{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import isoweek"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202106 \n",
" 7 \n",
" 13642 \n",
" 9914 \n",
" 17370 \n",
" 21 \n",
" 15 \n",
" 27 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1 \n",
" 202105 \n",
" 7 \n",
" 12210 \n",
" 8988 \n",
" 15432 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2 \n",
" 202104 \n",
" 7 \n",
" 12026 \n",
" 8826 \n",
" 15226 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 3 \n",
" 202103 \n",
" 7 \n",
" 8913 \n",
" 6375 \n",
" 11451 \n",
" 13 \n",
" 9 \n",
" 17 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 4 \n",
" 202102 \n",
" 7 \n",
" 7795 \n",
" 5430 \n",
" 10160 \n",
" 12 \n",
" 8 \n",
" 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 5 \n",
" 202101 \n",
" 7 \n",
" 10525 \n",
" 7750 \n",
" 13300 \n",
" 16 \n",
" 12 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 6 \n",
" 202053 \n",
" 7 \n",
" 11978 \n",
" 8406 \n",
" 15550 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 7 \n",
" 202052 \n",
" 7 \n",
" 12012 \n",
" 8285 \n",
" 15739 \n",
" 18 \n",
" 12 \n",
" 24 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 8 \n",
" 202051 \n",
" 7 \n",
" 10564 \n",
" 7574 \n",
" 13554 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 9 \n",
" 202050 \n",
" 7 \n",
" 7063 \n",
" 4744 \n",
" 9382 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 10 \n",
" 202049 \n",
" 7 \n",
" 5026 \n",
" 3145 \n",
" 6907 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 11 \n",
" 202048 \n",
" 7 \n",
" 6683 \n",
" 4312 \n",
" 9054 \n",
" 10 \n",
" 6 \n",
" 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 12 \n",
" 202047 \n",
" 7 \n",
" 4999 \n",
" 2963 \n",
" 7035 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 13 \n",
" 202046 \n",
" 7 \n",
" 3752 \n",
" 1963 \n",
" 5541 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 14 \n",
" 202045 \n",
" 7 \n",
" 3696 \n",
" 2016 \n",
" 5376 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 15 \n",
" 202044 \n",
" 7 \n",
" 4391 \n",
" 2375 \n",
" 6407 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 16 \n",
" 202043 \n",
" 7 \n",
" 4376 \n",
" 2505 \n",
" 6247 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 17 \n",
" 202042 \n",
" 7 \n",
" 4000 \n",
" 1979 \n",
" 6021 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 18 \n",
" 202041 \n",
" 7 \n",
" 3961 \n",
" 2099 \n",
" 5823 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 19 \n",
" 202040 \n",
" 7 \n",
" 2078 \n",
" 675 \n",
" 3481 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 20 \n",
" 202039 \n",
" 7 \n",
" 1049 \n",
" 237 \n",
" 1861 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 21 \n",
" 202038 \n",
" 7 \n",
" 2253 \n",
" 782 \n",
" 3724 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 22 \n",
" 202037 \n",
" 7 \n",
" 1584 \n",
" 405 \n",
" 2763 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 23 \n",
" 202036 \n",
" 7 \n",
" 919 \n",
" 100 \n",
" 1738 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 24 \n",
" 202035 \n",
" 7 \n",
" 828 \n",
" 0 \n",
" 1694 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 25 \n",
" 202034 \n",
" 7 \n",
" 2272 \n",
" 371 \n",
" 4173 \n",
" 3 \n",
" 0 \n",
" 6 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 26 \n",
" 202033 \n",
" 7 \n",
" 1284 \n",
" 177 \n",
" 2391 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 27 \n",
" 202032 \n",
" 7 \n",
" 2650 \n",
" 689 \n",
" 4611 \n",
" 4 \n",
" 1 \n",
" 7 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 28 \n",
" 202031 \n",
" 7 \n",
" 1303 \n",
" 100 \n",
" 2506 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 29 \n",
" 202030 \n",
" 7 \n",
" 1385 \n",
" 75 \n",
" 2695 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1546 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1547 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1548 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1549 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1550 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1551 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1552 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1553 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1554 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1555 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1556 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1557 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1558 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1559 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1560 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1561 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1562 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1563 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1564 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1565 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1566 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1567 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1568 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1569 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1570 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1571 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1572 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1573 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1574 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1575 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1576 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202106 7 13642 9914 17370 21 15 \n",
"1 202105 7 12210 8988 15432 18 13 \n",
"2 202104 7 12026 8826 15226 18 13 \n",
"3 202103 7 8913 6375 11451 13 9 \n",
"4 202102 7 7795 5430 10160 12 8 \n",
"5 202101 7 10525 7750 13300 16 12 \n",
"6 202053 7 11978 8406 15550 18 13 \n",
"7 202052 7 12012 8285 15739 18 12 \n",
"8 202051 7 10564 7574 13554 16 11 \n",
"9 202050 7 7063 4744 9382 11 7 \n",
"10 202049 7 5026 3145 6907 8 5 \n",
"11 202048 7 6683 4312 9054 10 6 \n",
"12 202047 7 4999 2963 7035 8 5 \n",
"13 202046 7 3752 1963 5541 6 3 \n",
"14 202045 7 3696 2016 5376 6 3 \n",
"15 202044 7 4391 2375 6407 7 4 \n",
"16 202043 7 4376 2505 6247 7 4 \n",
"17 202042 7 4000 1979 6021 6 3 \n",
"18 202041 7 3961 2099 5823 6 3 \n",
"19 202040 7 2078 675 3481 3 1 \n",
"20 202039 7 1049 237 1861 2 1 \n",
"21 202038 7 2253 782 3724 3 1 \n",
"22 202037 7 1584 405 2763 2 0 \n",
"23 202036 7 919 100 1738 1 0 \n",
"24 202035 7 828 0 1694 1 0 \n",
"25 202034 7 2272 371 4173 3 0 \n",
"26 202033 7 1284 177 2391 2 0 \n",
"27 202032 7 2650 689 4611 4 1 \n",
"28 202031 7 1303 100 2506 2 0 \n",
"29 202030 7 1385 75 2695 2 0 \n",
"... ... ... ... ... ... ... ... \n",
"1546 199126 7 17608 11304 23912 31 20 \n",
"1547 199125 7 16169 10700 21638 28 18 \n",
"1548 199124 7 16171 10071 22271 28 17 \n",
"1549 199123 7 11947 7671 16223 21 13 \n",
"1550 199122 7 15452 9953 20951 27 17 \n",
"1551 199121 7 14903 8975 20831 26 16 \n",
"1552 199120 7 19053 12742 25364 34 23 \n",
"1553 199119 7 16739 11246 22232 29 19 \n",
"1554 199118 7 21385 13882 28888 38 25 \n",
"1555 199117 7 13462 8877 18047 24 16 \n",
"1556 199116 7 14857 10068 19646 26 18 \n",
"1557 199115 7 13975 9781 18169 25 18 \n",
"1558 199114 7 12265 7684 16846 22 14 \n",
"1559 199113 7 9567 6041 13093 17 11 \n",
"1560 199112 7 10864 7331 14397 19 13 \n",
"1561 199111 7 15574 11184 19964 27 19 \n",
"1562 199110 7 16643 11372 21914 29 20 \n",
"1563 199109 7 13741 8780 18702 24 15 \n",
"1564 199108 7 13289 8813 17765 23 15 \n",
"1565 199107 7 12337 8077 16597 22 15 \n",
"1566 199106 7 10877 7013 14741 19 12 \n",
"1567 199105 7 10442 6544 14340 18 11 \n",
"1568 199104 7 7913 4563 11263 14 8 \n",
"1569 199103 7 15387 10484 20290 27 18 \n",
"1570 199102 7 16277 11046 21508 29 20 \n",
"1571 199101 7 15565 10271 20859 27 18 \n",
"1572 199052 7 19375 13295 25455 34 23 \n",
"1573 199051 7 19080 13807 24353 34 25 \n",
"1574 199050 7 11079 6660 15498 20 12 \n",
"1575 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 27 FR France \n",
"1 23 FR France \n",
"2 23 FR France \n",
"3 17 FR France \n",
"4 16 FR France \n",
"5 20 FR France \n",
"6 23 FR France \n",
"7 24 FR France \n",
"8 21 FR France \n",
"9 15 FR France \n",
"10 11 FR France \n",
"11 14 FR France \n",
"12 11 FR France \n",
"13 9 FR France \n",
"14 9 FR France \n",
"15 10 FR France \n",
"16 10 FR France \n",
"17 9 FR France \n",
"18 9 FR France \n",
"19 5 FR France \n",
"20 3 FR France \n",
"21 5 FR France \n",
"22 4 FR France \n",
"23 2 FR France \n",
"24 2 FR France \n",
"25 6 FR France \n",
"26 4 FR France \n",
"27 7 FR France \n",
"28 4 FR France \n",
"29 4 FR France \n",
"... ... ... ... \n",
"1546 42 FR France \n",
"1547 38 FR France \n",
"1548 39 FR France \n",
"1549 29 FR France \n",
"1550 37 FR France \n",
"1551 36 FR France \n",
"1552 45 FR France \n",
"1553 39 FR France \n",
"1554 51 FR France \n",
"1555 32 FR France \n",
"1556 34 FR France \n",
"1557 32 FR France \n",
"1558 30 FR France \n",
"1559 23 FR France \n",
"1560 25 FR France \n",
"1561 35 FR France \n",
"1562 38 FR France \n",
"1563 33 FR France \n",
"1564 31 FR France \n",
"1565 29 FR France \n",
"1566 26 FR France \n",
"1567 25 FR France \n",
"1568 20 FR France \n",
"1569 36 FR France \n",
"1570 38 FR France \n",
"1571 36 FR France \n",
"1572 45 FR France \n",
"1573 43 FR France \n",
"1574 28 FR France \n",
"1575 5 FR France \n",
"\n",
"[1576 rows x 10 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 1576.000000 \n",
" 1576.0 \n",
" 1576.000000 \n",
" 1576.000000 \n",
" 1576.000000 \n",
" 1576.000000 \n",
" 1576.000000 \n",
" 1576.000000 \n",
" \n",
" \n",
" mean \n",
" 200578.858503 \n",
" 7.0 \n",
" 12567.890863 \n",
" 7918.398477 \n",
" 17254.604061 \n",
" 20.661802 \n",
" 13.018401 \n",
" 28.367386 \n",
" \n",
" \n",
" std \n",
" 872.112355 \n",
" 0.0 \n",
" 6659.393511 \n",
" 5180.047063 \n",
" 8424.456030 \n",
" 11.033650 \n",
" 8.576619 \n",
" 13.974450 \n",
" \n",
" \n",
" min \n",
" 199049.000000 \n",
" 7.0 \n",
" 161.000000 \n",
" 0.000000 \n",
" 597.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" 25% \n",
" 199825.750000 \n",
" 7.0 \n",
" 7228.500000 \n",
" 3541.750000 \n",
" 10709.500000 \n",
" 12.000000 \n",
" 6.000000 \n",
" 17.000000 \n",
" \n",
" \n",
" 50% \n",
" 200601.500000 \n",
" 7.0 \n",
" 12526.500000 \n",
" 7826.500000 \n",
" 17241.500000 \n",
" 21.000000 \n",
" 13.000000 \n",
" 29.000000 \n",
" \n",
" \n",
" 75% \n",
" 201330.250000 \n",
" 7.0 \n",
" 17142.250000 \n",
" 11622.000000 \n",
" 22757.500000 \n",
" 28.000000 \n",
" 19.000000 \n",
" 38.000000 \n",
" \n",
" \n",
" max \n",
" 202106.000000 \n",
" 7.0 \n",
" 36298.000000 \n",
" 25490.000000 \n",
" 54240.000000 \n",
" 61.000000 \n",
" 44.000000 \n",
" 90.000000 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up \\\n",
"count 1576.000000 1576.0 1576.000000 1576.000000 1576.000000 \n",
"mean 200578.858503 7.0 12567.890863 7918.398477 17254.604061 \n",
"std 872.112355 0.0 6659.393511 5180.047063 8424.456030 \n",
"min 199049.000000 7.0 161.000000 0.000000 597.000000 \n",
"25% 199825.750000 7.0 7228.500000 3541.750000 10709.500000 \n",
"50% 200601.500000 7.0 12526.500000 7826.500000 17241.500000 \n",
"75% 201330.250000 7.0 17142.250000 11622.000000 22757.500000 \n",
"max 202106.000000 7.0 36298.000000 25490.000000 54240.000000 \n",
"\n",
" inc100 inc100_low inc100_up \n",
"count 1576.000000 1576.000000 1576.000000 \n",
"mean 20.661802 13.018401 28.367386 \n",
"std 11.033650 8.576619 13.974450 \n",
"min 0.000000 0.000000 1.000000 \n",
"25% 12.000000 6.000000 17.000000 \n",
"50% 21.000000 13.000000 29.000000 \n",
"75% 28.000000 19.000000 38.000000 \n",
"max 61.000000 44.000000 90.000000 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data.describe()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
"Index: []"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"data = raw_data.copy()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n",
" year = int(year_and_week_str[:4])\n",
" week = int(year_and_week_str[4:])\n",
" w = isoweek.Week(year, week)\n",
" return pd.Period(w.day(0), 'W')\n",
"\n",
"data['period'] = [convert_week(yw) for yw in data['week']]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" period \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 202106 \n",
" 7 \n",
" 13642 \n",
" 9914 \n",
" 17370 \n",
" 21 \n",
" 15 \n",
" 27 \n",
" FR \n",
" France \n",
" 2021-02-08/2021-02-14 \n",
" \n",
" \n",
" 1 \n",
" 202105 \n",
" 7 \n",
" 12210 \n",
" 8988 \n",
" 15432 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" 2021-02-01/2021-02-07 \n",
" \n",
" \n",
" 2 \n",
" 202104 \n",
" 7 \n",
" 12026 \n",
" 8826 \n",
" 15226 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" 2021-01-25/2021-01-31 \n",
" \n",
" \n",
" 3 \n",
" 202103 \n",
" 7 \n",
" 8913 \n",
" 6375 \n",
" 11451 \n",
" 13 \n",
" 9 \n",
" 17 \n",
" FR \n",
" France \n",
" 2021-01-18/2021-01-24 \n",
" \n",
" \n",
" 4 \n",
" 202102 \n",
" 7 \n",
" 7795 \n",
" 5430 \n",
" 10160 \n",
" 12 \n",
" 8 \n",
" 16 \n",
" FR \n",
" France \n",
" 2021-01-11/2021-01-17 \n",
" \n",
" \n",
" 5 \n",
" 202101 \n",
" 7 \n",
" 10525 \n",
" 7750 \n",
" 13300 \n",
" 16 \n",
" 12 \n",
" 20 \n",
" FR \n",
" France \n",
" 2021-01-04/2021-01-10 \n",
" \n",
" \n",
" 6 \n",
" 202053 \n",
" 7 \n",
" 11978 \n",
" 8406 \n",
" 15550 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" 2020-12-28/2021-01-03 \n",
" \n",
" \n",
" 7 \n",
" 202052 \n",
" 7 \n",
" 12012 \n",
" 8285 \n",
" 15739 \n",
" 18 \n",
" 12 \n",
" 24 \n",
" FR \n",
" France \n",
" 2020-12-21/2020-12-27 \n",
" \n",
" \n",
" 8 \n",
" 202051 \n",
" 7 \n",
" 10564 \n",
" 7574 \n",
" 13554 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" 2020-12-14/2020-12-20 \n",
" \n",
" \n",
" 9 \n",
" 202050 \n",
" 7 \n",
" 7063 \n",
" 4744 \n",
" 9382 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" 2020-12-07/2020-12-13 \n",
" \n",
" \n",
" 10 \n",
" 202049 \n",
" 7 \n",
" 5026 \n",
" 3145 \n",
" 6907 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" 2020-11-30/2020-12-06 \n",
" \n",
" \n",
" 11 \n",
" 202048 \n",
" 7 \n",
" 6683 \n",
" 4312 \n",
" 9054 \n",
" 10 \n",
" 6 \n",
" 14 \n",
" FR \n",
" France \n",
