qXc+uxK8JxDNnjiUCba2nmm/XVO4C/oJ7g7xu/bDwDwhZzMjjs7XHQlKzbvap/BdEJ0NU6wo+GJQ5lo7016Y0NT+3bYRWDUxVT4jtrlHefYSSxW8pugCv5glQ2eOJQJvwA7P1j0N9u76qpqHS4OM0Xi9lnuPFzhiYMjUnJoTxs6PThX0alPjHnqHBxMWbvzoab73nl58MTBEbL4wk+0zg/+yloymh277tc//tt8HPnjpxNlC9bswKJ1GRLY5ypWKt+UtTvAm4NngycOZaKj5pk3ZXUHf0V/mvkBNu7MX2fzv6+twPY9yUiyZ97wCqb+1yuZ23KxkGptK+HXTy/GDkX02oVrd+DnTywCAOzYo49u253FSp40ZIMnDmWiO7PnnQEum2mbIHx/av66zH2050nTpa/H5q3F755fGhEBEa8sifOb3PvGytTvUT/deN56xiEbPHEoE36iVR9PzV+X2PSyorUUi5NsEV9fXbIpyvL3/KINxrq5IgMryH1rmlvT99KdOQJn+DWbCZ44OEI+qXbUPOtOROlLd72JC2+dVfb1bSazHQFL1jfgc7fOxA8fno/te1rwypJNANrpHQsv9JaXl+HFxXrCxE/9KjKgozEl6RnIRGR3c6vbOPcCdGeuqRx44lAmvHKrPDwydw1eMGyAWWF6DS1tbu+Ix2BasHYHNgu6ifZ+xdMfX4h/+983tL/z8agIQUFDHWTLJXmDHH/NU3gzY0hzj+4BTxwckbJW8rShLHz9nrfxecMGmCdUwRFVe2hdTbAMmlrbsM2gzO1oxAnX0zeh4xxcPPk/fdPrFYyq60B8FLOWb8Hj89Z23GC6AHzgPY8uDZPIvtVRrFRTCIhDc2spIc/vbGIIvrkVFEc63WPwh5gY4qP4lz/MAACs+PlZHTOYLgDPOZQJb8raOWB6D62OYiW+bTS1ljosF8Lr72221onHlp4EhYKbWKk7w4uCs8FKHIhoNBG9QEQLiWg+EX0jLP8REa0mojnhvzOFa64moqVEtJiIzhDKjyGieeFvN1Co5SWieiK6LyyfSURj8r/VypBWSPuJ1tkhWiuZwBmM5tYSxEvacy/51VOLrXW4M5/qgKA7M7gq5fMEYwxzV27rdJtx5xpN54cL59AK4ErG2GEAjgNwORGND3+7njE2Mfz3OACEv00DMAHAVAA3ElExrH8TgEsBjAv/TQ3LLwGwlTF2EIDrAfyi8lurLjrZvPdQwFUhzU/Xza2ldo+2m4UV/PHfFgSXZGinA2gDHn1nLc7+/Wt4ZO6a9u/cAL9ms8FKHBhjaxljb4WfGwAsBDDScMnZAO5ljDUxxpYDWApgMhGNANCPMTaDBUeKOwGcI1xzR/j5AQBTSD6qdzB8+IyuB9dTM6/X1FpKmX5WHWXsWCrLJI1Uqf3vB8CyjUFY8KUb0kmFOKY/tgA/fXxhew0JgOf2syKTziEU9xwFYGZY9FUieoeIbiOigWHZSACii+aqsGxk+FkuT1zDGGsFsB3A4Cxja290NpbZIw0XsdL8Ndsjv4bmtlKCoHTWN1yJKWt7wCWvxC2vLMfNLy9rnwF5lAVn4kBEfQA8COCbjLEdCEREBwKYCGAtgF/zqorLmaHcdI08hkuJaDYRzd64sXzP2TzQnZ3gGGO47dXl2FSFeEV5wuXQfNYNrybCUbhaOHUklE5wmrrXPrYwwT20x/zhY+l0J/VONpzODifiQES1CAjDnxhjDwEAY2w9Y6yNMVYCcAuAyWH1VQBGC5ePArAmLB+lKE9cQ0Q1APoD2CKPgzF2M2NsEmNs0tChQ93usEroDJt0R2H+mh34z0cX4P/9eW5HD8WMMt6RGLSus75jlcRVxzn85e3VeHfN9moPKQEXzoHjj68si8KWVBud9HV2WrhYKxGAWwEsZIz9RigfIVQ7F8C74edHAEwLLZDGIlA8z2KMrQXQQETHhW1eBOBh4ZqLw8/nAXiedTK5TSdTgbQbXl2yCZ/949/RIEQC3dUUhFzY3dQ+i7pclHNyveaRd+2VckRuCnDD9BS7aI9pzNeKy51d+9hC/P6FpdUdEIA/z16Jc37/WtX72Zvg4gR3IoALAcwjojlh2XcBXEBEExHMgRUAvgQAjLH5RHQ/gAUILJ0uZ4zxXeQyALcD6AngifAfEBCfu4hoKQKOYVplt5Ud23Y3Y97q7Th5nCtH0qloV9Xwk0cXYPH6BnywZTcm7NsfQCCbB4Dams5NMMvZd20B+vJGOWNUnZtc30S7iJUckg6JaM6Yb6McfOuBd6rex94GK3FgjL0K9dx73HDNdADTFeWzARyuKG8EcL5tLNXE5Xe/hdeWbsaca07HgF51qd87S/iMdjemCYmgqNvl9vZ1xY7zoXQRXVT+qKr/sMt5n6prdGKljkDWCLG968zb0M6mVmxsaMLYIb0rGZZHRngP6RCrtu4BAGzd7RZbp6P4hva2PuELXeyXh5jgMYmAII7RX95e1SGmkzpUKplsj0ddzvNSiaJUITVUaB+xUvjB8dZ61RWNv3/ujzNxynUvVjQmHTrTfO1s8MQhRN8ewenFlEVLREdxDu2tilGJCJoi4hAv6v99bQX+4765eOCtVWhPmPQKlT6pdiEOZXSiFiu57frtaa3kem82rmfOym0VjkiPFkcv+u4ITxxCcBGJmG/4ottmYcxVjwHoPOEzetSaT1nVgopzqC3Gz4Sn4dy6q7ldx2UUK3WBQ2E5xEG1n5n21/aWOGWxVsqCahyMusIc6Sh44hCCc5fiXHn5H3pfirwnlSq8tIh+IWdTo3OFrTJE7pt/zCLnZozhlk7g9NTZrM7KmUYqgmK6r/aWnBQyWCtlqVeNOFEdEXuqq8AThxB8irhu+pUSh/c378JbH8RJVmwWG7y79pzLd81YgUXrGoJ+K+z4lSWbML0K4RJMo6pYrNQeCumcdA4mkpfnBtjY0ob7Z690OsW7ryW3itVwUGz3WFpdCD6fQwg+QVUTdWNDU2TbH9WvcOP46K9eTHxvbi1BYSQljI/3234QN3PdImorMazdvsfaVpMi73EliEUXXVuuVM5+p7otExeXJ3H4+ROLcPvrKzC0bz1OOWSYsW7exLUaxMErpPXwnEMIzqqrpsqx05/FzOVJh+289x0r52AgXu2BRLfC518/vRgn/eIFrN62R/5Jur79x90Vln0WnUOf+uAsd/T+A1O/mZMe5UeYuW5pZ6M+93QkVsrhBWwXrAfbDFF2v/3AXNz4YnZnOi9W0sMThxDRybwd5sqPHpmfKmu2nKw7YgqLz0K1iAjAq0uDoHUbG7LFWcorZILuuSxe14B3VlUWNqI95kKWPvbp3wOAOgKrSaxUDYMc07B1XN323S3Y3awnKipM/umz0WeTZdH9s1fhl0/ac2LI8LRBD08cQsTEwW22VLJx3P76ilSZlTi0I/FSQXfCjRShlnHJCtMbX3wvj2Epn0epxHDGf72cqZ1D9+lbwRjKfymunMPu5tYoBHbW7vLkHFygc3M48j+fxkd++aL1+pN/+XyU11oUR1bjlO8z5enhiUMIk1hJhbzlqXaFNEv8bQ8kJEmKbhnKj8ApxmrKGwvX7ch8jUpm7zwXKnglrpvT60vjNKKqK0xipTw21fU7GpP9GeqSQaykiuQr11u5ZQ/efH9rql6LQ5iNE372XCY9ghcr6eGJQ4isJ/O8Dxy2w12HcA46sZKwM1TLpt0d6Y7LCSXh6mHsNgJ3lLU3ZXzYNq7UhleXbMKHf/ocnnx3nVP99zfvBuB+YHCt57KRr9nemMmxzRMHPTxxCBFzDq4Tujr92/rrqKmsFSuFf23jqpZ3gWpYJl8Q3S/FCvwfKhErlXOt+U2k0dhamX6Hh/x++4P0aV6F215bDiD/A4Nr2tcsG74XK+nhiUOIrH4O1z/zj/L66QLxfqK+hG0osd5EJiISIWQbWDXvo2AgDrpui4prnLlIt2pKlHNwbWxpyySWa+9Isxz5i+Xy94dQVS2VGK57ajE2NDSmf+xG8MQhRFadw0sG72kTdAvBeoJhjvWqBKVXLtw5h2pB1W85XuRK4uDKRbaDzmHL7jgsyU8fX4QjfvS0cx95WYb94eVlmURUeZsvu+75JpPXVF1Fo7NWbMF/v7AU38kxzPeOxhZs2NG1iE23Jw4vLt6Aw3/4VOTkVu3NV9e6beJ3BFEQu9RbK6XrmurlBR5oLqtDmO4XZfgJZ86h/HfjKgL5tmWjMj1fkXOodBo9s2B90I5Q9vi8tQl/hKzIm8PIonNQzWuu0M6T4/roL1/A5J8+l1t77YFuTxyue3oxdja1Yv2O0IqiynuwbpO1nbKYY71qQbeJRZt0+H3r7vYNvKdCOYSoEtpVySvJ63Wa2qlUIW16Niu37MZX/vQWvnbv25nGVA5cD0hZdA6mum++vxW3vbrcuS0TXFMBdCZ0e+IghzqutqmoXqxku44Zr88bb3+wNSG71fZLyQp/eEkdXK9a8e5U76ucZ9QR8fha2krY2WR3Crvr7+9X1E81uE7+uLjIavXW3c79lps4y7Vea4ViJY7mthL+89EFzm3tbfDEQdoUqr356oiPM+dgaf+5hesx4ZonceB3tYn6AAQezSav5nNvfD3xffmmXcp6/PEtDAP0tTfyel+qfAj5K1STeGHRBmud3c2t+MFfK8tr7Tq8fUMP7LzaXLdDPb/k/Thvk9csCmnlu+tcgXs7DJ44SN+rThw07du6dfVzuOSO2djV3GZlrY+d/iyOnf6ssY6Ip+bHNu6rtsWB9jhxrVR00dGohHMoh9t8f/MuLNMQXBF/+vsHzqPQ/lLFSc1bVulsXv7HRjQpzGjLHY/rZVlCuagj3HrqADgQByIaTUQvENFCIppPRN8IywcR0TNEtCT8O1C45moiWkpEi4noDKH8GCKaF/52A4Uziojqiei+sHwmEY3J/1a1N5j4Wm2pjVas5Hja6agkQ4vWNeDpkEDc8NwSAMGjK3ch5bVhKT23c5Pj6xsSo/SW098nb3gVP39ikbVeT0sKTRe4ipW0kkOHWE66WdDaxlAqsYRntNxPpWIlee187taZbg1CEzPM0wYAbpxDK4ArGWOHATgOwOVENB7AVQCeY4yNA/Bc+B3hb9MATAAwFcCNRMRn+E0ALgUwLvw3NSy/BMBWxthBAK4H8Isc7q0sVN9aSSNWMl0jjKkjfXYeeDOdArRcz2LdbbgSjTikk0LnYHiauoWfdUP41VNxkLdyXkmDg64BsOdXjsZgGESlm28lJ+kCEW566T1MujbmUsvN86Bbm/LpPwsX653g9LAubcbYWsbYW+HnBgALAYwEcDaAO8JqdwA4J/x8NoB7GWNNjLHlAJYCmExEIwD0Y4zNYMFbv1O6hrf1AIAppLQtrD6qPVd0DIJpkoo/dZS1EqA7Qeb7mvK4vbIU0hnvw+Y7kFeeAFWMIRVMvbkOJQtXmuXunpd0K679vLdxp1OfLjGXdHCxbOquOR8ynftCcc9RAGYCGM4YWwsEBAQAz/wxEsBK4bJVYdnI8LNcnriGMdYKYDuAwYr+LyWi2UQ0e+PG8pzQUm2mSqptraRTSOuvEU9GnW2aupJw180360lOFxAwK1T3YdoT+vaI82Sp3ukbK7akysrBn2a66hz0qGakYbvvZvnWZDe+kIzcq5sbPFptOdA5d4rI4jexN8GZOBBRHwAPAvgmY8wU9lK1CzBDuemaZAFjNzPGJjHGJg0dOtQ2ZCe0v7WSptzQb6mTiJXaQ1HXmQ5pplDXImPbGYZsFCu5tqEpN+kc+OavOyQwZjf+0RGvh95enWpLhUqyDKpesTwHu2twPifiQES1CAjDnxhjD4XF60NREcK/nHdcBWC0cPkoAGvC8lGK8sQ1RFQDoD+AfI5eFqSslXJq9/TfvISpipwCTDOPncVKnWIrCkAgY2L7cpDH/eUlejMFehPvWtVde0tFTc/NRSxyweT9Mh08KiE45b4e3XutROyjslaS+3EN+Le3wcVaiQDcCmAhY+w3wk+PALg4/HwxgIeF8mmhBdJYBIrnWaHoqYGIjgvbvEi6hrd1HoDnWRWF6+fd9Dp+/0KQUlBexHn1umTDTixS2P7rFrGJOLQn55D1se9xzezlyKFlvb/8xErpzbxfj1rHQaSLygjvVDWUEocLNYLbz39yqebTHklfU2mAw6yj/tmnjog+qwiLTDDy5BwWrNnRZcy+XTiHEwFcCOBUIpoT/jsTwM8BnE5ESwCcHn4HY2w+gPsBLADwJIDLGWN8NlwG4I8IlNTvAXgiLL8VwGAiWgrgCoSWT9UAYwyz398aWZvIa7jq1kq6TdFwjTg5Kx3d1l3NWuerDzbvxtirH8ff5q5R/p4SwYHhjRVuClNXuD5+rhC++ZW0R3Z5Cuk06moMO7zwk4rgEwEHXP0YLr5tVvbBlAGzWMn+QMjShv169bNSNTn9sYWJ784K8zKMOVSoK8bbnmrjl8vyzKR35g2v4NrHuobXdY2tAmPsVejFhlM010wHMF1RPhvA4YryRgDn28aSB3bsSZ505VOCbZp964xDEmaMKixYo1fJlBNbSQwHUCnt+tytMzFfM763VwYb/ZPz1Uld8pSUlMNBidi6K4hV87e5a/C7C47S1jt9/PAoWJwJRMDg3nXYvCuODWUairgZqurNeG8zSqz86L1ZYXpq4vj0gQfLO3i4vC553qzdvifx3fWda+tlHHhtTUwclIH3pLIs4ThcMGfltlzbqxa6nYe0jWU0bdJ962vw8fHDAQAT9u2XuIab063YtAtn3vCKtg1d66bDSSLGUYW8g44wAMCupuA03rfeemYAECR1d4UrXSlnoxhz1WOYt2q78Gv8W98eNbjxs0c7tSmH7TaNhRKcQxrXPV1evo9qYNbyWH2nFSuByks8FF5iUkjLkMUqzvoLLeegqqtvVeQcVO9YtozVzYPlm3bh2OnPYs22PcrfdXgnMVc7L7odcXB1rFGhUCCMG94XQ/vW40OjBkTlt7++AuO+9wQ27WzC5l1m1/1KxUrV1Edzr9/eGuLQHtZK5So6L/7fWHwjPuPm1pLTqAnpPBDyu1q2cSfGX/MkVm7ZLSmkO15haRrDgrU7UjmgZZi4woqU6yriIO2+7qa2Gq5b0YlJVFVfI4qV0r/LB0bdwe3ume9jY0MTHn1HLYbt6uh+xEH6Lk8O0zzle0eBkhP13lmBW8fGhia73bfO4sIkVhJmZzV1IlyOLy6evOCq+H9+4QY88OYq64aRZv2FnAVC+fY9bqGSiQjFojmUyp/fXIXdzW14ZO4aK+eQB/JUXO5uDt6taZvXKnwdfAE4WuWNX9Fqk5QnodLwHipCYFIi14nEQdH3Lsl7XTc+njeE58zOgq7gWNf9iIP0TuSXZBLbcLFDgSgxYXhwsR61RXsAPcdxiUgopA31VinCJpcDrYjAOTNaup5cNuO9zcprv3nfHPy/P8/F4/PMyezlLhJ+B8JvOxpbE/ejlbkjnUfalQ4vWmuOSLtw7Q584revZErtCaRP2HlAL1bS369qo9W1I0dEVbUpB+Nzfc5Z9HUmgiMSB9UmvWJzMiCiioAA8Zz708wPMnOPWSLHdhS6H3GQprX84k2yfz4ZAuIQl/OMUTUFcuAcdOXJH95dvR2Trn0GW3Y1SzoHPR58c7XhV3foxEeqZyPKbzlc1oktIumOjBupznQ0OH3bxSJEaZ03CscZAAAgAElEQVSDPFeSit247r1vmL2Yr3tqMRau3YGZy7K57mTZcCplKIn0OgdVCtWo3/AZLVrXgJN/+TzunfWB9HsastNapdZKqnIT51Cb0VpJ91zEx5LV3LUrONZ1O+Igz9bURDBcyk+WRMmTiWi3nVUcEpcnv9/00nvYtLMZry3d5GStNHflNlz/bHWVoKqxq8z8VEPkkVxdkdVPIOmxHI9AFnOYUCNHERRuZMZ7m/F/YdIdoiR31bO28sipKshz4rAR/RLfEwEZLVydy+PUtWCKDCtOiZVb9uBHf1sg/Z5ude32RmsdFbScg2LkutM+YFdI20TPHGI62qycQJ7msdVCtyMO8iuUX5JposY6hySHwC2VSswueNH9LgcnE+uLY9T1IC+4akA1/9Vl6cK3PshmvpdVCSoSE/ndiE3Jm5fQI/554r6JEn4fpRLDBbf8XZu1LY+w2kpIj/GSk8Ymvuv2o1nfU1qYA9A7LRKl+7P1E/xmnvEuW6brtqrVOahCYDjqHJTEwXKA5CgIk85zDnsB0joH6XfDtYVI56D2Wi4xO3uvIz4PvpU0CxW3RhedQ3tEa6hmADcZsvzfDrXOoaWNuVkrEfBvJ4xJlPHT4GPz1qbqzxTMQ/v3dPSkzgj5IFArKcx1nvMEwmmHDVe2+YOH5yvLCVRWGHUXMarNys05l4mWc0jDtPnarJVcLRrFA0l2zsETh06HlM4hnbNQi6RCOi7nk4cxZmXvy9k4K5lIzy1c7+QEBthPcBU7K2VA1jDMCc5BuBPXdghpAsvnxjbJ4olACd+B8ZK4R0bWp8GtlOTHWCvpd0xhVf548STn/m7//LGBE5zivS3dsDORBVCGnXOw3301PKRFsZJs9ZXQOTiIlWzWSoDnHPYKpFhGqcA0mVvCSUakPu2UGKw7QdZ9kzEmcQ7ZGrjkjtn44p2z0dDYgq/f83a2zuWxVHR1EkP61MftKu7JlaBxFDScRiBWcuNC5DZ4wDV5fClFtaXdrITuwjCTmdyuTBzy4CL3H9wLHztkGHRSpdN+8xJeW6q2LFONMXsF4LbXltsrIZtCWpQIyFZiNQIHplrHac5B3W+Sc9C/Y1U+d885dEKkTgWyw4vhna0J5fq1xYKkBwhwzcPvGj2Qg7puk4JvaDv2tCQSy+jGZ9sP/vL2ajyiiZnk2obrfHbhHAb3ros+q6oXMmqkE34HZYqVZLSF71g+5W3YkXR0tN2vbNdvAxdZye3KYiXxZ7FmORLGgHPIfp3tsJLnFpjFlFVcn42yR7aC69f9DuhP+WThHBpb2tDYos7n3tYFIr12P+IgvXmZc+AWKSbU1xQi89Wg0eDP6+9txvTHF6ovCpH1wPCDh+fjq3fHJ/5M2bqEe8tDLs4Yw8K1ZuIX1MvYrqIsq85Bxzk0SwppHYLw4/H3o/YbEJ3u5MV9++srEt9t99vYas4ad9Hx+yvL5XZls+GkWKmyzcaFu/rumYemymzzmTGUR60E/P4zQfgTrU5EUSYe5E2cn4sPh4tYaZ3CIOT4nz2HQ3/wpPLarpBAqBsSh/jzET96Ctt2J1lO28kfAOpriwlHHtOGnZqYjotYXE+il2+WPUCs20cTEuP9zWZ/AxG7mlrxid/q40ZxuHAOi9fHjmOq+rK3chaoLMlsIEoqTmsLhYQVmgm2320pRT919Ci1v4g0r+QNXNdvFkuvJPdhvo8vnnyA8XoRJx00xKlNF4wd0jvsS92WTecg/5yVc9ApzMVXdu6Nr2O1FGNp6269r07ewfyqgW5HHEQ0NDrmIpAgcw6mvcFV3z1x9IDEd72XsjvEia9r76O/etG5PVvGLa6wd+WOFof5LpTEIeHxbG9QdFG48cWlwrVuMniipAy5pkjRqbJSR+VGi1ipQJoxSrcty87zCLkVZXKDeR7XFtWJnXQEisv187Bc4+9Wr5BOl6k4gqs+cSge+soJkhNc+lqZoF33tDoKs2yFNfX6dHIvHaqdGiAPdDvikOWdiJFXRdTXFJ1TE8qTIIs5ngp3a3IKqxau2KbLfVc6XSNPWseGVm8Lwn2oxibqR1zGLrL4T7ybtK5xDRgoPsNigSKFdJtFBGBb6HJym1S/IKVYjLc6ZnAvAMBAQU8DSHNJ+FgWz2UJ2Z1yEAyhJQ5h/Ty2QP7+dIcOW/gMLioe2qceR+83EIN610WRel04B13OEvmVNWj8YNRjdq7aYXCLzbwXIZvMXl3eo7aAJtEr2tBGmji4dZZlgbe2lZROdOVmkNOdtG0cQW2B0IzspyKrrbxDG5W6eZBEQmSjAxNs47d5actci9zupR85EBP27YcjJe5Sa5ygaMsWUpss1KFGJ+bTXMMj3DLmZhBgQnzm0Cmk02V8Dq7dvgd/eHlZeH0MHnq/kgB4Oj2XCzzn0AmR5Z3oXmCxQAmZpjHFp6OTXSVT5b9fWIp7ZqU5irznn+0EzTmHrN1abeUdbmSFKTKmk7lScgOtKVAkF7ZZTtn2F9vvAXHQi2wKhIgwfHvqIdHv/LnsbGpVOuplQZDsRz9Q2Yw2HqO6fp5iJf5otJyDYty8XzHCqviE+Vx1ySGtQyW+Cl2ANnRD4mD5feSAntY25PAZJsgbn94cL/n9r3PcY8R/oNkYE5yDc2vA755fqiy3KdH4BuJ6KvrGvXOcxlbpOnKkDZFYadTAnsEBoMQ3Z3ML5cbTivsm5SD5VWL3hwzvK7Qb/P3BX99NZJxTidEIhE079blGbDoHOddFPEb1RTpiUh5iLkQF8cxy8PA+QVlYV+8LQmZ/JQfYLBNNyENRX21Y3yAR3UZEG4joXaHsR0S0WsopzX+7moiWEtFiIjpDKD+GiOaFv91A4Uokonoiui8sn0lEY/K9xSRMC3lQ7zr07VEj1FXXI7iLbFJOdhlOP65wkVR98c7ZZbfPccDQ3sbfI87B8Va4QUA51kCDJPm7DkeOHpDJeufWiyfhwctOCA4AYZnN5UI3/AG9AvNhleGD6ARYKKgJEJ+r4mZfUCjqXTKRMTBMuvZZ7dhtaULrNDk+dBupKZJrVnDCJJ/UN+1sCnKohN+f+MbJuPLjAWflMgeLRBoPaQdO1RJV2IYu4APnxDncDmCqovx6xtjE8N/jAEBE4wFMAzAhvOZGIuJRyW4CcCmAceE/3uYlALYyxg4CcD2AX5R5L04wvZOiEHL76ofeSZhbAjFXQRk4hx1S6IVlG9WTqhI2s5wEQlnAT6sj+pu5Kn5azGpzzyyifVVzZ0xQxw4S8f2zDsM9X/yw0xg4AZly2HAM79cjEXnXyjloZpXJt2RIn5i4EUi5+Ub3LXQvDoVvMCl9gEF/oYMtTWgvKbggr6tXSMcHhUrjfvH7kznXSdc+i2OnPxuNoW+PmsjKLeIcxDFL7RYKpImtlC6bvyaZ2vOi22alK2XAXqFzYIy9DMA1EP3ZAO5ljDUxxpYDWApgMhGNANCPMTaDBbPqTgDnCNfcEX5+AMAUynLUywjTOykSRQv9njC7m2h/Xl8bfBbj0Lz5vvnR/OyJRYnvszX1XebKyeOGYP/QciVxraZ+1tOJbgxc5m5z+S9X51AO1+TyvPbp3wO96mqcxUoiRNGhjTjwxyKLKEzXieMnAu7+dz0RE1sRlwbfYGRLIlW3tsdl4xx61WlsV2w6hxzEJ/zQoXUci7gfspq9ipAzOkrNJfDFO5Kc98YGczpgG7oAbahI5/BVInonFDsNDMtGAlgp1FkVlo0MP8vliWsYY60AtgMYXMG4LNC/FZFz4Pj3k8fiz18+HkBMKArCQtq6y5yURk452NrGMKh3HW5yTHovorZYUHt0am4przSTXEJgs+zgG0LWU5FdoVveShJFJjbIdQqUVAi79PNfUs4K03XiplliDOOG98UXTx6rbFckMmKbMXGw36CNm7PpHGTOgcj8riNTVk2bP//UEcbxJNtScw4c4nuyjUtEkch5Pclh2W3myTZ0hrzjNpRLHG4CcCCAiQDWAvh1WK5z5TG5+Di4/4QViS4lotlENHvjxo2qKlaY3kmhkO54cJ/6KMQv3/wIcZpQnSxWhxJjKBBw+Mj+yXE5XFtbVIuzdNe+/t4mpzFZN47wDZkSqACBV3HQXvq3SfsPTBeGsFsruZVVAhXnEG06VmuloN7TUvRSV85B5yTH202mORV1DsFfWazkvKAgvHsLBe1RqxYr6d6DjYvMYgZaG64xnbd7rBuK/UVcuOZCQa1zUEWh7dsj37Dse4vOIQXG2HrGWBtjrATgFgCTw59WARgtVB0FYE1YPkpRnriGiGoA9IdGjMUYu5kxNokxNmno0KHlDN2sc1CkSuxZW4ycoTh7WyjEi8J2OpeXQIlx9jf5i8tJoq6mqHHaUV+7p9ntdGMzyeNxh2z1TJyD6co8EsYA6ecQnz6ySymJKLKCcfXDkB0jZaVsIjigUM7Da8j9ROO3+CikxUoq5ba6DVfoNnNbrgPtvM7wSviho0XDOfz17dVRk7xZG/ECgvcjc8PLN+3Cll3Nqbq6bH9D+9Ynvruat+61nEOoQ+A4FwC3ZHoEwLTQAmksAsXzLMbYWgANRHRcqE+4CMDDwjUXh5/PA/A8q+KTM3MOgYWKGDepZ10hmhhjB3NrnTifw26b92sqaX3AOZSjVKktathgTX1bTB8OG0dA4XhtOocag7WScdGUIVZSybJToUoUJ28d5PckyqOtkUcjqyJzm6prAKB3KM/Xjl/kFiRxFKC3DJpx9alia+px8LEqxvXgm7EkWO6CLCd0/nsenAM/dPziyUXK33kUWxI4B96vad6prJV2azLluVpfucby6gqcg9VDmojuAfAxAEOIaBWAHwL4GBFNRPAOVgD4EgAwxuYT0f0AFgBoBXA5Y4zvUJchsHzqCeCJ8B8A3ArgLiJaioBjmJbHjelgUpBxx6eLBUuEnrVFjN+3H2787NH42CEBtxLMk6CdFgvnIM+pQKyUDpfgQg7rawrqSaW5Vg5VrIPNEZgQLGabE1xNUS9WMnEHK7caHNg07alQYgzFMv1x1WKlsH/LtTrJjFnnEHjpfva4/XHEqEDEmPKm52MT2hHl7jqdA98QResyq7USxfX45yv/PFe4F93NqBuOiY36qiyWri46FSDpac45AtO8IylpVzCuuK9Xvn0KTv7lC1HbKsjNt7SVUiI49XWdnzpYiQNj7AJF8a2G+tMBTFeUzwZwuKK8EcD5tnHkBSPnEFor/X1ZLNWqrwle9JlHxMxSYOYYfLaJRPaVnOpKjMtGpXE5CE8Chbn7pMqLcwC5iZViOXO6nunar98zx9y/o85BF6rEaWuRN/aC3ZFK7lfeQI2nTRboqz56cCweTUfwTV+myu0h96MSgTTbQnggeeJO/S7P18iUVVc/Ig/K3+UxM8a0nJZY3tTaFq3JVD2kORpToqy6IqUOd+IQRg+KLQNdiaNrtNXOTxq6o4e0RQYpTyCVp2dB0E3YNo7RA5Omp6USCyZgarGZ2+H9ZnHacY0bY/fgDRadjWMuSguTo7WtZAyFboth5GqtpK1WFjORB+dgECshLXZKv6400RFzQzANUVIZSfzuObXXuzx23qZMzHX3olUpkPl3WU+i0yc8+rWTEt+XrN+pbhBBKP3UfRjmTt8etdghRbrV3aeOzqs4BxfsFX4OextMJ/RiIZ1kXc6+BXAP6eCz7SXLcvoSYygW1FE4OV5ZorbEKlBagQboF6BuYcibh42IcJ2DTqw0elDAHcXxdJLtPacICihi/Q6zzfia7UkP4MaWNuVbTItl0jJ7HeQ6ouiw3PAYJrG6KiBdOtRKuh3Rson/rgmYmsD6hnQyGhHyOT9laKHVOajvXQzQq3r+soXV7a8vD+pL7clWfe9t1BOHHjWFlM7B9O7696xN5XPRvTItcZS+2zg0DtWSm7NyG95Ztc143c6mVvzgr+8mcphXC92PONjEStLvtYpTGAmcg+1wLm+osVhJYquFz49rgqjpYjrp7klXPnXCPtIYXTgHwMYx68wIv3TXm+YLLfjDS8uiz4vXNeDQHzyJx95JPyO53yzJtlSn/qxKQ5P8Gki+D6boU5atx2KxuHyomHubEz8H5W4WnQOQNMoAVPdilunv06+HsV/50LUl9BfScRAcOlFdTYFQUyzEOoeIA9K31adHDXZJCmjdo9Q9Y/n+TWKlv3015oJUROuc37+Gf/7v17TXA8DOxlbc9ff3sXSDnkjmhW5HHEwIOAdZLqkiDvGkt3EO8mQvMRadxDmmTtgnMVlMSrxMYiVNO98987DEd5vOoXd9jVIhLS/weHPLl2XuURu/Ax7GQOWEVM4JPqojfRed4HSPh8fhKmk2SjnVqRyPS+7zitODuEAfCfUQ8eYf15ly2DB8/sQxQXuleKzl4tTDhoV9JPVFsllulj6+M/VQDA6JmG5uymIl3r5MlGToDjJcz2LSOcggKMyHDWtPBZnzMImVamsEq7MylwhvXyXRyBvdjjjYdQ7JskP36ZuqJwZl+4cUf0mGLE9nIecgipuKxbQ4Szc+l+QkcbmbMtCmRBs5oCcIaUIXKTEj8YbZvNEGHqhOhmj9YXp/cowmXtVlGT0U2spzkCDC029wyfuXx5ZS4iY+pxWw/XvVYvyIfqiTwl2LtYgIxx8QBBBwjf2kw+tXnYof//OE5BjDPmWxkq4H1XzsUx/bjGl1DtLmxu/B5jfEN3ueRZCjPiIOyXGZIhOLh7yofa2YLDne/UJl9fgRyYRgJrFSTYHwX/86MTWuLODtZ3W+LQfdjzgYtuGCNFlOHjckMs8UEegcgop3znjf2N+upuRJiHtIizmdBfF2MEatkk8t6tDdkatDDj8l6p5NfU0BRKSVc/LxmvwcXKDbgHpr8l/LqETJp1LA6jZ9jmKBhyjXtyFC5g5V9ytuWLGyWL2RRkS5TOKw74CekcGF3IR8gn97pVoWrnw2oXUb/101PNnQI+Yc3IiDHNuIc5fRs3DgHID0oUwnipT1OgwMHzl4KO4PQ+twmA9ahAOHBiHFy52qnHiqJBp5o/sRhwwvRSffLCg4DB3ue2Nl4jv3c+hZV4y4EiJKnSqV/ZJaeawbi85pTV6sNpPXQoGUC1wui3NIuz2cyWMGSe2pn7cuXasMXUrWcuI4JsRKmjoRMYRGrKTRIUSfNc+UV1OFzwDijUr3ex6QQ3q8r80Zki4Lbjv5bGTI+hXOdbpyDnK7PPZTSudgmIsBIU6LfVWQCXCpFETW7SMdXMzWSizF2WRFLFaq/tbdDdOE6iGHLdatOZFzsGFPSxvWbt8TOSTx8BkA8NjXTwZjDFfcP1epcxjWtx53f/E4DOhVi+17WvDXt1dnmlSuZnW201qR1PY+OoWqOERdroFJ+w9M3YuLuaDp7tMexsFfF+9WWbxSKAimrFrOwSxWkkOkiONbvW0PmhQxlUQzaQ559HFOZXexkm3WyCLCBQbTYxGq+cjDrYjtyUhzDiFxEOasSq7ON3u5Xa5zkI0iTJZ4qqfmShyC69NlfPyqxEp9e9SiqbUpMb6siIiDFyvlD2soBIc25JO+DXKCFr5nFEMLC/G0CMSno7qaAg4a1gdD+tTjwKF9tGIlHVwdcnSxfTiKBXI6fdcoMsGt36E2oexZl44T5WoRooPrKVUFVRykmHNQt8vlvowxPPTWKqy2JN3h7by/OcjpoUrtGRw8gs88u5v8XCTJSYKozvreFGXfczVioXSbQavffvAdS31pEAJcwsPIOodigbBkfQPWbm9MlMngm73MEcheybHOQT8Gpc7BkdsW17EIvubkZEAfOXgohvfrIewF5VGHJi9Wqh6MnAO5nVJV7Oinjh6Zqvf9swKrIHFz46asifak61rCCZpivTlLKk1g2Yrovz9zVNiOmiPoJ0WY5BPub3Pj1KQfETx3C4W0R3cwbmmBS7JwQB9xVB26QFnVGSnLk/ANlpOVzEXnUBsFGgSuuH9u6ve0yCL4q3smAADh4PGrpxYHRYqxie2L82lY3x76tg2wKZBlmExZiQTrJ43OQbZW6lNfg9OvfzkRukY1Fi4qlbmuWKyUnINma6W0daKuekqspLkvndjn4GF9Eu2Uzznwg6O3VsodJs4hOMHb35qsuAaA6eccgWnHjk6UcXmkWLekOXGIdfhmLyvD5SxXHGmzw6CejnOQLR0457BMOO2IBKhIas6BF/EFqErw0qgxTdQlWlHBlXPQ1XMhDmk/B3u/RUvOAhn8fk1miIT0c9F5XsdOcpVvFAZGAABw4kHqFCuqTY40YkgR8jOQo5sCQS5vGXyuye+Gh9SIk/3oiVc8zvS7cxUrMTClWElHHGSHxnJ0Dks37MTX73kbADC0T3mHgCzohsQhXcbTf/bvWZtWGiog5nOIyiitAJa9NVvbSnhx8UZslkICB2Kq+Fp+OtAp7eQF+fp7m6V+eTsx0fj00aOgg0rnIJ64CoX0Mrji9IOjMs7ic6Ijjk8lVw/GmOYcdFuKzZntytMPTvULpK2oTEh7SMfvWEfEagpqYs0hKyt5NZMyUbXPyxuTzEHmka451jmo7+W3045SlqsOU2T5HUgffORn+KWPHoB7vnhc6jotcZCslZQWZPJ8ozQxlLnyI8OgiH3q5XwWas90frl8sufPIQ5lnr7Whv99bTm2h2mH9x3giUPuUL2Tq888FHOuOT0gDg5tFBSTKnASS+12AOIJ98qSIPnOqq17UtXEydKqOX24nzqCiqJfwpyVW7W1VdZK/3TkvtFnFedw+vjhUZmoIwGSG4xqrHd+YbLyZP6hUf1TdcU2WtpKytAi/cJczfLC1gWm43htqT4Zkij758PkYkIOTqx1b+PyUw5KfOcbhOn1Kb3gpeFHz70Ca6XTQue3uE0+xjR61xUxpE/6ZA/orJWSCmkVca81WHIBwD99aF8M65feAHUKaS6D563qHBNFqPJmy7qMWy6aFIxXyQkoFOYl9fhks+RyOAdRp1WOqDQruh9xULyTumIBA3rVAUguTO3rUyzggoJzkF+fNh+CxN7yanJ0TZ1YScQ1nxwfnU5EBzz59Ck676g4h898eD+cemiwgRQL6Q1I9PLmC6K+mOQclm7YqbRW+sjBQ5U6h898eD/lPfHbve7pxXh4zprU79EmrXkssnyb4+qH5kWf0/cXn6R5s2d9aESiTpHU+ieO+lQMq/CvccNK/y7PIy6+a4s4h+wbxR8vPlZZnnnP0uocwp8BzFiW5mxtnIPoFZ+oZ+Ec5DwSRj8HxSFPvp1h/Xqgd10xUW/llt2hNVK6bZ0iXM75UaYla4Q8RIk2dEPikH4rUfpPAsQXrlv0qixXqvASsnJMB1mkcUjo//DbCyYq2yuxwB58/prtKU/RQ/bpq9Q5yHqG+798PJ74xskAgCaNn8O44aESTSFWEjckvmDj0xXDhoZGnPabl3DtYwuVbXOdw50zVkRluoXMF9zyjbuUv3Oi+cdXlyXKI4W0RsYvnr70Sl/h1KcQPeniXQHAQaESMh5PgKxycHkjkHMq56NziHfzLEHdtJyDQUwVWOmZOYe6ojost+6AFekcpLVpC58h7+9qBXvyHX/it68AUEeI1XEs/Fssas5OHapPDpLofsRBUcYVi7J4R4fYzlwoo1iM8/Up4/DXy09MiYF0L1c+fba2MfSpr0kka+H1gGDC//hv83HWDa/il1J2rNZS7Ggj6hzkk1qf+prIW1Pn58A3/SKlAwWScEMqncPX7n5bc7cBuEz/mofnR2W66Kw2yw6+Icje6jadg4kzF52ptE6JIdFUbSii2I1DPlVe88nxqetUFjS6MPK2zHxZEJ1owfAvf5iR/E1BfPiQ9NZK/Pd0XxNHD4hSf0btyTHNNHb8Os6Bv+P4AGUX4alM0lXEhITxzVm5DTubgmB9LYq6Ou4wmoshUbQ5+6mQ39t2Q/cjDoonzCeWSkGlgopzEE8Xh+7TFxNHD0jJcXXemvLSayuVUicrQHS6YpgbhvbdKDnbcA9sILl51Cna4/etO11x2lJUeEgTERoag0XSK0xzWStkguOKMx1UOhrdJm6Tz+oUvPJpTYZJbisq/yOTVml2FCgZZ0uEMucwbydscFg/hRxfwTnIz6kYcQ4ltLSVMFMS25SDrMyHSX+SSNepqHDd+Uem5resl5BFcnG/6vqcgEVEKfzd6CGtGJ+O2PHi1YK+cIdijut0IrzdvqEZOV87nRndjzgoljJfbCoFlQp8Am7ambQ6Oik09+uZsrkO2uSK3yNHD1CMK0ZLiSk3SlGsxLkd+QTSS0h4InIOqpOYTcEteuCqLGZ42lRuyRFzDm7PUK726WNG4XcXHIXff+boRLntnfDoqEDSV4OH59CGQTHsiOKzicVByTrF0NtLt6HIkDkHVf8qYweZQ+BmoC0lhuueXhzlUH7wsuNRKVSP2hTsUe0hLRAwxcGjZ20xNb/lduT5+uvzj0zUk1vl5wPRQpAxht3N+tAwqsOgKmS4GKJfJGp8fYm6KJ0JLf/GLdj2CuJARLcR0QYielcoG0REzxDRkvDvQOG3q4loKREtJqIzhPJjiGhe+NsNFJJ6IqonovvC8plENCbfW5SQgXPQmrKGE3D2+0nZ7MUnjMGfv3w8PiY4kAGi81MwUW/8bHLzkzfK1raSUonK11NbiYHP0UWCzuG30yZi8thB0fjEia5qTwxvLG7APPvWV045EFMOHYbzJqXNYIkI//O5YzDru1NwwwVH4YwJwzFmcG8ASTm9DqoIs8UC4Z+O3Ddl326TnvQRiMPX7onFWVx3oyMBRs5B1BfxBS8NZNywvsE7ceT3YyLDiW66juqActR+ycMEf5etbSUsFeTex+yfjFWVBbFYKQ3VBm/zPFYdUJJ1ggoDw0i8cnMycfj0MaNQW4yNGHTh0UWifsNzS/GTRxdEdeSDoUqMrBL3iPuCSNT4tedMjB1g2yKxUrINXrdYIPSpr4lEU1nQGXUOtwOYKpVdBeA5xtg4AM+F3x1CKCYAACAASURBVEFE4wFMAzAhvOZGIuL89U0ALgUwLvzH27wEwFbG2EEArgfwi3JvxgWqOV2IOAdHnUP4lnY2yolCCMeOGSSwuMklxz1je0gTX5Yzt7YxpVipIIiVVJv92RNHhiw9byee6LpDMlcM3/X3WF7Ps28N69sDt/7bsejXo1bpJNajtohh/XrgQ6MG4A8XTtJmglP3qw8F0rteHQpBB1tCd10cGpE4yD0kdQ5qTue7Zx6m9HkB1AtZVlbqHAt5c0P71uOCyfulvJ5Np/JyIVpnyWhVbPA62T9HMTqgxNdOHhsQLy4GfOIbJ+OeS49LtAeE1kwKyplQDLP0b8G18X08+NYq5dgS7UkNqYiZuC+IujvVs9IqpIXvdTWFsnQO7WGhJMJKHBhjLwOQzRfOBnBH+PkOAOcI5fcyxpoYY8sBLAUwmYhGAOjHGJvBgqd0p3QNb+sBAFOoik9BNZfF6J3J+O86HUEwPBv1lx1eeDAuLnaK2pM2npYS0+auBuwnaS6jXiJki9I9UG5t8/YH5tg7aYW0XuzFYLfGII04BkDKvt10vwN71aKHJuE8R5/6GvzP545OlZtiT4mKTcaC57dP/x44ZHic36OupqD0lgeA08YPBwBc9YlDce5Rwcky0l0YxEriKVUXv4fPjW8/8I6VQKiU3iqY/BxUXbRFm2BcJgZe5AcZkXu9+cJjcNu/TcLA3nUAgMNG9EP/0EcloR8LQ8TLEL3qdRFwRUW4bRdx5xxiIlJjOFCI4zJ5udcWyRgUU0WMOwLl6hyGM8bWAkD4l3vUjAQgxqheFZaNDD/L5YlrGGOtALYDUPvq5wDVpsXfBUkiAt2Blc8PW6hr0appzbY9+N3zQZJ3eTOTxVltpZJS5BGJlRgzZsxSXaujt9xqyJoqlMzfxTK+oZpgMgGVYz/xhaZKjfjit05R6lNOOmhI4vuEfdMOdmJuap35aIkFc4aIUFdTwFP/8ZFUPfnRLb52Kj75ocCJ8MsfPTDKvCdvbKqNv7m1hOVhGBNVHC4gKffeY5CpA8ChI9LJqlSIeFxHZqS1xNDSVsLPnwis5X7+qSPw8QkBQSSKxy1uggN61eHUQ4cn2pGtiwBDPC6BS9PF5RLFgdYTpkTYdza1RrqAa885XKymfC6qNRNzVMnyb59xaPS5tlhIJQUSicmsFWpT4s4oVsoC1fiZodx0TbpxokuJaDYRzd64Me0p6wLTSyYp+YeeOLix9fFpjGHlljgevhzKGZLzXUubRSFdYsYw20ftN1D7m2qMJeaWR1q+Lj2+4C9jaq5gv0G98PUp46K6WWMmLduU9nPo37NWSQxTPgaKrkRrE5UlEgA0NLbgvjdWms2QpWvrJeIfPZfwu0kh/caKrdgShlfRxeES04/qgitG43PdUhzt7x/56onB2EosoVSdNnm/BEekCuGiHh+v5yKKDN5jW4mlMizyE7/JyELWycjP5vAfPoXpjwd+OWKEAPHwJq6TKF6S0Aa/DVk/xbklIHC6FbnWzTubEoEb5fSy4jjaE+Xmc1hPRCMYY2tDkdGGsHwVADH63CgAa8LyUYpy8ZpVRFQDoD/SYiwAAGPsZgA3A8CkSZPKEriqLorFSkkKbgvkZguJzRfI3+auwcK1+nSiwUsXdQ4lo1iJMXMOBrWiU983Y+nFputb913sRbTwEfGtMw6JFp0YuwhIK+lF2MRoqsXkspA+ccQIPPZOOmw2Hx8AXPvowpRVmoiGxtZUOJT0WGKiDog6h3Tdjxw8FC+HobpLpXQqUQCRKAaw28u7bihRNcWz/olwiubpMZWnZn5fEDkH2wGKwvbsohTOpX3yd69i4dpkvglulaQzoV30k6kp3ZS83kUkTWnjw1vyvpnwPxL9muZsbbGQIJq/fHIx/iKkqVXpGzsC5XIOjwC4OPx8MYCHhfJpoQXSWASK51mh6KmBiI4L9QkXSdfwts4D8DxzDddZBlRN7xsG3pOkStrTdDGSp9omdFDv9y+8h+cXbbDUitFa0imkw3Exllr0YuwbnSz7Z586And8YXKyzXCTtuZ+cBArJU7IiuZEYiCLY3ThEvh1mxXJU6J+FZfK705FrkYNiK2i5GnB72XbHj1h4HhmwXrj7zLnoAq1zZHwj9GIlQoFwnfPDMQUridzG0w6hwuP2z/RNwClKJI/QyJyXiOxBZ7bGBlYijAAcchufr+BziG+e6WoFXpDMzFfQkE4vKk4B9GAIo6tpF9PtTVJnUM66ZX6rVVvV1TDxZT1HgAzABxCRKuI6BIAPwdwOhEtAXB6+B2MsfkA7gewAMCTAC5njHGh6GUA/ohASf0egCfC8lsBDCaipQCuQGj5VC2Iz3f0oJ6Y9b0pGDMkMMFMmZRaiUM2Ob1xXCyYUNc/8w8sWtdg8XNgCfM5ABjRv0eqnowLJu+Hj0pmtlz2z+/1SE3wO5dbMVm88HHH/bpZNQXtBacrGd8LZfmqhS+ntbR1lfo5vBdZRFQOZI96q59DOBd0YiXxWjnBfapvx0koZ4Lj+MKJYxPfi9FJP00cxLDUvNvNBq5LHJ8L52DSU30lDHIocg7ineu4S8YCQ5Hfv7A02ZcYWoVip7rWBHEIPh9/wGD85Owgk+DPQh2MiXOoKRTQ3JYmMnF/6ndWSY70cmAVKzHGLtD8pEw5xRibDmC6onw2gMMV5Y0AzreNIzcIz7dIlDATlE3bdJxDFNsmoyhGBy7T3L6nBb99bgkA4KChfVL1xIkvb4iiWEa9oejlmKLOQQ6zIfcdt6be2ILxaSw5SmJd96x2pZI6hMWUMLKoauFv220/8ZvA70XnqZsFJOcYiALmpeuKm2+JqfRTSQzqrY6WGrXnOHz+CHc2Jb1+vz31EKm9cHyMKbiCmCPi9X7zzD+M/WblHHQbZA9NmtCoHyXnEKz3K++fG2XdU/YrmJqLe4LIKf3LsaPxAyEUjGkjrysW0CKIA1ORYXURC9qZc+iGOaSF02tB3vCCF15TILQqTkYcriyzM0sfOj6JG65SrBRtHMnyg4b1wehQFiyOL9GH4QRaEha6zjHMhc6JJ2QVVzD18H2EfrMopNXl/HmoFn7KCUn43FZKE1f5SMrbVul+brloEvZYLNVE8J54FyVhU5Ehhu0oKcSH8vhyO6CEf3dIvjvycxKNInScAw8r4tSv433wvm1ThhPiLF76tlAvokRBDMeR5IST92vqv7aGEnlO5Lo6U1ZTPuxqoPsRB+H5piZweIIvWohDHDwrH7FSZA0h1FdtSkVh4osTRRZBZXETiRXSTNlWVA9yH+q2gKA98cnMueZ09KgtJhSCROQ82W2GATrrDhEisWpsaUPvevPUNx3YTx8/XP+jsq2Q44viEek5B9m/QrfJxtZA5meoC1duG6vue8Q5lGIRyy/P+1A0ZiBpymoDr+bi0Eewb/oJQmwZAl93LpZ6vMaLi2PdoTgUcQ42trQZOabaYiHhQCv3botO3F7ofrGVNC8UCDdAZhcbqWy4TfVs4ByLuIGZfBVkayBVP/L1upFw8Q5fnLr558Q5hHXEYHVAYN8uW4rIp0CdyaVJN8H7U3EOJpNMbtliWmokbeiVQHwu4l/VuPkBIBArGXQOBX5AsczBjGIl+dQq9y/62vBNrK+UDpegzjmuHJ9kyWUeo10UKRJiVWA8qcXINFbEvZcmM9CJntliiPxk4M24/h9eWoZ3Vm2Pvu8/OObqAe7noNc56AiljYjlje5HHITPKbESBZOKy931OgceMtnCCjtzDoFYSexPlWc4Xkjusty4D329wPIkuBetV3iKkKrais5t1k3VVazEiZeKeEScg0qsJL0asSfuOCZuSPJIykmgo4Oc18PkBBeJDiOFtE7MF5Rvt1hTuWYM4/3IJtKp9x7qE0qCr0EULTiq4/78olAvDhufaDWkr8MPdsxoggzEJuTyPFRlvePz+Zj9Yx8iccjicxJFjt864xA8dNkJibbqJFPWlFhJs6+0t7VSNxQriXLC5G+izgHIwVopy7iQnGwzl6VdPYqCKat8bapvIs0v6XoMsc+GlnOwtpRUBtomcqFA2CV691p0Iqb+XMRKInY1t0bj1I4vEpFlahp/uPAY7W8usZX4Pb25YmvKHFM1vo2WDdD12dSHnN0uh4BwRQrErnzOyDG1xDShHDyxlAxO9F1OxaLVEMeAXrW4/fOTE3UAt3wJfL3LfctGCOJSSiikpfV14kGD0dhSSnjsHzSsDwZLxEYOnyFzxjqzclP48Wqg+xEH4XPKAkfQOQB2ayW7A1K2TUvcBDfvSi/6SHnnYNrhuilwsU0kVtLVk3lMg87BJXxGangGcZZu3+DvSSU6kS8ZG0aMBeL3Ji7utJ8DKctN+NqpB+GMCfukyuV5Fotf0uD39Pnb3wivVffFN9WGUHQytK/aasmVc+DBIF2ihRYKwTvmc4aHjxd1DvLaGdArGRKFI9Y5OCqkpTf796unSLqs4K/dB0nQOTAzcRBzdohrNB3CI8hRIl4/XJEHuzZlrZT8XXfo9DqHKkN8vieNS8bf4VZDrpyDVd7rLFYCwJIv//MnjlG059avqm+9TJ9QKgmLWcs52G9GPG2v39FoqZtsTwy7DQQ+KECsMFeBbwoqpat8jShCVCVkMQVKc4Xukohohs84Vv4rvOA11kGpenwTLJVw/AGD8cb3TlPWcyUOKs5Bl42tGG6CkflzIUlIVZFq9ffhzjkUiKzcuipFrg58vcv6Dvm+RRNacZxi/CUgDkMvOtBNVORuqa2RdQ7J/nc3qwm0t1aqOoIHfPOFx2DKYUmrk4hzKJqVZHzBmYLfAW4bKq8ni5VUzk2cG2iSTkXNinGouCJ130iYsup0BfNWb1eWp1tLnip1kPesY8ck4948cvlJWLejEZ++6XXtiYkvQtX+Zzpk6SJ7JsdXhkLasgHyljjnpzZXTn63JSpqaVWY5Srq2cBPu6Koz6QMF+Mb8f5FXYp8cLcRTpfNHEibneqsq+TAdrq+VZxDH8mSjYufgOC+Rg7oideuOjXVHieactRlGbWFWKzUVmLYsSdJDHRm0nxJXXn6wcb280K3Iw78JY8e1Etp0RPoHMw5eiOxks3PIQPnIJ9g1LGVgr8tEuewq0lBHMLKdWEESDEeT7JvSjjBuXCuX/7ogRiqUNqpNhNV1rugblz54OFph7+BveswsHddrJBWtM2V9socx4ZNnb+2BOegGV8WTl4vAgrAN0+ee1hldCCLA1V1gKQ4xuQo5yxWUnAOusMNPyG3Sfch+m/sI4lTTFGBATd5eqGQXpNys64B/wBB5yAQpi+cODblCCrmmi4pHFDj8QXEoZ9mrXHUFAvRAeHaxxZghpTmVZe9rq3EcNphw/C1MHhltdH9xErhX+Vc5QpOi86B/64LLSw1ZwXXd4knWdWpkjSnIpUSkc/fKYcNw/fPOgzf18T1LxQCwsQtNE6UQl3LGNG/B676xKHKxc7L3tsYR08dppGFi9ebOCyRpTe1IcO01/zu+cALPZG7Q6rPf3tvYzpMuA66++DD5H1EnIODWKmosUUVA9vpfFOC690mId/gxYPGAUN7K+vyEzI/7fMxfvO0cehbX4MJI/uhf6/aRGRTfRiQ4K+TQhqUOhilOeSYo7K2x60EhZf/L8emsx7WFCjizpUOlCGKofGELSxMQdCjPTxnTeI3ImC3Ru9jsl6rBrofcRDkojKidKHhd52SjG/ceYmVisWkDBdQK2EjcZZElFRsKK9bUyzg308+IMUqc3Bl2/B+9RjYqxbfsJxKzCKM4O8NYQgQIBnALNGOSBwMj0mO/eQKU+1XlmzC7uZWo7XSonVBcDeR0NmgFd2FP/DQKHxTVWWokxe/buPnNKOlrWTcMFS/HTAkvemrRKXXhXmb031TQnTIx3jCgUMw78dnRPk4xLHbTHJdTVnlNal6PET2UOYcDEkRmCpx1KiBPbFySxB5t83ge1IMOQcXSz0xP7uI2kJB+yxMXEs10P2IA2KLChmRSV74XXeaiWzCc+IcmlpKaGotJbKxbVfEBtKxzKrJxBedLfpvHD6DYb9BvbQiiisc5JwqYqgTi4jdmDgA7g/xwJvmlI+HSToa2+lt/DVP4eE5cZhkubarDFyE67LlG1etwQmOQxe+mT/r1hIzxk9SPdobFVnxIn2WcDLv20N9oIgV0uaQK0UH4sDH2OaUz4ESitzgWpXexq645v2CJYP+qVLO9utZi93Nrdi2u1kb4h3gm368b+giDYsOoCknw4IhtlLJcw5VhcmMsDY8jvGNRa9zCOpx8c4tF01S1nN9kR+EiYCu/HOc8MO04bso2/ik04klojYRbITbdjcr9RwctRbHwGB86TKdxYu48ZgOQzo/h1e/c0ri+2FSxjOXrV2U7crERN5cVFYnMlzXbewfUD7nECtyS8YQGSoaqYo0q/K41s3f4ISMKLOhboyJcss7duIMKa1v01TD+u1ma7mgHqXCZ6hMgotEaGMM0x8LEgHpuMkixZ7tAPDMf3xUWa9AsY5FJqyc8MoolVgmLjYPdD/iEP514Rx0h09RvLP/4F7aWDuum4VqcalOrq4mtEB8ErRF5SQCHpu3FnNXbTdHkqyxEwcV0dIRnH36i9FwTeNTh0wYNTAZkiC1kVVo9SeLL/7v3z9svcbVr6XFaK2UTedgi9yqEuup5hufL67EobG1DfPX7Ii+6+rFbWmHCIJbyG4A2NBg3/RbS0ybajPRL4WGIMJcUabnLQTm3tZwOZJYSfdeisKBR1Y+87huMh4KkwE9Nk/PueSNbmitFJGH1G/8JMcngW7TF3UOJhmgKwOo2scmjx2UKuNdmbLARX1HxMFMHcQNwHR6q4ssUvR1VIvnyo8foqgZ29XLY0iPzy4iAtLPOittOFAKkT5aID49a4tanU054M+5VvFussTEiq4xTLT+Cucz1ZxV6RxMsnXxBK87ALjoHPhv4lloqsKREACWlXlyHikkdRIRSpWs/gOBR3hJG85erFdiLGHSq+w3FCs1t5ZSprncEkxGpSHoy0G34xw4lKaR4dtcuWUPTjpoCP77M0cpr43tuvUsddBH+fJBlQkoX2BOIQ6iuEPmeuKiNS1gvgGYCMghwwPRzqAwX+7/+/jB0WcZpPmsGp/LoTLthZyNPJxy6LDE9y+cNDb6nDU+kQ1mP4dkmT74Y/zZdgCQDxq60zGQ5P50J98CJevpOQcxm5pZ5yB6/ecR7JDjmP0H4k8ari/gHOyWUoVQjGZa60CskG7TKJuj9sLyH/z1XW0bMto7rhLQDYmDSecgngzG79tPmwVMtLQxLUzV3OAJ2lVjsoFPqi2K0BrpusFfW8hmcYymue8iViIiTJ2wD3qGXIFO3xD0FXfmopC2Qb7NStdSsRBHFjXt+d86I+aMTPVEs9Cm1hIKpN5s5CIdMaYEcdD3C6TnupJzUBhZ6Da3ljaGFxfHyXG0Ooei+I4N4yM5w5q+blZ887RxUabHdL9BOA6bj0UxDBdiy+3MrZDivBZ64goAry/bpOhLQxxyJJiu6H7EIbJWSr840bLGdFoUfzOdJlST40OjVIpNtxfPN8B731iZKB83TJ81znaaJcdNmnMONha8UIhFEyYFt9hVOToHRc3EtzxOWpywmubCVz52oGYESXxk3NBICd/UWkJ9TVH5vOW+NjWoDwK2/MgiXJTcfG7Nfn+rcJ26PW5AYYM4Lpu5ciJCbo7HZFOaV4Ib58CVxLaDFq9nytcB6Dmy/zx7glYh3RGcQzfUOQR/lZyD8PJNm754gjCFlbCxoVmh2uhnf/+06KSeqBv5Odg2jvizqaaLWAkINi3uHOjKORjl0QXX0N7J73mctIoFAtrMQQyTxFXfVoEoOgM0tbTpzRylG/nU0SPV9bIQB6krE+cgwlUs2reH2iM4i86hNUEcnLp1gu45AwDI7VgWKKSZ1iybg5/64zSwZrGS6HB44NDeuOj4Mbj55WXtHn1Vh4o4ByJaQUTziGgOEc0OywYR0TNEtCT8O1CofzURLSWixUR0hlB+TNjOUiK6gSoR1lsQEQdFD+JGaprM7l6n8ePdb1AvPPSVE5T1soqVxE13SJ96ZVYzPkQb55A19o5toy4QoTF0ytM5wAHZdA6yovszH94v3Z7UyMHD+qbqZEWNITyHCq6e3o0tJe2JVnwfn/nwfon0r8l68WdbBF55XCaFtK4PHX567hHaWELOfg6QQ2HnBzPn4EYduCmrTSHNQ71w5bpNrCRmg/vRP08I+tKKldofeYiVTmGMTWSMcWP/qwA8xxgbB+C58DuIaDyAaQAmAJgK4EYi4m/uJgCXAhgX/puaw7iUiG2VzKcnY0gCx81CJDYXHb8/jt5voLKe64vnQ3KLyhpyDlaRQ/zZdNJ38XPg7fFToKk9ccPdarDEkInDvZceh+lSNEwgeQq765LJ+O0FamOCLOD9ujKAZs4heM+NLW24b/ZKrNNErRXnlqlf0QTStmnJ4zJlGUyO2X7jRg7b1ZSVkhy47gDy22kTreORIYfflvt14TB5BAOV06IIrh+LxEqariOTdGFenzxuaPSb0s+hA7iJaugczgZwR/j5DgDnCOX3MsaaGGPLASwFMJmIRgDoxxibwYKneqdwTe7gL04178WXWTSwkK55eUVTxTzc3rN4R/LFbrKBF+sBau9QDjm4mg7iGPtpxA1Bv/Fnk3MPUZIYTh4zSLmRnXDg4OjzSQcNycX0lIvHNjQ0OdU3cRgUmjlutLSVmIOG9sQotnbRoaxzsJvQAm5+Oqb5JRIto9GB1IZOTFWOd7BpTnOdgw3cRNVmFRaJlSzWSqZnIfpAiHDxIM8blRIHBuBpInqTiC4Ny4YzxtYCQPiX2wiOBCBqUleFZSPDz3J5CkR0KRHNJqLZGzduVFVxGrAOCSWf6QXaYlKEqHFUcLvmEpAn25jBapFDYgwW4rB0QxxYziSfNXEBIsQh6qxEAPeFLodCcHk2VZRKGmHqlZtN2oh10fE+BveJTYRV/hJy3yJUQ1DqHBw8dVw5BxPEWqccMhTXnp3mDIHyiIP4nFL9Ouoc+KZ//bOW1LwZrZV0fakcYDmhvUwwgKg2KiUOJzLGjgbwCQCXE9FHDHVVj4QZytOFjN3MGJvEGJs0dOjQ7KMVWlZyDo5KPtdJnzTl019z4fH7R5+H9KnD8p+dpawnZuk6er8BePYKtXs+EBMcG8citnnoPukcEhwmyyMR4jM0ERtXRqogcA4njxuiD/3sMLzp56Y3nfqaAh748vFug7HAppBmzG6JU0iIYvQN1hYL0TO0vRtd5NJkv+nrXLjdPMKFi+O76IQxSse9oD2n5hIwWsyFyX5cxidyzH/WzBc5CZLu9fHnojrc6ZzguPjLFhgzT1REHBhja8K/GwD8BcBkAOtDURHCvxvC6qsAjBYuHwVgTVg+SlFeFZhMWZOORZVP+oRYybDQTz10OI4Y2R8AcN4xo7X1xgl5D3rV1RhlzYvWNQBwD+EBAJefcpD2N1fOQXw0JvGb67gKRJFp7JlHjDDWs+ETh6ev/+LJB2DSmLQ3ejkwcg4IkyA5ZjILPpv74xvWP9Y3WNo0twOk5+dL3/qY0zvPhXMQqpmCWebNEfJAeTbI611OTCW3x62VdPsEv4/x+yoSeml0DjwEueshLQ+U3RMR9SaivvwzgI8DeBfAIwAuDqtdDODh8PMjAKYRUT0RjUWgeJ4Vip4aiOi40ErpIuGa3GEyZRUXZt4Kads7XRwucNNJprZYiEIBmNhlEVn0WCaiZ7I8EiE+Q5Ppn+tCD4gDz39gkFs7tKe6XBd5tByYnfmCIG+X3jXb2EbCwsdxc7URBz6uTx89Cit+ruZK5Xe//2C9SFCE2arPVRQZt2EKKum67lxhUlYn+nV8D1F8qjbzfDUZlqiCEG7f3RKJtNozZHclK2M4gL+EL7YGwN2MsSeJ6A0A9xPRJQA+AHA+ADDG5hPR/QAWAGgFcDljjJtcXAbgdgA9ATwR/qsKImslxTMWi0wL03XR1joq5IB4ovATvw6c4OjCUsjIy6FIlXtABVfnLPGXnyisjzgKBaCxWR9uIqrnQhwU43HdIFxgGh83Zf3HenPyoITfieM+YHvDvBlTe+WeyvMQv4rVTJZ4eW+M5Rx4TODNNbWWUFMgvQg0LH924YbUbzUKsdL8tS4pevNH2cSBMbYMQCobCGNsM4ApmmumA5iuKJ8NQL9D5AhTsp+82VZxcThzG5YFwMUSQxRpOlXIKxSBzQGIQxy+iQUWF9zhCvZarNcccQ6V6TBU76DOYAefFbY4Wy50Wnwuiy0HBQ575jEK/zo1lwkm0ZPrZr5+R2zBdfR++tDoedsZuIpKnUWq4f02trQZDwqmvaCgECu9v9nNIz1vdOPwGenfxLnskrbQBnFxOLOmlno8OqMr55CXfXR90W0TdRXNic//KI3/R1AvJg6ViqnKdfRyhTHOlvT9v/5VbbMvjnGrQwwtF/Bh2eTV40foibQOPQwb54K1OzK1dclJY3HA0HQoGI7cOQdp7LrmGxWZFlXYE/qe3DnjfWMKYdNUVYXPWJjxOeaF7kccTDoHYXbkQRzEDctVFGWzWefyd1c7/rwyR9XWZOcczClFg98GaixTojZIlOFWxjmonkWep9EsOhEd55clLAbH989S5wfn4Fyy7QT89TIsYeoNfgTrNY5+OuxuNkcbzlvnIIqV+tbX4OHLT1LWcwmRDwBzVm6zV4J5TdYU08TBlkeiWuh+xIF/sHAOrgvzIsEM1QTXQ49Nicc5AVerhbxOW67yWddAfq5IiJUq1DmonkXPuvwU0kYdi/ST7l7Ex+zqbKnzvOfgBxMbcShnqpjMlcdlDGHSv6eZG5bn01iDH40LxOdx5ccPxhGj+lfUnisRMRlByLktgDgr4czvKqX1VUO3Iw6cdbDpHFTB7FRwPW3lpXPgh4o655N8PsShWAjCcd/++WNz6S9LrXUpIwAAD/FJREFUvVisZOAcHGay6tHqEssAwM8+dYS9UQFmziH53YXzs3GRrvV42If6jP4QLjDFLrrk5LGZ2vp3S/1UIqQKp3bv+njsJsLumqXOVfw0vF8P7W+BKWuyv7YSw+hBPY3XVQPdjjiYrJXExeFqKppVWWVDOUH9TMgrMiwR4X8uPAYfO2SYsZ6rjoNv5lZLG4pjNVWaWEmuM25YH+P7u2ByOsCfCWbOIfmbLlidmP7UdS7YiAN/xlbOIfy5n8W899B9Yo7AxDlktQSzGVnIU77Sg8++QoY40/rcV5NJTsZVUw91qmfiHHh+bhEtbSWrF3w10P2Ig9HPIf58imUT5MjdHM6xnrPHcjvaRQPu8lHOudnuN5E7o0wLEB2uOz9lbJfCeceMwjkT93Vqz2bKKkK3cYqxgFwJu23j4ATbRhw4AdPFNuL4w4XHRJ9VEYE5shxMRg20b8ByX7rmzz1KHeZcxgBBjGWaPxcc63ZIOOGgIU73bLTwIkrlTGltsycaqga6YT4Hk4d0dnm5K3FwdWx0dcpyJQ42hS/H6EFupyMbXBX5fA3ZnnPS+snNNNYVLidzFwJy6D59sWhdQ6bx7dvf/rxt0Vajti33wd+Jba7yDdJ2SBU3t94GnY3rGnrnRx93OhnLJ3jdO//NvxyJv7y92tqeuOGaREKFAqFvjxo0NNrT83JCrMvDAZhFccUCRalhW9pKeG7h+iB/dQdwDt2POIR/VdMqy/4y55rTUV9TdD6Zu25eV3z8YKd6toU+pE89Nu1swjkT3U5RL1z5Mad6NrgSB/44bI9v087YBj7v01Ne+hgOo9gr/LtPvx6YNGag07z5ztRDrHVcwLm5Xhblu2v2wHJMtE0wRe8VIROi8yepQ824EiXxgLV1d4uxri3sCQef/iaz4HpTzDEhpMfvnl+KG55bAgA4skJleTnofsTBMfCeDQN6uekksrZtW8B1xQKa20pW09JXv3MK2kosd12HDa4WwHwB2/oVPcZN3FKro9IwOYbMl2jasd8Lf//NbSVnru+AIXqb/yzgCn2dnoODD98q6svw4D774f0weWw+savE5/veT8+s2EdFPGCJOb5V2BNyFh892C3g5xhD+BGx33svPQ6TxfDrghPcqq2x81t7i4eB7kgcwr9qa6Xq9ZvXKfUX5x2B3z23FCMsYglTHHsV8vIOdw3XwXvL8lxMJ/Ny/FLyeif8nk1iIN5Vc2vJ3dvcsiF87rj9sG673ZeAm0KK1jnqMVL419xeFhHH9HOzWXy5Io/DjPge/ulDbnqlTx8zyl4JwD799ZZFor6ptlhIReKN5rIwpd/+wM2HIk90P+Jg0khXARNHD8CcldvQsy4fmeG5R43CuUe5TdCOgHtWO7eNSISZc8hOHPI6DHD7dpOVD994m1tLzroEG649x23j5U6EtgNDxDlYNl7XfCadHeUEOXTlHPr3NCW6EvVoyX6LhXwccPNAt7NW4lBtDGVIJqzY0RjIMm0WIA9ffmJmu/rOCK6Q04WHkJGJczBsSq4LSgzylxenzsMmmCx3eFfNbSVrusm8sT2Up5s2LCDeIG3vJC/z6I5GFm75sFCHYHuGHP0c68lzuqZYiESkHZEaNDGWDu29A2BiHKrxMq755Hj8+G8LsL8la9uRowfgyNH6oGNdBSWDTidZzy0ZkQhTXVfOYXTCZDKfTe7wkf2xbkejxfM1/tyeMfkB4JB9+mLx+garhVTMzbkrpDsz+uaQKpbj0a+dlGl/cPXxkEV09TWFiBN19biuFrofcTAk+6kGof7YIcOsjmN7E0oGU+H/3969x0hV3QEc//7YZVFY3i6rLvIoIoKIKOsDi6JNqGCtNKVaG8NDTdTWpto0qdDamNY0QdsaX02QtlDsy9rYB7a2xpr6am0FqiiIKCgpa0mRoAirFUl//eOe617mee/szJx7Z3+fZLKzZ8+cub85s3PmnHvuOYfnC34m+ZgpNd0x7lWs0Squ5CR2IXdeNp1tuw+U7B3GXcocgt7Nb2NMxYxr+YKTufrcjzC8zGKN4aoA5a5VqfYaR7Xw0rcuiNUrPaG9lZM7yn8pa+onNCV4t8af4n54mQOamz5sFNbt2Bv7+Wqh7zUOde459DUfbk9a5h+z53qT+GWXGlaKO9VwzIieHlypvQOSGDSguWyvL/oZcP+6nSy7cHLRvAvPGsvCs+Kt2RXHwJZmpnaUnwoZ9nzCYbJifMycSarcrL/QIzeU2tm4cvH3fDk8X0tzPw4e+h+qyp4D1VmVt1J9r3FwPwuec3AfWI0wvBPXj684ne1vdletvDa3BEJrmYv5wp5DkiGKUleWnjl+JHD40g6FTGhr5bgRR7Jz73v17bZH3nD73is9p96XgW6qa9w1gq6aNb6Wh1MX1d7DpbfC4SjfQ0rQBxuHeVOP5oT21oJXKYYfWBn4YlQ1wbBX9cpbOm8yJx07lHMnHlUyX3gCOckJ6VJXlo4ZObDoFpi55p50ND946nWGxTxpWA0fRP7Zl5w9rm7Pm8SIQS0snjk21nTNuK91tV0yYzQdMZbayIrcBT7DxuGz9z5zWPrqJaUXvKyFPtc4jB05qOj+uOH6LnHnPJt8R7Y0cenpha9cjQpXlR1V55UmAW6ceyIXn9LBxPZkS0r3RvSb4M2fLL3/gi8iwjfn12VDxop9J8ZyJlnw4OfPZm/3wbz3fziyvbGrZ2vQaaOHcv6J9T9vmZrGQUTmAncCTcAPVXV5vY+hfcgRvHzL3KruK2wKO37UYG5bMI05U9pL5ru0czQPrO+KveZUHM1N/Xq9dn9S0fMbaRvKMPU3Y2zpPThCT331fI4bUXqmY62konEQkSbg+8AcoAtYJyJrVfWleh9L0iuLTeXi9DBuumgKD6zvYnrGzwOF7UEjjNOb4h77ymz27H+/fMYics/B+WoYICWNA3AGsE1VXwMQkfuB+UDdGweTLkOO6M8D18xk8jH1GwKqhbbBwYn6vnQ+qy+a0NbKhBL7YJczq8y5unpKS+PQAeyM/N4FnOnpWEzKVGvhNp8+fVoHO/Z084Xzjvd9KCbFTmgfzI7ln+Ct7oMfLvbnS1oah0Lfp/ImrovI1cDVAGPGJNulyxifBjQ3lby2wZio4YNaiHdWonbScua1C4gOQI8G/p2bSVVXqmqnqna2tcVbAMsYY0xyaWkc1gETRWS8iLQAlwFrPR+TMcb0WakYVlLVQyLyReARgqmsq1R1s+fDMsaYPisVjQOAqj4MPOz7OIwxxqRnWMkYY0yKWONgjDEmjzUOxhhj8ljjYIwxJo9oRje4EZH9wNYCfxoD/CtGEUOBfWVz+csXN45aPLevWCyO3uVLkjftsVgcvSuvVN5Jqlp+PRpVzeQNWF8k/c2Yj1+Z8nyx4mikWCyO3uVrpFgsjtq9F4p9dubeGnFY6e2Y+R5Keb64cdTiuX3FYnH0Ll+SvGmPxeLoXXlJ8+bJ8rDSelXtjJueNY0SBzROLI0SBzROLBZH7Z4ryz2HlQnTs6ZR4oDGiaVR4oDGicXiqNFzZbbnYIwxpnay3HMwxhhTI6lvHERklYjsFpFNkbRTROQZEXlRRB4SkSEuvUVEVrv0jSJyXuQxM1z6NhG5Szxs5FvFWB4Xka0i8ry71XX3cRE5TkT+IiJbRGSziFzv0keIyKMi8qr7OTzymGXutd8qIhdE0r3VS5XjyFSdiMhIl/+AiNyTU1Zm6qRMHN7qpII45ojIBve6bxCRj0XK8lMfcadF+boB5wKnAZsiaeuA2e7+lcAt7v51wGp3fxSwAejnfn8WmEmwsdAfgXkZjuVxoNNjnRwDnObuDwZeAaYAtwFLXfpS4FZ3fwqwERgAjAe2A02+66XKcWStTgYBs4BrgXtyyspSnZSKw1udVBDHqcCx7v5U4A3f9ZH6noOqPgnszUmeBDzp7j8KLHD3pwCPucftJpge1ikixwBDVPUZDV7t+4BP1frYc1UjljocZlmquktV/+nu7we2EGz1Oh9Y47Ktoec1ng/cr6rvq+rrwDbgDN/1Uq046nW8pSSNRVW7VfVp4L/RcrJWJ8Xi8K2COJ5T1XCDs83AESIywGd9pL5xKGITcLG7fwk9u8htBOaLSLOIjAdmuL91EOw2F+pyaWmQNJbQatdV/kY9u/25RGQcwbeefwDtqroLgn8Ogh4PFN4jvIMU1Usv4whlqU6KyVqdlOO9TiqIYwHwnKq+j8f6yGrjcCVwnYhsIOiyHXTpqwhevPXAHcDfgEPE3KPak6SxAFyuqicD57jbwroesSMircCDwA2q+k6prAXStER6XVUhDshenRQtokBamuukFO91kjQOETkJuBW4JkwqkK0u9ZHJxkFVX1bVj6vqDOAXBGO/qOohVf2yqk5X1fnAMOBVgg/Z0ZEiCu5R7UMFsaCqb7if+4Gf42FoQ0T6E7zpf6aqv3bJ/3Hd4HB4YrdLL7ZHuPd6qVIcWayTYrJWJ0X5rpOkcYjIaOA3wCJV3e6SvdVHJhuHcNaBiPQDbgJWuN8Hisggd38OcEhVX3Ldt/0icpbrWi4Cfufn6A+XNBY3zHSUS+8PXEQwNFXPYxbgR8AWVb098qe1wGJ3fzE9r/Fa4DI3hjoemAg867teqhVHRuukoAzWSbFyvNZJ0jhEZBjwB2CZqv41zOy1Pupx1rs3N4Jv07uADwha0auA6wnO/r8CLKfnYr5xBCu1bgH+DIyNlNNJ8ObYDtwTPiZrsRDMztgAvEBw4upO3IyZOsYxi6Br+wLwvLtdCIwkOIn+qvs5IvKYr7vXfiuR2RY+66VacWS4TnYQTJA44N6PUzJaJ3lx+K6TpHEQfDHsjuR9Hhjlsz7sCmljjDF5MjmsZIwxprascTDGGJPHGgdjjDF5rHEwxhiTxxoHY4wxeaxxMKYGRORaEVmUIP84iazWa4xvzb4PwJhGIyLNqrrC93EY0xvWOBhTgFss7U8Ei6WdSnCR4iJgMnA70ArsAZao6i4ReZxg/auPAmtFZDBwQFW/KyLTCa58H0hwIdOVqvqWiMwgWEPrXeDp+kVnTHk2rGRMcZOAlao6DXiHYI+Nu4HPaLAW1irg25H8w1R1tqp+L6ec+4AbXTkvAje79NXAl1R1Zi2DMKYS1nMwprid2rPOzU+BrxFsxPKoW/25iWA5lNAvcwsQkaEEjcYTLmkN8KsC6T8B5lU/BGMqY42DMcXlri2zH9hc4pt+d4KypUD5xqSGDSsZU9wYEQkbgs8BfwfawjQR6e/W3y9KVfcBb4nIOS5pIfCEqr4N7BORWS798uofvjGVs56DMcVtARaLyL0Eq2jeDTwC3OWGhZoJNmLaXKacxcAKERkIvAZc4dKvAFaJyLuuXGNSw1ZlNaYAN1vp96o61fOhGOOFDSsZY4zJYz0HY4wxeaznYIwxJo81DsYYY/JY42CMMSaPNQ7GGGPyWONgjDEmjzUOxhhj8vwfEf3UNliGt0cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4XGeZp32/talKpX2zLcuyvDu2k9ixExIgISEJCUt3oIGesCV0w4RmWGd6phv4ZnqZaeju6QFm2EmAJqFZGxoIDTSkQ0jIHjt24i3ebUmWrF2qTbW/3x/nnFJJKklVpZJq0XNfly9Jr8459co6qt95dqW1RhAEQRDSsRV7A4IgCELpIeIgCIIgzELEQRAEQZiFiIMgCIIwCxEHQRAEYRYiDoIgCMIsRBwEQRCEWYg4CIIgCLMQcRAEQRBm4Sj2BvKlpaVFd3V1FXsbgiAIZcWBAweGtdatCx1XtuLQ1dXF/v37i70NQRCEskIpdSGb48StJAiCIMxCxEEQBEGYhYiDIAiCMAsRB0EQBGEWIg6CIAjCLEQcBEEQhFmIOFQwWmuSSZn0JwhC7og4VDD/8KsT3Hnv08XehiAIZYiIQwVzZijAqUF/sbchCEIZIuJQwQQjCXzhOFqLa0kQhNwQcahgApE4iaQmGE0UeyuCIJQZIg4VTDASB8A3GSvyTgRBKDdEHCqYgCUOYREHQRByQ8ShgrHEYSIk4iAIQm6IOFQoWuspt1I4XuTdCIJQbog4VCjhWBKr/k1iDoIg5IqIQ4ViuZRAYg6CIOSOiEOFki4OE2I5CIKQIwuKg1JqnVLqEaXUcaXUUaXUR8z1JqXUQ0qpU+bHxrRzPq6UOq2UOqGUui1tfa9S6rD5vc8ppZS5XqWU+r65/oxSqqvwP+rKIphuOUxKzEEQhNzIxnKIA3+qtb4MuBb4gFJqB/Ax4GGt9RbgYfNrzO/dCewEbge+pJSym9f6MnAPsMX8d7u5/h5gTGu9Gfgs8PcF+NlWNOJWEgRhMSwoDlrrfq318+bnfuA4sBa4A7jfPOx+4I3m53cA39NaR7TW54DTwDVKqTVAndb6KW30c3hgxjnWtX4I3GxZFUJ+BMWtJAjCIsgp5mC6e/YAzwCrtNb9YAgI0GYethboSTut11xba34+c33aOVrrODABNGd4/XuUUvuVUvuHhoZy2fqKw7IcWmqqJFtJEIScyVoclFI1wI+Aj2qtffMdmmFNz7M+3znTF7S+V2u9T2u9r7W1daEtr2gscWhvcEudgyAIOZOVOCilnBjC8G2t9b+YywOmqwjz46C53gusSzu9A+gz1zsyrE87RynlAOqB0Vx/GGEKy620pt4tloMgCDmTTbaSAr4OHNdafybtWw8Cd5uf3w38NG39TjMDaQNG4PlZ0/XkV0pda17zrhnnWNd6C/AbLX2mF0UgYnRiXVPvEXEQBCFnHFkc8wrgXcBhpdQhc+0TwN8BP1BKvQfoBt4KoLU+qpT6AXAMI9PpA1prq2f0+4FvAh7gl+Y/MMTnW0qp0xgWw52L/LlWPMFInJoqB/UeJ36zdbfdJjF+QRCyY0Fx0Fo/TuaYAMDNc5zzSeCTGdb3A7syrIcxxUUoDIFwHG+VnTqPM/V1fbWzyLsSBKFckArpCiUQjeOtclDnNvS/ELUO4ViC//rPL3BpIrzoawmCUNqIOFQo6W4lKEytw+GLE/zwQC9Pnx1Z9LUEQShtRBwqlGAkjtflSLmVChGU7hufNK4dldRYQah0RBwqFH84To3bQZ3bFIcCuJX6xg13UigiM6kFodIRcahQglHDrVTnMWIOhXAr9U/Mbzn87IU+3vm1Z5AsZEEof7JJZRXKkGAkgbfKnoo5FKIza8pyiM62HMKxBH/z82MM+CIMB6K01lYt+vUEQSgeYjlUKIGIka3kdTmwqcK4lVKWQ2S20Hz32W4GfBEALpqxCUEQyhcRhwokGk8SjSepcTmw2RS1bmdBA9IzLYdwLMGXfnuG9no3AL1joUW/liAIxUXEoQKxnuxrzBqHeo9z0TGHyWiCsZBxjdCMmMM/PX2BIX+E//VGo77x4phYDoJQ7og4VCBWR1ZvlSEOdR7HojuzWi4lmG45xBNJvvLoGV6xuZmbL1tFrdshbiVBqABEHCoQK5uoxhKHAriV+s2qaJfDNi3mMBaKMRyIctvO1QCsbfCI5SAIFYCIQwUSnGk5uJ2LDkhb1sDGFu80y8GyUmpNF1ZHYzW9Ig6CUPaIOFQg/rBlORijuwsRc+g301g3tdZMq3Pwm6JTW2WkzHY0erg4Pim1DoJQ5og4VCBBs4J5WsxhkXUO/ROTtNRU0VDtnFYhHQhPD36vbfAQiMQLUlchCELxEHGoQFLZSmlupclYgmg8mfc1+ybCtDe48VY5plsOM15rbaMHgN5xSWcVhHJGxKECCcx4w7bmOPgXEXfoG59kTb2bapedcCxJImm4jSzLwerh1GGKgwSlBaG8EXGoQDIFpCG3/konLvl5+d8+zNmhAFpr+scnaW/w4HUZ17RqHSzBSXcrARKUFoQyR8ShAglE4rgcNpx249drNd/LpdbhsZND9E2E+fYz3fjCcYLRBO31HqrNILeVsTRVU2GsN3lduJ02qXUQhDJHxKFCiCeSxBJGTCFgDvqxSLXtzsFyONI3AcCPD16ke8SIH6xpcKcsB8s68ZtCVOUwxEEpJbUOglABiDiUIKPBKC/0jOd0zke/f4j/9O3ngakpcBb5TIM7fHGCZq+L0WCUB546D8Caeg/VrumWgz8cT40itehorBbLQRDKHBGHEuQbj5/jbfc9nVOtwMkBP4+dHCISTxCIJFLxBiA1DS5bcQhE4pwbDvKOa9ezpt7Nvxy8CBjxBOu6luUQCE8XIjAylqT5niCUNyIOJcjEZIxQNJFKE82GkUCUSDzJ4d4JApFYqgAOoKWmCq/LzqkBf1bXOt7vQ2vYva6et+ztIJHUOGyK1tqqWZZDIBJPBaMt1jZ4GAvFZjXoEwShfBBxyJPxUJSXLvmW5NqTMeONdywYzer4eCLJaMg49plzo+agn6k3bLtNcUVHAwezdFUd7jXiDbva63nr3nUArKpzY7ep1HVT4hCOp6qjLSSdVRDKHxGHPPnqY2f5/S88wZA/UvBrW+IwkqU4jIViWB6oZ8+NEjQH/aSzu7OBY30+wrGF5z8f6ZugrbaKtjo3nc3V3Ly9jcvW1AKkLAerEM4XjmW0HAB6Je4gCGWLiEOejAQiRONJvv3MhYJfezKam+UwHDAEqqXGxYELY/jCMWpniMOedQ3Ek5qjZhbSzNd77vxo6usjFyfYtbY+9fWX37mXL79zL8BUnYMVc4jEZ71WR2M1ILUOglDOiDjkidW/6J+evpDV03guWOIwmqU4jASM427buZpAJM5wIJrRcgA42D3btfSTQxd561ee4pGXBpmMJjg9GJgmDuk1E1adQ3CemENbbRVOuxK3kiCUMSIOeeKPxHE7bQwHovzshb6CXttyK2UtDkHDcnjd5WtSazPFoa3WTUejJ6M4WOM///pnR3mhd5ykhl3tdRlfy2W34bApQtE4Wmv84XiqXbeFzaYK0glWEITiIeKQJ8FInKs6G9m2qpavP36uoC2qLUvECjIvhBX32NVeT2eT4dJJz1ay2NPZyMHusVnrg74IDpvi/EiI/+/HhwG4vKN+1nFgFLlVu+wEI4lUj6WaGQFp4/Ud04YCCYJQXog45IlVaPbHr+zipUt+Hj89XLBr55qtNBKM4rQr6jwOrtnQBMy2HMCIO/RNhBnwhaetD/rDbF9Ty607VnFmKEiz18XqOvecr+etchCKxvFHpvdVmnmMiIMglC8iDnli+drv2L2WtQ0ePvq9Q5wezK6OYCFyjTkM+yM0e6tQSqXEYWZhGswddxgKRGitqeJ/vH4HLoeNXWvrUUrN+XrVLjvBaCI1VGhmQBoMcQiIOAhC2SLikCdW/yK3084D77kGpRRvv+8Zzg0HF33t3GMOUVpqXQDcuK2Vne110wLKFjvb63DZbRzsme5aGvRFaKs10lbv/6Nr+O+vv2ze1/NWOQhF4ql23TNjDmCIk4iDIJQvIg55kl5LsKm1hu/8x5cRT2re9fVnUg3w8sWKOYyFsgvoDgcMywGMwPPPP3w9m1prZh1X5bCzo71umuWQSGqGAxHa6ozzr9vUzJZVtfO+nsdpWA4z50akI24lQShvRBzyIBJPEEvoaW+KW1fV8p9v2ULv2GQqtTQfYokksYQR3B4JZFdgNxKI0lzjyurY3esaONw7QdIc1jMSjJDURvpptqRiDjNGhKZTU2UnEClsiq8gCMuHiEMeWDUOM5+Ym2uMN9jxyfzFwbIaaqoc+MLxBa0QrXUqZpANm9tqmIwlGDQznKxMp9YcxKHaZScUSaQG/VgtwdORbCVBKG9EHPLA8rXPzAhqMLufjmfpDsqEFW9ob3Bnda1AJE40nszacrBSXbtHja6pgylxmDs7aSZelzFHeiG30mQskRonKghCeSHikAdTb4rTawlybY2diXDUsBSs/kQLBaWHTRdWS5aWw0xxGPIZ4pCLW6m6yk4omphTJGFKMILSmVUQyhIRhzyw3vBmWQ7VpjgUwHJY25idOFhxieYsxaG9wYNNpVsORs1DLm4lr8uRaile5bDhcsy+jWbOfRAEobwQcciDudwpDdWGa2cxMYcpt5IhDmMLVElPWQ7ZuZVcDhtr6j30WJaDP0Kd20jJzZbqKnsqy6k2Q7wBpsQhkMPcakEQSocFxUEp9Q2l1KBS6kja2l8ppS4qpQ6Z/16X9r2PK6VOK6VOKKVuS1vfq5Q6bH7vc8qsslJKVSmlvm+uP6OU6irsj1h4rDe8meLgddlx2NTiYg5mAVz2biWrI2v2T/6dTdXTYg5t81RDZ8LqzDroi2SscYApl5vUOghCeZKN5fBN4PYM65/VWu82//0CQCm1A7gT2Gme8yWllPVI+mXgHmCL+c+65nuAMa31ZuCzwN/n+bMsG5arZKZbSSlFQ7WT8cXEHGZYDgu7lYzvN3mzsxwggzjk4FKCqZkOA75wxmA0TAlIUNJZBaEsWVActNaPAaMLHWdyB/A9rXVEa30OOA1co5RaA9RprZ/SRoe6B4A3pp1zv/n5D4Gb1Xy9G0qAwBziABjdSAsQc6hzO6mtcmRlOTRUO1MttbOhs7maIX+EyWiCIX8kp3gDTP3cl3zhuS0Hc10sB0EoTxYTc/igUupF0+3UaK6tBXrSjuk119aan89cn3aO1joOTADNmV5QKXWPUmq/Umr/0NDQIra+OOaqcwAW3araGr/pcdppqnEtGHMYCUZozsFqAFiXlrE06A/nbTn4w/E5LYcaCUgLQlmTrzh8GdgE7Ab6gU+b65me+PU86/OdM3tR63u11vu01vtaW1tz23EBCURieJx27LbZW2+odhUkIO122Wisdi1sOfijOcUbYCqd9Vj/BOFYkrYcahxgusWUqTo6/RhJZRWE8iQvcdBaD2itE1rrJHAfcI35rV5gXdqhHUCfud6RYX3aOUopB1BP9m6sohCIJDK6lMAohFtMQDqcbjl4sxCHYCRvcdh/3mjAZ/VVyhbLcoDMHVlhynIQt5IglCd5iYMZQ7B4E2BlMj0I3GlmIG3ACDw/q7XuB/xKqWvNeMJdwE/Tzrnb/PwtwG90ISfnLAHGLIfMqZ/11YWJObhNcVhopsOwP5J1GqtFY7WTmioHBy4Y4pBt6w0LK9gMzJnKWuWwYbcpcSsJQpmS+bEvDaXUd4EbgRalVC/wl8CNSqndGO6f88D7ALTWR5VSPwCOAXHgA1prK13l/RiZTx7gl+Y/gK8D31JKncawGO4sxA+2lGSam2zR4HHhj8SJJ5I4cggSW0zGEjjtCqfdRpPXxUgwitY643yFaDyJLxzPugDOQinFuqZqXrrkA/KwHNKEca7/B6UUXpdd6hwEoUxZUBy01m/LsPz1eY7/JPDJDOv7gV0Z1sPAWxfaRykRiMSnPT2nU+8x1n3heE7ppRaT0USqIK2x2kUknmQylqA6w+tZs6Oz7auUTmeTh+P9hjjk0lcJplsOcwWkre9JZ1ZBKE+kQjoPrBGhmUhVSWc5/3km4VgCjykOVhbSXHGHkRz7KqVjxR1cDht1czz9z4UnrZp6rlRWMKwKcSsJQnki4pAH6YN+ZlJv9lfKtxBuMpbAYwZ8G9PEIRpPpp70Lax227nGHGBKHNpqq+YdCZoJm02lgtLziYO3yiHZSoJQpog45MH8MYfFNd+bjE5ZDk1e41ojgSgf+d5BXv+53zHoC6eOPT0YAGBDy+ypbwvR2ewFcuvGmo7l5qqpyhyQNr4no0IFoVwRcciDQDZupTxrHdIthyZz9OenHzrBL49cIqnh8MWJ1LHH+n2srnPnFduYshxyizdYeM2g9HwxB69L3EqCUK6IOORIPJEkHEvOGZBe7MCf9JhDkyk0Ry76eP3la1DK+NzieL+PHe11eb3OWrN1d66tMywsy2FBt5IEpAWhLBFxyJGgWaTmnaPOYbEDfybTxKHW7cDjtHPlugY+/YdXsrHFy5E+w3KIxBOcHgxw2ZravF7H5bDxyTddzjuvXZ/X+d4sYg41VfbUKFGhcPSMhlLde4WVhdaa+588z9mhwJK/lohDjlg+9LneFO02Ra3bkbXlkEjqaaM0J6MJ3OYbr82m+Oc/uY4H/vga3E47u9bWc9R0K50aCBBPanasqc/7Z3nbNZ1sW52fuFSb7qS5AvNgZitFE5R4TWNZkUxqXv+53/GNJ84VeytCEegeDfGXDx7lmXNL30RCxCFH5mrXnU5DdfbN9/77T47wtvueTn0djiWnpYruWltPvWmN7Gqvp28izEggwjEzcylfy2GxeF123E7bvN1gvVUOEklNJJ5cxp1VNr5wDF84Tv/EZLG3IhSBo33G3/3OPN3JuZBbgrswb7tuiwaPK6s6h/FQlB8935ty0cB0t9JMdq41boijfT6O9fmodtlZb2YdLTc1VQ7q5midkX4MGP9nuUyaE+bGmvznl8rzFcnRvgnsNsXWVUv/UCjikCPBOUaEppPtwJ+fHLxINJ4kGk+m2m1MRqeylWays91wIR3pm+B4v4/tq2szdoZdDu65YSOvu2LNvMdMDfyJ51WoJ8zGKoj0LaItvFC+HO3zsaWtZlketsStlCNzjQhNpy6LgT9aa7733NToi7FQjGRSMxlLzPmLr/c46Wyq5sjFCY71+7hszdKblnOxZVUtN21rm/cYr3RmLTgj5lhYsRxWJkf78s9QzBURhxwJZGM5ZDHw58XeCV665Oflm4y5RqPBaMo3P5dbCWDX2joeOzmMPxxftpskX6YG/khmTaEYDopbaaUy6A8z5I+kPAhLjYhDjmQbkB6fjM2bpfP9/T24nTbe/fIuwHgitNp1e5xz/1p2ttenBKqYlkM2WOm+UghXOKYsB3ErrTSWMxgNIg45MxWQnvvpvsHjIpHUc7pTQtE4Dx7q4/WXt9PVYgSUR4LRKXGYI+YAUzeGUrA9zzTU5cJK9/WLOBSMEQlIr1iOmeIgbqUSJRBJ4LLbqHLM/Qaear43R9zh0RNDBCJx3rx3bar1xWgwmips8sxRfQ1TQekNzd6MbbxLCa/MkS44Vpt2fyQ+rT5GqHyO9k2wvrl6wSzBQiHikAVf+M0pPvzdg4DVkXX+TIH6Baqkf3tiiFq3g6u7mmisdqGU4S4Ix6ZGhM5Fa20V65o8XLmuIZ8fZVkRcSg8ViorSKB/pXHkom/ZXEog4pAVz54f4+eH+/GHY/O267ZomEcctNb89uQg129pwWk3Rmk2Vrumu5UWSFP7znuv5S/esCPPn2b5sFJZ5U2scFgxB5C4w0rCF47RPRpatmA0iDhkhT8cI5HUPHd+FP88HVktpgb+zP7jPd7vZ8AX4ca0NNAmr2uGW2n+X8u6purUrIdSxm5TeJx2sRwKyEgwmqoZkbjDymG54w0g4pAVVsHRk6dH5p0CZ9GQGvgzu0r6tycHAbhxa2tqrcnrYiQwZTlUUjWxV0aFFoxYIsl4KMaGFqPduojDymG5M5VAxCErrD/Cp86OZOVWqp+nbfdvTwyxY00dbXVTcxRaalyMBLOLOZQbNVViORSKMbPGYYOZ4SZV0iuDUwN+vv9cN221VXnPX8kHEYcs8IVjOGyKY/0++ibCC1oObqfRlG5mzGFiMsaBC2PctL112vpst1IFiYPMkS4YVjDaSn/2R0QcyokBX5iL45M5ZZnd99hZXv/5xxnyR/jbP7h8CXc3m9LOhSwBonFjuM/1W1r43alhhvyRBbOVwLAerCc9iydOD5NI6mnxBjAmvo2FYqnAbSVZDl6XQ+ocCoTVV2mD2WxR3ErlQySe4JZPP4o/EsdhU+xcW88/v+86XI65n8+PXJzgk784zi2XtfG3f3BF3oO58kUshwWwMkJu2NKK26xcnm9uskVjtYuxGW6lR14apM7tYM+MNNRmM7jcN27Mh66kmENNlVgOhcKqcUhZDiIOZcOpgQD+SJx3vKyT11+xhhd6xjk54J/3nIvjRlv2j9y8ddmFAUQcFsT6A2yucXF1VxNg+NEXornGxWgwMm3t+CUfezobccyYgdBcY4jDxfEQSkHVPE8T5YZXxKFgWG6l9gYPLocNn6Sylg1WttF7r9/IR2/ZOm1tLqxq+Jba4mQmVs670BJh/QHWup1cu9FokrdQQBoMV9HoDLfSSCCa8QnAqpLuHZvE47SjVHHacC8Fkq1UOEYCEZx2RZ3bQZ3bgW9SRLdcONo3gddlZ31TNeubqql22VMDu+Zi2KxpaSpS2rrEHBbAshzq3I5UB9WaeeYmWzR7jcI2C601I4FoykqYfqwhGBfHJysq3gCSrVRIRgJRmrwulFLUup1SBFdGWC32beb8lcvW1GVhOUSoczvmbdWzlIjlsABWumCt28mVHQ38zzt28tpd8w+5ASPm4A/HiSWMNtyBSJxoIkmLd7blYAnGeChWUfEGMCyHyVhC+gAVgJFgJPUgUet2SMyhTEgmNcdmzGHY2V7HsX4fyXn+LoYD0aIOyRJxWICU5eBxYLMp7rquKyszr8l8w7cyliz/YSbLweqvBFBdQWmskDbTISpvZItlOM3yNMRBLIdy4MJoiGA0Ma2AbceaOgKROD1joTnPGwpERBxKmfSYQy5YGUiWa8nKNMkkLHabSvVjqqQaBzCm4gH0mZkXQv6MBKfeLOrcTrEcyoRU64s1U32RLCvi6DyupZFApGjBaBBxWBBfOI5SUJtFEDqd9FbcMJVpMteTQLO5XmlupRu3teJy2HjgqQvF3krZMxKIph46at0OyVYqE472TeCwKbasqkmtbV1lzH+fL+4wHIim3IjFQMRhAXyTMWpcjlQgKVtmisN8bqX04ystIN1W6+bNV3XwwwO9DPrDxd5O2RKKxglFE6mHiFqxHMqGY/0+NrfVTHvwczvtbG6t4WjfRMZzovEkE5MxcSuVMv5wPOUayYWZ4jA6j1sJptxQlSYOAP/x+g3EEknuf/J8sbdStsx8uKh1OwhFE8TNhAehdDk6IxhtscMMSmfCet+Y62FyORBxWABfOJYad5kLqSE+aW6l2qq509Ksm6DSYg4AG1truH3nar711AWZ7ZAn1n3UYt4n1jQw+f8sbQb9YYb8EXZkmPe+s72OAV8kVc+QjrUmlkMJ4w/H8hrLZwWZLYthJJi5xsGiyVuZMQeLP3nVJnzhON99prvYWylLrCE/6amsIC00Sp1jqVbbs4f0WIKRKe5giUOrBKRLF99kPC/LAaDR62IsaAQNRwKRlL84E5XsVgK4cl0DO9vreOTEYLG3UpaMBGe6lYwHFglKlzaW2yiT5WC5mjK5llJuRAlIly7+SCyvmANYVdKm5ZCWaZLx2JRbqXJ/JdtW13J2KFjsbZQlM98s6swHFmmhUdr0jk3S7HVRXz37PaSh2sXqOjcnL81uwJdyKxWh4Z5F5b4TFYjFWA7WnAaw3Epz/6IrNVspnU2tNVzyhcVPngd945PUVjlSMSnLcpBCuNJmLBidt2h2TYObgQxZfMOBCFUOG94ixiAXFAel1DeUUoNKqSNpa01KqYeUUqfMj41p3/u4Uuq0UuqEUuq2tPW9SqnD5vc+p8zuckqpKqXU9831Z5RSXYX9EfNHa513zAGmmu8lk5rRYGR+y6HCYw4Am1qNVtPnxHrImeP9PravqU19XeeZHnPoHQsxHpo9llYoLqPB6Lzz3lfVuhn0zQ5Ij5itM4rZhDMby+GbwO0z1j4GPKy13gI8bH6NUmoHcCew0zznS0op693uy8A9wBbzn3XN9wBjWuvNwGeBv8/3hyk0wWiCpGYRloOTsVCM0VCUpJ4/La29wU1tlYP15iCXSmRTq1EEdHY4UOSdlBfJpOZ4v2+a3zrdctBa8x+++jR/8/PjxdqiMAdjoShN1XP/3bfVVTHgm205DAUiRXUpQRbioLV+DBidsXwHcL/5+f3AG9PWv6e1jmitzwGngWuUUmuAOq31U1prDTww4xzrWj8EblYl0rPan2frDIsmbxWJpObcsPGkPJ9bqdbt5Pm/uJVbLmub85hyp7O5GpuCM4MiDrnQbfbmSc+VT89W6h2b5OL4JKfk/7XkGA3G5rcc6tz4wvHUiGCLkUCUliK16rbIN+awSmvdD2B+tN7R1gI9acf1mmtrzc9nrk87R2sdByaA5kwvqpS6Rym1Xym1f2hoKM+tZ48V7LNM+Fyx3EinBow/2oV+2U67raJmOcykymFnXVM1Z4bFrZQLUxkvU+mQTrsNt9MY+PPceePZrXd07iZuwvKTTGrDcvDO/XDZZloHM7sHDBe56R4UPiCd6Z1Nz7M+3zmzF7W+V2u9T2u9r7W1Nc8tZs/iLQdDDKxxgPNZDiuFTa01K8pyePL0MH/41adSrdvz4VifD/uM3jww1Xxv/4UxwEh6kGB/6eAPx0kkNY3zuJVW1bkBGPRPxR2MGOX8dVHLQb7iMGC6ijA/WsnrvcC6tOM6gD5zvSPD+rRzlFIOoJ7ZbqyikD7oJx8scThtvhkWa6JTKbGxxcu54eC8fewriUdODPLsudFpf/y5cqzfx+bWmllQypMLAAAgAElEQVTJCtZMhwPnx3DajWesHrEeSoZRM0Fgvr/7tjrjgTE97jAxGSOe1GVrOTwI3G1+fjfw07T1O80MpA0YgednTdeTXyl1rRlPuGvGOda13gL8xoxLFJ1823VbpFsOSkFjhlznlcbG1hoi8WRqeHqlc27YeLMeydAiIVtmDoqxqHU76R2f5OSgnxu3GZ7dbhGHksFKY59PHFbVGpbDQFrGUinUOEB2qazfBZ4CtimlepVS7wH+DrhVKXUKuNX8Gq31UeAHwDHg34APaK2tSMv7ga9hBKnPAL80178ONCulTgP/BTPzqRTwhRcXc7BuikF/hMZqFw67lJVY6axnV0jc4fyI8XOOBPNLMx0JRLjkC2essK11O3ixdxyt4U17jBCeWA6lw1gW4tBQ7cRltzGYZjmk2vsX2dOw4Lue1vptc3zr5jmO/yTwyQzr+4FdGdbDwFsX2kcxsEaE5lvn4HbaqXbZjVbL4lICDMsB4OxQgFdtXfq4UTFJJDXdI8ab9WggP3E43m/EqzJZDnUeJ1obfbxu3NZKrdshlkMJYbmV5os5KKVoq6ua5nYsG8thJeMPx3HZbVQ58v9vsp4aJN5g0FLjos7t4MxQ5Qel+8YniZqBaKuNSjYcuDDKvzxvJPcd6zf6/V+WwXKwYmE71tRR7XLQ2VQt4lBCZGM5gJGxlB5zmGqyWOKWw0rGate9mPTSZq+L3rHJogeXSgWlFBtba1ZEj6Vzaa6zbN1KWms+9qPDnBoM4JuMcazPx5p6d8Y3GCsWtq/LaFDQ2VSdyowTis9oKIrLYVtwLvyqOve039twIIpNzW9xLAdiOcxDvoN+0rH+qIudllZKbGz1rgjLwYo3uBy2rN1KR/t8nBoMsLrOzV//6zEePj6YMd4AU6Nr961vAgxx6BmbXDGZYKXOWNCojl7o4XJV3fQWGiPBCE3eqpynTxYaEYd58E3mN+gnHas6spitd0uNTa01DPgiFZ+Tf244SLXLGAeZreXwk4MXcdoVP/3gK7h6fRP+SDxjvAGgvcGDy27jatNyWNdUTTSeXFTarFA4FqqOtmirq8IfiROKGn8PQ/5oaqhTMRFxmIfFNN2zaBbLYRZWxlKlF8OdHw6yvtlLc40rK3GIJ5L89IU+btrWxqo6N/fdtY+37O3gDVe0Zzz+jt3t/Oa/voo2s5Cqs6kakHTWUmE0GJm3OtqizUxntayH3rEQq+vdS7q3bBBxmIHWOmWW+8L5t+u2sCa8FTu4VEpYU7FevJh5uHqlcH4kxIaWapq9rtREwPl44swIQ/4If3CVkZZaX+3k/7z1Sratrs14vMNuo6OxOvX1OhGHkmIsFMsqbrAqrRBuIhTjxICfqzobFzhr6RFxmMH7vnWAD373eaDQloO4lSw6Gj201Lg42D1W7K0sGfFEkp7REBtavEbr9ixiDj85eJE6t4ObtufXfHFtgwelRBxKhdEFZjlYWC00BvwRnj0/itbwsg1NS729BZFspTS01jx1dgR/OM6RixOLGvRjcdV6Yzzm1hl9cVYySil2r2vkUM94sbeyZPSOTRJParqavQz6IwSjCcKxxJzzOoKROP925BJv3LOWKkd+Mz1cDhvt9R4phCsB4okkE5Ox7MQh5VYKM+AL43LYuHJdw1JvcUHEckhjwBdJ9VP6/G9OMRlLLDpbaXNbLT//8PU0FDktrdTY09nA2aEgE6HKnGR2zsxU2tDiTVmP88UdvvX0BSZjCd66r2POY7JhXZNHLIcSYNwsoM1GHOo8DlwOG4P+CM+cG2X3uoaSGPol4pCGlWu8d30jvzo6AOQ/6EeYnz3mk9Gh3sq0Hs6bNQ5dLd7UG8RcrqWJUIwvPXKam7a1LtrX3NlULZZDCWAVwGUTc1BKsaquijODAY5cnODaEnApgYjDNCxx+NSbLk9VRS825iBk5vKOepSiYuMO54aD1FY5aPa6UvGm4TmC0l9+9Az+SJw/u337ol+3s6maQX9k1vAYYXnJpuleOqtq3fzu1DBJDS/bmHGczbIj4pDGqYEATV4X21bX8rZrOgGxHJaKWreTrW21HOyuTMvh3HCQrhYvSqmUWymT5XBpIsw/PnGON+5em7FFRq5YGUvnVkhjw1JlLIu+SumsqnMTTSRx2lVJZCqBiMM0Tg76U4Hj99+4iVsuW8XuEggMVSp7Ohs41DNOiXRoLyjnRwxxAGgya1xGM8QcvvjIaZJa819u3VqQ133ZhmaUgn8/PlCQ6wn5MRrMPuYA0Go22buiowHPAu02lgsRBxOtNacGAmxdZeSUr6pz87W796UKjITCs3tdAxOTsYp7yo3Gk1wcm2RDs/EUX1vlwGlXGd1KT5wZ5sZtbakn/sWyut7N1V1NPPhCX0WKbrlgWQ4NWc5wsdJZrymReAOsQHHoHgnx6V+fmNV/pm8iTCASZ8uqzAVHQuHZY5rPleZa6hufJKmnXDyGa2l2rUMyqekdnWSjaWEUit+7sp3TgwFOSBO+ojEajOJ12bPOOrIK4UqhvsFixYnDL4708/nfnOb/+8nhaQJhBaO3tkk9wnKxua0Gr8tecfUOPWNGtlC6NdDkdc1yK13yhYkmknQ2F8ZqsHjtrtXYbYqfvdC38MHCkjAajGbVV8ni1h2r+Phrt/PKzS1LuKvcWHHi8L4bNvLBmzbz3Wd7+PMfvUjCFIhTljiI5bBs2G2KyzvqOdJX2m00DlwY40gOrT56Ro0RqOni0FzjYniGOFwwBwF1FsilZNFSU8XLNzXzsxf6xbVUJLKtjraodTt536s2ldS