...
 
Commits (17)
......@@ -5,3 +5,60 @@ module1/exo1/f683bbad4b.txt
## Gitlab Historique
505c4e26
Arnaud Legrand
# 15/11/21 : reprise
## Module 1 :
Réalisation des exercices 01-1, 01-2 (Markdown + quiz d'auto-évaluation), 01-3
## Module 2 :
Exercice Jupyter, le problème existant lors du cours de M1 est-il corrigé ? ... non.
# 22/11/21 :
## Module 3 :
Exercice Jupyter. Des problèmes existent tjs et empêchent la bonne réalisation de l'exercice.
https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/7390762294552deb550b486928646705bbb24333?urlpath=lab%2Ftree%2Fdemo%2FAnalyse_syndromes_grippaux.ipynb
# 28/11/21 :
Résolution de problème Jupyter : le problème était lié directement à l'ouverture via Anaconda Prompt et semble corrigé.
Reprise de l'exercice du module 3 qui semble fonctionner normalement.
## Module 4 :
### Quizz 14 - 4.1 L'enfer des données
1. b
2. b
3. a
4. b
5. a c
6. a
7. b c
### Quizz 15 - 4.2 L'enfer du logiciel
1. a d f g
2. a b c
3. a b c
4. f g
5. b
6. g
7. h j
8. f i
### Quizz 16 - 4.3 L'enfer du calcul
1. a c
2. b c
3.
## Module 3 :
Réalisation de l'exercice 2 : Analyse de l'incidence de la varicelle
Programme analogue à l'exercice sur la grippe avec les données récupérer via le site du réseau sentinelle.
### Réponses de l'exercice :
1. Quelle est l'année avec l'épidémie la plus forte ? 2009
2. Quelle est l'année avec l'épidémie la plus faible ? 2020
This diff is collapsed.
This diff is collapsed.
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n",
"print('Le minimum est :',np.amin(a))\n",
"print('Le maximum est :',np.amax(a))\n",
"print('La moyenne est :',np.mean(a))\n",
"print('L écart type est :', np.nanstd(a))\n",
"print('La médiane est :', np.median(a))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Le minimum est : 2.8\n",
"Le maximum est : 23.4\n",
"La moyenne est : 14.113000000000001\n",
"L écart type est : 4.312369534258399\n",
"La médiane est : 14.5\n"
]
}
],
"source": [
"import numpy as np\n",
"a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n",
"print('Le minimum est :',np.amin(a))\n",
"print('Le maximum est :',np.amax(a))\n",
"print('La moyenne est :',np.mean(a))\n",
"print('L écart type est :', np.nanstd(a))\n",
"print('La médiane est :', np.median(a))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Le minimum est : 2.8\n",
"Le maximum est : 23.4\n",
"La moyenne est : 14.113000000000001\n",
"L écart type est : 4.312369534258399\n",
"La médiane est : 14.5\n"
]
}
],
"source": [
"import numpy as np\n",
"a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n",
"print('Le minimum est :',np.amin(a))\n",
"print('Le maximum est :',np.amax(a))\n",
"print('La moyenne est :',np.mean(a))\n",
"print('L écart type est :', np.nanstd(a))\n",
"print('La médiane est :', np.median(a))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +51,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.