" 2020-11-23/2020-11-29 \n",
" \n",
" \n",
" 12 \n",
" 202047 \n",
" 7 \n",
" 4999 \n",
" 2963 \n",
" 7035 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" 2020-11-16/2020-11-22 \n",
" \n",
" \n",
" 13 \n",
" 202046 \n",
" 7 \n",
" 3752 \n",
" 1963 \n",
" 5541 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" 2020-11-09/2020-11-15 \n",
" \n",
" \n",
" 14 \n",
" 202045 \n",
" 7 \n",
" 3696 \n",
" 2016 \n",
" 5376 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" 2020-11-02/2020-11-08 \n",
" \n",
" \n",
" 15 \n",
" 202044 \n",
" 7 \n",
" 4391 \n",
" 2375 \n",
" 6407 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" 2020-10-26/2020-11-01 \n",
" \n",
" \n",
" 16 \n",
" 202043 \n",
" 7 \n",
" 4376 \n",
" 2505 \n",
" 6247 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" 2020-10-19/2020-10-25 \n",
" \n",
" \n",
" 17 \n",
" 202042 \n",
" 7 \n",
" 4000 \n",
" 1979 \n",
" 6021 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" 2020-10-12/2020-10-18 \n",
" \n",
" \n",
" 18 \n",
" 202041 \n",
" 7 \n",
" 3961 \n",
" 2099 \n",
" 5823 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" 2020-10-05/2020-10-11 \n",
" \n",
" \n",
" 19 \n",
" 202040 \n",
" 7 \n",
" 2078 \n",
" 675 \n",
" 3481 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" 2020-09-28/2020-10-04 \n",
" \n",
" \n",
" 20 \n",
" 202039 \n",
" 7 \n",
" 1049 \n",
" 237 \n",
" 1861 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" FR \n",
" France \n",
" 2020-09-21/2020-09-27 \n",
" \n",
" \n",
" 21 \n",
" 202038 \n",
" 7 \n",
" 2253 \n",
" 782 \n",
" 3724 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" 2020-09-14/2020-09-20 \n",
" \n",
" \n",
" 22 \n",
" 202037 \n",
" 7 \n",
" 1584 \n",
" 405 \n",
" 2763 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" 2020-09-07/2020-09-13 \n",
" \n",
" \n",
" 23 \n",
" 202036 \n",
" 7 \n",
" 919 \n",
" 100 \n",
" 1738 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" 2020-08-31/2020-09-06 \n",
" \n",
" \n",
" 24 \n",
" 202035 \n",
" 7 \n",
" 828 \n",
" 0 \n",
" 1694 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" 2020-08-24/2020-08-30 \n",
" \n",
" \n",
" 25 \n",
" 202034 \n",
" 7 \n",
" 2272 \n",
" 371 \n",
" 4173 \n",
" 3 \n",
" 0 \n",
" 6 \n",
" FR \n",
" France \n",
" 2020-08-17/2020-08-23 \n",
" \n",
" \n",
" 26 \n",
" 202033 \n",
" 7 \n",
" 1284 \n",
" 177 \n",
" 2391 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" 2020-08-10/2020-08-16 \n",
" \n",
" \n",
" 27 \n",
" 202032 \n",
" 7 \n",
" 2650 \n",
" 689 \n",
" 4611 \n",
" 4 \n",
" 1 \n",
" 7 \n",
" FR \n",
" France \n",
" 2020-08-03/2020-08-09 \n",
" \n",
" \n",
" 28 \n",
" 202031 \n",
" 7 \n",
" 1303 \n",
" 100 \n",
" 2506 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" 2020-07-27/2020-08-02 \n",
" \n",
" \n",
" 29 \n",
" 202030 \n",
" 7 \n",
" 1385 \n",
" 75 \n",
" 2695 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" 2020-07-20/2020-07-26 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1546 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" 1991-06-24/1991-06-30 \n",
" \n",
" \n",
" 1547 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" 1991-06-17/1991-06-23 \n",
" \n",
" \n",
" 1548 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" 1991-06-10/1991-06-16 \n",
" \n",
" \n",
" 1549 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" 1991-06-03/1991-06-09 \n",
" \n",
" \n",
" 1550 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" 1991-05-27/1991-06-02 \n",
" \n",
" \n",
" 1551 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" 1991-05-20/1991-05-26 \n",
" \n",
" \n",
" 1552 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" 1991-05-13/1991-05-19 \n",
" \n",
" \n",
" 1553 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" 1991-05-06/1991-05-12 \n",
" \n",
" \n",
" 1554 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" 1991-04-29/1991-05-05 \n",
" \n",
" \n",
" 1555 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" 1991-04-22/1991-04-28 \n",
" \n",
" \n",
" 1556 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" 1991-04-15/1991-04-21 \n",
" \n",
" \n",
" 1557 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" 1991-04-08/1991-04-14 \n",
" \n",
" \n",
" 1558 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" 1991-04-01/1991-04-07 \n",
" \n",
" \n",
" 1559 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" 1991-03-25/1991-03-31 \n",
" \n",
" \n",
" 1560 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" 1991-03-18/1991-03-24 \n",
" \n",
" \n",
" 1561 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" 1991-03-11/1991-03-17 \n",
" \n",
" \n",
" 1562 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" 1991-03-04/1991-03-10 \n",
" \n",
" \n",
" 1563 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" 1991-02-25/1991-03-03 \n",
" \n",
" \n",
" 1564 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" 1991-02-18/1991-02-24 \n",
" \n",
" \n",
" 1565 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" 1991-02-11/1991-02-17 \n",
" \n",
" \n",
" 1566 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" 1991-02-04/1991-02-10 \n",
" \n",
" \n",
" 1567 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" 1991-01-28/1991-02-03 \n",
" \n",
" \n",
" 1568 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" 1991-01-21/1991-01-27 \n",
" \n",
" \n",
" 1569 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" 1991-01-14/1991-01-20 \n",
" \n",
" \n",
" 1570 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" 1991-01-07/1991-01-13 \n",
" \n",
" \n",
" 1571 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" 1990-12-31/1991-01-06 \n",
" \n",
" \n",
" 1572 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" 1990-12-24/1990-12-30 \n",
" \n",
" \n",
" 1573 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" 1990-12-17/1990-12-23 \n",
" \n",
" \n",
" 1574 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" 1990-12-10/1990-12-16 \n",
" \n",
" \n",
" 1575 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" 1990-12-03/1990-12-09 \n",
" \n",
" \n",
"
\n",
"
1576 rows × 11 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202106 7 13642 9914 17370 21 15 \n",
"1 202105 7 12210 8988 15432 18 13 \n",
"2 202104 7 12026 8826 15226 18 13 \n",
"3 202103 7 8913 6375 11451 13 9 \n",
"4 202102 7 7795 5430 10160 12 8 \n",
"5 202101 7 10525 7750 13300 16 12 \n",
"6 202053 7 11978 8406 15550 18 13 \n",
"7 202052 7 12012 8285 15739 18 12 \n",
"8 202051 7 10564 7574 13554 16 11 \n",
"9 202050 7 7063 4744 9382 11 7 \n",
"10 202049 7 5026 3145 6907 8 5 \n",
"11 202048 7 6683 4312 9054 10 6 \n",
"12 202047 7 4999 2963 7035 8 5 \n",
"13 202046 7 3752 1963 5541 6 3 \n",
"14 202045 7 3696 2016 5376 6 3 \n",
"15 202044 7 4391 2375 6407 7 4 \n",
"16 202043 7 4376 2505 6247 7 4 \n",
"17 202042 7 4000 1979 6021 6 3 \n",
"18 202041 7 3961 2099 5823 6 3 \n",
"19 202040 7 2078 675 3481 3 1 \n",
"20 202039 7 1049 237 1861 2 1 \n",
"21 202038 7 2253 782 3724 3 1 \n",
"22 202037 7 1584 405 2763 2 0 \n",
"23 202036 7 919 100 1738 1 0 \n",
"24 202035 7 828 0 1694 1 0 \n",
"25 202034 7 2272 371 4173 3 0 \n",
"26 202033 7 1284 177 2391 2 0 \n",
"27 202032 7 2650 689 4611 4 1 \n",
"28 202031 7 1303 100 2506 2 0 \n",
"29 202030 7 1385 75 2695 2 0 \n",
"... ... ... ... ... ... ... ... \n",
"1546 199126 7 17608 11304 23912 31 20 \n",
"1547 199125 7 16169 10700 21638 28 18 \n",
"1548 199124 7 16171 10071 22271 28 17 \n",
"1549 199123 7 11947 7671 16223 21 13 \n",
"1550 199122 7 15452 9953 20951 27 17 \n",
"1551 199121 7 14903 8975 20831 26 16 \n",
"1552 199120 7 19053 12742 25364 34 23 \n",
"1553 199119 7 16739 11246 22232 29 19 \n",
"1554 199118 7 21385 13882 28888 38 25 \n",
"1555 199117 7 13462 8877 18047 24 16 \n",
"1556 199116 7 14857 10068 19646 26 18 \n",
"1557 199115 7 13975 9781 18169 25 18 \n",
"1558 199114 7 12265 7684 16846 22 14 \n",
"1559 199113 7 9567 6041 13093 17 11 \n",
"1560 199112 7 10864 7331 14397 19 13 \n",
"1561 199111 7 15574 11184 19964 27 19 \n",
"1562 199110 7 16643 11372 21914 29 20 \n",
"1563 199109 7 13741 8780 18702 24 15 \n",
"1564 199108 7 13289 8813 17765 23 15 \n",
"1565 199107 7 12337 8077 16597 22 15 \n",
"1566 199106 7 10877 7013 14741 19 12 \n",
"1567 199105 7 10442 6544 14340 18 11 \n",
"1568 199104 7 7913 4563 11263 14 8 \n",
"1569 199103 7 15387 10484 20290 27 18 \n",
"1570 199102 7 16277 11046 21508 29 20 \n",
"1571 199101 7 15565 10271 20859 27 18 \n",
"1572 199052 7 19375 13295 25455 34 23 \n",
"1573 199051 7 19080 13807 24353 34 25 \n",
"1574 199050 7 11079 6660 15498 20 12 \n",
"1575 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name period \n",
"0 27 FR France 2021-02-08/2021-02-14 \n",
"1 23 FR France 2021-02-01/2021-02-07 \n",
"2 23 FR France 2021-01-25/2021-01-31 \n",
"3 17 FR France 2021-01-18/2021-01-24 \n",
"4 16 FR France 2021-01-11/2021-01-17 \n",
"5 20 FR France 2021-01-04/2021-01-10 \n",
"6 23 FR France 2020-12-28/2021-01-03 \n",
"7 24 FR France 2020-12-21/2020-12-27 \n",
"8 21 FR France 2020-12-14/2020-12-20 \n",
"9 15 FR France 2020-12-07/2020-12-13 \n",
"10 11 FR France 2020-11-30/2020-12-06 \n",
"11 14 FR France 2020-11-23/2020-11-29 \n",
"12 11 FR France 2020-11-16/2020-11-22 \n",
"13 9 FR France 2020-11-09/2020-11-15 \n",
"14 9 FR France 2020-11-02/2020-11-08 \n",
"15 10 FR France 2020-10-26/2020-11-01 \n",
"16 10 FR France 2020-10-19/2020-10-25 \n",
"17 9 FR France 2020-10-12/2020-10-18 \n",
"18 9 FR France 2020-10-05/2020-10-11 \n",
"19 5 FR France 2020-09-28/2020-10-04 \n",
"20 3 FR France 2020-09-21/2020-09-27 \n",
"21 5 FR France 2020-09-14/2020-09-20 \n",
"22 4 FR France 2020-09-07/2020-09-13 \n",
"23 2 FR France 2020-08-31/2020-09-06 \n",
"24 2 FR France 2020-08-24/2020-08-30 \n",
"25 6 FR France 2020-08-17/2020-08-23 \n",
"26 4 FR France 2020-08-10/2020-08-16 \n",
"27 7 FR France 2020-08-03/2020-08-09 \n",
"28 4 FR France 2020-07-27/2020-08-02 \n",
"29 4 FR France 2020-07-20/2020-07-26 \n",
"... ... ... ... ... \n",
"1546 42 FR France 1991-06-24/1991-06-30 \n",
"1547 38 FR France 1991-06-17/1991-06-23 \n",
"1548 39 FR France 1991-06-10/1991-06-16 \n",
"1549 29 FR France 1991-06-03/1991-06-09 \n",
"1550 37 FR France 1991-05-27/1991-06-02 \n",
"1551 36 FR France 1991-05-20/1991-05-26 \n",
"1552 45 FR France 1991-05-13/1991-05-19 \n",
"1553 39 FR France 1991-05-06/1991-05-12 \n",
"1554 51 FR France 1991-04-29/1991-05-05 \n",
"1555 32 FR France 1991-04-22/1991-04-28 \n",
"1556 34 FR France 1991-04-15/1991-04-21 \n",
"1557 32 FR France 1991-04-08/1991-04-14 \n",
"1558 30 FR France 1991-04-01/1991-04-07 \n",
"1559 23 FR France 1991-03-25/1991-03-31 \n",
"1560 25 FR France 1991-03-18/1991-03-24 \n",
"1561 35 FR France 1991-03-11/1991-03-17 \n",
"1562 38 FR France 1991-03-04/1991-03-10 \n",
"1563 33 FR France 1991-02-25/1991-03-03 \n",
"1564 31 FR France 1991-02-18/1991-02-24 \n",
"1565 29 FR France 1991-02-11/1991-02-17 \n",
"1566 26 FR France 1991-02-04/1991-02-10 \n",
"1567 25 FR France 1991-01-28/1991-02-03 \n",
"1568 20 FR France 1991-01-21/1991-01-27 \n",
"1569 36 FR France 1991-01-14/1991-01-20 \n",
"1570 38 FR France 1991-01-07/1991-01-13 \n",
"1571 36 FR France 1990-12-31/1991-01-06 \n",
"1572 45 FR France 1990-12-24/1990-12-30 \n",
"1573 43 FR France 1990-12-17/1990-12-23 \n",
"1574 28 FR France 1990-12-10/1990-12-16 \n",
"1575 5 FR France 1990-12-03/1990-12-09 \n",
"\n",
"[1576 rows x 11 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" week \n",
" indicator \n",
" inc \n",
" inc_low \n",
" inc_up \n",
" inc100 \n",
" inc100_low \n",
" inc100_up \n",
" geo_insee \n",
" geo_name \n",
" \n",
" \n",
" period \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1990-12-03/1990-12-09 \n",
" 199049 \n",
" 7 \n",
" 1143 \n",
" 0 \n",
" 2610 \n",
" 2 \n",
" 0 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-10/1990-12-16 \n",
" 199050 \n",
" 7 \n",
" 11079 \n",
" 6660 \n",
" 15498 \n",
" 20 \n",
" 12 \n",
" 28 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-17/1990-12-23 \n",
" 199051 \n",
" 7 \n",
" 19080 \n",
" 13807 \n",
" 24353 \n",
" 34 \n",
" 25 \n",
" 43 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-24/1990-12-30 \n",
" 199052 \n",
" 7 \n",
" 19375 \n",
" 13295 \n",
" 25455 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1990-12-31/1991-01-06 \n",
" 199101 \n",
" 7 \n",
" 15565 \n",
" 10271 \n",
" 20859 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-07/1991-01-13 \n",
" 199102 \n",
" 7 \n",
" 16277 \n",
" 11046 \n",
" 21508 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-14/1991-01-20 \n",
" 199103 \n",
" 7 \n",
" 15387 \n",
" 10484 \n",
" 20290 \n",
" 27 \n",
" 18 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-21/1991-01-27 \n",
" 199104 \n",
" 7 \n",
" 7913 \n",
" 4563 \n",
" 11263 \n",
" 14 \n",
" 8 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-01-28/1991-02-03 \n",
" 199105 \n",
" 7 \n",
" 10442 \n",
" 6544 \n",
" 14340 \n",
" 18 \n",
" 11 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-04/1991-02-10 \n",
" 199106 \n",
" 7 \n",
" 10877 \n",
" 7013 \n",
" 14741 \n",
" 19 \n",
" 12 \n",
" 26 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-11/1991-02-17 \n",
" 199107 \n",
" 7 \n",
" 12337 \n",
" 8077 \n",
" 16597 \n",
" 22 \n",
" 15 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-18/1991-02-24 \n",
" 199108 \n",
" 7 \n",
" 13289 \n",
" 8813 \n",
" 17765 \n",
" 23 \n",
" 15 \n",
" 31 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-02-25/1991-03-03 \n",
" 199109 \n",
" 7 \n",
" 13741 \n",
" 8780 \n",
" 18702 \n",
" 24 \n",
" 15 \n",
" 33 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-04/1991-03-10 \n",
" 199110 \n",
" 7 \n",
" 16643 \n",
" 11372 \n",
" 21914 \n",
" 29 \n",
" 20 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-11/1991-03-17 \n",
" 199111 \n",
" 7 \n",
" 15574 \n",
" 11184 \n",
" 19964 \n",
" 27 \n",
" 19 \n",
" 35 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-18/1991-03-24 \n",
" 199112 \n",
" 7 \n",
" 10864 \n",
" 7331 \n",
" 14397 \n",
" 19 \n",
" 13 \n",
" 25 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-03-25/1991-03-31 \n",
" 199113 \n",
" 7 \n",
" 9567 \n",
" 6041 \n",
" 13093 \n",
" 17 \n",
" 11 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-01/1991-04-07 \n",
" 199114 \n",
" 7 \n",
" 12265 \n",
" 7684 \n",