0yNLZyTKhlOJPX7OVj96yhX8+0Mvf/fI4ACcHArTUVOWk9sLiaat1p3LCS5W//tlR/ue/Hsv6+J6xEE67YnVavCpTf6XuUSPWsr6psG4lMFxL3aMhXuwtbeGtVMZCuYlDKbLixAEMgfjoLVt5+8s6+frj5zjcO8GpAb+0uCgCDdXOVDVpqTIxGePCSPZB857REGsbPNjT+vFn6q/UPRrCYVO0NxQ+6eG2natx2W08KK6lojBqznIoZ1akOFh87LXbaa6p4uM/fpFTgwFxKRWBBo+TiclYSQ+o8YfjDPgihGPZFZb1jIZmZR8117hS/ZUsLoyEWNvoWRJXQr3HyVXrG3i+QosMS52xHGMOpciKFoc6t5O/+r2dHLnoIxRNiDgUgTqPE63BX8KDfwJmv61sexb1jE1Oa6UNU/nu6f2VukdDBY83pFMOLrtKJBxLEIwmxK1U7rzu8tXcuK0VQNxKRcBqSFiqDfgi8QTRRBKY6pc0H8FInNFglHVNnmnrmaqkl1ocmrzZDRkSCstoDn2VSpkVLw5KKf7uD67gQ6/eXBJtclcaDWbX2/HJ0nwTs7r0QnaWQyqNtXG2WwmM+cBgxDHGQzHWFziNNZ0mrwt/OE7MFDdheegdM7LV1jZ6FjiytFnx4gBGVemfvmYbzhJKI1sp1JsVpBMlGpQOpImDlXo6H5nSWGFqIuCIaTl0p9JYC5+pZGH5vMW1tLxYDxFLaRUuB/JuKBSVlOVQom6lQFos5EIWloP1xrBuxlNj84z+ShfMNNYldSuZbo3RkIjDUhGNJ/na785OSzToHgliU8ZkvnJGxEEoKpblUKrprL6wsa+WGte0dNbPPHSSN37xCV665Jt2fM9oCK/LPisYafVXsmIAqafLJXYrwdxzJITF88TpYf7m58d5+Phgaq17NMSaeg8uR3m/vZb37oWyp960HHwlKg6WW2lnez0XxyaJJ5Jorfnh/h4O9Yzz+194gvufPJ+qRO4dM9JYlVLTrqOUoq3WzelBoxK/eyRES42LmqqlawmfEgexHJaMU+bv82RaH6sLo6EljSUtFyIOQlGpctjxOO2Ml+gbmOVW2tleRzyp6RsP0z0aom8izEdv2cIrNjXzlw8e5TvPdgNGzGFmGqvFm/as5eGXBjk96OfCyNJmKsGUOEjMYek4NRAA4PRgILXWs8RZaMuFiINQdOo9zmWLOTx8fID/lUMrDCtbadfaesCIFTx1ZgSAN1zRzjfefTV7Ohv46qNniSeS9IyFZqWxWvzxKzfgdtj54iNnljyNFabaRUs669JxyhQFy4IIROIMB6JL6i5cLkQchKLTUO1ctmylnxzq4+uPn5sWaJ4P67hd7YY4nB8J8dTZEVprq9jUakx6e98NG+keDfHdZ7sJRROz0lgtmrwu3nltJz89dJG+iUk6m5cuUwnAabdR53aI5bBEaK1TFsO54SCxRDI1v1ssB0EoAPWe5euvZP3xHu/3LXCkgT8cx2W30dHoocpho3skyJNnRrhuY3MqrnDrjtV0NVfzf359EpidxprOf7x+Iw67Da1h/TK8gTTXVInlsEQM+CIEInH2dDYQS2gujART6c5L0UxxuRFxEIpOvce5bBXSVoHS0SxbcPvDMWrcDmw2RWdTNY+cGGLIH+G6TVND4O02xXuv35iyfuZ7amyrc3Pn1esAliVo2VjtTE0lEwqL5Up6/eVrAKOzs1gOglBAlsutNBlNMBwwKpSPZWk5BCJxat1GRtH6Zm/KjXDdxuZpx71lb0eqRUbHApWxH71lK39669ZlmU/e5K1KzTMWCosVjL5t52qUMr6+MBqk3uNMpWiXMyIOQtFpqHYtS/uMXrO1hVJwtG9KHE4N+PnMQyczDsYJhOOpdFPrSX9NvXvWU7/baeejt27l+i0teBdIT23yuvjQzVuWZbBLk9c5a46EUBhODQZoqHbS0ehhXWM1Jwf9dI9OVoTVACIOQglQ73ESjiWzbomdL5ZL6er1TZwaCBCNGz2HvvLoWT738CnOZmis588gDunxhnTede16vvWely3V9vOiyVvFWDAmE+GWgDODAba01aCUYktbDacHAnSPBCsiUwlEHIQSYLkK4aymeLftWk00keT0YIBEUvOblwYAeP7C7NkH/kicWrexv/VmdtG1m5pnHVeqNHmdRBPJrLOzhOzQWnNy0M9mc+b8llW1nB0OcHFcLAdBKBgNy9RCo2c0RJXDxqu2GkPcj/ZNcODCGGNmMPz57vFZ5/jDsVTM4bqNzXziddv5vSval3SfhcRqGz0mcYeCMhKMMh6KsbnNmAGzpa2GWEITS+hlyUJbDpaudl8QsqR+mZrvGdXLHja01OBx2jnW7+PkgB+nXXH52noOZpiaFohMuZVcDhv33LBpSfdYaFIN/0KVUZhVKljB6C2m5ZA+KEwsB0ApdV4pdVgpdUgptd9ca1JKPaSUOmV+bEw7/uNKqdNKqRNKqdvS1vea1zmtlPqcyuTQFSqWBo858GeJLYfecaPvkd2m2L6mlqN9Ph46NsB1m1q4fksrJwb8+MNTe9BaEwhPZSuVI5blIEHpwnJ6yBAHy620qW2qrqFSRLgQbqWbtNa7tdb7zK8/Bjystd4CPGx+jVJqB3AnsBO4HfiSUspunvNl4B5gi/nv9gLsSygTUm6lJc7H7xmdTFUv72yv4/kLY5wfCXHrZW1ctb4RreGFnqn6h3AsSTypqSljcWg250hIOmthOT3gx+uys6beDUC1y0FHowenXbGmvrxbdVssRczhDuB+8/P7gTemrX9Pax3RWp8DTgPXKKXWAHVa66e0kVLxQNo5wgqgzrP0A3984RgTk7FUDcKONfXEk0YGzy07VqVqDp5Pcy35I8Z+rIB0OdLoNfYulkNhOTUYYPOq2mlZazvW1NHV7MVuqwzHx2IfiTTwa6WUBr6qtb4XWKW17gfQWvcrpdrMY9cCT6ed22uuxczPZ67PQil1D4aFQWdn5yK3LpQKtVUObGppxaF3xoS2ne11AOxaW5d60tvSVjMt7mC1665dwrbaS02NOUdCLIfCkUxqDl+c4A0zEhP++o6dhKJLm469nCz2rn+F1rrPFICHlFIvzXNsJjnV86zPXjTE516Affv2SeJ2hWCzqSXvzDpztvO21bXUe5z8/pVTf+BXdTbyq2OX0FqjlEp1ZF3KmQtLjVKKJq9LLIcCcmYogD8c56rO6RXuleJOsliUW0lr3Wd+HAR+DFwDDJiuIsyP1oikXmBd2ukdQJ+53pFhXVhB1HuWtoWG1fPGciu5nXZ+9+c38d5Xbkwdc9X6BsZDsVQxnFUbUM4BaTCC0mI5FI6DZsrzns7GBY4sb/IWB6WUVylVa30OvAY4AjwI3G0edjfwU/PzB4E7lVJVSqkNGIHnZ00XlF8pda2ZpXRX2jnCCqG+2rWkdQ69Y5PUVDlSwW+AOrcTW5p/+Crzj90qhktZDmUuDs01Lmm+V0Ce7x6j3uNkY0v5d16dj8Xc9auAH5sBGQfwHa31vymlngN+oJR6D9ANvBVAa31UKfUD4BgQBz6gtbYcdO8Hvgl4gF+a/4QVhNGZdenewHrHQnQ0ejK2vbDY1FpDrdvBoZ5x3rpvXSqttbaqfAPSYFgO6b2khLkJxxKMBKMEwnGqXfaM7dcPdo+ze13DtAeLSiRvcdBanwWuzLA+Atw8xzmfBD6ZYX0/sCvfvQjlT4PHSffI7N5GhaJndHLeOQtgxD42t9Vwdqiy3EpGzEEsh4XoGQ3xpi89wXDA+L9yOWz87s9uYlWdO3WMPxzj5KCf116+uljbXDakfYZQEjRUF37gz8HuMb75xDnODgXonWd8ZzobWrycs2IOpltpoS6rpU6T18XEZIxYIlnsrZQssUSSD333IJF4kk+96XL+/s2XE40n+eGB3mnHvdAzgdZTLshKprzveqFisALSyaQumLn+Vw8e5YXeqaK2ucZ3prOxxcu/PH+RUDSOPxKnymHD5SjvZ6gmc87EeChGa21VkXdTmnz61yc51DPOF99+Fa+/whje85ODfXzvuW7e/6pNqXvSSnW+chlmcRQbEQehJKj3ONHa6IJq9VpaDL5wjMMXJ3jHyzrZuqqWg91j3Lpj1YLnbWgx2iGcHw7hD8fLugDOwhKHsVBUxCGN04MBjvX7eKnfx1cePcPbrlmXEgaAO69Zx0e+d4gnzgxz/ZZWAA72jLOlraYg92ipI+IglAQNZg+giVCsIH94z54dJanhDVe0c92mZu5+eVdW520wM1DODQenTYErZ5rM/9uRQNRIIxHoG5/k1s8+ijXm4poNTfzFG3ZOO+a2natpqHbyvWd7uH5LK1rrrB8yKoHyv/OFiiDVmXUySieLb1z21NkRXA4bezpzM/+7WozXPjccMOZHl3m8AaDFtBYG/eEi76R0ODHgR2v4f3fu5jU7VuNx2Wcd43ba+YM9HXzr6fOMBCL0T4QZC8Uqvr7BovzvfKEisOoPClUI9+SZEfatb8TtnP1HPx/VLgdr6t2cHQ6WfUdWCyvW0j0SKvJOSofzZtLBdZuaMwqDxduuWcc3njjHjf/wW/xm9trVXU3LssdiU/53vlARWH7xQ93jKf9uvowFoxzv9/Gnt27N63wrY2kymqDTW/7tlz0uO6vr3JwXcUhxfjhITZWD1pr5YzBbVtVyzw0bGfCFuXxtPVd3NaXadFc6Ig5CSbCxxcutO1bx/x4+xTUbmnjZxvxHcT59dgSAl2/O7xpdLV5+cbgfr8tREQFpMOZfX1jCOpJy4+xwkK6W6nmLIi0+8brLlmFHpUd55+gJFYNSik//4ZV0NlXzge8c5NJE/v7xp86OUO2yc0VHfumGG1u8jIdiDPjCFeFWAuhq9orlkMb5kSBdzZXd/mKxiDgIJUOd28lX37WXUDTOf/7+obyv8+SZEa7uasJpz+/2tjKW4kldEQFpMKaTDQciBE2/+UomEk9wcWyy4nsjLRYRB6GksHy8T50dySk4rbWmdyzEjw/2cnowwHWb8ndLbUh706gkywHgglgP9IyGSGrDfSjMTWXc+UJFsXe9kSp4uHeCV25pyeqcD333IP/6Yj8AXpedWy5rW+CMubHmTCfKfERoOuvNucYXRoLsMAcdrVTODRsCKeIwP5Vx5wsVhRUrONQzlrU4PH12lFdubuHPbt/G9tV1i2p54bTb6Gyq5pyZ0VIJWOIgcYepNFZxK82PuJWEkqPe42RTq5dDPeNZHR+KxhkORLhuUzNXdDQUpBeS5Vqqq5BspVq3k5Yal2QsAedGgjRUO1NV+UJmRByEkmT3ukYO9Yyj9cLTYHvHjPnQ1pS3QmCJQ6W4lQA6m6ol5gCcG5JMpWwQcRBKkt3r6hkORFNv/PNhVf52LjCvIRcsf3SluJXACEqXk+UwHIjwyr//DQfMyXyF4vxIUFxKWSDiIJQku9cZQelsXEs9Y4Y4LDTMJxd+74o1/OmtW9m6qrZg1yw265u99E2ECccSCx9cAuw/P0rv2CSPvDS48MFZMhlN0D8RlmB0Fog4CCXJ9jW1VDlsvJCNOIxO4nHaafYWzofcUO3iQzdvwV5BoyCtpoI9o+XhWnrRnMVx+OLEAkdmz3nTchJxWBgRB6Ekcdpt7Fpbn5Xl0D0aorMpu1YIK5n1pp+9XDKWLFE4cnFiWuzpV0cvMRKILHh+/8QkwzOOk0yl7BFxEEqW3esaOHxxYsHxltmOAF3pdKXVOpQ6Wmte7J3A47QzEozSZ7ZT6RkN8b5vHeAfnzg/7/mJpOatX3mKP/vhi9PWz4nlkDUiDkLJcuW6BiLxJCcu+ec8RmtNz2iIjixGgK50Gqpd1LkdZZGx1D0aYmIyxu9f2Q4YBZEAj54cAuBI3/yupkdeGqR3bJJnz42SSE5ZHeeGgrTUVFVUosFSIeIglCx7zDm91tzeTIwGowSjiYJmKlUyXS3elN+9lLHiDX94dQd2m+LwRcO9aInD0T7fvOf/0zMXAAhE4pwcmHq4eKF3nMvWVE6SwVIi4iCULB2NHlbXuXnm3Oicx/SYqa6FzFSqZLqavZwZDBR7Gwty+OIELoeNy9c2sHVVLYcv+oglkjx1ZgS308aQPzLnZLue0RCPnhziTXvWAqRSYQd8YU4OBHjl5uyq7lc6Ig5CyaKU4rpNzTx9dmTOYjgr80ZiDtmxe10DfRNh+icWrh8pJi/2jnPZmjpTIOo4cnGC5y+MEYjEufPqTgCOzWE9fPuZbhTw327bRmttVUocnjg9DMArRByyQsRBKGmu29jMcCDKqTmedrstcZCYQ1ZYIy6fO1/YwrJCkkxqjlz0ccXaegAu72hgNBjle8/1YLcp3nv9BiCzaykST/CD/T3cfNkq2hs87O1sTInD46eHafK62LFmZTcezBYRB6GksVpvP2k+9c2kdyxEs9eFVwKMWXHZmlq8LjvPzeOqKzbnRoIEInEu7zDFwRSJB1/o46rOBjoaq1nX5OFY/2xx+LcjlxgNRnnntesB2NfVSPdoiEF/mMdPDfPyTc3YKqh2ZSkRcRBKmnVN1XQ0enjKHP05k+7REB0Sb8gah93GVesbee586YnDhZEg8UQylZl0pdmdd/vqWhxmC/UbzPniO9bUZXQr/dPTF1jfXM31puvoKrP9+/ef7WHQH5F4Qw6IOAglz3Ubm3n67ChJMyVxLBhN1T70jE5KplKOXN3VxIkBf07DlJaaXxzu51X/8Fv2/s2/89l/P4nHaWdTq1GL4HbaU21MbthqiMPO9nrOmxaGxUuXfDx3fox3vmx9yjrY1V6Py2Hja4+fA8i6Bbwg4iCUAS/f3MzEZIxj/T7ODQe54R8e4e33PU0wEqdvfJJ1BezGuhK4uqsJreHAhdKwHhJJzWceOsmGFi+37lhFIBznhq0tONLGvF6zoYnVdW52mS6mne11aA0vpbmW/unpC1Q5bLxlb0dqzeWwcWVHPROTMbqaq6UeJgfEUSuUPNdtNJ72HnlpkJ8f7gcN+y+M8e5/fJZ4Uksaa47sXteA06547vwYr96+qtjb4V9f7OP0YIAvvH0Pb7iiHa31rFYof377dj746s2pXlfWNLujfT72dTXhD8f48fMX+b0r22mc0WPLcKONSZZSjojlIJQ8q+vdbGzx8n8fPsWJAT9ffMdV/MUbdqQybsStlBsel51da+uXPSj9y8P9nB6cXu2eSGr+38On2LaqltftWgOQsUeWx2WnpaYq9fXqOjdNXlcq7vCTgxcJRhOpQHQ615gZWteb8QohO0QchLLg2k3NJJKaj968lRu2tvJHr9jA+161EYdNsaWtptjbKzuu7mrixd6JWe27B31hIvHCt/S+97EzvP/bz/OmLz3J/rRg+IMvXOTsUJCP3LIlpywipRQ72+vYf2GULz5yms//5jSXr63nSjPDKZ2btrVx77v28podxbeSygkRB6EseM8rN/Cx127nQ6/enFr7+Gsv48D/uJW2OncRd1aeXN3VRDSRTLWpACPQf/OnH+UvfnI0tZZMau76xrPc88B+JkL5BbC/+2w3n/rFS9y6YxWtNVW88+vP8J1nuvmv//wCH/vRYbavruX2natzvu6O9jrODAX5h1+dYG2jh7++Y2dGq8NmU7xm52pJYc0RiTkIZcGm1ho2vWq2hVDvqYwZz8vNvvWNOO2KHx3o5ZoNhtvlH588jz8S54fP9/InN25iQ4uXnx/u5zGzn9GpLz3BfXftZXNb9r2JHjo2wCd+fJgbt7XyxbdfxcRkjLu+8Syf+PFhql123ry3g/e/alNeb9zveeUGNrZ4uX5LK+0NkpRQaMRyEIQVSKPXxV3XdfGDAz0c6/MRiMT55hPnuGZDE0674nMPnyKWSPLpX59g++pavn/PtfjDMd74xSenDWAKxxI88NR5esdmd3oNReP8j58cYfvqOr78jr24HDZaa6v4/vuu5Qtv38Mzn7iZT73p8rwTCtpq3fyHqztFGJYIEQdBWKF8+NVbqPc4+ZufH+PbT1/AF47z8ddu5+7ruvjJoYt86hfHOT8S4r/dto2XbWzmwQ++koZqJ+99YD9945NE40n+07ef5y9+epRbP/MY9z52ZtrsjS8+cppLvjD/646deFz21Hqd28kbrmin1i1WXykj4iAIK5T6aicfvXkLT54Z4bP/fpJXbG5mT2cj9/zwXJsAAAkBSURBVNywEY/Tzj8+cZ6ruxp59fY2ANobPHzj3VczGU3w3vv384HvPM9vXhrkv922jVdsbuZTv3iJ3/v84zx1ZoQLI0Hue+wcb9qzln1mtpBQXpSMOCilbldKnVBKnVZKfazY+xGElcA7rl3PxlYv4ViSD9xoBPuba6r4o1d0AUZ9QXqQd+uqWr7w9j28dMnHQ8cG+Ovf38kHbtrMfXft46vv2os/HOdt9z3Nm7/8FE674uOv3V6MH0soAGquVsjLugml7MBJ4FagF3gOeJvW+thc5+zbt0/v379/mXYoCJXLoZ5xHj0xxIdv3pwSgljCmMBnVSTP5N+OXCIST3DH7rXT1sOxBPc+dpYv//YMf377Nt79ig1Lvn8hN5RSB7TW+xY8rkTE4Trgr7TWt5lffxxAa/23c50j4iAIpUsiqVPVzEJpka04lIpbaS3Qk/Z1r7k2DaXUPUqp/Uqp/UNDQ8u2OUEQckOEofwpFXHIdCfNMmm01vdqrfdprfe1tkopvCAIwlJRKuLQC6xL+7oD6CvSXgRBEFY8pSIOzwFblFIblFIu4E7gwSLvSRAEYcVSEu0ztNZxpdQHgV8BduAbWuujC5wmCIIgLBElIQ4AWutfAL8o9j4EQRCE0nErCYIgCCWEiIMgCIIwi5IogssHpZQfODFjuR6YyHD4TLI9LtdjAVqA4QJfO9c9LMW1ZQ/576NS74mlvHal7yGXeyLXa2c6Lv311mutF64F0FqX5T9gf4a1e7M8N6vjcj12rn0t9tq57mEpri17kHtipf2ul3gPWd8Thdh3Pq9XaW6lnxX4uFyPzZWl2O9SXVv2sLh9FPrapfJ/sVTXrvQ95MNS7nsW5exW2q+z6A+y3JTqvoTiIfeEMJPlvifyeb1ythzuLfYG5qBU9yUUD7knhJks9z2R8+uVreUgCIIgLB3lbDkIgiAIS4SIg1AQlFKBBb7/W6WU+N1XEHJPlDciDnmy0I0vrDzknhBmUs73hIiDUDCUUjcqpf417esvKKXeXcQtCUVG7onyRcRhESilapRSDyulnldKHVZK3WGudymljiul7lNKHVVK/Vop5Sn2foWlR+4JYSblek+IOCyOMPAmrfVVwE3Ap5U1oR22AF/UWu8ExoE3F2mPwvIi94Qwk7K8J0qmZXeZooBPKaVuAJIYc69Xmd87p7U+ZH5+AOha/u0tO3GmP3C4i7WRIiL3xHTknijTe0Ish8XxDqAV2Ku13g0MMHXzR9KOS7AyhPgCsEMpVaWUqgduLvaGioDcE9ORe6JM74mS2UiZUg8Maq1jSqmbgPXF3lAxUEo5gIjWukcp9QPgReAUcLC4OysKck8g98QMyvKeEHHIA+vGB74N/EwptR84BLxU1I0Vj53AGQCt9Z8BfzbzAK31jcu8p2VF7olZyD1R5veEtM/IA6XUlcB9Wutrir2XYqOU+hPgw8BHtda/LvZ+ioXcE1PIPWFQ7veEiEOOyI0vzETuCWEmlXBPiDgIgiAIs5BsJUEQBGEWIg4LoJRap5R6xKxkPKqU+oi53qSUekgpdcr82GiuN5vHB5RSX5hxrf+glHrRvM7/LsbPIyyePO6JW5VSB8zq2ANKqVenXWuvuX5aKfW5tOIooYwo8D3xSaVUjypyXyZxKy2AUmoNsEZr/bxSqhajUOWNwLuBUa313ymlPgY0aq3/XCnlBfYAu4BdWusPmtdpxkjj26u1HlJK3Q88oLV+uAg/lrAI8rgn9gADWus+pdQu4Fda67XmtZ4FPgI8DfwC+JzW+pdF+LGERVDge+JajPqQU1rrmqL8QIjlsCBa636t9fPm537gOEaF4x3A/eZh92PcCGitg1rrxzFK5tPZCJzUWg+ZX/87JVQqL2RPHvfEQa11n7l+FHCbRWFrgDqt9VPaeEp7wDpHKC8KdU+Y33taa92/nPvPhIhDDiilujCsgmeAVdYv0PzYtsDpp4HtZrMtB8ZNsm7pdissB3ncE28GDmqtIxhvHr1p3+s114QyZpH3RMkgRXBZopSqAX6EkZrmy9U1rLUeU0q9H/g+Rn+VJzGsCaFMyfWeUErtBP4eeI21lOEw8fOWMQW4J0oGsRyyQCnlxPiFf1tr/S/m8oDpFrD8jYMLXUdr/TOt9cu01tcBJzDaCQhlSK73hFKqA/gxcJfW+oy53At0pF22A+hDKEsKdE+UDCIOC2Bmj3wdOK61/kzatx4E7jY/vxv4aRbXajM/NgL/CfhaYXcrLAe53hNKqQbg58DHtdZPWAebbga/Uupa85p3kcV9JJQehbonSgnJVloApdQrgd8BhzHcQQCfwPAn/gDoBLqBt2qtR81zzgN1gAujR/trtNbHlFLfBa40r/E/tdbfW66fQygcud4TSqn/Dnyc6Zbia7TWg8qYofxNwAP8EviQlj/KsqPA98T/Bt4OtGNYkl/TWv/VsvwgaYg4CIIgCLMQt5IgCIIwCxEHQRAEYRYiDoIgCMIsRBwEQRCEWYg4CIIgCLMQcRCEJUAp9SdKqbtyOL5LKXVkKfckCLkg7TMEocAopRxa668Uex+CsBhEHAQhA2bztH/DKGLaA5zEqGC+DPgMUAMMA+/WWvcrpX6L0S/rFcCDZtvmgNb6/yildgNfAaqBM8Afm7229gLfAELA48v30wnCwohbSRDmZhtwr9b6CsAHfAD4PPAWrbX1xv7JtOMbtNav0lp/esZ1HgD+3LzOYeAvzfV/BD5s9toShJJCLAdBmJuetL43/4TRDmEX8JDZbdMOpPfd//7MCyil6jFE41Fz6X7gnzOsfwt4beF/BEHIDxEHQZibmb1l/MDReZ70gzlcW2W4viCUDOJWEoS56VRKWULwNoxRnq3WmlLKafbjnxOt9QQwppS63lx6F/Co1nocmDAbtgG8o/DbF4T8EctBEObmOHC3UuqrGN0zPw/8Cvic6RZyAP8XY8zjfNwNfEUpVQ2cBf7IXP8j4BtKqZB5XUEoGaQrqyBkwMxW+let9a4ib0UQioK4lQRBEIRZiOUgCIIgzEIsB0EQBGEWIg6CIAjCLEQcBEEQhFmIOAiCIAizEHEQBEEQZvH/A/RpJj1EyblXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-120:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", + " for y in range(1991,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_september_week[:-1],\n", + " first_september_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG0VJREFUeJzt3X+M3PV95/HnyyyxgWKyhjXxD8BUcVAMSSEeGfeS65W4tZ1LhY0KyV5oWBVLboCmpDoJ7JATOnAlqE6X1orCYYWCgQTw+YpwW3xkMReVax2bdSAFQ1xvAjGOHXa5dcBE8pa13/fHfDae3ax3PzM7u/NjXw9pNN95z/fzme+HL+v3fH58v6OIwMzMLMe0Wh+AmZk1DicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZtpZaH0C1nXfeebFgwYJaH4aZWUPZs2fP2xHRNtZ+TZc0FixYQFdXV60Pw8ysoUj6ac5+Hp4yM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYTZF9Lx7jM/dv5Oeo8dqfSjWwJw0zKaIjTv288IbfWx8dn+tD8UaWNNdp2FmQ13yte30D5z41etHdx3g0V0HmN4yjX0bPlPDI7NG5J5GCXffrRk9f9tVXH35XGacXvxzn3H6NFZdPpfnb7+qxkdmjchJo4S779aMZs+cwdnTW+gfOMH0lmn0D5zg7OktzD57xinL+AuUnYqHp3D33Zrf2+/1c/2VF/GFJRfynd0H6B0jGZR+gdpwzccm6SitESgian0MVVUoFKLce0/1vHuMDU+/xnf3/pxj759gxunTWHHph7jjsx8d9duYWbMZ/gVqkL9ANT9JeyKiMNZ+Hp6isu67WTPy/IeNxcNTSbndd7Nm5C9QNhYnjeT+L57slW1YfVkNj8SstvwFykbjOQ0zM/OchpmZVZ+ThpmZZctKGpL+XNJeSa9IekzSDEmzJHVK2p+eW0v2Xy+pW9I+SStK4oslvZze2yhJKT5d0hMpvkvSgpIyHekz9kvqqF7TzcysXGMmDUnzgD8DChFxGXAa0A6sA3ZExEJgR3qNpEXp/UuBlcA3JZ2WqrsPWAssTI+VKb4GOBIRHwa+Dtyb6poF3AlcCSwB7ixNTmZmNrlyh6dagDMktQBnAoeAVcDm9P5mYHXaXgU8HhH9EfE60A0skTQHmBkRO6M4+/7wsDKDdW0FlqVeyAqgMyL6IuII0MnJRGNmZpNszKQRET8D/htwADgMvBMR3wXOj4jDaZ/DwOxUZB7wZkkVB1NsXtoeHh9SJiIGgHeAc0epy8zMaiBneKqVYk/gYmAucJakPxqtyAixGCVeaZnSY1wrqUtSV29v7yiHZmZm45EzPPV7wOsR0RsR7wN/C/w74K005ER67kn7HwQuKCk/n+Jw1sG0PTw+pEwaAjsH6BulriEiYlNEFCKi0NbWltEkMzOrRE7SOAAslXRmmmdYBrwGbAMGVzN1AE+l7W1Ae1oRdTHFCe/daQjrqKSlqZ4bhpUZrOta4Lk07/EMsFxSa+rxLE8xM7MJ51vE/7oxbyMSEbskbQV+AAwALwKbgN8AtkhaQzGxXJf23ytpC/Bq2v+WiDieqrsJeAg4A9ieHgAPAI9I6qbYw2hPdfVJuht4Ie13V0T0javFZmaZfIv4X+fbiJgN0/PuMf70sRf5xheu8I36pqipeIt430bErEL+BUfzLeJPzXe5NUv8C442yLeIPzX3NMwSf7u0UoO3iH/y5k9y/ZUX0ftef60PqS64p2GW+NullfJv7IzMScOshH+AyGx0Xj1lU4JXRJmNzqunbMI10oVPXhFlVh0enrKKNcKFT14RZVZdHp6ysjXShU897x5jw9Ov8d29P+fY+yeYcfo0Vlz6Ie747EebZpjKQ29WDR6esgnTSEtTp8KKKA+92WTy8JSVrdH+IW7WFVEeerNacNKwijTSP8TNut7++duuOuXQm9lEcdKwijTrP8SNpNF6fNYcnDTMGlgj9fisOXj1lJmZefWUmZlVn5OGmZllc9IwM7NsThpmdaiR7utlU4uThlkd8lXeVq+85Nasjvgqb6t37mmY1ZFGuq+XTU1OGmZ1xFd5W70bM2lIukTSSyWPdyV9RdIsSZ2S9qfn1pIy6yV1S9onaUVJfLGkl9N7GyUpxadLeiLFd0laUFKmI33Gfkkd1W2+Wf0ZvMr7yZs/yfVXXkTve/21PiSzXynrinBJpwE/A64EbgH6IuIeSeuA1oi4XdIi4DFgCTAXeBb4SEQcl7QbuBX4PvA0sDEitku6Gfh4RHxJUjtwTUR8XtIsoAsoAAHsARZHxJFTHaOvCDdrDv6dkMk1UVeELwN+HBE/BVYBm1N8M7A6ba8CHo+I/oh4HegGlkiaA8yMiJ1RzFQPDyszWNdWYFnqhawAOiOiLyWKTmBlmcdsZg3IK8jqU7mrp9op9iIAzo+IwwARcVjS7BSfR7EnMehgir2ftofHB8u8meoakPQOcG5pfIQyZtaEvIKsvmX3NCR9ALga+J9j7TpCLEaJV1qm9NjWSuqS1NXb2zvG4ZlZPfMKsvpWzvDUZ4AfRMRb6fVbaciJ9NyT4geBC0rKzQcOpfj8EeJDykhqAc4B+kapa4iI2BQRhYgotLW1ldEkM6s3lawg8xX0k6ecpPGfODk0BbANGFzN1AE8VRJvTyuiLgYWArvTUNZRSUvTfMUNw8oM1nUt8Fya93gGWC6pNa3OWp5iVgb/QVmjKXcFmec/Jk/W6ilJZ1KcW/jNiHgnxc4FtgAXAgeA6yKiL713B3AjMAB8JSK2p3gBeAg4A9gOfDkiQtIM4BHgCoo9jPaI+EkqcyPw1XQofxERD452rF499eu+9uTLfHv3Aa5fciEbrvlYrQ/HrGqGz38M8vxH+XJXT/lHmJpYJX9QXuZojaTn3WOn/J10//9bHv8Ik1U0oehuvjUSX0E/+XzDwiZWzh+Ulzlao/LvpE8uJ40ml/sH9fxtV52ym29Wz+7/4skRlQ2rL6vhkUwNThpNLvcPyt18M8vhOY0J1kjLXX2jPDMbi1dPTTAvdzWzRpC7esrDUxPEE8tm1ow8PDVBKlnu2khDWWY2NTlpTJBKJpZ9jYSZ1TsPT02g3OWuHsoys0bhifAKVfN2G74VgjUy33qmOfg2IhOsmkNJvkbCGpmHVacWD0+VaaKGknwrBGs0Hladmjw8VSYPJVmlmm0Yx38LzcXDUxPEQ0lWqpxl0s02jOO/hanJw1MV8FCSDSpNBKe64r+Zh3H8tzD1eHjKrALl/MCVh3FOarYhumbi4SlrSI1yVXw5V/x7GOekZhuim4o8PGWTIvcbZs5wTz0oNxFM9WGcZh6im2o8PGWTYqy7/Vbye+a19iePdNF29owhiaD090vsJA/R1T/f5dbqQu43zEb85UD/Ylw+D9E1D89p2ITKHfv3PyrNzz/y1Rzc07AJVU4ymOrj/s2uXnpmXsE1Plk9DUkflLRV0o8kvSbptyXNktQpaX96bi3Zf72kbkn7JK0oiS+W9HJ6b6Mkpfh0SU+k+C5JC0rKdKTP2C+po3pNt8mS+w3z/i8W2LD6MhbNncmG1Zd5fsAmhFdwjU/WRLikzcDzEfEtSR8AzgS+CvRFxD2S1gGtEXG7pEXAY8ASYC7wLPCRiDguaTdwK/B94GlgY0Rsl3Qz8PGI+JKkduCaiPi8pFlAF1AAAtgDLI6II6c6Vk+Em9lIGnGxxWSq2nUakmYCvwM8ABAR/xYRvwBWAZvTbpuB1Wl7FfB4RPRHxOtAN7BE0hxgZkTsjGKmenhYmcG6tgLLUi9kBdAZEX0pUXQCK8c6ZjOz4Sr5NU37dTnDU78J9AIPSnpR0rcknQWcHxGHAdLz7LT/PODNkvIHU2xe2h4eH1ImIgaAd4BzR6lrCElrJXVJ6urt7c1okplNNV5sUR05SaMF+ARwX0RcAfwSWDfK/hohFqPEKy1zMhCxKSIKEVFoa2sb5dDMbCrzCq7xy1k9dRA4GBG70uutFJPGW5LmRMThNPTUU7L/BSXl5wOHUnz+CPHSMgcltQDnAH0p/rvDynwvq2VmZsPUywquXPW40mvMnkZE/Bx4U9IlKbQMeBXYBgyuZuoAnkrb24D2tCLqYmAhsDsNYR2VtDTNV9wwrMxgXdcCz6V5j2eA5ZJa0+qs5SlmZtb06nGlV+51Gl8Gvp1WTv0E+GOKCWeLpDXAAeA6gIjYK2kLxcQyANwSEcdTPTcBDwFnANvTA4qT7I9I6qbYw2hPdfVJuht4Ie13V0T0VdhWM7OGUM/36vK9p8zM6kwt7tXlW6ObmTWoel7p5duImJnVoXq9rY6Hp8zMzMNTza5RfuHOzJqLk0aDqseleGbW/Dyn0WDqeSmemTU/9zQajG+6Zma15KTRYOp5KZ7ZVDWV5hidNBqQb7pmVl+m0hyjl9yamVWomX7YyUtuzcwmWCVzjI0+lOWkYWZWoUrmGBt9KMtLbs3MxiH3dh/NslzecxpmZpOgFneuLYfnNMzM6kizLJf38JSZ2SSp1zvXlsPDU2Zm5uEpMzOrPicNa1iNvt7drBE5aVjDavT17maNyBPh1nCaZb27WSNyT8Majm8Pb1Y7ThrWcJplvbtZI8pKGpLekPSypJckdaXYLEmdkvan59aS/ddL6pa0T9KKkvjiVE+3pI2SlOLTJT2R4rskLSgp05E+Y7+kjmo13Bqbbw9vVhtZ12lIegMoRMTbJbG/BPoi4h5J64DWiLhd0iLgMWAJMBd4FvhIRByXtBu4Ffg+8DSwMSK2S7oZ+HhEfElSO3BNRHxe0iygCygAAewBFkfEkVMdq6/TMDMr32Rcp7EK2Jy2NwOrS+KPR0R/RLwOdANLJM0BZkbEzihmqoeHlRmsayuwLPVCVgCdEdGXEkUnsHIcx2xmZuOQmzQC+K6kPZLWptj5EXEYID3PTvF5wJslZQ+m2Ly0PTw+pExEDADvAOeOUtcQktZK6pLU1dvbm9kkMzMrV+6S209GxCFJs4FOST8aZV+NEItR4pWWORmI2ARsguLw1CjHZmZm45DV04iIQ+m5B3iS4nzFW2nIifTck3Y/CFxQUnw+cCjF548QH1JGUgtwDtA3Sl1mZlYDYyYNSWdJOntwG1gOvAJsAwZXM3UAT6XtbUB7WhF1MbAQ2J2GsI5KWprmK24YVmawrmuB59K8xzPAckmtaXXW8hQzM7MayBmeOh94Mq2ObQG+ExH/W9ILwBZJa4ADwHUAEbFX0hbgVWAAuCUijqe6bgIeAs4AtqcHwAPAI5K6KfYw2lNdfZLuBl5I+90VEX3jaK+ZmY2Db41uZma+NbqZmVWfk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZtuykIek0SS9K+vv0epakTkn703Nryb7rJXVL2idpRUl8saSX03sbJSnFp0t6IsV3SVpQUqYjfcZ+SR3VaLSZmVWmnJ7GrcBrJa/XATsiYiGwI71G0iKgHbgUWAl8U9Jpqcx9wFpgYXqsTPE1wJGI+DDwdeDeVNcs4E7gSmAJcGdpcjIzs8mVlTQkzQc+C3yrJLwK2Jy2NwOrS+KPR0R/RLwOdANLJM0BZkbEzogI4OFhZQbr2gosS72QFUBnRPRFxBGgk5OJxszMJlluT+OvgNuAEyWx8yPiMEB6np3i84A3S/Y7mGLz0vbw+JAyETEAvAOcO0pdZmZWA2MmDUl/APRExJ7MOjVCLEaJV1qm9BjXSuqS1NXb25t5mGZmVq6cnsYngaslvQE8Dnxa0qPAW2nIifTck/Y/CFxQUn4+cCjF548QH1JGUgtwDtA3Sl1DRMSmiChERKGtrS2jSWZmVokxk0ZErI+I+RGxgOIE93MR8UfANmBwNVMH8FTa3ga0pxVRF1Oc8N6dhrCOSlqa5ituGFZmsK5r02cE8AywXFJrmgBfnmJmZlYDLeMoew+wRdIa4ABwHUBE7JW0BXgVGABuiYjjqcxNwEPAGcD29AB4AHhEUjfFHkZ7qqtP0t3AC2m/uyKibxzHbGZm46DiF/rmUSgUoqurq9aHYWbWUCTtiYjCWPv5inAzM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyjZk0JM2QtFvSDyXtlfRfU3yWpE5J+9Nza0mZ9ZK6Je2TtKIkvljSy+m9jZKU4tMlPZHiuyQtKCnTkT5jv6SOajbezMzKk9PT6Ac+HRG/BVwOrJS0FFgH7IiIhcCO9BpJi4B24FJgJfBNSaeluu4D1gIL02Nliq8BjkTEh4GvA/emumYBdwJXAkuAO0uTk5mZTa4xk0YUvZdenp4eAawCNqf4ZmB12l4FPB4R/RHxOtANLJE0B5gZETsjIoCHh5UZrGsrsCz1QlYAnRHRFxFHgE5OJhozM5tkWXMakk6T9BLQQ/Ef8V3A+RFxGCA9z067zwPeLCl+MMXmpe3h8SFlImIAeAc4d5S6zMysBrKSRkQcj4jLgfkUew2XjbK7RqpilHilZU5+oLRWUpekrt7e3lEOzczMxqOs1VMR8QvgexSHiN5KQ06k556020HggpJi84FDKT5/hPiQMpJagHOAvlHqGn5cmyKiEBGFtra2cppkZmZlyFk91Sbpg2n7DOD3gB8B24DB1UwdwFNpexvQnlZEXUxxwnt3GsI6Kmlpmq+4YViZwbquBZ5L8x7PAMsltaYJ8OUpZmZmNdCSsc8cYHNaATUN2BIRfy9pJ7BF0hrgAHAdQETslbQFeBUYAG6JiOOprpuAh4AzgO3pAfAA8Iikboo9jPZUV5+ku4EX0n53RUTfeBpsZmaVU/ELffMoFArR1dVV68MwM2sokvZERGGs/XxFuJmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDNrAj3vHuNz9++k5+ixCf0cJw0zsyawccd+Xnijj43P7p/Qz2mZ0NrNzGxCXfK17fQPnPjV60d3HeDRXQeY3jKNfRs+U/XPc0/DzKyBPX/bVVx9+VxmnF7853zG6dNYdflcnr/9qgn5PCcNM7MGNnvmDM6e3kL/wAmmt0yjf+AEZ09vYfbZMybk8zw8ZWbW4N5+r5/rr7yILyy5kO/sPkDvBE6GKyJG30G6AHgY+BBwAtgUEX8taRbwBLAAeAP4XEQcSWXWA2uA48CfRcQzKb4YeAg4A3gauDUiQtL09BmLgf8HfD4i3khlOoCvpcPZEBGbRzveQqEQXV1d+f8FzMwMSXsiojDWfjnDUwPAf46IjwJLgVskLQLWATsiYiGwI70mvdcOXAqsBL4p6bRU133AWmBheqxM8TXAkYj4MPB14N5U1yzgTuBKYAlwp6TWjGM2M7MJMGbSiIjDEfGDtH0UeA2YB6wCBr/1bwZWp+1VwOMR0R8RrwPdwBJJc4CZEbEzit2bh4eVGaxrK7BMkoAVQGdE9KVeTCcnE42ZmU2ysibCJS0ArgB2AedHxGEoJhZgdtptHvBmSbGDKTYvbQ+PDykTEQPAO8C5o9RlZmY1kJ00JP0G8L+Ar0TEu6PtOkIsRolXWqb02NZK6pLU1dvbO8qhmZnZeGQlDUmnU0wY346Iv03ht9KQE+m5J8UPAheUFJ8PHErx+SPEh5SR1AKcA/SNUtcQEbEpIgoRUWhra8tpkpmZVWDMpJHmFh4AXouI/17y1jagI213AE+VxNslTZd0McUJ791pCOuopKWpzhuGlRms61rguTTv8QywXFJrmgBfnmJmZlYDOUtuPwU8D7xMccktwFcpzmtsAS4EDgDXRURfKnMHcCPFlVdfiYjtKV7g5JLb7cCX05LbGcAjFOdL+oD2iPhJKnNj+jyAv4iIB8c43l7gp5ntr0fnAW/X+iAmSLO2ze1qPM3atvG066KIGHOoZsykYZNLUlfOWulG1Kxtc7saT7O2bTLa5duImJlZNicNMzPL5qRRfzbV+gAmULO2ze1qPM3atglvl+c0zMwsm3saZmaWzUljEkj6G0k9kl4pif2WpJ2SXpb0d5JmpvgHJD2Y4j+U9LslZb4naZ+kl9Jj9ggfN2kkXSDp/0h6TdJeSbem+CxJnZL2p+fWkjLrJXWndqwoiS9Obe6WtDFdy1MTVW5X3Zyzctsl6dy0/3uSvjGsrro5X+l4qtm2Rj5nvy9pTzo3eyR9uqSu6pyziPBjgh/A7wCfAF4pib0A/Ie0fSNwd9q+BXgwbc8G9gDT0uvvAYVat6ekDXOAT6Tts4F/BRYBfwmsS/F1wL1pexHwQ2A6cDHwY+C09N5u4Lcp3jpmO/CZJmlX3ZyzCtp1FvAp4EvAN4bVVTfnawLa1sjn7Apgbtq+DPhZtc+ZexqTICL+keJFi6UuAf4xbXcCf5i2F1G81TwR0QP8AqjL9eQxOXdAnnTVatfkHvXYym1XRPwyIv4vMOQXfertfEH12lZvKmjXixExeKulvcAMFe/OUbVz5qRRO68AV6ft6zh5j60fAqsktah4G5bFDL3/1oOpy/xfaj0kUEoTdwfkmhpnuwbV3TnLbNep1O35gnG3bVAznLM/BF6MiH6qeM6cNGrnRoo/aLWHYrfz31L8byie0C7gr4B/png7FoDrI+JjwL9Pjy9O6hGfgib2Dsg1U4V2QR2eszLadcoqRojV/HxBVdoGTXDOJF1K8cfs/mQwNMJuFZ0zJ40aiYgfRcTyiFgMPEZxHJyIGIiIP4+IyyNiFfBBYH9672fp+SjwHepgCEQTfwfkmqhSu+runJXZrlOpu/MFVWtbw58zSfOBJ4EbIuLHKVy1c+akUSODKzIkTaP4G+j/I70+U9JZafv3gYGIeDUNV52X4qcDf0BxiKtmUrd9ou+APOmq1a56O2cVtGtE9Xa+oHpta/RzJumDwD8A6yPinwZ3ruo5m4wVAFP9QbEncRh4n2LGXwPcSnElxL8C93DyQssFwD6KE17PUrzzJBRXe+wB/oXiBNdfk1bo1LBdn6LYxf0X4KX0+I8Uf3VxB8Ue0g5gVkmZOyj2qvZRsnqD4mT/K+m9bwz+92jkdtXbOauwXW9QXMTxXvp/d1G9na9qtq3RzxnFL6C/LNn3JWB2Nc+Zrwg3M7NsHp4yM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZll+/+mYFOfctSjewAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2020 221186\n", + "2002 516689\n", + "2018 542312\n", + "2017 551041\n", + "1996 564901\n", + "2019 584066\n", + "2015 604382\n", + "2000 617597\n", + "2001 619041\n", + "2012 624573\n", + "2005 628464\n", + "2006 632833\n", + "2011 642368\n", + "1993 643387\n", + "1995 652478\n", + "1994 661409\n", + "1998 677775\n", + "1997 683434\n", + "2014 685769\n", + "2013 698332\n", + "2007 717352\n", + "2008 749478\n", + "1999 756456\n", + "2003 758363\n", + "2004 777388\n", + "2016 782114\n", + "2010 829911\n", + "1992 832939\n", + "2009 842373\n", + "dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +3498,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..2a80cb35a16f7a20e198d8bd4bb509b020c51496 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,3155 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...2/14/212/15/212/16/212/17/212/18/212/19/212/20/212/21/212/22/212/23/21
0NaNAfghanistan33.93911067.709953000000...55492555145551855540555575557555580556045561755646
1NaNAlbania41.15330020.168300000000...93075938509465195726968389790999062100246101285102306
2NaNAlgeria28.0339001.659600000000...110711110894111069111247111418111600111764111917112094112279
3NaNAndorra42.5063001.521800000000...10503105381055510583106101064510672106991071210739
4NaNAngola-11.20270017.873900000000...20366203812038920400204522047820499205192054820584
5NaNAntigua and Barbuda17.060800-61.796400000000...427443443525548548598598614636
6NaNArgentina-38.416100-63.616700000000...2025798202905720330602039124204679520546812060625206433420697512077228
7NaNArmenia40.06910045.038200000000...169167169255169391169597169820170011170234170402170506170672
8Australian Capital TerritoryAustralia-35.473500149.012400000000...118118118118118118118118118118
9New South WalesAustralia-33.868800151.209300000034...5138513951435143514551465149515051545155
10Northern TerritoryAustralia-12.463400130.845600000000...103103103103103104104104104104
11QueenslandAustralia-27.469800153.025100000000...1320132013201320132113211321132313231323
12South AustraliaAustralia-34.928500138.600700000000...606606608608608608610610612613
13TasmaniaAustralia-42.882100147.327200000000...234234234234234234234234234234
14VictoriaAustralia-37.813600144.963100000011...20471204752047520476204792047920479204792047920479
15Western AustraliaAustralia-31.950500115.860500000000...910910910910910910911912913913
16NaNAustria47.51620014.550100000000...433487434712436139437874439841441659443536445374446644448371
17NaNAzerbaijan40.14310047.576900000000...232123232197232337232491232636232829232973233129233201233424
18NaNBahamas25.025885-78.035889000000...8311831183838383840384038403840384718477
19NaNBahrain26.02750050.550000000000...112742113590114361115057115705116482117234117809118530119205
20NaNBangladesh23.68500090.356300000000...540592541038541434541877542268542674543024543351543717544116
21NaNBarbados13.193900-59.543200000000...2061226823312457264726772715277227912852
22NaNBelarus53.70980027.953400000000...268687269787270921272273273659275322276990278312279456280428
23NaNBelgium50.8333004.469936000000...738631739488741205743882746302749739752379754473755594757696
24NaNBelize17.189900-88.497600000000...12145121751218812195122071222712244122441225512264
25NaNBenin9.3077002.315800000000...4560503950395143514351435143543454345434
26NaNBhutan27.51420090.433600000000...864866866866866866866866866867
27NaNBolivia-16.290200-63.588700000000...236732237144237706238495239524240676241771242292243176244380
28NaNBosnia and Herzegovina43.91590017.679100000000...125402126139126413126781127135127537127537127537128661129176
29NaNBotswana-22.32850024.684900000000...24926258022580225802265242652426524265242772127721
..................................................................
244NaNTimor-Leste-8.874217125.727539000000...102102102102103103103103103107
245NaNTogo8.6195000.824800000000...5874588259536007608561826268631963486466
246NaNTrinidad and Tobago10.691800-61.222500000000...7642764676567663766676667676768076827686
247NaNTunisia33.8869179.537499000000...223244223549224329225116226015226740227643228362228937229781
248NaNTurkey38.96370035.243300000000...2586183259412826020342609359261660026240192631876263842226465262655633
249NaNUS40.000000-100.000000112255...27644213276981902776066027830489278997552800611028077620281341152819015928261595
250NaNUganda1.37333332.290275000000...40019400554006340102401544016840199402134022140243
251NaNUkraine48.37940031.165600000000...1316520131906013224061326891133333213400541346527135119013545451358871
252NaNUnited Arab Emirates23.42407653.847818000000...348772351895355131358583361877365017368175370425372530375535
253AnguillaUnited Kingdom18.220600-63.068600000000...18181818181818181818
254BermudaUnited Kingdom32.307800-64.750500000000...694695695697699699699699699703
255British Virgin IslandsUnited Kingdom18.420700-64.640000000000...114114114114114114114114114114
256Cayman IslandsUnited Kingdom19.313300-81.254600000000...416416419419425428428428431431
257Channel IslandsUnited Kingdom49.372300-2.364400000000...3999400440094013401640234025402640304030
258Falkland Islands (Malvinas)United Kingdom-51.796300-59.523600000000...53535454545454545454
259GibraltarUnited Kingdom36.140800-5.353600000000...4219422342244226422742284228422842324234
260Isle of ManUnited Kingdom54.236100-4.548100000000...436436437437444449450450456462
261MontserratUnited Kingdom16.742498-62.187366000000...20202020202020202020
262Saint Helena, Ascension and Tristan da CunhaUnited Kingdom-7.946700-14.355900000000...4444444444
263Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...1873187418741909192819842028202820292051
264NaNUnited Kingdom55.378100-3.436000000000...4038078404784340584684071185408324240952694105675411550941261504134639
265NaNUruguay-32.522800-55.765800000000...48909493604972550208507525137752163528155331053973
266NaNUzbekistan41.37749164.585262000000...79416794427946179497795487959879632796547968179717
267NaNVanuatu-15.376700166.959200000000...1111111111
268NaNVenezuela6.423800-66.589700000000...133218133577133927134319134781135114135603136068136545136986
269NaNVietnam14.058324108.277199022222...2228226923112329234723622368238323922403
270NaNWest Bank and Gaza31.95220035.233200000000...167604168444169487170527171154171717172315173635174969176377
271NaNYemen15.55272748.516388000000...2145214521482151215421572157216521762187
272NaNZambia-13.13389727.849332000000...69437702487082371677724677320373894745037502775582
273NaNZimbabwe-19.01543829.154857000000...35172352223531535423355433571035768357963586235910
\n", + "

274 rows × 403 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region \\\n", + "0 NaN Afghanistan \n", + "1 NaN Albania \n", + "2 NaN Algeria \n", + "3 NaN Andorra \n", + "4 NaN Angola \n", + "5 NaN Antigua and Barbuda \n", + "6 NaN Argentina \n", + "7 NaN Armenia \n", + "8 Australian Capital Territory Australia \n", + "9 New South Wales Australia \n", + "10 Northern Territory Australia \n", + "11 Queensland Australia \n", + "12 South Australia Australia \n", + "13 Tasmania Australia \n", + "14 Victoria Australia \n", + "15 Western Australia Australia \n", + "16 NaN Austria \n", + "17 NaN Azerbaijan \n", + "18 NaN Bahamas \n", + "19 NaN Bahrain \n", + "20 NaN Bangladesh \n", + "21 NaN Barbados \n", + "22 NaN Belarus \n", + "23 NaN Belgium \n", + "24 NaN Belize \n", + "25 NaN Benin \n", + "26 NaN Bhutan \n", + "27 NaN Bolivia \n", + "28 NaN Bosnia and Herzegovina \n", + "29 NaN Botswana \n", + ".. ... ... \n", + "244 NaN Timor-Leste \n", + "245 NaN Togo \n", + "246 NaN Trinidad and Tobago \n", + "247 NaN Tunisia \n", + "248 NaN Turkey \n", + "249 NaN US \n", + "250 NaN Uganda \n", + "251 NaN Ukraine \n", + "252 NaN United Arab Emirates \n", + "253 Anguilla United Kingdom \n", + "254 Bermuda United Kingdom \n", + "255 British Virgin Islands United Kingdom \n", + "256 Cayman Islands United Kingdom \n", + "257 Channel Islands United Kingdom \n", + "258 Falkland Islands (Malvinas) United Kingdom \n", + "259 Gibraltar United Kingdom \n", + "260 Isle of Man United Kingdom \n", + "261 Montserrat United Kingdom \n", + "262 Saint Helena, Ascension and Tristan da Cunha United Kingdom \n", + "263 Turks and Caicos Islands United Kingdom \n", + "264 NaN United Kingdom \n", + "265 NaN Uruguay \n", + "266 NaN Uzbekistan \n", + "267 NaN Vanuatu \n", + "268 NaN Venezuela \n", + "269 NaN Vietnam \n", + "270 NaN West Bank and Gaza \n", + "271 NaN Yemen \n", + "272 NaN Zambia \n", + "273 NaN Zimbabwe \n", + "\n", + " Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", + "0 33.939110 67.709953 0 0 0 0 0 \n", + "1 41.153300 20.168300 0 0 0 0 0 \n", + "2 28.033900 1.659600 0 0 0 0 0 \n", + "3 42.506300 1.521800 0 0 0 0 0 \n", + "4 -11.202700 17.873900 0 0 0 0 0 \n", + "5 17.060800 -61.796400 0 0 0 0 0 \n", + "6 -38.416100 -63.616700 0 0 0 0 0 \n", + "7 40.069100 45.038200 0 0 0 0 0 \n", + "8 -35.473500 149.012400 0 0 0 0 0 \n", + "9 -33.868800 151.209300 0 0 0 0 3 \n", + "10 -12.463400 130.845600 0 0 0 0 0 \n", + "11 -27.469800 153.025100 0 0 0 0 0 \n", + "12 -34.928500 138.600700 0 0 0 0 0 \n", + "13 -42.882100 147.327200 0 0 0 0 0 \n", + "14 -37.813600 144.963100 0 0 0 0 1 \n", + "15 -31.950500 115.860500 0 0 0 0 0 \n", + "16 47.516200 14.550100 0 0 0 0 0 \n", + "17 40.143100 47.576900 0 0 0 0 0 \n", + "18 25.025885 -78.035889 0 0 0 0 0 \n", + "19 26.027500 50.550000 0 0 0 0 0 \n", + "20 23.685000 90.356300 0 0 0 0 0 \n", + "21 13.193900 -59.543200 0 0 0 0 0 \n", + "22 53.709800 27.953400 0 0 0 0 0 \n", + "23 50.833300 4.469936 0 0 0 0 0 \n", + "24 17.189900 -88.497600 0 0 0 0 0 \n", + "25 9.307700 2.315800 0 0 0 0 0 \n", + "26 27.514200 90.433600 0 0 0 0 0 \n", + "27 -16.290200 -63.588700 0 0 0 0 0 \n", + "28 43.915900 17.679100 0 0 0 0 0 \n", + "29 -22.328500 24.684900 0 0 0 0 0 \n", + ".. ... ... ... ... ... ... ... \n", + "244 -8.874217 125.727539 0 0 0 0 0 \n", + "245 8.619500 0.824800 0 0 0 0 0 \n", + "246 10.691800 -61.222500 0 0 0 0 0 \n", + "247 33.886917 9.537499 0 0 0 0 0 \n", + "248 38.963700 35.243300 0 0 0 0 0 \n", + "249 40.000000 -100.000000 1 1 2 2 5 \n", + "250 1.373333 32.290275 0 0 0 0 0 \n", + "251 48.379400 31.165600 0 0 0 0 0 \n", + "252 23.424076 53.847818 0 0 0 0 0 \n", + "253 18.220600 -63.068600 0 0 0 0 0 \n", + "254 32.307800 -64.750500 0 0 0 0 0 \n", + "255 18.420700 -64.640000 0 0 0 0 0 \n", + "256 19.313300 -81.254600 0 0 0 0 0 \n", + "257 49.372300 -2.364400 0 0 0 0 0 \n", + "258 -51.796300 -59.523600 0 0 0 0 0 \n", + "259 36.140800 -5.353600 0 0 0 0 0 \n", + "260 54.236100 -4.548100 0 0 0 0 0 \n", + "261 16.742498 -62.187366 0 0 0 0 0 \n", + "262 -7.946700 -14.355900 0 0 0 0 0 \n", + "263 21.694000 -71.797900 0 0 0 0 0 \n", + "264 55.378100 -3.436000 0 0 0 0 0 \n", + "265 -32.522800 -55.765800 0 0 0 0 0 \n", + "266 41.377491 64.585262 0 0 0 0 0 \n", + "267 -15.376700 166.959200 0 0 0 0 0 \n", + "268 6.423800 -66.589700 0 0 0 0 0 \n", + "269 14.058324 108.277199 0 2 2 2 2 \n", + "270 31.952200 35.233200 0 0 0 0 0 \n", + "271 15.552727 48.516388 0 0 0 0 0 \n", + "272 -13.133897 27.849332 0 0 0 0 0 \n", + "273 -19.015438 29.154857 0 0 0 0 0 \n", + "\n", + " 1/27/20 ... 2/14/21 2/15/21 2/16/21 2/17/21 2/18/21 \\\n", + "0 0 ... 55492 55514 55518 55540 55557 \n", + "1 0 ... 93075 93850 94651 95726 96838 \n", + "2 0 ... 110711 110894 111069 111247 111418 \n", + "3 0 ... 10503 10538 10555 10583 10610 \n", + "4 0 ... 20366 20381 20389 20400 20452 \n", + "5 0 ... 427 443 443 525 548 \n", + "6 0 ... 2025798 2029057 2033060 2039124 2046795 \n", + "7 0 ... 169167 169255 169391 169597 169820 \n", + "8 0 ... 118 118 118 118 118 \n", + "9 4 ... 5138 5139 5143 5143 5145 \n", + "10 0 ... 103 103 103 103 103 \n", + "11 0 ... 1320 1320 1320 1320 1321 \n", + "12 0 ... 606 606 608 608 608 \n", + "13 0 ... 234 234 234 234 234 \n", + "14 1 ... 20471 20475 20475 20476 20479 \n", + "15 0 ... 910 910 910 910 910 \n", + "16 0 ... 433487 434712 436139 437874 439841 \n", + "17 0 ... 232123 232197 232337 232491 232636 \n", + "18 0 ... 8311 8311 8383 8383 8403 \n", + "19 0 ... 112742 113590 114361 115057 115705 \n", + "20 0 ... 540592 541038 541434 541877 542268 \n", + "21 0 ... 2061 2268 2331 2457 2647 \n", + "22 0 ... 268687 269787 270921 272273 273659 \n", + "23 0 ... 738631 739488 741205 743882 746302 \n", + "24 0 ... 12145 12175 12188 12195 12207 \n", + "25 0 ... 4560 5039 5039 5143 5143 \n", + "26 0 ... 864 866 866 866 866 \n", + "27 0 ... 236732 237144 237706 238495 239524 \n", + "28 0 ... 125402 126139 126413 126781 127135 \n", + "29 0 ... 24926 25802 25802 25802 26524 \n", + ".. ... ... ... ... ... ... ... \n", + "244 0 ... 102 102 102 102 103 \n", + "245 0 ... 5874 5882 5953 6007 6085 \n", + "246 0 ... 7642 7646 7656 7663 7666 \n", + "247 0 ... 223244 223549 224329 225116 226015 \n", + "248 0 ... 2586183 2594128 2602034 2609359 2616600 \n", + "249 5 ... 27644213 27698190 27760660 27830489 27899755 \n", + "250 0 ... 40019 40055 40063 40102 40154 \n", + "251 0 ... 1316520 1319060 1322406 1326891 1333332 \n", + "252 0 ... 348772 351895 355131 358583 361877 \n", + "253 0 ... 18 18 18 18 18 \n", + "254 0 ... 694 695 695 697 699 \n", + "255 0 ... 114 114 114 114 114 \n", + "256 0 ... 416 416 419 419 425 \n", + "257 0 ... 3999 4004 4009 4013 4016 \n", + "258 0 ... 53 53 54 54 54 \n", + "259 0 ... 4219 4223 4224 4226 4227 \n", + "260 0 ... 436 436 437 437 444 \n", + "261 0 ... 20 20 20 20 20 \n", + "262 0 ... 4 4 4 4 4 \n", + "263 0 ... 1873 1874 1874 1909 1928 \n", + "264 0 ... 4038078 4047843 4058468 4071185 4083242 \n", + "265 0 ... 48909 49360 49725 50208 50752 \n", + "266 0 ... 79416 79442 79461 79497 79548 \n", + "267 0 ... 1 1 1 1 1 \n", + "268 0 ... 133218 133577 133927 134319 134781 \n", + "269 2 ... 2228 2269 2311 2329 2347 \n", + "270 0 ... 167604 168444 169487 170527 171154 \n", + "271 0 ... 2145 2145 2148 2151 2154 \n", + "272 0 ... 69437 70248 70823 71677 72467 \n", + "273 0 ... 35172 35222 35315 35423 35543 \n", + "\n", + " 2/19/21 2/20/21 2/21/21 2/22/21 2/23/21 \n", + "0 55575 55580 55604 55617 55646 \n", + "1 97909 99062 100246 101285 102306 \n", + "2 111600 111764 111917 112094 112279 \n", + "3 10645 10672 10699 10712 10739 \n", + "4 20478 20499 20519 20548 20584 \n", + "5 548 598 598 614 636 \n", + "6 2054681 2060625 2064334 2069751 2077228 \n", + "7 170011 170234 170402 170506 170672 \n", + "8 118 118 118 118 118 \n", + "9 5146 5149 5150 5154 5155 \n", + "10 104 104 104 104 104 \n", + "11 1321 1321 1323 1323 1323 \n", + "12 608 610 610 612 613 \n", + "13 234 234 234 234 234 \n", + "14 20479 20479 20479 20479 20479 \n", + "15 910 911 912 913 913 \n", + "16 441659 443536 445374 446644 448371 \n", + "17 232829 232973 233129 233201 233424 \n", + "18 8403 8403 8403 8471 8477 \n", + "19 116482 117234 117809 118530 119205 \n", + "20 542674 543024 543351 543717 544116 \n", + "21 2677 2715 2772 2791 2852 \n", + "22 275322 276990 278312 279456 280428 \n", + "23 749739 752379 754473 755594 757696 \n", + "24 12227 12244 12244 12255 12264 \n", + "25 5143 5143 5434 5434 5434 \n", + "26 866 866 866 866 867 \n", + "27 240676 241771 242292 243176 244380 \n", + "28 127537 127537 127537 128661 129176 \n", + "29 26524 26524 26524 27721 27721 \n", + ".. ... ... ... ... ... \n", + "244 103 103 103 103 107 \n", + "245 6182 6268 6319 6348 6466 \n", + "246 7666 7676 7680 7682 7686 \n", + "247 226740 227643 228362 228937 229781 \n", + "248 2624019 2631876 2638422 2646526 2655633 \n", + "249 28006110 28077620 28134115 28190159 28261595 \n", + "250 40168 40199 40213 40221 40243 \n", + "251 1340054 1346527 1351190 1354545 1358871 \n", + "252 365017 368175 370425 372530 375535 \n", + "253 18 18 18 18 18 \n", + "254 699 699 699 699 703 \n", + "255 114 114 114 114 114 \n", + "256 428 428 428 431 431 \n", + "257 4023 4025 4026 4030 4030 \n", + "258 54 54 54 54 54 \n", + "259 4228 4228 4228 4232 4234 \n", + "260 449 450 450 456 462 \n", + "261 20 20 20 20 20 \n", + "262 4 4 4 4 4 \n", + "263 1984 2028 2028 2029 2051 \n", + "264 4095269 4105675 4115509 4126150 4134639 \n", + "265 51377 52163 52815 53310 53973 \n", + "266 79598 79632 79654 79681 79717 \n", + "267 1 1 1 1 1 \n", + "268 135114 135603 136068 136545 136986 \n", + "269 2362 2368 2383 2392 2403 \n", + "270 171717 172315 173635 174969 176377 \n", + "271 2157 2157 2165 2176 2187 \n", + "272 73203 73894 74503 75027 75582 \n", + "273 35710 35768 35796 35862 35910 \n", + "\n", + "[274 rows x 403 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url)\n", + "raw_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On remplace `NaN` par `'0'`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "data = raw_data.fillna('0').copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous pouvons récupérer les données en regardant si la ligne `\"Province/State\"=='0'`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...2/14/212/15/212/16/212/17/212/18/212/19/212/20/212/21/212/22/212/23/21
1290France46.22762.2137002333...3447518345189434712683495775351717735412823562707358432635889723608271
\n", + "

1 rows × 403 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", + "129 0 France 46.2276 2.2137 0 0 2 \n", + "\n", + " 1/25/20 1/26/20 1/27/20 ... 2/14/21 2/15/21 2/16/21 2/17/21 \\\n", + "129 3 3 3 ... 3447518 3451894 3471268 3495775 \n", + "\n", + " 2/18/21 2/19/21 2/20/21 2/21/21 2/22/21 2/23/21 \n", + "129 3517177 3541282 3562707 3584326 3588972 3608271 \n", + "\n", + "[1 rows x 403 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[data[\"Country/Region\"]==\"France\"][data[data[\"Country/Region\"]==\"France\"][\"Province/State\"]=='0']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données commencent à partir de 5e colonne." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "list_countries = [\"Belgium\", \"France\", \"Germany\", \"Iran\", \"Italy\", \"Japan\", \"Korea, South\",\n", + " \"Netherlands\", \"Portugal\", \"Spain\", \"United Kingdom\", \"US\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "donnees = []\n", + "for c in list_countries:\n", + " donnees.append(np.array(data[data[\"Country/Region\"]==c][data[data[\"Country/Region\"]==c][\"Province/State\"]=='0'].iloc[0,4:]))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "assert len(donnees) == len(list_countries)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "hong_kong = raw_data[raw_data[\"Province/State\"]==\"Hong Kong\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...2/14/212/15/212/16/212/17/212/18/212/19/212/20/212/21/212/22/212/23/21
70Hong KongChina22.3114.2022588...10779107881079610812108201083310848108681088410896
\n", + "

1 rows × 403 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", + "70 Hong Kong China 22.3 114.2 0 2 2 \n", + "\n", + " 1/25/20 1/26/20 1/27/20 ... 2/14/21 2/15/21 2/16/21 2/17/21 \\\n", + "70 5 8 8 ... 10779 10788 10796 10812 \n", + "\n", + " 2/18/21 2/19/21 2/20/21 2/21/21 2/22/21 2/23/21 \n", + "70 10820 10833 10848 10868 10884 10896 \n", + "\n", + "[1 rows x 403 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hong_kong" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "donnees.append(np.array(hong_kong.iloc[0, 4:]))\n", + "list_countries.append(\"Hong Kong\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On prépare les données pour la Chine." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...2/14/212/15/212/16/212/17/212/18/212/19/212/20/212/21/212/22/212/23/21
58AnhuiChina31.8257117.2261915396070...994994994994994994994994994994
59BeijingChina40.1824116.414142236416880...1046104610461046104610461046104710471047
60ChongqingChina30.0572107.87469275775110...591591591591591591591591591591
61FujianChina26.0789117.9871510183559...548548548548548548548549549549
62GansuChina35.7518104.2860224714...187187187187187187187187187187
63GuangdongChina23.3417113.42426325378111151...2163217121772180218021832184218721962196
64GuangxiChina23.8298108.7882523233646...267267267267267267267267267267
65GuizhouChina26.8154106.875133457...147147147147147147147147147147
66HainanChina19.1959109.745458192233...171171171171171171171171171171
67HebeiChina39.549116.13111281318...1317131713171317131713171317131713171317
68HeilongjiangChina47.862127.76102491521...1609160916091610161016101610161016101610
69HenanChina37.8957114.9045593283128...1304130413041304130413041304130413041304
71HubeiChina30.9756112.27144444454976110581423...68150681506815068151681516815168151681516815168151
72HunanChina27.6104111.70949244369100...1033103310331033103410351035103610361036
73Inner MongoliaChina44.0935113.9450017711...367367367367367367367367367367
74JiangsuChina32.9711119.455159183347...703703703703703703703703703704
75JiangxiChina27.614115.7222718183672...935935935935935935935935935935
76JilinChina43.6661126.192013446...573573573573573573573573573573
77LiaoningChina41.2956122.609234172127...404404404404404405406406406406
78MacauChina22.1667113.55122256...48484848484848484848
79NingxiaChina37.2692106.165112347...75757575757575757575
80QinghaiChina35.745295.9956000116...18181818181818181818
81ShaanxiChina35.1917108.87035152235...545547547547547547547547547549
82ShandongChina36.3427118.152615274675...867867867867867867867867867868
83ShanghaiChina31.202121.44991620334053...1760176517651769177617781781178317831786
84ShanxiChina37.5777112.2921116913...239239239239239239239239240240
85SichuanChina30.6171102.715815284469...878879880882882883885887887889
86TianjinChina39.3054117.323448101423...349349349349351351351352352353
87TibetChina31.692788.0924000000...1111111111
88XinjiangChina41.112985.2401022345...980980980980980980980980980980
89YunnanChina24.974101.487125111626...231231231231231231231231231231
90ZhejiangChina29.1832120.09310274362104128...1320132013201320132013201320132013201321
\n", + "

32 rows × 403 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", + "58 Anhui China 31.8257 117.226 1 9 \n", + "59 Beijing China 40.1824 116.414 14 22 \n", + "60 Chongqing China 30.0572 107.874 6 9 \n", + "61 Fujian China 26.0789 117.987 1 5 \n", + "62 Gansu China 35.7518 104.286 0 2 \n", + "63 Guangdong China 23.3417 113.424 26 32 \n", + "64 Guangxi China 23.8298 108.788 2 5 \n", + "65 Guizhou China 26.8154 106.875 1 3 \n", + "66 Hainan China 19.1959 109.745 4 5 \n", + "67 Hebei China 39.549 116.131 1 1 \n", + "68 Heilongjiang China 47.862 127.761 0 2 \n", + "69 Henan China 37.8957 114.904 5 5 \n", + "71 Hubei China 30.9756 112.271 444 444 \n", + "72 Hunan China 27.6104 111.709 4 9 \n", + "73 Inner Mongolia China 44.0935 113.945 0 0 \n", + "74 Jiangsu China 32.9711 119.455 1 5 \n", + "75 Jiangxi China 27.614 115.722 2 7 \n", + "76 Jilin China 43.6661 126.192 0 1 \n", + "77 Liaoning China 41.2956 122.609 2 3 \n", + "78 Macau China 22.1667 113.55 1 2 \n", + "79 Ningxia China 37.2692 106.165 1 1 \n", + "80 Qinghai China 35.7452 95.9956 0 0 \n", + "81 Shaanxi China 35.1917 108.87 0 3 \n", + "82 Shandong China 36.3427 118.15 2 6 \n", + "83 Shanghai China 31.202 121.449 9 16 \n", + "84 Shanxi China 37.5777 112.292 1 1 \n", + "85 Sichuan China 30.6171 102.71 5 8 \n", + "86 Tianjin China 39.3054 117.323 4 4 \n", + "87 Tibet China 31.6927 88.0924 0 0 \n", + "88 Xinjiang China 41.1129 85.2401 0 2 \n", + "89 Yunnan China 24.974 101.487 1 2 \n", + "90 Zhejiang China 29.1832 120.093 10 27 \n", + "\n", + " 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/14/21 2/15/21 2/16/21 \\\n", + "58 15 39 60 70 ... 994 994 994 \n", + "59 36 41 68 80 ... 1046 1046 1046 \n", + "60 27 57 75 110 ... 591 591 591 \n", + "61 10 18 35 59 ... 548 548 548 \n", + "62 2 4 7 14 ... 187 187 187 \n", + "63 53 78 111 151 ... 2163 2171 2177 \n", + "64 23 23 36 46 ... 267 267 267 \n", + "65 3 4 5 7 ... 147 147 147 \n", + "66 8 19 22 33 ... 171 171 171 \n", + "67 2 8 13 18 ... 1317 1317 1317 \n", + "68 4 9 15 21 ... 1609 1609 1609 \n", + "69 9 32 83 128 ... 1304 1304 1304 \n", + "71 549 761 1058 1423 ... 68150 68150 68150 \n", + "72 24 43 69 100 ... 1033 1033 1033 \n", + "73 1 7 7 11 ... 367 367 367 \n", + "74 9 18 33 47 ... 703 703 703 \n", + "75 18 18 36 72 ... 935 935 935 \n", + "76 3 4 4 6 ... 573 573 573 \n", + "77 4 17 21 27 ... 404 404 404 \n", + "78 2 2 5 6 ... 48 48 48 \n", + "79 2 3 4 7 ... 75 75 75 \n", + "80 0 1 1 6 ... 18 18 18 \n", + "81 5 15 22 35 ... 545 547 547 \n", + "82 15 27 46 75 ... 867 867 867 \n", + "83 20 33 40 53 ... 1760 1765 1765 \n", + "84 1 6 9 13 ... 239 239 239 \n", + "85 15 28 44 69 ... 878 879 880 \n", + "86 8 10 14 23 ... 349 349 349 \n", + "87 0 0 0 0 ... 1 1 1 \n", + "88 2 3 4 5 ... 980 980 980 \n", + "89 5 11 16 26 ... 231 231 231 \n", + "90 43 62 104 128 ... 1320 1320 1320 \n", + "\n", + " 2/17/21 2/18/21 2/19/21 2/20/21 2/21/21 2/22/21 2/23/21 \n", + "58 994 994 994 994 994 994 994 \n", + "59 1046 1046 1046 1046 1047 1047 1047 \n", + "60 591 591 591 591 591 591 591 \n", + "61 548 548 548 548 549 549 549 \n", + "62 187 187 187 187 187 187 187 \n", + "63 2180 2180 2183 2184 2187 2196 2196 \n", + "64 267 267 267 267 267 267 267 \n", + "65 147 147 147 147 147 147 147 \n", + "66 171 171 171 171 171 171 171 \n", + "67 1317 1317 1317 1317 1317 1317 1317 \n", + "68 1610 1610 1610 1610 1610 1610 1610 \n", + "69 1304 1304 1304 1304 1304 1304 1304 \n", + "71 68151 68151 68151 68151 68151 68151 68151 \n", + "72 1033 1034 1035 1035 1036 1036 1036 \n", + "73 367 367 367 367 367 367 367 \n", + "74 703 703 703 703 703 703 704 \n", + "75 935 935 935 935 935 935 935 \n", + "76 573 573 573 573 573 573 573 \n", + "77 404 404 405 406 406 406 406 \n", + "78 48 48 48 48 48 48 48 \n", + "79 75 75 75 75 75 75 75 \n", + "80 18 18 18 18 18 18 18 \n", + "81 547 547 547 547 547 547 549 \n", + "82 867 867 867 867 867 867 868 \n", + "83 1769 1776 1778 1781 1783 1783 1786 \n", + "84 239 239 239 239 239 240 240 \n", + "85 882 882 883 885 887 887 889 \n", + "86 349 351 351 351 352 352 353 \n", + "87 1 1 1 1 1 1 1 \n", + "88 980 980 980 980 980 980 980 \n", + "89 231 231 231 231 231 231 231 \n", + "90 1320 1320 1320 1320 1320 1320 1321 \n", + "\n", + "[32 rows x 403 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[data[\"Country/Region\"]==\"China\"][data[data[\"Country/Region\"]==\"China\"][\"Province/State\"]!=\"Hong Kong\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "china = np.array(data[data[\"Country/Region\"]==\"China\"][data[data[\"Country/Region\"]==\"China\"][\"Province/State\"]!=\"Hong Kong\"].iloc[:, 4:])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`china` doit avoir un `shape`: (32, 399)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "assert china.shape == (32, 399)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous pouvons faire la somme sur les provinces pour avoir les données du pays." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "donnees.append(np.sum(china, axis=0))\n", + "list_countries.append(\"China\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAHdCAYAAAAekb9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYVeX+///nAhFUnMfSFPRkgICAgKhoOKRmSJqaqTlkTllZNlhWGvWrvp3qHMus43HMzKmcMjVTU0TUMkwyE5WGbWkex0RRUYb1+4PcH0UE1A1rA6/HdXm599r3Wuu1N53Tuzf3vm/DNE1ERERERMo6F6sDiIiIiIg4AxXGIiIiIiKoMBYRERERAVQYi4iIiIgAKoxFRERERAAVxiIiIiIigMWFsWEYswzDOGoYxu5CjJ1kGEbS33/2G4ZxqjgyioiIiEjZYFi5jrFhGO2ANOBj0zT9r+O8x4Fg0zSHFlk4ERERESlTLO0Ym6YZD5y8/JhhGE0Mw1hjGMYOwzA2G4bhk8ep/YAFxRJSRERERMqEclYHyMM0YJRpmimGYbQEPgQ6XHrRMIxGgDewwaJ8IiIiIlIKOVVhbBiGJ9Aa+MwwjEuH3XMNewBYbJpmVnFmExEREZHSzakKY3KmdpwyTTMonzEPAI8WUx4RERERKSOcark20zRPA78ZhtEHwMjR/NLrhmHcAVQHtlkUUURERERKKauXa1tATpF7h2EYBw3DeBgYADxsGMYPwE/AvZed0g9YaFq5lIaIiIiIlEqWLtcmIiIiIuIsnGoqhYiIiIiIVVQYi4iIiIhg4aoUtWrVMr28vKy6vYiIiIiUETt27DhummbtgsZZVhh7eXmRmJho1e1FREREpIwwDONAYcZpKoWIiIiICCqMRUREREQAFcYiIiIiIoCTbQmdkZHBwYMHSU9PtzqK3CQPDw8aNGiAm5ub1VFERERECsWpCuODBw9SuXJlvLy8MAzD6jhyg0zT5MSJExw8eBBvb2+r44iIiIgUilNNpUhPT6dmzZoqiks4wzCoWbOmOv8iIiJSojhVYQyoKC4l9HMUERGRksbpCmOrubq6EhQURPPmzQkJCWHr1q0FnuPp6VngmGHDhrFnzx5HRBQRERGRIuBUc4ydQYUKFUhKSgLgq6++Yvz48WzatOmmrztjxoybvoaIiIiIFB11jPNx+vRpqlevbn/+9ttvExYWRmBgIC+//PJV47Ozsxk9ejTNmjUjOjqabt26sXjxYgCioqLsO/1d3mFevHgxQ4YMAWDIkCE88sgjtG/fnsaNG7Np0yaGDh2Kr6+vfYyIiIiIFA2n7RiveRL+l+TYa9YLgq7v5j/m/PnzBAUFkZ6ezuHDh9mwYQMAa9euJSUlhe3bt2OaJjExMcTHx9OuXTv7uUuXLsVms/Hjjz9y9OhRfH19GTp06HVl/Ouvv9iwYQMrVqyge/fubNmyhRkzZhAWFkZSUhJBQUHX/b5FREREpGDqGOdyaSrF3r17WbNmDYMGDcI0TdauXcvatWsJDg4mJCSEvXv3kpKScsW5CQkJ9OnTBxcXF+rVq0f79u2v+/7du3fHMAwCAgKoW7cuAQEBuLi40KxZM2w2m4PepYiIiIjk5rQd44I6u8WhVatWHD9+nGPHjmGaJuPHj2fkyJHXHG+aZqGue/mKDbmXNHN3dwfAxcXF/vjS88zMzOuJLyIiIiLXQR3jfOzdu5esrCxq1qxJly5dmDVrFmlpaQAcOnSIo0ePXjE+MjKSJUuWkJ2dzZEjR4iLi8vzunXr1iU5OZns7GyWLVtW1G9DRERERArBaTvGVrk0xxhyOsBz5szB1dWVzp07k5ycTKtWrYCcL9B98skn1KlTx35ur169+Prrr/H396dp06a0bNmSqlWrXnWPN998k+joaG677Tb8/f3txbaIiIiIWMco7K//HS00NNS8tErDJcnJyfj6+lqSx1HS0tLw9PTkxIkThIeHs2XLFurVq2d1LEuUhp+niIiIlHyGYewwTTO0oHHqGDtYdHQ0p06d4uLFi0yYMKHMFsUiIiIiVzhxCGrWtzpFvlQYO9i15hWLiIiIlElnT8GKyfDjJnhyFtRpZHWia1JhLCIiIiKOd+EcbF0KmxbAxfPQYRDUuNXqVPlSYSwiIiIijpOVCduWwYa5Od1i39bQdSTU87Y6WYFUGIuIiIiIYxz7Axb+f3BwL/wjFLoMg4Z+VqcqNBXGIiIiInLz/vcrTB8L2dkw4BUIiILLNjUrCVQY5+Lq6kpAQID9+fLly/Hy8rIukIiIiIgzM034fg18MQXc3GHU+1C7odWpbogK41wqVKhAUlLSNV/PzMykXDl9bCIiIiKcOARL34Gfd0Ajf+j7EtR07i/Y5UdbQhfCRx99RJ8+fejevTudO3cmLS2Njh07EhISQkBAAJ9//jkANpsNX19fhg8fTrNmzejcuTPnz58H4Oeff6ZTp040b96ckJAQfvnlFwDefvttwsLCCAwM5OWXX7bsPYqIiIgU2rnTsOpD+Pdg+CMZejwFo6aU6KIYnLhjPPe9bA6kOPaajW6HgU/k/98Cl28J7e3tzbJlywDYtm0bu3btokaNGmRmZrJs2TKqVKnC8ePHiYiIICYmBoCUlBQWLFjA9OnTuf/++1myZAkPPvggAwYM4Pnnn6dnz56kp6eTnZ3N2rVrSUlJYfv27ZimSUxMDPHx8bRr186xb1xERETEETIuQMJnEDcfLpyFkC7QZThUrW11Modw2sLYKteaSnHXXXdRo0YNAEzT5IUXXiA+Ph4XFxcOHTrEkSNHgJxi+lJh3aJFC2w2G2fOnOHQoUP07NkTAA8PDwDWrl3L2rVrCQ4OBnK2k05JSVFhLCIiIs5n/3ZY9i84eRj82uQUxPUaW53KoZy2MC6os1vcKlWqZH88b948jh07xo4dO3Bzc8PLy4v09HQA3N3d7eNcXV05f/48pmnmeU3TNBk/fjwjR44s2vAiIiIiN8o0YeNcWDsz50t1I96FJiFWpyoSzlV9lhCpqanUqVMHNzc3Nm7cyIEDB/IdX6VKFRo0aMDy5csBuHDhAufOnaNLly7MmjWLtLQ0AA4dOsTRo0eLPL+IiIhIoWRnwZK34asZENQJHp9eaoticOKOsTMbMGAA3bt3JzQ0lKCgIHx8fAo8Z+7cuYwcOZKJEyfi5ubGZ599RufOnUlOTqZVq1YAeHp68sknn1CnTp2ifgsiIiIi+cvMgEWvwa6NOds5d364xK1LfL2Ma/2av6iFhoaaiYmJVxxLTk7G19fXkjziePp5ioiIlFAXz8PcibD/W7hnNLR7wOpEN8UwjB2maYYWNE4dYxERERH5P2dOwEfj4dB+6DUOwqOtTlRsVBiLiIiISI7Dv8Cc8ZB2Cga9nrP6RBmiwlhEREREYM8WWPAqeFTK2da5wR1WJyp2KoxFREREyjLThPiF8OVUqH8HDH4DqtSyOpUlVBiLiIiIlFWZGTmbdiSuhoD2cP94KO9hdSrLqDAWERERKYuys2Dha/DjRug4BDoNAZeyvcVF2X7313DkyBH69+9P48aNadGiBa1atWLZsmVWxxIRERFxDNOEFe/lFMX3jIbOQ8t8UQwqjK9imiY9evSgXbt2/Prrr+zYsYOFCxdy8ODBQp2flZVVxAlFREREbtLXH8O25XBnvxK/RrEjqTDOZcOGDZQvX55Ro0bZjzVq1IjHH3+crKwsnn32WcLCwggMDOS///0vAHFxcbRv357+/fsTEBCAzWbDx8eHYcOG4e/vz4ABA1i/fj1t2rTh9ttvZ/v27QBs376d1q1bExwcTOvWrdm3bx8AH330Effddx9du3bl9ttvZ9y4cQDMnDmTsWPH2nNNnz6dp556qrg+GhERESkNvvkc1s2EkC7QdaTVaZyK084xfntFJvsPZzv0mk1vceHZmPzf8k8//URISN57gM+cOZOqVavy3XffceHCBdq0aUPnzp2BnCJ39+7deHt7Y7PZ+Pnnn/nss8+YNm0aYWFhzJ8/n4SEBFasWMEbb7zB8uXL8fHxIT4+nnLlyrF+/XpeeOEFlixZAkBSUhI7d+7E3d2dO+64g8cff5wHHniAwMBA3nrrLdzc3Jg9e7a9OBcREREp0O5NsHwS+LSC3s9p+kQuTlsYO4tHH32UhIQEypcvT6NGjdi1axeLFy8GIDU1lZSUFMqXL094eDje3t7287y9vQkICACgWbNmdOzYEcMw7B3lS+cPHjyYlJQUDMMgIyPDfn7Hjh2pWrUqAH5+fhw4cIDbbruNDh06sHLlSnx9fcnIyLDfQ0RERCRfP++A+a/Cbb4w4BVwVRmYm9N+IgV1dotKs2bN7F1bgA8++IDjx48TGhpKw4YNef/99+nSpcsV58TFxVGpUqUrjrm7u9sfu7i42J+7uLiQmZkJwIQJE2jfvj3Lli3DZrMRFRWV5/murq72c4YNG8Ybb7yBj48PDz30kGPetIiIiJRufyTDnBegVgN46J9lekm2/Kh/nkuHDh1IT0/nP//5j/3YuXPnAOjSpQv/+c9/7J3d/fv3c/bs2Ru+V2pqKvXr1wdy5hUXRsuWLfnjjz+YP38+/fr1u+F7i4iISBlxxAazxoFnNRj2L6hYxepETkuFcS6GYbB8+XI2bdqEt7c34eHhDB48mH/+858MGzYMPz8/QkJC8Pf3Z+TIkfZO7o0YN24c48ePp02bNte1msX9999PmzZtqF69+g3fW0RERMqA08dh5tPg4goP/6vM7mhXWIZpmpbcODQ01ExMTLziWHJyMr6+vpbkKUmio6MZO3YsHTt2tDpKvvTzFBERsVDmRfjvE3D4Fxj9Adx6u9WJLGMYxg7TNEMLGqeOcQly6tQpmjZtSoUKFZy+KBYRERELZWfBojfg95+g7wtluii+Hk775Tu5WrVq1di/f7/VMURERMSZZWfDZ2/Crg3Q7REIiLI6UYmhjrGIiIhIabJpPnz/Fdz1cM7OdlJoKoxFRERESotfdsJXM6B5R+g4yOo0JY4KYxEREZHS4MI5+PQNqFkfej0LhmF1ohJHhbGIiIhIafDlVEg9CvePB/eKVqcpkVQY5+Lp6Wl1BBEREZHr82sSbFsObXpDI3+r05RYKowL4Xo23xAREREpVhfTYfE/ocat0GWY1WlKNBXG1xAXF0f79u3p378/AQEBAPTo0YMWLVrQrFkzpk2bZh/r6enJiy++SPPmzYmIiODIkSNWxRYREZGyZu0MOHEIeo+D8hWsTlOiOe06xs/uPMeuU47t1AZWc+Xt4MLPudm+fTu7d+/G29sbgFmzZlGjRg3Onz9PWFgYvXr1ombNmpw9e5aIiAhef/11xo0bx/Tp03nppZccml1ERETkKvu2w+ZPoVUPaBJidZoSTx3jfISHh9uLYoDJkyfbu8J//PEHKSkpAJQvX57o6GgAWrRogc1msyKuiIiIlCVnTsCnr0M9b7jnUavTlApO2zG+ns5uUalUqZL9cVxcHOvXr2fbtm1UrFiRqKgo0tPTAXBzc8P4e0kUV1dXMjMzLckrIiIiZUR2ds6Wz+lnYfi74OZudaJSQR3jQkpNTaV69epUrFiRvXv38s0331gdSURERMqqzYsg5Tvo/nhOx1gcQoVxIXXt2pXMzEwCAwOZMGECERERVkcSERGRsuiPZFgzDfzvhJYxVqcpVQzTNPMfYBi3AR8D9YBsYJppmu/lGhMFfA789vehpaZpvprfdUNDQ83ExMQrjiUnJ+Pr63s9+cWJ6ecpIiLiYOlnYfIwyMyAJ2dDxcpWJyoRDMPYYZpmaEHjCjPHOBN42jTN7w3DqAzsMAxjnWmae3KN22yaZvSNhBURERGRAmRnwYJX4K//wYj3VBQXgQKnUpimedg0ze//fnwGSAbqF3UwEREREbnMmmmw9xu490nwDrQ6Tal0XXOMDcPwAoKBb/N4uZVhGD8YhvGlYRjNrnH+CMMwEg3DSDx27Nh1hxUREREpk2w/QvxCiLg3548UiUIXxoZheAJLgCdN0zyd6+XvgUamaTYH3geW53UN0zSnmaYZappmaO3atW80s4iIiEjZkXkRlrwFVetAt0esTlOqFaowNgzDjZyieJ5pmktzv26a5mnTNNP+frwacDMMo5ZDk4qIiIiURZs/haMHoOfT4G79Pg+lWYGFsZGzc8VMINk0zX9fY0y9v8dhGEb439c94cigIiIiImXO6eOwYS74RYKPlootaoXpGLcBBgIdDMNI+vtPN8MwRhmGMervMb2B3YZh/ABMBh4wC1oHzkl5enoCYLPZmD9/foHjbTYb/v7+RR1LREREyqKvZkBWBtwz2uokZUKBy7WZppkAGAWMmQJMcVQoZ3CpMO7fv7/VUURERKQsOrQPdnwJbftCrQZWpykTtPPdNTz//PNs3ryZoKAgJk2ahM1mo23btoSEhBASEsLWrVuvOqdt27YkJSXZn7dp04Zdu3YVZ2wREREpDUwTvngfKlaFDoOsTlNmFGaDD0vE/vkXe85nOPSafhXciL21eqHGvvnmm7zzzjusXLkSgHPnzrFu3To8PDxISUmhX79+5N65b9iwYXz00Ue8++677N+/nwsXLhAYqHUGRURE5Drt2gi/7cr5wl0FT6vTlBnqGBdSRkYGw4cPJyAggD59+rBnT+6N/6BPnz6sXLmSjIwMZs2axZAhQ4o/qIiIiJRsF87Byilw6+0Qrk2Fi5PzdowL2