" 16846 \n",
" 22 \n",
" 14 \n",
" 30 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-08/1991-04-14 \n",
" 199115 \n",
" 7 \n",
" 13975 \n",
" 9781 \n",
" 18169 \n",
" 25 \n",
" 18 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-15/1991-04-21 \n",
" 199116 \n",
" 7 \n",
" 14857 \n",
" 10068 \n",
" 19646 \n",
" 26 \n",
" 18 \n",
" 34 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-22/1991-04-28 \n",
" 199117 \n",
" 7 \n",
" 13462 \n",
" 8877 \n",
" 18047 \n",
" 24 \n",
" 16 \n",
" 32 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-04-29/1991-05-05 \n",
" 199118 \n",
" 7 \n",
" 21385 \n",
" 13882 \n",
" 28888 \n",
" 38 \n",
" 25 \n",
" 51 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-05-06/1991-05-12 \n",
" 199119 \n",
" 7 \n",
" 16739 \n",
" 11246 \n",
" 22232 \n",
" 29 \n",
" 19 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-05-13/1991-05-19 \n",
" 199120 \n",
" 7 \n",
" 19053 \n",
" 12742 \n",
" 25364 \n",
" 34 \n",
" 23 \n",
" 45 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-05-20/1991-05-26 \n",
" 199121 \n",
" 7 \n",
" 14903 \n",
" 8975 \n",
" 20831 \n",
" 26 \n",
" 16 \n",
" 36 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-05-27/1991-06-02 \n",
" 199122 \n",
" 7 \n",
" 15452 \n",
" 9953 \n",
" 20951 \n",
" 27 \n",
" 17 \n",
" 37 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-06-03/1991-06-09 \n",
" 199123 \n",
" 7 \n",
" 11947 \n",
" 7671 \n",
" 16223 \n",
" 21 \n",
" 13 \n",
" 29 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-06-10/1991-06-16 \n",
" 199124 \n",
" 7 \n",
" 16171 \n",
" 10071 \n",
" 22271 \n",
" 28 \n",
" 17 \n",
" 39 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-06-17/1991-06-23 \n",
" 199125 \n",
" 7 \n",
" 16169 \n",
" 10700 \n",
" 21638 \n",
" 28 \n",
" 18 \n",
" 38 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 1991-06-24/1991-06-30 \n",
" 199126 \n",
" 7 \n",
" 17608 \n",
" 11304 \n",
" 23912 \n",
" 31 \n",
" 20 \n",
" 42 \n",
" FR \n",
" France \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 2020-07-20/2020-07-26 \n",
" 202030 \n",
" 7 \n",
" 1385 \n",
" 75 \n",
" 2695 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-07-27/2020-08-02 \n",
" 202031 \n",
" 7 \n",
" 1303 \n",
" 100 \n",
" 2506 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-08-03/2020-08-09 \n",
" 202032 \n",
" 7 \n",
" 2650 \n",
" 689 \n",
" 4611 \n",
" 4 \n",
" 1 \n",
" 7 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-08-10/2020-08-16 \n",
" 202033 \n",
" 7 \n",
" 1284 \n",
" 177 \n",
" 2391 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-08-17/2020-08-23 \n",
" 202034 \n",
" 7 \n",
" 2272 \n",
" 371 \n",
" 4173 \n",
" 3 \n",
" 0 \n",
" 6 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-08-24/2020-08-30 \n",
" 202035 \n",
" 7 \n",
" 828 \n",
" 0 \n",
" 1694 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-08-31/2020-09-06 \n",
" 202036 \n",
" 7 \n",
" 919 \n",
" 100 \n",
" 1738 \n",
" 1 \n",
" 0 \n",
" 2 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-09-07/2020-09-13 \n",
" 202037 \n",
" 7 \n",
" 1584 \n",
" 405 \n",
" 2763 \n",
" 2 \n",
" 0 \n",
" 4 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-09-14/2020-09-20 \n",
" 202038 \n",
" 7 \n",
" 2253 \n",
" 782 \n",
" 3724 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-09-21/2020-09-27 \n",
" 202039 \n",
" 7 \n",
" 1049 \n",
" 237 \n",
" 1861 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-09-28/2020-10-04 \n",
" 202040 \n",
" 7 \n",
" 2078 \n",
" 675 \n",
" 3481 \n",
" 3 \n",
" 1 \n",
" 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-10-05/2020-10-11 \n",
" 202041 \n",
" 7 \n",
" 3961 \n",
" 2099 \n",
" 5823 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-10-12/2020-10-18 \n",
" 202042 \n",
" 7 \n",
" 4000 \n",
" 1979 \n",
" 6021 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-10-19/2020-10-25 \n",
" 202043 \n",
" 7 \n",
" 4376 \n",
" 2505 \n",
" 6247 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-10-26/2020-11-01 \n",
" 202044 \n",
" 7 \n",
" 4391 \n",
" 2375 \n",
" 6407 \n",
" 7 \n",
" 4 \n",
" 10 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-11-02/2020-11-08 \n",
" 202045 \n",
" 7 \n",
" 3696 \n",
" 2016 \n",
" 5376 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-11-09/2020-11-15 \n",
" 202046 \n",
" 7 \n",
" 3752 \n",
" 1963 \n",
" 5541 \n",
" 6 \n",
" 3 \n",
" 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-11-16/2020-11-22 \n",
" 202047 \n",
" 7 \n",
" 4999 \n",
" 2963 \n",
" 7035 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-11-23/2020-11-29 \n",
" 202048 \n",
" 7 \n",
" 6683 \n",
" 4312 \n",
" 9054 \n",
" 10 \n",
" 6 \n",
" 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-11-30/2020-12-06 \n",
" 202049 \n",
" 7 \n",
" 5026 \n",
" 3145 \n",
" 6907 \n",
" 8 \n",
" 5 \n",
" 11 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-12-07/2020-12-13 \n",
" 202050 \n",
" 7 \n",
" 7063 \n",
" 4744 \n",
" 9382 \n",
" 11 \n",
" 7 \n",
" 15 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-12-14/2020-12-20 \n",
" 202051 \n",
" 7 \n",
" 10564 \n",
" 7574 \n",
" 13554 \n",
" 16 \n",
" 11 \n",
" 21 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-12-21/2020-12-27 \n",
" 202052 \n",
" 7 \n",
" 12012 \n",
" 8285 \n",
" 15739 \n",
" 18 \n",
" 12 \n",
" 24 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2020-12-28/2021-01-03 \n",
" 202053 \n",
" 7 \n",
" 11978 \n",
" 8406 \n",
" 15550 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-01-04/2021-01-10 \n",
" 202101 \n",
" 7 \n",
" 10525 \n",
" 7750 \n",
" 13300 \n",
" 16 \n",
" 12 \n",
" 20 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-01-11/2021-01-17 \n",
" 202102 \n",
" 7 \n",
" 7795 \n",
" 5430 \n",
" 10160 \n",
" 12 \n",
" 8 \n",
" 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-01-18/2021-01-24 \n",
" 202103 \n",
" 7 \n",
" 8913 \n",
" 6375 \n",
" 11451 \n",
" 13 \n",
" 9 \n",
" 17 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-01-25/2021-01-31 \n",
" 202104 \n",
" 7 \n",
" 12026 \n",
" 8826 \n",
" 15226 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-02-01/2021-02-07 \n",
" 202105 \n",
" 7 \n",
" 12210 \n",
" 8988 \n",
" 15432 \n",
" 18 \n",
" 13 \n",
" 23 \n",
" FR \n",
" France \n",
" \n",
" \n",
" 2021-02-08/2021-02-14 \n",
" 202106 \n",
" 7 \n",
" 13642 \n",
" 9914 \n",
" 17370 \n",
" 21 \n",
" 15 \n",
" 27 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
"
1576 rows × 10 columns
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 \\\n",
"period \n",
"1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n",
"1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n",
"1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n",
"1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n",
"1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n",
"1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n",
"1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n",
"1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n",
"1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n",
"1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n",
"1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n",
"1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n",
"1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n",
"1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n",
"1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n",
"1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n",
"1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n",
"1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n",
"1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n",
"1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n",
"1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n",
"1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n",
"1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n",
"1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n",
"1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n",
"1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n",
"1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n",
"1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n",
"1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n",
"1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n",
"... ... ... ... ... ... ... \n",
"2020-07-20/2020-07-26 202030 7 1385 75 2695 2 \n",
"2020-07-27/2020-08-02 202031 7 1303 100 2506 2 \n",
"2020-08-03/2020-08-09 202032 7 2650 689 4611 4 \n",
"2020-08-10/2020-08-16 202033 7 1284 177 2391 2 \n",
"2020-08-17/2020-08-23 202034 7 2272 371 4173 3 \n",
"2020-08-24/2020-08-30 202035 7 828 0 1694 1 \n",
"2020-08-31/2020-09-06 202036 7 919 100 1738 1 \n",
"2020-09-07/2020-09-13 202037 7 1584 405 2763 2 \n",
"2020-09-14/2020-09-20 202038 7 2253 782 3724 3 \n",
"2020-09-21/2020-09-27 202039 7 1049 237 1861 2 \n",
"2020-09-28/2020-10-04 202040 7 2078 675 3481 3 \n",
"2020-10-05/2020-10-11 202041 7 3961 2099 5823 6 \n",
"2020-10-12/2020-10-18 202042 7 4000 1979 6021 6 \n",
"2020-10-19/2020-10-25 202043 7 4376 2505 6247 7 \n",
"2020-10-26/2020-11-01 202044 7 4391 2375 6407 7 \n",
"2020-11-02/2020-11-08 202045 7 3696 2016 5376 6 \n",
"2020-11-09/2020-11-15 202046 7 3752 1963 5541 6 \n",
"2020-11-16/2020-11-22 202047 7 4999 2963 7035 8 \n",
"2020-11-23/2020-11-29 202048 7 6683 4312 9054 10 \n",
"2020-11-30/2020-12-06 202049 7 5026 3145 6907 8 \n",
"2020-12-07/2020-12-13 202050 7 7063 4744 9382 11 \n",
"2020-12-14/2020-12-20 202051 7 10564 7574 13554 16 \n",
"2020-12-21/2020-12-27 202052 7 12012 8285 15739 18 \n",
"2020-12-28/2021-01-03 202053 7 11978 8406 15550 18 \n",
"2021-01-04/2021-01-10 202101 7 10525 7750 13300 16 \n",
"2021-01-11/2021-01-17 202102 7 7795 5430 10160 12 \n",
"2021-01-18/2021-01-24 202103 7 8913 6375 11451 13 \n",
"2021-01-25/2021-01-31 202104 7 12026 8826 15226 18 \n",
"2021-02-01/2021-02-07 202105 7 12210 8988 15432 18 \n",
"2021-02-08/2021-02-14 202106 7 13642 9914 17370 21 \n",
"\n",
" inc100_low inc100_up geo_insee geo_name \n",
"period \n",
"1990-12-03/1990-12-09 0 5 FR France \n",
"1990-12-10/1990-12-16 12 28 FR France \n",
"1990-12-17/1990-12-23 25 43 FR France \n",
"1990-12-24/1990-12-30 23 45 FR France \n",
"1990-12-31/1991-01-06 18 36 FR France \n",
"1991-01-07/1991-01-13 20 38 FR France \n",
"1991-01-14/1991-01-20 18 36 FR France \n",
"1991-01-21/1991-01-27 8 20 FR France \n",
"1991-01-28/1991-02-03 11 25 FR France \n",
"1991-02-04/1991-02-10 12 26 FR France \n",
"1991-02-11/1991-02-17 15 29 FR France \n",
"1991-02-18/1991-02-24 15 31 FR France \n",
"1991-02-25/1991-03-03 15 33 FR France \n",
"1991-03-04/1991-03-10 20 38 FR France \n",
"1991-03-11/1991-03-17 19 35 FR France \n",
"1991-03-18/1991-03-24 13 25 FR France \n",
"1991-03-25/1991-03-31 11 23 FR France \n",
"1991-04-01/1991-04-07 14 30 FR France \n",
"1991-04-08/1991-04-14 18 32 FR France \n",
"1991-04-15/1991-04-21 18 34 FR France \n",
"1991-04-22/1991-04-28 16 32 FR France \n",
"1991-04-29/1991-05-05 25 51 FR France \n",
"1991-05-06/1991-05-12 19 39 FR France \n",
"1991-05-13/1991-05-19 23 45 FR France \n",
"1991-05-20/1991-05-26 16 36 FR France \n",
"1991-05-27/1991-06-02 17 37 FR France \n",
"1991-06-03/1991-06-09 13 29 FR France \n",
"1991-06-10/1991-06-16 17 39 FR France \n",
"1991-06-17/1991-06-23 18 38 FR France \n",
"1991-06-24/1991-06-30 20 42 FR France \n",
"... ... ... ... ... \n",
"2020-07-20/2020-07-26 0 4 FR France \n",
"2020-07-27/2020-08-02 0 4 FR France \n",
"2020-08-03/2020-08-09 1 7 FR France \n",
"2020-08-10/2020-08-16 0 4 FR France \n",
"2020-08-17/2020-08-23 0 6 FR France \n",
"2020-08-24/2020-08-30 0 2 FR France \n",
"2020-08-31/2020-09-06 0 2 FR France \n",
"2020-09-07/2020-09-13 0 4 FR France \n",
"2020-09-14/2020-09-20 1 5 FR France \n",
"2020-09-21/2020-09-27 1 3 FR France \n",
"2020-09-28/2020-10-04 1 5 FR France \n",
"2020-10-05/2020-10-11 3 9 FR France \n",
"2020-10-12/2020-10-18 3 9 FR France \n",
"2020-10-19/2020-10-25 4 10 FR France \n",
"2020-10-26/2020-11-01 4 10 FR France \n",
"2020-11-02/2020-11-08 3 9 FR France \n",
"2020-11-09/2020-11-15 3 9 FR France \n",
"2020-11-16/2020-11-22 5 11 FR France \n",
"2020-11-23/2020-11-29 6 14 FR France \n",
"2020-11-30/2020-12-06 5 11 FR France \n",
"2020-12-07/2020-12-13 7 15 FR France \n",
"2020-12-14/2020-12-20 11 21 FR France \n",
"2020-12-21/2020-12-27 12 24 FR France \n",
"2020-12-28/2021-01-03 13 23 FR France \n",
"2021-01-04/2021-01-10 12 20 FR France \n",
"2021-01-11/2021-01-17 8 16 FR France \n",
"2021-01-18/2021-01-24 9 17 FR France \n",
"2021-01-25/2021-01-31 13 23 FR France \n",
"2021-02-01/2021-02-07 13 23 FR France \n",
"2021-02-08/2021-02-14 15 27 FR France \n",
"\n",
"[1576 rows x 10 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXfcXUWZ//e59y3pvRCSQAKEkoAECJGqQkAiuAso7AYVWGVFEdvCTwUL6kqsKCuusIKwlJUmoCC995gQICGkmZAE0nt5U9565/fHOXPOnDnTzr3nviXvfD+f5L137pyZOefMzDNPJ8YYPDw8PDw8RBQ6egAeHh4eHp0Pnjh4eHh4eKTgiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwo1HT2AcjFkyBA2ZsyYjh6Gh4eHR5fCm2++uYkxNtRWr8sShzFjxmD27NkdPQwPDw+PLgUiet+lnhcreXh4eHik4ImDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDx16L3c2t+Mvbqzp6GB4eXRJd1gnOw8OGHz48H39+cxVGD+yFSWMGdfRwPDy6FDzn4LHXYt2ORgDArua2Dh6Jh0fXgycOHns9GGMdPQQPjy4HTxw89loQUUcPwcOjy8JKHIioBxHNIqK5RDSfiH4clv+IiFYT0Zzw35nCNVcT0VIiWkxEZwjlxxDRvPC3GyhcvURUT0T3heUziWhM/rfq4eHh4eEKF86hCcCpjLEjAUwEMJWIjgt/u54xNjH89zgAENF4ANMATAAwFcCNRFQM698E4FIA48J/U8PySwBsZYwdBOB6AL+o/NY8PDw8PMqFlTiwADvDr7XhP5MQ92wA9zLGmhhjywEsBTCZiEYA6McYm8ECIfCdAM4Rrrkj/PwAgCnkZQIeHh4eHQYnnQMRFYloDoANAJ5hjM0Mf/oqEb1DRLcR0cCwbCSAlcLlq8KykeFnuTxxDWOsFcB2AIMV47iUiGYT0eyNGzc63aCHh4eHR3Y4EQfGWBtjbCKAUQi4gMMRiIgORCBqWgvg12F11YmfGcpN18jjuJkxNokxNmnoUGsiIw+PslAqMTz6zhqUSt7KyaP7IpO1EmNsG4AXAUxljK0PiUYJwC0AJofVVgEYLVw2CsCasHyUojxxDRHVAOgPYEumO/Hw0CDrFn/3rA/w1bvfxt2zPqjKeDw8ugJcrJWGEtGA8HNPAKcBWBTqEDjOBfBu+PkRANNCC6SxCBTPsxhjawE0ENFxoT7hIgAPC9dcHH4+D8DzzBune1SIcpVWGxqaAACbdjblNxgPjy4Gl/AZIwDcEVocFQDczxh7lIjuIqKJCA5mKwB8CQAYY/OJ6H4ACwC0AricMcZdVC8DcDuAngCeCP8BwK0A7iKipQg4hmk53JuHR0XwxxOP7gwrcWCMvQPgKEX5hYZrpgOYriifDeBwRXkjgPNtY/HwaA94MzkPD+8h7dFNsGrrbpz66xexPoy3ZAI3ovaMg0d3hicOHt0Cd/39fSzbuAsPvbXaWpc47+DlSh7dGJ44eHh4eHik4ImDh4cGnm/w6M7wxMFj70fGXb49A7e8t3EnrrhvDlrbSu3XqYeHAzxx8Nhrkdjky2AD2kPlcMX9c/HQ26sxb/X26nfm4ZEBnjh4eEjwpqweHp44eHh4eHgo4ImDR7dCFn0C8yppj24MTxw8PCT4TCIeHp44eHho4X3gPLozPHHoImCM4dUlm+CD1WYHyygg8kkIPTw8cegy+L+ZH+Bzt87Eo++s7eihdBnwLd7TUw+P7PDEoYtg5ZbdAIA12/Z08Ei6DirlADxN8ejO8MShi8CLk/KBC7kgH3fPw8MTBw8PHdrFlNVToHbF0/PXYcGaHR09jC4Bl0xwHp0AXknafiDvI73X4tK73gQRsPxnZ3X0UDo9POfg0S3QacVynui3OzrrVOhssBIHIupBRLOIaC4RzSeiH4flg4joGSJaEv4dKFxzNREtJaLFRHSGUH4MEc0Lf7uBwuMwEdUT0X1h+UwiGpP/rXp4ZMRevIl8+a43cdB3H+/oYXh0YrhwDk0ATmWMHQlgIoCpRHQcgKsAPMcYGwfgufA7iGg8gGkAJgCYCuBGIiqGbd0E4FIA48J/U8PySwBsZYwdBOB6AL/I4d5yxc6mVvzf39/vvCdQDyOyiOW6w2H+yfnr0Fryc9lDDytxYAF2hl9rw38MwNkA7gjL7wBwTvj5bAD3MsaaGGPLASwFMJmIRgDoxxibwYId9k7pGt7WAwCmUCcTsv/w4fn4/l/fxYxlmzt6KB4ZUS4991vn3gV/sMsGJ50DERWJaA6ADQCeYYzNBDCcMbYWAMK/w8LqIwGsFC5fFZaNDD/L5YlrGGOtALYDGFzODVULW3Y1AQAaW9o6eCQerij3dNGpTiUeHh0EJ+LAGGtjjE0EMAoBF3C4obpqbTFDuemaZMNElxLRbCKavXHjRtuw9yr4U09l6LTPr7OOay+Ef9TZkMlaiTG2DcCLCHQF60NREcK/G8JqqwCMFi4bBWBNWD5KUZ64hohqAPQHsEXR/82MsUmMsUlDhw7NMnSPTo6tu5rR0NjS0cNIoNMSFAfMX7Md89f47HIiuu7b7Bi4WCsNJaIB4eeeAE4DsAjAIwAuDqtdDODh8PMjAKaFFkhjESieZ4WipwYiOi7UJ1wkXcPbOg/A86yTrswZ723G7a8tb/d+O5kKJncc9ZNncOz0Z53rz1y2GZ/740yn3MtZJ1K7PuoqdXbWDa/irBterUrbXRWddEvptHBxghsB4I7Q4qgA4H7G2KNENAPA/UR0CYAPAJwPAIyx+UR0P4AFAFoBXM4Y44L6ywDcDqAngCfCfwBwK4C7iGgpAo5hWh43Vw3c8kpAGP7txLG5tLds404M7FWHgb3rcmmvK6Oxxb7Rc3zzvjlYu70RGxqasO+Ansa64qaQKdlPF9tLGGN4/b3NOOHATqWu6zToYq+zw2ElDoyxdwAcpSjfDGCK5prpAKYrymcDSOkrGGONCIlLd8Opv34Jg3vX4c0fnN7RQ9lrMfv9rZnqt6uHdI4U6P7ZK/GdB+fh+n89Mrc29yZ0NWLf0fAe0p0Am3c1d/QQuixM670U7gY3v7ws97Y7I1Zu2ZP465GET/uaDZ44eOy1aGqNxVRZTo3tGpU1R51DIWyq5I/IHjnAE4cy4aIIzRNemZYde7qCT0qe7zUkNOU0ed8bH+Cht1bZK3Zh+CWUDT4qa5lobiuhptj+tHUvN1pyhstj2NNcGXHoamIIzjnYRv3exp2psu88OA8A8KmjR6V+8+ie8JxDmWjKYFnj0TEY2rc+VeaibG5Xs+Ec++L3ZuIy3/5gK6b8+qXc+uxK8JxDNnjiUCba2nmm/XVO4C/oJ7g7xu/bDwDwhZzMjjs7XHQlKzbvap/BdEJ0NU6wo+GJQ5lo7016Y0NT+3bYRWDUxVT4jtrlHefYSSxW8pugCv5glQ2eOJQJvwA7P1j0N9u76qpqHS4OM0Xi9lnuPFzhiYMjUnJoTxs6PThX0alPjHnqHBxMWbvzoab73nl58MTBEbL4wk+0zg/+yloymh277tc//tt8HPnjpxNlC9bswKJ1GRLY5ypWKt+UtTvAm4NngycOZaKj5pk3ZXUHf0V/mvkBNu7MX2fzv6+twPY9yUiyZ97wCqb+1yuZ23KxkGptK+HXTy/GDkX02oVrd+DnTywCAOzYo49u253FSp40ZIMnDmWiO7PnnQEum2mbIHx/av66zH2050nTpa/H5q3F755fGhEBEa8sifOb3PvGytTvUT/deN56xiEbPHEoE36iVR9PzV+X2PSyorUUi5NsEV9fXbIpyvL3/KINxrq5IgMryH1rmlvT99KdOQJn+DWbCZ44OEI+qXbUPOtOROlLd72JC2+dVfb1bSazHQFL1jfgc7fOxA8fno/te1rwypJNANrpHQsv9JaXl+HFxXrCxE/9KjKgozEl6RnIRGR3c6vbOPcCdGeuqRx44lAmvHKrPDwydw1eMGyAWWF6DS1tbu+Ix2BasHYHNgu6ifZ+xdMfX4h/+983tL/z8agIQUFDHWTLJXmDHH/NU3gzY0hzj+4BTxwckbJW8rShLHz9nrfxecMGmCdUwRFVe2hdTbAMmlrbsM2gzO1oxAnX0zeh4xxcPPk/fdPrFYyq60B8FLOWb8Hj89Z23GC6AHzgPY8uDZPIvtVRrFRTCIhDc2spIc/vbGIIvrkVFEc63WPwh5gY4qP4lz/MAACs+PlZHTOYLgDPOZQJb8raOWB6D62OYiW+bTS1ljosF8Lr72221onHlp4EhYKbWKk7w4uCs8FKHIhoNBG9QEQLiWg+EX0jLP8REa0mojnhvzOFa64moqVEtJiIzhDKjyGieeFvN1Co5SWieiK6LyyfSURj8r/VypBWSPuJ1tkhWiuZwBmM5tYSxEvacy/51VOLrXW4M5/qgKA7M7gq5fMEYwxzV27rdJtx5xpN54cL59AK4ErG2GEAjgNwORGND3+7njE2Mfz3OACEv00DMAHAVAA3ElExrH8TgEsBjAv/TQ3LLwGwlTF2EIDrAfyi8lurLjrZvPdQwFUhzU/Xza2ldo+2m4UV/PHfFgSXZGinA2gDHn1nLc7+/Wt4ZO6a9u/cAL9ms8FKHBhjaxljb4WfGwAsBDDScMnZAO5ljDUxxpYDWApgMhGNANCPMTaDBUeKOwGcI1xzR/j5AQBTSD6qdzB8+IyuB9dTM6/X1FpKmX5WHWXsWCrLJI1Uqf3vB8CyjUFY8KUb0kmFOKY/tgA/fXxhew0JgOf2syKTziEU9xwFYGZY9FUieoeIbiOigWHZSACii+aqsGxk+FkuT1zDGGsFsB3A4Cxja290NpbZIw0XsdL8Ndsjv4bmtlKCoHTWN1yJKWt7wCWvxC2vLMfNLy9rnwF5lAVn4kBEfQA8COCbjLEdCEREBwKYCGAtgF/zqorLmaHcdI08hkuJaDYRzd64sXzP2TzQnZ3gGGO47dXl2FSFeEV5wuXQfNYNrybCUbhaOHUklE5wmrrXPrYwwT20x/zhY+l0J/VONpzODifiQES1CAjDnxhjDwEAY2w9Y6yNMVYCcAuAyWH1VQBGC5ePArAmLB+lKE9cQ0Q1APoD2CKPgzF2M2NsEmNs0tChQ93usEroDJt0R2H+mh34z0cX4P/9eW5HD8WMMt6RGLSus75jlcRVxzn85e3VeHfN9moPKQEXzoHjj68si8KWVBud9HV2WrhYKxGAWwEsZIz9RigfIVQ7F8C74edHAEwLLZDGIlA8z2KMrQXQQETHhW1eBOBh4ZqLw8/nAXiedTK5TSdTgbQbXl2yCZ/949/RIEQC3dUUhFzY3dQ+i7pclHNyveaRd+2VckRuCnDD9BS7aI9pzNeKy51d+9hC/P6FpdUdEIA/z16Jc37/WtX72Zvg4gR3IoALAcwjojlh2XcBXEBEExHMgRUAvgQAjLH5RHQ/gAUILJ0uZ4zxXeQyALcD6AngifAfEBCfu4hoKQKOYVplt5Ud23Y3Y97q7Th5nCtH0qloV9Xwk0cXYPH6BnywZTcm7NsfQCCbB4Dams5NMMvZd20B+vJGOWNUnZtc30S7iJUckg6JaM6Yb6McfOuBd6rex94GK3FgjL0K9dx73HDNdADTFeWzARyuKG8EcL5tLNXE5Xe/hdeWbsaca07HgF51qd87S/iMdjemCYmgqNvl9vZ1xY7zoXQRXVT+qKr/sMt5n6prdGKljkDWCLG968zb0M6mVmxsaMLYIb0rGZZHRngP6RCrtu4BAGzd7RZbp6P4hva2PuELXeyXh5jgMYmAII7RX95e1SGmkzpUKplsj0ddzvNSiaJUITVUaB+xUvjB8dZ61RWNv3/ujzNxynUvVjQmHTrTfO1s8MQhRN8ewenFlEVLREdxDu2tilGJCJoi4hAv6v99bQX+4765eOCtVWhPmPQKlT6pdiEOZXSiFiu57frtaa3kem82rmfOym0VjkiPFkcv+u4ITxxCcBGJmG/4ottmYcxVjwHoPOEzetSaT1nVgopzqC3Gz4Sn4dy6q7ldx2UUK3WBQ2E5xEG1n5n21/aWOGWxVsqCahyMusIc6Sh44hCCc5fiXHn5H3pfirwnlSq8tIh+IWdTo3OFrTJE7pt/zCLnZozhlk7g9NTZrM7KmUYqgmK6r/aWnBQyWCtlqVeNOFEdEXuqq8AThxB8irhu+pUSh/c378JbH8RJVmwWG7y79pzLd81YgUXrGoJ+K+z4lSWbML0K4RJMo6pYrNQeCumcdA4mkpfnBtjY0ob7Z690OsW7ryW3itVwUGz3WFpdCD6fQwg+QVUTdWNDU2TbH9WvcOP46K9eTHxvbi1BYSQljI/3234QN3PdImorMazdvsfaVpMi73EliEUXXVuuVM5+p7otExeXJ3H4+ROLcPvrKzC0bz1OOWSYsW7exLUaxMErpPXwnEMIzqqrpsqx05/FzOVJh+289x0r52AgXu2BRLfC518/vRgn/eIFrN62R/5Jur79x90Vln0WnUOf+uAsd/T+A1O/mZMe5UeYuW5pZ6M+93QkVsrhBWwXrAfbDFF2v/3AXNz4YnZnOi9W0sMThxDRybwd5sqPHpmfKmu2nKw7YgqLz0K1iAjAq0uDoHUbG7LFWcorZILuuSxe14B3VlUWNqI95kKWPvbp3wOAOgKrSaxUDYMc07B1XN323S3Y3awnKipM/umz0WeTZdH9s1fhl0/ac2LI8LRBD08cQsTEwW22VLJx3P76ilSZlTi0I/FSQXfCjRShlnHJCtMbX3wvj2Epn0epxHDGf72cqZ1D9+lbwRjKfymunMPu5tYoBHbW7vLkHFygc3M48j+fxkd++aL1+pN/+XyU11oUR1bjlO8z5enhiUMIk1hJhbzlqXaFNEv8bQ8kJEmKbhnKj8ApxmrKGwvX7ch8jUpm7zwXKnglrpvT60vjNKKqK0xipTw21fU7GpP9GeqSQaykiuQr11u5ZQ/efH9rql6LQ5iNE372XCY9ghcr6eGJQ4isJ/O8Dxy2w12HcA46sZKwM1TLpt0d6Y7LCSXh6mHsNgJ3lLU3ZXzYNq7UhleXbMKHf/ocnnx3nVP99zfvBuB+YHCt57KRr9nemMmxzRMHPTxxCBFzDq4Tujr92/rrqKmsFSuFf23jqpZ3gWpYJl8Q3S/FCvwfKhErlXOt+U2k0dhamX6Hh/x++4P0aV6F215bDiD/A4Nr2tcsG74XK+nhiUOIrH4O1z/zj/L66QLxfqK+hG0osd5EJiISIWQbWDXvo2AgDrpui4prnLlIt2pKlHNwbWxpyySWa+9Isxz5i+Xy94dQVS2VGK57ajE2NDSmf+xG8MQhRFadw0sG72kTdAvBeoJhjvWqBKVXLtw5h2pB1W85XuRK4uDKRbaDzmHL7jgsyU8fX4QjfvS0cx95WYb94eVlmURUeZsvu+75JpPXVF1Fo7NWbMF/v7AU38kxzPeOxhZs2NG1iE23Jw4vLt6Aw3/4VOTkVu3NV9e6beJ3BFEQu9RbK6XrmurlBR5oLqtDmO4XZfgJZ86h/HfjKgL5tmWjMj1fkXOodBo9s2B90I5Q9vi8tQl/hKzIm8PIonNQzWuu0M6T4/roL1/A5J8+l1t77YFuTxyue3oxdja1Yv2O0IqiynuwbpO1nbKYY71qQbeJRZt0+H3r7vYNvKdCOYSoEtpVySvJ63Wa2qlUIW16Niu37MZX/vQWvnbv25nGVA5cD0hZdA6mum++vxW3vbrcuS0TXFMBdCZ0e+IghzqutqmoXqxku44Zr88bb3+wNSG71fZLyQp/eEkdXK9a8e5U76ucZ9QR8fha2krY2WR3Crvr7+9X1E81uE7+uLjIavXW3c79lps4y7Vea4ViJY7mthL+89EFzm3tbfDEQdoUqr356oiPM+dgaf+5hesx4ZonceB3tYn6AAQezSav5nNvfD3xffmmXcp6/PEtDAP0tTfyel+qfAj5K1STeGHRBmud3c2t+MFfK8tr7Tq8fUMP7LzaXLdDPb/k/Thvk9csCmnlu+tcgXs7DJ44SN+rThw07du6dfVzuOSO2djV3GZlrY+d/iyOnf6ssY6Ip+bHNu6rtsWB9jhxrVR00dGohHMoh9t8f/MuLNMQXBF/+vsHzqPQ/lLFSc1bVulsXv7HRjQpzGjLHY/rZVlCuagj3HrqADgQByIaTUQvENFCIppPRN8IywcR0TNEtCT8O1C45moiWkpEi4noDKH8GCKaF/52A4Uziojqiei+sHwmEY3J/1a1N5j4Wm2pjVas5Hja6agkQ4vWNeDpkEDc8NwSAMGjK3ch5bVhKT23c5Pj6xsSo/SW098nb3gVP39ikbVeT0sKTRe4ipW0kkOHWE66WdDaxlAqsYRntNxPpWIlee187taZbg1CEzPM0wYAbpxDK4ArGWOHATgOwOVENB7AVQCeY4yNA/Bc+B3hb9MATAAwFcCNRMRn+E0ALgUwLvw3NSy/BMBWxthBAK4H8Isc7q0sVN9aSSNWMl0jjKkjfXYeeDOdArRcz2LdbbgSjTikk0LnYHiauoWfdUP41VNxkLdyXkmDg64BsOdXjsZgGESlm28lJ+kCEW566T1MujbmUsvN86Bbm/LpPwsX653g9LAubcbYWsbYW+HnBgALAYwEcDaAO8JqdwA4J/x8NoB7GWNNjLHlAJYCmExEIwD0Y4zNYMFbv1O6hrf1AIAppLQtrD6qPVd0DIJpkoo/dZS1EqA7Qeb7mvK4vbIU0hnvw+Y7kFeeAFWMIRVMvbkOJQtXmuXunpd0K679vLdxp1OfLjGXdHCxbOquOR8ynftCcc9RAGYCGM4YWwsEBAQAz/wxEsBK4bJVYdnI8LNcnriGMdYKYDuAwYr+LyWi2UQ0e+PG8pzQUm2mSqptraRTSOuvEU9GnW2aupJw180360lOFxAwK1T3YdoT+vaI82Sp3ukbK7akysrBn2a66hz0qGakYbvvZvnWZDe+kIzcq5sbPFptOdA5d4rI4jexN8GZOBBRHwAPAvgmY8wU9lK1CzBDuemaZAFjNzPGJjHGJg0dOtQ2ZCe0v7WSptzQb6mTiJXaQ1HXmQ5pplDXImPbGYZsFCu5tqEpN+kc+OavOyQwZjf+0RGvh95enWpLhUqyDKpesTwHu2twPifiQES1CAjDnxhjD4XF60NREcK/nHdcBWC0cPkoAGvC8lGK8sQ1RFQDoD+AfI5eFqSslXJq9/TfvISpipwCTDOPncVKnWIrCkAgY2L7cpDH/eUlejMFehPvWtVde0tFTc/NRSxyweT9Mh08KiE45b4e3XutROyjslaS+3EN+Le3wcVaiQDcCmAhY+w3wk+PALg4/HwxgIeF8mmhBdJYBIrnWaHoqYGIjgvbvEi6hrd1HoDnWRWF6+fd9Dp+/0KQUlBexHn1umTDTixS2P7rFrGJOLQn55D1se9xzezlyKFlvb/8xErpzbxfj1rHQaSLygjvVDWUEocLNYLbz39yqebTHklfU2mAw6yj/tmnjog+qwiLTDDy5BwWrNnRZcy+XTiHEwFcCOBUIpoT/jsTwM8BnE5ESwCcHn4HY2w+gPsBLADwJIDLGWN8NlwG4I8IlNTvAXgiLL8VwGAiWgrgCoSWT9UAYwyz398aWZvIa7jq1kq6TdFwjTg5Kx3d1l3NWuerDzbvxtirH8ff5q5R/p4SwYHhjRVuClNXuD5+rhC++ZW0R3Z5Cuk06moMO7zwk4rgEwEHXP0YLr5tVvbBlAGzWMn+QMjShv169bNSNTn9sYWJ784K8zKMOVSoK8bbnmrjl8vyzKR35g2v4NrHuobXdY2tAmPsVejFhlM010wHMF1RPhvA4YryRgDn28aSB3bsSZ505VOCbZp964xDEmaMKixYo1fJlBNbSQwHUCnt+tytMzFfM763VwYb/ZPz1Uld8pSUlMNBidi6K4hV87e5a/C7C47S1jt9/PAoWJwJRMDg3nXYvCuODWUairgZqurNeG8zSqz86L1ZYXpq4vj0gQfLO3i4vC553qzdvifx3fWda+tlHHhtTUwclIH3pLIs4ThcMGfltlzbqxa6nYe0jWU0bdJ962vw8fHDAQAT9u2XuIab063YtAtn3vCKtg1d66bDSSLGUYW8g44wAMCupuA03rfeemYAECR1d4UrXSlnoxhz1WOYt2q78Gv8W98eNbjxs0c7tSmH7TaNhRKcQxrXPV1evo9qYNbyWH2nFSuByks8FF5iUkjLkMUqzvoLLeegqqtvVeQcVO9YtozVzYPlm3bh2OnPYs22PcrfdXgnMVc7L7odcXB1rFGhUCCMG94XQ/vW40OjBkTlt7++AuO+9wQ27WzC5l1m1/1KxUrV1Edzr9/eGuLQHtZK5So6L/7fWHwjPuPm1pLTqAnpPBDyu1q2cSfGX/MkVm7ZLSmkO15haRrDgrU7UjmgZZi4woqU6yriIO2+7qa2Gq5b0YlJVFVfI4qV0r/LB0bdwe3ume9jY0MTHn1HLYbt6uh+xEH6Lk8O0zzle0eBkhP13lmBW8fGhia73bfO4sIkVhJmZzV1IlyOLy6evOCq+H9+4QY88OYq64aRZv2FnAVC+fY9bqGSiQjFojmUyp/fXIXdzW14ZO4aK+eQB/JUXO5uDt6taZvXKnwdfAE4WuWNX9Fqk5QnodLwHipCYFIi14nEQdH3Lsl7XTc+njeE58zOgq7gWNf9iIP0TuSXZBLbcLFDgSgxYXhwsR61RXsAPcdxiUgopA31VinCJpcDrYjAOTNaup5cNuO9zcprv3nfHPy/P8/F4/PMyezlLhJ+B8JvOxpbE/ejlbkjnUfalQ4vWmuOSLtw7Q584revZErtCaRP2HlAL1bS369qo9W1I0dEVbUpB+Nzfc5Z9HUmgiMSB9UmvWJzMiCiioAA8Zz708wPMnOPWSLHdhS6H3GQprX84k2yfz4ZAuIQl/OMUTUFcuAcdOXJH95dvR2Trn0GW3Y1SzoHPR58c7XhV3foxEeqZyPKbzlc1oktIumOjBupznQ0OH3bxSJEaZ03CscZAAAgAElEQVSDPFeSit247r1vmL2Yr3tqMRau3YGZy7K57mTZcCplKIn0OgdVCtWo3/AZLVrXgJN/+TzunfWB9HsastNapdZKqnIT51Cb0VpJ91zEx5LV3LUrONZ1O+Igz9bURDBcyk+WRMmTiWi3nVUcEpcnv9/00nvYtLMZry3d5GStNHflNlz/bHWVoKqxq8z8VEPkkVxdkdVPIOmxHI9AFnOYUCNHERRuZMZ7m/F/YdIdoiR31bO28sipKshz4rAR/RLfEwEZLVydy+PUtWCKDCtOiZVb9uBHf1sg/Z5ude32RmsdFbScg2LkutM+YFdI20TPHGI62qycQJ7msdVCtyMO8iuUX5JposY6hySHwC2VSswueNH9LgcnE+uLY9T1IC+4akA1/9Vl6cK3PshmvpdVCSoSE/ndiE3Jm5fQI/554r6JEn4fpRLDBbf8XZu1LY+w2kpIj/GSk8Ymvuv2o1nfU1qYA9A7LRKl+7P1E/xmnvEuW6brtqrVOahCYDjqHJTEwXKA5CgIk85zDnsB0joH6XfDtYVI56D2Wi4xO3uvIz4PvpU0CxW3RhedQ3tEa6hmADcZsvzfDrXOoaWNuVkrEfBvJ4xJlPHT4GPz1qbqzxTMQ/v3dPSkzgj5IFArKcx1nvMEwmmHDVe2+YOH5yvLCVRWGHUXMarNys05l4mWc0jDtPnarJVcLRrFA0l2zsETh06HlM4hnbNQi6RCOi7nk4cxZmXvy9k4K5lIzy1c7+QEBthPcBU7K2VA1jDMCc5BuBPXdghpAsvnxjbJ4olACd+B8ZK4R0bWp8GtlOTHWCvpd0xhVf548STn/m7//LGBE5zivS3dsDORBVCGnXOw3301PKRFsZJs9ZXQOTiIlWzWSoDnHPYKpFhGqcA0mVvCSUakPu2UGKw7QdZ9kzEmcQ7ZGrjkjtn44p2z0dDYgq/f83a2zuWxVHR1EkP61MftKu7JlaBxFDScRiBWcuNC5DZ4wDV5fClFtaXdrITuwjCTmdyuTBzy4CL3H9wLHztkGHRSpdN+8xJeW6q2LFONMXsF4LbXltsrIZtCWpQIyFZiNQIHplrHac5B3W+Sc9C/Y1U+d885dEKkTgWyw4vhna0J5fq1xYKkBwhwzcPvGj2Qg7puk4JvaDv2tCQSy+jGZ9sP/vL2ajyiiZnk2obrfHbhHAb3ros+q6oXMmqkE34HZYqVZLSF71g+5W3YkXR0tN2vbNdvAxdZye3KYiXxZ7FmORLGgHPIfp3tsJLnFpjFlFVcn42yR7aC69f9DuhP+WThHBpb2tDYos7n3tYFIr12P+IgvXmZc+AWKSbU1xQi89Wg0eDP6+9txvTHF6ovCpH1wPCDh+fjq3fHJ/5M2bqEe8tDLs4Yw8K1ZuIX1MvYrqIsq85Bxzk0SwppHYLw4/H3o/YbEJ3u5MV9++srEt9t99vYas4ad9Hx+yvL5XZls+GkWKmyzcaFu/rumYemymzzmTGUR60E/P4zQfgTrU5EUSYe5E2cn4sPh4tYaZ3CIOT4nz2HQ3/wpPLarpBAqBsSh/jzET96Ctt2J1lO28kfAOpriwlHHtOGnZqYjotYXE+il2+WPUCs20cTEuP9zWZ/AxG7mlrxid/q40ZxuHAOi9fHjmOq+rK3chaoLMlsIEoqTmsLhYQVmgm2320pRT919Ci1v4g0r+QNXNdvFkuvJPdhvo8vnnyA8XoRJx00xKlNF4wd0jvsS92WTecg/5yVc9ApzMVXdu6Nr2O1FGNp6269r07ewfyqgW5HHEQ0NDrmIpAgcw6mvcFV3z1x9IDEd72XsjvEia9r76O/etG5PVvGLa6wd+WOFof5LpTEIeHxbG9QdFG48cWlwrVuMniipAy5pkjRqbJSR+VGi1ipQJoxSrcty87zCLkVZXKDeR7XFtWJnXQEisv187Bc4+9Wr5BOl6k4gqs+cSge+soJkhNc+lqZoF33tDoKs2yFNfX6dHIvHaqdGiAPdDvikOWdiJFXRdTXFJ1TE8qTIIs5ngp3a3IKqxau2KbLfVc6XSNPWseGVm8Lwn2oxibqR1zGLrL4T7ybtK5xDRgoPsNigSKFdJtFBGBb6HJym1S/IKVYjLc6ZnAvAMBAQU8DSHNJ+FgWz2UJ2Z1yEAyhJQ5h/Ty2QP7+dIcOW/gMLioe2qceR+83EIN610WRel04B13OEvmVNWj8YNRjdq7aYXCLzbwXIZvMXl3eo7aAJtEr2tBGmji4dZZlgbe2lZROdOVmkNOdtG0cQW2B0IzspyKrrbxDG5W6eZBEQmSjAxNs47d5actci9zupR85EBP27YcjJe5Sa5ygaMsWUpss1KFGJ+bTXMMj3DLmZhBgQnzm0Cmk02V8Dq7dvgd/eHlZeH0MHnq/kgB4Oj2XCzzn0AmR5Z3oXmCxQAmZpjHFp6OTXSVT5b9fWIp7ZqU5irznn+0EzTmHrN1abeUdbmSFKTKmk7lScgOtKVAkF7ZZTtn2F9vvAXHQi2wKhIgwfHvqIdHv/LnsbGpVOuplQZDsRz9Q2Yw2HqO6fp5iJf5otJyDYty8XzHCqviE+Vx1ySGtQyW+Cl2ANnRD4mD5feSAntY25PAZJsgbn94cL/n9r3PcY8R/oNkYE5yDc2vA755fqiy3KdH4BuJ6KvrGvXOcxlbpOnKkDZFYadTAnsEBoMQ3Z3ML5cbTivsm5SD5VWL3hwzvK7Qb/P3BX99NZJxTidEIhE079blGbDoHOddFPEb1RTpiUh5iLkQF8cxy8PA+QVlYV+8LQmZ/JQfYLBNNyENRX21Y3yAR3UZEG4joXaHsR0S0WsopzX+7moiWEtFiIjpDKD+GiOaFv91A4Uokonoiui8sn0lEY/K9xSRMC3lQ7zr07VEj1FXXI7iLbFJOdhlOP65wkVR98c7ZZbfPccDQ3sbfI87B8Va4QUA51kCDJPm7DkeOHpDJeufWiyfhwctOCA4AYZnN5UI3/AG9AvNhleGD6ARYKKgJEJ+r4mZfUCjqXTKRMTBMuvZZ7dhtaULrNDk+dBupKZJrVnDCJJ/UN+1sCnKohN+f+MbJuPLjAWflMgeLRBoPaQdO1RJV2IYu4APnxDncDmCqovx6xtjE8N/jAEBE4wFMAzAhvOZGIuJRyW4CcCmAceE/3uYlALYyxg4CcD2AX5R5L04wvZOiEHL76ofeSZhbAjFXQRk4hx1S6IVlG9WTqhI2s5wEQlnAT6sj+pu5Kn5azGpzzyyifVVzZ0xQxw4S8f2zDsM9X/yw0xg4AZly2HAM79cjEXnXyjloZpXJt2RIn5i4EUi5+Ub3LXQvDoVvMCl9gEF/oYMtTWgvKbggr6tXSMcHhUrjfvH7kznXSdc+i2OnPxuNoW+PmsjKLeIcxDFL7RYKpImtlC6bvyaZ2vOi22alK2XAXqFzYIy9DMA1EP3ZAO5ljDUxxpYDWApgMhGNANCPMTaDBbPqTgDnCNfcEX5+AMAUynLUywjTOykSRQv9njC7m2h/Xl8bfBbj0Lz5vvnR/OyJRYnvszX1XebKyeOGYP/QciVxraZ+1tOJbgxc5m5z+S9X51AO1+TyvPbp3wO96mqcxUoiRNGhjTjwxyKLKEzXieMnAu7+dz0RE1sRlwbfYGRLIlW3tsdl4xx61WlsV2w6hxzEJ/zQoXUci7gfspq9ipAzOkrNJfDFO5Kc98YGczpgG7oAbahI5/BVInonFDsNDMtGAlgp1FkVlo0MP8vliWsYY60AtgMYXMG4LNC/FZFz4Pj3k8fiz18+HkBMKArCQtq6y5yURk452NrGMKh3HW5yTHovorZYUHt0am4przSTXEJgs+zgG0LWU5FdoVveShJFJjbIdQqUVAi79PNfUs4K03XiplliDOOG98UXTx6rbFckMmKbMXGw36CNm7PpHGTOgcj8riNTVk2bP//UEcbxJNtScw4c4nuyjUtEkch5Pclh2W3myTZ0hrzjNpRLHG4CcCCAiQDWAvh1WK5z5TG5+Di4/4QViS4lotlENHvjxo2qKlaY3kmhkO54cJ/6KMQv3/wIcZpQnSxWhxJjKBBw+Mj+yXE5XFtbVIuzdNe+/t4mpzFZN47wDZkSqACBV3HQXvq3SfsPTBeGsFsruZVVAhXnEG06VmuloN7TUvRSV85B5yTH202mORV1DsFfWazkvKAgvHsLBe1RqxYr6d6DjYvMYgZaG64xnbd7rBuK/UVcuOZCQa1zUEWh7dsj37Dse4vOIQXG2HrGWBtjrATgFgCTw59WARgtVB0FYE1YPkpRnriGiGoA9IdGjMUYu5kxNokxNmno0KHlDN2sc1CkSuxZW4ycoTh7WyjEi8J2OpeXQIlx9jf5i8tJoq6mqHHaUV+7p9ntdGMzyeNxh2z1TJyD6co8EsYA6ecQnz6ySymJKLKCcfXDkB0jZaVsIjigUM7Da8j9ROO3+CikxUoq5ba6DVfoNnNbrgPtvM7wSviho0XDOfz17dVRk7xZG/ECgvcjc8PLN+3Cll3Nqbq6bH9D+9Ynvruat+61nEOoQ+A4FwC3ZHoEwLTQAmksAsXzLMbYWgANRHRcqE+4CMDDwjUXh5/PA/A8q+KTM3MOgYWKGDepZ10hmhhjB3NrnTifw26b92sqaX3AOZSjVKktathgTX1bTB8OG0dA4XhtOocag7WScdGUIVZSybJToUoUJ28d5PckyqOtkUcjqyJzm6prAKB3KM/Xjl/kFiRxFKC3DJpx9alia+px8LEqxvXgm7EkWO6CLCd0/nsenAM/dPziyUXK33kUWxI4B96vad6prJV2azLluVpfucby6gqcg9VDmojuAfAxAEOIaBWAHwL4GBFNRPAOVgD4EgAwxuYT0f0AFgBoBXA5Y4zvUJchsHzqCeCJ8B8A3ArgLiJaioBjmJbHjelgUpBxx6eLBUuEnrVFjN+3H2787NH42CEBtxLMk6CdFgvnIM+pQKyUDpfgQg7rawrqSaW5Vg5VrIPNEZgQLGabE1xNUS9WMnEHK7caHNg07alQYgzFMv1x1WKlsH/LtTrJjFnnEHjpfva4/XHEqEDEmPKm52MT2hHl7jqdA98QResyq7USxfX45yv/PFe4F93NqBuOiY36qiyWri46FSDpac45AtO8IylpVzCuuK9Xvn0KTv7lC1HbKsjNt7SVUiI49XWdnzpYiQNj7AJF8a2G+tMBTFeUzwZwuKK8EcD5tnHkBSPnEFor/X1ZLNWqrwle9JlHxMxSYOYYfLaJRPaVnOpKjMtGpXE5CE8Chbn7pMqLcwC5iZViOXO6nunar98zx9y/o85BF6rEaWuRN/aC3ZFK7lfeQI2nTRboqz56cCweTUfwTV+myu0h96MSgTTbQnggeeJO/S7P18iUVVc/Ig/K3+UxM8a0nJZY3tTaFq3JVD2kORpToqy6IqUOd+IQRg+KLQNdiaNrtNXOTxq6o4e0RQYpTyCVp2dB0E3YNo7RA5Omp6USCyZgarGZ2+H9ZnHacY0bY/fgDRadjWMuSguTo7WtZAyFboth5GqtpK1WFjORB+dgECshLXZKv6400RFzQzANUVIZSfzuObXXuzx23qZMzHX3olUpkPl3WU+i0yc8+rWTEt+XrN+pbhBBKP3UfRjmTt8etdghRbrV3aeOzqs4BxfsFX4OextMJ/RiIZ1kXc6+BXAP6eCz7SXLcvoSYygW1FE4OV5ZorbEKlBagQboF6BuYcibh42IcJ2DTqw0elDAHcXxdJLtPacICihi/Q6zzfia7UkP4MaWNuVbTItl0jJ7HeQ6ouiw3PAYJrG6KiBdOtRKuh3Rson/rgmYmsD6hnQyGhHyOT9laKHVOajvXQzQq3r+soXV7a8vD+pL7clWfe9t1BOHHjWFlM7B9O7696xN5XPRvTItcZS+2zg0DtWSm7NyG95Ztc143c6mVvzgr+8mcphXC92PONjEStLvtYpTGAmcg+1wLm+osVhJYquFz49rgqjpYjrp7klXPnXCPtIYXTgHwMYx68wIv3TXm+YLLfjDS8uiz4vXNeDQHzyJx95JPyO53yzJtlSn/qxKQ5P8Gki+D6boU5atx2KxuHyomHubEz8H5W4WnQOQNMoAVPdilunv06+HsV/50LUl9BfScRAcOlFdTYFQUyzEOoeIA9K31adHDXZJCmjdo9Q9Y/n+TWKlv3015oJUROuc37+Gf/7v17TXA8DOxlbc9ff3sXSDnkjmhW5HHEwIOAdZLqkiDvGkt3EO8mQvMRadxDmmTtgnMVlMSrxMYiVNO98987DEd5vOoXd9jVIhLS/weHPLl2XuURu/Ax7GQOWEVM4JPqojfRed4HSPh8fhKmk2SjnVqRyPS+7zitODuEAfCfUQ8eYf15ly2DB8/sQxQXuleKzl4tTDhoV9JPVFsllulj6+M/VQDA6JmG5uymIl3r5MlGToDjJcz2LSOcggKMyHDWtPBZnzMImVamsEq7MylwhvXyXRyBvdjjjYdQ7JskP36ZuqJwZl+4cUf0mGLE9nIecgipuKxbQ4Szc+l+QkcbmbMtCmRBs5oCcIaUIXKTEj8YbZvNEGHqhOhmj9YXp/cowmXtVlGT0U2spzkCDC029wyfuXx5ZS4iY+pxWw/XvVYvyIfqiTwl2LtYgIxx8QBBBwjf2kw+tXnYof//OE5BjDPmWxkq4H1XzsUx/bjGl1DtLmxu/B5jfEN3ueRZCjPiIOyXGZIhOLh7yofa2YLDne/UJl9fgRyYRgJrFSTYHwX/86MTWuLODtZ3W+LQfdjzgYtuGCNFlOHjckMs8UEegcgop3znjf2N+upuRJiHtIizmdBfF2MEatkk8t6tDdkatDDj8l6p5NfU0BRKSVc/LxmvwcXKDbgHpr8l/LqETJp1LA6jZ9jmKBhyjXtyFC5g5V9ytuWLGyWL2RRkS5TOKw74CekcGF3IR8gn97pVoWrnw2oXUb/101PNnQI+Yc3IiDHNuIc5fRs3DgHID0oUwnipT1OgwMHzl4KO4PQ+twmA9ahAOHBiHFy52qnHiqJBp5o/sRhwwvRSffLCg4DB3ue2Nl4jv3c+hZV4y4EiJKnSqV/ZJaeawbi85pTV6sNpPXQoGUC1wui3NIuz2cyWMGSe2pn7cuXasMXUrWcuI4JsRKmjoRMYRGrKTRIUSfNc+UV1OFzwDijUr3ex6QQ3q8r80Zki4Lbjv5bGTI+hXOdbpyDnK7PPZTSudgmIsBIU6LfVWQCXCpFETW7SMdXMzWSizF2WRFLFaq/tbdDdOE6iGHLdatOZFzsGFPSxvWbt8TOSTx8BkA8NjXTwZjDFfcP1epcxjWtx53f/E4DOhVi+17WvDXt1dnmlSuZnW201qR1PY+OoWqOERdroFJ+w9M3YuLuaDp7tMexsFfF+9WWbxSKAimrFrOwSxWkkOkiONbvW0PmhQxlUQzaQ559HFOZXexkm3WyCLCBQbTYxGq+cjDrYjtyUhzDiFxEOasSq7ON3u5Xa5zkI0iTJZ4qqfmShyC69NlfPyqxEp9e9SiqbUpMb6siIiDFyvlD2soBIc25JO+DXKCFr5nFEMLC/G0CMSno7qaAg4a1gdD+tTjwKF9tGIlHVwdcnSxfTiKBXI6fdcoMsGt36E2oexZl44T5WoRooPrKVUFVRykmHNQt8vlvowxPPTWKqy2JN3h7by/OcjpoUrtGRw8gs88u5v8XCTJSYKozvreFGXfczVioXSbQavffvAdS31pEAJcwsPIOodigbBkfQPWbm9MlMngm73MEcheybHOQT8Gpc7BkdsW17EIvubkZEAfOXgohvfrIewF5VGHJi9Wqh6MnAO5nVJV7Oinjh6Zqvf9swKrIHFz46asifak61rCCZpivTlLKk1g2Yrovz9zVNiOmiPoJ0WY5BPub3Pj1KQfETx3C4W0R3cwbmmBS7JwQB9xVB26QFnVGSnLk/ANlpOVzEXnUBsFGgSuuH9u6ve0yCL4q3smAADh4PGrpxYHRYqxie2L82lY3x76tg2wKZBlmExZiQTrJ43OQbZW6lNfg9OvfzkRukY1Fi4qlbmuWKyUnINma6W0daKuekqspLkvndjn4GF9Eu2Uzznwg6O3VsodJs4hOMHb35qsuAaA6eccgWnHjk6UcXmkWLekOXGIdfhmLyvD5SxXHGmzw6CejnOQLR0457BMOO2IBKhIas6BF/EFqErw0qgxTdQlWlHBlXPQ1XMhDmk/B3u/RUvOAhn8fk1miIT0c9F5XsdOcpVvFAZGAABw4kHqFCuqTY40YkgR8jOQo5sCQS5vGXyuye+Gh9SIk/3oiVc8zvS7cxUrMTClWElHHGSHxnJ0Dks37MTX73kbADC0T3mHgCzohsQhXcbTf/bvWZtWGiog5nOIyiitAJa9NVvbSnhx8UZslkICB2Kq+Fp+OtAp7eQF+fp7m6V+eTsx0fj00aOgg0rnIJ64CoX0Mrji9IOjMs7ic6Ijjk8lVw/GmOYcdFuKzZntytMPTvULpK2oTEh7SMfvWEfEagpqYs0hKyt5NZMyUbXPyxuTzEHmka451jmo7+W3045SlqsOU2T5HUgffORn+KWPHoB7vnhc6jotcZCslZQWZPJ8ozQxlLnyI8OgiH3q5XwWas90frl8sufPIQ5lnr7Whv99bTm2h2mH9x3giUPuUL2Tq888FHOuOT0gDg5tFBSTKnASS+12AOIJ98qSIPnOqq17UtXEydKqOX24nzqCiqJfwpyVW7W1VdZK/3TkvtFnFedw+vjhUZmoIwGSG4xqrHd+YbLyZP6hUf1TdcU2WtpKytAi/cJczfLC1gWm43htqT4Zkij758PkYkIOTqx1b+PyUw5KfOcbhOn1Kb3gpeFHz70Ca6XTQue3uE0+xjR61xUxpE/6ZA/orJWSCmkVca81WHIBwD99aF8M65feAHUKaS6D563qHBNFqPJmy7qMWy6aFIxXyQkoFOYl9fhks+RyOAdRp1WOqDQruh9xULyTumIBA3rVAUguTO3rUyzggoJzkF+fNh+CxN7yanJ0TZ1YScQ1nxwfnU5EBzz59Ck676g4h898eD+cemiwgRQL6Q1I9PLmC6K+mOQclm7YqbRW+sjBQ5U6h898eD/lPfHbve7pxXh4zprU79EmrXkssnyb4+qH5kWf0/cXn6R5s2d9aESiTpHU+ieO+lQMq/CvccNK/y7PIy6+a4s4h+wbxR8vPlZZnnnP0uocwp8BzFiW5mxtnIPoFZ+oZ+Ec5DwSRj8HxSFPvp1h/Xqgd10xUW/llt2hNVK6bZ0iXM75UaYla4Q8RIk2dEPikH4rUfpPAsQXrlv0qixXqvASsnJMB1mkcUjo//DbCyYq2yuxwB58/prtKU/RQ/bpq9Q5yHqG+798PJ74xskAgCaNn8O44aESTSFWEjckvmDj0xXDhoZGnPabl3DtYwuVbXOdw50zVkRluoXMF9zyjbuUv3Oi+cdXlyXKI4W0RsYvnr70Sl/h1KcQPeniXQHAQaESMh5PgKxycHkjkHMq56NziHfzLEHdtJyDQUwVWOmZOYe6ojost+6AFekcpLVpC58h7+9qBXvyHX/it68AUEeI1XEs/Fssas5OHapPDpLofsRBUcYVi7J4R4fYzlwoo1iM8/Up4/DXy09MiYF0L1c+fba2MfSpr0kka+H1gGDC//hv83HWDa/il1J2rNZS7Ggj6hzkk1qf+prIW1Pn58A3/SKlAwWScEMqncPX7n5bc7cBuEz/mofnR2W66Kw2yw6+Icje6jadg4kzF52ptE6JIdFUbSii2I1DPlVe88nxqetUFjS6MPK2zHxZEJ1owfAvf5iR/E1BfPiQ9NZK/Pd0XxNHD4hSf0btyTHNNHb8Os6Bv+P4AGUX4alM0lXEhITxzVm5DTubgmB9LYq6Ou4wmoshUbQ5+6mQ39t2Q/cjDoonzCeWSkGlgopzEE8Xh+7TFxNHD0jJcXXemvLSayuVUicrQHS6YpgbhvbdKDnbcA9sILl51Cna4/etO11x2lJUeEgTERoag0XSK0xzWStkguOKMx1UOhrdJm6Tz+oUvPJpTYZJbisq/yOTVml2FCgZZ0uEMucwbydscFg/hRxfwTnIz6kYcQ4ltLSVMFMS25SDrMyHSX+SSNepqHDd+Uem5resl5BFcnG/6vqcgEVEKfzd6CGtGJ+O2PHi1YK+cIdijut0IrzdvqEZOV87nRndjzgoljJfbCoFlQp8Am7ambQ6Oik09+uZsrkO2uSK3yNHD1CMK0ZLiSk3SlGsxLkd+QTSS0h4InIOqpOYTcEteuCqLGZ42lRuyRFzDm7PUK726WNG4XcXHIXff+boRLntnfDoqEDSV4OH59CGQTHsiOKzicVByTrF0NtLt6HIkDkHVf8qYweZQ+BmoC0lhuueXhzlUH7wsuNRKVSP2hTsUe0hLRAwxcGjZ20xNb/lduT5+uvzj0zUk1vl5wPRQpAxht3N+tAwqsOgKmS4GKJfJGp8fYm6KJ0JLf/GLdj2CuJARLcR0QYielcoG0REzxDRkvDvQOG3q4loKREtJqIzhPJjiGhe+NsNFJJ6IqonovvC8plENCbfW5SQgXPQmrKGE3D2+0nZ7MUnjMGfv3w8PiY4kAGi81MwUW/8bHLzkzfK1raSUonK11NbiYHP0UWCzuG30yZi8thB0fjEia5qTwxvLG7APPvWV045EFMOHYbzJqXNYIkI//O5YzDru1NwwwVH4YwJwzFmcG8ASTm9DqoIs8UC4Z+O3Ddl326TnvQRiMPX7onFWVx3oyMBRs5B1BfxBS8NZNywvsE7ceT3YyLDiW66juqActR+ycMEf5etbSUsFeTex+yfjFWVBbFYKQ3VBm/zPFYdUJJ1ggoDw0i8cnMycfj0MaNQW4yNGHTh0UWifsNzS/GTRxdEdeSDoUqMrBL3iPuCSNT4tedMjB1g2yKxUrINXrdYIPSpr4lEU1nQGXUOtwOYKpVdBeA5xtg4AM+F3x1CKCYAACAASURBVEFE4wFMAzAhvOZGIuL89U0ALgUwLvzH27wEwFbG2EEArgfwi3JvxgWqOV2IOAdHnUP4lnY2yolCCMeOGSSwuMklxz1je0gTX5Yzt7YxpVipIIiVVJv92RNHhiw9byee6LpDMlcM3/X3WF7Ps28N69sDt/7bsejXo1bpJNajtohh/XrgQ6MG4A8XTtJmglP3qw8F0rteHQpBB1tCd10cGpE4yD0kdQ5qTue7Zx6m9HkB1AtZVlbqHAt5c0P71uOCyfulvJ5Np/JyIVpnyWhVbPA62T9HMTqgxNdOHhsQLy4GfOIbJ+OeS49LtAeE1kwKyplQDLP0b8G18X08+NYq5dgS7UkNqYiZuC+IujvVs9IqpIXvdTWFsnQO7WGhJMJKHBhjLwOQzRfOBnBH+PkOAOcI5fcyxpoYY8sBLAUwmYhGAOjHGJvBgqd0p3QNb+sBAFOoik9BNZfF6J3J+O86HUEwPBv1lx1eeDAuLnaK2pM2npYS0+auBuwnaS6jXiJki9I9UG5t8/YH5tg7aYW0XuzFYLfGII04BkDKvt10vwN71aKHJuE8R5/6GvzP545OlZtiT4mKTcaC57dP/x44ZHic36OupqD0lgeA08YPBwBc9YlDce5Rwcky0l0YxEriKVUXv4fPjW8/8I6VQKiU3iqY/BxUXbRFm2BcJgZe5AcZkXu9+cJjcNu/TcLA3nUAgMNG9EP/0EcloR8LQ8TLEL3qdRFwRUW4bRdx5xxiIlJjOFCI4zJ5udcWyRgUU0WMOwLl6hyGM8bWAkD4l3vUjAQgxqheFZaNDD/L5YlrGGOtALYDUPvq5wDVpsXfBUkiAt2Blc8PW6hr0appzbY9+N3zQZJ3eTOTxVltpZJS5BGJlRgzZsxSXaujt9xqyJoqlMzfxTK+oZpgMgGVYz/xhaZKjfjit05R6lNOOmhI4vuEfdMOdmJuap35aIkFc4aIUFdTwFP/8ZFUPfnRLb52Kj75ocCJ8MsfPTDKvCdvbKqNv7m1hOVhGBNVHC4gKffeY5CpA8ChI9LJqlSIeFxHZqS1xNDSVsLPnwis5X7+qSPw8QkBQSSKxy1uggN61eHUQ4cn2pGtiwBDPC6BS9PF5RLFgdYTpkTYdza1RrqAa885XKymfC6qNRNzVMnyb59xaPS5tlhIJQUSicmsFWpT4s4oVsoC1fiZodx0TbpxokuJaDYRzd64Me0p6wLTSyYp+YeeOLix9fFpjGHlljgevhzKGZLzXUubRSFdYsYw20ftN1D7m2qMJeaWR1q+Lj2+4C9jaq5gv0G98PUp46K6WWMmLduU9nPo37NWSQxTPgaKrkRrE5UlEgA0NLbgvjdWms2QpWvrJeIfPZfwu0kh/caKrdgShlfRxeES04/qgitG43PdUhzt7x/56onB2EosoVSdNnm/BEekCuGiHh+v5yKKDN5jW4mlMizyE7/JyELWycjP5vAfPoXpjwd+OWKEAPHwJq6TKF6S0Aa/DVk/xbklIHC6FbnWzTubEoEb5fSy4jjaE+Xmc1hPRCMYY2tDkdGGsHwVADH63CgAa8LyUYpy8ZpVRFQDoD/SYiwAAGPsZgA3A8CkSZPKEriqLorFSkkKbgvkZguJzRfI3+auwcK1+nSiwUsXdQ4lo1iJMXMOBrWiU983Y+nFputb913sRbTwEfGtMw6JFp0YuwhIK+lF2MRoqsXkspA+ccQIPPZOOmw2Hx8AXPvowpRVmoiGxtZUOJT0WGKiDog6h3Tdjxw8FC+HobpLpXQqUQCRKAaw28u7bihRNcWz/olwiubpMZWnZn5fEDkH2wGKwvbsohTOpX3yd69i4dpkvglulaQzoV30k6kp3ZS83kUkTWnjw1vyvpnwPxL9muZsbbGQIJq/fHIx/iKkqVXpGzsC5XIOjwC4OPx8MYCHhfJpoQXSWASK51mh6KmBiI4L9QkXSdfwts4D8DxzDddZBlRN7xsG3pOkStrTdDGSp9omdFDv9y+8h+cXbbDUitFa0imkw3Exllr0YuwbnSz7Z586And8YXKyzXCTtuZ+cBArJU7IiuZEYiCLY3ThEvh1mxXJU6J+FZfK705FrkYNiK2i5GnB72XbHj1h4HhmwXrj7zLnoAq1zZHwj9GIlQoFwnfPDMQUridzG0w6hwuP2z/RNwClKJI/QyJyXiOxBZ7bGBlYijAAcchufr+BziG+e6WoFXpDMzFfQkE4vKk4B9GAIo6tpF9PtTVJnUM66ZX6rVVvV1TDxZT1HgAzABxCRKuI6BIAPwdwOhEtAXB6+B2MsfkA7gewAMCTAC5njHGh6GUA/ohASf0egCfC8lsBDCaipQCuQGj5VC2Iz3f0oJ6Y9b0pGDMkMMFMmZRaiUM2Ob1xXCyYUNc/8w8sWtdg8XNgCfM5ABjRv0eqnowLJu+Hj0pmtlz2z+/1SE3wO5dbMVm88HHH/bpZNQXtBacrGd8LZfmqhS+ntbR1lfo5vBdZRFQOZI96q59DOBd0YiXxWjnBfapvx0koZ4Lj+MKJYxPfi9FJP00cxLDUvNvNBq5LHJ8L52DSU30lDHIocg7ineu4S8YCQ5Hfv7A02ZcYWoVip7rWBHEIPh9/wGD85Owgk+DPQh2MiXOoKRTQ3JYmMnF/6ndWSY70cmAVKzHGLtD8pEw5xRibDmC6onw2gMMV5Y0AzreNIzcIz7dIlDATlE3bdJxDFNsmoyhGBy7T3L6nBb99bgkA4KChfVL1xIkvb4iiWEa9oejlmKLOQQ6zIfcdt6be2ILxaSw5SmJd96x2pZI6hMWUMLKoauFv220/8ZvA70XnqZsFJOcYiALmpeuKm2+JqfRTSQzqrY6WGrXnOHz+CHc2Jb1+vz31EKm9cHyMKbiCmCPi9X7zzD+M/WblHHQbZA9NmtCoHyXnEKz3K++fG2XdU/YrmJqLe4LIKf3LsaPxAyEUjGkjrysW0CKIA1ORYXURC9qZc+iGOaSF02tB3vCCF15TILQqTkYcriyzM0sfOj6JG65SrBRtHMnyg4b1wehQFiyOL9GH4QRaEha6zjHMhc6JJ2QVVzD18H2EfrMopNXl/HmoFn7KCUn43FZKE1f5SMrbVul+brloEvZYLNVE8J54FyVhU5Ehhu0oKcSH8vhyO6CEf3dIvjvycxKNInScAw8r4tSv433wvm1ThhPiLF76tlAvokRBDMeR5IST92vqv7aGEnlO5Lo6U1ZTPuxqoPsRB+H5piZweIIvWohDHDwrH7FSZA0h1FdtSkVh4osTRRZBZXETiRXSTNlWVA9yH+q2gKA98cnMueZ09KgtJhSCROQ82W2GATrrDhEisWpsaUPvevPUNx3YTx8/XP+jsq2Q44viEek5B9m/QrfJxtZA5meoC1duG6vue8Q5lGIRyy/P+1A0ZiBpymoDr+bi0Eewb/oJQmwZAl93LpZ6vMaLi2PdoTgUcQ42trQZOabaYiHhQCv3botO3F7ofrGVNC8UCDdAZhcbqWy4TfVs4ByLuIGZfBVkayBVP/L1upFw8Q5fnLr558Q5hHXEYHVAYN8uW4rIp0CdyaVJN8H7U3EOJpNMbtliWmokbeiVQHwu4l/VuPkBIBArGXQOBX5AsczBjGIl+dQq9y/62vBNrK+UDpegzjmuHJ9kyWUeo10UKRJiVWA8qcXINFbEvZcmM9CJntliiPxk4M24/h9eWoZ3Vm2Pvu8/OObqAe7noNc56AiljYjlje5HHITPKbESBZOKy931OgceMtnCCjtzDoFYSexPlWc4Xkjusty4D329wPIkuBetV3iKkKrais5t1k3VVazEiZeKeEScg0qsJL0asSfuOCZuSPJIykmgo4Oc18PkBBeJDiOFtE7MF5Rvt1hTuWYM4/3IJtKp9x7qE0qCr0EULTiq4/78olAvDhufaDWkr8MPdsxoggzEJuTyPFRlvePz+Zj9Yx8iccjicxJFjt864xA8dNkJibbqJFPWlFhJs6+0t7VSNxQriXLC5G+izgHIwVopy7iQnGwzl6VdPYqCKat8bapvIs0v6XoMsc+GlnOwtpRUBtomcqFA2CV691p0Iqb+XMRKInY1t0bj1I4vEpFlahp/uPAY7W8usZX4Pb25YmvKHFM1vo2WDdD12dSHnN0uh4BwRQrErnzOyDG1xDShHDyxlAxO9F1OxaLVEMeAXrW4/fOTE3UAt3wJfL3LfctGCOJSSiikpfV14kGD0dhSSnjsHzSsDwZLxEYOnyFzxjqzclP48Wqg+xEH4XPKAkfQOQB2ayW7A1K2TUvcBDfvSi/6SHnnYNrhuilwsU0kVtLVk3lMg87BJXxGangGcZZu3+DvSSU6kS8ZG0aMBeL3Ji7utJ8DKctN+NqpB+GMCfukyuV5Fotf0uD39Pnb3wivVffFN9WGUHQytK/aasmVc+DBIF2ihRYKwTvmc4aHjxd1DvLaGdArGRKFI9Y5OCqkpTf796unSLqs4K/dB0nQOTAzcRBzdohrNB3CI8hRIl4/XJEHuzZlrZT8XXfo9DqHKkN8vieNS8bf4VZDrpyDVd7rLFYCwJIv//MnjlG059avqm+9TJ9QKgmLWcs52G9GPG2v39FoqZtsTwy7DQQ+KECsMFeBbwoqpat8jShCVCVkMQVKc4Xukohohs84Vv4rvOA11kGpenwTLJVw/AGD8cb3TlPWcyUOKs5Bl42tGG6CkflzIUlIVZFq9ffhzjkUiKzcuipFrg58vcv6Dvm+RRNacZxi/CUgDkMvOtBNVORuqa2RdQ7J/nc3qwm0t1aqOoIHfPOFx2DKYUmrk4hzKJqVZHzBmYLfAW4bKq8ni5VUzk2cG2iSTkXNinGouCJ130iYsup0BfNWb1eWp1tLnip1kPesY8ck4948cvlJWLejEZ++6XXtiYkvQtX+Zzpk6SJ7JsdXhkLasgHyljjnpzZXTn63JSpqaVWY5Srq2cBPu6Koz6QMF+Mb8f5FXYp8cLcRTpfNHEibneqsq+TAdrq+VZxDH8mSjYufgOC+Rg7oideuOjXVHieactRlGbWFWKzUVmLYsSdJDHRm0nxJXXn6wcb280K3Iw78JY8e1Etp0RPoHMw5eiOxks3PIQPnIJ9g1LGVgr8tEuewq0lBHMLKdWEESDEeT7JvSjjBuXCuX/7ogRiqUNqpNhNV1rugblz54OFph7+BveswsHddrJBWtM2V9socx4ZNnb+2BOegGV8WTl4vAgrAN0+ee1hldCCLA1V1gKQ4xuQo5yxWUnAOusMNPyG3Sfch+m/sI4lTTFGBATd5eqGQXpNys64B/wBB5yAQpi+cODblCCrmmi4pHFDj8QXEoZ9mrXHUFAvRAeHaxxZghpTmVZe9rq3EcNphw/C1MHhltdH9xErhX+Vc5QpOi86B/64LLSw1ZwXXd4knWdWpkjSnIpUSkc/fKYcNw/fPOgzf18T1LxQCwsQtNE6UQl3LGNG/B676xKHKxc7L3tsYR08dppGFi9ebOCyRpTe1IcO01/zu+cALPZG7Q6rPf3tvYzpMuA66++DD5H1EnIODWKmosUUVA9vpfFOC690mId/gxYPGAUN7K+vyEzI/7fMxfvO0cehbX4MJI/uhf6/aRGRTfRiQ4K+TQhqUOhilOeSYo7K2x60EhZf/L8emsx7WFCjizpUOlCGKofGELSxMQdCjPTxnTeI3ImC3Ru9jsl6rBrofcRDkojKidKHhd52SjG/ceYmVisWkDBdQK2EjcZZElFRsKK9bUyzg308+IMUqc3Bl2/B+9RjYqxbfsJxKzCKM4O8NYQgQIBnALNGOSBwMj0mO/eQKU+1XlmzC7uZWo7XSonVBcDeR0NmgFd2FP/DQKHxTVWWokxe/buPnNKOlrWTcMFS/HTAkvemrRKXXhXmb031TQnTIx3jCgUMw78dnRPk4xLHbTHJdTVnlNal6PET2UOYcDEkRmCpx1KiBPbFySxB5t83ge1IMOQcXSz0xP7uI2kJB+yxMXEs10P2IA2KLChmRSV74XXeaiWzCc+IcmlpKaGotJbKxbVfEBtKxzKrJxBedLfpvHD6DYb9BvbQiiisc5JwqYqgTi4jdmDgA7g/xwJvmlI+HSToa2+lt/DVP4eE5cZhkubarDFyE67LlG1etwQmOQxe+mT/r1hIzxk9SPdobFVnxIn2WcDLv20N9oIgV0uaQK0UH4sDH2OaUz4ESitzgWpXexq645v2CJYP+qVLO9utZi93Nrdi2u1kb4h3gm368b+giDYsOoCknw4IhtlLJcw5VhcmMsDY8jvGNRa9zCOpx8c4tF01S1nN9kR+EiYCu/HOc8MO04bso2/ik04klojYRbITbdjcr9RwctRbHwGB86TKdxYu48ZgOQzo/h1e/c0ri+2FSxjOXrV2U7crERN5cVFYnMlzXbewfUD7nECtyS8YQGSoaqYo0q/K41s3f4ISMKLOhboyJcss7duIMKa1v01TD+u1ma7mgHqXCZ6hMgotEaGMM0x8LEgHpuMkixZ7tAPDMf3xUWa9AsY5FJqyc8MoolVgmLjYPdD/iEP514Rx0h09RvLP/4F7aWDuum4VqcalOrq4mtEB8ErRF5SQCHpu3FnNXbTdHkqyxEwcV0dIRnH36i9FwTeNTh0wYNTAZkiC1kVVo9SeLL/7v3z9svcbVr6XFaK2UTedgi9yqEuup5hufL67EobG1DfPX7Ii+6+rFbWmHCIJbyG4A2NBg3/RbS0ybajPRL4WGIMJcUabnLQTm3tZwOZJYSfdeisKBR1Y+87huMh4KkwE9Nk/PueSNbmitFJGH1G/8JMcngW7TF3UOJhmgKwOo2scmjx2UKuNdmbLARX1HxMFMHcQNwHR6q4ssUvR1VIvnyo8foqgZ29XLY0iPzy4iAtLPOittOFAKkT5aID49a4tanU054M+5VvFussTEiq4xTLT+Cucz1ZxV6RxMsnXxBK87ALjoHPhv4lloqsKREACWlXlyHikkdRIRSpWs/gOBR3hJG85erFdiLGHSq+w3FCs1t5ZSprncEkxGpSHoy0G34xw4lKaR4dtcuWUPTjpoCP77M0cpr43tuvUsddBH+fJBlQkoX2BOIQ6iuEPmeuKiNS1gvgGYCMghwwPRzqAwX+7/+/jB0WcZpPmsGp/LoTLthZyNPJxy6LDE9y+cNDb6nDU+kQ1mP4dkmT74Y/zZdgCQDxq60zGQ5P50J98CJevpOQcxm5pZ5yB6/ecR7JDjmP0H4k8ari/gHOyWUoVQjGZa60CskG7TKJuj9sLyH/z1XW0bMto7rhLQDYmDSecgngzG79tPmwVMtLQxLUzV3OAJ2lVjsoFPqi2K0BrpusFfW8hmcYymue8iViIiTJ2wD3qGXIFO3xD0FXfmopC2Qb7NStdSsRBHFjXt+d86I+aMTPVEs9Cm1hIKpN5s5CIdMaYEcdD3C6TnupJzUBhZ6Da3ljaGFxfHyXG0Ooei+I4N4yM5w5q+blZ887RxUabHdL9BOA6bj0UxDBdiy+3MrZDivBZ64goAry/bpOhLQxxyJJiu6H7EIbJWSr840bLGdFoUfzOdJlST40OjVIpNtxfPN8B731iZKB83TJ81znaaJcdNmnMONha8UIhFEyYFt9hVOToHRc3EtzxOWpywmubCVz52oGYESXxk3NBICd/UWkJ9TVH5vOW+NjWoDwK2/MgiXJTcfG7Nfn+rcJ26PW5AYYM4Lpu5ciJCbo7HZFOaV4Ib58CVxLaDFq9nytcB6Dmy/zx7glYh3RGcQzfUOQR/lZyD8PJNm754gjCFlbCxoVmh2uhnf/+06KSeqBv5Odg2jvizqaaLWAkINi3uHOjKORjl0QXX0N7J73mctIoFAtrMQQyTxFXfVoEoOgM0tbTpzRylG/nU0SPV9bIQB6krE+cgwlUs2reH2iM4i86hNUEcnLp1gu45AwDI7VgWKKSZ1iybg5/64zSwZrGS6HB44NDeuOj4Mbj55WXtHn1Vh4o4ByJaQUTziGgOEc0OywYR0TNEtCT8O1CofzURLSWixUR0hlB+TNjOUiK6gSoR1lsQEQdFD+JGaprM7l6n8ePdb1AvPPSVE5T1soqVxE13SJ96ZVYzPkQb55A19o5toy4QoTF0ytM5wAHZdA6yovszH94v3Z7UyMHD+qbqZEWNITyHCq6e3o0tJe2JVnwfn/nwfon0r8l68WdbBF55XCaFtK4PHX567hHaWELOfg6QQ2HnBzPn4EYduCmrTSHNQ71w5bpNrCRmg/vRP08I+tKKldofeYiVTmGMTWSMcWP/qwA8xxgbB+C58DuIaDyAaQAmAJgK4EYi4m/uJgCXAhgX/puaw7iUiG2VzKcnY0gCx81CJDYXHb8/jt5voLKe64vnQ3KLyhpyDlaRQ/zZdNJ38XPg7fFToKk9ccPdarDEkInDvZceh+lSNEwgeQq765LJ+O0FamOCLOD9ujKAZs4heM+NLW24b/ZKrNNErRXnlqlf0QTStmnJ4zJlGUyO2X7jRg7b1ZSVkhy47gDy22kTreORIYfflvt14TB5BAOV06IIrh+LxEqariOTdGFenzxuaPSb0s+hA7iJaugczgZwR/j5DgDnCOX3MsaaGGPLASwFMJmIRgDoxxibwYKneqdwTe7gL04178WXWTSwkK55eUVTxTzc3rN4R/LFbrKBF+sBau9QDjm4mg7iGPtpxA1Bv/Fnk3MPUZIYTh4zSLmRnXDg4OjzSQcNycX0lIvHNjQ0OdU3cRgUmjlutLSVmIOG9sQotnbRoaxzsJvQAm5+Oqb5JRIto9GB1IZOTFWOd7BpTnOdgw3cRNVmFRaJlSzWSqZnIfpAiHDxIM8blRIHBuBpInqTiC4Ny4YzxtYCQPiX2wiOBCBqUleFZSPDz3J5CkR0KRHNJqLZGzduVFVxGrAOCSWf6QXaYlKEqHFUcLvmEpAn25jBapFDYgwW4rB0QxxYziSfNXEBIsQh6qxEAPeFLodCcHk2VZRKGmHqlZtN2oh10fE+BveJTYRV/hJy3yJUQ1DqHBw8dVw5BxPEWqccMhTXnp3mDIHyiIP4nFL9Ouoc+KZ//bOW1LwZrZV0fakcYDmhvUwwgKg2KiUOJzLGjgbwCQCXE9FHDHVVj4QZytOFjN3MGJvEGJs0dOjQ7KMVWlZyDo5KPtdJnzTl019z4fH7R5+H9KnD8p+dpawnZuk6er8BePYKtXs+EBMcG8citnnoPukcEhwmyyMR4jM0ERtXRqogcA4njxuiD/3sMLzp56Y3nfqaAh748vFug7HAppBmzG6JU0iIYvQN1hYL0TO0vRtd5NJkv+nrXLjdPMKFi+O76IQxSse9oD2n5hIwWsyFyX5cxidyzH/WzBc5CZLu9fHnojrc6ZzguPjLFhgzT1REHBhja8K/GwD8BcBkAOtDURHCvxvC6qsAjBYuHwVgTVg+SlFeFZhMWZOORZVP+oRYybDQTz10OI4Y2R8AcN4xo7X1xgl5D3rV1RhlzYvWNQBwD+EBAJefcpD2N1fOQXw0JvGb67gKRJFp7JlHjDDWs+ETh6ev/+LJB2DSmLQ3ejkwcg4IkyA5ZjILPpv74xvWP9Y3WNo0twOk5+dL3/qY0zvPhXMQqpmCWebNEfJAeTbI611OTCW3x62VdPsEv4/x+yoSeml0DjwEueshLQ+U3RMR9SaivvwzgI8DeBfAIwAuDqtdDODh8PMjAKYRUT0RjUWgeJ4Vip4aiOi40ErpIuGa3GEyZRUXZt4Kads7XRwucNNJprZYiEIBmNhlEVn0WCaiZ7I8EiE+Q5Ppn+tCD4gDz39gkFs7tKe6XBd5tByYnfmCIG+X3jXb2EbCwsdxc7URBz6uTx89Cit+ruZK5Xe//2C9SFCE2arPVRQZt2EKKum67lxhUlYn+nV8D1F8qjbzfDUZlqiCEG7f3RKJtNozZHclK2M4gL+EL7YGwN2MsSeJ6A0A9xPRJQA+AHA+ADDG5hPR/QAWAGgFcDljjJtcXAbgdgA9ATwR/qsKImslxTMWi0wL03XR1joq5IB4ovATvw6c4OjCUsjIy6FIlXtABVfnLPGXnyisjzgKBaCxWR9uIqrnQhwU43HdIFxgGh83Zf3HenPyoITfieM+YHvDvBlTe+WeyvMQv4rVTJZ4eW+M5Rx4TODNNbWWUFMgvQg0LH924YbUbzUKsdL8tS4pevNH2cSBMbYMQCobCGNsM4ApmmumA5iuKJ8NQL9D5AhTsp+82VZxcThzG5YFwMUSQxRpOlXIKxSBzQGIQxy+iQUWF9zhCvZarNcccQ6V6TBU76DOYAefFbY4Wy50Wnwuiy0HBQ575jEK/zo1lwkm0ZPrZr5+R2zBdfR++tDoedsZuIpKnUWq4f02trQZDwqmvaCgECu9v9nNIz1vdOPwGenfxLnskrbQBnFxOLOmlno8OqMr55CXfXR90W0TdRXNic//KI3/R1AvJg6ViqnKdfRyhTHOlvT9v/5VbbMvjnGrQwwtF/Bh2eTV40foibQOPQwb54K1OzK1dclJY3HA0HQoGI7cOQdp7LrmGxWZFlXYE/qe3DnjfWMKYdNUVYXPWJjxOeaF7kccTDoHYXbkQRzEDctVFGWzWefyd1c7/rwyR9XWZOcczClFg98GaixTojZIlOFWxjmonkWep9EsOhEd55clLAbH989S5wfn4Fyy7QT89TIsYeoNfgTrNY5+OuxuNkcbzlvnIIqV+tbX4OHLT1LWcwmRDwBzVm6zV4J5TdYU08TBlkeiWuh+xIF/sHAOrgvzIsEM1QTXQ49Nicc5AVerhbxOW67yWddAfq5IiJUq1DmonkXPuvwU0kYdi/ST7l7Ex+zqbKnzvOfgBxMbcShnqpjMlcdlDGHSv6eZG5bn01iDH40LxOdx5ccPxhGj+lfUnisRMRlByLktgDgr4czvKqX1VUO3Iw6cdbDpHFTB7FRwPW3lpXPgh4o655N8PsShWAjCcd/++WNz6S9LrXUpIwAAD/FJREFUvVisZOAcHGay6tHqEssAwM8+dYS9UQFmziH53YXzs3GRrvV42If6jP4QLjDFLrrk5LGZ2vp3S/1UIqQKp3bv+njsJsLumqXOVfw0vF8P7W+BKWuyv7YSw+hBPY3XVQPdjjiYrJXExeFqKppVWWVDOUH9TMgrMiwR4X8uPAYfO2SYsZ6rjoNv5lZLG4pjNVWaWEmuM25YH+P7u2ByOsCfCWbOIfmbLlidmP7UdS7YiAN/xlbOIfy5n8W899B9Yo7AxDlktQSzGVnIU77Sg8++QoY40/rcV5NJTsZVUw91qmfiHHh+bhEtbSWrF3w10P2Ig9HPIf58imUT5MjdHM6xnrPHcjvaRQPu8lHOudnuN5E7o0wLEB2uOz9lbJfCeceMwjkT93Vqz2bKKkK3cYqxgFwJu23j4ATbRhw4AdPFNuL4w4XHRJ9VEYE5shxMRg20b8ByX7rmzz1KHeZcxgBBjGWaPxcc63ZIOOGgIU73bLTwIkrlTGltsycaqga6YT4Hk4d0dnm5K3FwdWx0dcpyJQ42hS/H6EFupyMbXBX5fA3ZnnPS+snNNNYVLidzFwJy6D59sWhdQ6bx7dvf/rxt0Vajti33wd+Jba7yDdJ2SBU3t94GnY3rGnrnRx93OhnLJ3jdO//NvxyJv7y92tqeuOGaREKFAqFvjxo0NNrT83JCrMvDAZhFccUCRalhW9pKeG7h+iB/dQdwDt2POIR/VdMqy/4y55rTUV9TdD6Zu25eV3z8YKd6toU+pE89Nu1swjkT3U5RL1z5Mad6NrgSB/44bI9v087YBj7v01Ne+hgOo9gr/LtPvx6YNGag07z5ztRDrHVcwLm5Xhblu2v2wHJMtE0wRe8VIROi8yepQ824EiXxgLV1d4uxri3sCQef/iaz4HpTzDEhpMfvnl+KG55bAgA4skJleTnofsTBMfCeDQN6uekksrZtW8B1xQKa20pW09JXv3MK2kosd12HDa4WwHwB2/oVPcZN3FKro9IwOYbMl2jasd8Lf//NbSVnru+AIXqb/yzgCn2dnoODD98q6svw4D774f0weWw+savE5/veT8+s2EdFPGCJOb5V2BNyFh892C3g5xhD+BGx33svPQ6TxfDrghPcqq2x81t7i4eB7kgcwr9qa6Xq9ZvXKfUX5x2B3z23FCMsYglTHHsV8vIOdw3XwXvL8lxMJ/Ny/FLyeif8nk1iIN5Vc2vJ3dvcsiF87rj9sG673ZeAm0KK1jnqMVL419xeFhHH9HOzWXy5Io/DjPge/ulDbnqlTx8zyl4JwD799ZZFor6ptlhIReKN5rIwpd/+wM2HIk90P+Jg0khXARNHD8CcldvQsy4fmeG5R43CuUe5TdCOgHtWO7eNSISZc8hOHPI6DHD7dpOVD994m1tLzroEG649x23j5U6EtgNDxDlYNl7XfCadHeUEOXTlHPr3NCW6EvVoyX6LhXwccPNAt7NW4lBtDGVIJqzY0RjIMm0WIA9ffmJmu/rOCK6Q04WHkJGJczBsSq4LSgzylxenzsMmmCx3eFfNbSVrusm8sT2Up5s2LCDeIG3vJC/z6I5GFm75sFCHYHuGHP0c68lzuqZYiESkHZEaNDGWDu29A2BiHKrxMq755Hj8+G8LsL8la9uRowfgyNH6oGNdBSWDTidZzy0ZkQhTXVfOYXTCZDKfTe7wkf2xbkejxfM1/tyeMfkB4JB9+mLx+garhVTMzbkrpDsz+uaQKpbj0a+dlGl/cPXxkEV09TWFiBN19biuFrofcTAk+6kGof7YIcOsjmN7E0oGU+H/3969x0hV3QEc//7YZVFY3i6rLvIoIoKIKOsDi6JNqGCtNKVaG8NDTdTWpto0qdDamNY0QdsaX02QtlDsy9rYB7a2xpr6am0FqiiIKCgpa0mRoAirFUl//eOe617mee/szJx7Z3+fZLKzZ8+cub85s3PmnHvuOYfnC34m+ZgpNd0x7lWs0Squ5CR2IXdeNp1tuw+U7B3GXcocgt7Nb2NMxYxr+YKTufrcjzC8zGKN4aoA5a5VqfYaR7Xw0rcuiNUrPaG9lZM7yn8pa+onNCV4t8af4n54mQOamz5sFNbt2Bv7+Wqh7zUOde459DUfbk9a5h+z53qT+GWXGlaKO9VwzIieHlypvQOSGDSguWyvL/oZcP+6nSy7cHLRvAvPGsvCs+Kt2RXHwJZmpnaUnwoZ9nzCYbJifMycSarcrL/QIzeU2tm4cvH3fDk8X0tzPw4e+h+qyp4D1VmVt1J9r3FwPwuec3AfWI0wvBPXj684ne1vdletvDa3BEJrmYv5wp5DkiGKUleWnjl+JHD40g6FTGhr5bgRR7Jz73v17bZH3nD73is9p96XgW6qa9w1gq6aNb6Wh1MX1d7DpbfC4SjfQ0rQBxuHeVOP5oT21oJXKYYfWBn4YlQ1wbBX9cpbOm8yJx07lHMnHlUyX3gCOckJ6VJXlo4ZObDoFpi55p50ND946nWGxTxpWA0fRP7Zl5w9rm7Pm8SIQS0snjk21nTNuK91tV0yYzQdMZbayIrcBT7DxuGz9z5zWPrqJaUXvKyFPtc4jB05qOj+uOH6LnHnPJt8R7Y0cenpha9cjQpXlR1V55UmAW6ceyIXn9LBxPZkS0r3RvSb4M2fLL3/gi8iwjfn12VDxop9J8ZyJlnw4OfPZm/3wbz3fziyvbGrZ2vQaaOHcv6J9T9vmZrGQUTmAncCTcAPVXV5vY+hfcgRvHzL3KruK2wKO37UYG5bMI05U9pL5ru0czQPrO+KveZUHM1N/Xq9dn9S0fMbaRvKMPU3Y2zpPThCT331fI4bUXqmY62konEQkSbg+8AcoAtYJyJrVfWleh9L0iuLTeXi9DBuumgKD6zvYnrGzwOF7UEjjNOb4h77ymz27H+/fMYics/B+WoYICWNA3AGsE1VXwMQkfuB+UDdGweTLkOO6M8D18xk8jH1GwKqhbbBwYn6vnQ+qy+a0NbKhBL7YJczq8y5unpKS+PQAeyM/N4FnOnpWEzKVGvhNp8+fVoHO/Z084Xzjvd9KCbFTmgfzI7ln+Ct7oMfLvbnS1oah0Lfp/ImrovI1cDVAGPGJNulyxifBjQ3lby2wZio4YNaiHdWonbScua1C4gOQI8G/p2bSVVXqmqnqna2tcVbAMsYY0xyaWkc1gETRWS8iLQAlwFrPR+TMcb0WakYVlLVQyLyReARgqmsq1R1s+fDMsaYPisVjQOAqj4MPOz7OIwxxqRnWMkYY0yKWONgjDEmjzUOxhhj8ljjYIwxJo9oRje4EZH9wNYCfxoD/CtGEUOBfWVz+csXN45aPLevWCyO3uVLkjftsVgcvSuvVN5Jqlp+PRpVzeQNWF8k/c2Yj1+Z8nyx4mikWCyO3uVrpFgsjtq9F4p9dubeGnFY6e2Y+R5Keb64cdTiuX3FYnH0Ll+SvGmPxeLoXXlJ8+bJ8rDSelXtjJueNY0SBzROLI0SBzROLBZH7Z4ryz2HlQnTs6ZR4oDGiaVR4oDGicXiqNFzZbbnYIwxpnay3HMwxhhTI6lvHERklYjsFpFNkbRTROQZEXlRRB4SkSEuvUVEVrv0jSJyXuQxM1z6NhG5Szxs5FvFWB4Xka0i8ry71XX3cRE5TkT+IiJbRGSziFzv0keIyKMi8qr7OTzymGXutd8qIhdE0r3VS5XjyFSdiMhIl/+AiNyTU1Zm6qRMHN7qpII45ojIBve6bxCRj0XK8lMfcadF+boB5wKnAZsiaeuA2e7+lcAt7v51wGp3fxSwAejnfn8WmEmwsdAfgXkZjuVxoNNjnRwDnObuDwZeAaYAtwFLXfpS4FZ3fwqwERgAjAe2A02+66XKcWStTgYBs4BrgXtyyspSnZSKw1udVBDHqcCx7v5U4A3f9ZH6noOqPgnszUmeBDzp7j8KLHD3pwCPucftJpge1ikixwBDVPUZDV7t+4BP1frYc1UjljocZlmquktV/+nu7we2EGz1Oh9Y47Ktoec1ng/cr6rvq+rrwDbgDN/1Uq046nW8pSSNRVW7VfVp4L/RcrJWJ8Xi8K2COJ5T1XCDs83AESIywGd9pL5xKGITcLG7fwk9u8htBOaLSLOIjAdmuL91EOw2F+pyaWmQNJbQatdV/kY9u/25RGQcwbeefwDtqroLgn8Ogh4PFN4jvIMU1Usv4whlqU6KyVqdlOO9TiqIYwHwnKq+j8f6yGrjcCVwnYhsIOiyHXTpqwhevPXAHcDfgEPE3KPak6SxAFyuqicD57jbwroesSMircCDwA2q+k6prAXStER6XVUhDshenRQtokBamuukFO91kjQOETkJuBW4JkwqkK0u9ZHJxkFVX1bVj6vqDOAXBGO/qOohVf2yqk5X1fnAMOBVgg/Z0ZEiCu5R7UMFsaCqb7if+4Gf42FoQ0T6E7zpf6aqv3bJ/3Hd4HB4YrdLL7ZHuPd6qVIcWayTYrJWJ0X5rpOkcYjIaOA3wCJV3e6SvdVHJhuHcNaBiPQDbgJWuN8Hisggd38OcEhVX3Ldt/0icpbrWi4Cfufn6A+XNBY3zHSUS+8PXEQwNFXPYxbgR8AWVb098qe1wGJ3fzE9r/Fa4DI3hjoemAg867teqhVHRuukoAzWSbFyvNZJ0jhEZBjwB2CZqv41zOy1Pupx1rs3N4Jv07uADwha0auA6wnO/r8CLKfnYr5xBCu1bgH+DIyNlNNJ8ObYDtwTPiZrsRDMztgAvEBw4upO3IyZOsYxi6Br+wLwvLtdCIwkOIn+qvs5IvKYr7vXfiuR2RY+66VacWS4TnYQTJA44N6PUzJaJ3lx+K6TpHEQfDHsjuR9Hhjlsz7sCmljjDF5MjmsZIwxprascTDGGJPHGgdjjDF5rHEwxhiTxxoHY4wxeaxxMKYGRORaEVmUIP84iazWa4xvzb4PwJhGIyLNqrrC93EY0xvWOBhTgFss7U8Ei6WdSnCR4iJgMnA70ArsAZao6i4ReZxg/auPAmtFZDBwQFW/KyLTCa58H0hwIdOVqvqWiMwgWEPrXeDp+kVnTHk2rGRMcZOAlao6DXiHYI+Nu4HPaLAW1irg25H8w1R1tqp+L6ec+4AbXTkvAje79NXAl1R1Zi2DMKYS1nMwprid2rPOzU+BrxFsxPKoW/25iWA5lNAvcwsQkaEEjcYTLmkN8KsC6T8B5lU/BGMqY42DMcXlri2zH9hc4pt+d4KypUD5xqSGDSsZU9wYEQkbgs8BfwfawjQR6e/W3y9KVfcBb4nIOS5pIfCEqr4N7BORWS798uofvjGVs56DMcVtARaLyL0Eq2jeDTwC3OWGhZoJNmLaXKacxcAKERkIvAZc4dKvAFaJyLuuXGNSw1ZlNaYAN1vp96o61fOhGOOFDSsZY4zJYz0HY4wxeaznYIwxJo81DsYYY/JY42CMMSaPNQ7GGGPyWONgjDEmjzUOxhhj8vwfEf3UNliGt0cAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'].plot()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4XGeZp32/talKpX2zLcuyvDu2k9ixExIgISEJCUt3oIGesCV0w4RmWGd6phv4ZnqZaeju6QFm2EmAJqFZGxoIDTSkQ0jIHjt24i3ebUmWrF2qTbW/3x/nnFJJKklVpZJq0XNfly9Jr8459co6qt95dqW1RhAEQRDSsRV7A4IgCELpIeIgCIIgzELEQRAEQZiFiIMgCIIwCxEHQRAEYRYiDoIgCMIsRBwEQRCEWYg4CIIgCLMQcRAEQRBm4Sj2BvKlpaVFd3V1FXsbgiAIZcWBAweGtdatCx1XtuLQ1dXF/v37i70NQRCEskIpdSGb48StJAiCIMxCxEEQBEGYhYiDIAiCMAsRB0EQBGEWIg6CIAjCLEQcBEEQhFmIOFQwWmuSSZn0JwhC7og4VDD/8KsT3Hnv08XehiAIZYiIQwVzZijAqUF/sbchCEIZIuJQwQQjCXzhOFqLa0kQhNwQcahgApE4iaQmGE0UeyuCIJQZIg4VTDASB8A3GSvyTgRBKDdEHCqYgCUOYREHQRByQ8ShgrHEYSIk4iAIQm6IOFQoWuspt1I4XuTdCIJQbog4VCjhWBKr/k1iDoIg5IqIQ4ViuZRAYg6CIOSOiEOFki4OE2I5CIKQIwuKg1JqnVLqEaXUcaXUUaXUR8z1JqXUQ0qpU+bHxrRzPq6UOq2UOqGUui1tfa9S6rD5vc8ppZS5XqWU+r65/oxSqqvwP+rKIphuOUxKzEEQhNzIxnKIA3+qtb4MuBb4gFJqB/Ax4GGt9RbgYfNrzO/dCewEbge+pJSym9f6MnAPsMX8d7u5/h5gTGu9Gfgs8PcF+NlWNOJWEgRhMSwoDlrrfq318+bnfuA4sBa4A7jfPOx+4I3m53cA39NaR7TW54DTwDVKqTVAndb6KW30c3hgxjnWtX4I3GxZFUJ+BMWtJAjCIsgp5mC6e/YAzwCrtNb9YAgI0GYethboSTut11xba34+c33aOVrrODABNGd4/XuUUvuVUvuHhoZy2fqKw7IcWmqqJFtJEIScyVoclFI1wI+Aj2qtffMdmmFNz7M+3znTF7S+V2u9T2u9r7W1daEtr2gscWhvcEudgyAIOZOVOCilnBjC8G2t9b+YywOmqwjz46C53gusSzu9A+gz1zsyrE87RynlAOqB0Vx/GGEKy620pt4tloMgCDmTTbaSAr4OHNdafybtWw8Cd5uf3w38NG39TjMDaQNG4PlZ0/XkV0pda17zrhnnWNd6C/AbLX2mF0UgYnRiXVPvEXEQBCFnHFkc8wrgXcBhpdQhc+0TwN8BP1BKvQfoBt4KoLU+qpT6AXAMI9PpA1prq2f0+4FvAh7gl+Y/MMTnW0qp0xgWw52L/LlWPMFInJoqB/UeJ36zdbfdJjF+QRCyY0Fx0Fo/TuaYAMDNc5zzSeCTGdb3A7syrIcxxUUoDIFwHG+VnTqPM/V1fbWzyLsSBKFckArpCiUQjeOtclDnNvS/ELUO4ViC//rPL3BpIrzoawmCUNqIOFQo6W4lKEytw+GLE/zwQC9Pnx1Z9LUEQShtRBwqlGAkjtflSLmVChGU7hufNK4dldRYQah0RBwqFH84To3bQZ3bFIcCuJX6xg13UigiM6kFodIRcahQglHDrVTnMWIOhXAr9U/Mbzn87IU+3vm1Z5AsZEEof7JJZRXKkGAkgbfKnoo5FKIza8pyiM62HMKxBH/z82MM+CIMB6K01lYt+vUEQSgeYjlUKIGIka3kdTmwqcK4lVKWQ2S20Hz32W4GfBEALpqxCUEQyhcRhwokGk8SjSepcTmw2RS1bmdBA9IzLYdwLMGXfnuG9no3AL1joUW/liAIxUXEoQKxnuxrzBqHeo9z0TGHyWiCsZBxjdCMmMM/PX2BIX+E//VGo77x4phYDoJQ7og4VCBWR1ZvlSEOdR7HojuzWi4lmG45xBNJvvLoGV6xuZmbL1tFrdshbiVBqABEHCoQK5uoxhKHAriV+s2qaJfDNi3mMBaKMRyIctvO1QCsbfCI5SAIFYCIQwUSnGk5uJ2LDkhb1sDGFu80y8GyUmpNF1ZHYzW9Ig6CUPaIOFQg/rBlORijuwsRc+g301g3tdZMq3Pwm6JTW2WkzHY0erg4Pim1DoJQ5og4VCBBs4J5WsxhkXUO/ROTtNRU0VDtnFYhHQhPD36vbfAQiMQLUlchCELxEHGoQFLZSmlupclYgmg8mfc1+ybCtDe48VY5plsOM15rbaMHgN5xSWcVhHJGxKECCcx4w7bmOPgXEXfoG59kTb2bapedcCxJImm4jSzLwerh1GGKgwSlBaG8EXGoQDIFpCG3/konLvl5+d8+zNmhAFpr+scnaW/w4HUZ17RqHSzBSXcrARKUFoQyR8ShAglE4rgcNpx249drNd/LpdbhsZND9E2E+fYz3fjCcYLRBO31HqrNILeVsTRVU2GsN3lduJ02qXUQhDJHxKFCiCeSxBJGTCFgDvqxSLXtzsFyONI3AcCPD16ke8SIH6xpcKcsB8s68ZtCVOUwxEEpJbUOglABiDiUIKPBKC/0jOd0zke/f4j/9O3ngakpcBb5TIM7fHGCZq+L0WCUB546D8Caeg/VrumWgz8cT40itehorBbLQRDKHBGHEuQbj5/jbfc9nVOtwMkBP4+dHCISTxCIJFLxBiA1DS5bcQhE4pwbDvKOa9ezpt7Nvxy8CBjxBOu6luUQCE8XIjAylqT5niCUNyIOJcjEZIxQNJFKE82GkUCUSDzJ4d4JApFYqgAOoKWmCq/LzqkBf1bXOt7vQ2vYva6et+ztIJHUOGyK1tqqWZZDIBJPBaMt1jZ4GAvFZjXoEwShfBBxyJPxUJSXLvmW5NqTMeONdywYzer4eCLJaMg49plzo+agn6k3bLtNcUVHAwezdFUd7jXiDbva63nr3nUArKpzY7ep1HVT4hCOp6qjLSSdVRDKHxGHPPnqY2f5/S88wZA/UvBrW+IwkqU4jIViWB6oZ8+NEjQH/aSzu7OBY30+wrGF5z8f6ZugrbaKtjo3nc3V3Ly9jcvW1AKkLAerEM4XjmW0HAB6Je4gCGWLiEOejAQiRONJvv3MhYJfezKam+UwHDAEqqXGxYELY/jCMWpniMOedQ3Ek5qjZhbSzNd77vxo6usjFyfYtbY+9fWX37mXL79zL8BUnYMVc4jEZ71WR2M1ILUOglDOiDjkidW/6J+evpDV03guWOIwmqU4jASM427buZpAJM5wIJrRcgA42D3btfSTQxd561ee4pGXBpmMJjg9GJgmDuk1E1adQ3CemENbbRVOuxK3kiCUMSIOeeKPxHE7bQwHovzshb6CXttyK2UtDkHDcnjd5WtSazPFoa3WTUejJ6M4WOM///pnR3mhd5ykhl3tdRlfy2W34bApQtE4Wmv84XiqXbeFzaYK0glWEITiIeKQJ8FInKs6G9m2qpavP36uoC2qLUvECjIvhBX32NVeT2eT4dJJz1ay2NPZyMHusVnrg74IDpvi/EiI/+/HhwG4vKN+1nFgFLlVu+wEI4lUj6WaGQFp4/Ud04YCCYJQXog45IlVaPbHr+zipUt+Hj89XLBr55qtNBKM4rQr6jwOrtnQBMy2HMCIO/RNhBnwhaetD/rDbF9Ty607VnFmKEiz18XqOvecr+etchCKxvFHpvdVmnmMiIMglC8iDnli+drv2L2WtQ0ePvq9Q5wezK6OYCFyjTkM+yM0e6tQSqXEYWZhGswddxgKRGitqeJ/vH4HLoeNXWvrUUrN+XrVLjvBaCI1VGhmQBoMcQiIOAhC2SLikCdW/yK3084D77kGpRRvv+8Zzg0HF33t3GMOUVpqXQDcuK2Vne110wLKFjvb63DZbRzsme5aGvRFaKs10lbv/6Nr+O+vv2ze1/NWOQhF4ql23TNjDmCIk4iDIJQvIg55kl5LsKm1hu/8x5cRT2re9fVnUg3w8sWKOYyFsgvoDgcMywGMwPPPP3w9m1prZh1X5bCzo71umuWQSGqGAxHa6ozzr9vUzJZVtfO+nsdpWA4z50akI24lQShvRBzyIBJPEEvoaW+KW1fV8p9v2ULv2GQqtTQfYokksYQR3B4JZFdgNxKI0lzjyurY3esaONw7QdIc1jMSjJDURvpptqRiDjNGhKZTU2UnEClsiq8gCMuHiEMeWDUOM5+Ym2uMN9jxyfzFwbIaaqoc+MLxBa0QrXUqZpANm9tqmIwlGDQznKxMp9YcxKHaZScUSaQG/VgtwdORbCVBKG9EHPLA8rXPzAhqMLufjmfpDsqEFW9ob3Bnda1AJE40nszacrBSXbtHja6pgylxmDs7aSZelzFHeiG30mQskRonKghCeSHikAdTb4rTawlybY2diXDUsBSs/kQLBaWHTRdWS5aWw0xxGPIZ4pCLW6m6yk4omphTJGFKMILSmVUQyhIRhzyw3vBmWQ7VpjgUwHJY25idOFhxieYsxaG9wYNNpVsORs1DLm4lr8uRaile5bDhcsy+jWbOfRAEobwQcciDudwpDdWGa2cxMYcpt5IhDmMLVElPWQ7ZuZVcDhtr6j30WJaDP0Kd20jJzZbqKnsqy6k2Q7wBpsQhkMPcakEQSocFxUEp9Q2l1KBS6kja2l8ppS4qpQ6Z/16X9r2PK6VOK6VOKKVuS1vfq5Q6bH7vc8qsslJKVSmlvm+uP6OU6irsj1h4rDe8meLgddlx2NTiYg5mAVz2biWrI2v2T/6dTdXTYg5t81RDZ8LqzDroi2SscYApl5vUOghCeZKN5fBN4PYM65/VWu82//0CQCm1A7gT2Gme8yWllPVI+mXgHmCL+c+65nuAMa31ZuCzwN/n+bMsG5arZKZbSSlFQ7WT8cXEHGZYDgu7lYzvN3mzsxwggzjk4FKCqZkOA75wxmA0TAlIUNJZBaEsWVActNaPAaMLHWdyB/A9rXVEa30OOA1co5RaA9RprZ/SRoe6B4A3pp1zv/n5D4Gb1Xy9G0qAwBziABjdSAsQc6hzO6mtcmRlOTRUO1MttbOhs7maIX+EyWiCIX8kp3gDTP3cl3zhuS0Hc10sB0EoTxYTc/igUupF0+3UaK6tBXrSjuk119aan89cn3aO1joOTADNmV5QKXWPUmq/Umr/0NDQIra+OOaqcwAW3araGr/pcdppqnEtGHMYCUZozsFqAFiXlrE06A/nbTn4w/E5LYcaCUgLQlmTrzh8GdgE7Ab6gU+b65me+PU86/OdM3tR63u11vu01vtaW1tz23EBCURieJx27LbZW2+odhUkIO122Wisdi1sOfijOcUbYCqd9Vj/BOFYkrYcahxgusWUqTo6/RhJZRWE8iQvcdBaD2itE1rrJHAfcI35rV5gXdqhHUCfud6RYX3aOUopB1BP9m6sohCIJDK6lMAohFtMQDqcbjl4sxCHYCRvcdh/3mjAZ/VVyhbLcoDMHVlhynIQt5IglCd5iYMZQ7B4E2BlMj0I3GlmIG3ACDw/q7XuB/xKqWvNeMJdwE/Tzrnb/PwtwG90ISfnLAHGLIfMqZ/11YWJObhNcVhopsOwP5J1GqtFY7WTmioHBy4Y4pBt6w0LK9gMzJnKWuWwYbcpcSsJQpmS+bEvDaXUd4EbgRalVC/wl8CNSqndGO6f88D7ALTWR5VSPwCOAXHgA1prK13l/RiZTx7gl+Y/gK8D31JKncawGO4sxA+2lGSam2zR4HHhj8SJJ5I4cggSW0zGEjjtCqfdRpPXxUgwitY643yFaDyJLxzPugDOQinFuqZqXrrkA/KwHNKEca7/B6UUXpdd6hwEoUxZUBy01m/LsPz1eY7/JPDJDOv7gV0Z1sPAWxfaRykRiMSnPT2nU+8x1n3heE7ppRaT0USqIK2x2kUknmQylqA6w+tZs6Oz7auUTmeTh+P9hjjk0lcJplsOcwWkre9JZ1ZBKE+kQjoPrBGhmUhVSWc5/3km4VgCjykOVhbSXHGHkRz7KqVjxR1cDht1czz9z4UnrZp6rlRWMKwKcSsJQnki4pAH6YN+ZlJv9lfKtxBuMpbAYwZ8G9PEIRpPpp70Lax227nGHGBKHNpqq+YdCZoJm02lgtLziYO3yiHZSoJQpog45MH8MYfFNd+bjE5ZDk1e41ojgSgf+d5BXv+53zHoC6eOPT0YAGBDy+ypbwvR2ewFcuvGmo7l5qqpyhyQNr4no0IFoVwRcciDQDZupTxrHdIthyZz9OenHzrBL49cIqnh8MWJ1LHH+n2srnPnFduYshxyizdYeM2g9HwxB69L3EqCUK6IOORIPJEkHEvOGZBe7MCf9JhDkyk0Ry76eP3la1DK+NzieL+PHe11eb3OWrN1d66tMywsy2FBt5IEpAWhLBFxyJGgWaTmnaPOYbEDfybTxKHW7cDjtHPlugY+/YdXsrHFy5E+w3KIxBOcHgxw2ZravF7H5bDxyTddzjuvXZ/X+d4sYg41VfbUKFGhcPSMhlLde4WVhdaa+588z9mhwJK/lohDjlg+9LneFO02Ra3bkbXlkEjqaaM0J6MJ3OYbr82m+Oc/uY4H/vga3E47u9bWc9R0K50aCBBPanasqc/7Z3nbNZ1sW52fuFSb7qS5AvNgZitFE5R4TWNZkUxqXv+53/GNJ84VeytCEegeDfGXDx7lmXNL30RCxCFH5mrXnU5DdfbN9/77T47wtvueTn0djiWnpYruWltPvWmN7Gqvp28izEggwjEzcylfy2GxeF123E7bvN1gvVUOEklNJJ5cxp1VNr5wDF84Tv/EZLG3IhSBo33G3/3OPN3JuZBbgrswb7tuiwaPK6s6h/FQlB8935ty0cB0t9JMdq41boijfT6O9fmodtlZb2YdLTc1VQ7q5midkX4MGP9nuUyaE+bGmvznl8rzFcnRvgnsNsXWVUv/UCjikCPBOUaEppPtwJ+fHLxINJ4kGk+m2m1MRqeylWays91wIR3pm+B4v4/tq2szdoZdDu65YSOvu2LNvMdMDfyJ51WoJ8zGKoj0LaItvFC+HO3zsaWtZlketsStlCNzjQhNpy6LgT9aa7733NToi7FQjGRSMxlLzPmLr/c46Wyq5sjFCY71+7hszdKblnOxZVUtN21rm/cYr3RmLTgj5lhYsRxWJkf78s9QzBURhxwJZGM5ZDHw58XeCV665Oflm4y5RqPBaMo3P5dbCWDX2joeOzmMPxxftpskX6YG/khmTaEYDopbaaUy6A8z5I+kPAhLjYhDjmQbkB6fjM2bpfP9/T24nTbe/fIuwHgitNp1e5xz/1p2ttenBKqYlkM2WOm+UghXOKYsB3ErrTSWMxgNIg45MxWQnvvpvsHjIpHUc7pTQtE4Dx7q4/WXt9PVYgSUR4LRKXGYI+YAUzeGUrA9zzTU5cJK9/WLOBSMEQlIr1iOmeIgbqUSJRBJ4LLbqHLM/Qaear43R9zh0RNDBCJx3rx3bar1xWgwmips8sxRfQ1TQekNzd6MbbxLCa/MkS44Vpt2fyQ+rT5GqHyO9k2wvrl6wSzBQiHikAVf+M0pPvzdg4DVkXX+TIH6Baqkf3tiiFq3g6u7mmisdqGU4S4Ix6ZGhM5Fa20V65o8XLmuIZ8fZVkRcSg8ViorSKB/pXHkom/ZXEog4pAVz54f4+eH+/GHY/O267ZomEcctNb89uQg129pwWk3Rmk2Vrumu5UWSFP7znuv5S/esCPPn2b5sFJZ5U2scFgxB5C4w0rCF47RPRpatmA0iDhkhT8cI5HUPHd+FP88HVktpgb+zP7jPd7vZ8AX4ca0NNAmr2uGW2n+X8u6purUrIdSxm5TeJx2sRwKyEgwmqoZkbjDymG54w0g4pAVVsHRk6dH5p0CZ9GQGvgzu0r6tycHAbhxa2tqrcnrYiQwZTlUUjWxV0aFFoxYIsl4KMaGFqPduojDymG5M5VAxCErrD/Cp86OZOVWqp+nbfdvTwyxY00dbXVTcxRaalyMBLOLOZQbNVViORSKMbPGYYOZ4SZV0iuDUwN+vv9cN221VXnPX8kHEYcs8IVjOGyKY/0++ibCC1oObqfRlG5mzGFiMsaBC2PctL112vpst1IFiYPMkS4YVjDaSn/2R0QcyokBX5iL45M5ZZnd99hZXv/5xxnyR/jbP7h8CXc3m9LOhSwBonFjuM/1W1r43alhhvyRBbOVwLAerCc9iydOD5NI6mnxBjAmvo2FYqnAbSVZDl6XQ+ocCoTVV2mD2WxR3ErlQySe4JZPP4o/EsdhU+xcW88/v+86XI65n8+PXJzgk784zi2XtfG3f3BF3oO58kUshwWwMkJu2NKK26xcnm9uskVjtYuxGW6lR14apM7tYM+MNNRmM7jcN27Mh66kmENNlVgOhcKqcUhZDiIOZcOpgQD+SJx3vKyT11+xhhd6xjk54J/3nIvjRlv2j9y8ddmFAUQcFsT6A2yucXF1VxNg+NEXornGxWgwMm3t+CUfezobccyYgdBcY4jDxfEQSkHVPE8T5YZXxKFgWG6l9gYPLocNn6Sylg1WttF7r9/IR2/ZOm1tLqxq+Jba4mQmVs670BJh/QHWup1cu9FokrdQQBoMV9HoDLfSSCCa8QnAqpLuHZvE47SjVHHacC8Fkq1UOEYCEZx2RZ3bQZ3bgW9SRLdcONo3gddlZ31TNeubqql22VMDu+Zi2KxpaSpS2rrEHBbAshzq3I5UB9WaeeYmWzR7jcI2C601I4FoykqYfqwhGBfHJysq3gCSrVRIRgJRmrwulFLUup1SBFdGWC32beb8lcvW1GVhOUSoczvmbdWzlIjlsABWumCt28mVHQ38zzt28tpd8w+5ASPm4A/HiSWMNtyBSJxoIkmLd7blYAnGeChWUfEGMCyHyVhC+gAVgJFgJPUgUet2SMyhTEgmNcdmzGHY2V7HsX4fyXn+LoYD0aIOyRJxWICU5eBxYLMp7rquKyszr8l8w7cyliz/YSbLweqvBFBdQWmskDbTISpvZItlOM3yNMRBLIdy4MJoiGA0Ma2AbceaOgKROD1joTnPGwpERBxKmfSYQy5YGUiWa8nKNMkkLHabSvVjqqQaBzCm4gH0mZkXQv6MBKfeLOrcTrEcyoRU64s1U32RLCvi6DyupZFApGjBaBBxWBBfOI5SUJtFEDqd9FbcMJVpMteTQLO5XmlupRu3teJy2HjgqQvF3krZMxKIph46at0OyVYqE472TeCwKbasqkmtbV1lzH+fL+4wHIim3IjFQMRhAXyTMWpcjlQgKVtmisN8bqX04ystIN1W6+bNV3XwwwO9DPrDxd5O2RKKxglFE6mHiFqxHMqGY/0+NrfVTHvwczvtbG6t4WjfRMZzovEkE5MxcSuVMv5wPOUayYWZ4jA6j1sJptxQlSYOAP/x+g3EEknuf/J8sbdStsx8uKh1OwhFE8TNhAehdDk6IxhtscMMSmfCet+Y62FyORBxWABfOJYad5kLqSE+aW6l2qq509Ksm6DSYg4AG1truH3nar711AWZ7ZAn1n3UYt4n1jQw+f8sbQb9YYb8EXZkmPe+s72OAV8kVc+QjrUmlkMJ4w/H8hrLZwWZLYthJJi5xsGiyVuZMQeLP3nVJnzhON99prvYWylLrCE/6amsIC00Sp1jqVbbs4f0WIKRKe5giUOrBKRLF99kPC/LAaDR62IsaAQNRwKRlL84E5XsVgK4cl0DO9vreOTEYLG3UpaMBGe6lYwHFglKlzaW2yiT5WC5mjK5llJuRAlIly7+SCyvmANYVdKm5ZCWaZLx2JRbqXJ/JdtW13J2KFjsbZQlM98s6swHFmmhUdr0jk3S7HVRXz37PaSh2sXqOjcnL81uwJdyKxWh4Z5F5b4TFYjFWA7WnAaw3Epz/6IrNVspnU2tNVzyhcVPngd945PUVjlSMSnLcpBCuNJmLBidt2h2TYObgQxZfMOBCFUOG94ixiAXFAel1DeUUoNKqSNpa01KqYeUUqfMj41p3/u4Uuq0UuqEUuq2tPW9SqnD5vc+p8zuckqpKqXU9831Z5RSXYX9EfNHa513zAGmmu8lk5rRYGR+y6HCYw4Am1qNVtPnxHrImeP9PravqU19XeeZHnPoHQsxHpo9llYoLqPB6Lzz3lfVuhn0zQ5Ij5itM4rZhDMby+GbwO0z1j4GPKy13gI8bH6NUmoHcCew0zznS0op693uy8A9wBbzn3XN9wBjWuvNwGeBv8/3hyk0wWiCpGYRloOTsVCM0VCUpJ4/La29wU1tlYP15iCXSmRTq1EEdHY4UOSdlBfJpOZ4v2+a3zrdctBa8x+++jR/8/PjxdqiMAdjoShN1XP/3bfVVTHgm205DAUiRXUpQRbioLV+DBidsXwHcL/5+f3AG9PWv6e1jmitzwGngWuUUmuAOq31U1prDTww4xzrWj8EblYl0rPan2frDIsmbxWJpObcsPGkPJ9bqdbt5Pm/uJVbLmub85hyp7O5GpuCM4MiDrnQbfbmSc+VT89W6h2b5OL4JKfk/7XkGA3G5rcc6tz4wvHUiGCLkUCUliK16rbIN+awSmvdD2B+tN7R1gI9acf1mmtrzc9nrk87R2sdByaA5kwvqpS6Rym1Xym1f2hoKM+tZ48V7LNM+Fyx3EinBow/2oV+2U67raJmOcykymFnXVM1Z4bFrZQLUxkvU+mQTrsNt9MY+PPceePZrXd07iZuwvKTTGrDcvDO/XDZZloHM7sHDBe56R4UPiCd6Z1Nz7M+3zmzF7W+V2u9T2u9r7W1Nc8tZs/iLQdDDKxxgPNZDiuFTa01K8pyePL0MH/41adSrdvz4VifD/uM3jww1Xxv/4UxwEh6kGB/6eAPx0kkNY3zuJVW1bkBGPRPxR2MGOX8dVHLQb7iMGC6ijA/WsnrvcC6tOM6gD5zvSPD+rRzlFIOoJ7ZbqyikD7oJx8scThtvhkWa6JTKbGxxcu54eC8fewriUdODPLsudFpf/y5cqzfx+bWmllQypMLAAAgAElEQVTJCtZMhwPnx3DajWesHrEeSoZRM0Fgvr/7tjrjgTE97jAxGSOe1GVrOTwI3G1+fjfw07T1O80MpA0YgednTdeTXyl1rRlPuGvGOda13gL8xoxLFJ1823VbpFsOSkFjhlznlcbG1hoi8WRqeHqlc27YeLMeydAiIVtmDoqxqHU76R2f5OSgnxu3GZ7dbhGHksFKY59PHFbVGpbDQFrGUinUOEB2qazfBZ4CtimlepVS7wH+DrhVKXUKuNX8Gq31UeAHwDHg34APaK2tSMv7ga9hBKnPAL80178ONCulTgP/BTPzqRTwhRcXc7BuikF/hMZqFw67lJVY6axnV0jc4fyI8XOOBPNLMx0JRLjkC2essK11O3ixdxyt4U17jBCeWA6lw1gW4tBQ7cRltzGYZjmk2vsX2dOw4Lue1vptc3zr5jmO/yTwyQzr+4FdGdbDwFsX2kcxsEaE5lvn4HbaqXbZjVbL4lICDMsB4OxQgFdtXfq4UTFJJDXdI8ab9WggP3E43m/EqzJZDnUeJ1obfbxu3NZKrdshlkMJYbmV5os5KKVoq6ua5nYsG8thJeMPx3HZbVQ58v9vsp4aJN5g0FLjos7t4MxQ5Qel+8YniZqBaKuNSjYcuDDKvzxvJPcd6zf6/V+WwXKwYmE71tRR7XLQ2VQt4lBCZGM5gJGxlB5zmGqyWOKWw0rGate9mPTSZq+L3rHJogeXSgWlFBtba1ZEj6Vzaa6zbN1KWms+9qPDnBoM4JuMcazPx5p6d8Y3GCsWtq/LaFDQ2VSdyowTis9oKIrLYVtwLvyqOve039twIIpNzW9xLAdiOcxDvoN+0rH+qIudllZKbGz1rgjLwYo3uBy2rN1KR/t8nBoMsLrOzV//6zEePj6YMd4AU6Nr961vAgxx6BmbXDGZYKXOWNCojl7o4XJV3fQWGiPBCE3eqpynTxYaEYd58E3mN+gnHas6spitd0uNTa01DPgiFZ+Tf244SLXLGAeZreXwk4MXcdoVP/3gK7h6fRP+SDxjvAGgvcGDy27jatNyWNdUTTSeXFTarFA4FqqOtmirq8IfiROKGn8PQ/5oaqhTMRFxmIfFNN2zaBbLYRZWxlKlF8OdHw6yvtlLc40rK3GIJ5L89IU+btrWxqo6N/fdtY+37O3gDVe0Zzz+jt3t/Oa/voo2s5Cqs6kakHTWUmE0GJm3OtqizUxntayH3rEQq+vdS7q3bBBxmIHWOmWW+8L5t+u2sCa8FTu4VEpYU7FevJh5uHqlcH4kxIaWapq9rtREwPl44swIQ/4If3CVkZZaX+3k/7z1Sratrs14vMNuo6OxOvX1OhGHkmIsFMsqbrAqrRBuIhTjxICfqzobFzhr6RFxmMH7vnWAD373eaDQloO4lSw6Gj201Lg42D1W7K0sGfFEkp7REBtavEbr9ixiDj85eJE6t4ObtufXfHFtgwelRBxKhdEFZjlYWC00BvwRnj0/itbwsg1NS729BZFspTS01jx1dgR/OM6RixOLGvRjcdV6Yzzm1hl9cVYySil2r2vkUM94sbeyZPSOTRJParqavQz6IwSjCcKxxJzzOoKROP925BJv3LOWKkd+Mz1cDhvt9R4phCsB4okkE5Ox7MQh5VYKM+AL43LYuHJdw1JvcUHEckhjwBdJ9VP6/G9OMRlLLDpbaXNbLT//8PU0FDktrdTY09nA2aEgE6HKnGR2zsxU2tDiTVmP88UdvvX0BSZjCd66r2POY7JhXZNHLIcSYNwsoM1GHOo8DlwOG4P+CM+cG2X3uoaSGPol4pCGlWu8d30jvzo6AOQ/6EeYnz3mk9Gh3sq0Hs6bNQ5dLd7UG8RcrqWJUIwvPXKam7a1LtrX3NlULZZDCWAVwGUTc1BKsaquijODAY5cnODaEnApgYjDNCxx+NSbLk9VRS825iBk5vKOepSiYuMO54aD1FY5aPa6UvGm4TmC0l9+9Az+SJw/u337ol+3s6maQX9k1vAYYXnJpuleOqtq3fzu1DBJDS/bmHGczbIj4pDGqYEATV4X21bX8rZrOgGxHJaKWreTrW21HOyuTMvh3HCQrhYvSqmUWymT5XBpIsw/PnGON+5em7FFRq5YGUvnVkhjw1JlLIu+SumsqnMTTSRx2lVJZCqBiMM0Tg76U4Hj99+4iVsuW8XuEggMVSp7Ohs41DNOiXRoLyjnRwxxAGgya1xGM8QcvvjIaZJa819u3VqQ133ZhmaUgn8/PlCQ6wn5MRrMPuYA0Go22buiowHPAu02lgsRBxOtNacGAmxdZeSUr6pz87W796UKjITCs3tdAxOTsYp7yo3Gk1wcm2RDs/EUX1vlwGlXGd1KT5wZ5sZtbakn/sWyut7N1V1NPPhCX0WKbrlgWQ4NWc5wsdJZrymReAOsQHHoHgnx6V+fmNV/pm8iTCASZ8uqzAVHQuHZY5rPleZa6hufJKmnXDyGa2l2rUMyqekdnWSjaWEUit+7sp3TgwFOSBO+ojEajOJ12bPOOrIK4UqhvsFixYnDL4708/nfnOb/+8nhaQJhBaO3tkk9wnKxua0Gr8tecfUOPWNGtlC6NdDkdc1yK13yhYkmknQ2F8ZqsHjtrtXYbYqfvdC38MHCkjAajGbVV8ni1h2r+Phrt/PKzS1LuKvcWHHi8L4bNvLBmzbz3Wd7+PMfvUjCFIhTljiI5bBs2G2KyzvqOdJX2m00DlwY40gOrT56Ro0RqOni0FzjYniGOFwwBwF1FsilZNFSU8XLNzXzsxf6xbVUJLKtjraodTt536s2ldS0yNLZyTKhlOJPX7OVj96yhX8+0Mvf/fI4ACcHArTUVOWk9sLiaat1p3LCS5W//tlR/ue/Hsv6+J6xEE67YnVavCpTf6XuUSPWsr6psG4lMFxL3aMhXuwtbeGtVMZCuYlDKbLixAEMgfjoLVt5+8s6+frj5zjcO8GpAb+0uCgCDdXOVDVpqTIxGePCSPZB857REGsbPNjT+vFn6q/UPRrCYVO0NxQ+6eG2natx2W08KK6lojBqznIoZ1akOFh87LXbaa6p4uM/fpFTgwFxKRWBBo+TiclYSQ+o8YfjDPgihGPZFZb1jIZmZR8117hS/ZUsLoyEWNvoWRJXQr3HyVXrG3i+QosMS52xHGMOpciKFoc6t5O/+r2dHLnoIxRNiDgUgTqPE63BX8KDfwJmv61sexb1jE1Oa6UNU/nu6f2VukdDBY83pFMOLrtKJBxLEIwmxK1U7rzu8tXcuK0VQNxKRcBqSFiqDfgi8QTRRBKY6pc0H8FInNFglHVNnmnrmaqkl1ocmrzZDRkSCstoDn2VSpkVLw5KKf7uD67gQ6/eXBJtclcaDWbX2/HJ0nwTs7r0QnaWQyqNtXG2WwmM+cBgxDHGQzHWFziNNZ0mrwt/OE7MFDdheegdM7LV1jZ6FjiytFnx4gBGVemfvmYbzhJKI1sp1JsVpBMlGpQOpImDlXo6H5nSWGFqIuCIaTl0p9JYC5+pZGH5vMW1tLxYDxFLaRUuB/JuKBSVlOVQom6lQFos5EIWloP1xrBuxlNj84z+ShfMNNYldSuZbo3RkIjDUhGNJ/na785OSzToHgliU8ZkvnJGxEEoKpblUKrprL6wsa+WGte0dNbPPHSSN37xCV665Jt2fM9oCK/LPisYafVXsmIAqafLJXYrwdxzJITF88TpYf7m58d5+Phgaq17NMSaeg8uR3m/vZb37oWyp960HHwlKg6WW2lnez0XxyaJJ5Jorfnh/h4O9Yzz+194gvufPJ+qRO4dM9JYlVLTrqOUoq3WzelBoxK/eyRES42LmqqlawmfEgexHJaMU+bv82RaH6sLo6EljSUtFyIOQlGpctjxOO2Ml+gbmOVW2tleRzyp6RsP0z0aom8izEdv2cIrNjXzlw8e5TvPdgNGzGFmGqvFm/as5eGXBjk96OfCyNJmKsGUOEjMYek4NRAA4PRgILXWs8RZaMuFiINQdOo9zmWLOTx8fID/lUMrDCtbadfaesCIFTx1ZgSAN1zRzjfefTV7Ohv46qNniSeS9IyFZqWxWvzxKzfgdtj54iNnljyNFabaRUs669JxyhQFy4IIROIMB6JL6i5cLkQchKLTUO1ctmylnxzq4+uPn5sWaJ4P67hd7YY4nB8J8dTZEVprq9jUakx6e98NG+keDfHdZ7sJRROz0lgtmrwu3nltJz89dJG+iUk6m5cuUwnAabdR53aI5bBEaK1TFsO54SCxRDI1v1ssB0EoAPWe5euvZP3xHu/3LXCkgT8cx2W30dHoocpho3skyJNnRrhuY3MqrnDrjtV0NVfzf359EpidxprOf7x+Iw67Da1h/TK8gTTXVInlsEQM+CIEInH2dDYQS2gujART6c5L0UxxuRFxEIpOvce5bBXSVoHS0SxbcPvDMWrcDmw2RWdTNY+cGGLIH+G6TVND4O02xXuv35iyfuZ7amyrc3Pn1esAliVo2VjtTE0lEwqL5Up6/eVrAKOzs1gOglBAlsutNBlNMBwwKpSPZWk5BCJxat1GRtH6Zm/KjXDdxuZpx71lb0eqRUbHApWxH71lK39669ZlmU/e5K1KzTMWCosVjL5t52qUMr6+MBqk3uNMpWiXMyIOQtFpqHYtS/uMXrO1hVJwtG9KHE4N+PnMQyczDsYJhOOpdFPrSX9NvXvWU7/baeejt27l+i0teBdIT23yuvjQzVuWZbBLk9c5a46EUBhODQZoqHbS0ehhXWM1Jwf9dI9OVoTVACIOQglQ73ESjiWzbomdL5ZL6er1TZwaCBCNGz2HvvLoWT738CnOZmis588gDunxhnTede16vvWely3V9vOiyVvFWDAmE+GWgDODAba01aCUYktbDacHAnSPBCsiUwlEHIQSYLkK4aymeLftWk00keT0YIBEUvOblwYAeP7C7NkH/kicWrexv/VmdtG1m5pnHVeqNHmdRBPJrLOzhOzQWnNy0M9mc+b8llW1nB0OcHFcLAdBKBgNy9RCo2c0RJXDxqu2GkPcj/ZNcODCGGNmMPz57vFZ5/jDsVTM4bqNzXziddv5vSval3SfhcRqGz0mcYeCMhKMMh6KsbnNmAGzpa2GWEITS+hlyUJbDpaudl8QsqR+mZrvGdXLHja01OBx2jnW7+PkgB+nXXH52noOZpiaFohMuZVcDhv33LBpSfdYaFIN/0KVUZhVKljB6C2m5ZA+KEwsB0ApdV4pdVgpdUgptd9ca1JKPaSUOmV+bEw7/uNKqdNKqRNKqdvS1vea1zmtlPqcyuTQFSqWBo858GeJLYfecaPvkd2m2L6mlqN9Ph46NsB1m1q4fksrJwb8+MNTe9BaEwhPZSuVI5blIEHpwnJ6yBAHy620qW2qrqFSRLgQbqWbtNa7tdb7zK8/Bjystd4CPGx+jVJqB3AnsBO4HfiSUspunvNl4B5gi/nv9gLsSygTUm6lJc7H7xmdTFUv72yv4/kLY5wfCXHrZW1ctb4RreGFnqn6h3AsSTypqSljcWg250hIOmthOT3gx+uys6beDUC1y0FHowenXbGmvrxbdVssRczhDuB+8/P7gTemrX9Pax3RWp8DTgPXKKXWAHVa66e0kVLxQNo5wgqgzrP0A3984RgTk7FUDcKONfXEk0YGzy07VqVqDp5Pcy35I8Z+rIB0OdLoNfYulkNhOTUYYPOq2mlZazvW1NHV7MVuqwzHx2IfiTTwa6WUBr6qtb4XWKW17gfQWvcrpdrMY9cCT6ed22uuxczPZ67PQil1D4aFQWdn5yK3LpQKtVUObGppxaF3xoS2ne11AOxaW5d60tvSVjMt7mC1665dwrbaS02NOUdCLIfCkUxqDl+c4A0zEhP++o6dhKJLm469nCz2rn+F1rrPFICHlFIvzXNsJjnV86zPXjTE516Affv2SeJ2hWCzqSXvzDpztvO21bXUe5z8/pVTf+BXdTbyq2OX0FqjlEp1ZF3KmQtLjVKKJq9LLIcCcmYogD8c56rO6RXuleJOsliUW0lr3Wd+HAR+DFwDDJiuIsyP1oikXmBd2ukdQJ+53pFhXVhB1HuWtoWG1fPGciu5nXZ+9+c38d5Xbkwdc9X6BsZDsVQxnFUbUM4BaTCC0mI5FI6DZsrzns7GBY4sb/IWB6WUVylVa30OvAY4AjwI3G0edjfwU/PzB4E7lVJVSqkNGIHnZ00XlF8pda2ZpXRX2jnCCqG+2rWkdQ69Y5PUVDlSwW+AOrcTW5p/+Crzj90qhktZDmUuDs01Lmm+V0Ce7x6j3uNkY0v5d16dj8Xc9auAH5sBGQfwHa31vymlngN+oJR6D9ANvBVAa31UKfUD4BgQBz6gtbYcdO8Hvgl4gF+a/4QVhNGZdenewHrHQnQ0ejK2vbDY1FpDrdvBoZ5x3rpvXSqttbaqfAPSYFgO6b2khLkJxxKMBKMEwnGqXfaM7dcPdo+ze13DtAeLSiRvcdBanwWuzLA+Atw8xzmfBD6ZYX0/sCvfvQjlT4PHSffI7N5GhaJndHLeOQtgxD42t9Vwdqiy3EpGzEEsh4XoGQ3xpi89wXDA+L9yOWz87s9uYlWdO3WMPxzj5KCf116+uljbXDakfYZQEjRUF37gz8HuMb75xDnODgXonWd8ZzobWrycs2IOpltpoS6rpU6T18XEZIxYIlnsrZQssUSSD333IJF4kk+96XL+/s2XE40n+eGB3mnHvdAzgdZTLshKprzveqFisALSyaQumLn+Vw8e5YXeqaK2ucZ3prOxxcu/PH+RUDSOPxKnymHD5SjvZ6gmc87EeChGa21VkXdTmnz61yc51DPOF99+Fa+/whje85ODfXzvuW7e/6pNqXvSSnW+chlmcRQbEQehJKj3ONHa6IJq9VpaDL5wjMMXJ3jHyzrZuqqWg91j3Lpj1YLnbWgx2iGcHw7hD8fLugDOwhKHsVBUxCGN04MBjvX7eKnfx1cePcPbrlmXEgaAO69Zx0e+d4gnzgxz/ZZWAA72jLOlraYg92ipI+IglAQNZg+giVCsIH94z54dJanhDVe0c92mZu5+eVdW520wM1DODQenTYErZ5rM/9uRQNRIIxHoG5/k1s8+ijXm4poNTfzFG3ZOO+a2natpqHbyvWd7uH5LK1rrrB8yKoHyv/OFiiDVmXUySieLb1z21NkRXA4bezpzM/+7WozXPjccMOZHl3m8AaDFtBYG/eEi76R0ODHgR2v4f3fu5jU7VuNx2Wcd43ba+YM9HXzr6fOMBCL0T4QZC8Uqvr7BovzvfKEisOoPClUI9+SZEfatb8TtnP1HPx/VLgdr6t2cHQ6WfUdWCyvW0j0SKvJOSofzZtLBdZuaMwqDxduuWcc3njjHjf/wW/xm9trVXU3LssdiU/53vlARWH7xQ93jKf9uvowFoxzv9/Gnt27N63wrY2kymqDTW/7tlz0uO6vr3JwXcUhxfjhITZWD1pr5YzBbVtVyzw0bGfCFuXxtPVd3NaXadFc6Ig5CSbCxxcutO1bx/x4+xTUbmnjZxvxHcT59dgSAl2/O7xpdLV5+cbgfr8tREQFpMOZfX1jCOpJy4+xwkK6W6nmLIi0+8brLlmFHpUd55+gJFYNSik//4ZV0NlXzge8c5NJE/v7xp86OUO2yc0VHfumGG1u8jIdiDPjCFeFWAuhq9orlkMb5kSBdzZXd/mKxiDgIJUOd28lX37WXUDTOf/7+obyv8+SZEa7uasJpz+/2tjKW4kldEQFpMKaTDQciBE2/+UomEk9wcWyy4nsjLRYRB6GksHy8T50dySk4rbWmdyzEjw/2cnowwHWb8ndLbUh706gkywHgglgP9IyGSGrDfSjMTWXc+UJFsXe9kSp4uHeCV25pyeqcD333IP/6Yj8AXpedWy5rW+CMubHmTCfKfERoOuvNucYXRoLsMAcdrVTODRsCKeIwP5Vx5wsVhRUrONQzlrU4PH12lFdubuHPbt/G9tV1i2p54bTb6Gyq5pyZ0VIJWOIgcYepNFZxK82PuJWEkqPe42RTq5dDPeNZHR+KxhkORLhuUzNXdDQUpBeS5Vqqq5BspVq3k5Yal2QsAedGgjRUO1NV+UJmRByEkmT3ukYO9Yyj9cLTYHvHjPnQ1pS3QmCJQ6W4lQA6m6ol5gCcG5JMpWwQcRBKkt3r6hkORFNv/PNhVf52LjCvIRcsf3SluJXACEqXk+UwHIjwyr//DQfMyXyF4vxIUFxKWSDiIJQku9cZQelsXEs9Y4Y4LDTMJxd+74o1/OmtW9m6qrZg1yw265u99E2ECccSCx9cAuw/P0rv2CSPvDS48MFZMhlN0D8RlmB0Fog4CCXJ9jW1VDlsvJCNOIxO4nHaafYWzofcUO3iQzdvwV5BoyCtpoI9o+XhWnrRnMVx+OLEAkdmz3nTchJxWBgRB6Ekcdpt7Fpbn5Xl0D0aorMpu1YIK5n1pp+9XDKWLFE4cnFiWuzpV0cvMRKILHh+/8QkwzOOk0yl7BFxEEqW3esaOHxxYsHxltmOAF3pdKXVOpQ6Wmte7J3A47QzEozSZ7ZT6RkN8b5vHeAfnzg/7/mJpOatX3mKP/vhi9PWz4nlkDUiDkLJcuW6BiLxJCcu+ec8RmtNz2iIjixGgK50Gqpd1LkdZZGx1D0aYmIyxu9f2Q4YBZEAj54cAuBI3/yupkdeGqR3bJJnz42SSE5ZHeeGgrTUVFVUosFSIeIglCx7zDm91tzeTIwGowSjiYJmKlUyXS3elN+9lLHiDX94dQd2m+LwRcO9aInD0T7fvOf/0zMXAAhE4pwcmHq4eKF3nMvWVE6SwVIi4iCULB2NHlbXuXnm3Oicx/SYqa6FzFSqZLqavZwZDBR7Gwty+OIELoeNy9c2sHVVLYcv+oglkjx1ZgS308aQPzLnZLue0RCPnhziTXvWAqRSYQd8YU4OBHjl5uyq7lc6Ig5CyaKU4rpNzTx9dmTOYjgr80ZiDtmxe10DfRNh+icWrh8pJi/2jnPZmjpTIOo4cnGC5y+MEYjEufPqTgCOzWE9fPuZbhTw327bRmttVUocnjg9DMArRByyQsRBKGmu29jMcCDKqTmedrstcZCYQ1ZYIy6fO1/YwrJCkkxqjlz0ccXaegAu72hgNBjle8/1YLcp3nv9BiCzaykST/CD/T3cfNkq2hs87O1sTInD46eHafK62LFmZTcezBYRB6GksVpvP2k+9c2kdyxEs9eFVwKMWXHZmlq8LjvPzeOqKzbnRoIEInEu7zDFwRSJB1/o46rOBjoaq1nX5OFY/2xx+LcjlxgNRnnntesB2NfVSPdoiEF/mMdPDfPyTc3YKqh2ZSkRcRBKmnVN1XQ0enjKHP05k+7REB0Sb8gah93GVesbee586YnDhZEg8UQylZl0pdmdd/vqWhxmC/UbzPniO9bUZXQr/dPTF1jfXM31puvoKrP9+/ef7WHQH5F4Qw6IOAglz3Ubm3n67ChJMyVxLBhN1T70jE5KplKOXN3VxIkBf07DlJaaXxzu51X/8Fv2/s2/89l/P4nHaWdTq1GL4HbaU21MbthqiMPO9nrOmxaGxUuXfDx3fox3vmx9yjrY1V6Py2Hja4+fA8i6Bbwg4iCUAS/f3MzEZIxj/T7ODQe54R8e4e33PU0wEqdvfJJ1BezGuhK4uqsJreHAhdKwHhJJzWceOsmGFi+37lhFIBznhq0tONLGvF6zoYnVdW52mS6mne11aA0vpbmW/unpC1Q5bLxlb0dqzeWwcWVHPROTMbqaq6UeJgfEUSuUPNdtNJ72HnlpkJ8f7gcN+y+M8e5/fJZ4Uksaa47sXteA06547vwYr96+qtjb4V9f7OP0YIAvvH0Pb7iiHa31rFYof377dj746s2pXlfWNLujfT72dTXhD8f48fMX+b0r22mc0WPLcKONSZZSjojlIJQ8q+vdbGzx8n8fPsWJAT9ffMdV/MUbdqQybsStlBsel51da+uXPSj9y8P9nB6cXu2eSGr+38On2LaqltftWgOQsUeWx2WnpaYq9fXqOjdNXlcq7vCTgxcJRhOpQHQ615gZWteb8QohO0QchLLg2k3NJJKaj968lRu2tvJHr9jA+161EYdNsaWtptjbKzuu7mrixd6JWe27B31hIvHCt/S+97EzvP/bz/OmLz3J/rRg+IMvXOTsUJCP3LIlpywipRQ72+vYf2GULz5yms//5jSXr63nSjPDKZ2btrVx77v28podxbeSygkRB6EseM8rN/Cx127nQ6/enFr7+Gsv48D/uJW2OncRd1aeXN3VRDSRTLWpACPQf/OnH+UvfnI0tZZMau76xrPc88B+JkL5BbC/+2w3n/rFS9y6YxWtNVW88+vP8J1nuvmv//wCH/vRYbavruX2natzvu6O9jrODAX5h1+dYG2jh7++Y2dGq8NmU7xm52pJYc0RiTkIZcGm1ho2vWq2hVDvqYwZz8vNvvWNOO2KHx3o5ZoNhtvlH588jz8S54fP9/InN25iQ4uXnx/u5zGzn9GpLz3BfXftZXNb9r2JHjo2wCd+fJgbt7XyxbdfxcRkjLu+8Syf+PFhql123ry3g/e/alNeb9zveeUGNrZ4uX5LK+0NkpRQaMRyEIQVSKPXxV3XdfGDAz0c6/MRiMT55hPnuGZDE0674nMPnyKWSPLpX59g++pavn/PtfjDMd74xSenDWAKxxI88NR5esdmd3oNReP8j58cYfvqOr78jr24HDZaa6v4/vuu5Qtv38Mzn7iZT73p8rwTCtpq3fyHqztFGJYIEQdBWKF8+NVbqPc4+ZufH+PbT1/AF47z8ddu5+7ruvjJoYt86hfHOT8S4r/dto2XbWzmwQ++koZqJ+99YD9945NE40n+07ef5y9+epRbP/MY9z52ZtrsjS8+cppLvjD/646deFz21Hqd28kbrmin1i1WXykj4iAIK5T6aicfvXkLT54Z4bP/fpJXbG5mT2cj9/zwXJsAAAkBSURBVNywEY/Tzj8+cZ6ruxp59fY2ANobPHzj3VczGU3w3vv384HvPM9vXhrkv922jVdsbuZTv3iJ3/v84zx1ZoQLI0Hue+wcb9qzln1mtpBQXpSMOCilbldKnVBKnVZKfazY+xGElcA7rl3PxlYv4ViSD9xoBPuba6r4o1d0AUZ9QXqQd+uqWr7w9j28dMnHQ8cG+Ovf38kHbtrMfXft46vv2os/HOdt9z3Nm7/8FE674uOv3V6MH0soAGquVsjLugml7MBJ4FagF3gOeJvW+thc5+zbt0/v379/mXYoCJXLoZ5xHj0xxIdv3pwSgljCmMBnVSTP5N+OXCIST3DH7rXT1sOxBPc+dpYv//YMf377Nt79ig1Lvn8hN5RSB7TW+xY8rkTE4Trgr7TWt5lffxxAa/23c50j4iAIpUsiqVPVzEJpka04lIpbaS3Qk/Z1r7k2DaXUPUqp/Uqp/UNDQ8u2OUEQckOEofwpFXHIdCfNMmm01vdqrfdprfe1tkopvCAIwlJRKuLQC6xL+7oD6CvSXgRBEFY8pSIOzwFblFIblFIu4E7gwSLvSRAEYcVSEu0ztNZxpdQHgV8BduAbWuujC5wmCIIgLBElIQ4AWutfAL8o9j4EQRCE0nErCYIgCCWEiIMgCIIwi5IogssHpZQfODFjuR6YyHD4TLI9LtdjAVqA4QJfO9c9LMW1ZQ/576NS74mlvHal7yGXeyLXa2c6Lv311mutF64F0FqX5T9gf4a1e7M8N6vjcj12rn0t9tq57mEpri17kHtipf2ul3gPWd8Thdh3Pq9XaW6lnxX4uFyPzZWl2O9SXVv2sLh9FPrapfJ/sVTXrvQ95MNS7nsW5exW2q+z6A+y3JTqvoTiIfeEMJPlvifyeb1ythzuLfYG5qBU9yUUD7knhJks9z2R8+uVreUgCIIgLB3lbDkIgiAIS4SIg1AQlFKBBb7/W6WU+N1XEHJPlDciDnmy0I0vrDzknhBmUs73hIiDUDCUUjcqpf417esvKKXeXcQtCUVG7onyRcRhESilapRSDyulnldKHVZK3WGudymljiul7lNKHVVK/Vop5Sn2foWlR+4JYSblek+IOCyOMPAmrfVVwE3Ap5U1oR22AF/UWu8ExoE3F2mPwvIi94Qwk7K8J0qmZXeZooBPKaVuAJIYc69Xmd87p7U+ZH5+AOha/u0tO3GmP3C4i7WRIiL3xHTknijTe0Ish8XxDqAV2Ku13g0MMHXzR9KOS7AyhPgCsEMpVaWUqgduLvaGioDcE9ORe6JM74mS2UiZUg8Maq1jSqmbgPXF3lAxUEo5gIjWukcp9QPgReAUcLC4OysKck8g98QMyvKeEHHIA+vGB74N/EwptR84BLxU1I0Vj53AGQCt9Z8BfzbzAK31jcu8p2VF7olZyD1R5veEtM/IA6XUlcB9Wutrir2XYqOU+hPgw8BHtda/LvZ+ioXcE1PIPWFQ7veEiEOOyI0vzETuCWEmlXBPiDgIgiAIs5BsJUEQBGEWIg4LoJRap5R6xKxkPKqU+oi53qSUekgpdcr82GiuN5vHB5RSX5hxrf+glHrRvM7/LsbPIyyePO6JW5VSB8zq2ANKqVenXWuvuX5aKfW5tOIooYwo8D3xSaVUjypyXyZxKy2AUmoNsEZr/bxSqhajUOWNwLuBUa313ymlPgY0aq3/XCnlBfYAu4BdWusPmtdpxkjj26u1HlJK3Q88oLV+uAg/lrAI8rgn9gADWus+pdQu4Fda67XmtZ4FPgI8DfwC+JzW+pdF+LGERVDge+JajPqQU1rrmqL8QIjlsCBa636t9fPm537gOEaF4x3A/eZh92PcCGitg1rrxzFK5tPZCJzUWg+ZX/87JVQqL2RPHvfEQa11n7l+FHCbRWFrgDqt9VPaeEp7wDpHKC8KdU+Y33taa92/nPvPhIhDDiilujCsgmeAVdYv0PzYtsDpp4HtZrMtB8ZNsm7pdissB3ncE28GDmqtIxhvHr1p3+s114QyZpH3RMkgRXBZopSqAX6EkZrmy9U1rLUeU0q9H/g+Rn+VJzGsCaFMyfWeUErtBP4eeI21lOEw8fOWMQW4J0oGsRyyQCnlxPiFf1tr/S/m8oDpFrD8jYMLXUdr/TOt9cu01tcBJzDaCQhlSK73hFKqA/gxcJfW+oy53At0pF22A+hDKEsKdE+UDCIOC2Bmj3wdOK61/kzatx4E7jY/vxv4aRbXajM/NgL/CfhaYXcrLAe53hNKqQbg58DHtdZPWAebbga/Uupa85p3kcV9JJQehbonSgnJVloApdQrgd8BhzHcQQCfwPAn/gDoBLqBt2qtR81zzgN1gAujR/trtNbHlFLfBa40r/E/tdbfW66fQygcud4TSqn/Dnyc6Zbia7TWg8qYofxNwAP8EviQlj/KsqPA98T/Bt4OtGNYkl/TWv/VsvwgaYg4CIIgCLMQt5IgCIIwCxEHQRAEYRYiDoIgCMIsRBwEQRCEWYg4CIIgCLMQcRCEJUAp9SdKqbtyOL5LKXVkKfckCLkg7TMEocAopRxa668Uex+CsBhEHAQhA2bztH/DKGLaA5zEqGC+DPgMUAMMA+/WWvcrpX6L0S/rFcCDZtvmgNb6/yildgNfAaqBM8Afm7229gLfAELA48v30wnCwohbSRDmZhtwr9b6CsAHfAD4PPAWrbX1xv7JtOMbtNav0lp/esZ1HgD+3LzOYeAvzfV/BD5s9toShJJCLAdBmJuetL43/4TRDmEX8JDZbdMOpPfd//7MCyil6jFE41Fz6X7gnzOsfwt4beF/BEHIDxEHQZibmb1l/MDReZ70gzlcW2W4viCUDOJWEoS56VRKWULwNoxRnq3WmlLKafbjnxOt9QQwppS63lx6F/Co1nocmDAbtgG8o/DbF4T8EctBEObmOHC3UuqrGN0zPw/8Cvic6RZyAP8XY8zjfNwNfEUpVQ2cBf7IXP8j4BtKqZB5XUEoGaQrqyBkwMxW+let9a4ib0UQioK4lQRBEIRZiOUgCIIgzEIsB0EQBGEWIg6CIAjCLEQcBEEQhFmIOAiCIAizEHEQBEEQZvH/A/RpJj1EyblXAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data['inc'][-120:].plot()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
" for y in range(1991,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_september_week[:-1],\n",
" first_september_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG0VJREFUeJzt3X+M3PV95/HnyyyxgWKyhjXxD8BUcVAMSSEeGfeS65W4tZ1LhY0KyV5oWBVLboCmpDoJ7JATOnAlqE6X1orCYYWCgQTw+YpwW3xkMReVax2bdSAFQ1xvAjGOHXa5dcBE8pa13/fHfDae3ax3PzM7u/NjXw9pNN95z/fzme+HL+v3fH58v6OIwMzMLMe0Wh+AmZk1DicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZtpZaH0C1nXfeebFgwYJaH4aZWUPZs2fP2xHRNtZ+TZc0FixYQFdXV60Pw8ysoUj6ac5+Hp4yM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYTZF9Lx7jM/dv5Oeo8dqfSjWwJw0zKaIjTv288IbfWx8dn+tD8UaWNNdp2FmQ13yte30D5z41etHdx3g0V0HmN4yjX0bPlPDI7NG5J5GCXffrRk9f9tVXH35XGacXvxzn3H6NFZdPpfnb7+qxkdmjchJo4S779aMZs+cwdnTW+gfOMH0lmn0D5zg7OktzD57xinL+AuUnYqHp3D33Zrf2+/1c/2VF/GFJRfynd0H6B0jGZR+gdpwzccm6SitESgian0MVVUoFKLce0/1vHuMDU+/xnf3/pxj759gxunTWHHph7jjsx8d9duYWbMZ/gVqkL9ANT9JeyKiMNZ+Hp6isu67WTPy/IeNxcNTSbndd7Nm5C9QNhYnjeT+L57slW1YfVkNj8SstvwFykbjOQ0zM/OchpmZVZ+ThpmZZctKGpL+XNJeSa9IekzSDEmzJHVK2p+eW0v2Xy+pW9I+SStK4oslvZze2yhJKT5d0hMpvkvSgpIyHekz9kvqqF7TzcysXGMmDUnzgD8DChFxGXAa0A6sA3ZExEJgR3qNpEXp/UuBlcA3JZ2WqrsPWAssTI+VKb4GOBIRHwa+Dtyb6poF3AlcCSwB7ixNTmZmNrlyh6dagDMktQBnAoeAVcDm9P5mYHXaXgU8HhH9EfE60A0skTQHmBkRO6M4+/7wsDKDdW0FlqVeyAqgMyL6IuII0MnJRGNmZpNszKQRET8D/htwADgMvBMR3wXOj4jDaZ/DwOxUZB7wZkkVB1NsXtoeHh9SJiIGgHeAc0epy8zMaiBneKqVYk/gYmAucJakPxqtyAixGCVeaZnSY1wrqUtSV29v7yiHZmZm45EzPPV7wOsR0RsR7wN/C/w74K005ER67kn7HwQuKCk/n+Jw1sG0PTw+pEwaAjsH6BulriEiYlNEFCKi0NbWltEkMzOrRE7SOAAslXRmmmdYBrwGbAMGVzN1AE+l7W1Ae1oRdTHFCe/daQjrqKSlqZ4bhpUZrOta4Lk07/EMsFxSa+rxLE8xM7MJ51vE/7oxbyMSEbskbQV+AAwALwKbgN8AtkhaQzGxXJf23ytpC/Bq2v+WiDieqrsJeAg4A9ieHgAPAI9I6qbYw2hPdfVJuht4Ie13V0T0javFZmaZfIv4X+fbiJgN0/PuMf70sRf5xheu8I36pqipeIt430bErEL+BUfzLeJPzXe5NUv8C442yLeIPzX3NMwSf7u0UoO3iH/y5k9y/ZUX0ftef60PqS64p2GW+NullfJv7IzMScOshH+AyGx0Xj1lU4JXRJmNzqunbMI10oVPXhFlVh0enrKKNcKFT14RZVZdHp6ysjXShU897x5jw9Ov8d29P+fY+yeYcfo0Vlz6Ie747EebZpjKQ29WDR6esgnTSEtTp8KKKA+92WTy8JSVrdH+IW7WFVEeerNacNKwijTSP8TNut7++duuOuXQm9lEcdKwijTrP8SNpNF6fNYcnDTMGlgj9fisOXj1lJmZefWUmZlVn5OGmZllc9IwM7NsThpmdaiR7utlU4uThlkd8lXeVq+85Nasjvgqb6t37mmY1ZFGuq+XTU1OGmZ1xFd5W70bM2lIukTSSyWPdyV9RdIsSZ2S9qfn1pIy6yV1S9onaUVJfLGkl9N7GyUpxadLeiLFd0laUFKmI33Gfkkd1W2+Wf0ZvMr7yZs/yfVXXkTve/21PiSzXynrinBJpwE/A64EbgH6IuIeSeuA1oi4XdIi4DFgCTAXeBb4SEQcl7QbuBX4PvA0sDEitku6Gfh4RHxJUjtwTUR8XtIsoAsoAAHsARZHxJFTHaOvCDdrDv6dkMk1UVeELwN+HBE/BVYBm1N8M7A6ba8CHo+I/oh4HegGlkiaA8yMiJ1RzFQPDyszWNdWYFnqhawAOiOiLyWKTmBlmcdsZg3IK8jqU7mrp9op9iIAzo+IwwARcVjS7BSfR7EnMehgir2ftofHB8u8meoakPQOcG5pfIQyZtaEvIKsvmX3NCR9ALga+J9j7TpCLEaJV1qm9NjWSuqS1NXb2zvG4ZlZPfMKsvpWzvDUZ4AfRMRb6fVbaciJ9NyT4geBC0rKzQcOpfj8EeJDykhqAc4B+kapa4iI2BQRhYgotLW1ldEkM6s3lawg8xX0k6ecpPGfODk0BbANGFzN1AE8VRJvTyuiLgYWArvTUNZRSUvTfMUNw8oM1nUt8Fya93gGWC6pNa3OWp5iVgb/QVmjKXcFmec/Jk/W6ilJZ1KcW/jNiHgnxc4FtgAXAgeA6yKiL713B3AjMAB8JSK2p3gBeAg4A9gOfDkiQtIM4BHgCoo9jPaI+EkqcyPw1XQofxERD452rF499eu+9uTLfHv3Aa5fciEbrvlYrQ/HrGqGz38M8vxH+XJXT/lHmJpYJX9QXuZojaTn3WOn/J10//9bHv8Ik1U0oehuvjUSX0E/+XzDwiZWzh+Ulzlao/LvpE8uJ40ml/sH9fxtV52ym29Wz+7/4skRlQ2rL6vhkUwNThpNLvcPyt18M8vhOY0J1kjLXX2jPDMbi1dPTTAvdzWzRpC7esrDUxPEE8tm1ow8PDVBKlnu2khDWWY2NTlpTJBKJpZ9jYSZ1TsPT02g3OWuHsoys0bhifAKVfN2G74VgjUy33qmOfg2IhOsmkNJvkbCGpmHVacWD0+VaaKGknwrBGs0Hladmjw8VSYPJVmlmm0Yx38LzcXDUxPEQ0lWqpxl0s02jOO/hanJw1MV8FCSDSpNBKe64r+Zh3H8tzD1eHjKrALl/MCVh3FOarYhumbi4SlrSI1yVXw5V/x7GOekZhuim4o8PGWTIvcbZs5wTz0oNxFM9WGcZh6im2o8PGWTYqy7/Vbye+a19iePdNF29owhiaD090vsJA/R1T/f5dbqQu43zEb85UD/Ylw+D9E1D89p2ITKHfv3PyrNzz/y1Rzc07AJVU4ymOrj/s2uXnpmXsE1Plk9DUkflLRV0o8kvSbptyXNktQpaX96bi3Zf72kbkn7JK0oiS+W9HJ6b6Mkpfh0SU+k+C5JC0rKdKTP2C+po3pNt8mS+w3z/i8W2LD6MhbNncmG1Zd5fsAmhFdwjU/WRLikzcDzEfEtSR8AzgS+CvRFxD2S1gGtEXG7pEXAY8ASYC7wLPCRiDguaTdwK/B94GlgY0Rsl3Qz8PGI+JKkduCaiPi8pFlAF1AAAtgDLI6II6c6Vk+Em9lIGnGxxWSq2nUakmYCvwM8ABAR/xYRvwBWAZvTbpuB1Wl7FfB4RPRHxOtAN7BE0hxgZkTsjGKmenhYmcG6tgLLUi9kBdAZEX0pUXQCK8c6ZjOz4Sr5NU37dTnDU78J9AIPSnpR0rcknQWcHxGHAdLz7LT/PODNkvIHU2xe2h4eH1ImIgaAd4BzR6lrCElrJXVJ6urt7c1okplNNV5sUR05SaMF+ARwX0RcAfwSWDfK/hohFqPEKy1zMhCxKSIKEVFoa2sb5dDMbCrzCq7xy1k9dRA4GBG70uutFJPGW5LmRMThNPTUU7L/BSXl5wOHUnz+CPHSMgcltQDnAH0p/rvDynwvq2VmZsPUywquXPW40mvMnkZE/Bx4U9IlKbQMeBXYBgyuZuoAnkrb24D2tCLqYmAhsDsNYR2VtDTNV9wwrMxgXdcCz6V5j2eA5ZJa0+qs5SlmZtb06nGlV+51Gl8Gvp1WTv0E+GOKCWeLpDXAAeA6gIjYK2kLxcQyANwSEcdTPTcBDwFnANvTA4qT7I9I6qbYw2hPdfVJuht4Ie13V0T0VdhWM7OGUM/36vK9p8zM6kwt7tXlW6ObmTWoel7p5duImJnVoXq9rY6Hp8zMzMNTza5RfuHOzJqLk0aDqseleGbW/Dyn0WDqeSmemTU/9zQajG+6Zma15KTRYOp5KZ7ZVDWV5hidNBqQb7pmVl+m0hyjl9yamVWomX7YyUtuzcwmWCVzjI0+lOWkYWZWoUrmGBt9KMtLbs3MxiH3dh/NslzecxpmZpOgFneuLYfnNMzM6kizLJf38JSZ2SSp1zvXlsPDU2Zm5uEpMzOrPicNa1iNvt7drBE5aVjDavT17maNyBPh1nCaZb27WSNyT8Majm8Pb1Y7ThrWcJplvbtZI8pKGpLekPSypJckdaXYLEmdkvan59aS/ddL6pa0T9KKkvjiVE+3pI2SlOLTJT2R4rskLSgp05E+Y7+kjmo13Bqbbw9vVhtZ12lIegMoRMTbJbG/BPoi4h5J64DWiLhd0iLgMWAJMBd4FvhIRByXtBu4Ffg+8DSwMSK2S7oZ+HhEfElSO3BNRHxe0iygCygAAewBFkfEkVMdq6/TMDMr32Rcp7EK2Jy2NwOrS+KPR0R/RLwOdANLJM0BZkbEzihmqoeHlRmsayuwLPVCVgCdEdGXEkUnsHIcx2xmZuOQmzQC+K6kPZLWptj5EXEYID3PTvF5wJslZQ+m2Ly0PTw+pExEDADvAOeOUtcQktZK6pLU1dvbm9kkMzMrV+6S209GxCFJs4FOST8aZV+NEItR4pWWORmI2ARsguLw1CjHZmZm45DV04iIQ+m5B3iS4nzFW2nIifTck3Y/CFxQUnw+cCjF548QH1JGUgtwDtA3Sl1mZlYDYyYNSWdJOntwG1gOvAJsAwZXM3UAT6XtbUB7WhF1MbAQ2J2GsI5KWprmK24YVmawrmuB59K8xzPAckmtaXXW8hQzM7MayBmeOh94Mq2ObQG+ExH/W9ILwBZJa4ADwHUAEbFX0hbgVWAAuCUijqe6bgIeAs4AtqcHwAPAI5K6KfYw2lNdfZLuBl5I+90VEX3jaK+ZmY2Db41uZma+NbqZmVWfk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZtuykIek0SS9K+vv0epakTkn703Nryb7rJXVL2idpRUl8saSX03sbJSnFp0t6IsV3SVpQUqYjfcZ+SR3VaLSZmVWmnJ7GrcBrJa/XATsiYiGwI71G0iKgHbgUWAl8U9Jpqcx9wFpgYXqsTPE1wJGI+DDwdeDeVNcs4E7gSmAJcGdpcjIzs8mVlTQkzQc+C3yrJLwK2Jy2NwOrS+KPR0R/RLwOdANLJM0BZkbEzogI4OFhZQbr2gosS72QFUBnRPRFxBGgk5OJxszMJlluT+OvgNuAEyWx8yPiMEB6np3i84A3S/Y7mGLz0vbw+JAyETEAvAOcO0pdZmZWA2MmDUl/APRExJ7MOjVCLEaJV1qm9BjXSuqS1NXb25t5mGZmVq6cnsYngaslvQE8Dnxa0qPAW2nIifTck/Y/CFxQUn4+cCjF548QH1JGUgtwDtA3Sl1DRMSmiChERKGtrS2jSWZmVokxk0ZErI+I+RGxgOIE93MR8UfANmBwNVMH8FTa3ga0pxVRF1Oc8N6dhrCOSlqa5ituGFZmsK5r02cE8AywXFJrmgBfnmJmZlYDLeMoew+wRdIa4ABwHUBE7JW0BXgVGABuiYjjqcxNwEPAGcD29AB4AHhEUjfFHkZ7qqtP0t3AC2m/uyKibxzHbGZm46DiF/rmUSgUoqurq9aHYWbWUCTtiYjCWPv5inAzM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyjZk0JM2QtFvSDyXtlfRfU3yWpE5J+9Nza0mZ9ZK6Je2TtKIkvljSy+m9jZKU4tMlPZHiuyQtKCnTkT5jv6SOajbezMzKk9PT6Ac+HRG/BVwOrJS0FFgH7IiIhcCO9BpJi4B24FJgJfBNSaeluu4D1gIL02Nliq8BjkTEh4GvA/emumYBdwJXAkuAO0uTk5mZTa4xk0YUvZdenp4eAawCNqf4ZmB12l4FPB4R/RHxOtANLJE0B5gZETsjIoCHh5UZrGsrsCz1QlYAnRHRFxFHgE5OJhozM5tkWXMakk6T9BLQQ/Ef8V3A+RFxGCA9z067zwPeLCl+MMXmpe3h8SFlImIAeAc4d5S6zMysBrKSRkQcj4jLgfkUew2XjbK7RqpilHilZU5+oLRWUpekrt7e3lEOzczMxqOs1VMR8QvgexSHiN5KQ06k556020HggpJi84FDKT5/hPiQMpJagHOAvlHqGn5cmyKiEBGFtra2cppkZmZlyFk91Sbpg2n7DOD3gB8B24DB1UwdwFNpexvQnlZEXUxxwnt3GsI6Kmlpmq+4YViZwbquBZ5L8x7PAMsltaYJ8OUpZmZmNdCSsc8cYHNaATUN2BIRfy9pJ7BF0hrgAHAdQETslbQFeBUYAG6JiOOprpuAh4AzgO3pAfAA8Iikboo9jPZUV5+ku4EX0n53RUTfeBpsZmaVU/ELffMoFArR1dVV68MwM2sokvZERGGs/XxFuJmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDNrAj3vHuNz9++k5+ixCf0cJw0zsyawccd+Xnijj43P7p/Qz2mZ0NrNzGxCXfK17fQPnPjV60d3HeDRXQeY3jKNfRs+U/XPc0/DzKyBPX/bVVx9+VxmnF7853zG6dNYdflcnr/9qgn5PCcNM7MGNnvmDM6e3kL/wAmmt0yjf+AEZ09vYfbZMybk8zw8ZWbW4N5+r5/rr7yILyy5kO/sPkDvBE6GKyJG30G6AHgY+BBwAtgUEX8taRbwBLAAeAP4XEQcSWXWA2uA48CfRcQzKb4YeAg4A3gauDUiQtL09BmLgf8HfD4i3khlOoCvpcPZEBGbRzveQqEQXV1d+f8FzMwMSXsiojDWfjnDUwPAf46IjwJLgVskLQLWATsiYiGwI70mvdcOXAqsBL4p6bRU133AWmBheqxM8TXAkYj4MPB14N5U1yzgTuBKYAlwp6TWjGM2M7MJMGbSiIjDEfGDtH0UeA2YB6wCBr/1bwZWp+1VwOMR0R8RrwPdwBJJc4CZEbEzit2bh4eVGaxrK7BMkoAVQGdE9KVeTCcnE42ZmU2ysibCJS0ArgB2AedHxGEoJhZgdtptHvBmSbGDKTYvbQ+PDykTEQPAO8C5o9RlZmY1kJ00JP0G8L+Ar0TEu6PtOkIsRolXWqb02NZK6pLU1dvbO8qhmZnZeGQlDUmnU0wY346Iv03ht9KQE+m5J8UPAheUFJ8PHErx+SPEh5SR1AKcA/SNUtcQEbEpIgoRUWhra8tpkpmZVWDMpJHmFh4AXouI/17y1jagI213AE+VxNslTZd0McUJ791pCOuopKWpzhuGlRms61rguTTv8QywXFJrmgBfnmJmZlYDOUtuPwU8D7xMccktwFcpzmtsAS4EDgDXRURfKnMHcCPFlVdfiYjtKV7g5JLb7cCX05LbGcAjFOdL+oD2iPhJKnNj+jyAv4iIB8c43l7gp5ntr0fnAW/X+iAmSLO2ze1qPM3atvG066KIGHOoZsykYZNLUlfOWulG1Kxtc7saT7O2bTLa5duImJlZNicNMzPL5qRRfzbV+gAmULO2ze1qPM3atglvl+c0zMwsm3saZmaWzUljEkj6G0k9kl4pif2WpJ2SXpb0d5JmpvgHJD2Y4j+U9LslZb4naZ+kl9Jj9ggfN2kkXSDp/0h6TdJeSbem+CxJnZL2p+fWkjLrJXWndqwoiS9Obe6WtDFdy1MTVW5X3Zyzctsl6dy0/3uSvjGsrro5X+l4qtm2Rj5nvy9pTzo3eyR9uqSu6pyziPBjgh/A7wCfAF4pib0A/Ie0fSNwd9q+BXgwbc8G9gDT0uvvAYVat6ekDXOAT6Tts4F/BRYBfwmsS/F1wL1pexHwQ2A6cDHwY+C09N5u4Lcp3jpmO/CZJmlX3ZyzCtp1FvAp4EvAN4bVVTfnawLa1sjn7Apgbtq+DPhZtc+ZexqTICL+keJFi6UuAf4xbXcCf5i2F1G81TwR0QP8AqjL9eQxOXdAnnTVatfkHvXYym1XRPwyIv4vMOQXfertfEH12lZvKmjXixExeKulvcAMFe/OUbVz5qRRO68AV6ft6zh5j60fAqsktah4G5bFDL3/1oOpy/xfaj0kUEoTdwfkmhpnuwbV3TnLbNep1O35gnG3bVAznLM/BF6MiH6qeM6cNGrnRoo/aLWHYrfz31L8byie0C7gr4B/png7FoDrI+JjwL9Pjy9O6hGfgib2Dsg1U4V2QR2eszLadcoqRojV/HxBVdoGTXDOJF1K8cfs/mQwNMJuFZ0zJ40aiYgfRcTyiFgMPEZxHJyIGIiIP4+IyyNiFfBBYH9672fp+SjwHepgCEQTfwfkmqhSu+runJXZrlOpu/MFVWtbw58zSfOBJ4EbIuLHKVy1c+akUSODKzIkTaP4G+j/I70+U9JZafv3gYGIeDUNV52X4qcDf0BxiKtmUrd9ou+APOmq1a56O2cVtGtE9Xa+oHpta/RzJumDwD8A6yPinwZ3ruo5m4wVAFP9QbEncRh4n2LGXwPcSnElxL8C93DyQssFwD6KE17PUrzzJBRXe+wB/oXiBNdfk1bo1LBdn6LYxf0X4KX0+I8Uf3VxB8Ue0g5gVkmZOyj2qvZRsnqD4mT/K+m9bwz+92jkdtXbOauwXW9QXMTxXvp/d1G9na9qtq3RzxnFL6C/LNn3JWB2Nc+Zrwg3M7NsHp4yM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZll+/+mYFOfctSjewAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2020 221186\n",
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}