dktLpMmTaJu3br88MMPZGdn4+HhcdWYihUrctddd/H555/z6aefXtVRFhERESnQullw5gQMfA1cXK1OU6Y4bWFstcqVK3PmzBn789TUVBo0aICLiwtz5swhKysrz/OGDRtG9+7dadu2LTVq1CiuuCIiIlIaHP4FtiyBsGho6Gd1mjJHUymuITAwkHLlytG8eXMmTZrE6NGjmTNnDhEREezfv59KlSrleV6LFi2oUqUKDz30UDEnFhERkRItOxuW/StnTvHdI61OUyapY5xLWloaAG5ubnz99ddXvHb5ChP/7//9PwC8vLzYvXu3/fiff/5JdnY2nTt3Loa0IiIiUmp8uwIO7IY+46FiFavTlEnqGDvQxx9/TMuWLXn99ddxcdFHKyIiIoV0aF/OF+6ahkOLrlanKbPUMXagQYMGMWiQ1hoUERGR63AxHT55GSpVhQdeAiPffdWkCKmtKSIiImKlr+fAyT/hgQlQqZrVaco0FcYiIiIiVvnfbxC/EEK7QeMgq9OUeSqMRURERKzy1XRwrwDdRlmdRFBhLCIiImKNw7/AngRo00dTKJyECuM8eHpqT3IREREpYhs/gfIVoE0vq5PI31QYi4iIiBS3Y3/Aro3QuqfWLHYiKoyvIS0tjY4dOxISEkJAQACff/45ADabDR8fHwYPHkxgYCC9e/fm3LlzALz66quEhYXh7+/PiBEjME0TgKioKJ577jnCw8Np2rQpmzdvtux9iYiIiBOImweu5SDyfquTyGWcdh3jD8/9yS9Z6Q69ZhNXD0ZXvLVQYz08PFi2bBlVqlTh+PHjREREEBMTA8C+ffuYOXMmbdq0YejQoXz44Yc888wzPPbYY0ycOBGAgQMHsnLlSrp37w5AZmYm27dvZ/Xq1bzyyiusX7/eoe9NRERESoi//gfffwWtekDlGlankcuoY3wNpmnywgsvEBgYSKdOnTh06BBHjhwB4LbbbqNNmzYAPPjggyQkJACwceNGWrZsSUBAABs2bOCnn36yX+++++4DoEWLFthstuJ9MyIiIuI8Ns3P2cSjXT+rk0guTtsxLmxnt6jMmzePY8eOsWPHDtzc3PDy8iI9PaeDbeTakcYwDNLT0xk9ejSJiYncdtttxMbG2scDuLu7A+Dq6kpmZmbxvRERERFxHqePw3erocXdUK2O1WkkF3WMryE1NZU6derg5ubGxo0bOXDggP2133//nW3btgGwYMECIiMj7UVwrVq1SEtLY/HixZbkFhEREScWvwiyMiGqv9VJJA8qjHPJzMzE3d2dAQMGkJiYSGhoKPPmzcPHx8c+xtfXlzlz5hAYGMjJkyd55JFHqFatGsOHDycgIIAePXoQFhZm4bsQERERp3P2FHy7AoI6Qc36VqeRPDjtVAqr/PTTTzRp0oRatWrZu8KXs9lsuLi4MHXq1Ktee+2113jttdeuOh4XF2d/XKtWLc0xFhERKYsSFsPF89D+QauTyDWoY3yZqVOn0q9fvzyLWxEREZEbdj4Nti4F/3ZQ18vqNHIN6hhfZtSoUYwalf9e5V5eXuzevbuYEomIiEipsG0ZpKdBh4FWJ5F8qGMsIiIiUpTSz8LmReATAfXvsDqN5EOFsYiIiEhR2roUzp2GTg9ZnUQKoMJYREREpKikn4X4heDTCm7ztTqNFECFsYiIiEhR2boEzp+Bu9QtLglUGOfi6elpf7x69Wpuv/12fv/9d0uyzJo1i4CAAAIDA/H39+fzzz+/oeskJSWxevVq+/PY2FjeeecdR8UUERGRvJxPy9nQw7c1NPApeLxYTqtSXMPXX3/N448/ztq1a2nYsGGhzsnMzKRcOcd8pAcPHuT111/n+++/p2rVqqSlpXHs2LEbulZSUhKJiYl069bNIdlERESkEC51izW3uMRQxzgPmzdvZvjw4axatYomTZoAcODAATp27EhgYCAdO3a0d5GHDBnCU089Rfv27Xnuuec4e/YsQ4cOJSwsjODgYHuX12az0bZtW0JCQggJCWHr1q35Zjh69CiVK1e2d7A9PT3x9vYGcgrdiIgIAgMD6dmzJ3/99RcAUVFRJCYmAnD8+HG8vLy4ePEiEydOZNGiRQQFBbFo0SIA9uzZQ1RUFI0bN2by5MkO/gRFRETKuPNpOStR+LWBBlqJoqRw2o7xkuwUDpHm0GvWx5NeLrfnO+bChQvce++9xMXFXbEN9GOPPcagQYMYPHgws2bNYsyYMSxfvhyA/fv3s379elxdXXnhhRfo0KEDs2bN4tSpU4SHh9OpUyfq1KnDunXr8PDwICUlhX79+tmL2Lw0b96cunXr4u3tTceOHbnvvvvo3r07AIMGDeL999/nzjvvZOLEibzyyiu8++67eV6nfPnyvPrqqyQmJjJlyhQgZyrF3r172bhxI2fOnOGOO+7gkUcewc3N7bo+TxEREbmGLYtziuNOQ6xOItdBHeNc3NzcaN26NTNnzrzi+LZt2+jfvz8AAwcOJCEhwf5anz59cHV1BWDt2rW8+eabBAUFERUVRXp6Or///jsZGRkMHz6cgIAA+vTpw549e/LN4erqypo1a1i8eDFNmzZl7NixxMbGkpqayqlTp7jzzjsBGDx4MPHx8df9Pu+55x7c3d2pVasWderU4ciRI9d9DREREcnD+TRI+BT8IrVucQnjtB3jgjq7RcXFxYVPP/2UTp068cYbb/DCCy/kOc4wDPvjSpUq2R+bpsmSJUu4444r/4cQGxtL3bp1+eGHH8jOzsbDw6PALIZhEB4eTnh4OHfddRcPPfQQY8eOveb4cuXKkZ2dDUB6enq+13Z3d7c/dnV1JTMzs8A8IiIiUgg7v8opjrXLXYmjjnEeKlasyMqVK5k3b569c9y6dWsWLlwIwLx584iMjMzz3C5duvD+++9jmiYAO3fuBCA1NZVbbrkFFxcX5s6dS1ZWlv2cy6dsXPLnn3/y/fff258nJSXRqFEjqlatSvXq1dm8eTMAc+fOtXePvby82LFjBwCLFy+2n1u5cmXOnDlzYx+GiIiIFJ5pwvaVUL+p1i0ugZy2Y2y1GjVqsGbNGtq1a0etWrWYPHkyQ4cO5e2336Z27drMnj07z/MmTJjAk08+SWBgIKZp4uXlxcqVKxk9ejS9evXis88+o3379vYu8/Hjx+1F9OUyMjJ45pln+PPPP/Hw8KB27dpMnToVgDlz5jBq1CjOnTtH48aN7VmeeeYZ7r//fubOnUuHDh3s12rfvr19esf48eMd/VGJiIjIJQeT4fAv0PNpq5PIDTDyKsqKQ2hoqJn7y2fJycn4+pat/7pauXIlv/76K2PGjLE6isOVxZ+niIiUcYvfgqT18NIy8KhU8HgpFoZh7DBNM7SgceoYWyw6OtrqCCIiIuIIF87BD19D8w4qiksozTEWERERcYSkr+HieQhX06ukUmEsIiIi4gjbv4C63tCwmdVJ5AapMBYRERG5WX/+DAf35nSLL1vSVUoWFcYiIiIiN2v7F1CuPIR0sTqJ3AQVxiIiIiI342I67FwH/u2gYhWr08hNUGGci2EYPP30/609+M477xAbG5vvOXFxcWzdutX+fMiQIVdssHEjvLy8OH78+E1d4xJPT0+HXEdERETy8GMcpKdBeHerk8hNUmGci7u7O0uXLr2uojR3YXwzTNO0b+ssIiIiJcD2L6BWA2gcZHUSuUkqjHMpV64cI0aMYNKkSVe9duzYMXr16kVYWBhhYWFs2bIFm83G1KlTmTRpEkFBQfatmuPj42ndujWNGze+onv89ttvExYWRmBgIC+//DIANpsNX19fRo8eTUhICH/88ccV9+3RowctWrSgWbNmTJs2zX7c09OTF198kebNmxMREcGRI0cA+O2332jVqhVhYWFMmDDBPv7w4cO0a9eOoKAg/P397VlFRETkBh3aB7YfoWWMvnRXCjjtBh+bs3dyjFMOvWZtqtHWJbjAcY8++iiBgYGMGzfuiuNPPPEEY8eOJTIykt9//50uXbqQnJzMqFGj8PT05JlnngFg5syZHD58mISEBPbu3UtMTAy9e/dm7dq1pKSksH37dkzTJCYmhvj4eBo2bMi+ffuYPXs2H3744VV5Zs2aRY0aNTh//jxhYWH06tWLmjVrcvbsWSIiInj99dcZN24c06dP56WXXuKJJ57gkUceYdCgQXzwwQf268yfP58uXbrw4osvkpWVxblz527yExURESnjtiyF8hUg7B6rk4gDOG1hbKUqVaowaNAgJk+eTIUKFezH169fz549e+zPT58+zZkzZ/K8Ro8ePXBxccHPz8/eyV27di1r164lODinOE9LSyMlJYWGDRvSqFEjIiIi8rzW5MmTWbZsGQB//PEHKSkp1KxZk/Lly9t3zmvRogXr1q0DYMuWLSyoNMCIAAAgAElEQVRZsgSAgQMH8txzzwEQFhbG0KFDycjIoEePHgQF6Vc+IiIiNyztr5ztn8PvgQqVrU4jDuC0hXFhOrtF6cknnyQkJISHHnrIfiw7O5tt27ZdUSxfi7u7u/2xaZr2v8ePH8/IkSOvGGuz2ahUKe+tI+Pi4li/fj3btm2jYsWKREVFkZ6eDoCbmxvG37+2cXV1JTMz036ekcevc9q1a0d8fDyrVq1i4MCBPPvsswwaNKjA9yIiIiJ52LYMsjKg1X1WJxEH0Rzja6hRowb3338/M2fOtB/r3LkzU6ZMsT9PSkoCoHLlytfsHF+uS5cuzJo1i7S0NAAOHTrE0aNH8z0nNTWV6tWrU7FiRfbu3cs333xT4H3atGnDwoULAZg3b579+IEDB6hTpw7Dhw/n4Ycf5vvvvy/wWiIiIpKHC+dg61Lwi4S6XlanEQdRYZyPp59++orVKSZPnkxiYiKBgYH4+fkxdepUALp3786yZcuu+PJdXjp37kz//v1p1aoVAQEB9O7du8CCumvXrmRmZhIYGMiECROuOd3icu+99x4ffPABYWFhpKam2o/HxcURFBREcHAwS5Ys4YknnijwWiIiIpKH7Svh3GmI6m91EnEg49Kv+YtbaGiomZiYeMWx5ORkfH19Lckjjqefp4iIlEoXzsHbA6BWfRg1peDxYjnDMHaYphla0Dh1jEVERESux9dz4MwJuHuU1UnEwVQYi4iIiBTW0QOw+VMI7QaN/K1OIw6mwlhERESksL6aDm7ucPfIgsdKiaPCWERERKQw/kiG3fHQ7gHwrG51GikCKoxFRERECuOrGVCpKrS93+okUkRUGIuIiIgU5PhBSPkOIu8H94pWp5EiosI4F1dXV4KCgvD396dPnz6cO3fuus5/4403iiSXzWbD31+T/EVERCyxcy0YBoR0sTqJFCEVxrlUqFCBpKQkdu/eTfny5e2beBTENE2ys7OLrDAWERERi5gm7FwHjYOhWh2r00gRUmGcj7Zt2/Lzzz8D8O9//xt/f3/8/f159913gZwurq+vL6NHjyYkJISHH36Y8+fPExQUxIABA67q8r7zzjvExsYC8N133xEYGEirVq149tln7eNsNhtt27YlJCSEkJAQtm7dWrxvWkRERK50YDecOKRucRlQrqABhmHcBnwM1AOygWmmab6Xa4wBvAd0A84BQ0zT/P5mgu07F8+ZrGM3c4mrVHatzR0V2xVqbGZmJl9++SVdu3Zlx44dzJ49m2+//RbTNGnZsiV33nkn1atXZ9++fcyePZsPP/wQgM8++4ykpCQgp8i9loceeohp06bRunVrnn/+efvxOnXqsG7dOjw8PEhJSaFfv37k3iFQREREiklWJnzxPlSoDAF3Wp1GilhhOsaZwNOmafoCEcCjhmH45RpzN3D7339GAP9xaMpidKnjGxoaSsOGDXn44YdJSEigZ8+eVKpUCU9PT+677z42b94MQKNGjYiIiLiue5w6dYozZ87QunVrAPr3/7991jMyMhg+fDgBAQH06dOHPXv2OO7NiYiIyPVZPxsO7oX7ntWX7sqAAjvGpmkeBg7//fiMYRjJQH3g8ortXuBj0zRN4BvDMKoZhnHL3+fekMJ2dh3t0hzjy+W8rbxVqlTpmq+VK1eO7Oxs+/P09PQCrzdp0iTq1q3LDz/8QHZ2Nh4eHoWNLiIiIo508k+Imw8t7obAKKvTSDG4rjnGhmF4AcHAt7leqg/8cdnzg38fy33+CMMwEg3DSDx2zLHTJIpSu3btWL58OefOnePs2bMsW7aMtm3b5jnWzc2NjIwMAOrWrcvRo0c5ceIEFy5cYOXKlQBUr16dypUr88033wCwcOFC+/mpqanccsstuLi4MHfuXLKysor43YmIiEie4hflrETRZZjVSaSYFLowNgzDE1gCPGma5uncL+dxylVtUdM0p5mmGWqaZmjt2rWvL6mFQkJCGDJkCOHh4bRs2ZJhw4YRHByc59gRI0YQGBjIgAEDcHNzY+LEibRs2ZLo6Gh8fHzs42bOnMmIESNo1aoVpmlStWpVAEaPHs2cOXOIiIhg//79+XakRUREpIik/QXfrcr5wl3VklOzyM0x8vu1vn2QYbgBK4GvTNP8dx6v/xeIM01zwd/P9wFR+U2lCA0NNXN/qSw5ORlfX9/rewclVFpaGp6engC8+eabHD58mPfee6+As0qWsvTzFBGRUuar6bDxE3h6LtRuaHUauUmGYewwTTO0oHEFdoz/XnFiJpCcV1H8txXAICNHBJB6M/OLy4JVq1bZNxLZvHkzL730ktWRREREBCD9LGxbBs3aqSguYwr88h3QBhgI/GgYxqVvpb0ANAQwTXMqsJqcpdp+Jme5toccH7V06du3L3379rU6hoiIiOT27Qo4nwZR/QseK6VKYValSCDvOcSXjzGBRx0VSkRERMQSGRdg86fwjxZwm6YDljXa+U5ERETkkoTP4MwJ6DDI6iRiARXGIiIiIgBnT8HGeeDbGprkvfqUlG4qjEVEREQA1s6Ci+fh7lFWJxGLqDDOw+uvv06zZs0IDAwkKCiIb7/NvZ9JwVasWMGbb75ZBOlERETE4Q7shm8/h9b3QV0vq9OIRQqzKkWZsm3bNlauXMn333+Pu7s7x48f5+LFi9d9nZiYGGJiYoogoYiIiDhUZgYsfQeq1NIud2WcOsa5HD58mFq1auHu7g5ArVq1uPXWW/Hy8uK5554jPDyc8PBwfv75ZwC++OILWrZsSXBwMJ06deLIkSMAfPTRRzz22GMADBkyhDFjxtC6dWsaN27M4sWLrXlzIiIicrV1s+B/v0KPp8C9otVpxEJO2zE+9ecKLp537B4h5SvcQrVb8+/idu7cmVdffZWmTZvSqVMn+vbty5133glAlSpV2L59Ox9//DFPPvkkK1euJDIykm+++QbDMJgxYwZvvfUW//rXv6667uHDh0lISGDv3r3ExMTQu3dvh743ERERuQG/JsGm+RDeHfzaWJ1GLOa0hbFVPD092bFjB5s3b2bjxo307dvXPle4X79+9r/Hjh0LwMGDB+nbty+HDx/m4sWLeHt753ndHj164OLigp+fn72rLCIiIhYyTfjifaheD6K1HYM4cWFcUGe3KLm6uhIVFUVUVBQBAQHMmTMHgJzdsbni8eOPP85TTz1FTEwMcXFxxMbG5nnNS1MzAHL2QxERERFL7f0G/kyBPuM1hUIAzTG+yr59+0hJSbE/T0pKolGjRgAsWrTI/nerVq0ASE1NpX79+gD2AlpEREScnGnCho9zusXBd1mdRpyE03aMrZKWlsbjjz/OqVOnKFeuHP/4xz+YNm0aK1eu5MKFC7Rs2ZLs7GwWLFgAQGxsLH369KF+/fpERETw22+/WfwOREREJF/ZWbByCvz+E/R8GlxVDkkOw6pf64eGhpqJiYlXHEtOTsbX1zn3Jffy8iIxMZFatWpZHaXEcOafp4iIlGGfvwtbl0Lk/XDPaHDRL9BLO8MwdpimGVrQOP0nkoiIiJQdf6bAtmXQqid0f8zqNOJkVBgXks1mszqCiIiI3AzThJUfQIUq2shD8qTfHYiIiEjZsP87+OV7uGsIVKhsdRpxQiqMRUREpGzY+DFUrQ3h1i0JK85NhbGIiIiUfr/9AL/tgjv7QTk3q9OIk1JhLCIiIqWbacL6OVCpGoRFW51GnJgK48vYbDb8/f2vOBYbG8s777yT73mJiYmMGTMGgLi4OLZu3Xrd9/by8uL48eP5Ht+xYwfe3t7s3LmTFStW2LeqvllxcXFER+v/KEREpJTa9y38nAjtH4TyHlanESemVSkcIDQ0lNDQnKXx4uLi8PT0pHXr1g69x65du+jduzeLFi0iODiY4OBgYmI0R0pERCRfWZmw6gOo1SBniTaRfKhjfB2ioqJ47rnnCA8Pp2nTpmzevBn4v46rzWZj6tSpTJo0iaCgIDZv3syxY8fo1asXYWFhhIWFsWXLFgBOnDhB586dCQ4OZuTIkeS30UpycjI9evRg7ty5hIeHA/DRRx/x2GM56y8OGTKEMWPG0Lp1axo3bszixYsByM7OZvTo0TRr1ozo6Gi6detmf23NmjX4+PgQGRnJ0qVL7fc6efIkPXr0IDAwkIiICHbt2gXkdM4HDx5M586d8fLyYunSpYwbN46AgAC6du1KRkaGgz9tERERB9j+BRw9AN0e0dxiKZDzdox3zoVTBxx7zWqNIHjgTV0iMzOT7du3s3r1al555RXWr19vf83Ly4tRo0bh6enJM888A0D//v0ZO3YskZGR/P7773Tp0oXk5GReeeUVIiMjmThxIqtWrWLatGnXvOe9997LJ598QmRk5DXHHD58mISEBPbu3UtMTAy9e/dm6dKl2Gw2fvzxR44ePYqvry9Dhw4lPT2d4cOHs2HDBv7xj3/Qt29f+3VefvllgoODWb58ORs2bGDQoEEkJSUB8Msvv7Bx40b27NlDq1atWLJkCW+99RY9e/Zk1apV9OjR46Y+WxEREYc6fwbWzoLGweB37X+HilzivIWxBQzDKPD4fffdB0CLFi0KtenH+vXr2bNnj/356dOnOXPmDPHx8fZO7T333EP16tWveY1OnToxY8YMunTpgqura55jevTogYuLC35+fhw5cgSAhIQE+vTpg4uLC/Xq1aN9+/YA7N27F29vb26//XYAHnzwQXthnpCQwJIlSwDo0KEDJ06cIDU1FYC7774bNzc3AgICyMrKomvXrgAEBARoAxQREXE+G+bC+dMQ/Shc49/xIpdz3sL4Jju7N6JmzZr89ddfVxw7efIk3t7e9ufu7u4AuLq6kpmZWeA1s7Oz2bZtGxUqVLjqtWsV4rlNmTKFUaNGMXr0aP773//mOeZSLsA+LSO/6RnXunde51wae+keLi4uuLm52Y+7uLgU6rMQEREpNicOwZbF0OJuqN/U6jRSQmiO8WU8PT255ZZb+Prrr4GconjNmjX5TmHIrXLlypw5c8b+vHPnzkyZMsX+/NK0hHbt2jFv3jwAvvzyy6sK8su5uLiwYMEC9u3bx8SJEwudJTIykiVLlpCdnc2RI0eIi4sDwMfHh99++41ffvkFgAULFtjPuTxXXFwctWrVokqVKoW+p4iIiFNYPRVc3bT1s1wXFca5fPzxx7z22msEBQXRoUMHXn75ZZo0aVLo87t3786yZcvsX76bPHkyiYmJBAYG4ufnx9SpU4Gcubzx8fGEhISwdu1aGjZsmO913d3d+fzzz1mxYgUffPBBobL06tWLBg0a4O/vz8iRI2nZsiVVq1bFw8ODadOmcc899xAZGUmjRo3s58TGxtrzPv/888yZM6fQ711ERMQp/JoEuzdBVH+oUsvqNFKCGPn9ur0ohYaGmomJiVccS05OxtfX15I8pVVaWhqenp6cOHGC8PBwtmzZQr169Yrl3vp5iohIscvOhikjIe0kPDNP6xYLAIZh7DBNM7Sgcc47x1gcIjo6mlOnTnHx4kUmTJhQbEWxiIiIJXauhUP74IGXVBTLdVNhXMpdmlcsIiJS6mVlwlczoIEPNO9kdRopgTTHWEREREqHH+Mg9Sh0GgIuKnHk+umfGhERESn5TBM2fwq1boM7IqxOIyWUCmMREREp+Wy74OBeaHu/usVyw/RPjoiIiJR8mz+FilUhpIvVSaQEU2Gci81mw9/f/4pjsbGxvPPOO3zzzTe0bNmSoKAgfH19iY2NtSakiIiI/J/jB2FPAkTcq5Uo5KZoVYrrMHjwYD799FOaN29OVlYW+/btszqSiIiIbFkMLuWgdU+rk0gJp47xdTh69Ci33HILAK6urvj5+VmcSEREpIw7dwa+Ww1BnaByTavTSAnnvB3jFZPh8M+OveYt/4CYMTd8+tixY7njjjuIioqia9euDB48GA8P/cpGRETEMttXQEZ6zpfuRG6SOsa5GIZxzeMTJ04kMTGRzp07M3/+fLp27VrM6URERMQuMwO2LIF/hMItTaxOI6WA83aMb6KzezNq1qzJX3/9dcWxkydP4u3tDUCTJk145JFHGD58OLVr1+bEiRPUrKlf3YiIiBS7H76G08eh1zirk0gpoY5xLp6entxyyy18/fXXQE5RvGbNGiIjI1m1ahWmaQKQkpKCq6sr1apVszKuiIhI2ZSVCes/ypkm2TTc6jRSSjhvx9hCH3/8MY8++ihPP/00AC+//DJNmjThxRdfZOzYsVSsWJFy5coxb948XF1dLU4rIiJSBiWuhpN/wpB/akMPcRgVxnnw8/Nj48aNVx1fuHChBWlERETkChfTYf0caNgMfLT9sziO/hNLRERESpZN8+H0Meg2Cq7xpXmRG6HCWEREREqOv45A3HwIbA/eza1OI6WMCmMREREpOb6cmvN3t0eszSGlkgpjERERKRlsP+Ys0XZnP6hez+o0UgqpMBYRERHnl50NX7wPVWpDVH+r00gppcJYREREnN9P8XBwL3QdDuUrWJ1GSikVxrl4enpe8fyjjz7iscceK9J7DhkyhMWLFwM5G4oEBwcze/bsIr2niIhIiZGdDetnQ+2GEHyX1WmkFFNh7ERSU1Pp0qULI0aM4KGHHrI6joiIiHPYvQn+9xt0HAwu2lhLio4K4+tw4MABOnbsSGBgIB07duT3338Hcjq+Y8aMoXXr1jRu3Nje/c3Ozmb06NE0a9aM6OhounXrZn8tt7S0NO6++2769+/PI4/kfNPWNE2effZZ/P39CQgIYNGiRQDExcURFRVF79698fHxYcCAAfatqlevXo2Pjw+RkZGMGTOG6Ojoov5YREREio5pwsZPcrrFzTtYnUZKOefd+e69VyBlj2OvebsfPPFyvkPOnz9PUFCQ/fnJkyeJiYkB4LHHHmPQoEEMHjyYWbNmMWbMGJYvXw7A4cOHSUhIYO/evcTExNC7d2+WLl2KzWbjxx9/5OjRo/j6+jJ06NA87/vUU08xbNgwxo4daz+2dOlSkpKS+OGHHzh+/DhhYWG0a9cOgJ07d/LTTz9x66230qZNG7Zs2UJoaCgjR44kPj4eb29v+vXrd1Mfl4iIiOV+3gF/pkCvceoWS5FTxziXChUqkJSUZP/z6quv2l/btm0b/fvnfBN24MCBJCQk2F/r0aMHLi4u+Pn5ceTIEQASEhLo06cPLi4u1KtXj/bt21/zvh06dODzzz/n6NGj9mMJCQn069cPV1dX6taty5133sl3330HQHh4OA0aNMDFxYWgoCBsNht79+6lcePGeHt7A6gwFhGRkm/TAqhcA0I6W51EygDn7RgX0Nl1BsZl21C6u7vbH1+a1nDp78J44IEHiIyMpFu3bmzcuJHKlSvne/7l93N1dSUzM/O67iciIuL0Du2HlO+g6wgoV97qNFIGqGN8HVq3bs3ChQsBmDdvHpGRkfmOj4yMZMmSJWRnZ3PkyBHi4uLyHf/kk0/SsWNHevbsycWLF2nXrh2LFi0iKyuLY8eOER8fT3h4+DXP9/Hx4ddff8VmswHY5ySLiIiUSBs+Bg9PiOhhdRIpI1QYX4fJkycze/ZsAgMDmTt3Lu+9916+43v16kWDBg3w9/dn5MiRtGzZkqpVq+Z7zj//+U9uu+02Bg4cyL333ktgYCDNmzenQ4cOvPXWW9Srd+2dfipUqMCHH35I165diYyMpG7dugXeT0RExCn97zfYHQ9tekEFz4LHiziAYdWv30NDQ83ExMQrjiUnJ+Pr62tJnqKSlpaGp6cnJ06cIDw8nC1btuRb3DrqfqZp8uijj3L77bdf8YW+4lQaf54iIlJMFrwKe7bA859CJTV55OYYhrHDNM3QgsY57xzjUiI6OppTp05x8eJFJkyYUKRFMcD06dOZM2cOFy9eJDg4mJEjRxbp/URERBzu+B/wwwZo11dFsRQrFcZFrKB5xY42duxYyzrEIiIiDrFxHriWg7Z9rU4iZYzmGIuIiIjzOHkYvv8KWnbPWaZNpBgVWBgbhjHLMIyjhmHsvsbrUYZhpBqGkfT3n4mOjykiIiJlwqYFYBjQTmvxS/ErzFSKj4ApwMf5jNlsmqb2HhYREZEbd/o4fLcKWtwN1epYnUbKoAI7xqZpxgMniyGLiIiIlGVx88DMhqgBVieRMspRc4xbGYbxg2EYXxqG0cxB17TM//73Px544AGaNGmCn58f3bp1Y9q0aURH590UHzZsGHv27CnmlCIiIqXI0QOwbXlOt7jmrVankTLKEatSfA80Mk0zzTCMbsBy4Pa8BhqGMQIYAdCwYUMH3NrxTNOkZ8+eDB482L7LXVJSEl988cU1z5kxY0ZxxRMRESl9TBO+mAJuHtB1uNVppAy76Y6xaZqnTdNM+/vxasDNMIxa1xg7zTTNUNM0Q2vXrn2zty4SGzduxM3NjVGjRtmPBQUF0bZtW9LS0ujduzc+Pj4MGDCAS5ujREVFcWmzEk9PT1588UWaN29OREQER44cAeCLL76gZcuWBAcH06lTJ/txERGRMm/vNtj/Ldz1EHhWtzqNlGE33TE2DKMecMQ0TdMwjHByiu0TN53sySchKemmL3OFoCB49918h+zevZsWLVrk+drOnTv56aefuPXWW2nTpg1btmwhMjLyijFnz54lIiKC119/nXHjxjF9+nReeuklIiMj+eabbzAMgxkzZvDWW2/xr3/9y2FvTUREpETKvAhfvA+1G0Lr+6xOI2VcgYWxYRgLgCiglmEYB4GXATcA0zSnAr2BRwzDyATOAw+YVu0zXcTCw8Np0KABkNNFttlsVxXG5cuXt89FbtGiBevWrQPg4MGD9O3bl8OHD3Px4kW8vb2LN7yIiIgzSlgMJw7B0HdyNvUQsVCB/wSappnvQoKmaU4hZzk3xyqgs1tUmjVrxuLFi/N8zd3d3f7Y1dWVzMzMq8a4ublhGMZVYx5//HGeeuopYmJiiIuLIzY21vHhRURESpL0sxD3Cfi0gjvCrU4jop3vcuvQoQMXLlxg+vTp9mPfffcdmzZtuqnrpqamUr9+fQDmzJlzU9cSEREpFbYtg/NpcNdQq5OIACqMr2IYBsuWLWPdunU0adKEZs2aERsby6233tzSMbGxsfTp04e2bdtSq1ae300UEREpOy6cg/hFcEdLaHCH1WlEADCsmg4cGhpqXlrJ4ZLk5GR8fX0tySOOp5+niIhc06YFsPo/MPpDaORvdRop5QzD2GGaZmhB49QxFhERkeKVcSGnW/yPUBXF4lRUGIuIiEjx2v4FpJ2EjoOsTiJyBRXGIiIiUnwyLkDcfPBuDo2DrE4jcgWnK4xL6RLIZY5+jiIikqfEL+H0ceg0xOokIldxqsLYw8ODEydOqKgq4UzT5MSJE3h4eFgdRUREnElmBsTNg4bNoEmI1WlEruJUW8w0aNCAgwcPcuzYMaujyE3y8PCw7xIoIiICwHer4NQR6Pk0/L0ZlogzcarC2M3NTVsli4iIlEbn02DdrJx5xXe0tDqNSJ6caiqFiIiIlFJxn8DZU3DPo+oWi9NSYSwiIiJF6+Rh2PwZhHTRLnfi1FQYi4iISNFaMw1cXKDLcKuTiORLhbGIiIgUHduP8MPX0K4fVKtjdRqRfKkwFhERkaJxMR0+exOq1YU7H7A6jUiBVBiLiIhI0fjyv3D8D7h/PLhXtDqNSIFUGIuIiIjj/RgHW5dAm97azENKDBXGIiIi4ljHfs+ZQnGbH3QbZXUakUJTYSwiIiKOk5kBC14FVzd48BUoV97qRCKFpsJYREREHGfdLDi0H3qPy/nSnUgJosJYREREHOPoAdi0AEK7QbO2VqcRuW4qjEVERMQx1s4EN3e4W/OKpWRSYSwiIiI37+DenJUo2vYFz2pWpxG5ISqMRURE5Oac/BM+fgk8q0Pb+61OI3LDylkdQEREREqw9LMwfSxcPM//z959h1d23ee9/659ekEHZjAYYHplL8MukZRESpRIiaQsKTLlIlm27NiKS6I4tp/k2tfOvc6NEyV2EhclUuz4Kq6SbImiKKqYFiV2ihxyyOkdMxj0euouK3+sgwGmcBoxczDA+/Gzn73PPhvAD5Rn8M7CWr/Fp34fMvl6VyRywRSMRURE5MI98XkYPQY/91+ha129qxF5SzSVQkRERC7MkZ3w9Jfh1odg1dX1rkbkLVMwFhERkfMXhfDl/+gW2r3nZ+pdjcicUDAWERGR8/fcV10nigc+rXnFsmAoGIuIiMj5mRyGb3wO1m2Ba99V72pE5oyCsYiIiJyfR/8bhD48/CtgTL2rEZkzCsYiIiJy7na9AK98G+7+GLT31LsakTmlYCwiIiLnpjAGf/PvoL0b7n6k3tWIzDn1MRYREZGzsxb++v914fjjfwiJVL0rEplzGjEWERGRs3v5W7DjWbj/52H5xnpXI3JRKBiLiIjImVWK8I0/hu5NcNvD9a5G5KJRMBYREZEze/KLMDEEH/hF8BQdZOHS/3eLiIjImxvpg+/9FVx/L6y8qt7ViFxUCsYiIiLy5h77IzAe3Pez9a5E5KJTMBYREZHT2/syvPak61ncvKTe1YhcdArGIiIicqoohK/9ATQvhbs+Wu9qRC4JBWMRERE51fOPQt9e155NPYtlkVAwFhERkRNNDMHjfwKrr4Wr7653NSKXjIKxiIiIzLAWvvJZ8KvwI78KxtS7IpFLRsFYREREZmz9LrzxfXj3J6Gjp97ViFxSCsYiIiLiTI3BV/8z9GyGt3+k3tWIXHIKxiIiIuL8/X+GchE+9Gvgxepdjcglp2AsIiIisO178Op34Z6fhM7V9a5GpC4UjEVERBa7wrhbcNe1Hu56pN7ViNSNgrGIiMhiFoXwl78DpQn48K9BLF7vikTqRsFYRERkMXvi87DreXjwV9yIscgipmAsIiKyWB16A578Itx0P9zy/npXI1J3CsYiIiKLURjAl38PGtrhgU/XuxqReUHBWEREZDF66q+hby88+EuQziBoDvQAACAASURBVNW7GpF5QcFYRERksRk5Ct/+n3DF2+CqO+tdjci8oWAsIiKymFjrWrMZDx785XpXIzKvKBiLiIgsJi9+w3WheO+noHlJvasRmVcUjEVERBaLsQF49L/C6mvh1ofrXY3IvKNgLCIishiEgdvIIwzgQ/8KPEUAkZPpT4WIiMhi8MTnYf9W+OC/gPbuelcjMi8pGIuIiCx02592G3nc/H644T31rkZk3jprMDbGfMEYM2CM2fYm7xtjzB8YY/YYY141xtww92WKiIjIBRk5Cn/1/7jtnj/wi/WuRmReO5cR4z8F7jvD++8F1teOTwF/9NbLEhERkbdsagy+8KuuRduP/TYkUvWuSGReO2swttZ+Dxg5wyMPAv/LOs8CzcaYZXNVoIiIiFyAcgG+8BkYPQYf/11oW17vikTmvbmYY7wcODzrdW/tnoiIiNSDX4E/+3W35fOP/Y5rzyYiZzUXwdic5p497YPGfMoY86Ix5sXBwcE5+NIiIiJygihybdn2b4WP/AZsvq3eFYlcNuYiGPcCPbNedwNHT/egtfZz1tot1totHR0dc/ClRURE5ASP/wls+x7c/wtw/b31rkbksjIXwfirwE/UulPcCoxba/vm4POKiIjI+Xjua/CPfwG3PgRv+3C9qxG57MTP9oAx5i+Au4F2Y0wv8JtAAsBa+8fAY8D7gD1AEfjExSpWRERE3sTuF+HvPgsbbnZt2czpZjqKyJmcNRhba3/0LO9b4BfmrCIRERE5P/0H4P//v2DJCvjY/w2xs/54F5HT0M53IiIil7OxAfjTfwXxJHz8/4N0rt4ViVy29E9KERGRy9XIUfjvvwKFcfiZ/wQtnfWuSOSyphFjERGRy9HUGPz3fw6lKReKezbXuyKRy55GjEVERC43laLbwGNiCH72DxSKReaIgrGIiMjlpP8A/Pm/huEj8LHfghVX1LsikQVDwVhERORycfgN+PxnIJaAn/4srL2+3hWJLCgKxiIiIpeD3S+6keJcM/zMZ6G1q94ViSw4CsYiIiLz3XNfc5t3LFkBP/UfoKmj3hWJLEgKxiIiIvNVFMHjf+K2ed5wi5tTrD7FIheNgrGIiMh8VC3BX/5beP0puO1heP8/0452IheZ/oSJiIjMNwMH4S9+G/r2wgd+Ee74UL0rElkUFIxFRETmC2vhua/Co/8VEmn4+O/CptvqXZXIoqFgLCIiMh+M9MFXfx+2Pw3rt8BHfgMa2+tdlciiomAsIiJST34Fnvzf8OQXwXjwwKfd1AnPq3dlIouOgrGIiEi99O6AL/4WjByFa94J9/9TaF5a76pEFi0FYxERkUvNWnj6S/D1P4J8C3zqP8PaG+pdlciip2AsIiJyKU2Nwd/8Lux4BjbfDh/+dcg11bsqEUHBWERE5NKw1i2s+/LvQWkKHvwluO2DYEy9KxORGgVjERGRi+3oHnjsj2D3C7B0NXzyP8KytfWuSkROomAsIiJysYz0wROfh1e+Bem86zhx+we1g53IPKU/mSIiInOtMAbf/XN45u/cVIm7HoG7H4FMQ70rE5EzUDAWERGZK34FnvorePIvoFqCLe+Dez4OzUvqXZmInAMFYxERkbmw+0X4u8/CUC9c+XZ4z8/A0lX1rkpEzoOCsYiIyFsxdBi+/ofwxg+gtQt++rNuS2cRuewoGIuIiFyIwcPwg7+B5x+FWALu+xS87cOQSNW7MhG5QArGIiIi5yqKYOdzbte6Xc+77hI3vhfe/VPQ0Fbv6kTkLVIwFhEROZswgJcehye/CMNHXAi+95Nwy/uhobXe1YnIHFEwFhEReTNRCFu/C9/6ggvE3ZvgR38TrroT4ol6Vycic0zBWERE5GRRCK8/Bd/6n9C/3+1S95O/C5tv1xbOIguYgrGIiMi0cgFefAx+8CUYOQodK+CR34Kr7wbPq3d1InKRKRiLiMjiFlTdQrqt33Ut16olWHU1vO/n4Iq3aftmkUVEf9pFRGRxKoy5keFnvgLFCcg2wnX3wM0PQM/melcnInWgYCwiIovL8BF4+svw3NfAL7tR4Vs+4Dbl0OiwyKKmvwFERGThK03Ctu/BK9+GPS+BF3Ojw3d/TNs2i8hxCsYiIrIw+RXY/rQLwzuehdCHtuVwzydc/+HG9npXKCLzjIKxiIgsLEd2wtNfgdeehErRbcBx20Nw3buge7ParYnIm1IwFhGRy59fcVMlnvkKHNwGiTRc+064/l5Yc52bOiEichYKxiIicnmyFo7sghe/7qZLlKbcVIkHPg1b3guZhnpXKCKXGQVjERG5vAQ+/PCb8PSXoG8vxJNw9V2w5X2w5nptxCEiF0zBWERELg99e92udFu/A5Mj0LUeHvrnbu6wRodFZA4oGIuIyPwV+DNzhw+8CrEEbLoVbnkQNtykhXQiMqcUjEVEZP45tg9eeAxe/iYUxqG1C+7/ebjxvZBrqnd1IrJAKRiLiMj8MHjYtVh77Uk4utvtQnfF29zc4Q03a+6wiFx0CsYiIlI/Y/3w0uMuDPftdfdWXOk6S1z/bsg317U8EVlcFIxFROTSCgPY/QI891XY/gzYCFZdDe//Z3DVndC8tN4VisgipWAsIiIXX3ECdr8Iu56HN34AxXHIt8LdH4ObH4DWZfWuUEREwVhERC6CShEOvAb7Xoa9L0PvTjcynGmAjbfANe+AjbdCPFHvSkVEjlMwFhGRuXNsPzzzZXjpm+CX3QK6nivgnT/hAnHPJm3PLCLzloKxiIi8NX7F9Rp+4VE3OhxPwnX3wLXvglVXQTJT7wpFRM6JgrGIiFyYI7vgha/DK9+C0hS0dMJ9n3JzhnPqJiEilx8FYxEROTfWuv7C274Hrz8F/fvd6PBVd8JN98Oa69VrWEQuawrGIiJyZqUp+OE34dm/g4GDYDxYcy3c9itw7T2Qbah3hSIic0LBWERETu/ITnjm7+GVb7uFdD2b4YP/Eq58uzbeEJEFScFYRERmFCfcVInnH4XDb0Ai5RbS3foQdG+sd3UiIheVgrGIyGJXmoQ3vg9bv+s24YhC6FjhdqK78T7Xe1hEZBFQMBYRWYyshYPb4JmvwGv/CKHvukq8/SNwzTth+QYwpt5ViohcUgrGIiKLSbXs5gw/8xXXYSKVg1s+ADfcC92bFYZFZFFTMBYRWQz6D7gNOF58zHWZ6FwDD/8LuP5eSGXrXZ2IyLygYCwislAVxmDrd9z2zL073FbMV90Ftz8Mq67R6LCIyEkUjEVEFprenfAPfw5v/MAtpOtaDw982nWXaGitd3UiIvOWgrGIyEJxZCd8+09dIM40wB0fcl0llq2td2UiIpeFcwrGxpj7gN8HYsD/sNb+u5Pevxv4e2B/7daXrbW/PYd1iojImzmyC779P2uBOA/v/qQLxelcvSsTEbmsnDUYG2NiwH8D7gV6gReMMV+11r5x0qNPWWsfuAg1iojIyayFA6/C9/7yxEB8+4+4axEROW/nMmJ8M7DHWrsPwBjzl8CDwMnBWERELja/Aq98B57+kmu3lmmAez8JdygQi4i8VecSjJcDh2e97gVuOc1ztxljtgJHgc9Ya1+fg/pERASgXICn/hqe+TIUxqFzNXzwX7p2a8l0vasTEVkQziUYn66fjz3p9Q+BldbaKWPM+4C/A9af8omM+RTwKYAVK1acZ6kiIotQtew243jyi1CcgM23w9s+DGtvULs1EZE5di7BuBfomfW6GzcqfJy1dmLW9WPGmD80xrRba4dOeu5zwOcAtmzZcnK4FhGRaYEPL3wdvvNnMDkMG26G9/w0dG+qd2UiIgvWuQTjF4D1xpjVwBHgo8Ajsx8wxnQC/dZaa4y5GfCA4bkuVkRkwYtCt2Xzt74AI31uI45HfhPWXFfvykREFryzBmNrbWCM+TTwTVy7ti9Ya183xvxc7f0/Bj4E/FNjTACUgI9aazUiLCJyrvwKbP0u/ONfwMABtynHJ/49bLxFUyZERC4RU6/8umXLFvviiy/W5WuLiMwbE0NuUd2Lj7k5xEtXwz2fgKvuBM+rd3UiIguCMeYla+2Wsz2nne9EROohDODpL7spE34Frnw73PawmzKhEWIRkbpQMBYRudQOvAZ/91no2wsbboEHfxHae87+cSIiclEpGIuIXCpTo/DYH8FLj0PTEvjx34Er79QIsYjIPKFgLCJysUUhPPdV+OZ/h0oJ7n4E3vWTkMzUuzIREZlFwVhE5GKxFna9AN/8HBzZ5TblePCXYemqelcmIiKnoWAsInIx7H0Znvgfbj5x81L40d+Ea9+paRMiIvOYgrGIyFyaHIav/gG8+g/Q2AEP/XO46X6IJ+pdmYjIpWEtVCahNAKlUSiOQGXC3bv6I5BI17vCN6VgLCIyF6IIXngUHvtjCKpw7yfhro9CIlXvykRE5k4UQWXchd3SSO08WgvBs15H/qkfm8jCxvcpGIuILGj9B+DLv+emTay5Hj74GehQ+zURuczY6KTAO+s8PfpbGnXPzeYlINMC2VZoWweZVnedaXHXmRZIN4I3/2Pn/K9QRGS+Kk3Ct//UbdSRzsGHfx1uvE/ziEVkfosCmBqAiSMwcbR2PgKTfRBWT3w2noJMmwu6S66oBd3p4Fs7J/ML5u89BWMRkfMVRW4L58c/B8VxuPn98J6fhlxzvSsTEZkRhTDVDxO9MF47Jo7CVJ97b1q2HRqXw5IroWEZ5NpnRnsTmQUTes+FgrGIyPk4uM0truvdAauuhg/8HizfWO+qRETc4rahnTCww53He2fN9TWQ74DGbui6Hhq7XBhu6JrXc34vNQVjEZFzMTEE3/gT+OE3obEdPvpv4Lp7FtVIiojMI1Hkpj+M7IPRfTC0C8YPu/diCWhbD+vvhaZuaOxxQTiuxcBno2AsInImUQTPfMVNmwgDeMePuSOVrXdlIrKYWOtCcP82Nxo8tAuCsnsvkYHWtdBzK3RsgtY1LhzPI8Upy+F9sOFqMPN4QEHBWETkzQwegr/993DgVdhws9u1rr273lWJyGJhLYwdhMPPwuHnoDDo7jd2w8o73Khw6xpo6ATj1bfWmtEhy/4dsG+HZd8O6DsE5SJMjLn3f/9vDe2d9a3xTBSMRUROFgbwvb90HScSSfjQr8GW92rahIhcfNbC2CHofR56n4PJY2BisPRKuPJhWHY9pBrqXSXWWsaGYf9OdxzYadm/E0aH3PvGg+7VsPYKyOSgvdOwYi3km+pb99koGIuIzHZkpxslProbrroLHvwlN6dYRORimjgKh56GQ8+4ThLGQMdm2HA/dG+pWxguTLopEIf3wuF9lsN74ehBKBZmGlsYA8tWwhU3wJpNhtWbYOV6SGcuv8EEBWMREYDihBshfuYrkGuCH/+3cNWd9a5KRBay8rgLwgd/AKP7XcJcciVsfACW3+g2xbgEotAycBTGR6EwAQd2w/6dloO7YHhg5rlsHnrWwM3vgIZGaGwxrN5YC8HZyy8En46CsYgsboHvwvB3/tRNhLv5AbjvZyFb/19VisgCVRiCHY/C/n9ww64tq+Daj8GKW13/4IsoCi1BAMd64cmvWXa/Dr37oFqZecYYWLYCNl4LK9YZeta4QNy6ZH4vnJsLCsYisjhZC9v+0bVgGz7iFtfd//PQuabelYnIQmSt6yax+wk48iJgYPVdsP490LR8zr9cGFiOHoKBo1AqwMHdLgQf2Al+bXO7RNJ1iXjng9CzxtC6BLI5Nzd4oYwAny8FYxFZfA6/AY/+oes2sXQ1/NR/gI0317sqEVmIgqqbLrHnm25RXTIHG94H6+5xO8zNAWst/Udgz+uw9w3L3u1waM9MAAYXgldthHsehoZmQy4Pt7wTGpreWgC2NiQKCoTBFFEwdcK1tSE2KlMtHSMKJoiCIp2bfpVY4tJMEbkQCsYisniM9sPjfwKvfBvyLfDBz8CW90FMfxWKyBzzi7DrcTdCXJ1yG21s+SSsuP2CN9qw1jLU7xbClYvUwrBlzxswNe6eSWVgTS0Ar95oWLYC0hlY0gXxxPmFYBsFBNUhgsoQQXUYa6PafZ9qYT9++RhRWHyTj/YwXhxjEiQynSTS6/FiGddhYx7TTwMRWfjKBXjyi/DUX7vX7/hxeMfHtEmHiMy9oAp7vw3bv+oCcdcNsOE+12HiPOfnToy6XsB7t9f6Ar8x0w8Y3KdbvgpufBusu9Kw7go3DcKLXdgocLXYS3HsFYLKAH5lkLA6CtjTPptId5FpuoZYogEvnicWz+PFc8evjZe+LOcjKxiLyMI1OQzPftUtriuMwfXvhvf8DLQsrXdlIrLQ2Mh1l9j2t1AchqVXw9UfdhtwnEEUWYb6oHc/TE3CxGgtBG+HwT73jDHQtRKuu921Q1u1AXIN0NwG2fz5jgL7VAoHKE/tpjK1hyiYHvGNCP1xMHESqQ6SmW7izdeTSHUQT3UQT7VhzHRsNBhvYUbIhfldicjiZS0ceh2e/jK89qTbrGPjLXDvT0HP5npXJyILUf/rsPV/u13qWlbDzT8LS6445bFqxfUEPrATDux27dB690OlfOJzHctgzSa492HDms1ubnDmLSyG88uDlCe3U57cRaWwH2wAJkYyu5JUfmagIJHpJtdyI14sfcFf62SBtfT7Ib1+SG814APNWRLzeCRZwVhEFgZrYcez8J0/c4vrUjm49SG4/WFo76l3dSKyEI0fgVf/AvpegWw73Prz2O5bGBn0OPh9y8E9MDJoKRVcAD5yYGZTjGweVm2Ad3zAdYRYvgqaWlynyHzjhQdHayOioHD89dTws0wOfAewxFNLyLfdQiq/gVRuNV7swuY6z3wty0RkGfRD+gMXfHurIUf82rkacNQPCWd9zE25FCuS8zd+zt/KRETORRTB9h/Ad/6X27WupRMe/GW48T7NIRaRi6M0Bq9/CbvvSWwsw4HUR3l2/z3sfyLJwd1ut7hpjc1uQVzXSrjhDrcgbtUGaO+cu57A1kZUiwcpjm2lNP4aUTB1wvvZlhtoXPoe4snmc/6cobUMBRHHfBduj1RDjvoBR/yQvmrIQBAyFIRUT5qCbIDORIzliRhbcimWJ2MsT8TpScZZnojRldDiOxGRuVctww+/6RbUDR2G1i740L+CG96jLhMiMiemF78d2gODfRbjT7Ip+zg3Ln2CuBfw7W338uVnH2Sq3EAy5TbBuOUdblOMleuhZ+1bmwJxJtZa/JJbLFcaf5XQnwATJ9O4mVRuzfGFfvFkK+mGjSd8bCWy9Achx3x39PlB7Txzr/+kkV6AjDEsT8ZYloixNp2iIx6jIx6jPe6xNOEC8LJEjKQ3f6dKnI1+eojI5eXILnjxMXj5W1CahO5N8MhvwlV3KRCLyDmJIrcF8pEDUJx0c3wrJSiXoThpGR6Eg7vc5hgADZkJHr7tG9y18Tsk4xV2j93EC8MfIr68k4//mgvBnd0X3g3ifIXBFMMH/pxq8QCYGOmGjTR1XkO68QpCL8mRqpvW0OeHHCuG9I2PHA+8x4KQoSA65XNmPcOyRIyliRi35VMsS8TojMforIXd7mSM5ph3WXaaOB/6KSIi819h3PUefvExOLob4km46k649UFYdc15t0ASkYUtCl2/38FjMFQ7ho/V7vXB8IBbl3s66Qy0dLj5v+99aIIb2h+jbfI7mLAKPbfAFQ+xsambjaf/8Ln/XqIqpbFXKU/uILIhlcgSlI/ihQX2NN3H64nN7A8THB4J6T02TJ8fcnLsbY55LEu4kd6rs8nj152JmeDb4JkFH3rPhYKxiMxPUQh7XoIXHoPXn4LQh+Ub4aFfgWvvcStURGRRstYtaBsZhNEhd+7vdVsg9x2EY70Q+DPPG+Nam7V3wtrNbrrD0m5DzxpoaIZU2s0DTqVqo77lcdjxddj7HRivQs9tcMWD0Dj3WzdPC6xbxDYQhPRXQ4qlXhqnXmFFaRtpKgzSwDhJLFAiw3/hXl4f78TgszQR0ZOIcXNtYVtPMkZ3Mk5XLfymPe+i1X061cAyUYKJomWyBMUqFCuWQgXefa1H+jw3GrmUFIxFZP4oTcGu52HHM67DRHEcso1uZHjL+6BrXb0rFJGLLAgsY0Mu8E6H3tFBO+saRofd1IfZvBgs7YJlK+G622DZCkN7p2t91toBieQ5hLGpAdjzBOz9LkQ+rLgDNn8AGrvm5HurRJYjfsCBSsD+asDBSsCBasD+SkBvNaCRIh/mVe5hN1cwToUYz5l1vJK6jkpqBctTcZYn4ixPxvgP8Rjt8Ritce+itD87OdxOlNzrE69rz5RqzxTd67L/5p/3prVJlrXMeblzRsFYROpr6DBsfwa2Pw37t7qR4mwjbLwVrngbXHG7mzohIpe9ILCMDsJQP4wM1M79lpHBmdHfiVHXfXG2eAJa2t2xcgNc3wEtbYaWDjftobUD2pac/5bHgAvDh5+D3udhdD8YD1beAZsfhIbO8/50kbUcrobsLPvsLPvsq/ocroYcqgb0++GsfeQsm80Y6xMB9yVirM6UuWXyCZJRgSCzBq/5HnparmJtPMsj5/9dncBaS6kKowUYLViGJy2DEzA4YRmatAxPzgq3tfOZwi1ANgmNGWjIGhoz0NNmaOg2NGUMjVlozLj7+Ywhn4JMCnIpQ0fjW/xmLjIFYxG5tEpTsO9lN01i1/Mw1Ovud66GOz8Km2+HFVe44R8RuSyUipbBPhjqc/N6RwYso8MwNgSFSSgV3DE5fmrozTe5YNvaAas31gJwh6G1w123drhn5nT+6+QxF4QPP+c25QC3Q901H4WeWyHXftZPUY0sfb4LvDvLPrvKPjvKPrsqPsVo5pvsTMRYkYxzRz5FTyLOejPOuuobNBZew1aHoIo7gHiyjdaVnySZObcR6jCyjEzBwLhlYMKF3eHJmbA7NGkZmbSMFqBymjnVxkBrDlobDE0ZWNFuaoHW0DAr3DbUzu4w5DOQuEQLDS81BWMRuXishZGj0LvT9Rje/yoc3u62Tk1mYPU1cMeHYNNt0Lqs3tWKyGlYaxk8Cgf3wOF9rm3Z2LALuoUpN8I7NX7ix0yP8Da3uXPXSkhnobkV2pYa2pZC21IXetOZSxSwJvvg8PPQ+xyMHXL3WtfCNT8KPTdDruOUDwmsZX8l4LVSlR1l//iGFb21Pr6zM35rzGNTOsE/acmxMZ1gUzrB+nSCvGeoFvZTKeyjNLEdv9QLGJK51WQ63k48OT2vwJDMrjy+6Ya1lv5xN8LbP2bpHbEcHYFjY5bBCReEhychOukfGp6B1jy0NRja8rB2qUdzztCSg5acoSUP7Q2G9gZDax7iCzTgXigFYxGZG9bC2AD0bofeHTNhuFRrNB+Lu8Vz7/xxWHcjrLjS/fQUkXklCCxv/BB2vWbZvQ32bYdi7Y+xMdDcDi1tbue2lnbIXwtLlhnal8GSZdC+zG1qMS86HEwcnZkmMX7Y3WtbD9c+At03U820cagWdgdHCwwHIYNBxKAfsrvis6scUKkNcScNLKvN772zIcXyRJzuZIzlyTgb0wna4zHCoEC1eJDQn4QyULYMjr1CtbAfMCQyy2ladj+ZpmuIJ5uZKluOjs9Ma3BHwMCE5dWDEUOTJ347uRR0NrvpCGs7PZY0GjoaDUuaoKN23ZqH2GXcR7jeFIxF5PxZC5PDrnXakV1uFPjwDpgace/H4tC5Bq5+B3RvdIG4c7XmCovMQ9WKZcdW2L0NxoYsP/wBjA27qbY9a+C2e2DVBsPKddC9BlLpeRy6ggoMvAEDr8OxbTDhpmpNtqzj4MaP8MOWa9gda2J/JWD/4SpHqr2ntDZLGmiPx1ibivOTbXk2ZRJcnUmwNpUgPivs28inUjyEXzoKxYjBqd1UpvYAJw7herEczcsfouhdy2u9KbY+Z9l6MGJff4VC5dRvIZ+C9kbDjWs8rl/t0dEISxoNy1sNTdl58g+OBUzBWETOLAxg8BD07YGjtaNvDxTG3PvGQMcK2HAT9GyGnk2wbJ1CsMg8FfiWHa/AzlctO1+FXa+BX3V/lPNNrp3ZOz5guPLGi7dr25zxizB2iMLwPvy+12gY3k4sCvBNnG3ZlXxt6QN8LX8V/Ykm9/wYNHoFVqbiXJ9J8cHmOKtTcbqTcTriHm3xGDlbJQrGCf0xQn+MoDJOODXOWFg4/mWjoEi11At2ZuJuLNEEje/g0ORadhxr4eAQ+CEMTmXoHYnRPw4QkIzDFd2G998Yo7MZljSZ46O9HY2QOZfuGXLRKBiLyIypMTi2F/r2wrF97ty/H4LjK0Ng6Wq44g7XOm1Z7Ujn6lu3iLypKLQc64X9O+Hlpy1bn3VTI4xxI8D3PAxX32TYeO0lnO97AQpTI/QN7mVq5ADJsUO0Tx1mSWUIgBywP9HGl5pu5h/zm+hvXkdPJsuaVJxfThhWMcYSr0wrJVJRkTAoEIUFokoRKm7M2NqQQqmPCX/0pK9s8OJ5YvE84P77GC9Ovu02ktnVDJZ7ePlgnK/9wOPlA+79mOe6NGSSkE3BDWsMm5cbrl3psanLkIjP3//Oi52xJy8PvUS2bNliX3zxxbp8bREBpkbd9IfeHW4ucO9ONz1iWr4Vlq2BrvWwbC0sWw8dPdp2WeQyUCxYvv84PP8Pln07Z3r+NjTDDbfDjXcaNl8P2dz8CmiVMOJQYZzh0SMUJo5hJo7SMnmIFcVe2oKp488dTLTSn+mgkGshzDWTzDfQnIRmSmRskSgoYMMSFkvoT5wwsjvNi2XxYhkw0x1wDIn0EhKZ5cQTzXiJJoYKTewdyjNZiVOu1tqbTVgGJ10niMPDrg0auCD8wVs8tqzxWNtp5vUmFouRMeYla+2Wsz2nn3AiC521MHrMhd/paRBHd8P4oHt/eirE+i21ALzOzQ9uaK1v3SJyQQ7tsfyn37AMHHUjwnffDys3GFatd3OGvTp3IbBRRFQcZHT0IKNjh/EnjuEVh8mVR2mvjLE+8llfezbCUEqlqeaSDKXb8dMpsY5A6AAAIABJREFUwnSSmBfSZaeAKeCwW+hWiROL54jiebxYDi/ZhjEeXryBZKYLL9FILJ5z78WzGHNiS0hrLUOTsHfYsrff8rfPhuzqmx48dMHaGGjLuznAS5vdPOB1nYbrVhlWdWhL5YVAwVhkIZluj3ZkV20UeBcc3QXFCfe+F3MhePW1sHwDdG9y51S2vnWLyFtWmLB87YuWx/8Gcg3wr/+LYfP1Fz+oRWGZ0B8n9CcJg3E3Qlst4pUnMaVJbGGAqDCCVy2SqFZI+D6xyNIOtOOWqoWJGEEyTtCYZDSZI0gmiNINkG3BSzYSi+eJxVLEalMZPC9JIrOMWKKFWDyPF89jvORZg6m1ln39lpf2W46OBlR91/6sd8TSO2xP2NRi7VLDrz4Y58puQ1PWkE6g9mZv0fQshfn8DwgFY5HLVRTB8BEXgo/uclMhju46sT1a5xq48s5aZ4j10LkWEqn61i0ic2L/Dsv/+Pduq+Qb7oDnn3Rzh2+/Fx75BUNz21sPH1FYqS1CG3dHMAk2IvTHqI7vwxSHiFVKxKsh8WpA3A9IVwNi4Ym9HqpejMlEmsFEM4V8A+VMCybXQbZxGR3NXTSksnh4ZJOtePG5/Yd62bds77U8+XrEd18POVJrnpOMu2Npk6G7zXDLOo/lbYaeVuhuM6xo1wjwm7HWMhnAaDVipGoZqVhGq9ZdVyNGq7NeV058veuBJjrn8Vx2BWORy0EUwcABOPSGC79H97iFcdXaxMFYwk2DuOadrjXa8g1qjyaygD31uOVzv2tpanG7xT35KFx9M/yTnzOsWn9uocPa0I3u1kTBFMXx1/BLR48HYRtVwFoSlYBExZ91BMSC8ITPN5nIsyPRyfaGJexNdDCZ6SDd0EF7Uyer801sziRYmYwTu4hh89CQ5Qc7Q7YesOwbsEyWXI/gyEI8Bres8/jE3R63rPfoapnfI5cXWxBZJnx3jPuWycCdJ3zLeNUy5tszBtzgDEvU8nFoSXq0JA2tScOVTe66JemR8C7d93ghFIxF5qPCuJsLfOgNOPgaHNw2MxKcyrqOEDe9zy2I61rnOkVoswyRBa8wYfnml+BLn7dceSP80r815BoMQWCJn6HTgY18rA0oT+6mMrWbaukofvnYKYvSvBAyYZ6sb0mUA2LFEl5xDGNrnRu8OIXcMna3dPJKcinPmBZ2JVo5nGilKZXh9lyK2/MpfiKfpid58SOGH1peOWD5/vaIp3ZEHBh0aa2zGTYs82juNixtMmzoMty81qNhHo9Uno9KeGKonX2efYyf7jpw58Jptog+2eyA25Y0dM0KuG0pU7s2tCW949ctSUPqMp5uomAsUk/Wwmifmwvcd5qFcQBLVsJVd8Oqq2HlVdC2HLx5/k9uEZkzYWB58Sl45tuu1Vq1AjfdDT//bwzJlAsg06E49Cfxy33YyKWeKCpTGH6OavHA8c9nYhmSmS7yrbeQrBpi48eIjffhjffjlWft7Zxtg6YVVLvvYFtyKY+bdv7ab2DEesSBKzNJrs8meXc2yfXZFCuSsYs2AhuElgODbn7w3n7L0VHLWAG2HoyYKkMiBlvWGj5yW5y3bfLonoNpJBeDtZZSyClhdvI0Afd0703fr5y8K8lpZGPQmDA0JQyNtaM7651wrylhaJh1ffL5cg64F0rBWORSiiIYOAgHXoX9W2HfVpioheDphXFrrpvpD7x8A+Sa6luziNRFYcLyD4/CE39rGR6A5ja46354x/sNK9cbwmCK0kQvfukI1dIR/FIvoT9+yueJJZppWPIuPJMgadMkiyXMsW0w8HWo1jatyLRA+0ZoWwetaxjMdvGtsscTEyW+P1Wm6kNLzOPe5gzvbszw9oYUmYv4D/TpRXLP7414fo/lpb0RU7Vd4jwDS5qgIWO452qPt2/2uGWdRzZ1cUNcZC1TAacdkZ19njzLSO6ZpiBMa0xAQ3wmpLanDGvz3lnD7OwjoW2hL4iCscjFFAZuLvD+rbXjVSjWfnA1tLnuEKuvgRVXuOkQWhgnsqhNjFpe/B688D3L6y+5v0Ku2hLw0/+yj3WbpjCeASzDh16lNLaV6e2H48l2krnVJDPdJDJdeCYFxRG88cPEJkcwbzwLY4cgKLsvlG6Grhtg6dXQvgE/08oLxSrfmyzzvbEy2/rc31M9yRg/0ZbnPY0ZbsylTtgSeS5EkRsBPjzsRoDHi5Y9xywv7I0YmnTPdLfCvde67ZHXdxpWdpx/j+DIWiZ9GPcjxs5h6sHMaC0nPHe2TOsZTgipTdOjtPET7zUmDE3J2r34ifcbEuAt4rnP9aZgLDKXgqrbNGM6CB/cBpWie6+1Czbf7sLwmmvda/3lJ7LoBYFlatx1lfjS5yu0tfex8aqjvPPX++js6sPg5gKPHJ75GOMlyXfcSaZhkwvC1TKM7nM7V44+DSP7oTrdoSYBzatg1duhZTW0roHG5VQsfH+qzGMjRZ6Y6GM8jIgDN+ZSfGZpI+9uzLAxnZiz6RFhZNk/YHntkOW1QxF7jrnpEVPlE59ry8NN6zxuXutx8zqPrlb39YPILfw6WIoYGbcMV1xHhLHaQrHxqgu0x49Zr88l1CY9Thl5XZ03pwTdhvhMqD35vWxscS/oWwi0853IW1EpwsHXXQg+8KpbLDe9ffLS1bUR4dqocFNHfWsVkXkjDMoc2N7H9pdH2bMN/Cos6+7jjrufI5F0cwam5wIn0l2kcquIJZoBA6Vx4oUxvIk+GD0AYwegVNvG2Bho7HHht3WtOzctB8+Ng1Ujy/enyjw6XuSJ8RITkaXRM9zTmOG9TRnuyKfJxy58ikTZt+w95kaABycslcDtFndgwPJGr6VQmw7RlIX1y9ymGNes8FjeAaWYZcxGDFQth4sRh4sRvbVjqOLC75sxuFA7HViba0G1eVaAbZ41UntyAG5KGNKLcD7tubLWEmEJCQlqx+zrk4+QYOa1PfG9t5vrSJlL3zFJO9+JXAzFCTjw2syI8JFdEIVgPDcf+LaHXBBedTXkmutdrYjUmbUWv3yMavEAQWWY4uQQpckBUslhUsB117nDPWvINl9Dtvk6EpkuYokmTFBxI8FH98JI7ZgdghuWw5Ir3Ihw6xpoWQnx9Ak1lCPLMxMlvj5e4vGJIhOhpTFmeE9ThvubsrwtnyZ5AfNRo8jtFPfa4Ygf7IjYdtiNCJ/Uwph8xrKkA669DpraIZG3TBLRW7I8Woz4496Iob0nhl7PwLK0oSfrcV1LjI6UR2vKtf5qTc5ct9U6JCzW6QfW2lrgDPBPOgeE+McD6qz37enen7kOiY6H3tnXb0Wc2PHDJyDF/G0lqmAscibWur7B25+FHU9D7w53L5aAFZvhrkdcEF55JaRz9a5WRC4RayOCyhBhMEkUTBEGk4TVEYLqKGF1DEtEUAW/UiGRcEHW9xMMDbQx1L+McvUGlq/pYvOWNtIZN0LrmQSxqVEY2g8jT7sQPNHr/s4ByC+Bjs0zI8HNKyB++nUJx/yAr4+X+MZ4iVeKFaoWGjzDu5syPNCU5e3nGIb90LK7z4327h+wHBuzTJUtowWO7xQXeZZkg2X5cti8zhLLWUoxy3BgOVqO2FeKqEa4XZWP1b6VOKzIenRnPW5sSdCT9ejJefRkPVZkPZZlvAW5eCyyERV8KlRnnWeufXv2YHtyoD1fHh4JYsSJEydGonaOEyNNijgeseP/5xGfPpsT701/fGxW6D3d4eFdVtNLFIxFTjY2APtegb0/hJ3PweSwG5np3gTv+jisvR56NmuhnMgCFIUlF26nd3qbdUy3QAOLX+7HRidNjjVJqtVWxkaaGBuJU61AFHoc3H8no2ObaGxpYt2VHlffBd0rQxg/AiNvuPnAo/th/DBMf41kzoXf5Vugba0Lw6mGM9beVw34xkSJr48VeaHopnRtTif4RHsDt+ZSvC2fJnWGsDk9ArzjaMTWg5ZXD0ZsOxwxhSVIWrysJdUIYSqimrdUuy2TxjIVueC+DaAEXhm6Mm6096a2GB/MJujOutA7fTQlLt9d5QIbUManWgu0ZapUa+cKVSr21MB7PPhy5ubBBnNSWI0fD7FZEsevTwi25tRnTxd8p8+eUbvPM1EwFpkchr0v144fum2WATINsG4LbL4VNt4K+Zb61ikiFyQMCi7Y2oCgfIygOoYNS0RhmSgsEUVlsJYomCSoDp/00R6xRAOxRCPGS4IF34dqeDWTU6sYH23m4N4cr/8wz6G9WcCQa4ArboCrthiu2gLv7Qowk30w8poLwHv3w0uHIPLdl0hkoWUVrL8PWle7BXK5jrMuzi1HEVtLPk9NlvnORInXy+7zbUon+MzSRu5vyrI2ferGP6MFy84jlu1HQl45anl9KGTYt0wZSzke4SddEDaNlvI19pQxyYY4rMh5p4Td6aMr4xG/DEZ7IxtRokKRMkXKFCjXgu3pR3OnzyFnbiKcIE6KJCkSpEjSSK72OknKuHtpkiRJkK49l6yd41y8XtBQm3phqwS2gh+V8W2ZwFYIbJWIkMiGx8+WkMhGRLjr0IZEYe0cRe7ZKMLaiMharI2wnOZMhDUR1K5vbvxR8tn5+xtWBWNZfPyK6xax63l39O1199N5t0jutofdqHDnWm2kITJPWRsRVkcJg4naiO7E8SMKC0y3MYvCMn7p6PHXjsHE0nheGi+WwcTSGC9GIr2MbOtNJFIdePFGSqUmRgbzHOv1OLDbcnAXHNgNUye1Cm5oho1Xw93vrXDVhj6WNR/BmzoKk0dhWx882w+2Fi/jaRd819/rzi2r3RSJcxjF863lpUKFJyfLPFuo8Fqpim/BA27KpfiNzibuacywPB7nWCliZ1/Eo0MV9o9bDk5EHClF9JdnRoCDhMUmgGUzX8MDOpKG1Q0eK3NxerKnBuCm5PwOvYENKBwPuyV3bcsUKR0PwEXKlKhwul4VBnM81E6f82ROCbez3599nh6Rtdb9AiDyIfRnrqOg9rp2XfVxU1KCE5873XVYnfV61jkIIqLMJFFugqhhHBonoGkSMiVMugLpCiZTweQqmPg57A5SE5VjRNUYturVzrGZcyWGDTxsYNw5cq8Jp1+b2uvaM6GHDQ2VH/HIZ+fsf+45p64UsvAFVdctYu/LsO9l10Ui9CEWd4vkNtwM626ErvVukw0RqRsbBW6+bjBJ5E8eD75BdfT49sXWRlSLh4iCqRM+1pgEXqKRWDyHi3hgvDip3GoS6U4wHvHUEuLJVsLQMDoIQ/0wdMwdw/32+OvhfrfD3LR4ArpXw5oNARvXDdPVPkBzaoCcGSDp92EmjkBhiOMB3MQgvxQau2pHtxsNzi89pxAMEFrL9pLPDyYqPDlV5oelCiVr8YClxGmK4qT8OEHJo3/CMFCJmAgswZvkVi+CRmPoSHqsyHtsbPFY3ehGeKePZRlTt9HeU4LkrLPvR5SjKqWwStGUKZkyxViJcqxMKVGikihTTpWopMqESf/UTx4Z4oU08Ul3xMbTeGMZvLE03kgaM5LGDKexoynsZJzIN6cNsWcLrrOfs29tvdpxXq5KalmB5LIpUismSPVMkuqeJNFWItFeItFRJNU1hYnP5Dnre1SP5QlHM0SFFFEhhS2kiYpJKKWxxRSU0lBOQTmN8VN4Jjbr8IjFPLyEIZYAL8EpZy9+6r1Y7f6Z7rVvglgd1t6pK4UsXta63eV2PutGhA+85kaJjXHh9/YPwtobXC/h1Dz+Z6vIAjEddqOgSBQWiMLizHVQJArLWCLC6gjVYi+c8qtqj1iyGWNmpgWk8utI59YSSzYTSzS6Dg6e68YwNgyDfe4Y6ofSlKVUgMIkDA+40DsyZLEnfZnGFmhfCmvWlbj77YN0tQ3R0TBAc6qfnDmGVxyA4hBEFgZqHxRLQL7TzQFedSdhw3LKuS4KmSWUbYxSCKXQbQNcKlomxoPTbiYx7kcMhSHDBEzGQirxEJsMj2fo0DdUp2L4hTh+McZAZEhYSEYGWwHjW2KBR6dnWJ736G4wrGr0WNvqsbnDY32r694w+9f0UQB+sXZMgN8P/cVZ9046grIbsTzdEb3J/bAKQRQRxgOi5KwjFWDTPjYVYDMBNudjmqqY1trRXMVrnXntNZ5+bq4te0R9GaL9aaJjjdi+pURH00THMkR9afdeXxo7lALrvncTe5NAd4bwF8+cGARPvj7dvVOu4ycGRZOMMLkiNjtFlCtg01NE6QJhaoowWSBITBEkCkRe9aRvGpLkSJgsSZMhGWsmE2t0h9dIxmsi5eXxlug3nhdCI8ayMFRLbkR457Ow41kYrS19XrrajQavvR5WXwfZMy9eEZFzEwVF/MogUViqzdc99cBGRGGJaunwmw6fmdp0BoxHLJ4jlVtDLNnqwm7cze314jmMiVGtWMZHXPCdOSxjwzAyWAvCx1xP4GkWC2lINrnOCa1LS3QsLdDaOklz4xQN2SnyyQk6okM0lY+QrwyRDgsn1FjwsvTHOzgSW8IRr4ODpp0Dpp19to3eqJFCZCjXwq9/Dr+lNp4lloqIpyLS6YhEOoJkiK3lGM9CLoiRq8ZJFeJ4o3H84RgTo4aoYogFEAsMK1s9OhqgM2u4KuPRVfSIDxnKY66jW3kUymNQnXR7fVQL4Bdq5+LMFOcTJEJMPnBHw8yZ6Xt5H68xINYU4DW697yG2rO52nPZAGqHzQSQPMdf3YeGeDlJrJwkXkkSryZJVJMk/CSJIEkySJKMkqTDNJkgTTbKkDQJ4glzPHDGkmcPvBdr7Zm1Ft+W8W2JalTCt2WqtoQfldzZlqhGRaq2SLV2j5Omchg8kiZL2suT9HKkvTwpL0fK5Eh5edJeI2kvj2f0283zda4jxgrGcvka6p0JwvtecVMmkhkXhDfdChtvgeal9a5SZF6zNsRGVWzkE1RHCCoDREGJKHKL0+z0ArXa2Vr3O+LQHz/9JzQJTCwDXgZrYliTIEz2EMSXUDUZfC9LlSzlKM1oMcNkMcZkwTJZhMkiFMqWQjmiXAnxqz5BxSeo+oRBFWMDEjGfRLxKIuaTilfJJso0JEtkExUa4iWysTI5r0yWMjnK5KjQQJlmirRSJPUmXQH6aeBVutlPGwdp4yCt9Hut9MU6KMfzZGOGTMyQjkEmZsjEa+dZ95IxiLyIyLP4XoRvLGUTUbQR41HIcBAxakNKs8JQIjI0FOMkx+MwEKfSl8Abi2Fqo5vxmAu+bYGhYdKQHTDEDxrS+w0MGsIK4EWYxgDT5GOafLwWn9TyKolOn8QSn1ibj9fku2fyLsDabIDNuBHbKOVGccN4gI2d+/zT6U4Hb3Ykp69NnASJMz6TrL1/sRaeWWtrC8gCIoITz9Y1PotscEHvh9bHtyV8W+HkoDstRoKkVxvh9bIkTZaklyHl5Y+H3pSXI2myb+m/QWgtVSy+jWpni09UO9vj5wBLaG1tWZ1bYBna2n0soWXWeye+jnBbbEdAVHsdYons9PI63vS5CMu/yHbT5F36CQuaSiELj1+BfVth5zMuDE93j+hYAbc+5MLw6msgPn8bh8siZi1gaz83I/f6+D17/J61EUFk8SNLNQjxQx8/9AlDnzAKCMIqQegTRj42DIgin8gGRGEVE5UxUQWioLZK3GJshXQ0QcyWidmAGAGeDYjjE7cBnqkFIet2D5uuNbKGqk1QtQkqUYxqlKAaxfCtB9YyEnQyHOQohx7VyKMSxQish4clRkSckBiWBCFpDpJiL2l80vikCEjj00NACp907fXx67RPLH3+gzYhHmWTpuylqcbSVL001VgWP9bKQDzL4XieajJLNZHHT+Txkzn8ZJ4glSdI5DAxQ7OxtABXRVCOYMKP3JSHwM3fnQwjCpFlMorot5YyljIuhFSx1H76n8ArG0wpRqzg/Z/2zjZWlqSs479/9fTMOefeu3u5y12y7AusuDESPsBGkGSVEOMLIHH1wyaYqEhMkAQSjTEG/CJ+QxONfjAQRBIUkZAIcUMIL4kavigs4CIsCF5whd29YVnWfT1nXrrr8UNVz/S8npm7Z++cw3l+SaWqnqquqn6mpvvf1T09hKdL9p4q6DxeUDze4QKB668NXLcrromw1xVlAXq0IjwyZPRIn3DdAF0cUN7UZ+flA8qbB+hiH7tmQH1uQL07XOSO7JMUAoFufpHXRJCWlOxO59UStC0x280v/2rKjuK1X+nf1BqR2Wd/oQgdpbcgkARotDqXz9ipUpmNcnk9tjci9koJFASlF6IFdSjUSW/yVYeudinCNZTapRt2crybYu1Shl1K7VBoIreipTmzb5F9q/mB5XRVsW+PsW81+xbpE+lbZJDTAzMOWvmmbIAxtMgoi89nkwAEhIAip4NyjHJ5+rOVpm6R7cr2+tA/594uLoyd482jl9Oq8Dc+B5e+mMRxpws/ejv81F3pNWrXPX/bo9w+ZvkXIDO/BLH0Kh0splvZFiHmNIZZnbdtbHFcZ7wdEY3bmATLdWSpHcNaZTbuIwnAeiz6pvI0209imjrjflvisXkodGybKR/Xs7x/lvu1PL6JbVw+s81srFZe45hUlstFU7dtb9Kk/JofpYAyh5P4BPyIQD0VCvoqGdJhqA4DlQyV0k+GHR5RyTB0GIZkH4QOw5DqDdShr8447oeUPlBJXwX9UPJU6PFE0eXJ0OMglNgmPxyrctgfAsvFJQA1aCRUKcchxaNAp+6wa+JCFdirC87GwLUErqXgQhG47iycv3bE3nVDwrkRcb9PdX7IcH9A3wYMOgPi+T7h4oBw/QBd30flYvHQo8suO+zRY5fz7NJLr/xSSbf12q8u5VRcXOGt92hVfr3XkMoOGNiQ/fy6r8qGcyupjbBdttLatsUr/jc1LRSpKS4ptTtXvkzYHlYe6FADBxY5oObAkiDdt5jSpHjfavoWOYiRgzpyQOTA9jmwJzmwyNMWOciC94C4ljQMwA6BHaXQU2AH0VPgnMpxWU+BLqKUKBGlQo5TvpvzXYmSlC4kOogCWmlRZJHbznfa4vaEvnt6E9YSxpJeA/wl6QLhfWb2rply5fLXAfvAb5rZl454rM5pYLCfnhW+9AX45j3w/e8k+4Xnw8tfnx6PeNHL1vpzDbOIxVG+TTwkxiEWB1P5GIdUcUQVa+qYVuTqWOWyEWZDokWqsEdFkd/XGIlELNZJWMaaEEcQa1SPUIwoVim2mhBzsJhCrCmatEVCjBRZGIYpuxEsC6+mPDb5SUh1lvth1WHsah/irNWpoVaayTtbxURGaqasbWvVmWujVZe8uqGpbXPdqW2n27R2I9kcx31M+rHW/kQgKhBRCkqSuCZguawelwUqWkEFFYHRON3kC0bKcWNTwTDnR0rxgIJ9uhxkEQoQpamxgObGZq18zHnL6ZGSuK0UiDmu87hrBeqY0wSiFcSosfNk2Ylpx9MctewwI+XjTL4pHzX5fDK2ySpVsMmqVTs+D1zX2JTqFIjOOBadfJLvKNk7EmWOu0H0gugFUlyk+Joy8JyeONuD3Wsj3Z0RRaeiHlRUwxGD/oCD0ZD90YADGzIMQ4blgKo3pN4bYucGcO2Ip4HpJ5cz/YKdp3boVj32tMu53nM4H3qc0Q679NgjxU1YtUprFrMoHeUwYMhT9PPt/prG3uSHLdGbQj1OJ+G77hqkCAtEahKapXr0whkKla3V15RGBaiDJYmGqUMkEPN9h0igVkFtBbUCIyuoELWgn2/9jyxS0aRTXLUeGRhZys/ZMCqLjBhQ0c/lMdUl1R3mbdalh9hVYFcFuwrsEDijgouh5Ey27angjMI4vUeOFXJI6ZKT+ycoJ5lDhbGkAvgr4OeAB4B7JN1tZl9rVXstcFsOPwm8O8eOsxgzeOx7cPkS8aFvUV++hC5/i+LRB5EZsdPliZt/nB+85A6+/4If48mzZ4l1n7p6Avv2J1HsU8Q+RUzyoLQhJSO6NqLLiB5Ddhgl8RhzyOmxuIxxbC+j0Yt5ZTGqtWhpFDFSZjGrOC1IwxE9o1+jJDSUTgKVAiOFJI6UTgiVCuqQRZNCDsVEVCmJpCZfZ4FWE6YEUk3AJOosgmpN7I1gq7NQasZliCqX1wqY5W2kdOKiEXyTOErUltNZbE2vtULMoqgRutYoVMtpm9jMJtumhduct1Z+rFLb27fLmaoza7excEtpRVHFArMkAmMscixq6xAtEGOgtnyj0BoZnmhfsKj1qMJYWs/YxiK+8YOSEGzqN7cjERMBKChCzgeN84VECDkdoBvS86ohx50ARZHTBXSKQLeAsoBukW7ndwRlyKtLgjK3W4a0StIpJv1Jk76KoHG66WdcphSCNEkz2Y+iSSuJ6+bdrfUIRsNIVUWqyhiNInUdGVWRqk7pqjaqmPOxFcyoraZSTa2ampo6pBCLVuikYGVNLGtsd8QTeyMe36tgbwSdBd93m1ymxScK+L8uerJL8ViH7sNnKOtr6NKhqw69suDM2cC5CwXnLgS6nYJQGPGaOP2nClWfONpnSM2B5ccGxqutIyzbYn6kwMaPCmy6AhswSlDZirtEncFUEtUhUlLRoVLJyDpUKtLqPx0GFAytYEhgJCaCsiUsqzgjRGfS00QOXblfa6+gzBdA5fiiKK2WdvLqaFO+o8C5GVsnr7Y2tkbA7mQxu0uYEr9N2CFQuJA98ayzYvwK4JKZfRtA0oeBO4G2ML4T+FtL9yX/XdJ5STeY2eUjH/FxwfLfHw0G82E4XGwfjaCu4cEHU3j6adjfh34/2VeFGCfxpuM8grrWDtbEMT9cz9RD9maRWKeVVGJNqEcUsaKoRxR1TWE1Rd2soeW3jYaAhUBdKJ9JA2ftXs4CL6AtMGxKSGHN6JoVpon0OvTptwX724hHa62oNfkh45vkY2FnYjqfY+byrXpiQf3Fq7eTUvJ6CjRPUKs9fjElsmbb00z9ZfXaebVO+IduZ7T2fKaOtcYnkt/FklXuSRvNZuMGN7wIaftuLcwWfwitcc3V36yDjWpf0fjHye28AAAI8klEQVQnG29Wf53xrPTP4e1rLnH4WJo50Mmh12y+qe9XzLVFrLoDs2j79eq3N91kAzH5kfz0rLBlNpuvM2OeerhHVzAXpr6bTF8QTmzL2198vBsPbmmdxfWfwXdlUfFsP7bob0Dmtxg/Xr6y8qJjycrG5yo1823dvd708z1qf87y1KWvcf6W2zbr4yqyjjC+EfhuK/8A86vBi+rcCBwrYfzZj36Qn37LWxgrq+YI0lZ80FJ+uTy2Qj1JP5PrQuvMLJ80t3XHt3dn8q3bvmt3vEpxXQHTN5Db1lZnK86daRFMSRwFQGG8r6FRULVB3RL/WtBGk545Mk9uaad+amYPHBrXIdexmVv07Y4auTslsJ/txYBFqw3LjjmLP5DFNHP72V7NWEuQbVj/qrLhgBqhv3b9Je2v+ow3GsyG9dvfmca6ancW1F/a/6Yn16u40rZwZGqXt44rG7c+L0JXj0EL+n92WHVBvCk2vnxt8ht03jYv2dA2/Spu6rSFx9rx5XiqMlV/w/Y32cTWnP4r9vGwzU0L6qzxXW/XO6pvaG/4zO8KPJusI4wXXt9fQR0kvRl4M8Att9yyRtdHTD2CUT0jPEkzMuS4bW/Szf3KqRCwYpF9RWjEba+T7lduQRQs/R7MXv5vQrNtyAdLkQRnyM8qFmk12EJzO50kSsdxXkVVswqrsWht8nPbHTKg+YPq/L4ddnK3qez09qvHMNPXFZzwZ69p7IpFw/yFw7LydTl8LIe3ud7+TATGbO35tell3a7Rj+aFjFb03a47//loZa9LTrnjcUxbF7e1qO3pE/iyXqbbX9nOhvNtWW2b26craPWQBhb5bL7SUR1s1+rtkCZWzoKZ9pftz/KtN/l2rvP5HD7aefsmbbaPs1rQm+ZKVtjyOXx6W5bYknX+VLHmp7r2nFq3vXWbO+LxHfl+rFHv4vH+wfw6wvgB4OZW/ibgoSuog5m9F3gvpPcYbzTSI+BVd70J7nrT1e72WLEFLe44juM4jnMiWOclhPcAt0m6VVIXeANw90ydu4HfUOKVwOM/1M8XO47jOI7jOD90HLpibGaVpLcBnyL99uf9ZnafpLfk8vcAnyC9qu0S6XVtp3tZ1nEcx3EcxzlxrPUeYzP7BEn8tm3vaaUNeOvRDs1xHMdxHMdxrh7P7P8cHcdxHMdxHOeHBBfGjuM4juM4joMLY8dxHMdxHMcBXBg7juM4juM4DuDC2HEcx3Ecx3EAF8aO4ziO4ziOA7gwdhzHcRzHcRzAhbHjOI7jOI7jAC6MHcdxHMdxHAdwYew4juM4juM4gAtjx3Ecx3EcxwFcGDuO4ziO4zgO4MLYcRzHcRzHcQAXxo7jOI7jOI4DuDB2HMdxHMdxHABkZtvpWPo+8L9b6RyeCzyypb5PIu6vzXGfbYb7a3PcZ5vh/toM99fmuM8242r76wVmdvGwSlsTxttE0hfM7Ce2PY6Tgvtrc9xnm+H+2hz32Wa4vzbD/bU57rPNOK7+8kcpHMdxHMdxHAcXxo7jOI7jOI4DnF5h/N5tD+CE4f7aHPfZZri/Nsd9thnur81wf22O+2wzjqW/TuUzxo7jOI7jOI4zy2ldMXYcx3Ecx3GcKU6VMJb0GknfkHRJ0tu3PZ7jiqT7JX1F0r2SvpBtFyR9RtJ/5/g52x7ntpD0fkkPS/pqy7bUP5LekefcNyT9wnZGvV2W+Oydkh7M8+xeSa9rlZ1qn0m6WdK/SPq6pPsk/U62+zxbwAp/+RxbgqQdSZ+X9OXssz/Odp9jC1jhL59jK5BUSPoPSR/P+eM/v8zsVASgAL4F/AjQBb4MvHjb4zqOAbgfeO6M7U+Bt+f024E/2fY4t+ifVwG3A189zD/Ai/Nc6wG35jlYbHsfjonP3gn8/oK6p95nwA3A7Tl9Dvhm9ovPs8385XNsuc8EnM3pEvgc8EqfYxv7y+fYar/9HvAh4OM5f+zn12laMX4FcMnMvm1mQ+DDwJ1bHtNJ4k7gAzn9AeCXtziWrWJmnwUenTEv88+dwIfNbGBm/wNcIs3FU8USny3j1PvMzC6b2Zdy+kng68CN+DxbyAp/LeNU+wvAEk/lbJmD4XNsISv8tYxT7S8ASTcBvwi8r2U+9vPrNAnjG4HvtvIPsPrAeZox4NOSvijpzdn2PDO7DOkkBFy/tdEdT5b5x+fdat4m6T/zoxbNLTX3WQtJLwReRlqh8nl2CDP+Ap9jS8m3ue8FHgY+Y2Y+x1awxF/gc2wZfwH8ARBbtmM/v06TMNYCm7+SYzF3mNntwGuBt0p61bYHdILxebecdwMvAl4KXAb+LNvdZxlJZ4F/BH7XzJ5YVXWB7dT5bIG/fI6twMxqM3spcBPwCkkvWVH91Ptsib98ji1A0uuBh83si+tussC2FX+dJmH8AHBzK38T8NCWxnKsMbOHcvww8DHS7YzvSboBIMcPb2+Ex5Jl/vF5twQz+14+0UTgr5ncNnOfAZJKksj7ezP7aDb7PFvCIn/5HFsPM3sM+FfgNfgcO5S2v3yOLeUO4Jck3U96dPVnJH2QEzC/TpMwvge4TdKtkrrAG4C7tzymY4ekM5LONWng54Gvknz1xlztjcA/bWeEx5Zl/rkbeIOknqRbgduAz29hfMeO5uCY+RXSPAP3GZIE/A3wdTP781aRz7MFLPOXz7HlSLoo6XxO7wI/C/wXPscWssxfPscWY2bvMLObzOyFJL31z2b2a5yA+dXZRqfbwMwqSW8DPkV6Q8X7zey+LQ/rOPI84GPpPEMH+JCZfVLSPcBHJP0W8B3gri2OcatI+gfg1cBzJT0A/BHwLhb4x8zuk/QR4GtABbzVzOqtDHyLLPHZqyW9lHS77H7gt8F9lrkD+HXgK/mZRoA/xOfZMpb561d9ji3lBuADkgrSItlHzOzjkv4Nn2OLWOavv/M5thHH/hjm/3znOI7jOI7jOJyuRykcx3Ecx3EcZykujB3HcRzHcRwHF8aO4ziO4ziOA7gwdhzHcRzHcRzAhbHjOI7jOI7jAC6MHcdxHMdxHAdwYew4juM4juM4gAtjx3Ecx3EcxwHg/wHcfEWBWRfqOAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "color=plt.cm.rainbow(np.linspace(0,1,len(list_countries)))\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "for i, c in enumerate(list_countries):\n", + " plt.plot(donnees[i], label=c, c=color[i])\n", + "plt.legend(loc='best');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ici, les cases covid aux Etats-Unis sont très forts! Nous allons éliminer la courbe de US pour zoomer sur les autres pays." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHVCAYAAABbtvWJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYVdX+x/H3BhlFnBCchUZnUclZU7up/XIsy0anTK3sqre6V7u30q52K71lZunPcsocGsyJJs0ktTCFxCFRKcNZVBCUSTic9fsDPD81VFTgHODzeh4eztlnr7W+55x6ng/Ltde2jDGIiIiIiEjxc3N2ASIiIiIiZZXCuIiIiIiIkyiMi4iIiIg4icK4iIiIiIiTKIyLiIiIiDiJwriIiIiIiJMojIuIiIiIOInCuIiIiIiIkyiMi4iIiIg4STlnF1CcAgICTHBwsLPLEBEREZFSLDo6+pQxplpBzi1TYTw4OJioqChnlyEiIiIipZhlWQcKeq6WqYiIiIiIOInCuIiIiIiIkyiMi4iIiIg4SZlaM56f7OxsDh8+TGZmprNLkRvk7e1N7dq18fDwcHYpIiIiIgVS5sP44cOHqVChAsHBwViW5exy5DoZY0hMTOTw4cOEhIQ4uxwRERGRAinzy1QyMzOpWrWqgngJZ1kWVatW1b9wiIiISIlS5sM4oCBeSuh7FBERkZJGYVxERERExEkUxl2Au7s7oaGhNGvWjBYtWvDTTz9dtY2fn99Vzxk2bBi7d+8ujBJFREREpAiU+Qs4XYGPjw8xMTEAfPvtt4wfP54ffvjhhvv98MMPb7gPERERESk6CuMX+GYMHI8p3D6rh0KPaQU//8yZM1SuXNnxfMqUKXz66aecO3eOfv36MXHixIvOt9vtjBo1ih9++IGQkBDsdjtDhw6lf//+dO7cmalTpxIWFoafnx+pqakAfP7554SHhzN//nwGDx6Mj48Pe/bs4cCBA8ybN48FCxYQGRlJ69atmT9/fmF8DCIiIiKSD4VxF5CRkUFoaCiZmZkcO3aM77//HoA1a9YQFxfHli1bMMbQu3dvNmzYQKdOnRxtv/jiC+Lj49m5cycnTpygQYMGDB069JrGP336NN9//z2rVq2iV69e/Pjjj3z44YfccccdxMTEEBoaWqjvV0RERERyKYxf4FpmsAvThctUIiMjGThwILt27WLNmjWsWbOG5s2bA5CamkpcXNxFYXzTpk088MADuLm5Ub16dbp06XLN4/fq1QvLsmjSpAlBQUE0adIEgEaNGhEfH68wLiIiIlJEFMZdTNu2bTl16hQnT57EGMP48eMZMWLEZc83xhSo3wu3/bt0L24vLy8A3NzcHI/PP7fZbNdSvoiIiIhcA+2m4mL27NlDTk4OVatWpXv37sydO9ex1vvIkSOcOHHiovM7dOjAsmXLsNvtJCQkEBERkW+/QUFBxMbGYrfbWb58eVG/DREREREpAM2Mu4Dza8Yhd6Z7wYIFuLu7061bN2JjY2nbti2Qu53hxx9/TGBgoKPt/fffz7p162jcuDG33XYbrVu3pmLFin8a4/XXX6dnz57UqVOHxo0bOwK+iIiIiDiPVdBlDqVBWFiYiYqKuuhYbGwsDRo0cFJFhSM1NRU/Pz8SExNp1aoVP/74I9WrV3d2WU5RGr5PERERKQQ5WXAuFXyrFPvQlmVFG2PCCnKuZsZLgZ49e5KcnExWVhYvvfRSmQ3iIiIiItjtcGAT/LoM/ILgzvFwwbVzrkZhvBS43DpxERERkTIl5QhEfQiJcVA5BBr0dukgDgrjIiIiIlLS5dhgzyqIXQnlfKDVCKjXweWDOCiMi4iIiEhJlvgbbP0QzhyGum0h9DHw/vNmFq5KYVxERERESh5jYN/XsGMpeFeCDs9BzebOruqaKYyLiIiISMmSlQ5bZ8ORKKh1B9zxJHj6Oruq66Iw7gLc3d0dt6AHWLFiBcHBwc4rSERERMRVJR+An6ZD2klo9gjcdk+JWBt+OQrjLsDHx4eYmJjLvm6z2ShXTl+ViIiIlGHGDr+vg+2LwdMPOv8Tqt3u7KpumBLeBRa+Y+dAXOH2We9WeHy02zW3mz9/Pl9++SWZmZmkpaWxatUq+vTpw+nTp8nOzmbSpEn06dOH+Ph47rnnHjp06MBPP/1ErVq1WLlyJT4+Pvz222+MHDmSkydP4u7uzmeffcbNN9/MlClT+PTTTzl37hz9+vVj4sSJhfumRURERArT2eMQNQdOxkJQE2g9skRdpHklCuMuICMjg9DQUABCQkJYvnw5AJGRkezYsYMqVapgs9lYvnw5/v7+nDp1ijZt2tC7d28A4uLiWLJkCR988AEPPvggy5Yt47HHHuPRRx9l3Lhx9OvXj8zMTOx2O2vWrCEuLo4tW7ZgjKF3795s2LCBTp06Oe39i4iIiOTLngNx38Kuz8HNHcKegJDOJXpZyqUKHMYty3IHooAjxpielmVVAT4BgoF44EFjzOm8c8cDTwA5wF+NMd/mHW8JzAd8gK+A0cYYY1mWF/AR0BJIBAYYY+Lz2gwC/pVXxiRjzIK84yHAUqAK8AvwuDEm67o+hTzXM4NdGC63TOXuu++mSpXcW7gaY3jxxRfZsGEDbm5uHDlyhISEBCA3wJ8P8y1btiQ+Pp6zZ89y5MgR+vXrB4C3tzcAa9asYc2aNTRvnnu1cWpqKnFxcQrjIiIi4lrSE3PXhif9DjVbQIvBTrm1fVG7lpnx0UAs4J/3fBywzhjzumVZ4/Ke/8OyrIbAQ0AjoCbwnWVZtxljcoCZwHBgM7lhvAfwNbnB/bQx5hbLsh4C3gAG5AX+V4AwwADRlmWtygv9bwBvG2OWWpY1K6+Pmdf9Sbig8uXLOx4vWrSIkydPEh0djYeHB8HBwWRmZgLg5eXlOM/d3Z2MjAyMMfn2aYxh/PjxjBgxomiLFxEREbleSb/DprfAdg7aPAN12pSq2fALFWgq2LKs2sC9wIcXHO4DLMh7vADoe8HxpcaYc8aYP4DfgFaWZdUA/I0xkSY3KX50SZvzfX0O3GVZlgV0B9YaY5LyAvhaoEfea13zzr10/FIpJSWFwMBAPDw8WL9+PQcOHLji+f7+/tSuXZsVK1YAcO7cOdLT0+nevTtz584lNTUVgCNHjnDixIkir19ERESkQE7shojXwN0T7pqQeyOfUhrEoeAz49OAvwMVLjgWZIw5BmCMOWZZVmDe8VrkznyfdzjvWHbe40uPn29zKK8vm2VZKUDVC49f0qYqkGyMseXTV6n06KOP0qtXL8LCwggNDaV+/fpXbbNw4UJGjBjByy+/jIeHB5999hndunUjNjaWtm3bAuDn58fHH39MYGDgVXoTERERKWIHI2HLbPALhDvHgU9lZ1dU5K4axi3L6gmcMMZEW5bVuQB95veni7nC8etpc6W+Li7GsoaTuzSGunXr5neK052fpb7Q4MGDGTx4sON5QEAAkZGR+bbftWuX4/Hzzz/veHzrrbfy/fff/+n80aNHM3r06BuoWERERKQQGTv8+gXsXgEBt0H7seBV4ertSoGCLFNpD/S2LCue3Asmu1qW9TGQkLf0hLzf59c6HAbqXNC+NnA073jtfI5f1MayrHJARSDpCn2dAirlnXtpXxcxxsw2xoQZY8KqVatWgLcrIiIiIsUmKw02vZ0bxIM7wp3jy0wQhwKEcWPMeGNMbWNMMLkXZn5vjHkMWAUMyjttELAy7/Eq4CHLsrzydjy5FdiSt6TlrGVZbfLWfA+8pM35vvrnjWGAb4FulmVVtiyrMtAN+DbvtfV55146voiIiIiUBCmH4btX4PgOaD4I7hgO7h7OrqpY3cg+468Dn1qW9QRwEHgAwBjzq2VZnwK7ARvwTN5OKgBP8f9bG36d9wMwB1hoWdZv5M6IP5TXV5JlWf8Gtuad96oxJinv8T+ApZZlTQK25fUhIiIiIiVBwq/w07TcCzU7v1gq7qZ5PazLbYFXGoWFhZmoqKiLjsXGxtKgQQMnVSSFTd+niIhICXB8B2z6L/jVgE4vgG9VZ1dUqCzLijbGhBXkXN2BU0RERESKT/KB3Jv5+NeCzv8Ez/JXb1OKOeeWkyIiIiJS9qQnwsap4OELHZ4v80EcFMZdQkJCAo888gg33XQTLVu2pG3btixfvtzZZYmIiIgUnux02PhfyM6Ajs+XylvbXw+FcSczxtC3b186derE/v37iY6OZunSpRw+fPjqjYGcnJyrnyQiIiLiTHZb7tKUM0eg3Wio5Jr3fnEGrRm/wJRVNvYdsxdqn7fVcOOF3pf/mL///ns8PT0ZOXKk41i9evV49tlnycnJYdy4cURERHDu3DmeeeYZRowYQUREBBMnTqRGjRrExMTw1Vdf0aNHDzp06MDmzZtp1qwZQ4YM4ZVXXuHEiRMsWrSIVq1asWXLFsaMGUNGRgY+Pj7MmzeP22+/nfnz57Nq1SrS09P5/fff6devH2+++SZz5sxh165dvP322wB88MEHxMbG8tZbbxXqZyQiIiKlmDEQPQ8SdsEdT0L1Js6uyKVoZtzJfv31V1q0aJHva3PmzKFixYps3bqVrVu38sEHH/DHH38AsGXLFiZPnszu3bsB+O233xg9ejQ7duxgz549LF68mE2bNjF16lRee+01AOrXr8+GDRvYtm0br776Ki+++KJjrJiYGD755BN27tzJJ598wqFDh3jooYdYtWoV2dnZAMybN48hQ4YU5cchIiIipU3sSvjjB2jYF0LudHY1Lkcz4xe40gx2cXnmmWfYtGkTnp6e1KtXjx07dvD5558DkJKSQlxcHJ6enrRq1YqQkBBHu5CQEJo0yf1Ls1GjRtx1111YlkWTJk2Ij493tB80aBBxcXFYluUI2QB33XUXFStWBKBhw4YcOHCAOnXq0LVrV8LDw2nQoAHZ2dmOMURERESu6sAm2PU51OsAje53djUuyfnps4xr1KgRy5Ytczx/7733OHXqFGFhYdStW5d3332X7t27X9QmIiKC8uUvvvrYy8vL8djNzc3x3M3NDZvNBsBLL71Ely5dWL58OfHx8XTu3Dnf9u7u7o42w4YN47XXXqN+/fqaFRcREZGCO7Ebtn4AgQ0hbBhYlrMrcklapuJkXbt2JTMzk5kzZzqOpaenA9C9e3dmzpzpmMHet28faWlp1z1WSkoKtWrVAmD+/PkFatO6dWsOHTrE4sWLefjhh697bBERESlDUo7Aj9PAr3ruBZvumv+9HIVxJ7MsixUrVvDDDz8QEhJCq1atGDRoEG+88QbDhg2jYcOGtGjRgsaNGzNixAjHjPX1+Pvf/8748eNp3779Ne3C8uCDD9K+fXsqV6583WOLiIhIGZGRDBungLsHdHxBe4lfhWWMcXYNxSYsLMxERUVddEy3T7+6nj17MnbsWO666y5nl3JV+j5FREScKDsTIibDmaPQ5V9QJeTqbUohy7KijTFhBTlXM+NyWcnJydx22234+PiUiCAuIiIiTmTs8PN7kBwPbUeV2SB+rbSARy6rUqVK7Nu3z9lliIiISEkQuxqOboPmA6Fmc2dXU2JoZlxEREREbsyJWPj1c6jbFm6529nVlCgK4yIiIiJy/bLSYcssKB8ELYdqC8NrpDAuIiIiItcvZiFkJEHrkeDh4+xqShyFcRERERG5Pqf2QfxGuL0nVL3F2dWUSArjLsDPz8/ZJYiIiIhcG2Ng+2LwqQwN+zi7mhJLYdxFXctNeURERESK3eEtkPgbNOoP5bydXU2Jpa0NL/DCtnR2JBduCG5ayZ0pzX0LdG5ERAQTJ06kRo0axMTEsHv3bvr27cuhQ4fIzMxk9OjRDB8+HMidTR89ejTh4eH4+PiwcuVKgoKCCrV2ERERkXzlZMOOT6BiHQju6OxqSjTNjLuYLVu2MHnyZHbv3g3A3LlziY6OJioqiunTp5OYmAhAWloabdq0Yfv27XTq1IkPPvjAmWWLiIhIWfLbd5B2Apo9Am6KkzdCM+MXKOgMdlFq1aoVISH/f8eq6dOns3z5cgAOHTpEXFwcVatWxdPTk549ewLQsmVL1q5d65R6RUREpIzJPAOxKyCoCVRv4uxqSjyFcRdTvnx5x+OIiAi+++47IiMj8fX1pXPnzmRmZgLg4eGBlbePp7u7OzabzSn1ioiISBmzfTHYMiH0UWdXUiro3xVcWEpKCpUrV8bX15c9e/awefNmZ5ckIiIiZdnxnXBgE9TvBRVrO7uaUkFh3IX16NEDm81G06ZNeemll2jTpo2zSxIREZGyKj0Rfp4JFWpCg97OrqbUsIwxzq6h2ISFhZmoqKiLjsXGxtKgQQMnVSSFTd+niIhIEcjJhvWT4MwR+MtE8K/l7IpcmmVZ0caYsIKcq5lxEREREbmynZ9B0u/QaoSCeCFTGBcRERGRyzu+E/Z9BTf/BWrf4exqSh2FcRERERHJn90Gv8zPXSfe7BFnV1MqKYyLiIiISP7++AFSE6DZw1DO09nVlEoK4yIiIiLyZ7Zz8OtyCLgNaoQ6u5prVlI2KVEYFxEREZE/2x8BmcnQ5EHIu9FgSfLxu4Yl79tdPpQrjLsAPz8/AOLj41m8ePFVz4+Pj6dx48ZFXZaIiIiUVTk22PslBNwO1eo7u5prtn614ZtPwWbDccdyV6Uw7kIKGsZFREREitSBHyEjCRr2cXYl1yR2m+H9V+3Mm2po2goeedq1gzhAOWcX4EomHD3N7ozsQu2zoY8HE2pWLtC548aNIzY2ltDQUAYNGkS/fv14/PHHSUtLA2DGjBm0a9fuojYdO3bk3XffJTQ0dy1X+/btmTlzJk2bNi3U9yEiIiJlhDGw72uoVA+Cmji7mgI7EGd44zmDty90vAceecbCvZzCuFyD119/nalTpxIeHg5Aeno6a9euxdvbm7i4OB5++GEuvYPosGHDmD9/PtOmTWPfvn2cO3dOQVxERESu36m9cOYwhD1ZYtaKZ6Qb3n3Z4OcPr82z8K9cMuoGhfGLFHQGu7hkZ2czatQoYmJicHd3Z9++fX8654EHHuDf//43U6ZMYe7cuQwePLj4CxUREZHS47fvwMMX6rZxdiUFYoxh3lTD8SPwz3dKVhAHhXGX9vbbbxMUFMT27dux2+14e3v/6RxfX1/uvvtuVq5cyaeffvqnmXMRERGRAstMgSNbc++2Wc7L2dUUyIav4Mc1cP8TFg2al6wgDgrjLqVChQqcPXvW8TwlJYXatWvj5ubGggULyMnJybfdsGHD6NWrFx07dqRKlSrFVa6IiIiUNn/8APYcuPkuZ1dSICeOGBZMMzRqCX0HOrua66PdVFxI06ZNKVeuHM2aNePtt9/m6aefZsGCBbRp04Z9+/ZRvnz5fNu1bNkSf39/hgwZUswVi4iISKlht8P+9RDYEPxrOruaq7LbDbNfN1gWjHjRws295M2Kg2bGXUJqaioAHh4erFu37qLXduzY4Xj8n//8B4Dg4GB27drlOH706FHsdjvdunUrhmpFRESkVErYAWknoekAZ1dSIGs+h9htMOwfFlWDSmYQB82Ml3gfffQRrVu3ZvLkybi56esUERGR6/TbOvCuCDXDnF3JVe3fY1j8vqFFe+jc09nV3BjNjJdwAwcOZODAErpISkRERFxD2ik4FgMNeoO7a8fDzIzcbQwrVYUR/7Rc/g6bV6OpVBEREZGybv/3YAE3dXF2JVf12WzDiaPw1EsWfv4lO4iDwriIiIhI2ZZjg/0RUCMUygc4u5or2rvd8O3ncPd90CC05AdxUBgXERERKdsOb4ZzZ3L3FndhiScM77xkqFYDBowsHUEctGZcREREpOwydohdDRVrQ/Umzq4mX2dOGyLCYcNXhnOZ8OI0Cx9fhXEpRH5+fo7tDUVERESKzZFoOHME2jwNlustmEhMMEwebUg4DHVvhjGTLWrfVHqCOCiMi4iIiJRNxsCecPALgtptnF3Nn5xNNkz+q+FMMrwy0+K2JqUrhJ+nMH6B99OP8ntOZqH2ebO7N0/7Xv0uVqmpqfTp04fTp0+TnZ3NpEmT6NOnD/Hx8fTo0YPWrVuzbds2brvtNj766CN8fX159dVXWb16NRkZGbRr147//d//xbIsOnfuTOvWrVm/fj3JycnMmTOHjh07Fur7EhERkRIu6ffcnxaDwMXuVWLPMcyYYEg6Cf+cbnFr49IZxEEXcLoMb29vli9fzi+//ML69et57rnnMMYAsHfvXoYPH86OHTvw9/fn/fffB2DUqFFs3bqVXbt2kZGRQXh4uKM/m83Gli1bmDZtGhMnTnTKexIREREXFrcGPHygnutN2H32oWFXFAz+W+kO4qCZ8YsUZAa7qBhjePHFF9mwYQNubm4cOXKEhIQEAOrUqUP79u0BeOyxx5g+fTrPP/8869ev58033yQ9PZ2kpCQaNWpEr169ALjvvvsAaNmyJfHx8U55TyIiIuKiMpLh8M+5O6h4eDu7motEbTCsWghde0PnnqU7iIPCuMtYtGgRJ0+eJDo6Gg8PD4KDg8nMzF0yc+mdpSzLIjMzk6effpqoqCjq1KnDhAkTHOcDeHl5AeDu7o7NZiu+NyIiIiKu748IsOfALXc7u5KLHD1omDnJcFMDGDim9Adx0DIVl5GSkkJgYCAeHh6sX7+eAwcOOF47ePAgkZGRACxZsoQOHTo4gndAQACpqal8/vnnTqlbREREShi7PfcmP0GNoUJ1Z1fjkJlumPaiwcMTxkyy8PBUGJdiYLPZ8PLy4tFHHyUqKoqwsDAWLVpE/fr1Hec0aNCABQsW0LRpU5KSknjqqaeoVKkSTz75JE2aNKFv377ccccdTnwXIiIiUmIk7IT0U3BTF2dXcpH5bxmOHoRnJ1pUDSobQRy0TMXpfv31V26++WYCAgIcs98Xio+Px83NjVmzZv3ptUmTJjFp0qQ/HY+IiHA8DggI0JpxERER+X/7vwcvf6jZ0tmVOOz42bDxG+g7CBq1LDtBHDQz7lSzZs3i4YcfzjdQi4iIiBS6jNNwdBuEdAJ315iTTU8zzJ1qqFEX+gwsW0EcNDPuVCNHjmTkyJFXPCc4OJhdu3YVU0UiIiJSqv3xAxg7hHR2diUA2GyG6S8ZEk/Av6ZbeHopjIuIiIhIaeRCF25mZxm++Qy2RBj2x8KT4yxub1b2gjhomYqIiIhI2eAiF24aY5gzxbB0psGeA0+8YJWJ/cQvRzPjIiIiImXBkSgo5+30Cze//gQ2fg33DbW4f2jZDeHnaWZcREREpLQzBo5tz12i4sQLN2MiDYvfN9zRGfoNdloZLkVh3AX4+fk5Hn/11VfceuutHDx40Cm1zJ07lyZNmtC0aVMaN27MypUrr6ufmJgYvvrqK8fzCRMmMHXq1MIqU0RERK7FmcOQkQQ1mjmthJPHDe9NNNS5CUb+08LNTbPioGUqLmXdunU8++yzrFmzhrp16xaojc1mo1y5wvkaDx8+zOTJk/nll1+oWLEiqampnDx58rr6iomJISoqiv/5n/8plNpERETkBhzbnvu7elOnlRCx2pCRDmMnW3j7KIifpzB+gWX2OI6QWqh91sKP+91uvep5Gzdu5Mknn+Srr77i5ptvBuDAgQMMHTqUkydPUq1aNebNm0fdunUZPHgwVapUYdu2bbRo0YJXX32VZ599lp07d2Kz2ZgwYQJ9+vQhPj6exx9/nLS0NABmzJhBu3btLlvDiRMnqFChgmOm3s/Pz/E4JiaGkSNHkp6ezs0338zcuXOpXLkynTt3ZurUqYSFhXHq1CnCwsLYt28fL7/8MhkZGWzatInx48cDsHv3bjp37szBgwcZM2YMf/3rX2/osxUREZECOrYdKtYB36pOGd4Yw09roVFLCKylIH4hLVNxAefOnaNPnz6sWLGC+vXrO46PGjWKgQMHsmPHDh599NGLwuu+ffv47rvv+O9//8vkyZPp2rUrW7duZf369bzwwgukpaURGBjI2rVr+eWXX/jkk0+uGn6bNWtGUFAQISEhDBkyhNWrVzteGzhwIG+88QY7duygSZMmTJw48bL9eHp68uqrrzJgwABiYmIYMGAAAHv27OHbb79ly5YtTJw4kezs7Ov9yERERKSgzp2FU/ugRqjTSvjtVzhxFNrdrSB+Kc2MX6AgM9hFwcPDg3bt2jFnzhzeeecdx/HIyEi++OILAB5//HH+/ve/O1574IEHcHd3B2DNmjWsWrXKsSY7MzOTgwcPUrNmTUaNGkVMTAzu7u7s27fvinW4u7vzzTffsHXrVtatW8fYsWOJjo5m7NixJCcnc+eddwIwaNAgHnjggWt+n/feey9eXl54eXkRGBhIQkICtWvXvuZ+RERE5Boc3gomB+q0LvahMzMMP62BqI0GD0+4o1Oxl+DyFMZdgJubG59++il/+ctfeO2113jxxRfzPc+y/v+vyfLlyzseG2NYtmwZt99++0XnT5gwgaCgILZv347dbsfb2/uqtViWRatWrWjVqhV33303Q4YMYezYsZc9v1y5ctjtdiD3j4Ar8fLycjx2d3fHZrNdtR4RERG5QYc2g191qFSv2Ide+I4hIjz3cfvu4OunmfFLaZmKi/D19SU8PJxFixYxZ84cANq1a8fSpUsBWLRoER06dMi3bffu3Xn33XcxxgCwbds2AFJSUqhRowZubm4sXLiQnJwcR5sLl8Ocd/ToUX755RfH85iYGOrVq0fFihWpXLkyGzduBGDhwoWOWfLg4GCio6MB+Pzzzx1tK1SowNmzZ6/vwxAREZHCkZkCJ2NzZ8Wt4g3Ce7fnBvF7BsDM1RYj/6kgnh/NjLuQKlWq8M0339CpUycCAgKYPn06Q4cOZcqUKY4LOPPz0ksvMWbMGJo2bYoxhuDgYMLDw3n66ae5//77+eyzz+jSpYtjNv3UqVOO4H6h7Oxsnn/+eY4ePYq3tzfVqlVj1qxZACxYsMBxAedNN93kqOX555/nwQcfZOHChXTt2tXRV5cuXXj99dcJDQ11XMApIiIixezQltw9xuu2KdZhs87l3mWzahD0H6bdU67Eyi+UlVZhYWEmKirqomOxsbE0aNDASRU5R3h4OPv37y+Vu5mUxe9TRETksr7/N2SlQo83inXYhe/Y+eYz+PtUi2Ztyl71pEmgAAAgAElEQVQQtywr2hgTVpBzNTNeBvXs2dPZJYiIiEhRS0/M3UWl0X3FNuSuKMNPaw0/fAnd+lMmg/i1UhgXERERKY0ObQGKb4nKL5sMb403+JSHDt3h4acUxAtCYVxERESkNDq0OXcHlQo1in6o/bm3ug++DV56z8LL2/lB3Bg79pwM3MuVv/rJTqTdVERERERKm7STkPR7sewtnp2VG8S9fOBvrzs/iBtjJy1xCwl7/8vpQ586tZaCUBgXERERKW0O/Zz7u07RL1FZNsdw6HcYPt6iSjXnz4ifOb6G00eWYbl74Vu5pbPLuSotUxEREREpbQ5thio3g19gkQ6zd7shfDF06QWhbZ0TxLMzE7BlJQJgyzrN2ZPrKV/lDirVuv+iGya6Ks2MuwDLsnjuueccz6dOncqECROu2CYiIoKffvrJ8Xzw4MEX3XTnegQHB3Pq1Kkb6uM8Pz+/QulHRERErtHZ43A6vsiXqGSmG2ZNNgRUh0efLf7Qa0wOZxLWkrDvbRLjF5AYv4CUo6vw8KlFpZp9SkQQB82MuwQvLy+++OILxo8fT0BAQIHaRERE4OfnR7t27W54fGNMvjcBEhERkRLo0Obc30Ucxhe/bzh5DP41w8LHt3iDr92eRdKBxWSejcW3UnP8AtoDuTV4eFfHcis5EbfkVFoMNtq3cZLkQu2zGpXo6Nb8iueUK1eO4cOH8/bbbzN58uSLXjt58iQjR47k4MGDAEybNo1atWoxa9Ys3N3d+fjjj3n33XcB2LBhA2+99RbHjx/nzTffpH///gBMmTKFTz/9lHPnztGvXz8mTpxIfHw899xzD126dCEyMpIVK1ZcNG7fvn05dOgQmZmZjB49muHDhwO5M96jR48mPDwcHx8fVq5cSVBQEH/88QePPPIINpuNHj16OPo5duwYAwYM4MyZM9hsNmbOnEnHjh1v7EMVERGRyzu0GQJuA9+qRTZETKRh3Qq49xGo36x4g3j2uZOcPvQJWemHqVSzD34BNz4x6UxapuIinnnmGRYtWkRKSspFx0ePHs3YsWPZunUry5YtY9iwYQQHBzNy5EjGjh1LTEyMI9weO3aMTZs2ER4ezrhx4wBYs2YNcXFxbNmyhZiYGKKjo9mwYQMAe/fuZeDAgWzbto169epdNO7cuXOJjo4mKiqK6dOnk5iYuxYrLS2NNm3asH37djp16sQHH3zgqPOpp55i69atVK9e3dHP4sWL6d69OzExMWzfvp3Q0NCi+QBFREQEUo5AyuEivXAzPdXw4RuG2iHQ/4niC+LG5HD2RAQJ+6aRfe4UVes9VuKDOGhm/CJXm8EuSv7+/gwcOJDp06fj4+PjOP7dd9+xe/dux/MzZ85w9uzZfPvo27cvbm5uNGzYkISEBCA3jK9Zs4bmzXPfW2pqKnFxcdStW5d69erRpk3+/7NOnz6d5cuXA3Do0CHi4uKoWrUqnp6ejjt4tmzZkrVr1wLw448/smzZMgAef/xx/vGPfwBwxx13MHToULKzs+nbt6/CuIiISFE6tBksC2q3KrIhvphnSE7M3cbQ06t4wrgxOZz8fTZZ6fF4+zeicq2+uHv4F8vYRU1h3IWMGTOGFi1aMGTIEMcxu91OZGTkRQH9cry8vByPz68BN8Ywfvx4RowYcdG58fHxlC+f/yb4ERERfPfdd0RGRuLr60vnzp3JzMwEwMPDw3FBhLu7OzabzdEuvwslOnXqxIYNG/jyyy95/PHHeeGFFxg4cOBV34uIiIhcI2Nyw3i1BuBTqUiGOLzf8O3n0KU33FS/+GbF05K2kpUeT6Va91G+SqsSc3FmQWiZigupUqUKDz74IHPmzHEc69atGzNmzHA8j4mJAaBChQqXnSG/UPfu3Zk7dy6pqakAHDlyhBMnTlyxTUpKCpUrV8bX15c9e/awefPmq47Tvn17li5dCsCiRYscxw8cOEBgYCBPPvkkTzzxBL/88stV+xIREZHrcPYonD1WZLPitmzD//7H4FseHhxejMtT7NmcSViHp2+9UhfEQWHc5Tz33HMXbS84ffp0oqKiaNq0KQ0bNmTWrFkA9OrVi+XLlxMaGsrGjRsv21+3bt145JFHaNu2LU2aNKF///5XDfE9evTAZrPRtGlTXnrppcsuZbnQO++8w3vvvccdd9xx0br3iIgIQkNDad68OcuWLWP06NFX7UtERESuw9HcCTtqFv6yW3uOYclMw/5YGPYPiwoViy4QG2Mn+egqjv46kSO/TuDo7n9jt52hYvUepS6IA1hlaUu7sLAwExUVddGx2NhYGjRo4KSKpLDp+xQRkTIr4jU4dxa6/6dQu129yLBqoSE9Fe7qC0OfL7q5XGNySDq4hIyUnfhUbIJ7uQoAlPMKyNu+sGSwLCvaGBNWkHO1ZlxERESkpMtKh5N74fZ7CrXbdSsMS2camrWBjvdYtLqzULu/iDGG04eXkZGyk4o17qVCtU5FN5gLueqfNpZleVuWtcWyrO2WZf1qWdbEvONVLMtaa1lWXN7vyhe0GW9Z1m+WZe21LKv7BcdbWpa1M++16VbevzVYluVlWdYnecd/tiwr+II2g/LGiLMsa9AFx0Pyzo3La+tZOB+JiIiISAlzYheYHKhReLuW7dlumPeWIbQtPPe6Rdu7LNzLFd0ykTMJa0g/HY1/0N1lJohDwdaMnwO6GmOaAaFAD8uy2gDjgHXGmFuBdXnPsSyrIfAQ0AjoAbxvWZZ7Xl8zgeHArXk/5+8O8wRw2hhzC/A28EZeX1WAV4DWQCvglQtC/xvA23njn87rQ0RERKTsObYdPHyh6q2F0l16mmHmvw2BNWDUxKIN4QCpiZs5e+J7yldpRYXAu4p0LFdz1TBucqXmPfXI+zFAH2BB3vEFQN+8x32ApcaYc8aYP4DfgFaWZdUA/I0xkSZ3ofpHl7Q539fnwF15s+bdgbXGmCRjzGlgLbl/DFhA17xzLx1fREREpOwwBhJ2QWAjcHO/+vkF8NE0Q+IJeOqlor/VfXrydpKPrMC7Qn0q1epbKi/SvJICrcC3LMvdsqwY4AS54fhnIMgYcwwg73dg3um1gEMXND+cd6xW3uNLj1/UxhhjA1KAqlfoqyqQnHfupX1dWvtwy7KiLMuKOnnyZEHeroiIiEjJkZoA6YkQ1KhQutsSYdj4NfQdCLc2LtpgnHFmN0kHl+JZPpgq9R7l/xdTlB0FCuPGmBxjTChQm9xZ7sZXOD2/b81c4fj1tLlSXxcfNGa2MSbMGBNWrVq1/E4RERERKbkSdub+DrpSPCuY06cMc6YYbqoPfQcXbRA3xpBy7Cs8vAMJCB6Cm1vZvPzvmvamMcYkAxHkrvVOyFt6Qt7v83eSOQzUuaBZbeBo3vHa+Ry/qI1lWeWAikDSFfo6BVTKO/fSvkocd3d3QkNDady4MQ888ADp6enX1P61114rkrri4+Np3PjG/8cWERGRIpTwK/gGgF/QDXVjjGH2fwxZmfDUyxblinideHbmMWznTlK+alvc3L2u3qCUKshuKtUsy6qU99gH+AuwB1gFnN/dZBCwMu/xKuChvB1SQsi9UHNL3lKWs5Zltclb8z3wkjbn++oPfJ+3rvxboJtlWZXzLtzsBnyb99r6vHMvHb/E8fHxISYmhl27duHp6em4sc/VGGOw2+1FFsZFRETExdntcGJ37qz4Da61/m457PgZHn7aombdol+3nZG8A3DDp2LZnvgryD7jNYAFeTuiuAGfGmPCLcuKBD61LOsJ4CDwAIAx5lfLsj4FdgM24BljTE5eX08B8wEf4Ou8H4A5wELLsn4jd0b8oby+kizL+jewNe+8V40xSXmP/wEstSxrErAtr48bsjd9A2dzCnddeQX3atzuW/DteTp27MiOHTsAeOutt5g7dy4Aw4YNY8yYMcTHx3PPPffQpUsXIiMjCQ0NJSMjg9DQUBo1asTkyZPp2bMnu3btAmDq1KmkpqYyYcIEtm7dyhNPPEH58uXp0KEDX3/9Nbt27SI+Pp7HH3+ctLQ0AGbMmEG7du0K9XMQERGRIpB8ALLTIajhDXVz+lTufuJNWsHd9xVSbfkwJif3glMgPWUHXn43417Or+gGLAGuGsaNMTuAP91X1RiTCOS794wxZjIwOZ/jUcCf/vwxxmSSF+bzeW0uMDef4/vJ3e6w1LDZbHz99df06NGD6Oho5s2bx88//4wxhtatW3PnnXdSuXJl9u7dy7x583j//fcB+Oyzz4iJyb0Fbnx8/GX7HzJkCLNnz6Zdu3aMGzfOcTwwMJC1a9fi7e1NXFwcDz/8MJfeqVRERERc0Km9ub8Dbr+hbha9a8jJgSHPWUW2m0lm6u8kxs/H2LMcx/wDOxfJWCWJ7sB5gWuZwS5M52e2IXdm/IknnmDmzJn069eP8uXLA3DfffexceNGevfuTb169WjTps01jZGcnMzZs2cdM96PPPII4eHhAGRnZzNq1ChiYmJwd3dn3759hfjuREREpMic2gflq4Fv1evuYscWQ+Q6uG8IBNUqmiBuTA7JR1bi5l6e8oFdALAsD3wr/Wm+t8xRGHcB59eMX8iYfDeHAXAE9PyUK1cOu93ueJ6ZmXnV/t5++22CgoLYvn07drsdb2/vgpYuIiIizmJM7sz4DeyiknYm96LNmsHQ67GiWyeelhSF7VwCVeo9hm/FJkU2Tkl0TbupSPHp1KkTK1asID09nbS0NJYvX07Hjh3zPdfDw4Ps7GwAgoKCOHHiBImJiZw7d84x+125cmUqVKjA5s2bAVi6dKmjfUpKCjVq1MDNzY2FCxeSk5Pz50FERETEtaQmQGYKBNx2zU0zMwzffGZ48wXDmSR4+l8Wnl5FE8bt9izOJKzF0zcYH/+yfbFmfhTGXVSLFi0YPHgwrVq1onXr1gwbNozmzfP/p5zhw4fTtGlTHn30UTw8PHj55Zdp3bo1PXv2pH79+o7z5syZw/Dhw2nbti3GGCpWrAjA008/zYIFC2jTpg379u274sy7iIiIuIhTectKr3G9+LlMw9QXDAvfMaQkweC/WYTUL8JZ8VM/YbedpWKNHmXu7poFYV1p+UJpExYWZi69MDE2NpYGDRo4qaLilZqaip9f7hXLr7/+OseOHeOdd95xclWFqyx9nyIiUsZtmQ1Ho6HPTLAKNr9qzzFM+bth51Z46l8W7bsVbTi252RwfM+bePrWISBkaJGO5Uosy4o2xoQV5FytGS9DvvzyS/7zn/9gs9moV68e8+fPd3ZJIiIicj2MHY5vz9tfvOALHb6YZ9jxMzzxQtEHcYCzJzdiz0nHP6h7kY9VUimMlyEDBgxgwIABzi5DREREblTS/tz14jVbFLjJjp8NKxbAnf8DXfsUfRDPsaWRemojPhUb4+lbq8jHK6m0ZlxERESkpDn6S+6MePVmBTo9McHw3quG2jfBoL8Vz7rtsyciMPZs/IO6Fct4JZXCuIiIiEhJc3Rb7oWbXle/e6XNZnj3FYMtC0b/28LLu+jDuC0rmdTEn/Ct1BwP76AiH68kUxgXERERKUnSTkLKIahZsBvmLJ1piNsFT46zqFG3eGbFzySsAcC/uvNmxVeeTmP56TSnjV9QCuMiIiIiJUnCr7m/C7BEJWqj4etPoNv90Oau4gniWRnHSD/9C34B7SnnWblYxrxQjjFMPZ7Cs4eSWHY6/Yo3PnQFCuMuYPLkyTRq1IimTZsSGhrKzz//fM19rFq1itdff70IqhMRERGXcmI3eFcE/5pXPO3MacOcNwzBt8EjzxTf/t4ZKTsB8K/WudjGPG9HehZ9fktg+okzPFSlPHODA1x+b3PtpuJkkZGRhIeH88svv+Dl5cWpU6fIysq65n569+5N7969i6BCERERcRnG5IbxwIZwhZBpjGHufw1pqfDidAsPz+ILpNkZRyjnFYhbOd9iGxPg89NpjDucRCV3N96tU4XelXxdPoiDwvhFko+uIivjWKH26elTg0o1Lx+Sjx07RkBAAF5eXgAEBAQAEBwczIABA1i/fj0Aixcv5pZbbmH16tVMmjSJrKwsqlatyqJFiwgKCmL+/PlERUUxY8YMBg8ejL+/P1FRURw/fpw333yT/v37F+r7EhERESc4ewwyk6Fawyue9tUS2BoBD420qHNT8QVSYwxZGYfxrnBbsY4548RZpiSk0M7Pi1l1q1KpnHuxjX+jtEzFybp168ahQ4e47bbbePrpp/nhhx8cr/n7+7NlyxZGjRrFmDFjAOjQoQObN29m27ZtPPTQQ7z55pv59nvs2DE2bdpEeHg448aNK5b3IiIiIkXsRN568aD8w/iurYaF0+0smWlo3QXufaQYawPstjPYbal4+NQulvGMMbx+PIUpCSn0q+TLwpBqJSqIg2bGL3KlGeyi4ufnR3R0NBs3bmT9+vUMGDDAsfb74YcfdvweO3YsAIcPH2bAgAEcO3aMrKwsQkJC8u23b9++uLm50bBhQxISEornzYiIiEjROrEbfKtC+cA/vbRqoeGT/zWU84Dm7WDEPy3c3Ip3mUZW+mEAPH2K/iY/dmN45WgyCxJTeaxKeSbVqoxbCViWcimFcRfg7u5O586d6dy5M02aNGHBggUAF61zOv/42Wef5W9/+xu9e/cmIiKCCRMm5Nvn+WUvgMtfRSwiIiIFYM/J3Uml9h1/Wi/+1dLcIN7u7twtDD29nBNKszKOABYePle+uPRGZdoNzx1KZHVKBiMCKvBijYolYn14frRMxcn27t1LXFyc43lMTAz16tUD4JNPPnH8btu2LQApKSnUqpX71+b50C4iIiJlwOk/IDsdgppcdDgm0rD4PcMdneGpfxV/EDfGYIwdY+xkZxymnHcQbm6eRTbesSwbD+0/weqUDMZXr1iigzhoZtzpUlNTefbZZ0lOTqZcuXLccsstzJ49m/DwcM6dO0fr1q2x2+0sWbIEgAkTJvDAAw9Qq1Yt2rRpwx9//OHkdyAiIiLF4vgOwIKgRv9/6LDhvYmGOjfDyH9auLkXbyi127NI2PsWOdmnHcd8K7cssvG+TUnn74dPk2UMs+pV5X8qFu+OLUXBKktLGMLCwkxUVNRFx2JjY2nQoIGTKrq84OBgoqKiHLurSMG46vcpIiJyw9ZNBJMDf3kVgHOZhgkjDEkn4d8fWgTWLP7Z4bSkrZw+/Dl+Vds7tjL0rdSccl5VC3WcXzOyeCfhDN+cyaCRtwcz6lblZm+PQh2jMFmWFW2MCSvIuZoZFxEREXF1WWmQ9DvU7wXk7SM+xXBoP7wwxTlB3BhD6qmfKOcVRMWavYpkqUiyzc4rR0+zPDmd8m4Wf69ekRHVKuBRgpelXEph3EXFx8c7uwQRERFxFSd2g7FD9dz14utWwKZv4b6hFs3aOOlizfSDZGcepVKtfkUSxHdlZDEs/hQJ2Tn8NdCfJ6tVoKJ76bvcUWFcRERExNUd3wnlvKHqLRz8zfDRO4bQttBvsPNKSj21CcvNC99KzQu977VnMhh1IJHK5dxYcUsgzXy9rt6ohCp9f16IiIiIlCbGQMJOCGyE3bjzwRuG8hVg5L+Kfx/x82znEslI2Un5qm1wcy/coLw0KZUn409xq3c5Vt4SVKqDOCiMi4iIiLi21ARIOwnVm/DNZ7A/FgaOsahQ0Xnrps+e2gSWGxUCOhRan7m3tT/D3w+fpqOfN5/cFEiQR8m6m+b10DIVEREREVd2fAcA8Wcas3SWoUUHaNPVeeXYbemkJ23Ft1Io7h7+hdJntjFMOHqahYlp9Kvky5TaVfB00qx/cdPMuJPFx8fTuHHji45NmDCBqVOnXrFdVFQUf/3rXwGIiIjgp59+uuaxg4ODOXXq1BWPR0dHExISwrZt21i1ahWvv/76NY+Tn4iICHr27FkofYmIiJRm5w7sJM0EMmViIFUDYeSLllNvcpOeHIMx2fgFtC+U/o5m2Xhk/0kWJqYxsloF3q5TdoI4aGa8xAoLCyMsLHf7yoiICPz8/GjXrl2hjrFjxw769+/PJ598QvPmzWnevDm9e/cu1DFEREQkf8YYtn5vo+nxWH7a0w5fP3h2okV5f+cFVWMMaUk/4+FTG0+fWjfUV6bdsCQplanHU7AZeKdOFfpVLl9IlZYcCuMX2rYQkg8Ubp+V6kHzx6+7eefOnWndujXr168nOTmZOXPm0LFjRyIiIpg6dSozZsxg1qxZuLu78/HHH/Puu+9Sv359Ro4cycGDBwGYNm0a7du3JzExkYcffpiTJ0/SqlUrrnTDp9jYWAYNGsTChQtp1aoVAPPnzycqKooZM2YwePBg/P39iYqK4vjx47z55pv0798fu93OqFGj+OGHHwgJCcFutzN06FD69+/PN998w5gxYwgICKBFixaOsZKSkhg6dCj79+/H19eX2bNn07RpUyZMmMAff/zBsWPH2LdvH2+99RabN2/m66+/platWqxevRoPD9fd8F9EROR6GGNY8r5h4zdQ0zeOVvdncseDTbm7qfMXNORuZ3icSrXuu6F+1p/JYNyR0xzLzqGdnxdv1KpCPa+yGUud/63KVdlsNrZs2cK0adOYOHHiRa8FBwczcuRIxo4dS0xMDB07dmT06NGMHTuWrVu3smzZMoYNGwbAxIkT6dChA9u2baN3796OsJ6fPn36MGPGDDp0uPyFGceOHWPTpk2Eh4czbtw4AL744gvi4+PZuXMnH374IZGRkQBkZmby5JNPsnr1ajZu3Mjx48cd/bzyyis0b96cHTt28NprrzFw4EDHa7///jtffvklK1eu5LHHHqNLly7s3LkTHx8fvvzyy2v/MEVERFzcqo/hyyVwW2N4/MGdGMudSg0aOrssANKSfsZy88S3Uuh1tc8xhteOJTMo/hT+7m4sDqnGkpBqZTaIg2bGL3YDM9jX63Jrvi48ft99uX99tmzZskA3A/ruu+/YvXu34/mZM2c4e/YsGzZs4IsvvgDg3nvvpXLlypft4y9/+Qsffvgh3bt3x909/yuZ+/bti5ubGw0bNiQhIQGATZs28cADD+Dm5kb16tXp0qULAHv27CEkJIRbb70VgMcee4zZs2c72ixbtgyArl27kpiYSEpKCgD33HMPHh4eNGnShJycHHr06AFAkyZNdGMkEREpdaI3GT6bbWh3Nzz9soX13S5wvwU8fJ1dGjnZZ0lPjqF8ldbXtZ1hao6dZw8msu5sJo9WKc8rNSvh7aZ5YX0CTla1alVOnz590bGkpCQCAgIcz728cv+Dd3d3x2azXbVPu91OZGQkMTExxMTEcOTIESpUqABcPvxfasaMGQA8/fTTlz3nfF2AY8nLlZa+XG7s/NqcP/f8GG5ubnh4eDiOu7m5FeizEBERKSkO7Te8P9EQcjs8Oc7COncWTsc77rrpbKmJm8HkXNeFm8eybPT//QQRZzOZVLMS/6ldRUE8jz4FJ/Pz86NGjRqsW7cOyA3i33zzzRWXh1yqQoUKnD171vG8W7dujjANEBMTA0CnTp1YtGgRAF9//fWf/gi4kJubG0uWLGHv3r28/PLLBa6lQ4cOLFu2DLvdTkJCAhEREQDUr1+fP/74g99//x2AJUuWONpcWFdERAQBAQH4+xfOVkkiIiIlQdY5w7QXDd6+MPY/Fp5eFpzYBRiXCOPGbiMtaTPeFRrg4RVw9QYX2JmeRa/fEjiYZWN+SAADAyoUUZUlk8K4C/joo4+YNGkSoaGhdO3alVdeeYWbb765wO179erF8uXLCQ0NZePGjUyfPp2oqCiaNm1Kw4YNmTVrFpC7NnvDhg20aNGCNWvWULdu3Sv26+XlxcqVK1m1ahXvvfdegWq5//77qV27No0bN2bEiBG0bt2aihUr4u3tzezZs7n33nvp0KED9erVc7SZMGGCo95x48axYMGCAr93ERGR0mD1Ijh+GJ76l0WVann/knx8J3j6QaUQ5xYHZGcex25Lxbdyi6uffIE1KRn0//0EHpbF8lsCubOCTxFVWHJZV1pWUNqEhYWZqKioi47FxsbSoEEDJ1VUOqWmpuLn50diYiKtWrXixx9/pHr16sUytr5PEREpaQ7+bnj5SUNYRxg1MW+e1BhY/SxUux3aPuvcAoG0pChOH/6MoNuf/z/27ju6qirt4/j33J7eC0mAhA5KkyaKoPiqWAZxBhVFBLErKqLjzDi2cZwZsXfHwQIKoyAWhFFBUURQEBCQXhNCSe/ttnP2+8cNSgnp7SbPZy3XJefss8++lyz93e1z9sZqj6mxva4U/8kp4cnMIvoF2HgrOZrYdrCb5lGapm1QSg2uTVt5gFM0ussuu4zCwkLcbjcPP/xwswVxIYQQwl/oXsXe7bBjIyx6VxEQCBPvOubZqqJD4CyEuH4tN8hjeJyZoFmw2KKqbaeUYlWpi39lFLLV6eGSsACe7xhJgNSHn5KEcdHojtaJCyGEEOI3SikOp8LuLbDkfUXWId/xfsPglr9oREQfE8aztvhe408/uaMW4HFlYbXHommnDtVpLi8PHMpnTZmLDlYzr3aK4rKwgBbdLdQfSBgXQgghhGgGbz+t+OYz3587dYNpj2n06AtRcVWE1cxfIDQRAqufiW4uXmcW9qAupzz/WWE5fzqUjxn4e0I4EyKDsbejLe0bQsK4EEIIIUQTW7HEF8T/7wr4vys0EpPBdKqw6qmAnJ3Q7YJmHeOpGHoFuqcIi+PkslNDKZ7JKuKV7BIGB9p4uVMUiTaJl3Uhn5YQQgghRBNK26OY/ZzitEEwebqGyVzDjHHWVjC8kFC3lUuaisfp29jP6og77nipbjD9YD7LiiuYEBnEEwkR2GQ2vM4kjAshhBBCNJHyUsVLDymCQ+HOx2oRxAGO/Ay2IIju0fQDrIWqwnieV+f61By2V3h4PCGcyVHBUhteT/JoaysQHBx83M+zZ89m2rRpTXrPKVOmsHDhQsC30dDAgQN55513mvSeQgghRHtSXqZ47s+K3Ey463GNsIhahDkFkp8AACAASURBVFXDgIxNEN8fTC23FGBZ/gZy9r9Fzv63KMlZgWayYbaGA3DY7eUPe7PZ4/TyVnI0U6JDJIg3gMyMt3NFRUVcdNFF3HLLLdxwww0tPRwhhBCiTcjJULzwV8XBfXDbQxo9+9UyrObvBVcJJAxs2gFWQymdooz/gWbCYgvHbAkiMHwAmmZiZ4WbyWm5lOkGc7vEMDTI3mLjbCskjB/rxb/Bnu2N22f3PnDPo/W+/MCBA0ydOpWcnBxiYmJ455136NSpE1OmTCE0NJT169eTmZnJU089xfjx4zEMg2nTpvHdd9+RkpKCYRhMnTqV8ePHn9R3aWkpF198Mddeey2333474Ft26YEHHuCLL75A0zQeeughrr76alasWMFjjz1GdHQ0W7duZdCgQcydOxdN0/j888+ZMWMG0dHRnHHGGezfv58lS5bU+z0LIYQQ/qqkULF6GXz0tkIpmPGkxoDhdZg1PrIRNDPEt9z64s7iXRh6GVHJUwgI9W2k5zIUr2QX80JWEWFmEwu6xtInwNZiY2xLJIy3AhUVFQwYMODXn/Pz8xk7diwA06ZN4/rrr2fy5Mm8/fbb3H333Xz66acAZGRksGrVKnbu3MnYsWMZP348H3/8MWlpaWzZsoXs7Gx69+7N1KlTq7zvjBkzuOmmm7j33nt/Pfbxxx+zadMmNm/eTG5uLkOGDGHkyJEAbNy4kW3btpGQkMDZZ5/N6tWrGTx4MLfeeisrV64kJSWFa665pqk+JiGEEKJV++YzxbsvKDxu6NkPbvurRmxiHcs3jmz07bppC2qaQdZCWcF6TJZgHCG+mvUvisp5/Eghhz06l4QF8PeECGLa0W6aTU3C+LEaMIPdEAEBAWzatOnXn2fPns369esB+PHHH/n4448BmDRpEg888MCv7caNG4fJZKJPnz5kZfkerli1ahVXXnklJpOJ+Ph4zjvvvFPed/To0SxatIj777+f2NjYX6+/5pprMJvNxMXFMWrUKNatW0doaChDhw4lKSkJgAEDBpCWlkZwcDBdunQhJSUFgGuuuYb//Oc/jfjpCCGEEK2bUor3XlQsXQh9h8K1d2h06laPGurSbCg+BCkTG3+QtaR7y3CW7CQ46ixcysSjh/N5P7+M0xxWnkqK5JwQR4uNra2SMO5njn1Awm7/rU5LKXXca21MmDCBESNGcMkll/Dtt98SEhJS7fXH3s9sNuP1eut0PyGEEKItmv+GL4iPuRImTqvliilVOfKz77UF68UrCjeB0vGEDuCG/dlsKHdzR0wI98WHYZWHNJuErKbSyp111ll88MEHAMybN48RI0ZU237EiBF89NFHGIZBVlZWjVvTT58+nfPPP58rrrgCt9vNyJEjmT9/Prquk5OTw8qVKxk6dOgpr+/Vqxf79+8nLS0NgPnz59fp/QkhhBD+bPE8xeK5MPpyuO7uBgRx8JWohCZAyMmb6zSXsoINGPYOjDtkYmuFh9c7RfHnDuESxJuQhPFW7qWXXuKdd96hX79+vPfee7z44ovVtv/DH/5AUlISp59+OrfeeivDhg0jLCys2mtmzpxJx44dmTRpEpdffjn9+vWjf//+jB49mqeeeor4+FP/SyEgIIDXXnuNMWPGMGLECOLi4mq8nxBCCNEWLP9U8cHriuHnww0ztIYt7+cu9+262aHlNvrxODPxVBzmDXc3nIbiw64xXBoe2GLjaS+09lRmMHjwYHW0FvuoHTt20Lt37xYaUdMoLS0lODiYvLw8hg4dyurVq6sN1I11P6UUd955J927dz/uodDm1Bb/PoUQQrQ+P36tePVviv7D4d5/algsDZw5PrgGfnwFznvY9wBnC1iz/1PiS9dyr+0mXu7SmSTZ1r7eNE3boJQaXJu28im3QZdddhmFhYW43W4efvjhJg3iALNmzWLOnDm43W4GDhzIrbfe2qT3E0IIIVrSph8Vr/9d0bM/3PP3Rgji4CtRsQVDVPeG91VHulI8nVHAmNLN7DJ3YU73FELN/ls8oRuKTWmKZb/ohDg0po1p3XG3dY9O1EtNdeKN7d57722xmXAhhBCiOe3Y5NvMp1M3uG+mhs3eCEHc0CFjM3QYAKbmDcF7nB4eOJSPtXwP11FOt8QzCfbTIJ6WY7BwjcGyzTq5JeCwwmWDWv97kTAuhBBCCFGDsmLFN4th4ZuK2AR44BmNwKBGeqgxbw+4S5t1FZVi3eCZzCLm5pUSZDYxN2A/JncgQaH+VeqplOL7nQb/XaXz016FxQwje5u4sJ+Jc3qbCLC1/gdPJYwLIYQQQpxCXpbi5UcVe7b6fh4yCm78o0ZIeCOGvCM/g8kM8X0br89q7HK6uTktj4NuL9dEBjE92oZ7zy4CI4eimfwnGqblGDy1yMuaPYr4MLjzIjPjhpiJCmn9AfxY/vOJCyGEEEI0oz1bFc8/qHC74MqbNXr2g14DaNiqKVU5shFieoO16Vcu2Vzu4tr9OThMGvO7xjI0yE5JzkrcyktgRK2eN2xx5S7FrOU681bpOCxw/+/MXDncjLUhy0q2IAnjQgghhBAnWL1MMetJRUQ0PPiiRlJKEwW9kkwoyYBuFzRN/8fYWuFmYmoO4RYTH3aJJcFmQRleSnO/xx7UBVtgYpOPoSFyihVfbtKZ+71OTjGMHWzirjEWv5sJP5GE8VYgMzOT6dOns27dOux2O8nJyYwbN47PPvuMJUuWnNT+pptuYsaMGfTp06cFRiuEEEK0XYahWDhLseg96D0A7nmikUtSTtRMu27ucnqYuD+HEJOJ+ZVBHKC8cBO6p5iIpPFNev/6Ss9VfLtNZ8U2g1/SFUrBgGSNp6+z0K9z6384szYkjLcwpRRXXHEFkydP/nWnzU2bNrF48eJTXvPmm2821/CEEEKIdsNZrnj9CcX6lXDu73wb+VisTTzreuRnCEuCoJgmu0Wqy8O1+7OxavB+l5jj1g8vzfsRq6MD9uAeTXb/+vhhl8HsFV7W7/fth9MrQeOW881c2N9ESmzbCOFHSRg/1vTpsGlT4/Y5YAC88MIpT3/77bdYrVZuu+22Yy4ZQGFhIcuXL2f8+PFs3bqVQYMGMXfuXDRN49xzz+WZZ55h8ODBBAcHc88997BkyRICAgJYtGgRcXFxLF68mCeeeAK3201UVBTz5s0jLi6ucd+bEEII0UbkZSme/bMifZ9vW/sxVzZBbfiJyvMhdxf0Gttktzjo9nLN/hx0BQu6xpJst/56ThlePBVHCIkZ2fTvtZYO5SmeW+JlxXaDDhEwbYyZMQPMJES0jvE1hbb11cIPHQ3aVdm4cSMvvPAC27dvZ//+/axevfqkNmVlZZx55pls3ryZkSNHMmvWLABGjBjBmjVr2LhxIxMmTOCpp55q0vchhBBC+Ks9WxUP36zIPgL3z9S4+KoGbm1fW2nfg1KQfE6TdL/X6WH8vmxKDYN5XWLo4bAed97jzAIMrAEJTXL/uqhwK15f5mX8c27W7jW4+2Izn9xvY+p5ljYdxEFmxo9XzQx2Sxg6dChJSUmAb7Y8LS2NESNGHNfGZrNx2WWXATBo0CC++uorAA4dOsTVV19NRkYGbreblJSU5h28EEII0cqVlyl++hZmP9cMD2qeSBmQ9h3E9IKQxt8pe0u5m0mpOZg0WNAllj4BtpPaeJxHALAGtMyDm0opdhxWLN9i8PlGnawiGDPAxPRLLMSGte0AfiwJ4y3stNNOY+HChVWes9vtv/7ZbDbj9XpPamO1Wn/99n5sm7vuuosZM2YwduxYVqxYwWOPPdb4gxdCCCH8UEmhYvbzirXf+Camm+VBzRPl7ITSbOjz+0bv+odSJzen5RJqNvHfLjGk2K1VtnNXHEEz2bDYIht9DNXJL1V8vFbn03U6RwrAbIIhXTWemGBhUJf2V7QhYbyFjR49mgcffJBZs2Zx8803A7Bu3Tq+++67BvVbVFREYqLvm+6cOXMaPE4hhBCiLdi5WfHyI4qSIrhkApw+WKPPILBYmnkmdvdSsAVB0pBG7fbNnBL+kVFIit3C3JSYX1dNqYqn4ghWRwKa1jwB2OlRvPOtb2nCCjcM66Zx8/lmRvUxEd5Yu5n6IQnjLUzTND755BOmT5/Ok08+icPh+HVpw4Z47LHHuPLKK0lMTOTMM88kNTW1kUYshBBC+B/DUCxdCO+/+tt29p27t1AALDwIRzZAnyvAYq+5fS3Nzi3h8YxCxoQG8GzHSELMpw7ZShl4nEcIjKj6ubXGdiDH4IF5XvZkKC7oZ+K2C8xtblWU+tKUUi09hmYzePBgtX79+uOO7dixg969e7fQiERjk79PIYQQJyouULz6uGLrOjhjBNz+kEZgcAvOxP74CmRsgktfAHtwo3S5vLiCG9NyOT/UwX86R2M+xQOohu4CDLzufLL3vERE0h8IihzaKGM4la9+0Xl8oReLGZ642sLZvcxNer/WQNO0DUqpWm1pKjPjQgghhGiz0vcpnv2Toigfpt6vMfryZliysDolmXBoLfS4tNGC+LYKN3em59EnwMrLnaJOGcTLCn6m4OD8445ZHU338Kbbq3j+f17m/2DQt5PGzIlW4puzLt9PSBgXQgghRJv08yrFq39TOALh4Vc1uvZuBUFw52IwWaDnxY3SXabHy5TUXMLMJt5OjiHQVHXph1KK0pyVWOwxBEUOA8BkCWqSZQ09XsXSXwzmrNDZl6W47hwzd40xY23uunw/IWEc3y9oa1nsXtRfeyq5EkIIUTWvR7FvByxd6Fu2MLkHzHhSIzKmFfx3viwX0lZB19HgCGt4d7rBDam5lBoGH3eNJd566vIPd3kaHmcG4Ym/JzhqWIPvfaKcYsX/ftYpKIUvN+vkFEOXWI3nJ1sY1aftl6U0RLsP4w6Hg7y8PKKioiSQ+zGlFHl5eTgcjpYeihBCiBbgdimW/BeW/FfhqgBHAIy9Di6frGF3tJL/vu/6n++156UN7kpXimnpeex0engnJZreVawjfqzS3B/RTA4CIwY2+N4nKihV3PKGhwO5CrMJBnfReGS8hbN6NNPmSX6u3YfxpKQkDh06RE5OTksPRTSQw+H4dZMkIYQQ7ceRdMULDyoOp8GQc+Gs/9M4bRAEhbSiIFhRCKkrIHkEBEU3uLvHjxSyvMTJPxIjODckoNq2uqeEiuKtBEcNx2SqPrTXVU6x4p7ZHjILFW/eZmVgsgTwumr3YdxqtcrulEIIIYSfWr9S8foTCqsN/vi0xoDhrTQI7v4CDC/0+l2Du3o/r5R38kq5KTqYSVE1PwRalr8WlE5Q1PAG3/tY2w4a3DvHQ6kTnp5k4YwUWaqwPtp9GBdCCCGE/zF0xYdvKj57D7r0hnv+rhEd30qDuLsc9i2HjmdCSHyDutpU7uLhIwWMCnbw1w7hNbZXSqcsfy324O5Y7Q2fkT9qw36De97xEB4Ec+600r2DBPH6kjAuhBBCCL9SVqx46VHfuuHn/g4mT9ew2VtpEAc4sAq8TuhxSYO62VrhZnJqLnEWMy91ijzlEobHqijeju4pJjyhYZsJHmv1LoP73/WQEKnx75utxIS24s/eD0gYF0IIIYTfKCtW/HO64lAq3PQnjfN+18qDoFK+WfHILhBZ/7LYL4rK+ePBfELMJuZ1iSHCUrsVSsryfsRsDccR2vAN8QxDsWi9wb8+9dI1TuO1G61EtOTmSW2EhHEhhBBC+IVdvyhmP6s4kg73/rMV14cfK3cXFB+GITfX63K3oXjwcAELCso4PcDKrM7RJNpqF988zixcpfsIjR+DptW/jMSrK77b4Vs3fOtBxaAuGs9dbyUkwA8+fz8gYVwIIYQQrZbXq1g8F35aoUjfCxHRMONfGv3P9JMguPcrsAb66sXrqEg3uP1ALqtKXdwdG8o9caFY67BSSWneGtDMBEUOqfO9j9p8wOAfH3vZm6noEAF/u8rCpQNNmEx+8vn7AQnjQgghhGiVSgoVLz6k2LEJeg2AidN829k7/GVGtiwXDq2DHheDxV6nSzeXu7jjQB4ZHp1nkyK5MjKoTtfrnhLKC9YTGNYPs6XmFVdOZBiKt77R+ffXOrGhMHOihdGnmzBLCG90EsaFEEII0eqUlymenOFbO/yORzTOvtAPQ+DeZb7X7hfW6bIjbi8TU3MINZn4qFssAwPrFuQBCo98hlIGIXHn1/laj6746/tevt5icPFAEw9eYSGoNT8g6+ckjAshhBCiVdG9vk180vfBfU/6SW34iTxO2L8CkoZCYFStLzOUYsbBfLwK/tslhmS7tc63dpbsoqLoF0LjLsBqj6nTtRVuxWMf+oL49EvMTBpplk18mpiEcSGEEEK0Koveg20b4Ja/+GkQB0hbCZ5y6DGmTpe9lVvKD2UuZiZG1CuIA5Tlr8dkCSEk5tw6Xff1LzpPfeYltwSmX2Lm+lESE5uDfMpCCCGEaDX2bVd8Mltx9oUw6lI/DeLKgD1LIaqb759a2lnhZmZmIReEOphQxxrxX2+tDFyl+3CE9EQz1T7m5RQrHlngJTlG48mJsptmc5IwLoQQQohWoaRI8fKjiohomHyvnwZxgIxNUJoFfa+s9SX5Xp070vMIM5t4Kimy3qUhHmcWhl6GPbhrna779zIvXgNmXmelY5Qff/Z+SMK4EEIIIVqcYShee1xRkAuPvKYRFOLHgXD3l7468cTaLSmY69W5bn8OB90676ZEE1XLDX2q4irdC4A9uPYz8qt36ixab3D1WWYJ4i1AwrgQQgghWtzqZfDLWpgyQ6Nrbz8OhAUHIHs79JsApppD9VfFFfz5UD7FuuKt5GiGBzsadHtX6T4stmgstvAa21a4FW8u15n9nU7XOI1b/q/+XwJE/UkYF0IIIUSLclYo5r+h6NILzh/X0qNpoD1f+tYU73Jetc22Vbj5Z0Yh35e66OWwMi8lkl4BtjrfztArKDj0MbqnCAB3xWGCIgbVeN3qXQZPfOQhqwjGDjbxp8stBNj8+EuQH5MwLoQQQogW9eUCKMiBux7T/Htnx4pCSP/RF8RtVT+AmefV+UdGIR8VlBNmNvFIh3AmRQVjr+f7LspcSkXRll9rxO3BXQiKHHbK9oahePFznfe+1+kWr/GPa+RhzZYmYVwIIYQQLcYwFN98pug3FHr29+MgDrBvORg6dL+oytOrSpxMS8+jxDC4NSaEO2NDCTPXPwi7yg5QlreG4OizCE8YW2N7t1fx6AIvSzcbXHmmiRmXWbBb/fwzbwNq/A3QNK2jpmnfapq2Q9O0bZqm3VN5PFLTtK80TdtT+RpxzDV/0TRtr6ZpuzRNu+iY44M0TdtSee4lrfJRYU3T7Jqmza88vlbTtORjrplceY89mqZNPuZ4SmXbPZXX1v3/7QghhBCiRe3ZAnlZMGKMn4dC3e0L4wkDICT+pNPbK9zcfCCXaIuJz7vH8WCH8AYFcYDirGWYLCGExlUd/o/17Tad8c+6WbrZ4O6LzfzlCqsE8VaiNr8FXuA+pVRv4EzgTk3T+gB/BpYrpboDyyt/pvLcBOA0YAzwmqZpR58IeB24Behe+c/RlfBvBAqUUt2A54GZlX1FAo8Cw4ChwKPHhP6ZwPOV9y+o7EMIIYQQfmT1Vwq7AwaNaOmRNNCBH8FVDN1P3uQn0+NlSlouIWYTc7vE0NPR8PlDr7sAV+k+gqOGYTLbq227dq/B/e95CbBrvDLVypRzpTCiNakxjCulMpRSP1f+uQTYASQClwNzKpvNAY4+cnE58IFSyqWUSgX2AkM1TesAhCqlflRKKeDdE6452tdC4PzKWfOLgK+UUvlKqQLgK2BM5bnRlW1PvL8QQggh/EBFuWLtt3DGCHAE+vEsre6BnYsgvBPE9jnuVKlucENqLiW6wezkaOKtjROEyws2AIrAiDOqbZdbonjofQ/JMRqz77ByVk+pD29t6vQ3Ulk+MhBYC8QppTLAF9iB2MpmicDBYy47VHkssfLPJx4/7hqllBcoAqKq6SsKKKxse2JfJ475Fk3T1muatj4nJ6cub1cIIYQQTWTTj4r7r1GUFsF5Y/04iINvt83SbOh3DRyzWU+eV+f61Bx2Oj283jmKPvVYLeVEhreciuKdlBVswB7cFYststr2Mz/1UuqEpybKaimtVa2/nmmaFgx8BExXShVXszNUVSdUNcfrc011fR1/UKn/AP8BGDx4cJVthBBCCNF8igsUr/5NERkL9/5To9tpfhwSKwph+6eQMBDi+/56eK/Tw5S0HLI8Bi93iuLckIAG38ow3GTvfRWvOxeAsLgLq23/wy6D5VsN7rzITNd4mRFvrWoVxjVNs+IL4vOUUh9XHs7SNK2DUiqjsgQlu/L4IaDjMZcnAUcqjydVcfzYaw5pmmYBwoD8yuPnnnDNCiAXCNc0zVI5O35sX0IIIYRoxRb8R+GqgLsf10hM9uMgDrD1QzA80H/ir4dWlFQw7UAeNpPGgq4xDAysvqa7toozv8TrziWi49VYHfFYHR1O2dblUcxc5KVztMakkbKZT2tWm9VUNOAtYIdS6rljTn0GHF3dZDKw6JjjEypXSEnB96DmT5WlLCWapp1Z2ef1J1xztK/xwDeVdeVLgQs1TYuofHDzQmBp5blvK9ueeH8hhBBCtFJpexQrlsCF4/H/IJ6fCqkrfUsZhsTjMhR/PZzP9am5dLBZWNQtrtGCuLv8IKW5qwmKGk5QxBnYAhKopkqBOd/pHMxT/HmcBZvFzz/nNq42M+NnA5OALZqmbao89iDwJLBA07QbgXTgSgCl1DZN0xYA2/GtxHKnUkqvvO52YDYQAHxR+Q/4wv57mqbtxTcjPqGyr3xN0/4OrKts97hSKr/yz38CPtA07QlgY2UfQgghhGjFPnlbERAEV0xpAwHxl/fBHgK9x+E0FLcdyOWbEic3Rwfzx/gwHKbGKw0pyvwSkzmIsPiLa2x7ME/xzrc6F/QzMay7lKe0djWGcaXUKqqu0QY4/xTX/AP4RxXH1wOnV3HcSWWYr+Lc28DbVRzfj2+5QyGEEEL4gbTdivXfwx9u1AgK8fMwnr8fsrdD/2txWhzcnJbLd6VO/pUYwcSo4AZ1bXjL+W0eE9zl6bhK9xLW4bJTLmOolOJwPuzNNPjnJ14sZrjvMlnC0B/I35IQQgghmpxSigX/UQQGw0Xja27f6u36HKwBOJNHMTUtl9WlLp5OiuDqyIYF8eLsbyjOXHrScbM1jOCoM6u8RinFw/O9fL7RACA5RuOVqRZiw/z8C087IWFcCCGEEE1u1ZeweQ1cd1cbmBUvzYZDP6F3u4jbjpSzutTFM0mRXBkZ1LBu89ZQnLmUgNDTsYd0P+6cPbAzmsla5XWfbzT4fKPBVcNNDO9hYmg3kyxj6EckjAshhBCiSRXkKt59UdGzfxuYFVcKNr6HMll4JGgY35T4SlMaGsTLCzdTePhTHCG9iOx8Lb9tXl69AzkGMz/1MiBZ449jLZhNEsL9jVT1CyGEEKJJfTpH4XLCLX/RMJn9PCweWgsZG/k86RLec9p5MD6swTXiFUXbyT84H1tgZyI7T6x1EC8qV9wz24vFAk9cbZUg7qdkZlwIIYQQTSYv27eU4ahLID7Jz8NiaTZqw2wygzsyzTGYabEh3BYb2rAu89ZSePgTrAGJRKdMwWSq/S6dzy3xklGgeOMWKwmRfv7ZtmMSxoUQQgjRZJbMUygDxk7y87DoKYdVz+IyDK6KvYqJ0WH8MS6sQV26ytMpPPwJ9pDuRHW67pQrpVSlwq34eovB7waZGJAshQ7+TMK4EEIIIZpESaFvVnzEGIjp4Mdh3DBQa15DFWcwpeNUzojtxOMJ4dVuunNyF26U4f7tgDIoOPghZmsoUZ0m1imIA3y33aDCDRcPlN01/Z2EcSGEEEI0ia8/BbcLLpngx0EccP4yH0fGJh6KG0uXjv34e2IEpjoE8bKCnyk89DFKeU46F5V8Ayazo85j+nyjQXwYDPT3XUyFhHEhhBBCND6PW/HVx4r+Z0JSiv8GxrIDawja/T/+Gz6Uzn3GcHN0SK1nxJXhpTDjf5Tl/YAtKIXAsH7HnbfYo3CE9KzzmHJLFGt2G0w8x4xJHtr0exLGhRBCCNHovpgPRflw8dX+GxbdRUfQ1s1ik6MjycNu4KywkFpf63XlkX/wA9zl6QRHn0NYh4trvUpKTV750gvAuCFSK94WSBgXQgghRKPasVHx4ZuKYefB6YNbejT1ozwV5K98HqtmIWPIHVxchyBeXriZgoMfgmYistO1BIb3b7RxbT5g8Nl6g8mjzHSOkTDeFkgYF0IIIUSjKcxTvPKYIi4BbvqzVqeHHFsNpdi7+g26VmSysO80rurQsdaXepyZ5B9cgC0gkchO12KxhTfasArKFI/M9xIbCjefLw9uthUSxoUQQgjRKHSvL4iXl8KfntMIDPLDIA5s2/o5p2Wv57OkSxjfa2i1bXVPCaW5q39dKcVZsguT2UFU50mYrbWfTa9JqVMxY46HrCLFGzdbCbT752crTiZhXAghhBCNYvki2LERbv2rRqeu/hkW9xzeTvcdC/gptA8XDruq2lVTnKV7yU//AMNbhla5NKHJZCWy44RGDeI/pxo8Mt9DZiE8ea2F/rKueJsiYVwIIYQQDaaUYtlHiq59YOTF/hnE9xXlEbr2FXKsYXQ5ZxoOc9UxSSmDkuzlFGctx2KPJqbLTVgd8Y0+Ho9X8e+vdGZ/p5MYCW/dbqV/ZwnibY2EcSGEEEI02LYNkJEOt/3VP4P4trJyyla9RJJeTt7Ih4gOqnqbe48zm4JDC3CXHyQw4gzCE8bVecOemhSVK/ZmKp5d7GXnEcUVQ0zc9zuLlKa0URLGhRBCCNFgX3+iCA6DYaNbeiR1t7ywFP3Hl7mwbB+ZA24kIa7bSW2UMijN/Z6izGWYTDYiO15DYMSARh/LwjU6T37qxVAQHgTPXW/h3NPkYc22TMK4EEIIIRrE61Fs/AHOvxxsfjZ7q5iMUgAAIABJREFU+9+MDBJ+nsX5Zbsp7juR+B7nVdmuOHMpJTkrcISeRkTiFY1aE37U2r0GMxd5GdpN4+qzzPTvbCLcTx+CFbUnYVwIIYQQDXLkAHg90O00/wmOulK8tncn47a8SrxeguuMGwjtdv5v5z0l6N5iwLdcYUnOCoIihxKe+PsmWa7RMBSPLfCQHKPx9CQrQX72pUbUn4RxIYQQQjTIgb2+104nV3e0SkopXti5mRu2v4bNZMY0+hGsUV0rz+mUZH9HcfbXoPRfr7E6OhCeMLbJ1k3ffECRVQTTLzFLEG9nJIwLIYQQokEO7FFYbVCHvXFa1LzUXUzd9iomawDBox+EkHiUMigv2EBx1nJ0TwEBYf0IDD9aE65hD05BM1mbbEzLtxrYLDCit6yW0t5IGBdCCCFEg6TvhY5dwGxp/TO6P2Wm8X+bXsJkthJy3l8o8xxEz9pKRfFOPBUHsQYkEZ44joDQXs02JsNQLN+iM7yHSWbF2yEJ40IIIYSoN6UU6ftg0IiWHknNivIPkvLDTKzKwHHegxSX/kxp7koATJYQIjtOICB8QJOVopzK1oO+EpU7L5JZ8fZIwrgQQggh6q0wD0oKoXP31j2j683bhf27mTiUQV63XrhyPsbjzCQoajjhCWMBrdlDOECFW/HPT7wEO2BUHwnj7ZGEcSGEEELU24E9vtfW+vCmUgYVB5Zg37AQiwa7ug4kLjQCAEdob0LjLkTTWiYEu72Khz7wsjdT8eIUCyEBrfsLjWgaEsaFEEIIUW+pu3yvnbq27Diq4izdS9m+hYTv3Y5bszCz+008fPpwzC0wA36i/FLFfe962HxA8cexZs7uJRv7tFcSxoUQQghRb9vWK5J7QGBwywfcozzOHIoylqDn/ELMwXxKTQFc3ek2ZvXs2yqC+O4Mg+mzPRSUwpPXWriwvwTx9kyKk4QQQghRL85yxe6t0HdIS4/kN153ATn7Xkdl7yD2UDGlllAu6XgHt3TpQZKt5ecgV2zTueE1D7oBb91ulSAuZGZcCCGEEPWzYxPoXug7tOVmmw29goqirajKDXrKctcQmJdHWFYBFYGxXBx3PYNiExkXHthiY9QNxWvLdDanGWxMU/RJ1HhuspWY0JafpRctT8K4EEIIIeply08Kmx169G2Z+7vK0shP/wDdU+A7YCgisooIKiqjPH4Ao8PHEeYI5smkiBZZKeWohWsM3vlW5/SOGteNMHP7RWYcVgniwkfCuBBCCCHqZcs66DUArLbmDZZKGZRkf0Nx1nLMtnBiutyKxRSEac2/0YqO4O51OePsZ1PmVczvHE2gqeWqcvNKFK8u9TKsm8ZrN1lb9EuBaJ0kjAshhBCi1jb9qOjRFyrK4MgBOO93zRsu3RUZFBxaiKfiEIHhAwlPHIfJVQ7fPw3FR9CH3sY0erG7uIJ3U2LobG/ZqPPG116cHvjTOIsE8RZgKIWplX/uEsaFEEIIUSs5mYqn/6i49FpI6OQLOH2HNs+9lVKU5a2hMGMxJpODyE7XEBg+AIoO+YK4uwz9nPuY7k7ky8JyHksIZ2SIo3kGdwp5JYrP1htcPthEcoysmdGcdhbr/HNbBaFWjVcGB7X0cKolYVwIIYQQtbJ3q+917TfQ7TRFeBQkpTTPvUtzvqMo8wscIT2J6Hg1ZksQ5OyEVc+B2QrnPcQzznAWFZbw5/gwpkaHNM/AqvHBDzoeHSaNlBVTmsvuYp1/bXeyIN1NoAXu7tGyX8hqQ8K4EEIIIWplz1YFQG4mFOTAWRfQLKUXXlceRVlf4Qg9jajO1/l2zMzbByufhsBIGPkAy7zBvJqTy8TIIO6IDW3yMdWk3KX48Eedc/uY6BQts+JNbW+JzpPbnXyQ7sZhghm97NzT00G0vfV/9hLGhRBCCFEre7ZBcg84lApeT9MtaaiUTknOSgxPMeBbNUXTzEQkXu4L4iWZsOoZcITCuX+lwBrCH9My6Rtg5dGEiCYZU10tWq9TXAHXj5JZ8aa0v9QXwt8/4MZmgrt72Jne00Gso/WH8KMkjAshhBCiRm6X4sBuuOQaiIyFn1fB6YMb/z7K8JKXPg9n8XY0cwAAGibCEy/HbA0DZxGsnOlrPPJPEBDOk4fyKdYNnusYg8PU8g/reXXF3O91BiRr9O/sP6HQn6SV6jy5w8m8NDdWE9zR3c69PR3EB/jf5y1hXAghhBA1St0Jug7dT9cYcSEMPAvCIhs3+CrDQ96B93CW7CI8YRzB0cOPb1CSAT+8BM5iOPcvEBLPxnIX7+eXcUt0CD0dtkYdT319vcUgowD++DuZFW9sB8p0ntrh5L1UN2YNbutmZ0YvBx38MIQfJWFcCCGEEDXas8332u00CIvQSOrSuP0bhpu8tDm4SvcRkfgHgqJOWKbl4E/w0xu+hzXPng5R3VBK8fiRQmIsJqbHtXydOEBmoeLZxV66xGqM7O2/AbG12V2s88xOXzmKWYObutq5r5eDxED//4wljAshhBCiRmm7FVFxviDe2AzdRW7abNxlqUR0vJKgiEEn3HwVrHsDIrvB8Lt8D20C/yuqYEO5m5mJEQSbWz6UbT9k8PePfOuK/3uiBVMrKJnxd78Uenl6h5OPD3pwmOH2br4HM9tCCD9KwrgQQgghapSRDomdG79fr7uQvAPv4qnIILLTBN/a4cc6stEXxGN6w4gZYPEtVecyFE9mFtLLYeWqyJZdR1opxSMLvPzvZ4MAGzw10ULX+LYTFpubUopVOV6e3elkWaaXEAvc18vBtB52v3ows7YkjAshhBCiWkopMg5Cz36N26/uKSF77ysow0VU8vUEhPY+vkHBAVjzCoQnHxfEAd7NKyXdrTM3JRJzC++w+OEag//9bHD9KDM3nmcmJEBmxOvDUIrFhz08t9PJunydGLvGI6c7uLWbnQhb2wvhR0kYF0IIIUS18nPAVQEdOjVuyCzLX4vhLSG2213YApOOP+kqgdXPgzXopCBe4NV5MbuIUcGOFt9l80COwXNLvJzd08TdY8xSmlIPLl3x3wNuXtjlZE+JQUqQiRfOCGRSso0AS9v/PCWMCyGEEKJaGem+14RGLFNRSqc0by324B4nB3FDhx9f9i1jOPphCDh+7fBnsooo1RUPJYQ13oDq6c1vdEwaPHql1IjXVYHb4O19bl7d4yTTqegfbubdM4MYl2TF0o4+SwnjQgghhKjWkQO+1w6dGtaPYbjxunIBcJelYXiLCY6+4uSGv8yH7O0w5BaIPH7Zlo3lLubmlTE1OrjFlzI8mKf4cpPBNWebiQ5pP+GxofaU6Ly628XcNBflOoyOs/DmMAfnxVqaZUfX1kbCuBBCCCGqlXFQ4QiAiOj692HoTrL3vIzXnfvrMbM1AkdIr+Mbpq+B3Z9DtwsgZeRxp9yG4i+HCoizmrkvruVnxd/51ovZBJNGynriNVFKsSLby8u7XXyZ4cFmgqs72ZjWw07f8PYdR9v3uxdCCCFEjTLSfbPi9Z21VEpRcOgjvO58whOvwGwJBsDq6ODb3v6oslzY8BZEdYcBE0/q54XsIrY7PbzZObrFlzI8kGOweIPBVcPNxIS2v9nc2nLqigXpbl7d7WJLke+hzAf7OLi5m524NrgySn1IGBdCCCFEtTLSoUff+l9fmreaiqJfCI0fQ3DUmVU3Mgzfpj5KwbDbwXR8RFlf5uK17BKujgjiwrCA+g+mkby2TMdmgRtHy6x4VQ6VG7yz38Vb+1xkuxSnh5l5fXAgV3e24TDLl5djSRgXQgghxCm5nIrcTBh1af0ClLNkD0VH/ocjtA8hMaNO3XDrAsjZAUNuhuDY406V6QbTD+aRaDPzaEJ4vcbRmHYeNvjqF4ObzzcTGSzB8ijdUCzN9PDWPjdLMz0oBRd2sHBXj/ZbD14bEsaFEEIIcUo7N/lek7vX/VqldAoOfYjFHkNkxwnHl6QcK/0H2LkEuoyGlJMD+98zCjno1lnQNbbFy1PAt4JKsAOuO0dmxcE3Cz4n1cXs/S4OVyjiHBr39XJwQ4qN5GD5jGoiYVwIIYQQp/Tj14rAYOg7tO7XVhRtQfcUEZV8BSazvepGRQdh3ZsQ3QMGXn/S6Q1lLv6bX8atMSEMCzpFH81of5bBN1sNbhrdvjf3OToL/vZ+N19m+GbBz4+38PRAO5cmWLG2o6UJG0rCuBBCCCGq5HYp1q2EYeeC1Vb3cFWauwqLLRpHSM+qG3jK4YcXwRoAw+8C8/GxRCnF4xmFxFpMTI8Nrcc7aHxvf6vjsMI1I9rnjO/RWfA5qS4OlStiHRozejqY2kVmwetLwrgQQgghqrR5DTjLYfgFdQvihUcW4ypLxVNxmPCEy6suT1EK1s2C0mw498GTNvYBWFxUwcZyN88kRRDUCspTDuUplm72rSseEdR+Zn51Q7Es08vb+118keHBUPB/cRaeGiCz4I1BwrgQQgghqrTyC0VoBPQZWPtrdE8JpbmrsTjiCAgfQGDk4Kob7lkKh9ZBv2sgptdJp5VSvJZdTHe7hT9EBNXzHTSuOd95MWntZ13xw0drwU+YBb+hi40UmQVvNBLGhRBCCHGSI+mKjath3GQwW2o/8+ks3gEoIjtOwBbQoepGJZmwZT4kDISel1TZ5McyF9udHp5KisDcClbh2JJu8Nl6g7GDTW16XXHdUHyV5eWtfb/Ngp8fZ2Fmf98suE2WJWx0EsaFEEIIcZLP31dYrHDBH+oWviqKt2O2RmB1xFfdQClY/xaYrDBoKpwiaM/KKSHKbGJceMvOiheVK/40z8NPexUhATDl3LYZnXYV68xLczPvgIuMCkWs3TcLPqWLjS4yC96k2uZvlBBCCCHqrbhAsWopnHMxhEXUPowbhhtn6R6CI4eeek3pA6t864kPmlplnTjAfpeH5SVOpseG4mjBeuTcEsXtszyk5ypmXGrm8iFtawWVIrdi4UE376W5+ClPx6zBhfFWnh1o45IOMgveXCSMCyGEEOI4P60Ajxsu+H3NYcxZspfirK8AA2W4QXlxhPapurG7HH75ACK7QpdzT9nnW7kl2DWYFBVcn+E3Ct1Q/OW/Hg7nK16eamVot5Z/gLQxKKX4PsfLnFQ3nxxy49Shd6iJf/YL4OrONjoEtI336U8kjAshhBDiOGu/VSR0ho5dqm+ne4rIT5+HZrJhscegmewERiRiDz7Fhds/AWcxjJgBp9gAqMCr82F+OePCg4ixtlx5xFvf6GzYr3j8KkubCOJHKgzmpbmYk+pmf6lBqBWuS7ZxfYqdQRFm2R2zBUkYF0IIIcSvivIVOzb5HtysLqApZZCfPh+lvMR0uQOrPab6josPw55lvh02I7uestm8/DKcSnFTTMvNiu/LNJi1XOfigSYuG+S/9dIeQ/Flhoc5qb6NeQwF58RYeLCPg3FJNgLr8GCuaDoSxoUQQgjxq3XfgTJg2HnVB7WSnO9wle0jIml8zUFcKdj4Hljs0PeqUzZzG4rZuSWcE2ynp8NWn+E3mFKKpxd7CbTD/b/zz5i0t0Tn3VRfLXiW07c9/YyeDq5PsdEtxH+/XLRV/vlbJoQQQogmseYbRUIyJKWcuo27/CDFmcsICOtHYMQp1hE/VsYmyNrq2+7eceqdNBcXlZPtNXgmJqTuA28kK7Yb/LRX8cDlFr/a2KfCq/j0sJvZ+918n+PFrMFFHaxMSbExpoMVi2zM02pJGBdCCCEEAIV5ip2bqy9RUYaX/IMLMFtDiEi8ouZaY6Vg+6cQFANdR1fTTPFWTgnd7BZGBTsa8jbqzTAU//5KJzlGY/ww/6gT31TgZfZ+N/PT3RR5FF2CTfytr4OJyXYS5GFMvyBhXAghhBDAbyUqZ1ZTolKSswKvK5uo5CmYLIE1d5q9HfL3wRlTwHTq2LGq1MVWp4cnEyNa7GHClTsM9mQoHr/agqUVL+tX6DZYkO5hdqqLTQU6dhNckWRjShcbI2IsmORhTL8iYVwIIYQQQOUqKsmQ1KXqMOcqS6U4+xsCwvoTENq75g4NA7Z9BI4wSBlZbdNXsouJs5j5Q0TLbPJjGIr/LNdJioIx/VvfjLJSitW5vlnwjyuXJOwbbua5gb4lCSNsrW/MonYkjAshhBDCV6KyCa6YUvV5ryuXvLR3sVgjiEgcV7tOdy6G3N0w5GYwn/qBzHVlLn4sc/FIh3DsLVTb/PFPBjsPt75Z8cPlBv894OLdVDf7KpcknJRsZ3KKjYGyJGGbIGFcCCGEEHy72FfePfyCqsNdUeYylDKITrmhduUpOTth20LodBYk1zwrHmk2cW1Uy8yK5xQrXvrcy5CuGpcObPkZZreu+DzDw7upbpZl/rYk4Z/7OLhCliRscySMCyGEEO2cx634+hNFv2GQ0OnkoKeUjrN0NwFhp2GxR9fcoasE1rwKQbEw6AaoZvZ2S7mbb0ucPBAfRqCpZYLwC597cevw199bW3SmeVuRznupLt4/4CbHpegQoHFfLwfXJ9voKksStlkSxoUQQoh2bs1yKMyDW/9adRB1l6ej9AocIb1q7kwp+OkNXyA//zGwBlTb/JWcYkJNGtdHtcwmPzsOG3yx0eCG88x0im7+IJ7jNPgw3c3cA242FehYTXBpgpXrU+xcEGfBLEsStnkSxoUQQoh2TCnF5/N9D272HVJ1G2fxTsCEI6R7zR3u/sK3rvjA6yEiudqmOyrcfFlUwbTYUELNzT8rnlWoeGaxl/BAmDKq+WaeXbriiwwP89LcLM3w4FUwIMLMMwMCuLKTjRhHy5fKiOYjYVwIIYRoxzb+AOl7fbPix5ZoGLoLZbgBqCjZiS0oGZO5+llu8vfBL/MhcTB0u6DapkopHj1SSLjZxM3RzTsrXlSueGqRly82GQA89HsLIQFNOwOtlGJDgc7cVDcLD7rJdyviHRp39bBzbbKd08KkDKW9kjAuhBBCtFNKKT6do4jpAGcdk51dZWnk7n8TpTy/HguLv6T6zrxOWPM6BIT7Vk+pofZ6SVEFa8pc/CMxgnBL8wXR3BLFdS+5yS+FKeeauXywic4xTTcTnecy+OCAmzmpbrYW6TjMMDbRysRkO+fFWmRnTCFhXAghhGivdm+Bfdvhhvs0LJUrdCjDQ8GhhZgswYTEjgJAw0xAeP/qO9v8PpRmwbl/AVv1q6LoSvF0ZhG9HVaujWzeFVSeX+KloAzevsPK6R2bJoQbSvFtlpc5qS4+O+zBbcAZEWZeGhTIlR1thNkkgIvfSBgXQggh2qntP/teh5//27HirK/xunKITrkRR0iP2nWUsQn2LYeel0Bsnxqbf15UQZrby+udojA34+ola/cafLHJ4ObzzU0SxA+WGbyb5uK9VDfp5QaRNo2buvrWBO8bLpFLVE1+M4QQQoh2au8234ObQaG+QOwuP0xJzkoCIwbXPog7i2HdLAjrCKdfWWNzpRSvZxfTxWZhTFgNNeiNaPcRgz/P89AxSuOG8xqvLEYpxfc5Xl7Y5WJphq+sZ3SchSf6BXBZohVHK9pASLROEsaFEEKIdkgpxd5tMOicoz/rleUpQYR3uLS2ncCGt8BdBiP/BGZrjZesKnWx1enhqaSIZpsVP5yvuHWWhwArvHqjFYe14ff1GopFhz08v9PJzwU6MXaNP/VxMDnFRucgeRhT1J6EcSGEEKIdyjgIpcXQ/XQNpRSFhz/D4zxCVOdJtdthEyBtJRzeAP2ugfBOtbrkndwSoi0mrghvnlpxw1A89qEHXYc3ptlIimpYEC/zKt5NdfHybhdpZQbdgk28NCiQiZ1tBMjOmKIeJIwLIYQQ7dCerb7X7qdBWd6PlOWvIThmFAFhp9eug7Jc2PgexPSCHhfX6pI0l5flJU7ujg3F3kyriHzwg86G/YpHx1vo2IAgnuU0+PceF7P2uch3K4ZFmflX/yAuS7DKxjyiQSSMCyGEEO3Q3m2KwGCIjNpN/oHPcIT2ISx+TO0uVgo2vON7HXIL1HIb+3fzSjADE5tpt830XINXvtQZ0cvE2MH1e2AzvUznmZ1O3kt14zbgskQr9/Z0cGa0RCjROOQ3SQghhGhHKsoV77+mWPUlDB5RQMHBeVgd8UR2nICm1TKwpq+GzM0wYBIEx9bqEqeh+LCgnIvDAoi3Nn1Nta88xYvVAg//wXLchka1kVaq89QOJ3PT3Jg0uC7Zxt09HPQIlXpw0bgkjAshhBDtyJcLYPmnMPISGHvVRvRyl69O3GyvXQfOItg4F6K617jL5nH3LSqnSDe4tplmxT/4QWdTmuLxqyzEhNY+iLt0xbM7nTy1w4kG3NTVzoxeDpICZYt60TQkjAshhBDthFKK1csUvQfArQ+ayNqzA3NgRyz2qNp3svFd326bg2+qdXkKwAf5ZXSymRkeVMvQ3wDHlqdcekbtx7gqx8Nd68vZVWIwvqOVf/YPlBAumpz8hgkhhBDtRNpuyEiHsy7Q0D1FeCoO4Qg9rfYd7PsGDq6FPuMgLLH293V5+KHMxYTIYExNvJxhXonigbleLGZ46Pe1K0/Jdxnctq6MC78txWXAp+cE8+7wYAnifqxIlbJV7WW7Sm3podRIZsaFEEKIdmL1MoXZAkPPg4riHQAEhPau3cV5e2HjHIjvC73G1um+b+eWYtVgfETTLWe464jByu0Gi9br5JfCM5OsxIbVHMS/yvRw609l5LoU9/dy8Oc+DgJliUK/41YeDpNNusoknSyKKAWgI3H00VJaeHTVkzAuhBBCtANej47d9CXT/3qIihzwuHIw26Kw2ONqvthVAj+8BAGRMOzOOpWnFHp15ueXcXl4YJM9uLl4g87fF3rRFXSN05g50cJpNWx3X+5VPPRLBf/e66J3qImPzwlmQITEIn+hlCKbAg6SSbrKIpNcDBRWLCQSQz+tO52IJ5zmeUahIeS3TgghhGgH9m5awfBzVuL2Jvkiiz2aoMghNZdxKAN+egNcxTD6UbDXLdzMzS+jQiluiQ5pwOhPbfEGnUcXeBnSVePJiVYigmqe1d6Q7+XGtWXsLjGY1t3O4/0CZNv6VkxXOnkUkUshuarQ90oRbjwAxBDOAHrSSYunA1GYNf9a8abGMK5p2tvAZUC2Uur0ymORwHwgGUgDrlJKFVSe+wtwI6ADdyulllYeHwTMBgKAz4F7lFJK0zQ78C4wCMgDrlZKpVVeMxl4qHIoTyil5lQeTwE+ACKBn4FJSil3Az4HIYQQos1yluwiyPYVWzf15/xrJmC11qEWetcXkLEJBl4PkXX73/0uQ/FObgmjgh30CrDVcdQ125dp8K9PvAzuqvHKVCvWWpSXvLXPxb0/lxPn0P6fvfuOs6uu8z/++p5zbr/Te8+k9wQSCBA6UhapCgoIgmJZdVddAQs/d9e1oq7KKipiF1aKIAKySgsxlBQSSK+TZFqm35k7t5dzzvf3x5n0NpnMkEzm+3w87uPeOXPLuZOBec9nPt/Pl+cvCHJRmWvYz0s5Pra06SZMK520yi7a6cHEAsCFQRF5TKaWClFMDWX4hfcEn/HxGUxl/HfAAziBebcvA69IKe8TQnx54OMvCSGmAzcBM4BK4GUhxGQppQX8HPgEsAwnjF8B/A0nuPdJKScKIW4Cvgt8cCDw/ycwH5DAKiHEswOh/7vAj6SUjwkhHhx4jp8fzxdCURRFUU5FZqaXnqbH6GgrIxx/37EF8Z6tsO5xqD7jmMYY7vZMOE63afOJkuGviiczki/+r0nAA9+++ehB3LQlX1qd5OcNaS4tN/jdWQEK3GqB5omWkVn6iREmSpgonbKPNrr3VL0LyWUa9VSJEorJJ4/gMc+MP9kdNYxLKZcIIcYdcPha4MKB278HFgNfGjj+mJQyDewUQjQAZwohGoFcKeVSACHEH4DrcML4tcDXBp7rSeAB4XyVLwdeklL2DjzmJeAKIcRjwMXALfu8/tdQYVxRFEVR9mNbKUKND2NlbR5+6EN8+f5jGCuYjsKyn4K/COZ/HI4xAEkp+UV3lOleF+cGh3+c4X1/MWnslvzsYy6Kc458bn0Zmw8vjfNKp8m/Tvbw7dk+tYX9CSClJEQ/bXTTJnvooIcYyf3uk0eQSdRQLUqponTUV70HY6g942VSynYAKWW7EGL39ltVOJXv3VoHjmUHbh94fPdjWgaeyxRC9ANF+x4/4DFFQFhKaR7iuQ4ihPgETkWe2traY3uXiqIoijJKSTtLT+PvyKY6eO6pD1NYXkxl3SADqJTw1kOQCjt94m7/Mb/+4miKbWmT+2sKh72S+fJai+dW2Xz8Ep0FE49c3d4Wtbjh9RiNcZufzfdzx/iRn3OuOHa3mzjhu5s2ekjjdBUH8VFBCUUil3xyySdIPkEMMfaWMw73Oz7Uf23yCMeH8pgjPdfBn5DyIeAhgPnz5x/2foqiKIpyqrDMOKHGP5BJNJHiJpYunsLHv3wMgXjHImh7x9nuvnD8kM7hFz1Ryl06V+cfe5A/EtuWPPiSxfhSwSfec+SFeq90ZLltaRxDg/+7IMjCEtUfPpJMadFJ757w3UGILE7tNI8gE6iiUpRQSQk5+E+5dpOhGmoY7xRCVAxUxSuAroHjrUDNPverBtoGjlcf4vi+j2kVQhhAHtA7cPzCAx6zGOgB8oUQxkB1fN/nUhRFUZQxTdom3dsfxMz0Ulh7M4/8fBZeH5x18SCfIN4Dax6Fspkw6bIhncP6ZIY3Y2nuLc/DNcyBa9F6mx1dku/cbByx1eShhjR3vZNgaq7Gk+cGqQuMrgkbo4GUkh7CNNNBi+yknR4sbACKyGMq4wbCdzEB4TvBZ3vyGmoYfxa4Hbhv4PqZfY7/UQjxQ5wFnJOAFVJKSwgRFUKcBSwHPgz85IDnWgrcACwamLLyAvBtIUTBwP0uA74y8LlXB+772AGvryiKoihjWjKyATPdRWHdrSSSM1n6suScy8DrH0QolhJW/sq5Pf/OY+4T3+2h7ihBTXBL0fDOeI6nnar4uBLBe2Yfuj3FsiVfWZMPHfBCAAAgAElEQVTkgW1prqhw8fuzAuS4VAV2uERlglY6aZGdtNBJkjTghO9ZTKRKlFBBMV6h2oEGazCjDR/FqVAXCyFacSac3Ac8IYS4E2gGbgSQUm4QQjwBbARM4DMDk1QAPsXe0YZ/G7gA/Bp4eGCxZy/ONBaklL1CiG8Abw3c7+u7F3PiLBZ9TAjxTeCdgedQFEVRlDEv1vMmursIX+4MHvq+05153e2DDKM7FkPnejj9IxAoGdLrr4qneSac4BMlOeTqwzetJJmRfPa3WZp6JPfffuiqeCwruX1ZnL+1Z/nMJA/3zVELNY+XJS2a6aRJttNKF2GiAPjwUEMZtaKcGspU5fs4CCnHThv1/Pnz5cqVK0/0aSiKoijKsLGtNJlEMyCxzCh9LU+QV3EV2xvO5fv3SD7wCcG1Hx5EII33wAtfdnrEL/gyiGMP0hlb8t6GTiKWzSuTywkOUxgPxyWf+12WDS2Sb91scPmcg1tOWhM2N7weY32/xX/P9fHPk079KRwjxZQmzXTSIFtopJ0MWVwYVFJCjSilmjKKyFM930cghFglpZw/mPuOvSWriqIoinKKMDNhenb8EjPTs+eY0NwkM6fz829KquvhypsG8UR72lMknPHxIQVxgD+EYmxJZfn1uOJhCeItIckTb1q8st6iNwbfvdXgkpkHB/G3e01ufCNGLCv587lBLqtQCzWPVVaaNNHOdtlKI+1kMfHgZiLVTBDVVFM66na2HC1UGFcURVGUUSiTbCfU+HtsK0Fh7YfQXbkAJOI5fO+LPmwL/u3bApd7ENXLnYsH2lPuGHJ7Ssq2+Xl3hHOCHi7NPf6Whbd32tz1hyzJDJxeL/jWTQan1R8c8J/bleEjy+IUeTReuTiHmfkqMA5WRmZpop0G2UoT7ZhY+PAwmVomihoqKUEf4i9myuCpMK4oiqIoo0yibzV9rU8idB8l4z+B2+8MLGvdKfneXZJoP3z+W4LymkEE8UgbrH4ESqfDhMGOXDnYo73ObpsPlOYO+Tl2295h85lfZSnPF/zhX1zUFB38PqSU/HhrmnvXJDm9UOdPC4OU+1RwPJq0zNA4UAFvogMLCz9eplHPBFFNJcVoKoC/q1QYVxRFUZRRwrZSRDpfItbzOu5APUW1H0J3OVvNSyn5zfcl2Qz8x88E9VMGEcTNNCz9MehuOPOfh9yekpWSB7ujnBnwcFbg+KZoZC3Jvz9h4vfAr/7ZRdEhdtfM2pIvvJ3g1zsyXFft4ldnBvAbqn/5cKSUtNDJRrmDHbRhYxPAx0zGM0FUU06RCuAnkArjiqIoijIKxELL6W9/HmmnCRadQ17lVYh9enjXrYAta+Ejdw0yiAO88zD0t8L5XwR/4ZDP7aVIkvasxTcqC457Ud+vF1ls3iX5/m3GIYN4OGNz28DW9ndP9fK1WV40tZDwILu3nt8mW9hKE1ESeHEziwlMErWUMfw7oypDo8K4oiiKopzkzEwv4bZncftryK+4ak9bym5SSv70S0lJBVx41SCftOkNp1d86tVQPvu4zu/hUIwql84lucc3wWRjq82vF1lceZp2yIWaO2LO1vYNUZufz/dzu9ra/iBRmWALjWyRzfQRQSCooYyFYg71VKpFmCchFcYVRVEU5SQk7Sy7t+rob38egaCo9mZ0V95B9131GuzYDJ+4V2AMZoObSBus+g0UT4aZNxzXeW5PZXkjluaesjz046i0prOSf3/cpCgIX7zm4HiyuDPLh5bGEcBzFwS5oFRNTNlNSslO2lgnG2ihE4BKipktTmcC1fiFGvN4MlNhXFEURVFOIlLaRDpfItr1KrB3L5DcsksPGcRtW/KnX0kqauDcwexeb2Zg6QOgueCsz4B2fJXSR3pjuAR8sDBwXM/zsxcsdnZJHvioi9x9dguVUvKLhjT3rE4yOUfjT+cGGR9U1V0AW9o00MpKuYle+snBzxlMZ6oYR54Y3t1PlZGjwriiKIqinCRsM0Go+VHSsa348ufi9lUBoOk+/PmnHfIxy16B1h3wL18T6INZxLj6EehvhvPuAX/RcZ1v0rb5U1+cf8r1U+oaekB+e6fNI69b3HCWxjlT9i4kzFiSu95xFmr+U4WL354VIFdtbQ9Am+zmH/JtQvRTQC6XigVMokYtxByFVBhXFEVRlJNAOt5Eb8tjWNl+8qveR7BowVEfk4hJ/vhTSd0kWDCYqYTNS2HHIph6FVTMOe5zfjacIGJJbisaelU8Y0q++ZRJZQF8/sq9saQnbfOhN+O81m1y11QPX5uptra3pEUDrayTDXQQIgc/l4uzmUi1Wow5iqkwriiKoignkLRN+jteINbzGrorj5Lxn8QTqBvUYx97UBLuhX/7jkA7WlCNdsDKX0PRpOPuEwenfeQPoRiTPQZnHsc4w4eXWDR2S37yURd+j/Me1octbnwjRkfS5jcL/NxUN7YXasZkgvVyOxvYQZI0eQRZKOYwkwm4hIpyo536F1QURVGUE8TKRuhp/D3ZZCuBwgXkVVyJpg9usd3OzZJX/gJXfAAmTDtKELcyzjxxzYCz/8W5Pk4r4mnWJbN8q2ro4wzXNDnTU94zS2PhQHvKc7sy3Lk8TtAQvHhRDmcUjd2oEpUJ3pab2MBOJJJxVDBTTKSWMlUJP4WM3e9wRVEURTmBpLTpbX4MM91FUd1t+PJmHtPjH3tQEsyD9985mD7x/4VwM5x713H3ie/28+4ohbrGDQX+Y37s1nabtxpsfvqCRXEu3HONgZSS721K8V/rU5xeoPP4wiBV/rHZ/5yUad6SG1jPDgCmMY55Yiq5alHmoEhpY5HFlBlA4NVO7q+bCuOKoiiK8i7JprqxzAgA6dh20vHtFFS9/5iD+Lq3JOtXwm2fFfgDRwnjLctg+ysw5UqoPPQi0GO1JZVhUTTFXWW5+LTBB2YpJT/5u8XvFjsjG2dUC+6/w4XPB3csi/OnliwfrHXzs/l+fGNwR01LWqyjgRVyI1lMplHPfDGNXHF8k2pOFVJKLDKk7ThJO0LSipCyIyTtftJ2goxMkLGTWGT2PKbQqOH0nOtP4FkfnQrjiqIoijLCpG3S3/kise4l7Duu0JszFX/hGcf0XKmk5Pc/dDb4ueS6o925H1b+BoomwqwPHPuJH8b9nRH8muD2omOrOH7/WYvH3rR435kaH7nIoLIAdiUl17waY3WfxTdm+fjCVM+Ya8GQUtJIG6/LNfQTo5ZyFoo5FImDR1me6qSUpOwocbuXuNVHwuojbveRsiNk7AQ21n7319Dxarl4tSC5Whlulw+X8KILF7pw49NyTtA7GTwVxhVFURRlBKWiWwnvegYz00OgcAG+fGeKiUDg9tcec/D8359IOlrh3v8RuNxHeeyaR8FKw5mfHJY+cYDViTTP9yf5XGku+cbgxxm+tNYJ4recq3PXVTpCCFaETD74Roy4KXni3ADvrXQPyzmOFra02UEbb8vNdNFLATlcLc6jTlSc6FN715gyTcwKEbNChM02+rKtpGV8z+ddwotfKyDfqMIj/Lg1P27hx6fn4tNycYvAqP/lTYVxRVEURRkhychmQo2/w3AXUVz/Ubw5U4b8XJYpeexByaJn4apbYPrpRwkg3Zuh6XWYdg3kDE+4k1Ly7fZ+ig2NT5YMvuLYEZZ8888mM2sEn7vSCeIP70zz2VUJKn0az1+Qw/S8sbORj5SSBlpZLtcTJkoeQS4U85hGPfopPic8a6doz2yhz2wlZnWTtCN7PucWfgqMKvKNSnKMEvxaAW7NN6TXMdMQawfbhMKJw3X2I0OFcUVRFEUZZpnELiwzQl/LE7i8ZZRM/AyaNvSq78a3JY/9XLJ9E1z2frjxE0cJ4ukYLP85BEqcMD5MFkVTLIun+WZlPkF9cKFRSsm3/mySNeGbN7lI2fCplXH+2JThwlKDh88OUOQ5tQPovkKynyXyHXbRRRF5XC7OZgJVp/xmPRGzi5b0WjozW7Ex8Wv55OplVHlmEtSLCGiFeLXcY6py2xaEG6F7I3RvGLje6BxLhpz71F8CH355RN7SsFFhXFEURVGGUTreRPf2nwEgNA+FdbceVxD/6x8lj/5MUlgKn/4PwcLLjhJWpA0rfgGpMFz8n2AMblTi0VhS8p32MPVug5uPoVf8b6tt3thic/fVOiHd4qqX4uyI23x1hpcvTfOOmY18LGmzQm7gbTbjxsUF4nRmMP6UD+Fxq4/tyaV0ZRvQcVHhnkq1ZxY5RskRHyclpPshsguiuyDaDoluiHc7H3dvhJ5NYKb2PianCkpnQOUZkFsFOZVQNHmE3+AwUGFcURRFUYZRpPMlND1AUd2tGJ4SdNfQF5D9/QkniJ91CXzyXoHbM4jguu4JaH8HTvswFI4f8msf6IneOFvTJg/WFeEaZPWyq1/y/WdNZtZCqMTkoleSFHsEf78wyLklrmE7t5Ndn4zwslxBJ71MZRwLxRx84tTdyEhKmz5zF+2ZTXRktqBhUO89kzrvaRgD71vaEOuEeCfEuyDWAb3boXcb9DY416nwwc+tuZyuq+JpMO4iKJnuBPDiaeAdpetdVRhXFEVRlONgmwmy6S4AzEwv6dg28iquxBM8viDc3iz5488k886DT/+7QB/MqL/ti2DzX2HCJTDx0uN6/X01pU2+0R7mzICHf8odXA+vbUv+/fEscVsSmpblS2tMrqx08Ysz/GOmLUVKyVq2sVSuQ0fnCnE2E0XNiT6tEWPKNI2pVbSnN5GWcacSrs3Gv+0Melf7eXXrPmF7O5jJA55AQH4dFE6CmTdDwXjIrXYq3jmVTteVOwdG+XrNg6gwriiKoihDlIo10Nv8KLYZ23NMM4IEis4+rueVUvL7+yVuD9x5zyCDePMyWPVbKJ8Dp902bInFkpLPt4TQgPtrCgfd0/vEMptXu03iszNs7ZX891wfn5o0dsYWRmSMRXIlrXRRRwUXi/kExNAWI57MpHQWSu5s2UF3zSJsbwJzbT39f5tCx5/H09+wN2rqHiic4CyoHH+ZE7ZzKiBQ6lzy6sA4df9gcFgqjCuKoijKMZK2SaTzZaLdizE8JRRUvQ+hOW0Xhqf4uHrEAV59DtatgNs+J8grHER4bX3LWbBZPBnO+eywjTEEeDqcYFUiw/01hVS7B/e8jb02X1wbp2eSxbSAxq8XBJlbMDYih1MNb2CZXAfARWIe0xk/qn8JkTYkepxWklgH9O2ErnUDlw2Skk8uo+but4itKWHnl67G6C0jtxrGnQOFd0DpTCibBfnj4BRvkR+SsfFfhqIoiqIMk0yyjb6WJ8im2vEXzCe/8ho0ffjKeetXSn73A8nsM+HSwWwc2LoClj7glBzPu2tYS4sZW/Kjzn5m+lxcnz+4be+fasjwqZUJYgWSj9V6+P4ZPjz66A2ixyIq47wol9NOD7WUc5GYR84o2j0zHd07kaR7A4S2OO0k4Z37L5QEp12kdLbN7EdfwZi/idzQdBZMv5DgMuOUayMZaSqMK4qiKMogSGkR7foHka6X0XQ/RePuwJc7bVhfY1ej5H++Kqmog3/9xiDaU1pWwLKBIH7+PeAaXGAerCf64rRkLL45ruCold1dCYsPvZhgRcbEnRHcXeHn62eNnZ6DFtnJC3IZFhaXiDOYyriTqhpum05FO7QF+pudS3SXU/FOhJyKd6Rl7/11jzOJpHgKTHqv08sdrIBgGeTWQLDGZEPiBbqz2xnvXUD9hDNPqvc7mqgwriiKoihHIaUk1PgwqegmfHmzya+6Dt0Y3opnpE/y31+UGC64+3sCf+AowaZzvRPEiybCefeAa3j7kVO25MddEeb53VyYc/jxiLGs5Aebk/xwUxrThvnCxe+v9FNfPDb6EaSUrGIzy+V6Csjhn8Q5FIjcd/08bMvp3Y60OmMAY+3Ode9W6N7khHArs/f+mmvvokh/MRRPhaIpzmSSkhlOP7d2mH2YTJlhbex5es0WJvvOp9Y79915k6coFcYVRVEU5SjSse2kopvILb+c3NKLh/35M2nJj+6V9PXAV38iKCk/ShCPdsCbP4bcSjjv7mEP4gCPhGJ0ZK3DLtq0bMkjjRm+tj5JZ0qS06vzmTov/36Fa8xUSNMyw8tyBTtpYxI1XCTm4xYjN7LRykCy19nUpmvD3naSnk3OPG5p7X9/oTl92iXTYeIVzvi/4inOsUDZ4cP2kWTsJKtjzxK1upjhv5QKz/D+dWgsUmFcURRFUY5ASkmk8wV0Vx45xecP+/PHo5KHviPZug4++3XBxBlHCbKZOLz+AydpLfzCsLemAMQtm592RVgY9HBO8OCq+KLOLF9ZnWRdv0WF1Kjb6ubr7/Fw49ljZ0v7Hhnmb/JNosQ5T8xlNpOG/EuItJ3NbEJbnCp2bwMkupz52/Eup40kGYJMbP/HGV4nYNeeC/n1TvtIbrVT8c6pcCrew7WWV0pJyGxiU/wVsjLFrMCVlLonDM+Tj3EqjCuKoijKAWI9bxLpWuSkJCS2lSC/6nrEME4p6WiRLH0FXn5a0t8Ht/6rYMHFRwlztgXLfgqxLrjwKxAsHbbz2ddvQzFCls09ZfvvorI5YnHvmiR/b89SF9D4QrmP55+HT19qjJkgLqVkIzt5Tb6DGxfXiQupFIffTTLe7VSue7ZAz2bob4JUn7OhTbJv4HY/IPc+xvA6letAiXNdMgN8ReAvcq5zq5xj+eOGVt0+VqFsM9uTS4lYnQS0QuYEryLXKBv5Fx4jVBhXFEVRlAFSWvR3vECs+x94AuMxvE7g0HQfgcIzhuk1JC8/DQ//WGJbMHUO3P1dQf3UQWxzv/JX0LEW5t0JJVOH5XwO1G/ZPNgd4ZIcL6cHnAWYTXGL725M8XBjhoAB35rt47piN7f/JMvcOsFHLjr1g7iUkibaWS230koX1ZRyqViAHx/xLqei3b3R2dQmGYL+FqeFJN619zkMrxOgfYXOYsiS6eDJB18B+EucFpLiqU51+2QZAdiSWsOW5BJ8Wi5TfBdS6ZmOLlR8HE7qq6koiqIogJnuobflMTKJFgJFZ5NfeQ1imBORlJJHfiL5+xMw9xz42BcFBcWDaG2QNrzzMDS+BtOvhwkXDet57euh7igRS3J3eR5NcYvvbUrx8M4MmoCPT/DwleleCt2Cf/5lFtuGb3zQhXGKjy5slh28KdfSQxif6WXyxrmIxyfx5DJB51qnj3s3l98J1sFymHTVwILI6U7Izqs9eUL20UhpszX5Oi3p1RS76pkZuBxDHN/8fOXQVBhXFEVRxjQpbeK9b9Hf/lcQOoW1t+DPnzPsr2Pbkkd/5gTxy2+AWz8r0LRBhFgz42zos+stmHwlzHjfsJ/bbo3pLA91R7gk6OPnG7L8YWccTcCdEzzcNdVLtd9Jkn983WTVDsnXbjSoLjq1griVcaaQSAva2xOsyl9N/7RW7J0B4v+5gNDjNbSaGpoLyufCtPcPhO1pUDLN6dse7etXTZlhffzv9GQbqfHMZbLv3GH/xVTZS4VxRVEUZczKpnvoa3mcTKIZT3ACBdUfwHDnD/vrJGKSB78lWfUaXPo+Z2fNQS32S0XgjR9CaDvMvRUmXzHs57ablJK7m/uwbHh6jQArw0fHe7h72t4QDpBIS361yGLBRMHV80ZfQJMSEt3OZjaRFqeNJNYJ/Y3QudZpN5HeLN4vbcL3+W0AuH4xk5otU8ibqZNzmTN/u3yu03ZyqknbMVbHniNq9TDFdyE13tkn+pROeSqMK4qiKGOSlDa9zY9iZkIUVH8Af8FpI1L9a93hjC3sbofbPiu4/EYGF8SjHfDa95xVfud8FqqHp2f9QFJK3uq1+NqOCOs9aZLdbm6v9XHPASF8t8fftAjH4dOXGyf1CEMr42xk070RutbvvYS2HDyVRGhOD3fpaTZF/7WD0KUbMH1pKjvqWOiZSdmnRs8umscjZoV4J/oMpkwzN3g1xa5xJ/qUxgQVxhVFUZQxKdG3imyylYKaDxIoOH1EXmPZK5KH7pN4fXDvjwVT5wwyvPZshdd/6PQ7XHAvFE8a9nOLZCWPNWX49Y406yMmheMTFEqdJWcVMy548ILMdFby9Fs2v11sce5UjVm1J74qblvOGMD2t6F1GfRsdGZwx7sgHdn/vsEKKJ0Jcz/qbFhaMB7y6pwdJbWiDFu1RtbKBjqJUUkJC8UcyioLT8j7OhF6s62sjf8VDRfzct5PrjEyk3qUg6kwriiKoowJ6Xgj4bZnsa0kAFY2gttfiz//tGF/rbZmyTO/l7z+AkyaCZ/75iAXagK0vgXLf+aM3DjvHsgpH7bzMm3Jok6TR5syPLsrQ9KC2fk6l0+3WWVK/jCxmHH+g4O4lJJ7HzV5dYPN3HGCu69+9+KDlXEmk4QbIbxz4LrRmVrStR6yCed+Lr8Ttivm7TMWsNTp5S6d4Xw5D9Qt+1guG9hKM6a0KKOIc8UcxlF5Ulf9h5OUNs3p1TQk38Sv5TE3eC0+/d3fQXQsU2FcURRFOaVJaRPtXkKk4wV0dz4e/zgAhKaTU3LhsIUuy5T832Pwj+cl7S3gcsPVH4IbPiYwXIN8jfbVsPQBKKyHc+8CT86wnNvasMkfGzM83pyhMyUpcAtuHefh1nFu+o0MH23q587iIHP8h56WsWiDzasbbD5zuc6dF49cdJDSGQfYuBja3nLWrIa2DIx7HyB0yKtxNrk5/eNQNsfp3y6bNbgNbkxp0kAr6+R2OglhoDOZWmaKiZSKghF7bycbW1q0ZzbRnFpD3A5R7Kpnhv9SXNop2Ah/klNhXFEURTllZRK7CLf9hUyiGV/eTAqqb0DTh3/r+J4Oyf3/T7JzC8yYBxdfK1h4GeQVHkPQ79robHGfVw3nf/G4dtaUUrIjZvPcriyPNmVY12/h0uCKChe31Lm5osKFRxe0ZUw+vq2P6V4XXyo/9MLVlpDku38xmVIpuP2C4Z0nnok7Fe7QNmh+HbY+61S9waluV50B029wWkryxzmX3Opj31VSSkk3fWySO9lCMxmy5BHkXDGXqYzDO8ZG9kXMLjbEXyJuhwjqxcwKXEGpa+g7iCrHR4VxRVEU5ZRjZsJEOl4gEX4bTQ9QWHMTvvy5IxI2mhsk37tbkk7BZ78hWHDREF6jZbkzvjBYNuQg3pu2Wdxl8kpnlkWdJk1xp5x8ZpHOj073cUONmyLP3j7vkGnxoZ3dZKXkgdoivIcYs7hyu809j2SREr52o3Hc88SldCaWbHoKNv3ZqYLvZnhh/Hvg3K/AxCuOf0SgKS120UWjbKORdqIk0NGYQDXTRT1VlI658GlLkx2pt2hKrcQt/MwJXEWxq37MfR1ONiqMK4qiKKeUTKKV7u0PIpHklFxITumFI1INB9i5WfLtz0u8fviPnwlqxg8h1Gx70dnQp3gSLPwCeIKDephlS1b1WfytLcvLnVne7rWQQK4LLih18fkpHi4tdzH+UIsxbckdO3vYlbF4ZHwJE72ug+7z9AqL7zxtUl0kuP8OF7WD7Xk/gLShdbkTvjf/Gfp2ONNL6s6Hmd90xgTuvriO858pIVM00kajbKeFTrKYGOjUUMZ8MZ0JVI+5Kvhu+1bDK9zTmOw7T7WknCRUGFcURVFOGVLa9O16GqF7KZv4aQz3yE3D2L5Rct8XJIEc+H8/FpRUHGNYtU1Y80cnjFfNgwWfAePIQbErZfOPLpMX2rO82JGlJy3RBJxZqHPvDC+XlLmYX6hjHGUzoW+1h1mTzPDLuiLOHNjyfl9/WWHxjadMzp4suO8WFzm+Yw/i6Shs/BO89m3o2w6aa2/le8q1zgLL4RCTCbbRwg65i3Z6AAjiZwp11ItKqijBGMPbtx9YDXdGFtaf6NNS9jF2vzsVRVGUU0Iq2kA23QmAme4im2ylsObmEQ3i29ZLvnuXJCfPCeLF5UMI4ku+5/SJT74CZt8C2sGjAnvTNq91myzpMvlHV5aNEaf1pMgtuKzCxRUVLi4pMyj0DH7M4LPhBL8Lxfh4cZDL8w5uh1m53ebbTztB/H/uGPxW91YGtjzrXHo2Qcdq521WzIPrH4bJV4M3b9CneVi7+7+b6aBZdtA2EMCLyecMpjNeVFFMvmq9ACJmJxviL6tq+ElOhXFFURRlVLKyUcJtz5HsX7PfcW/ONHwjsJ09OEHwlWfgkR9LCkucIF5UNoTQt/EZJ4jPvxPGX7TncCQreb07y5Iuk8VdJuvCTuuJX4dzig1uqvNwfqnBvAId/SjV70NZk8hwV0svZ/jdh1yw2dwjueeRLDXFTkV8MEE8sgtW/ARW/9aZ7x0ohdJZcPbdTu933fnHvz28KS0aaWOH3EULnSRJA1BCPmeKGUymlnwxPJNnRjtbWoSyzbSm1xEyG/GIgKqGn+RUGFcURVFGFdtKE+t5nWj3YqS0yC27lEDR2QicxCd034hURVt2SB75sWT9Spi9AD71VUFuwRBep2sjbHoG6s6lt+oClrVleLPbZEm3ydt9FrYEjwZnFRt8dYaXC0qd1hP3cS6e7MhafKyxhxJD4xfjinEfEOb7E5LP/y6LAO6/4+itKWYKlnwTlv4ArCxMvgrmfQImXA7aMAxdsaVNK11slc3sYBcZsvjwUEs5NaKMGsoIiJFZCzAaZe00Lek1tKRXk5UpXMLHeO8CajxzcWkHtyIpJw8VxhVFUZRRQdpZYqFlRLtexbbieHNnkFdxJS5P8Yi+7qrXJU/+UtK8HfxBuP3fBO+5HrRjrExLK0vfplfI2/QoPUYJH+i9jree6QfApcH8Qp0vTvNyQanBgiID73GG732lbMknGnuI2jZPTyil2Ng/LUcSkk/9Mktbn+Snd7qoKTrya3dvgic/CF3rYObNcPG3oGAYCq9SSrroZatsZhstJEjhxsUEqpgs6qiiBE2c+J0/TyZSSjoyW9iWfI2MTFLsGke1ZxaFRi2aGN5RlMrIUGFcURRFOenZVpquhgcw0114ghPJLbsMT6BuRF8znZL85vvOLslbHAYAACAASURBVJpV4+C2zwrOvhTyBlkNz1iS1WGLNZ1hclsWc0H/YsoJ8wLT+Vd5O9MDAb5WZ3BOicG8AgOfMTI9zilb8smmHlYnMzxUV8Q03/6LRHf1Sr7whyyNXZIffthg3vgjh92ONfDwe5yJKLc8D5OuPL7zy0qTXXTRLDtoooN+YmhojKOCyaKOcZSP6QWYRxK3+tiSWEyv2UKuXsZc/7VqG/tRSH13K4qiKCe9/va/Yqa7Kaq7HV/e9BF/vVCX5EdfkTRuhes/Atd9+Oi7aHYkbZaHTFaETJaFTGK9u/iY/Q8+xHL8ZFnvmcrb1R+mZvxcNuW5htTzfaySts3HGnt4PZbmvqoCrjhgwebybTZf/mMWW8L/3OHirMmHDuLShqYlsPYR2PA4ePPhw4ugaNLQzsuUJo20s1U200Q7FjYGOlWUMk9MYwJVeMboCMLBsKRJU2oVO1NvoQuDqf4LqXLPRKi/GoxKKowriqIoJxUpbeKh5SQjGwEJSNKxBoIlF7wrQbxhg+RH90pSCfjCfYLTFx4cmjOWZE3Y4q2QyYpek+Uhi6a4TT3dXCPWc5+xkTPszVjCIFWzEKZdwcy8GmaO+NnvFbds7mzsYWk8zX9XF3JjYWDP50xL8shrFg/83aK+VPCDDx9+jnjjYnjmoxDeCe4gTHsfXPhfzm6Yx8KSNq107ukBz2Lix8sMJlAvKqmgGEO1VRxR1k4TMhvZkVxOwg5T5prMZP95eLTA0R+snLRUGFcURVFOGulEM+FdfyGb3IXhKUXTnTFs/vzTySu7dERfO5WUPP1byd8eh8JS+PKPnE18bCnZHrNZ02exstepfL/TZ5F2pgxS7zX5jH8914o3qIltdn5/8JTC5PejT7iYwHDM8ztGy+Np7m7ppSVjcn9NIdcX7A1rW9psvv6kyaZdkvfM0vjPGw0CnkMH8aU/hBfvdirg738UplxzbJuD2tKmnR62yRYaaCVFGg8uJlHDJFGresCPImMniVidRMwues1m+s12JBKflsdpwWspco1sq9ZokJE2UWkRkxZRaRG1996OSYtizcWVnpEbczocVBhXFEVRTrhMYhfRniUkw2vQjBwKa2/Blzf7XZkVbduSVa/Bwz+WdPVIJl1jU3mFxQ/6bNa+YrKu3yJuOvf1aHB6oc4/T/Rwia+TBZHXyNn1JvTGnF1sZt4IdQshMLKLSg8nadt8r6Of3/TEqHbrPDa+hLOCzi80li158CWL3y22yPfDfbcYXDpbO+zXeMVP4cW7YPoNcO1vnar4YJjSooVOdshWdtJOijQGOvVUMknUUkc5uqqAH5YtLTozW2lKv0PM6tlzPKgXU+edT7FrHHl62SndkpKUNmHbpE9m6bNN+qS5//XA7bBtksA+4nPNN4IqjCuKoijK4WQSrfS3/x/p+HaE5iZYcj65pZeg6SM7iq03bbO63eL5pRZvNlh0umxS77WJBm0sgA2QY8DsfIPb6z3MzteZk68zzZvC3b4Kdr4KoQZnhl/VfGdWeOl0Z1XjCbIynuaull52ZkxuLwry5fI8ArpzPj1RyTeeMnltk83V8zTuusog13/4X3Q2/wX+9i/OTpnv+yPoriO/ti1tGmlnm2ymkXaymLhxMY4KxosqainHLY7yJGNc2o7TntlES2oNaRknoBUy0XcOuXoZuUYphjg1xhOmpU27naHdyjjXdoZue//QnTpMwM4ROgXCoEAzmKz5yHcZ5AuDXE0nKHRyBi67bweEjj4KNn9SYVxRFEU5IbLpHrp3/gohDPLKryRQdCaaPjxzo20p6UhJWuI2TQmb5rjN9pjFtqjNprBFnymdO+qgT4Ial8aCMp0peW7mFujMztcZF9DQbNMJ3V0boXET9Gx1VjPmVMKcW6DuXPDmDss5D1XKtvnvjgi/7IlS5dJ5dHwJCweq4X1xyX1Pmyza4ISbL19n8IGzj1yV7t4ET98GlWfADY8dOYinZIaN7GCdbCBKAh8eJlHLBFFFNaWqAn4AS2aJWb1k7AQZmSBtx0naEaJWFzErBEgKjGqmeS+hyKgblbuISikJS4s2O71f4G63M7RZGXqlud/9fWiUai4KNIOpmo8ClxO28wdCd4FwUagZ5Akd1yn61wAVxhVFUZR3RTrRTKL3LaRtDnzciEBQOvHTx7x1vWVL2pKS5oSzcLI5YdMUt2nZ5zpzQHGt2C0oiGvkbzWoi+qcPV7j+ot1zp66z26Wlgl9O6B5oxPAQ9ucHW0QUFAHU94LVfOgcMLxbyt5nKSUvBhJ8vX2MC0Zi1sLA9xbkU9Q15BS8uZWybeeytIbh1vP07nuDI26kiOHGTMNT34ADB984CkwDrNzelhGWSO3solGTCwqKeE8cRrjqFA94PuQUhK1uuk1mwllmwmbbcgDqr5u4SeoF1HvPYNy9xQCesEJOttjJ6Wkzc6w3kyw3oyzzUrSZmVI7vMeBVAsXFTobs5w5VChuanQ3c615iZP6KPyl47hpMK4oiiKMmKktElFtxLreYN0bCtC86AZzmJCobkprPnAIYN41pa0JvaG7OaBwN08UOnelbDZXdzerdQrqPVrzC3QuabKRW1Ao9avU+sX9Lyj8eRPoLcLLrwKbvo3QU6+gGQYOpugrxG6NzuVb8vZap28Whh/sdN+UjIV3CfPxIrNyQzfbO9nSSzFZI/BY+NLOGegGr6myeaBv5us2iGpLoLffMrF9OrBBeQl34Cu9XDzXyGv5uDP98kIK+UmttKMQDCZWuaISZSI0RMgR4op0/SbnUTMThJ2HwkrTNzuw5TO91NQL6bWM5c8owKPFsAt/Lg1P/oomqGekTYNVorNA+F7vZmgb6DSnSN0pug+ZnkCVA0E7krNQ5nmwq1+QTui0fMdoCiKoowaZqaXZHgd8d7lmJkQmpFDbvkVBIvO2dMPHstKtsQtdrRm2Bmz2RGz2Bm32Rlzgre1T9gWQIVPUBfQOKvIoLZWo9avURdwrmv82kGb5kgpadgAT/9Qsna5zemzOrj3C81U5DbD2iYIN0Oqf+8Dcqug/nwonQYl08CT8y58pQYvbtm8Ek3xZF+cxdEUuZrga5X53JwfYGMz/OR1k6VbbTbvkhQF4YvXGrz/TA3XIDcTal0Gr98Hc++Aye/d/3O9MsJKuZFttKCjMYdJnCamjOnt6C1pEjZ3Eco20Wu2DLSZODwiiF/Po8w1kTyjkiJX7agcP5iUFmuycVaZMdabcXZaKWdNBVCuuZjnCjLTCDDT8FOjedDGeIV7qISU8uj3OkXMnz9frly58kSfhqIoyikt0rWYSMffABDeWnp8Z7PRnML2uMbO+EDojtl0pff/+VPoFtQHNcYHNOqDOvWBgbAd0Kj2abgHuT18PJyi4c0WmlY04TebqS9voq60BYOMcwdNh9xqyK+F/LqBS+1JVfneLWnbLIqkeK4/waJIipSUlBk6txUFuDE3yD/ehj8sMekIg6HBrDrBhdM13r9Ax3+YcYWHkgjBL04DzYBPvu1s6gOQkVmWy/WspQEdjVlM5DQxBb84TP/KKcqWJgm7n7jVR8LqI2zuos/chY2Fhk6+UUm+UUmeUUGeUTaqF1uGbZM3shGWZPpZa8YxkXgQTDf8TDH8TNF9TDX8FGtqQe6RCCFWSSnnD+a+qjKuKIqiDJmV7SfUu55QIkZvRpJK9zOFt1mamsZ3Oy9gY3Ig1ZFBANV+jfFBjSsrXYwP6tQHNeoDzrF89yD/lG3bkIlBqg8SvZAIIeMhehu7kH3NFHo7mKNJ5kyHLH70olq0wov2Bu/cKtBP3h9/KVvyj2iS58JJXo4mSdiSEkPjg4UBrsr3MxkXTy61+dCbJuE4zB0n+Lf36pw9WSPoPfbKZCIEj18P8U746Jt7g/gOuYsl8m1iJJnJBBaIGfjGSAi3pU3U6qQ320qf2UrYbMPeUxMGv1ZAlWcWRa5aCowq9FE+KabPNnkj28+STD9rzDg2UKW5eZ+niHmuHGYaftVqMoJO3v8bKYqiKCeNlOVsfLMtarE9kiKVaGGWXMpc9zY0ATk4F4AX47N4JnM151W5+EhQY0KOzviBKrdn3+q2lGCmINMPsZgTsDMxSO++HR24Hd//42zioPOzbR0rWkhHrIau4gXk1NdRNacOV7DkhC+0PBIpJT2mzbZ0lpXxNG/G06yKZ0hLSaGucX2+n6vz/cx2uXl5reR/X7RZuT1LKgvnTdO44wKd0+qHHpK6NsBj10KkBa77PVTOg6hMsES+zU7aKCKPy8XZVIgTMzf93SKlTczqpc9soddsoS+7C4ss4PR6V3tmkWuU4dcK8Ov5GMJ9gs/4+EVsk8WZfpZk+1m3TwD/oLeEC1x5jNe9Y35h5btFtakoiqIoe/SkbbZGbLZELbZErIFrm2S6n48UruAMXwtTvF24hU3M9rFGzifqnUt5oIApniQ1RgKvnYB09IBgfWDQHrjY1uFPxuVzdppxB8ET3HvbHcR2B2lqyWfRS4W8/U4h3vw83nenzlkXgz7IHul3ky0lrVmLhlSWhnSWhpTJtnSWhrRJv+VMnhDAdK+Ls4MeZgkvdquLHe2wtd3pA4+noboQFk7VeN+ZOpMqjq9SufV5eOpmpzvng09DxQKLtTSwQm5AIjlTzGAOk9FPwYpozArRl20lMjBSMG71YuMsRPRpeRQaNRS6qikwqnFrx7Dl6Ciw1UzybDrEq5kwGSQ1mofz3Xlc4M5jnOZRAXyYHEubigrjiqIoY4wtJc1xmy1Re0/g3tGfpj0ao9juZr6nmTM9TdTo/fiEhQ+bAhlGt20ggEe4cUmBZtmITMIJ1Wbq8C+oGQcE6pyB24EDPt73PgHncQeI9EnefBleekrS0Qr5RXDd7YKLrgbDdWJChC0lfZZNR9aiI2vRufvadG63Zy12pk1S+/y8LdI1JnpdTPQYTPQYFJsutJDBjmbBG1tsGjqc+/rcMLFcMLVScPlcndPGiWEJS+sfhz9/CMrnwgf/ImmvamK5XE+UBHVUcIE4nVxx8vXQD9W+IwY7Mlv37Gy5e6ygcymh0FWNVzu5Fu4Oh7S0+Uemn+fSITZbSbxoXOLO5ypPIRONsbsIdySpMH4YKowrijLq2ZYzDNpKO9dm6tAfm2mymRThZJJIKk08lSSdSWNm0wgzhZ80OaTIJUkuKVxH2VIaQCIQ7sDeEO0ZCNJ7bgf2D9a7j+ueIbeKpBKSd5bC+pWS5gbYudnpbpk4Ay57v2DBRSMbwuOWTae5f8jeN2h3DtzOHvCjVADFhkaZoVPm0hnnMRjvMsjLGGhhg0ifoDsCDR2STbtsemPO4wwNTqsXnDdV45wpGuNKBJo2vO9vw5/gqZugZiFc9X8x3vSvooVOSilggZhJLeWjujoqpSRlR/ZUvWNWD2Gzjax0fmHM1UupcE+j2FWPV8sZ1e/1SEwpWWPGeD0TYUm2n4i0qNE8XOMp5FJPAQG1IdOIUgs4FUVRThTbBivjhGMre/Bt8xDHzZTTB51N7hemMVP7hOyBi50d9Km4gAAuJB503KAZ6IaG8LkxXD48Li8u2yQpNJIuP7qvDN1fhu6vxPBXINx+Z/cXlw8MH8Jwvyvbvdu2ZO1yWPy8ZM1SyKQhkAO1E+G6O2D++YJxk4YWoKSURG1Jj2nRY9r0mBYh06Y7axGyLHqy9n6fi9oHF6yCmqDcpVPq0jkz4KHMpVPu0inWNFxpHeIa6YhGdw90hiXtfZK3Q/DXPonTkeL84mPoMK5EsHCKxrQqjWlVgsmVAp975MLhzlfh6Vuh6lybWS9u4ynXegSCC8TpzGTCqA2mKTtGd2YHfWYLYbODjIwPfEbg1/Ipdo2j0Kil0FUzKkcMDpYlJSuyUV7L9rM0GyEmbbwIFrhyucpTyBwjMGr/jU9lKowrinLqkxLMJGQSzrW5b0BO7/+xmR4Iypl9wnPmgGMD97dNp1JtmwOX7JF7oI/E8DoX18C17nHmXBslYHiwdTcR6aHbdNOeddGScdOcNtiectNhuonjJo4HS3MzIy/Dubnt1PmiVBj95IpeDLMX9mxDbWGSxAQ8wbnkll6COzAOcRL0Bm/fJPnlfZKW7ZBXCBe8FxZcJJgyG7TDjDY0paTPtA8O2APXznHncyHTIn2YPwgX6BrFhkaxoTPT56LI8FI+ELRLDQ1/VseOa/T3Czq7JR1h6AhLNoUlr4YloZjzrQYSBiZv5AegPE8wtUpw+RyN2hJBXbGgulCQ52fYq95H0rbKWaxZcFMXnl+9zTI9Qh0VXCjmkSNGX1902o7TkdlCV6aBfqsDAK+WQ6GrmjzdGTEY0ItG1aY6Q5WWNi9m+ngy1UObnSFH6JztyuVcVx7zXEE8J8F/28rhnfrfoYqinBqsjBOms/EjXMedCvN+xwduH1NLngDD7QRi3T1we+Bi+MCTB7rLuWjG/pc999vnMQde9vucC3QvaM4Py76MzbaozdaoxdaIM71kW6/F9pgNMkuxEadITzDBl+D0gjDXeTuocvUR0Cx8hsCNSTa1y3kXwoVuFGG4SzDcU3B5yzA8pYiBcCI0Ny5vyXD/Sw1KLOJsyNPVBrsaJS07IJuBxq1OH/hHvwoTzrMIC5tW02ZN/96g3ZO16bEserJO2O61bA71r+sSUGzoFBkaJYbOZK+LYkPfE7h33y4ydHyWoKcfOvuhIyTpCDuXNWHJC2Ho7JdkzL0hG8DrgvJ8QXk+LJyiDdwWe46V5o1slftY9GyG/70jQeDhNcirW7AIcKVYSD2Vo6pSmrKj9GZb6cxsJWQ2A5IcvYQJ3rMpdU8goB+8m+uprN82eTYd4pl0iH5pMUX38dVALQtduRij6N91rFM944qivLssE9L9zrSNdNS5nYpCOuJ8nE3sf8kMtG8crT1Dd4PL7/Qtu/zg9oMrsM/HA9eugaqz4TkgIO/zsWaM2Dg8KW0yZoamaIrGWIrWWIq2RIquZJpQKo1pZfCLLH4tQ1DPUOExKfeYTHB1Ui5aEQfETk33Y3iKEdreUWueQD3+gtPRXQUnJGiZUpKRkrQtSUtnbnYobrFhm83mnTbbW206IxLTZ2P6bGSOxFVskwnYZIIWqYBN4jA/m4Ka2C9gF+0J1vtfF+oapAXhBPTFoTfqVK5DUUkoJumLQTgh6U9Ab8y53pcmoCTXCdtleYLygoGQnceewJ3nZ1QE2VCTxSMPb0P73EZ0n808bSrzxFSMUVAxtqRJb7aZkNlMb7aZhB0GnAp4uXsqFe6pBPSCE3yW774GM8n/ZXp5Md1HGskCVw43eoqZrdpQThpqAedhqDCuKCMom3I2YUn2QSoMyfD+t9P9kIo4kzcOReh7FwG6/Adf3P4Dwvbea2n4QNeR0gJpIaWFtE3ARtoWYCFtCykPc0za+z92n2N7jx/q2L6POfC2iWnbZCwT0zbBzqCTxS3MQ7//wxEGaG7+f3vvHmTZcd/3fX59zrnvee3Ozr6B3QV2ASwWIACSIGGS5kNiQlGySDuWLFVF8SsllcsqK5U/kjhVKVFJ/qBSSSp2SmWV5MiS41gshZJiWZZNKSJlWQwfAEg8drHALrAPYJ+zO+/7Puf0L3/0ua+ZubM74C7uDKY/VV3d/es+ffr27XvP9/b9nT4aTaGlh0mjXaRBmSQoE4e7SIMiiTpf0RQG0qmqyw+klTSrkwBWnXhOgLZVWpmQdmIaF2fC2tnpS3cEt7N3jr/zraA9KiJMhIaxwAwI691hwJ4sng4MZTXk2gGtphPXCzVloaYsdtKZuF6ouvxS3b221RiBqTJMVYTJMkyWhKmKcyXpiOy9k8KecYju8omfWxVV5ftXr/DN5mnk2Ar7lw/wwxNPMSGVUXftjtTSea60TnO9fZZEWxhCdkWH2BW6h+xUgukdIzqtKu/YFmeSOqeTGqeTOtdtmwjhM7lJ/nphmiPBzngY03bC38Dp8XjuD2kblq+7J4QsXYGlK2jtNjTmkLixprqaEC2MobkSWihjx3ajuQI2ymHDCBuGaBBiowAroCSoTVB1sdUU1RVUF53IjVNo94QvakFThHfpp323LxuDJSAVQ0pAiiHFkBCQEBBjaKuhjaGlhlgNLQrEGBI1tCWgSUSLiBYhLYloEtIgpEFEDZevE9Ekok5EI0unajI1DazZPXAlC/eOvEBOhJwIeSNZmm46L0IpNOQA2kLaFJKq0F6B5pLQXBAaiyBtQRIhSIS908JDh4XHHgp49CGhaAy0DWkLak1hqaZu9bqqLGbpd6raFd0rDUithXVkvghMlGCq7MT1kRnh6bIwWRYnurP07jHYnQnw4D300x4FqsrbepNvzL9K9cAC+sY4z537BB96dP+ou7YhVhNm47e40jrNYnIVwTATPcSB/EmmwoOYbbCSfy9oq+Vc2uB0UudMUuNMUmdFs3sQJODxsMxPFKb5ZDTB+Drbf3q2H/5d9Hh2GKopNm1i0wZJ6zZJ6yY2bWUCOAbbQhorUF9E6iuYZpWg2SBqNwjb7pHm4G5Ri/MRaRSQlgPSaJw0DLJgSMMANdLn7lHPQoaFdjugTUirEdIicEIVl04wxG4tmaQrfJ3N5QfTHVG8Xrq/bjxg66/vbGBQArdSLwGIIcxuflKFxLrQTqGVutVjFFQFFPIGKqFhLITx0DAZCZORMBEZQoFQhEigiLBbIBQIEIKsLMDFRtwXdNBn69QxZMetLgOMyKo2XTqUrKzTZl/7oYDBie7OamO7pawsQW3ZbRAzexVe/a5y8yrcvgnzs87HW1HUQFiBQwdgaq9SnAYzA0leSUJYaMJbN5TvnO/c5LiBsC66VeupMhybEaYqwnhRGCtCpSBMlugJ7YowXnz/i+u7RVV5h5v8xcoZ5itzpEtl8v/4WX7y7z7Arge37g18tXSBa60zXGu/RqxNimach4t/if25k+TfZw/cWY2qsqQpryd1Tmcr3+fSBnHmjnbY5PlYNM7jYYlTYZmDJrdj/hHYSXgx7vFsMVRTwNzxC9faNjZeIU2WsUkNm9SxaR2bNrC2SZI0aacN0qSBTZtgG4htEmif77UqUTMm12wTNmJyzZhcO6b/zG0TUMsVuJUfZ3GszK38GDfyE8zmxmhIjoQIK6G7KdBEqIRYiUj7YiTESgji6mIikJBQegI1EIj6RGnHHtIrL4hQoVceZMI2IIvXOW4z9eqx8mbN3UB5fiXl/ErKuRXLmysp1T7vklIAD48FnBgzHB8LODEWcDxLj43owTPDsKlSr8HKIqwsQb3qBEBiYbkKb72p3LwNSyuW5SpUG1BrOZcTG9ALRpG8c8PnCNiHlRiop+7HSZcEuOGCCOwqw55xYXpceOygsHvM+VqPFZ2Q7sS7Ks4ebnPXkFHQEeHfbp9hNpojnS+R/tIzfOz4UT78iwFmC24nnWrCrfgtrrZOs5Ctgk9HRzmUP8Wu8IH3reCcszFnkzpvpA1eT+q8lTa7q94hwvGgwBfzuzkVljkZlpj0K987Av8uezwjRtUSN2/QWjlPs3qedu0SJhpncv/nUZS0NU+aLJPGK6TJCmm8TJqsgG2t216CoUqOKnmq5FghT1UrSFxislFjrN1gvN1gd7vKvvYSuexCsBCNcbF8lLk9+6mW99Eq7yUt7yNfHGc8MIwHhooRjhvDB4xQMkLBCME2u2imVrlct5xbsZxfTjlfTbu7l1xv9JyMBThcMpwYMzx3JM/xMcOJcSe8DxQFc49et6qSJpDEkCTQbiuNJjRa0GpDs+3sK1Vlfg5qdag3oN6EZktptKAZQzNxq/SxZoK66fy4EyANQI2S9olrVi+UhsBkFvoIBAohFCMYrwjlApTzUMwZJkowUXKuHxMlJ6rzkVu93jMu7Kp4cX0/6Yjw7+oZbjCHnS3S/PIzfHDvUT7+pYD8FnyQZC2d52rrDNfbZ7ur4A8VnuNA/uT7bv/vmqZcSVu8njR4La3xWlLnRnYjegA8FBT5y9EEDwR5Hg6KPBIW/RaEOxR/A6fH8x6jaokb16jOfZukdYOkNYdNnftGmJ8hX3mI5sp50vbt7jExEUtS5jYlrmuJ27gwR5k5SqxQIheVKYdldkV5HjAxJxpXOVK9zL6lC+xevkiu7XyLVQK0PI1U9iLjh2D3Q7DrISjtvm87iNwvVBWbQhw7MZsmTrgmsXK76Va536qnXGxYLjQtl1opV9qW/n1ZKgIHJGAfhr1q2J0E7EqEidigsRAn0EogTpV2AnEKiVXiFGILSbYynFp382Ri3Q2S7kZKF2x2E6XF3UDZcdKw4srVgIqL+QHfAlH3sJ+cgXwAhVAoRlAuQKUoVIpOWBcjoVSA/ftgvCSU8kI5D6U8lPJCKe9Edy7cXnNiJ6CqvM0NXtCzXOc2Mltk5ZceY+bcUX78VwKmHx11DwdJNeZm+zxXW2dYSq8jGPZExziYP8Wu8PC2XwWvacrFtMnFtMmFxMVXbZtF7f2dtktCHg9LnMzCw0GRnBfe72v8DZwezxYjad2mOv9dGosvkcZLgNvjOVd6kHDsJDdyD3BaDvO9doEztTaX2x/gad7mFmXeZoqCyXM4H3EoF3A4F3I4F/JU9jCSfVHAZOM2cvMVmHsL5t+Cleu9k4/thwNPwe6HYfdxZPwgcg//t+4IYmshTbOntSdKkkArhlYLrl+DK5ehWoOVFWVx0a1QqzhBaoFcESZmhNuzyu1bECcQW10jdlNLV+wmYqmXlcaYpVm2NMvq4pIljXp9FAu5ppBrGsabIbmmIWoJubYhSEAQZoHZ3quCTdwUKgpG3WJzNwYC41xjjEBO3E4eXdcZ4x59XsgJuQiiwIVcKEQh5AKcPXT1SkWYnBAqFSiXoVyEfE7IhVDuE8+RF8/vWxJNOcdlXtJzzLNMtFyk8d89Q/qVo/zw/xjwwV95Tx6QekdULcvpLebjt5lP3mExuYZiKZkpjhc/zr7co9vOF7zj233Dtrlh21xOW1xMm7yVNrqr3QAVMRwNCjwXjXEg9PdbwwAAIABJREFUyHPQ5DgRFJkx0bb/0eG5f3gx7vHcB9QmtBtXadcv06peoLnyOiCYygnmyk/zti3xpzzM95qGS9XeUxF3Bw0eL+b4+J4pTuRnOFGIeCgfUglWXWHTGG6/ARdegusv98R3YcKtcj/4MXTqGMtylLNnKixegvg8xG2l2VRq7ZR6CxoxtGKlGbvV33YCrdT5CyfWrfzG6kLS2RJPslVe49LWuBv4rMlWeLNV3k2v8DaBhSwd0v12UpQkUtoFpV2wJHkXtwpKO6cD58nHQjkWdtdDxhPDRCLsUsMEhnwgTvBWIJqAfAS5SMhHLl2IIJ9z6WJeKORwIZ+FSMiFTvxGYUc4O6H8Xj5F0bPzqGmD17jAK/omDVqU5yfRLz/LjX98mMf+SsCPvAxjB0bbR1VlOZ3lWusMN+PzJOrc6CrBNIfzH2Am9xATwf5tIUirtrfS3QmXbJOa9m6OMMBBk+eRoMTncgUeCgocCwvsES+6PZvHi3GP5x6gNqZVv0xr5Tyt2kXajStu6z2gaiZ4Mfcsv5me4o1qsXvM4ZxwqhDx16dKPF7M8Xgxx95w8MZNmyqNGsyuWK6/cYv2pdOMt1/m6MQZckGL2IacW36U79/+NN+59QSX63tpWyFGiQVSAzZsYwO6/sJrfIX76RPBHUzHLO6JhpGBohEiQxaEXCZ0cwbCwAnUKLOFAYxVYGY/VMpO2EahkAuyOmF2jCjXbylzJcultuWNWsrrKynnqin1vkXqcgjHxwKOVwJ38+S4u3ny4crWu3nS43m3WLVc5gav6QUu6XVUlLE395P+0gne/pcz7Hta+OnfgxM/Nro+qip1u8Bs+y1uxuepprcxhMzkHmI6OsJUeHjLroB3/Lmv2Ta3bMysjbmWtriUtrjVd5N7OVvp/nQ0yeEgzz6TY5+JOBDkKWyFvyE87wu8GPd43iU2bdBYPktj8RWa1TdBYyyGy2YvL+iTvMg+TrOPJVvmuIk4VY74G4UcjxcjHiIiqBlu34AbZ+DGFeUr7yjX5y0yrqykQPsmR8de59T06zy16w0+UJiHClxr7eb/mXuOby4/yfMrj9K0edehHAQ5JSdKPoCygVJOmJ4Sdk0KlQJUis5vuOPWUMy5UIiyleBoMJ2P7s+DT6wqF6uWV5cSTi+mnF5KeXUx5WKtt/K0Oyc8MRnwt2fynBgLODHuBPeBoviVJ8/7ElVljiXO6zu8ziVqNAiWC7R/8xGqv3KUuTfHOPyX4Ef+EI5/fnS3eCTa4krrVa61Xus+EXM82MujpU+zL3eCUPKj6dgq6poya2Oupi2u2DZX0hZXbIsr6aA/N0AJw74gx5NRmSNBgaNBnqOBX+n2vDf4Gzg9nk1g0yaN5deoLr5Ce+UcQsqijPENPco3OcwrHOR4qcKpYsTjBbfa/UghYvEqfOPfWM5dg/NXlNtVJclBnFfifLYfc6Q8Vr7MZya/x6cnv8exonM9WUzGeKP5CFfMIyxPPAYTB5ms9Hay6MSdnSy2Cq1UuVyzXKhZLlZTLtUsF6qWS7WUC1VLI1vtNgIPVwynJgKenAx4YjLkicmAg150e3YAqVpuMsdlvcFbXGGRFVAhemkvi798jPa/PsDJLxpO/iQc+SQUd73X/YtZSm6wkFylls5RSxeo20UUy1R4iL25h5mOjlEw7/1TPa0qS5pwNRPa72Si+2ra4paNqa/ay35KQg4FOQ6aPIeCPIdMjgNBnhkTUZYtuP+jZ1vjb+D0eO4hNm1ya/EMc/MvU2q8SUjKLBW+zin+lOMk0UGeHSvwdypFnqvkKYlwYxFurygX3rD85osJz7+hNIrOt5o9LkQG9pRSPr7nLT459X1OmRcZ0zkUQ3PyUVqHfoj8wSeYHD/AR0T4yKgHYhWqylzbrXBfzAS3E9uWi7WUq3Wl/6d+KYCjFcPRcsBn9kacHA84NRnw2HhAyd906NkhWLXMs8w1vcWF+k2u52ZJwwRSITw9TfM3j1P/7UOUgwIf+Bvw0bMweeS961+qMYvJdRaSqyzEV1hOb2b7/wglM0EpmGI6Osre3HHGw5n72herym2NuZK2uWpbzNq461Jyy7aZs0n34TjgnlNwwOQ4FOR5Oqqwx0RMm4iDmc0Lbs9WxYtxj2cdYms5M3+e2tz/x4HWeSJSGlT4Gqe4WjjJdOVBPlwp8DO5HJfeEV59w/Lvbyr/bDbh0qzS6vsHVFKYygmf/7Dhg48YHh6fZ3/jZYoLp5HZ1yCuu4fg7DsFB/8T5MDTFLfIBsGxVd6puxXti32r2hdrLr0cD9bfVxCOVgyf3BNxpGI4WjYcqwQcKRv2FvxKt2fn0UjaXFqY40pjjpvBHMtTc9iC+4JIr5eJ/+RB4j/ZS/LnM0wfzPHYx+HkV+DBT3LfH9ZjNaGWLlBNb1NN51hMrnfFtyCMBTM8kH+aqeggk+EBQsnd0/M3MjeSfpE92+fDfdvGtPvEdogwbUL2mBwnwxJ7JMceE7E/yHHYuBXu7fbcA48HvJuKx9PlZpzy58sNLi+8xpP1b3KSGyyT5/vh48j4E5yYPMqpYp6rt+Db5y3fPq+8eMHSzATpvkn3+O6D40L1knD638NHnhV+5LPwxImrhDe/B1dfgIVL7oDSbtj7BOx7AvY9CVFxaN/uB4lVZlvKtYblesNyvaEublreqTnB/U7dkvZ9ReQNHCmbTGgHHKsYjvQJbr/C7dlJpDGsXIPlK7B0Rbm9XGeORVYqizRmlkgfXIQjVcSApkL6ygTp87upXN/NTDLN4QcqTD/qVr7HD8L9fNhiqjEr6W1WkllW0lssp7PU0vls1RsMAWPBHqaig0yFh5gI929afKsqVbUsacKiJizblEVNWLJJZktZtglzmjBr21R10I3E4PbjnjFOZO8xEQeDHIdMnoNBnt0S3rOHbXk895vNuKl4Me7ZsbSt8ny9xZ8tN/nzlQbTrXP8LV7gMWZZkTGWJj/Oo/s+StzI8503Ld8578Jt9+wcHpwWnjtheO6E8PRRQ6Ug/Ot/oXzlV5UwiPmJL7zOj37qZeT6S1CbBcTt9X3wg3DgGbf/9z28sLRS5zYy31Lm2jaLlfmW7bMrN5tOfM+2FLvq428E9haEg0WTCW0nuI+WDUcr9/bJkx7PVkQVWktQvQHVm1C7ORhXb1tWTJX62ArtvcsEj6wQnFgheHwZM5H9MrdgrlfIX59kbHmS6cZu9ud2MX04YveJ+ye6U41p2GXq6SINu0zDLtFIl2jYJep2CbJV5kgKjAUzjAV7KAfT5INdiIzTBBpqaWBpqKWpLu7Ympr28mppYqmrZdkmLGvKkiZDd+cvIEyYkAkJ2WVC9piIGRMxY3LMmIg9ErHbRIT++8XzPsH7jHs8Q2hayx8vN/k3i3X+Q7VJzVp+iLf4782LHOQWaTTF5Mxfo5x/hpdfNvzvv59y9mobgMkyPPuQ4aPHDR85btg/1XfRSFrozfOE517nf/iZcxzZ9SZG23AxgpnH4dEfgwNPQ3Hqjn1MrbIUKwttZb7diS0LbWWu5Wzzbctcqye+59uWajK8zVIAu/OGXTlhpiA8MRmxv2A4UDTsLwr7i4b9RcNMXgj9ntmebYRa5+nVrkFc23zcn67NwsqsxU7XMQ/WCR6sYx6oufQnawTH6phDNYiUCPek06heYKw5xpR9gH3NSfYVJtkdjJM7HMHhu+i/KglKG6Wtlrb2pfvilo1pa4tYGyRaw9o61lYRrWK0SqhVQloDbceE1ClR1SKLcozbWuGmjrFARJwobSyp1oE60rcwJ9qJtb+jCFBSIS+GEkJBDAUxPEjAuARMSI5xMUwQMGFCxiVkAsO4CSl0HgiguCd2ZW2Cgrag03fV9eO7tb3bMt/W6Nq6h+dJbYpFSbBYVVIs7NnD+Cd+iK2MXxn33D1pCu12L8TxYH4927A6SaYcVYd/0O5RrNZyPU4502jzRiOmrZZxAx82cxxOrxGmdUxQIio+yGx9L+euKZdvKVaV3RXh2AwcnILdlb7ny1gLzUVYuQH1OWgsglpUIZZxcpNTUNoDxV2oGFqpUkuUeqI0UqUeW5dOlHqqtLLQTpVmCpKtYHUuht0YJWegaJzLSMFAwSgFIxSMkg+EQlaWN0reCHmjbrXpfo1zh+2e3wp9uF/51Z+z1em7rbfqGAU0VbCKWtAsxqqrrs62bqx99bo2Fw+me2310r2yvhcL9D47nTwCYiwYRYxmj0jtpaXz+FTphD4R2mmi25SssmVnG/bd05cWVRRdJXoHP9/r2VYL4sF+9c6zroD2eDy885lnOfyn33nPz+tXxj3DWViAixfh8mW4dKkXX7kCjcbGInqbfskLcCALn71D3YMIBwGMINC74VAkcynpXAwt3euyGBQhxZBag4RCE7DZhdpmEj4SmADGs7yKe0w6Ihhc++40/XaQrC9mvT6tjjcqu59xh+2e3wp92Ew+e8+d6OtoZMmEcRY6eRXUiqtjBWud3cVZPs3yqWAtWZzZU8lCX9p2+iIovbTrTn+/+20KARAqEiqSAykoknN5crg4UsgrmrMQKRoqhFkcdAKoydJdUY1zPs6E9epx0+4CrfvM2s5nF3GfWRWsClYMVsFmn0MjisEFESVAnR2LQQkEZxPtq2+79QXt60P/e9jrnzsyQEyAEIIEGAkQCQkkxBASmohQIiJTICcRgQQ917H1Ppf3qsy3teXaUlVSlLZY2tiBOMWSoiTi6rgnJytWLYngyjNbp46lV5ZkZWlWlvTVt33d6s5lWZUfKBv87A3aXGxECDAYhEAMAYIRs64txGR5Q4gQSkCQ1QllsCyQgHLlzv9IjxovxncKf/zH8Mu/DF//+qC9UoEHH4TDh106iiCX64XV+bu13alOENxzMamqfK8R80dLdb623ORanGJEeLac569OhnwqeZl4/i+waYMVHubrlz/B//39oyw3hNDAR08InzoWcCQvvPY8XLsMf/sfLCONV0iuvczk/GkKaY0WEd8KH+P39AN8NT3FIn1PmFPYWxT2FtzuIYOxYabPNhltv91F1IJNeiGNB/NrQqc8zYRhFq/O39FmyVZVOwJzuG3Afre2u2hzdWCIfb3Q/zruRbAxJC1ImpBm8bsisJC3SD5FSpZowhKOp4TjlnDcElRSwjFLMJ4SjKWYsRRTSZByiimnUEqQQgrFFAopmkux+YQkSkijhDRISYMUKwnWpCApSPbzVFdLeM1s9P0z5CoK2eK5ulz3RweAus8+SFd/G8BoJqJxWj1ECVRdjCUgJdAUQ5JJ8bRvVX2QNAurMYQEErnQTWcxEaaTJxooCyVPJPksLhBmaeOf6LhjsKo0SWiS0iShsV5aXdwYVk5COmTODsP9zMtELGYgREPseYQKHYHbEcCmr61M+LK+bTDdK+/UDdh+18J7jRfjO4Ff/3X4uZ+DBx6AL30JnnzSCfAjR2Bqav3VwW3EjTjhqwt1vjpf40I7IS/wibES/2CiyA9VAqKFb1G9/R9opXWu1E/wq9/6JK/cOMyuCnzypOGJGcP8i/Dtrym/GrTZf+QtPnToVT77zGl2f+ttjCizVPhdTvKnnOJs7hT5uER423DiqkFuCrlFQ6lq+M//juFHf/zeXVBVobUMzQWIG050dUJHhA2EdWzr1VttGyamV4vtod/7nVXJzoqlUSTozwNBZhtWr6OagsyFoK9O71gGbWbtsd02Td/xpu/4jqtCAGIUCYBIkYE+krXtXpuEdM8lWRsSZHHnuL62u+kARKxbBQ4sJnAxgUUCxRgXi7EYo5jAgrFuJbXz+sS6fnZcKkS7eZemZ+uUS2bruF7QWzlWbM/Wde1wk23dte3VornPZarz1nenQb+gThUyl6tRSUzB9AnmkMBEBOR6gjkT0WaNoL5z3hDueAGxE1FVYmxXSK8nkhsktDSh0S3vr+vSraG3uvYwQIGQAiFFAgqETJBnH6WeXYI1dQpulq8ruv0N+FsT7zP+fkDVuZmcPTsYXn8dFhedi8nnPw9f/SoU39vt8+4XC0nKv1tq8K8W63yr1kKBZ8t5fnKqxOcnShRtlcbyWZZnv4GNFzi/8Aj/5Nuf4vLSQT59Utg7BpduWV5eSFkKlvnwntN8On+Gz3KWaWpYhDfMEb5x9QleeOdJrr1zhNJiSKEmzm8UmNoDJ56Amf0wsUuYmoYPfgKi3Novu46obsz3hbleuj4HjQWlUU2p11KazYRmM6XVTiGXQilFilkopVBMkLyFnEVy68SRRQoWU7CYoktL3iKRZsE6V4DMVYB+4RzYrpDVrnDNhJzJ3HM6wq4jwu8H2hOKPZGnq/L9onD9sn6hKWi2etoTlNLfbleQaneVVdDuSzSrjx9od7DNbA2XUVz6+iR2L3YKnU7vO71zi/ySBUgREqWbt5krR8edw+1AbZzQlSBbDXN/D0cE3TgnAZG41bZIQnJiyGX2EIOIa0Ok154gmb3P1i0X57KBcWtpksUYjBi37pbFvba88NiJdNw3YiwJlhhLm5Q2ljiL18vH2rO3MoG9npC+m9XoHKYrjIuZWF6TlrX2nqAOyWXz37M98VsbDuF9I8Zv3YLvfAe+/W0Xf/e7sLzcK5+agscec2HPHti3D/7e33PuIdsQVeVCK+HFeosX6m1eqLV4M3uqztFcyBenSnxxosghFqitvM3c7CvkkvOIKBeXZvhHr32OV9sPkisoTW1xoPIOz4Rv8wxv80F9m0e5gRGlEVRYnn6C8uGnqBx8EvJjXHtbuXYZyhXYdxhaTbh2CQ4dg6ldUL8l1GazXRhupywvt1mpx9SbbdpBm6aNqTbaxEEbGY+RyRiZdGkzniATsQvjsRPZdzcgQJ/YzIRfoNnfgCqZ/51gtCNNQLK/7Tt/4zshmfmhQ5/47IW1rgT0raD2Yrp35K2TXpV33znOH0QznxDtlnXsmb/Ie8igyFsr7oz0BKira5A14rD/OLPq+MHjDIN1Vp9L1ZAAMYZEIRZoq7idNRSaKE1V6qo0VKmTxWppkMWasqxur+faqj2dO0QIkxIyaQImJWTChFk+ZEIGbeMmoOQFwlBUuzO5f4avie0Q+7Y/7j6//iQT1y70xHZ/iLOyd4MAEdmPRoIBYTwgpGWtwC5m6Y4t8C5HO54dI8ZF5HPAP8L9mfxPVfXLG9XflmJcFV57Df7sz+Bb33IC/K23XFkQwBNPwEc+Ah/4QE+Az8xsW9eTRJWLrYSzzZizjTZnGjEvNdospk5IlER4IIg4oMKJ9DbT9asUk1s8WrjE/twSADfiMX534RQvVfeTb8c8yg0e4wZPpVc5aa4RiRO9cTRGsPsYZvfDsP9JkvIRqgvK8nLM0lKb5ZU21VpMvd2mEbdpakzbtImjNmk+RittZKqNmWoTTLYIigmi2U1eqoNplCARwlQIrWQ3lkAoEGQ3ernV2I4I7QjY7LKl7jI1CpE6SFfKQ7Z6mflJZHa34tmf79aXvnTHLjJYB4N2b2Trs2Vpzc7XW3PuK+s7TlXQvnqdOpYAFXC33zm7C52V4t7odgQAmc12rb2fGVbdtnQpkHbTWVBIyG580qwOSqLunUzXHOe2tWupuwlr4KeZ9Na513tHwN08WJSAghiKuG3n8mKoSMC4CRgnZMwEjIthzASMSciYBG7LOZHuqx32+lmVX69+r6w/37k5rDeD7Rrb2nzXphvXWW1fr921fRgUffdKrHp63wzu0ykD+f7YDLFvdNymfJ2lZ3fOSR2RbQbyUZ899D80PfeQHSHGRSQAzuE2yLgCPA/8tKq+NuyYLSnGVeH6dSewq1WYnXU7nHTCG284FxSA/fvhueec+P7oR+GDH4RyebT9z+jsldu/OtHWlKpNWbApc3HKUpqymKYspQmLqWUxTVjRNHuYhCVGScS5QYzbBvvSFcbiJuNJg11xg5lkmRlbZdpW2ZXWCNMUk1raaUDV5lhJ82giTMR1DrbnKWjvWe21qMh8eYpbY1kYn6BeiDCBRUxCGKQEQYoxdq2QHkgzaMNu2h+283d/IoaUgESyW8jEDOzqYGWVC4F03Ap6QaUvnQW7ymaFXrr/uKwe9FwWFDJR29sJppNe7wfe8MvW8O+VoccMKbi7S+Pg+X6Qy6msSQyeZ7V5qEjeDtd0VcR2XGwyF5xs20LJ5jvZj0lREOt+kki2taB063WOIWsna7dzjqy+Uds9rtOOq9d3/CqfdJTsXx4n0gLNxFyWz34CZnayf4P6N1aR3q0CfceRpTv/AvVvwNIfQ9/Pz3XKV/+b1H+c6Kp2s2EXpPfP1EC89pysW0+yT6YMKe+cp/cPGPQ8ytb0p+/cvX/EBvvSfd9X1euWDbxnvfeuf64NxGvq3qmcO5QPa6e/7g/al7s8/m76pZ0FF13f1ml2jU37bJttl3XaGNYuvTYGzrG6XYa08QO228+q7BrDmvqr8o88Ab/wi6sbue/slK0NnwXeVNULACLyFeALwFAxPgpu/GcfZ++//b7bCqAT0k5sIbHI6scgAloMoZxDyzn02UPo/jGknAO5AK9cgFd+e/hJ1zY3vMId664+dPgBBsgB+T7bzGb61LlQ9KWhd0G4w9FORIpgjZAGhroxWGNIA2cfA8aAY3fZJ/f10C9We/FG5b2yTr7fQ3mteOvP9/YzXkvvzNJn6z92+AtabwwHz9Hp+Tpn7oqjdeg7p2xw7PrHb/B61nktA8evKh/o+7pl652Xta95o/6uGQe5Q/n6rNuu9oRrT7z2YieO1O1v30mvqdMTwx2RPXDRW92ux+O592y4RaH7F+rOO4nJBmV9tqHtDjvX6nZZx9b3M617nju9hlXnHvoaVp17w9ew4ZVyVVbW1u/PBwFbne0sxg8C7/TlrwAfWV1JRH4W+FmABx544L3pWR9GFALjNpk2a4NGAVoM0bE8RAHkAihF7pj+1wGQrPL5/EGW3jY8VAaigcv2nc4p62ncu+unZh/QzupuV1z3pRVxbgZi3MquOMHdKXP97Y8F5w4BmrlFSMeXr+vW0Pkg9/44lSxlJNv7m942aZ2/UI3IgN3dMJaVS88/e/1x2mBMNhzjO43/u233BzjvHdWnf613V9Z3MVodEDCm18ZAuRm8aA7U3aDNgWNZVXeDNvvbNeuco1t31esyfZ+17oV4nTa7x/WP2ar8HctXj/mw4zZq607ld+rLHY7fqI371Ze7qnu/+rIqfT/7MnCeu+jXD9KXH+Q67PFkbGcxvt4nYO2fGaq/BvwaODeV+92p1cz81jc3LPcfY4/H4/F4PJ6dy3a+3fcKcLgvfwi4NqK+eDwej8fj8Xg8m2Y7i/HngeMiclREcsBPAX8w4j55PB6Px+PxeDx3zbZ1U1HVRER+HvgabmvD31DVMyPulsfj8Xg8Ho/Hc9dsWzEOoKp/BPzRqPvh8Xg8Ho/H4/G8G7azm4rH4/F4PB6Px7Ot8WLc4/F4PB6Px+MZEV6Mezwej8fj8Xg8I8KLcY/H4/F4PB6PZ0R4Me7xeDwej8fj8YwIL8Y9Ho/H4/F4PJ4R4cW4x+PxeDwej8czIrwY93g8Ho/H4/F4RoQX4x6Px+PxeDwez4jwYtzj8Xg8Ho/H4xkRXox7PB6Px+PxeDwjwotxj8fj8Xg8Ho9nRHgx7vF4PB6Px+PxjAgvxj0ej8fj8Xg8nhEhqjrqPrxniMgt4PIITj0N3B7Bebczfsw2hx+vzePHbHP48do8fsw2hx+vzePHbHO8l+P1oKruuZuKO0qMjwoReUFVPzTqfmwn/JhtDj9em8eP2ebw47V5/JhtDj9em8eP2ebYquPl3VQ8Ho/H4/F4PJ4R4cW4x+PxeDwej8czIrwYf2/4tVF3YBvix2xz+PHaPH7MNocfr83jx2xz+PHaPH7MNseWHC/vM+7xeDwej8fj8YwIvzLu8Xg8Ho/H4/GMCC/GPR6Px+PxeDyeEeHF+H1GRD4nIm+IyJsi8t+Muj9bERG5JCKvishLIvJCZtslIn8iIuezeGrU/RwlIvIbIjIrIqf7bEPHSET+YTbn3hCR/3g0vR4dQ8brSyJyNZtnL4nI5/vKdvp4HRaRb4jIWRE5IyK/kNn9HBvCBmPm59k6iEhBRL4rIi9n4/VLmd3PsSFsMGZ+jm2AiAQi8n0R+cMsv+XnmPcZv4+ISACcAz4LXAGeB35aVV8bace2GCJyCfiQqt7us/1PwLyqfjn7ETOlqv/1qPo4akTkLwNV4J+r6qnMtu4YichJ4LeBZ4EDwP8LnFDVdETdf88ZMl5fAqqq+j+vquvHS2Q/sF9VvyciY8CLwBeBv4WfY+uywZj9JH6erUFEBCiralVEIuAvgF8A/hp+jq3LBmP2OfwcG4qI/JfAh4BxVf2x7XCt9Cvj95dngTdV9YKqtoGvAF8YcZ+2C18AfitL/xbuIrdjUdU/B+ZXmYeN0ReAr6hqS1UvAm/i5uKOYch4DcOPl+p1Vf1ell4BzgIH8XNsKBuM2TB29Jipo5ploywofo4NZYMxG8aOHzMROQT8KPBP+8xbfo55MX5/OQi805e/wsZf1jsVBf5YRF4UkZ/NbHtV9Tq4ix4wM7LebV2GjZGfd8P5eRF5JXNj6fxV6cerDxE5AjwNfAc/x+6KVWMGfp6tS+Y+8BIwC/yJqvo5dgeGjBn4OTaM/w34rwDbZ9vyc8yL8fuLrGPzfkFr+ZiqPgP8CPD3MxcDz7vHz7v1+SfAQ8BTwHXgf8nsfrwyRKQC/C7wX6jq8kZV17H5MXNj5ufZEFQ1VdWngEPAsyJyaoPqO368YOiY+Tm2DiLyY8Csqr54t4esYxvJeHkxfn+5Ahzuyx8Cro2oL1sWVb2WxbPA7+P+JrqZ+WR2fDNnR9fDLcuwMfLzbh1U9WZ2YbPAr9P7O9KPF5D5pP4u8H+p6u9lZj/HNmC9MfPz7M6o6iLwZzjfZz/H7oL+MfNzbCgfA348uw/tK8BnRORfsA3mmBfj95fngeMiclREcsBPAX8aNqYfAAABhklEQVQw4j5tKUSknN38hIiUgf8IOI0bp7+ZVfubwL8aTQ+3NMPG6A+AnxKRvIgcBY4D3x1B/7YUnS/jjL+Km2fgx6tzo9j/AZxV1f+1r8jPsSEMGzM/z9ZHRPaIyGSWLgI/DLyOn2NDGTZmfo6tj6r+Q1U9pKpHcHrr66r6n7IN5lg4ipPuFFQ1EZGfB74GBMBvqOqZEXdrq7EX+H13XSME/qWq/jsReR74HRH5u8DbwE+MsI8jR0R+G/gUMC0iV4BfBL7MOmOkqmdE5HeA14AE+Ps78G769cbrUyLyFO5vyEvAz4Efr4yPAT8DvJr5pwL8t/g5thHDxuyn/Txbl/3Ab2W7jBngd1T1D0XkW/g5NoxhY/Z/+jm2Kbb895jf2tDj8Xg8Ho/H4xkR3k3F4/F4PB6Px+MZEV6Mezwej8fj8Xg8I8KLcY/H4/F4PB6PZ0R4Me7xeDwej8fj8YwIL8Y9Ho/H4/F4PJ4R4cW4x+PxeDwej8czIrwY93g8Ho/H4/F4RsT/D5Nu3xTAQd+fAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "color=plt.cm.rainbow(np.linspace(0,1,len(list_countries)))\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "for i, c in enumerate(list_countries):\n", + " if c != \"US\":\n", + " plt.plot(donnees[i], label=c, c=color[i])\n", + "plt.legend(loc='best');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +3166,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -