From 68a408824eb7e5a2ea1a7c1d8fde461ea8f4077e Mon Sep 17 00:00:00 2001
From: 7404ea6678ce6fbf3a726e36f2bf2079
<7404ea6678ce6fbf3a726e36f2bf2079@app-learninglab.inria.fr>
Date: Tue, 8 Oct 2024 20:29:54 +0000
Subject: [PATCH] Move forward on graphic for question 2 lack of few lines of
code to write text in the figure properly
---
module3/exo3/exercice_fr.ipynb | 646 ++++++++++++++++++++++++---------
1 file changed, 480 insertions(+), 166 deletions(-)
diff --git a/module3/exo3/exercice_fr.ipynb b/module3/exo3/exercice_fr.ipynb
index 18a05ef..4fd110f 100644
--- a/module3/exo3/exercice_fr.ipynb
+++ b/module3/exo3/exercice_fr.ipynb
@@ -374,7 +374,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -383,7 +383,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -439,7 +439,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@@ -565,16 +565,20 @@
" for perso in scenePersoList:\n",
" # On fait une recherche ignorant si les lettres sont en majuscules ou minuscules\n",
" # grâce à l'option passée à la fonction de recherche d'expression régulière\n",
- " # re.IGNORECASE\n",
- " m = re.search(perso, currentLine, re.IGNORECASE)\n",
+ " # re.IGNORECASE. On traite également du problèe posé par les maitre/maîtres\n",
+ " # car les valeurs utilisées dans scenePersoList sont celles issues du dictionnaire\n",
+ " # des personnages créé à partir de la liste en début de pièce.\n",
+ " persoRegex = perso\n",
+ " if perso.startswith(\"Maitre\"):\n",
+ " persoRegex = persoRegex.replace('Maitre','Maître')\n",
+ " m = re.search(persoRegex, currentLine, re.IGNORECASE)\n",
" if m:\n",
- " # le résultats de la recherche n'est pas vide\n",
- " # L'auteur est trouvé. Vérifions si quelqu'un\n",
- " # a déjà parlé dans la scène auquel cas l'auteur\n",
+ " # le résultats de la recherche n'est pas vide, l'auteur est trouvé.\n",
+ " # Vérifions si quelqu'un a déjà parlé dans la scène auquel cas l'auteur\n",
" # courant est le destinataire de l'auteur précédent.\n",
" if currentAuthor is not None:\n",
" # Il y avait déjà un auteur d'une réplique, currentAuthor\n",
- " # le nouvel auteur est donc aussi le destinataire de la réplique précédente.\n",
+ " # le nouvel auteur est donc le destinataire de la réplique précédente.\n",
" # On peut maintenant remplir le dictionnaire pour la réplique précédente,\n",
" # car nous avons toutes les informations nécessaires sur celles-ci.\n",
" # Pour rappel, la structure du dictionnaire,\n",
@@ -589,8 +593,10 @@
" # Fin du si sur le test de savoir si il y a un auteur d'une réplique\n",
" # précédent \n",
" # Dans tous les cas l'auteur courant est donné par la valeur \"perso\"\n",
- " # qui a été trouvée dans la ligne\n",
+ " # qui a été trouvée dans la ligne.\n",
" currentAuthor = perso\n",
+ " # Le break permet d'arrêter la boucle for car l'auteur courant a été identifié\n",
+ " break\n",
" \n",
" else:\n",
" isNotActEndDeclarationLine = not currentLine.startswith(\"Fin du\")\n",
@@ -642,14 +648,19 @@
" # il faut adapter name Perso pour être une expression régulière\n",
" persoRegex = namePerso\n",
" if namePerso.startswith(\"Maitre\"):\n",
- " persoRegex = namePerso.replace('Maitre','Maître')\n",
+ " persoRegex = persoRegex.replace('Maitre','Maître')\n",
" \n",
" m = re.search(persoRegex, currentLine, re.IGNORECASE)\n",
" if m is not None:\n",
" # Le résultat de la recherche n'est pas vide,\n",
" # le personnage fait partie des protagonistes\n",
" # on l'ajoute à la liste des personnages de la scène\n",
- " scenePersoList.append(m.group(0))\n",
+ " # On met le nom tel qu'il est écrit dans le dictionnaire\n",
+ " # créé à partir de la liste en début de pièce.\n",
+ " #scenePersoList.append(m.group(0))\n",
+ " scenePersoList.append(namePerso)\n",
+ " #print(\"scenePersoList : {}\".format(scenePersoList))\n",
+ " \n",
" else:\n",
" # La ligne est vide on sait que c'est le cas particulier\n",
" # le seul protagoniste est Harpagon\n",
@@ -672,7 +683,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -953,7 +964,7 @@
"
... \n",
" \n",
" \n",
- " 931 \n",
+ " 927 \n",
" 5 \n",
" Harpagon \n",
" Valère \n",
@@ -961,23 +972,23 @@
" 2 \n",
" \n",
" \n",
- " 932 \n",
+ " 928 \n",
" 5 \n",
" Valère \n",
- " Maître Jacques \n",
+ " Maitre Jacques \n",
" 5 \n",
" 6 \n",
" \n",
" \n",
- " 933 \n",
+ " 929 \n",
" 5 \n",
- " Maître Jacques \n",
+ " Maitre Jacques \n",
" Harpagon \n",
" 5 \n",
" 7 \n",
" \n",
" \n",
- " 934 \n",
+ " 930 \n",
" 5 \n",
" Harpagon \n",
" Valère \n",
@@ -985,7 +996,7 @@
" 10 \n",
" \n",
" \n",
- " 935 \n",
+ " 931 \n",
" 5 \n",
" Valère \n",
" Harpagon \n",
@@ -993,7 +1004,7 @@
" 10 \n",
" \n",
" \n",
- " 936 \n",
+ " 932 \n",
" 5 \n",
" Harpagon \n",
" Valère \n",
@@ -1001,7 +1012,7 @@
" 9 \n",
" \n",
" \n",
- " 937 \n",
+ " 933 \n",
" 5 \n",
" Cléante \n",
" Harpagon \n",
@@ -1009,7 +1020,7 @@
" 41 \n",
" \n",
" \n",
- " 938 \n",
+ " 934 \n",
" 5 \n",
" Harpagon \n",
" Cléante \n",
@@ -1017,7 +1028,7 @@
" 3 \n",
" \n",
" \n",
- " 939 \n",
+ " 935 \n",
" 5 \n",
" Cléante \n",
" Harpagon \n",
@@ -1025,7 +1036,7 @@
" 47 \n",
" \n",
" \n",
- " 940 \n",
+ " 936 \n",
" 5 \n",
" Harpagon \n",
" Cléante \n",
@@ -1033,7 +1044,7 @@
" 7 \n",
" \n",
" \n",
- " 941 \n",
+ " 937 \n",
" 5 \n",
" Cléante \n",
" Mariane \n",
@@ -1041,7 +1052,7 @@
" 36 \n",
" \n",
" \n",
- " 942 \n",
+ " 938 \n",
" 5 \n",
" Mariane \n",
" Anselme \n",
@@ -1049,7 +1060,7 @@
" 36 \n",
" \n",
" \n",
- " 943 \n",
+ " 939 \n",
" 5 \n",
" Anselme \n",
" Harpagon \n",
@@ -1057,7 +1068,7 @@
" 61 \n",
" \n",
" \n",
- " 944 \n",
+ " 940 \n",
" 5 \n",
" Harpagon \n",
" Cléante \n",
@@ -1065,7 +1076,7 @@
" 11 \n",
" \n",
" \n",
- " 945 \n",
+ " 941 \n",
" 5 \n",
" Cléante \n",
" Harpagon \n",
@@ -1073,7 +1084,7 @@
" 6 \n",
" \n",
" \n",
- " 946 \n",
+ " 942 \n",
" 5 \n",
" Harpagon \n",
" Anselme \n",
@@ -1081,7 +1092,7 @@
" 13 \n",
" \n",
" \n",
- " 947 \n",
+ " 943 \n",
" 5 \n",
" Anselme \n",
" Harpagon \n",
@@ -1089,7 +1100,7 @@
" 13 \n",
" \n",
" \n",
- " 948 \n",
+ " 944 \n",
" 5 \n",
" Harpagon \n",
" Anselme \n",
@@ -1097,7 +1108,7 @@
" 12 \n",
" \n",
" \n",
- " 949 \n",
+ " 945 \n",
" 5 \n",
" Anselme \n",
" Harpagon \n",
@@ -1105,7 +1116,7 @@
" 8 \n",
" \n",
" \n",
- " 950 \n",
+ " 946 \n",
" 5 \n",
" Harpagon \n",
" Anselme \n",
@@ -1113,55 +1124,55 @@
" 12 \n",
" \n",
" \n",
- " 951 \n",
+ " 947 \n",
" 5 \n",
" Anselme \n",
- " le Commissaire \n",
+ " Le commissaire \n",
" 6 \n",
" 13 \n",
" \n",
" \n",
- " 952 \n",
+ " 948 \n",
" 5 \n",
- " le Commissaire \n",
+ " Le commissaire \n",
" Harpagon \n",
" 6 \n",
" 14 \n",
" \n",
" \n",
- " 953 \n",
+ " 949 \n",
" 5 \n",
" Harpagon \n",
- " le Commissaire \n",
+ " Le commissaire \n",
" 6 \n",
" 8 \n",
" \n",
" \n",
- " 954 \n",
+ " 950 \n",
" 5 \n",
- " le Commissaire \n",
+ " Le commissaire \n",
" Harpagon \n",
" 6 \n",
" 12 \n",
" \n",
" \n",
- " 955 \n",
+ " 951 \n",
" 5 \n",
" Harpagon \n",
- " Maître Jacques \n",
+ " Maitre Jacques \n",
" 6 \n",
" 12 \n",
" \n",
" \n",
- " 956 \n",
+ " 952 \n",
" 5 \n",
- " Maître Jacques \n",
+ " Maitre Jacques \n",
" Anselme \n",
" 6 \n",
" 23 \n",
" \n",
" \n",
- " 957 \n",
+ " 953 \n",
" 5 \n",
" Anselme \n",
" Harpagon \n",
@@ -1169,7 +1180,7 @@
" 8 \n",
" \n",
" \n",
- " 958 \n",
+ " 954 \n",
" 5 \n",
" Harpagon \n",
" Anselme \n",
@@ -1177,7 +1188,7 @@
" 5 \n",
" \n",
" \n",
- " 959 \n",
+ " 955 \n",
" 5 \n",
" Anselme \n",
" Harpagon \n",
@@ -1185,7 +1196,7 @@
" 11 \n",
" \n",
" \n",
- " 960 \n",
+ " 956 \n",
" 5 \n",
" Harpagon \n",
" Anselme \n",
@@ -1194,7 +1205,7 @@
" \n",
" \n",
"\n",
- "961 rows × 5 columns
\n",
+ "957 rows × 5 columns
\n",
""
],
"text/plain": [
@@ -1230,41 +1241,41 @@
"28 1 Cléante Élise 2 150\n",
"29 1 Élise Cléante 2 27\n",
".. ... ... ... ... ...\n",
- "931 5 Harpagon Valère 5 2\n",
- "932 5 Valère Maître Jacques 5 6\n",
- "933 5 Maître Jacques Harpagon 5 7\n",
- "934 5 Harpagon Valère 5 10\n",
- "935 5 Valère Harpagon 5 10\n",
- "936 5 Harpagon Valère 5 9\n",
- "937 5 Cléante Harpagon 6 41\n",
- "938 5 Harpagon Cléante 6 3\n",
- "939 5 Cléante Harpagon 6 47\n",
- "940 5 Harpagon Cléante 6 7\n",
- "941 5 Cléante Mariane 6 36\n",
- "942 5 Mariane Anselme 6 36\n",
- "943 5 Anselme Harpagon 6 61\n",
- "944 5 Harpagon Cléante 6 11\n",
- "945 5 Cléante Harpagon 6 6\n",
- "946 5 Harpagon Anselme 6 13\n",
- "947 5 Anselme Harpagon 6 13\n",
- "948 5 Harpagon Anselme 6 12\n",
- "949 5 Anselme Harpagon 6 8\n",
- "950 5 Harpagon Anselme 6 12\n",
- "951 5 Anselme le Commissaire 6 13\n",
- "952 5 le Commissaire Harpagon 6 14\n",
- "953 5 Harpagon le Commissaire 6 8\n",
- "954 5 le Commissaire Harpagon 6 12\n",
- "955 5 Harpagon Maître Jacques 6 12\n",
- "956 5 Maître Jacques Anselme 6 23\n",
- "957 5 Anselme Harpagon 6 8\n",
- "958 5 Harpagon Anselme 6 5\n",
- "959 5 Anselme Harpagon 6 11\n",
- "960 5 Harpagon Anselme 6 6\n",
+ "927 5 Harpagon Valère 5 2\n",
+ "928 5 Valère Maitre Jacques 5 6\n",
+ "929 5 Maitre Jacques Harpagon 5 7\n",
+ "930 5 Harpagon Valère 5 10\n",
+ "931 5 Valère Harpagon 5 10\n",
+ "932 5 Harpagon Valère 5 9\n",
+ "933 5 Cléante Harpagon 6 41\n",
+ "934 5 Harpagon Cléante 6 3\n",
+ "935 5 Cléante Harpagon 6 47\n",
+ "936 5 Harpagon Cléante 6 7\n",
+ "937 5 Cléante Mariane 6 36\n",
+ "938 5 Mariane Anselme 6 36\n",
+ "939 5 Anselme Harpagon 6 61\n",
+ "940 5 Harpagon Cléante 6 11\n",
+ "941 5 Cléante Harpagon 6 6\n",
+ "942 5 Harpagon Anselme 6 13\n",
+ "943 5 Anselme Harpagon 6 13\n",
+ "944 5 Harpagon Anselme 6 12\n",
+ "945 5 Anselme Harpagon 6 8\n",
+ "946 5 Harpagon Anselme 6 12\n",
+ "947 5 Anselme Le commissaire 6 13\n",
+ "948 5 Le commissaire Harpagon 6 14\n",
+ "949 5 Harpagon Le commissaire 6 8\n",
+ "950 5 Le commissaire Harpagon 6 12\n",
+ "951 5 Harpagon Maitre Jacques 6 12\n",
+ "952 5 Maitre Jacques Anselme 6 23\n",
+ "953 5 Anselme Harpagon 6 8\n",
+ "954 5 Harpagon Anselme 6 5\n",
+ "955 5 Anselme Harpagon 6 11\n",
+ "956 5 Harpagon Anselme 6 6\n",
"\n",
- "[961 rows x 5 columns]"
+ "[957 rows x 5 columns]"
]
},
- "execution_count": 13,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -1302,7 +1313,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
@@ -1344,7 +1355,7 @@
"Index: []"
]
},
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -1355,7 +1366,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
@@ -1397,7 +1408,7 @@
"Index: []"
]
},
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -1443,7 +1454,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
@@ -1504,7 +1515,7 @@
" Anselme \n",
" \n",
" \n",
- " 910 \n",
+ " 923 \n",
" Mariane \n",
" \n",
" \n",
@@ -1520,7 +1531,7 @@
" Maitre Jacques \n",
" \n",
" \n",
- " 2370 \n",
+ " 2349 \n",
" Frosine \n",
" \n",
" \n",
@@ -1528,7 +1539,7 @@
" Valère \n",
" \n",
" \n",
- " 3331 \n",
+ " 3339 \n",
" Cléante \n",
" \n",
" \n",
@@ -1549,17 +1560,17 @@
"197 Maitre Simon\n",
"294 Le commissaire\n",
"517 Anselme\n",
- "910 Mariane\n",
+ "923 Mariane\n",
"1067 Élise\n",
"1520 La Flèche\n",
"1668 Maitre Jacques\n",
- "2370 Frosine\n",
+ "2349 Frosine\n",
"2740 Valère\n",
- "3331 Cléante\n",
+ "3339 Cléante\n",
"6160 Harpagon"
]
},
- "execution_count": 16,
+ "execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -1573,10 +1584,7 @@
"persoNbWords = np.zeros(len(avarePersoDict),dtype=int)\n",
"#print(textDataSynthesisTableDf.shape)\n",
"for index, perso in enumerate(avarePersoDict):\n",
- " persoRegex = perso\n",
- " if perso.startswith(\"Maitre\"):\n",
- " persoRegex = perso.replace('Maitre','Maître')\n",
- " m = textDataSynthesisTableDf['author'].str.match(persoRegex, case=False, na=False)\n",
+ " m = textDataSynthesisTableDf['author'].str.match(perso, case=False, na=False)\n",
" tmpDf = textDataSynthesisTableDf[m].copy()\n",
" persoList.append(perso)\n",
" persoNbWords[index] = tmpDf['speech_length'].sum()\n",
@@ -1611,7 +1619,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
@@ -1649,7 +1657,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
@@ -1708,7 +1716,7 @@
" 'color': array([0.35882353, 0.21994636, 0.99385914, 1. ])}}"
]
},
- "execution_count": 39,
+ "execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@@ -1732,9 +1740,54 @@
"En nous appuyant sur une page internet trouvée sur exemple d'affichage similaire à ce qui est fait dans l'étude \\(à savoir un affichage par Acte, sous forme de barres horizontales pour chaque scène le composant donnant la répartition de la paroles entre les différents protagonistes de chaque scène\\), on va pouvoir répondre à la seconde question. Voici un lien vers celle-ci: [geeksforgeeks_stacked-percentage-bar-plot](https://www.geeksforgeeks.org/stacked-percentage-bar-plot-in-matplotlib/)."
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour l'écriture du nombre de mots au sein des graphiques, il a fallu passer par des sorties intermédiaires pour voir comment fonctionnait matplotlib, dans quel sens il parcours les éléments de son graphiques par rapport au dataframe d'entrée que l'on veut représenter. Une sortie intermédiaire obtenue via des prints, nous à donner ce qui suit:\n",
+ "\n",
+ "```\n",
+ " Cléante Harpagon La Flèche Valère scene Élise\n",
+ "0 0.000000 0.000000 0.000000 0.561998 1 0.438002\n",
+ "1 0.831694 0.000000 0.000000 0.000000 2 0.168306\n",
+ "2 0.000000 0.644044 0.355956 0.000000 3 0.000000\n",
+ "3 0.141361 0.752618 0.000000 0.000000 4 0.106021\n",
+ "4 0.000000 0.268701 0.000000 0.695866 5 0.035433\n",
+ "\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.831694, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.141361, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.644044, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.141361, 2.75), width=0.752618, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.268701, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.644044, 1.75), width=0.355956, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0.561998, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.268701, 3.75), width=0.695866, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.561998, -0.25), width=0.438002, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.831694, 0.75), width=0.168306, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.893979, 2.75), width=0.106021, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.964567, 3.75), width=0.0354331, height=0.5, angle=0)\n",
+ "```\n",
+ "\n",
+ "On voit qu'il y a 25 éléments, qui correspondent à 5 scène x 5 personnages pour l'acte 1.\n",
+ "En regardant de près les valeurs, on voit que les 5 premièrs rectangles correspondent au premier personnage, la première colonne du dataframe, qui est affiché juste au dessus, les 5 rectangles suivants correspondent au second personnage et ainsi de suite. Il va falloir calculer les positions des textes en conséquences. "
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
@@ -1747,44 +1800,172 @@
"2 0.000000 0.644044 0.355956 0.000000 3 0.000000\n",
"3 0.141361 0.752618 0.000000 0.000000 4 0.106021\n",
"4 0.000000 0.268701 0.000000 0.695866 5 0.035433\n",
- "[array([1. , 0.21994636, 0.11065268, 1. ]), array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00]), array([0.78627451, 0.9005867 , 0.53165947, 1. ]), array([1. , 0.42912061, 0.21994636, 1. ]), array([0.64509804, 0.9741386 , 0.62211282, 1. ])]\n",
- " Cléante Frosine Harpagon La Flèche Maître Simon scene\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.831694, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.141361, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.644044, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.141361, 2.75), width=0.752618, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.268701, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.644044, 1.75), width=0.355956, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0.561998, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.268701, 3.75), width=0.695866, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.561998, -0.25), width=0.438002, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.831694, 0.75), width=0.168306, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.893979, 2.75), width=0.106021, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.964567, 3.75), width=0.0354331, height=0.5, angle=0)\n",
+ " Cléante Frosine Harpagon La Flèche Maitre Simon scene\n",
"0 0.295632 0.000000 0.000000 0.704368 0.00000 1\n",
"1 0.250493 0.000000 0.337278 0.023669 0.38856 2\n",
"2 0.000000 0.045455 0.954545 0.000000 0.00000 3\n",
"3 0.000000 0.301624 0.000000 0.698376 0.00000 4\n",
"4 0.000000 0.729400 0.270600 0.000000 0.00000 5\n",
- "[array([1. , 0.21994636, 0.11065268, 1. ]), array([1. , 0.61727822, 0.32653871, 1. ]), array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00]), array([0.78627451, 0.9005867 , 0.53165947, 1. ]), array([0.07254902, 0.78292761, 0.9005867 , 1. ])]\n",
- " Brindavoine Cléante Frosine Harpagon La Merluche Mariane \\\n",
- "0 0.011880 0.039256 0.000000 0.391012 0.013430 0.000000 \n",
- "1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
- "2 0.000000 0.000000 0.633333 0.000000 0.000000 0.000000 \n",
- "3 0.000000 0.000000 0.507979 0.000000 0.000000 0.492021 \n",
- "4 0.000000 0.000000 0.198473 0.801527 0.000000 0.000000 \n",
- "5 0.000000 0.000000 0.198473 0.534351 0.000000 0.137405 \n",
- "6 0.000000 0.551823 0.039347 0.175624 0.000000 0.233205 \n",
- "7 0.465116 0.000000 0.000000 0.534884 0.000000 0.000000 \n",
- "8 0.000000 0.283688 0.000000 0.567376 0.148936 0.000000 \n",
+ "Rectangle(xy=(0, -0.25), width=0.295632, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.250493, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.0454545, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.301624, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.7294, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.250493, 0.75), width=0.337278, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.0454545, 1.75), width=0.954545, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.7294, 3.75), width=0.2706, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.295632, -0.25), width=0.704368, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.587771, 0.75), width=0.0236686, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.301624, 2.75), width=0.698376, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.61144, 0.75), width=0.38856, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ " Brindavoine Cléante Frosine Harpagon La Merluche Maitre Jacques \\\n",
+ "0 0.011880 0.039256 0.000000 0.391012 0.013430 0.402376 \n",
+ "1 0.000000 0.000000 0.000000 0.000000 0.000000 0.669065 \n",
+ "2 0.000000 0.000000 0.633333 0.000000 0.000000 0.366667 \n",
+ "3 0.000000 0.000000 0.507979 0.000000 0.000000 0.000000 \n",
+ "4 0.000000 0.000000 0.198473 0.801527 0.000000 0.000000 \n",
+ "5 0.000000 0.000000 0.038168 0.534351 0.000000 0.000000 \n",
+ "6 0.000000 0.559501 0.039347 0.175624 0.000000 0.000000 \n",
+ "7 0.465116 0.000000 0.000000 0.534884 0.000000 0.000000 \n",
+ "8 0.000000 0.283688 0.000000 0.567376 0.148936 0.000000 \n",
"\n",
- " Maître Jacques Valère scene Élise \n",
- "0 0.402376 0.140496 1 0.001550 \n",
- "1 0.669065 0.330935 2 0.000000 \n",
- "2 0.366667 0.000000 3 0.000000 \n",
- "3 0.000000 0.000000 4 0.000000 \n",
- "4 0.000000 0.000000 5 0.000000 \n",
- "5 0.000000 0.000000 6 0.129771 \n",
- "6 0.000000 0.000000 7 0.000000 \n",
- "7 0.000000 0.000000 8 0.000000 \n",
- "8 0.000000 0.000000 9 0.000000 \n",
- "[array([0.21764706, 0.42912061, 0.97551197, 1. ]), array([1. , 0.21994636, 0.11065268, 1. ]), array([1. , 0.61727822, 0.32653871, 1. ]), array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00]), array([0.07647059, 0.61727822, 0.94518383, 1. ]), array([0.50392157, 0.99998103, 0.70492555, 1. ]), array([0.92745098, 0.78292761, 0.43467642, 1. ]), array([1. , 0.42912061, 0.21994636, 1. ]), array([0.64509804, 0.9741386 , 0.62211282, 1. ])]\n",
- " Cléante Frosine Harpagon La Flèche Mariane Maître Jacques scene \\\n",
- "0 0.251282 0.447179 0.000000 0.000000 0.242051 0.000000 1 \n",
- "1 0.197183 0.000000 0.760563 0.000000 0.000000 0.000000 2 \n",
- "2 0.515413 0.000000 0.484587 0.000000 0.000000 0.000000 3 \n",
- "3 0.278232 0.000000 0.230769 0.000000 0.000000 0.490998 4 \n",
- "4 0.558219 0.000000 0.441781 0.000000 0.000000 0.000000 5 \n",
- "5 0.265625 0.000000 0.000000 0.734375 0.000000 0.000000 6 \n",
- "6 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 7 \n",
+ " Mariane Valère scene Élise \n",
+ "0 0.000000 0.140496 1 0.001550 \n",
+ "1 0.000000 0.330935 2 0.000000 \n",
+ "2 0.000000 0.000000 3 0.000000 \n",
+ "3 0.492021 0.000000 4 0.000000 \n",
+ "4 0.000000 0.000000 5 0.000000 \n",
+ "5 0.297710 0.000000 6 0.129771 \n",
+ "6 0.225528 0.000000 7 0.000000 \n",
+ "7 0.000000 0.000000 8 0.000000 \n",
+ "8 0.000000 0.000000 9 0.000000 \n",
+ "Rectangle(xy=(0, -0.25), width=0.0118802, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0.465116, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.0118802, -0.25), width=0.0392562, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0.559501, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0.283688, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.633333, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.507979, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.198473, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0.0381679, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.559501, 5.75), width=0.0393474, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.0511364, -0.25), width=0.391012, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.198473, 3.75), width=0.801527, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.0381679, 4.75), width=0.534351, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.598848, 5.75), width=0.175624, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.465116, 6.75), width=0.534884, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.283688, 7.75), width=0.567376, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.442149, -0.25), width=0.0134298, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.851064, 7.75), width=0.148936, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.455579, -0.25), width=0.402376, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.669065, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.633333, 1.75), width=0.366667, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.507979, 2.75), width=0.492021, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.572519, 4.75), width=0.29771, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.774472, 5.75), width=0.225528, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.857955, -0.25), width=0.140496, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.669065, 0.75), width=0.330935, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.99845, -0.25), width=0.00154959, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.870229, 4.75), width=0.129771, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 6.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 7.75), width=0, height=0.5, angle=0)\n",
+ " Cléante Frosine Harpagon La Flèche Maitre Jacques Mariane scene \\\n",
+ "0 0.251282 0.447179 0.000000 0.000000 0.000000 0.242051 1 \n",
+ "1 0.197183 0.000000 0.760563 0.000000 0.000000 0.000000 2 \n",
+ "2 0.515413 0.000000 0.484587 0.000000 0.000000 0.000000 3 \n",
+ "3 0.278232 0.000000 0.230769 0.000000 0.490998 0.000000 4 \n",
+ "4 0.558219 0.000000 0.441781 0.000000 0.000000 0.000000 5 \n",
+ "5 0.265625 0.000000 0.000000 0.734375 0.000000 0.000000 6 \n",
+ "6 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 7 \n",
"\n",
" Élise \n",
"0 0.059487 \n",
@@ -1794,28 +1975,135 @@
"4 0.000000 \n",
"5 0.000000 \n",
"6 0.000000 \n",
- "[array([1. , 0.21994636, 0.11065268, 1. ]), array([1. , 0.61727822, 0.32653871, 1. ]), array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00]), array([0.78627451, 0.9005867 , 0.53165947, 1. ]), array([0.50392157, 0.99998103, 0.70492555, 1. ]), array([0.92745098, 0.78292761, 0.43467642, 1. ]), array([0.64509804, 0.9741386 , 0.62211282, 1. ])]\n",
- " Anselme Cléante Frosine Harpagon Le Commissaire Mariane \\\n",
- "0 0.000000 0.000000 0.000000 0.449495 0.550505 0.000000 \n",
- "1 0.000000 0.000000 0.000000 0.265693 0.232117 0.000000 \n",
- "2 0.000000 0.000000 0.000000 0.403477 0.000000 0.000000 \n",
- "3 0.000000 0.000000 0.013333 0.413333 0.000000 0.000000 \n",
- "4 0.326052 0.000000 0.000000 0.208738 0.000000 0.155340 \n",
- "5 0.272727 0.311005 0.000000 0.212919 0.000000 0.086124 \n",
+ "Rectangle(xy=(0, -0.25), width=0.251282, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.197183, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.515413, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.278232, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.558219, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0.265625, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.251282, -0.25), width=0.447179, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.197183, 0.75), width=0.760563, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.515413, 1.75), width=0.484587, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.278232, 2.75), width=0.230769, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.558219, 3.75), width=0.441781, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=1, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.265625, 4.75), width=0.734375, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.509002, 2.75), width=0.490998, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.698462, -0.25), width=0.242051, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.940513, -0.25), width=0.0594872, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.957746, 0.75), width=0.0422535, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 5.75), width=0, height=0.5, angle=0)\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Anselme Cléante Frosine Harpagon Le commissaire Maitre Jacques \\\n",
+ "0 0.000000 0.000000 0.000000 0.449495 0.550505 0.000000 \n",
+ "1 0.000000 0.000000 0.000000 0.265693 0.232117 0.502190 \n",
+ "2 0.000000 0.000000 0.000000 0.403477 0.000000 0.010064 \n",
+ "3 0.000000 0.000000 0.013333 0.413333 0.000000 0.023333 \n",
+ "4 0.326052 0.000000 0.000000 0.208738 0.000000 0.005663 \n",
+ "5 0.272727 0.311005 0.000000 0.212919 0.062201 0.055024 \n",
"\n",
- " Maître Jacques Valère le Commissaire scene Élise \n",
- "0 0.000000 0.000000 0.000000 1 0.000000 \n",
- "1 0.502190 0.000000 0.000000 2 0.000000 \n",
- "2 0.010064 0.586459 0.000000 3 0.000000 \n",
- "3 0.023333 0.073333 0.000000 4 0.476667 \n",
- "4 0.005663 0.304207 0.000000 5 0.000000 \n",
- "5 0.055024 0.000000 0.062201 6 0.000000 \n",
- "[array([0.35490196, 0.9741386 , 0.78292761, 1. ]), array([1. , 0.21994636, 0.11065268, 1. ]), array([1. , 0.61727822, 0.32653871, 1. ]), array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00]), array([0.21372549, 0.9005867 , 0.84695821, 1. ]), array([0.50392157, 0.99998103, 0.70492555, 1. ]), array([0.92745098, 0.78292761, 0.43467642, 1. ]), array([1. , 0.42912061, 0.21994636, 1. ]), array([0.21372549, 0.9005867 , 0.84695821, 1. ]), array([0.64509804, 0.9741386 , 0.62211282, 1. ])]\n"
+ " Mariane Valère scene Élise \n",
+ "0 0.000000 0.000000 1 0.000000 \n",
+ "1 0.000000 0.000000 2 0.000000 \n",
+ "2 0.000000 0.586459 3 0.000000 \n",
+ "3 0.000000 0.073333 4 0.476667 \n",
+ "4 0.155340 0.304207 5 0.000000 \n",
+ "5 0.086124 0.000000 6 0.000000 \n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0.326052, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0.272727, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.272727, 4.75), width=0.311005, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0.0133333, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0.449495, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0.265693, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0.403477, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.0133333, 2.75), width=0.413333, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.326052, 3.75), width=0.208738, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.583732, 4.75), width=0.212919, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.449495, -0.25), width=0.550505, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.265693, 0.75), width=0.232117, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.796651, 4.75), width=0.062201, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.49781, 0.75), width=0.50219, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.403477, 1.75), width=0.010064, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.426667, 2.75), width=0.0233333, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.53479, 3.75), width=0.00566343, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.858852, 4.75), width=0.0550239, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 2.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.540453, 3.75), width=0.15534, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.913876, 4.75), width=0.0861244, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.413541, 1.75), width=0.586459, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.45, 2.75), width=0.0733333, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.695793, 3.75), width=0.304207, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, -0.25), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 0.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 1.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0.523333, 2.75), width=0.476667, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 3.75), width=0, height=0.5, angle=0)\n",
+ "Rectangle(xy=(0, 4.75), width=0, height=0.5, angle=0)\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHfZJREFUeJzt3Xl0VFW6/vHvSwwJiIoytYCaOIKgBAiKio0jICKDgoC0Q+MPtFGQa2tro33l3hYHxL4o3Ma2BaNXFAVExcZu2wFRGRMGBaOiMoVJJoEIhIS8vz8SI8iQItSpSnKez1pZ1qna55x3l6wnO/uc2mXujoiIVH5V4l2AiIjEhgJfRCQkFPgiIiGhwBcRCQkFvohISCjwRURCQoEvIhISCnwJBTObbmZbzCwpwvYpZuZmdtQRnPNZM/vKzArN7JayHkckWhT4UumZWQpwMeBA5xieehEwAJgfw3OKHJQCX8LgJmA2kAHcvPcLZlbNzJ40sxVmttXMPjGzasCM4iY/mFmumV1Q3L6vmWUX/7XwLzM75WAndff/dff3gV2B9ErkMCnwJQxuAsYX/7Q3s3p7vTYCaAlcCJwA/AEoBH5d/HpNd6/h7rPMrCswBLgWqAN8DLwSmy6IHDkFvlRqZtYGOAV4zd2zgG+BG4pfqwL0Be5y99XuvsfdZ7p73kEOdxvwqLtnu3sB8AiQdqhRvkh5osCXyu5m4F1331i8/TI/T+vUBpIp+iUQiVOAp8zsBzP7AdgMGNAgivWKBKbMdyCIlHfFc/HXAwlmtq746SSgppk1Az6naH79NIousO7tQMvIrgKGufv4gEoWCZRG+FKZdQX2AGcDacU/jSmae7/J3QuBccBfzKy+mSWY2QXFt25uoGgu/9S9jvcM8EczawJgZseZWY+DndzMqppZMkV/BSSaWXLxNJJIXOgfn1RmNwPPu/tKd1/30w8wGuhTfI/9PRSN9OdRNEXzOFDF3XcAw4BPi6dwWrv7lOLXJ5jZNmAxcNUhzv8usJOiC8LPFj/+9SHaiwTK9AUoIiLhoBG+iEhIKPBFREJCgS8iEhIKfBGRkChX9+HXrl3bU1JS4l2GiEiFkZWVtdHd60TStlwFfkpKCpmZmfEuQ0SkwjCzFZG21ZSOiEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCQkFvohISJSrT9qSlQVm8a6ichnYOt4ViITO+Cdui7htn6RbgivkFzTCFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkAr0P38yWA9uBPUCBu6cHeT4RETm4WHzw6lJ33xiD84iIyCFoSkdEJCSCDnwH3jWzLDPrf6AGZtbfzDLNLHNDwMWIiIRZ0FM6F7n7GjOrC/zbzL509xl7N3D3Z4FnAdLNPOB6RERCK9ARvruvKf7v98AU4LwgzyciIgcXWOCb2dFmdsxPj4F2wOKgziciIocW5JROPWCKFS13fBTwsrv/M8DziYjIIQQW+O7+HdAsqOOLiMjh0W2ZIiIhocAXEQkJBb6ISEgo8EVEQkKBLyISErFYPC1yLVtCZma8qxAROSJ94l3AQWiELyISEgp8EZGQUOCLiISEAl9EJCQU+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCQkFvohISCjwRURCQoEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhcVS8C9jHl5/BBSfFu4rDMzsn3hWISBmN3/V8vEugT9ItMTuXRvgiIiGhwBcRCQkFvohISCjwRURCQoEvIhISCnwRkZAIPPDNLMHMFpjZ20GfS0REDi4WI/y7gOwYnEdERA4h0MA3s4bA1cBzQZ5HRERKF/QIfyTwB6Aw4POIiEgpAgt8M+sEfO/uWaW0629mmWaWuSFfvxdERIIS5Aj/IqCzmS0HJgCXmdlLv2zk7s+6e7q7p9dJ1E1DIiJBCSxh3f2P7t7Q3VOAXsAH7v6boM4nIiKHpiG1iEhIxGR5ZHefDkyPxblEROTANMIXEQkJBb6ISEgo8EVEQkKBLyISEgp8EZGQKF9fYt7oXJiVGe8qRCQk+sS7gBjTCF9EJCQU+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCQkFvohISCjwRURCQoEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhocAXEQkJBb6ISEgo8EVEQuKoSBqZWT3gEaC+u19lZmcDF7j72KhWk5UFZlE9pEhlNmfNY/EuQY7Q+SfeF7NzRTrCzwD+BdQv3v4aGBxEQSIiEoxIA7+2u78GFAK4ewGwJ7CqREQk6iIN/B/NrBbgAGbWGtgaWFUiIhJ1Ec3hA3cDbwGnmdmnQB2ge2BViYhI1EUU+O4+38zaAmcBBnzl7vmBViYiIlEV6Qgf4DwgpXifFmaGu78YSFUiIhJ1kd6W+X/AacBCfr5Y64ACX0Skgoh0hJ8OnO3uHumBzSwZmAEkFZ9nkrs/dPgliohINER6l85i4FeHeew84DJ3bwakAR2K7+4REZE4iHSEXxv4wszmUhTkALh754PtUPzXQG7xZmLxT8R/IYiISHRFGvhDy3JwM0sAsoDTgf919zkHaNMf6A9wcllOIiIiEYloSsfdPwKWA4nFj+cB8yPYb4+7pwENgfPMrOkB2jzr7ununl7nsEoXEZHDEVHgm1k/YBLwt+KnGgBvRHoSd/8BmA50OMz6REQkSiK9aHsHcBGwDcDdlwJ1D7WDmdUxs5rFj6sBVwBflr1UERE5EpHO4ee5+24rXrrYzI6i9AuwJwIvFM/jVwFec/e3y1ypiIgckUgD/yMzGwJUM7MrgQHA1EPt4O6fAc2PsD4REYmSSKd07gc2AJ8DtwHTgAeDKkpERKIv0hF+NWCcu/8dSm63rAbsCKowERGJrkhH+O9TFPA/qQa8F/1yREQkKJEGfrK7//SpWYofVw+mJBERCcLhfONVi582zCwd2BlMSSIiEoRI5/DvAiaa2RqKbsesD/SMejUtW0JmZtQPK1JZnR/vAqRCiTTwUym6xfJkoBvQGi2EJiJSoUQ6pfMnd98G1ASuBJ4FxgRWlYiIRF2kgf/Tt1xdDTzj7m8CVYMpSUREghBp4K82s78B1wPTzCzpMPYVEZFyINLQvh74F9CheOXLE4B7A6tKRESiLqKLtu6+A3h9r+21wNqgihIRkejTtIyISEgo8EVEQkKBLyISEgp8EZGQUOCLiISEAl9EJCQU+CIiIaHAFxEJiUhXy4yb/Px8cnJy2LVrV7xLqfCSk5Np2LAhiYmJ8S5FROKg3Ad+Tk4OxxxzDCkpKZhZvMupsNydTZs2kZOTQ2pqarzLEZE4KPdTOrt27aJWrVoK+yNkZtSqVUt/KYmEWLkPfEBhHyV6H0XCrUIEfkUyfvx4Vq5cGe8yRET2U+7n8PdzwUnRPd6sVaU2WbduHYMHD2bevHkkJSWRkpLCyJEjufbaa1m8eHFJu7Fjx7J9+3ZOPvnkMpeTkZFBu3btqF+/fpmPISJyIBUv8GPM3enWrRs333wzEyZMAGDhwoWsX79+v7a33nrrEZ8vIyODpk2bKvBFJOrKV+B/+dn+I/hHxgH5wZ0z+7NDvvzh7Dkk5u/m9rYXlrRNS6rC8o25kLcLsj9jz5493P+Xp5g+L5O83bu5o3dPbuvZg9wfd9DlzrvYsm0b+QUFPDzoTrpcfinLV6/mqtvuoE2L5sxcsJAG9ery5uin+MdHH5M5dy59enSnWlIys155kS++/Y67Hx9B7o4d1D6+JhmP/JkT69Qpe3/XrYe+7cq+v0gcjZ/+53iXEHV9km6J2bk0h1+KxUu/oWWTsw/ZZuzkKRx3TA3mvfYy8157mb9Pep1lOTkkJ1Vlyqj/Yf7kV/kw4zl+P/xJ3B2ApStWckfvniyZOoWaxxzL5Hffo3v7K0lv2oTxwx9l4ZTXOCohgYHDHmPSyBFkTZpA32u78sDIUbHotohUQuVrhF9BvTtzFp999TWT/vUeAFtzt7N0xUoa1qvHkJFPMyNzPlWsCqu//571GzcBkNqgAWmNGwHQskljlq9Zs99xv1q+nMVLv+HKW28HYE/hHk6sUztGvRKRykaBX4omp5/OpHffO2Qbd2fUA/fTvs1F+zyfMeVNNmzeQtbEV0hMTCTliqvYtTsPgKSqP3/aNaFKAjsL8g5wXGhy+mnMeuX/otATEQk7TemU4rLW55G3ezd/nzi55Ll5ny9mxZqfv9K3/UUXMmbCRPLzi641fL18OT/u2MHW3FzqnnACiYmJfDhnLisOMIr/pWOOrs72H38E4KyUFDZs3sKshYuAomUmliz9JprdE5EQqXgj/HH/iOnpzIwpo/6HwY8+wWPPjSO5alVSGjRg5P33lrT5f92vZfnqNbTo3gt3p84Jx/PGqJH06dSRawYMIr1Hb9IanUWjU0tf0uCWrl24/b8eLrloO2nkCAY98jhbc3MpKChg8E2/ockZpwfZZRGppOyni4jlQXqNqp55Tr19nst+ZByNf1XvIHvI4cpet57GQ/rGuwyRMtFdOvszsyx3T4+kbWBTOmZ2kpl9aGbZZrbEzO4K6lwiIlK6IKd0CoDfu/t8MzsGyDKzf7v7FwGeU0REDiKwEb67r3X3+cWPtwPZQIOgziciIocWk7t0zCwFaA7MicX5RERkf4EHvpnVACYDg9192wFe729mmWaWuSG/MOhyRERCK9DAN7NEisJ+vLu/fqA27v6su6e7e3qdRH0sQEQkKIFdtLWib9sYC2S7+1+iduCzm0XtUAB8sajUJjVatiY3a3bJdsaUN8lcsoTRDw6Jbi0iIgEKckh9EXAjcJmZLSz+6Rjg+cqtgoKCeJcgIhLcCN/dPwEq/XfqTf1wOg8/83d25+dTq2ZNxg9/lHq1azF09BjWbNjA8tWrqX388bS78AKmvPcBefm7WZazmhuu7shDdxQtitb1zsGsWreOXXl53HVjH/pf3x2AsZNf5/Hnnqd+3bqcccrJJFVNZPSDQ1ixeg19H3yIDVu2UOf443l+2H9zcv0TuWXInzj26KPJXPIF6zZuZPjv/4Pu7a+M59sjIuVIxVtaIQ525uWR1u36ku3NW7fS+bK2ALRp0YLZE17CzHhu0usMH/s8T953DwBZS77gk5cyqJacTMaUN5n7+WIWvzWZ6snJtLr+Bq5uezHpTZsw7uH/4oSax7Fz1y5aXX8D17W7grzdu/nzmL8zf9IEjjm6Opf9th/NGp0JwJ3DHuWmLtdwc9fOjJs8hUGPPM4bo0cCsHbDRj55KYMvv1tG5zvuUuCLSAkFfgSqJSWxcMprJds/zeED5KxfT8/f38vaDRvZnZ9PasOfP2rQ+dJLqJacXLJ95YWtqVWzJgDXXnk5n8xfQHrTJjz90stMef8DAFatW8/SFStZt2EjbVu15ISaxwHQo/2VfL1iBQCzFn7G608VXRa5sXMn/vDkyJJzdL38UqpUqcLZp5/G+k2bgng7RKSC0m0xR2jgsMe484befP7mZP429E/syttd8trR1art07boOva+29PnzuO92bOZ9fKLLJoykeaNG7ErLw8n8jWO9j5uUtWqJY/L0zpJIhJ/CvwjtHX7dhrUqwvAC2+8dci2/545m80/bGXnrl288f6HXNQ8ja3bczn+2GOpXq0aX363jNmLir5G8bxzmvLRvCy2bN1GQUEBk//9fslxLmzejAnv/BOA8W9Po02LtIB6JyKVScWb0ongNspYGnrH7+jxH/fQoG5dWjc7l2WrD77mfZsWzbnx/gf4ZuVKbri6I+lNm3DOmWfwzKsTObdrd85KSaF1s3MBaFCvHkP638r5vfpQv25dzj7tVI6rcQwATw+5j74PPsQT414ouWgrIlKa8rU8cnq6Z2Zm7vNcdnY2jRs3jlNF0ZORkUFmZiajR4+OeJ/c3Fxq1KhBQUEB3bp1o2/fvnTr1u2I6qgs76eIFCkXyyPLkRs6dChpaWk0bdqU1NRUunbtGu+SRKQC0wg/ZPR+ilQuGuGLiMh+FPgiIiGhwBcRCQkFfpwVFBTw17/+ld27d5feWETkCFS4+/DnrH08qsc7/8T7Sm1To0YNcnNzD/vY06dPp0uXLqSmpgJQu3Zt3nvvPYYOHUqNGjW45557OOqoo2jVqhUDBw5kzJgxVKly8N/By5cvp1OnTixevPiwaxERqXCBX9FcfPHFvP3224ds06pVK1q1ahWjikQkrDSlU0ZTp07l/PPPp3nz5lxxxRWsX7++TMf59ttv6dChAy1btuTiiy8mOzsbgPXr19OtWzeaNWtGs2bNmDlzJgB79uyhX79+NGnShHbt2rFz584DHufLL7+MTkdFpNJQ4JdRmzZtmD17NgsWLKBXr14MHz78gO0+/vhj0tLSSEtLY9iwYfu93q9fP0aNGkVWVhbDhw9nwIABAAwaNIi2bduyaNEi5s+fT5MmTQBYunQpd9xxB0uWLKFmzZpMnjwZgP79+5ccZ8SIESXHERH5iaZ0yignJ4eePXuydu1adu/eXTJP/0uHmtLJzc1lzpw59OvXr+S5H374AYAPPviAF198EYCEhASOO+44tmzZQmpqKmlpRYultWzZkuXLl5Obm8vMmTPp0aNHyXHy8vKi0k8RqTwU+GU0cOBA7r77bjp37sz06dMZOnToYR+jsLCQY489lunTp0e8T1JSUsnjhIQEdu7cSWFhITVr1mThwoWHXYOIhIemdMpo69atNGhQ9GUnL7zwQpmOceyxx5KamsprrxV9uUphYSELFiwA4PLLL2fMmDFA0bz9tm3bSj3OxIkTgaJ18BctKl+riopI/FW4EX4kt1FG244dO2jYsGHJ9t13383QoUPp0aMHDRo0oHXr1ixbtqxMxx4/fjy/+93vGDZsGPn5+fTq1YvmzZvz1FNP0b9/f8aOHUtCQgJjxozhxBNPLPU4Dz/8cMlxmjVrVqaaRKRy0uJpIaP3U6Ry0eJpIiKyHwW+iEhIKPBFREJCgS8iEhIKfBGRkFDgB2zu3Ll89NFH8S5DRKSc3Ye/6ksYdMG+z/V8BFbutT2ib3TPec+4Q758Sc+b+eOAfrRv26bkuZFjX+Tr75bz12H/ecB9ajRuSW52FgAt61TnrqFPUXXzGi5omRa9ustq8zoYFOX3UPYz/onb4l2CVBB9km6J2bk0wi9F784dmTB12j7PTZg6jd5dOka0f0JCAqP//OBBw97dKSwsPOI6RURKo8AvRfeO7Xn7/Y/Iyyv6Rqrlq1azZv33pJ3dmMt7/5YWHa/jnHZdePPd9w+4/xPPjKXVNddzbvuuPPSXUSXHaHxZJwY88N+06Hgdq9as5d0Zn3JB19606HgdPX43mNwff4xZH0UkHBT4pah1fE3Oa3YO//zoY6BodN+z01VUS05iyrOjmD9tMh9OyOD3Dw/nl59afnfGp3y9bAVz33qVBdMmM2/RYj6aPQ+Ar75bxk3XdWHBO69zdPXqPDzqGd57eSzzp00m/dym/OW5sq3PIyJyMOVrDr+cKprWeYcu7S5nwtRpjBs+DHdnyPCRzJibSZUqxup137N+w0Z+VbdOyX7vzviUmVkLuLTXLQD8sG0by1blcEqD+pzSoD6tWxStdTN7wSK+WPotF13XB4Ddu/O5oEU5mO8XkUpFgR+Bru0v5+6HhzP/8y/YuSuPFuecTcbEKWzYvJmstyeSmJhIykVXsCtv3y8id3cG3tKH23/Ta5/nl69azdHVq+3T7sqLL+SVUSNi0h8RCSdN6USgxtFHc0nrVvT9wwP07lx0sXbr9lzq1jqBxMREPpw5hxU5a/bbr33bNjw/cUrJfHzO2nV8v3HTfu1aN2/Gp5nz+Wb5CgB27NzJ198tD65DIhJKFW+EX8ptlEHp3flqrr1tEBNGPQlAn66duKbvANI79SDt7EY0Ou3U/fZp9+uLyP7mOy7odgMANapX56WnHiehSsI+7erUOoGMEY/Qe+C95O0u+ivh4XsGceapKcF2SkRCJbDlkc1sHNAJ+N7dm0ayT3q9Gp7Z85x9nsvu+QiNT/pVABWGU/aqdTR+dUi8y6j0dB++ROpI78MvL8sjZwAdAjy+iIgchsAC391nAJuDOr6IiByeuF+0NbP+ZpZpZpkbdubHuxwRkUor7oHv7s+6e7q7p9eplhjvckREKq24B35FUVhYSPsb+7Fy9f63X4qIVAQK/AgtW5XDkDv6c3KD+vEuRUSkTAK7D9/MXgEuAWqbWQ7wkLuPPdLjjq8350gPsY8+688vtU1CalPOaXRGyXavazpy/4B+XNLzZkY8cC/p5zal48238fLTT1DzuGOjWp+ISLQEFvju3juoY8dateQkFr4z5ZBtpr3wtxhVIyJSNprSiZKUi65g4+Yt/LhjB1ffcjvNOnSj6ZWdeXXqOwBkfb6EttffRMuru9P+xn6sXb8hzhWLSNhUvKUV4mDnrjzSrupWsv3HAf3pec1VB2z7z+mfUL9eXf6R8QwAW7dtJz8/n4H/OYw3nxtNnVon8OrUd3jgiZGMGzEsJvWLiIACPyKRTOn85JxGZ3LPsCe479En6XR5Wy4+L53FXy1l8ddLufI3twKwZ08hJ+61jLKISCwo8KPszFNTyPrHRKZ9MIM/Pj6Sdr++kG7tr6DJGacz641X4l2eiISY5vCjbM3676meXI3fXNuZe/rfwvzFX3DWqSls2LyZWVkLAcjPz2fJ10vjXKmIhE35GuGf1AienrXvc9nZcHLjks0+NCaqTi69yc5deaR1/vmmow4dOvDYY49BUnX4VWpRfQmJ0PBMPs/K4t5bB1KlShUSExMZM2YMVU9vxqQ33mLQoEFs3bqVgoICBg8eTJMrOke3L5H4kf3fY4m6PvEuQOQAAlseuSzS09M9MzNzn+eys7Np3DjKIR9iej9FKpfysjyyiIiUIwp8EZGQqBCBX56mnSoyvY8i4VbuAz85OZlNmzYprI6Qu7Np0yaSk5PjXYqIxEn5ukvnABo2bEhOTg4bNmgpgiOVnJxMw4YN412GiMRJuQ/8xMREUlNT412GiEiFV+6ndEREJDoU+CIiIaHAFxEJiXL1SVsz2w58Fe864qQ2sDHeRcSR+q/+h7X/R9r3U9w9ouV3y9tF268i/YhwZWNmmWHtO6j/6n94+x/LvmtKR0QkJBT4IiIhUd4C/9l4FxBHYe47qP/qf3jFrO/l6qKtiIgEp7yN8EVEJCAKfBGRkIh54JtZBzP7ysy+MbP7D/C6mdnTxa9/ZmYtYl1jkCLof5/ifn9mZjPNrFk86gxKaf3fq10rM9tjZt1jWV/QIum/mV1iZgvNbImZfRTrGoMSwb/948xsqpktKu77b+NRZ1DMbJyZfW9miw/yevDZ5+4x+wESgG+BU4GqwCLg7F+06Qi8AxjQGpgTyxrLQf8vBI4vfnxV2Pq/V7sPgGlA93jXHeP//zWBL4CTi7frxrvuGPZ9CPB48eM6wGagarxrj+J78GugBbD4IK8Hnn2xHuGfB3zj7t+5+25gAtDlF226AC96kdlATTM7McZ1BqXU/rv7THffUrw5G6hM6xlH8v8fYCAwGfg+lsXFQCT9vwF43d1XArh7ZXkPIum7A8eYmQE1KAr8gtiWGRx3n0FRnw4m8OyLdeA3AFbttZ1T/NzhtqmoDrdvt1L0G7+yKLX/ZtYA6AY8E8O6YiWS//9nAseb2XQzyzKzm2JWXbAi6ftooDGwBvgcuMvdC2NTXrkQePbFemkFO8Bzv7wvNJI2FVXEfTOzSykK/DaBVhRbkfR/JHCfu+8pGuhVKpH0/yigJXA5UA2YZWaz3f3roIsLWCR9bw8sBC4DTgP+bWYfu/u2oIsrJwLPvlgHfg5w0l7bDSn6bX64bSqqiPpmZucCzwFXufumGNUWC5H0Px2YUBz2tYGOZlbg7m/EpsRARfrvf6O7/wj8aGYzgGZARQ/8SPr+W+AxL5rQ/sbMlgGNgLmxKTHuAs++WE/pzAPOMLNUM6sK9ALe+kWbt4Cbiq9Ytwa2uvvaGNcZlFL7b2YnA68DN1aCUd0vldp/d0919xR3TwEmAQMqSdhDZP/+3wQuNrOjzKw6cD6QHeM6gxBJ31dS9JcNZlYPOAv4LqZVxlfg2RfTEb67F5jZncC/KLpqP87dl5jZ7cWvP0PRnRkdgW+AHRT91q8UIuz/fwK1gL8Wj3ILvJKsIhhh/yutSPrv7tlm9k/gM6AQeM7dD3gbX0US4f/7PwMZZvY5RdMb97l7pVky2cxeAS4BaptZDvAQkAixyz4trSAiEhL6pK2ISEgo8EVEQkKBLyISEgp8EZGQUOCLiISEAl9EJCQU+CIiIfH/AWOzOniJwLkTAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAEICAYAAABs9Jx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VdW9//HPNzOQNAIJUyAyBkgQFALKJF4qv0oHquKAQsEBB/hZnPWq7c9fsdfqg16VeqUi1yoFhyq0TLa29ApoHephJgMENAQEJAQJAUKms+4fOaEUgRwg5+wM79fznIecc9be+7uA53yy9t7rLHPOCQAAeCfC6wIAAGjqCGMAADxGGAMA4DHCGAAAjxHGAAB4jDAGAMBjhDEAAB4jjNEkmNkKM/vGzGKDbN/ZzJyZRZ3DMWeb2WYz85vZTWe7HwCNH2GMRs/MOksaLslJGhPGQ6+XNFXSmjAeE0ADRBijKZgo6VNJr0madPwbZtbMzJ41s+1mVmxmH5lZM0mrAk0OmNkhMxscaH+LmeUERtnvm9n5pzqoc+6/nHN/k3Q0JL0C0GgQxmgKJkqaH3h8z8zaHvfeM5IGSBoiqZWkhyT5JV0aeP8851y8c+4TM7tS0qOSrpaULOlDSW+GpwsAGjPCGI2amQ2TdL6k3zvnVkvaJunGwHsRkm6RdLdz7ivnXJVz7mPnXNkpdneHpF8553Kcc5WSnpR04elGxwAQDMIYjd0kSX9xzu0LPH9D/zxVnSQpTtUBHYzzJb1gZgfM7ICk/ZJMUkod1gugCTrrO0WB+i5w7fc6SZFmtifwcqyk88ysn6SNqr6e203VN1sd72TLme2Q9B/OufkhKhlAE8XIGI3ZlZKqJKVLujDw6K3qa70TnXN+Sa9K+k8z62BmkWY2ODD9qVDV1467Hre/30h6xMwyJMnMEs3s2lMd3MxizCxO1aPnaDOLC5waB4B/wQcDGrNJkn7rnCtwzu2peUh6UdL4wBziB1Q9Qv5c1aedn5YU4Zw7Iuk/JP09cFr6EufcHwLvv2VmByVtkjT6NMf/i6RSVd8cNjvw86WnaQ+giTLnTnY2DgAAhAsjYwAAPEYYAwDgMcIYAACPEcYAAHisXs0zTkpKcp07d/a6DABoMFavXr3POZfsdR04N/UqjDt37iyfz+d1GQDQYJjZdq9rwLnjNDUAAB4jjAEA8BhhDACAx+rVNWMAQP2wevXqNlFRUXMk9REDt3Pll7SpsrJy8oABA/aerAFhDAD4lqioqDnt2rXrnZyc/E1ERATfm3wO/H6/FRYWpu/Zs2eOpDEna8NvOwCAk+mTnJx8kCA+dxERES45OblY1WcZTt4mjPUAABqOCIK47gT+Lk+ZuYQxAKBRmDVrVqu8vLwYr+s4G1wzBgDUbnCnAXW6v092rA6mWUFBQdTUqVNT169f3zwmJsZ17Nix7Ne//vWOsWPHds/Ly8uqaffcc88llZSURPTo0aP8bEuaOXNm6zFjxhzs3Llzxdnu42zVrzDekStNG+x1FcA5mz/jDq9LQAMxPvYmr0uot/x+v8aMGdP9xhtvLFq6dOkXkvTxxx8327VrV/SJbe+9995953q8efPmJV144YWlXoQxp6kBAPXS0qVLE6KiotxDDz1UWPPakCFDSrt06XJs9FtZWak77rijY58+fXqnpaWlz5gxI0mSiouLIwYPHpyWnp7eOy0tLX3evHnnSdLmzZtjunbtmjFu3Ljzu3fvnjF06NAehw4dst/+9rctN23a1HzixIlde/XqlX7o0CH78MMPmw8cOLBnRkZG72HDhvXYvn37t34JqCuEMQCgXtqwYUOzfv36HTldm+effz4pMTGxatOmTTnr16/Pef3115Nzc3Njmjdv7l+2bNnW7OzsnJUrV2559NFHO/r9fklSQUFB3LRp0/Zu3bo1KzExsWru3Lktb7755m/69OlzZO7cuV/k5uZmR0dHa9q0aamLFi3alpWVlTNp0qR9DzzwQEqo+lq/TlMDAHAGli9f/p3c3NzmixcvbilJJSUlkdnZ2XFdunSpuOeeezp++umn8REREdq7d2/Mzp07oyQpJSWlbMiQIaWSdNFFFx3Jz8+PPXG/GzZsiM3Ly2s2cuTINKn6lHlycnLITl8TxgCAeumCCy4o/eMf/9jydG2cc/bss88WjB079uDxr8+cObN1UVFR1MaNG3NiY2NdSkrKBaWlpRGSFBMTc2zKVmRkpKt5/cT9du/evXTdunW5ddWf0+E0NQCgXvrRj35UUl5ebs8++2xSzWsrV65svnXr1mPTl0aNGlU8a9as5LKyMpOqR7QHDx6MKC4ujkxKSqqIjY11S5YsSdi1a1etU57i4+OriouLIyWpb9++R/fv3x+1fPnyFpJUVlZmPp8vru57WY2RMQCgdkFORapLERERWrx48bapU6d2ev7559vFxsYem9pU0+bee+/dl5+fH3vBBRf0ds5Zq1atKt57771tkydP3j969Ojuffr06Z2RkXGkS5cuR2s73sSJE/f99Kc/Pf/BBx/0+3y+nLfeemvbtGnTUktKSiKrqqpsypQpX2dmZta6n7NhztWfL1jJbBvvfNdf4HUZwDljahOCda5Tm8xstXMus26q+af169fn9+vX75ynC+Gf1q9fn9SvX7/OJ3svZKepzexVM9trZptCdQwAABqDUF4zfk3SFSHcPwAAjULIwtg5t0rS/lDtHwCAxsLzu6nN7HYz85mZr7A07N9ABgCA5zwPY+fcbOdcpnMuM7lZyL5pDACAesvzMAYAoKljnjEAoHZmdbuEonO1zltu3rz5RUeOHFlb83zmzJmtfT5fi7lz5xbUaS31QCinNr0p6RNJPc1sp5ndGqpjAQBwooqKhnMfUshGxs65G0K1bwBA0/bGG28kPvXUU+0rKioiWrZsWfn2229/0alTp8r77ruvw+7du6MLCgpiWrVqVTlq1KiDixYtOq+8vDxix44dsWPHji169tlnd0vS5Zdf3m337t0xZWVlEXfeeefXDzzwwD5Jeu6555JeeOGFdm3atKno2rXr0ZiYGDd37tyCLVu2xEyaNKlzUVFRVOvWrSvnzp2b36NHj/KxY8d2TkhIqFq/fn2LwsLC6CeeeGLnzTff/M2Z9IdrxgCAeqmsrCyiV69e6TWPX/3qVx1q3hs1atShdevW5ebk5GRfc801+6dPn96u5r0NGzY0f//997cuWbLky8DzFu+8884XmzZtylq8eHGrVatWNZek+fPn52dlZeWsW7cu++WXX267Z8+eyPz8/Ohnnnmm/WeffZbz4YcfbsnLyzv2fdR33nln6o033li0ZcuW7Ouvv75oypQpnWre+/rrr6N9Pl/uokWL8h5//PEzXmqRa8YAgHopNjbWn5ubm13zvOaasSR9+eWXMVdeeWXHwsLC6PLy8ohOnTqV1bS74oorDsTHxx/7rudhw4YdbNeuXZUk/eAHP/hmxYoV8ZdeeumRp59+uu2yZcvOk6Q9e/ZEZ2Vlxe3atSv64osvLmnbtm2VJF111VXfbNmyJU6S1q5d2+JPf/rTNkmaMmXK/l/84hcda44xZsyYA5GRkRowYMDRoqKiM54axMgYANDg3HXXXalTp07du2XLluwXX3xxe1lZ2bE8a9Gihf/4tmamE58vXbo0YeXKlQk+ny938+bN2b179y4tLS2NONv1GuLi4o5teDb7IIwBAA1OSUlJZGpqaoUkvfbaa61P1/ajjz76ztdffx156NAhe++9984bMWLEoQMHDkQmJiZWJSQk+NeuXRu3fv36FpI0fPjww5999llCYWFhZEVFhRYtWnRsPeWLLrro8Jw5c1pK0ssvv9wqMzPzUF31h9PUAIDaBTEVKZwee+yxXTfccEO3tm3blmdmZh4uKCiIPVXbzMzMQ9dff32X/Pz8uLFjxxZdeumlR0pLS0tnz56dnJaWlt6tW7ej/fr1OyxJXbp0qbj33nt3Dxw4sHebNm0q0tLSShMTE6skadasWQWTJk3q/MILL7SruYGrrvpTv5ZQzMx0Pp/P6zIAoMFgCcXTO5u5ycXFxRGJiYn+iooKfe973+t+00037Zs4ceKBc63FkyUUAQBoiB588MEOvXr1Sk9LS8tITU0tmzBhwjkHcW04TQ0AaLSmTZtWJKnoTLaZPXv2zhCVc0qMjAEA8BhhDACAxwhjAAA8RhgDAJqciooKPfXUU8lHjx612luHHjdwAQBq9dnup+t0CcWL2z98xksoBmvp0qUJN9xwQ7eUlJRySWrVqlXlxx9/vOW+++7rEB8fXzV9+vSvo6OjNXjw4MO33HJL6u9+97vtkZGRp9zf5s2bY374wx/2yMvLyzrTWoJFGAMAGp3MzMxDH3zwwdbTtRkxYsSRESNGbA9XTafDaWoAQIPxxhtvJPbt27dX796904cMGZK2Y8eOsxpUZmVlxQ4fPrxHRkZG7wEDBvRcs2ZNnCTt2LEjatSoUd169uyZ3rNnz/S//vWvLSSpqqpK48aNO7979+4ZQ4cO7XHo0CE72X7Wrl0bd7rjngphDABoME63dOLxfD5ffM3Siw8//PC32tx6663nv/TSSwVZWVk5Tz/99M4pU6akStXLJA4fPrxk8+bN2VlZWdn9+/c/KkkFBQVx06ZN27t169asxMTEqrlz57aUpMmTJx/bz4wZM47t50xxmhoA0GCcbunE453uNHVxcXHE+vXrW9x6662da147ePBgpCR9/PHHCe++++6XkhQVFaXWrVtX7du3LzIlJaVsyJAhpZJ00UUXHcnPz48tLi6OWLt2bfy1117brWY/5eXlZ3VDGGEMAGgw7rrrrtS77757z/jx44uXLl2aMH369A5nuo+qqirFx8dX/eMf/9gc7DYxMTHHFnKIjIx0paWlEVVVVUpISKg8fs3ls8VpagBAg3EmSyeeSqtWrfwdO3Ysr1kOsaqqSn//+9+bSdLQoUNLZsyYkSxJlZWV2r9//ylzsmY/r776aktJ8vv9+uSTT5qdTU2MjAEAtQpmKlJdO3r0aETbtm371jyfMmXK12eydOLpvPnmm1/cdttt58+YMaN9ZWWlXXXVVfuHDh1aOmvWrIKbbrrp/LS0tKSIiAi9+OKL2zt16lRR236efvrpY/sZPHhw6ZnWwxKKANCAsYRiw8ESigAA1GOEMQAAHiOMAQDwGGEMAIDHCGMAADxGGAMAGp0PPvig+bJly+K9riNY9Wuece4GaXAnr6sAUE/NX/GE1yXUufGxN3ldQnCmDa7TJRQ185PTzlseNGhQz4cffnj32LFjD9a8Nn369DZbtmyJmzdvXsHJtjl+ycXhw4cfueWWW1JjY2Pd5ZdffrhOaw8BRsYAgHrn2muvLXrzzTdbHf/aggULWk2YMGF/MNtHRUVp7ty5BacKYr/fr6qqqrootU4QxgCAeucnP/nJN3/7298SS0tLTZI2b94cs3fv3uiLL774yODBg9PS09N7p6Wlpc+bN++8k23/85//vG2fPn16p6Wlpd97770davbRtWvXjAkTJqRmZGSkb9u2LWbhwoXfufDCC3ulp6f3Hj16dNfi4mJPcpEwBgDUO+3atavq16/f4QULFiRK0uuvv95qzJgx38THx/uXLVu2NTs7O2flypVbHn300Y5+v/9ftl24cOF38vLy4jZs2JCTnZ2dvWbNmmPXj/Pz8+NuvvnmopycnOyEhAT/k08+2X7VqlVbsrOzc/r373/kiSeeaOtBd+vZNWMAAAKuu+66/W+//XbLCRMmHFi4cGGrOXPm5Pv9frvnnns6fvrpp/ERERHau3dvzM6dO6NSU1Mra7b785///B2fzxd/ySWX9JSql0fctm1bbPfu3cvbt29f/t3vfvewJK1YsaLFtm3b4gYNGtRLkioqKmzAgAGHvOgrYQwAqJfGjx9/4Gc/+1mnjz76qPnRo0cjhg0bdmTmzJmti4qKojZu3JgTGxvrUlJSLigtLf2Xs7zOOd1+++17H3roocLjX9+8eXNM8+bN/ce3GzZs2MElS5Z8Ga4+nQqnqQEA9VJiYqL/kksuKZk8eXLnq6++er8kFRcXRyYlJVXExsa6JUuWJOzatSvmxO1Gjx59cN68ea1rrv9u27Yt+quvvvrW4POyyy477PP54jdt2hQrSSUlJREbNmw4q1WgzlXIRsZm1knSXEntJPklzXbOvRCq4wEAQqiWqUihMm7cuP2TJk3q9uabb34hSZMnT94/evTo7n369OmdkZFxpEuXLkdP3Obqq68+mJWVFTdw4MBektS8eXP//Pnzv4yKivqXZQo7dOhQ+fLLL+ePGzeua3l5uUnS448//lXfvn3LwtG344VsCUUzay+pvXNujZklSFot6UrnXPaptsmMj3G+Czy5dg6gAWCe8bexhGLD4ckSis653c65NYGfSyTlSEoJ1fEAAGiownLN2Mw6S7pI0mfhOB4AAA1JyMPYzOIlLZB0j3Pu4Enev93MfGbmK6zwf3sHAAA0ciENYzOLVnUQz3fOLTxZG+fcbOdcpnMuMzmam7sBAE1PyNLPzEzSf0vKcc79Z6iOAwBovKqqqjRs2LAeeXl535rC1JiEcig6VNJPJI00s3WBx/dDeDwAQCOTm5sb+8gjj+zu0aNHude1hFLI5hk75z6SZKHaPwAgfOaXvVanSyiOj72p1nnLkZGRA3r06FEqSffff7+uvvrq/U8++eSeQYMG9XzmmWd2XHrppUdGjBjRfcGCBV8mJSXVnyWYzgJfhwkAqJdiY2P9ubm5p/xuCklauXLl1nDVE0rcMQUAaLBSUlIu2L17d9TBgwcjLrvssu49e/ZM79GjR8Yrr7zSUpI+/PDD5gMHDuyZkZHRe9iwYT22b98e7XXNJ8PIGABQL5WVlUX06tUrveb5/fffv/u222775mRtFy5c+J127dpVrFixYqskFRUVRZaVldm0adNSly1btrVDhw6Vr7zySssHHngg5Z133skPUxeCRhgDAOqlYE5T1+jfv3/pY4891mnKlCkpP/7xj4uvuOKKQ59//nlcXl5es5EjR6ZJkt/vV3JyckVoqz47hDEAoMHr27dv2Zo1a7IXLFiQ+Nhjj6UsX7784HXXXXege/fupevWrcv1ur7a1K8w7tVX+sTndRUA6qnxXheAeis/Pz+6TZs2lVOnTt2fkJDgf/3111v/8pe/3LN///6o5cuXt7j88ssPl5WV2caNG2MzMzO/tdKT1+pXGAMA6qVgpiLVtROvGY8cObL4pZde+upkbVevXt3skUce6RgREaGoqCj30ksvbY+Li3NvvfXWtmnTpqWWlJREVlVV2ZQpU76uj2EcsiUUz0ZmZqbz+RgZA0CwWEKx4fBkCUUAABAcwhgAAI8RxgCAk/H7/X6+0riOBP4uT7lOMGEMADiZTYWFhYkE8rnz+/1WWFiYKGnTqdpwNzUA4FsqKysn79mzZ86ePXv6iIHbufJL2lRZWTn5VA0IYwDAtwwYMGCvpDFe19FU8NsOAAAeI4wBAPAYYQwAgMcIYwAAPEYYAwDgMcIYAACPEcYAAHiMMAYAwGOEMQAAHiOMAQDwGGEMAIDHCGMAADxGGAMA4LGgVm0ys7aSnpTUwTk32szSJQ12zv13nVazerVkLJ0JBOuzXU95XQLO0cXtH/a6BNQDwY6MX5P0vqQOgedbJN0TioIAAGhqgg3jJOfc71W9QLKcc5WSqkJWFQAATUiwYXzYzFpLcpJkZpdIKg5ZVQAANCFBXTOWdJ+kxZK6mdnfJSVLuiZkVQEA0IQEFcbOuTVmNkJST0kmabNzriKklQEA0EQEOzKWpEGSOge26W9mcs7NDUlVAAA0IcFObfqdpG6S1umfN245SYQxAADnKNiRcaakdOecC3bHZhYnaZWk2MBx3nXOPX7mJQIA0LgFezf1JkntznDfZZJGOuf6SbpQ0hWBu7ABAMBxgh0ZJ0nKNrN/qDpkJUnOuTGn2iAwij4UeBodeAQ9sgYAoKkINoz//9ns3MwiJa2W1F3SfznnPjtJm9sl3S5JqWdzEAAAGrigTlM751ZKypcUHfj5c0lrgtiuyjl3oaSOkgaZWZ+TtJntnMt0zmUmn1HpAAA0DkGFsZndJuldSS8HXkqR9MdgD+KcOyBphaQrzrA+AAAavWBv4Pq/koZKOihJzrk8SW1Ot4GZJZvZeYGfm0m6XFLu2ZcKAEDjFOw14zLnXLkFljc0syjVfjNWe0mvB64bR0j6vXNu6VlXCgBAIxVsGK80s0clNTOzUZKmSlpyug2ccxskXXSO9QEA0OgFe5r63yUVStoo6Q5J70n6WaiKAgCgKQl2ZNxM0qvOuVekY1OWmkk6EqrCAABoKoIdGf9N1eFbo5mk5XVfDgAATU+wYRznnKv5Ni0Ffm4empIAAGhagg3jw2bWv+aJmWVKKg1NSQAANC3BXjO+W9I7ZrZL1VOaOki6vs6rGTBA8vnqfLdAY3Wx1wUAqBPBhnEXVU9TSpV0laRLxKIPAADUiWBPU//cOXdQ0nmSRkmaLWlWyKoCAKAJCTaMqwJ//kDSb5xziyTFhKYkAACalmDD+Csze1nSdZLeM7PYM9gWAACcRrCBep2k9yVdEViBqZWkB0NWFQAATUhQN3A5545IWnjc892SdoeqKAAAmhJONQMA4DHCGAAAjxHGAAB4jDAGAMBjhDEAAB4jjAEA8BhhDACAxwhjAAA8RhgDAOAxwhgAAI8RxgAAeIwwBgDAY4QxAAAeI4wBAPAYYQwAgMeCWs84bHI3SIM7eV3Fmfl0p9cVADhL84/+1usSND72Jq9LQD3AyBgAAI8RxgAAeIwwBgDAY4QxAAAeI4wBAPAYYQwAgMdCHsZmFmlma81saaiPBQBAQxSOkfHdknLCcBwAABqkkIaxmXWU9ANJc0J5HAAAGrJQj4yfl/SQJH+IjwMAQIMVsjA2sx9K2uucW11Lu9vNzGdmvsIKMhsA0PSEcmQ8VNIYM8uX9JakkWY278RGzrnZzrlM51xmcjQ3dwMAmp6QpZ9z7hHnXEfnXGdJ4yT9j3NuQqiOBwBAQ8VQFAAAj4VlCUXn3ApJK8JxLAAAGhpGxgAAeIwwBgDAY4QxAAAeI4wBAPAYYQwAgMfCcjd10Hr1lT7xeV0FgCZivNcFAAGMjAEA8BhhDACAxwhjAAA8RhgDAOAxwhgAAI8RxgAAeIwwBgDAY4QxAAAeI4wBAPAYYQwAgMcIYwAAPEYYAwDgMcIYAACPEcYAAHiMMAYAwGOEMQAAHiOMAQDwGGEMAIDHCGMAADxGGAMA4DHCGAAAj0V5XcC/WL1aMvO6isblp5d4XQHQ5MyfcUfQbcfH3hS6QtBgMDIGAMBjhDEAAB4jjAEA8BhhDACAxwhjAAA8RhgDAOAxwhgAAI+FdJ6xmeVLKpFUJanSOZcZyuMBANAQheNLP/7NObcvDMcBAKBB4jQ1AAAeC3UYO0l/MbPVZnb7yRqY2e1m5jMzX2GIiwEAoD4K9Wnqoc65XWbWRtJfzSzXObfq+AbOudmSZktSppkLcT0AANQ7IR0ZO+d2Bf7cK+kPkgaF8ngAADREIQtjM2thZgk1P0v6P5I2hep4AAA0VKE8Td1W0h+seknEKElvOOf+HMLjAQDQIIUsjJ1zX0jqF6r9AwDQWDC1CQAAjxHGAAB4jDAGAMBjhDEAAB4jjAEA8Fg4FooI3oABks/ndRUAcE7Ge10AGhxGxgAAeIwwBgDAY4QxAAAeI4wBAPAYYQwAgMcIYwAAPEYYAwDgMcIYAACPEcYAAHiMMAYAwGPmnPO6hmPMrETSZq/r8EiSpH1eF+Eh+k//m2r/z7Xv5zvnkuuqGHijfn03tbTZOZfpdRFeMDNfU+27RP/pf9Ptf1PuO/6J09QAAHiMMAYAwGP1LYxne12Ah5py3yX6T/+brqbcdwTUqxu4AABoiurbyBgAgCaHMAYAwGNhD2Mzu8LMNpvZVjP795O8b2Y2M/D+BjPrH+4aQymI/o8P9HuDmX1sZv28qDNUauv/ce0GmlmVmV0TzvpCLZj+m9llZrbOzLLMbGW4awyVIP7vJ5rZEjNbH+j7zV7UGSpm9qqZ7TWzTad4v1F/9qEWzrmwPSRFStomqaukGEnrJaWf0Ob7kv4kySRdIumzcNZYD/o/RFLLwM+jm1r/j2v3P5Lek3SN13WH+d//PEnZklIDz9t4XXcY+/6opKcDPydL2i8pxuva6/Dv4FJJ/SVtOsX7jfazj0ftj3CPjAdJ2uqc+8I5Vy7pLUk/PqHNjyXNddU+lXSembUPc52hUmv/nXMfO+e+CTz9VFLHMNcYSsH8+0vSTyUtkLQ3nMWFQTD9v1HSQudcgSQ55xrL30EwfXeSEszMJMWrOowrw1tm6DjnVqm6T6fSmD/7UItwh3GKpB3HPd8ZeO1M2zRUZ9q3W1X9m3JjUWv/zSxF0lWSfhPGusIlmH//NEktzWyFma02s4lhqy60gun7i5J6S9olaaOku51z/vCUVy805s8+1CLcX4dpJ3ntxLlVwbRpqILum5n9m6rDeFhIKwqvYPr/vKSHnXNV1QOkRiWY/kdJGiDpu5KaSfrEzD51zm0JdXEhFkzfvydpnaSRkrpJ+quZfeicOxjq4uqJxvzZh1qEO4x3Sup03POOqv4t+EzbNFRB9c3M+kqaI2m0c64oTLWFQzD9z5T0ViCIkyR938wqnXN/DE+JIRXs//99zrnDkg6b2SpJ/SQ19DAOpu83S3rKOeckbTWzLyX1kvSP8JToucb82YdahPs09eeSephZFzOLkTRO0uIT2iyWNDFwZ+Elkoqdc7vDXGeo1Np/M0uVtFDSTxrBaOhEtfbfOdfFOdfZOddZ0ruSpjaSIJaC+/+/SNJwM4sys+aSLpaUE+Y6QyGYvheo+oyAzKytpJ6Svghrld5qzJ99qEVYR8bOuUozu0vS+6q+u/JV51yWmd0ZeP83qr6D9vuStko6ourflhuFIPv//yS1lvRSYHRY6RrJii5B9r/RCqb/zrkcM/uzpA2S/JLmOOdOOhWmIQny3/4JSa+Z2UZVn7J92DnXaJZVNLM3JV0mKcnMdkp6XFK01Pg/+1A7vg4TAACP8Q1cAAC5JUDlAAAAKElEQVR4jDAGAMBjhDEAAB4jjAEA8BhhDACAxwhjAAA8RhgDAOCx/wXDtbupg6jynAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -1827,7 +2115,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd41FXa//H3HUoIhKIUERCCjaUoCAFpLljAjqBYllVQ3GVdxcVeeFzFn2Wtq4usj6IIFhQVRNFHRFBB6QQXBAQVlCagFAUDBEi4f39kyFICmYR8Zyb5fl7XlYvMzJlz7jPh+uTkzDcn5u6IiEjplxTvAkREJDYU+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgSyiY2WQz+8XMkqNsn2ZmbmZlizjeiWb2npmtN7NNZjbBzBoVpS+R4qLAl1LPzNKA0wAHusVo2GrAOKARcBQwG3gvRmOL5EuBL2HQG5gJjAD67P2AmaWY2ZNmtsLMNpvZVDNLAT6PNPnVzDLNrF2kfV8zWxz5aWGCmTXIb0B3n+3uw9x9k7vvAp4CGplZ9aAmKVIQBb6EQW9gZOTjbDM7aq/HngBaAe2BI4E7gN3A7yOPV3P3VHefYWbdgYHAxUBN4AvgjShr+D2wzt03Hu5kRIrKdJaOlGZm1hH4DDja3TeY2RLgeXd/ysySgK1AW3efv9/z0oAfgHLunh25bzww2t2HRW4nAZlAY3dfcYga6gGzgNvcPdpvECLFTit8Ke36AB+7+4bI7df577ZODaACsCzKvhoA/zKzX83sV2ATYEDdgz3BzGoCHwPPKuwl3op0BYJISRDZi78MKGNm6yJ3JwPVzKw5sADIAo4D5u/39Px+9F0FPOTuI6Mc/whyw36cuz9UhCmIFCut8KU06w7kAE2AFpGPxuTuvfd2993AS8A/zayOmZUxs3aRSzfXk7uXf+xe/T0H3G1mTQHMrKqZXZrfwGZWBZgATHP3u4KZnkjhKPClNOsDDHf3le6+bs8HMAT4Y+Qa+9vIXenPIXeL5lEgyd23AQ8B0yJbOG3dfWzk8VFmtgVYCJx7kLF7AK2BayJX+ez5qB/khEUORW/aioiEhFb4IiIhocAXEQkJBb6ISEgo8EVEQiKhrsOvUaOGp6WlxbsMEZESY+7cuRvcvWY0bRMq8NPS0sjIyIh3GSIiJYaZHfRYj/1pS0dEJCQU+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkEuo3bdmwDF7qGe8qRCQ/146JdwWlUwz/JolW+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iERKDX4ZvZcuA3IAfIdvf0IMcTEZGDi8UvXp3u7htiMI6IiByCtnREREIi6MB34GMzm2tm/fJrYGb9zCzDzDLWZ+4IuBwRkfAKekung7uvMbNawEQzW+Lun+/dwN2HAkMB0tOOiN2hEiIiIRPoCt/d10T+/RkYC7QJcjwRETm4wALfzCqZWeU9nwNdgYVBjSciIocW5JbOUcBYM9szzuvu/lGA44mIyCEEFvju/j3QPKj+RUSkcHRZpohISCjwRURCQoEvIhISCnwRkZBQ4IuIhEQsDk+LXo3joO/oeFchIvnpG+8C5HBphS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCQkFvohISCjwRURCQoEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhocAXEQkJBb6ISEgo8EVEQkKBLyISEgp8EZGQUOCLiISEAl9EJCQU+CIiIVE23gXsY8MyeKlnvKsIrVnnto53CSKhc+rRd8ZsLK3wRURCQoEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhEXjgm1kZM/uPmX0Q9FgiInJwsVjhDwAWx2AcERE5hEAD38zqAecDLwY5joiIFCzoFf7TwB3A7oDHERGRAgQW+GZ2AfCzu88toF0/M8sws4z1mTuCKkdEJPSCXOF3ALqZ2XJgFHCGmb22fyN3H+ru6e6eXjM1OcByRETCLbDAd/e73b2eu6cBVwCfuvuVQY0nIiKHpuvwRURCIibHI7v7ZGByLMYSEZH8aYUvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhkVh/xLzGcdB3dLyrCK1T412AiARKK3wRkZBQ4IuIhIQCX0QkJBT4IiIhocAXEQkJBb6ISEgo8EVEQkKBLyISEgp8EZGQUOCLiISEAl9EJCQU+CIiIaHAFxEJCQW+iEhIKPBFREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCYmy0TQys6OAh4E67n6umTUB2rn7sGKtZsMyeKln4Z937ZhiLUNEJGbcYzZUtCv8EcAEoE7k9rfATUEUJCIiwYg28Gu4+1vAbgB3zwZyAqtKRESKXbSBv9XMqgMOYGZtgc2BVSUiIsUuqj184BZgHHCcmU0DagJF2GwXEZF4iSrw3f1LM+sENAIM+MbddwVamYiIFKtoV/gAbYC0yHNamhnu/kogVYmISLGL9rLMV4HjgHn8981aBxT4IiIlRLQr/HSgiXv0F4yaWQXgcyA5Ms5od7+v8CWKiEhxiPYqnYVA7UL2vQM4w92bAy2AcyJX94iISBxEu8KvAXxtZrPJDXIA3L3bwZ4Q+WkgM3KzXOQjdr9SJiIi+4g28AcVpXMzKwPMBY4H/u3us/Jp0w/oB1C/ekpRhhERkShEtaXj7lOA5UC5yOdzgC+jeF6Ou7cA6gFtzKxZPm2Gunu6u6fXTE0uVPEiIhK9qALfzP4MjAaej9xVF3g32kHc/VdgMnBOIesTEZFiEu2btjcAHYAtAO7+HVDrUE8ws5pmVi3yeQpwFrCk6KWKiMjhiHYPf4e77zQzAMysLAW/AXs08HJkHz8JeMvdPyhypSIicliiDfwpZjYQSDGzLsD1wPuHeoK7fwWccpj1iYhIMYl2S+cuYD2wAPgL8CFwT1BFiYhI8Yt2hZ8CvOTuL0De5ZYpwLagChMRkeIV7Qr/E3IDfo8UYFLxlyMiIkGJNvAruPue35ol8nnFYEoSEZEgFOYvXrXcc8PM0oHtwZQkIiJBiHYPfwDwtpmtIfdyzDrA5cVeTY3joO/owj+vb7FXIiJS6kQb+A3JvcSyPtADaIsOQhMRKVGi3dL5u7tvAaoBXYChwP8GVpWIiBS7aAN/z1+5Oh94zt3fA8oHU5KIiAQh2sD/0cyeBy4DPjSz5EI8V0REEkC0oX0ZMAE4J3Ly5ZHA7YFVJSIixS6qN23dfRvwzl631wJrgypKRESKn7ZlRERCQoEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhocAXEQkJBb6ISEhEe1qmiITIrl27WL16NVlZWfEuRSIqVKhAvXr1KFeuXJH7UOCLyAFWr15N5cqVSUtLw8ziXU7ouTsbN25k9erVNGzYsMj9aEtHRA6QlZVF9erVFfYJwsyoXr36Yf/EpcAXkXwp7BNLcXw9FPgiUiqMHDmSlStXxruMhKY9fBEpWLtjire/GauiarZu3Tpuuukm5syZQ3JyMmlpaTz99NNcfPHFLFy4MK/dsGHD+O2336hfv36RSxoxYgRdu3alTp06Re4j0SnwRSQhuTs9evSgT58+jBo1CoB58+bx008/HdD22muvPezxRowYQbNmzRT4MbPkq+JfSYTFzNXxrkAKYdaaRw75+Hkre8eokvy9kZzDjsydebdbFHP/8/bq+2BmT/mMHUllaXtl3/+2P74Jv61YTtZuZ17mTnJychh87/+QMfVzdu3YwWX9rqNn3z+zLTOTm6+4hC2//kr2rl1c//dBnH5BN9asWE7/i7vRol0H5s+aQa06dXhq1Bi+mDCe2RkZ9PxDL5JTUnj5k8/5fslinrz7DrZvzaRa9erc/9yL1Kx9dDG/EtAiNXZ/LVZ7+CKSkJZ+vYgmp5xyyDbvvjyc1KpVGTllOq9Nmc47I17ix+U/UL5CBZ58/W3emDqLof/3MU/9z524OwArly3l8n7XMWbOPCpXrcYn742lS/eLaXJKKx4a9jJvTp9DmbJlefS2m3n81Td4/YuZXHTV1fz7/vtiMe1AJdYKX0SkEGZ8OonvFi5g0ru5f5Avc8tmVi5bSq269Rhy/9/5ctpULCmJn9esYePPuVtBddLSaHRycwAat2jJmpUrDuh3xXffsmzxIv560XkA7M7JoUbt2jGaVXAU+CKSkI5r3IRJ7449ZBt3584nnqL9WV33uX/ca6/wy4YNjPxiJuXKleO8pieyM3INe/nyyXntypRJYkdWdr79Hvu7Jrzy6efFMJPEoS0dEUlIbTqdzq6dO3hn+LC8+xbNzWDNqv9eetn+zC68/eJQdu3aBeSuzLdv3Urmls0cUbMm5cqVY87nk1mbzyp+f5VSU9mW+RsAaSecyK8b1zN/1kwg96iJZYu/Ls7pxYVW+CJSoHkTl8V8TDPjydff4ok7b2P4U49TPrkCdeo34LZHn8hr0+PqvqxZuYJeHU/F3TmiRk3++cbbnHvZHxhw2cX0+n07Gp3UnIYnNipwvAuv7M1DA/rnvWn7+KujePT2W8jcspmc7Gz+eP2NHNe4SZBTDpzteSMjEaSnlveMk46Kdxklk67SKVES/yqdjdQ6/sS41hAWhblKZ/HixTRu3Hif+8xsrrunR/P8wLZ0zOwYM/vMzBab2SIzGxDUWCIiUrAgt3SygVvd/UszqwzMNbOJ7l7yN8JEREqgwFb47r7W3b+MfP4bsBioG9R4IiJyaDG5SsfM0oBTgFmxGE9ERA4UeOCbWSowBrjJ3bfk83g/M8sws4z1u3YHXY6ISGgFGvhmVo7csB/p7u/k18bdh7p7urun1yynXwsQEQlKYG/aWu5p/cOAxe7+z6DGEZHgtXirV7H2N++y1wts06pqCsc3bZZ3+6k33qZOg7TDGrf/Jd34x7BXqFyt2mH1U1IFeZVOB+AqYIGZzYvcN9DdPwxwTBEpJZJTUnhz+pyDPp6dnU3ZsoWLsCFjxh1uWSVaYIHv7lMB/Y00ESk24157hS8mjGdnVhbbt23j+Q8+4ul77mbaxAmYGX+6427OvuRS1q9by519rmTrb1vIyc5m4FPP0LJDR85reiIjp0xn+9bMfI9JrpCSwqrvl/HIrQP4ZcMGKqRU5O/PPEvDRr+L99SLhY5WEJGEtGP7di5v3xqAug3S+OcbbwPw1exZvDUjg6pHHsmk98byzYL5vDkjg183buDKTh1o2aEj498aRfuzuvCn2+8iJyeHrG3bDuh/5bKl/GP4q9w75H+5o3cvPnlvLOdf0YsH/3Y9A58eQoPjT2DBnNn845YBDP2/CTGde1AU+CKSkA62pdP29DOpeuSRAMybMY1zel5OmTJlqF7rKFp1PI1FczNo2jKd+2/oR/auXZx+Qbe845D3lt8xydsyM5k/ayZ39P7vexa7duwIaIaxp8AXkRIlpVLFvM8PdhZYq46n8eJHnzD1o/Hc8+dr6D3gFi7sdeU+bfI7Jnn37t1UrlrtkO8dlGS6DlJESqyW7U/j43feJicnh03r1zN32lSapbdmzcoVHFmzFhdfcy3de1/Nkvn/iaq/1CpVqNMgjYljxwC531C+WfBVkFOIKa3wRaRA0VxGGQ9ndLuIr2bP5PJ26ZgZNz3wMDWOqs24ka/yyr/+Sdly5ahYKZUHhg4ruLOIh4eN4OGbb+SFx/5B9q5dnN3zMhqddHKAs4idxDoeOT3dMzIy4l2GSOjldwyvxF/CHo8sIiKJRYEvIhISCnwRkZBQ4IuIhIQCX0QkJBT4IiIhocAXkYKZFe9HFFJTU/e5PWLECPr37x/E7EJDgS8ipVJ2dna8S0g4+k1bESlx3n//fR588EF27txJ9erVGTlyJEcddRSDBg1izZo1LF++nBo1atC1a1fGjh3Ljh07+OGHH+jVqxf33XcfAN27d2fVqlVkZWUxYMAA+vXrB8CwYcN49NFHqVOnDieccALJyckMGTKEFStW0LdvX9avX0/NmjUZPnw49evX5+qrr6ZKlSpkZGSwbt06HnvsMXr27BnPl+fg3D1hPlq1auUiEn9ff/31vndA8X5EISkpyZs3b573ccwxx/gNN9zg7u6bNm3y3bt3u7v7Cy+84Lfccou7u993333esmVL37Ztm7u7Dx8+3GvXru0bNmzwbdu2edOmTX3OnDnu7r5x40Z397z7N2zY4D/++KM3aNDAN27c6Dt37vSOHTvmjXnBBRf4iBEj3N192LBhftFFF7m7e58+fbxnz56ek5PjixYt8uOOO66oL3uBDvi6uDuQ4VFmrFb4IpKQUlJSmDdvXt7tESNGsOfoldWrV3P55Zezdu1adu7cScOGDfPadevWjZSUlLzbXbp0oXr16gBcfPHFTJ06lfT0dAYPHszYsWMBWLVqFd999x3r1q2jU6dOHBk5fvnSSy/l22+/BWDGjBm8807un+a+6qqruOOOO/LG6N69O0lJSTRp0oSffvopiJejWGgPX0RKnBtvvJH+/fuzYMECnn/+ebKysvIeq1Sp0j5tbb83ic2MyZMnM2nSJGbMmMH8+fM55ZRTyMrKOuhxy/nZu9/k5P8etVyYPmJNgS8iJc7mzZupW7cuAC+//PIh206cOJFNmzaxfft23n33XTp06MDmzZs54ogjqFixIkuWLGHmzJkAtGnThilTpvDLL7+QnZ3NmDFj8vpp3749o0aNAmDkyJF07NgxoNkFR1s6IlKwBFu1Dho0iEsvvZS6devStm1bfvjhh4O27dixI1dddRVLly6lV69epKenc9JJJ/Hcc89x8skn06hRI9q2bQtA3bp1GThwIKeeeip16tShSZMmVK1aFYDBgwfTt29fHn/88bw3bUsaHY8sIgcoLccj79n3HzJkSNTPyczMJDU1lezsbHr06EHfvn3p0aNHgFVGT8cji4gUo0GDBtGiRQuaNWtGw4YN6d69e7xLKjZa4YvIAUrLCr+00QpfRESiosAXEQkJBb6ISEgo8EUkdLKzs3n22WfZuXNnvEuJqcS6Dn/JV9DumHhXETqz3tGRs7Kv5JxOZO5cm3d70cZXirX/ptV7F9im9pHHs27T0kL3/cWU6VzR8xoapOVmSfXqR/L+R2/x8ANPUKlSJQbc8tfcGlo05Lrrr+XpIY+QlHTwte+K5au4tEdvZv/ns0LXEo3U8kcH0m9+EivwRUSKQbsOpzL63UN/k2qV3oJW6S1iVFFi0JaOiJQYH37wMad3PJ8Obbpw4TmX8fNP64vUz/fLltPjgl6c1vZsup7RnSWLvwPg55/W84dL+9Iu/SzapZ/FzBlzAMjJyaH/X2+jdYvOXHTeFWzfvj3ffr5Z8l3xTDQgCnwRKTHadWjDp198wLTZE7nksot46sln8203Y9os2rc+i/atz+LxR/51wOM3Xn87jz/1IF/MnMADD9/DLQPuBuD2W+6h42ntmJExiamzJtC4SSMAli39gX7XXc2ceZOpWq0q7439EIC/XX9HXj8PPXIvtwwYGNDMi4e2dESkxFjz41qu/uN1rFv3Mzt37iQtrX6+7Q61pZOZuZWM2V9y4/W35923+dfNAEyZPI2hLw0GoEyZMlStWoVff9lMWlp9Tm7eDIAWLU9i5YpVZGZuZdbMDHr36pfXz44dif0msAJfREqM226+h/5/68f5F57NF1Om8/CDTxa6j927d1O5SmXGTxxTcOOI8snl8z4vk1SGrOwsdu/eTdVqVZg+Z1Kha4gXbemISImxZfMW6tTNvapl5GtvFamPKlUq0yDtGN4ZPQ7I/QYwf94CADqf3pEXn8/9ySAnJ4ctW34rsJ+xY94Hcs/BX/DVoiLVFCta4YtIgaK5jLK4bdu2nUbHtsq73f9v/bj7nlvp/Yd+HF23Nq3btGTF8lVF6nvYiH9z84138fgjg9m1axc9L7uI5i1O4rEnH+DG62/nlRFvUKZMEk898wi1ax9VYD+P/eNfef2cdHLTItUUC4EdnmZmLwEXAD+7e7NonpOeWt4zTjr4iyvB0HX4sr/kjZ04/sQG8S4jFApzHX4iH542AjgnwP5FRKQQAgt8d/8c2BRU/yIiUjhxf9PWzPqZWYaZZazftTve5YiIlFpxD3x3H+ru6e6eXrNc3MsRESm1lLAiIiGhwBeRUuXbb5by6suj4l1GQgrsOnwzewPoDNQws9XAfe4+LKjxRCQ4Df5TvP2tOKXgNpWT63BFr0t4YfgzQO4Z9sc3aEF665aHPAnz/nsfoVJqJX7X+ESytmdRrnw52rZrXeRad+/ezZ233suUydMwMypUSOblkc+T1rA+l3S7kmGv/Jtq1aoWuf9YCizw3f0PQfUtIqVfpUoV+XrRErZv305KSgqfTvqcOnVqH/I5a35cy19vuJZWrVsw8ePJLPxqEZUqVco38LOzsylbtuAIHPP2e6xd+xMz535CUlISP65eQ8VKFXMfG/da0SYXJ9rSEZGE1eXsM5gw/hMARr/1Lj0v7573WMac/3Bmpwvp0KYLZ3a6kG+/WUqdukfj7lz1h7/QvHkzhr3wKv9+5gXatz6LaVNn8Zc/3cRdtw/ivK49+fvAh9i6dRt/7XczndqfS4c2Xfhg3EcH1LBu7c/Url0r74+k1K1XhyOOqAZA0xPbsGHDRlYsX0XLk07jhutupc0pp3Ntnxv47JPPOatzN1o06UDGnNwfkTZt+oUrel5D21ZncvppF7BwwdcADBo0iL59+9K5c2eOPfZYBg8eHMjrqcAXkYTV87KLGP3We2RlZbFwwde0bt0y77ETGx3PhE/GMm32RO6593buv/eRfZ7bIO0Yrv3zVdxw45+ZPmcSHTqeCsDS777n/fFv8o/H7uPxR/5Fp84dmTJ9PP/38WjuuftBtm7dtk8/F/e8kPEfTqR967O4+477887d2d/3y5Zzff8/MXPuJ3z7zVLeenMsEz97jwcf+TtPPJob4A//vydo3qIZM+d+wqD/dxf9+v4t7/lLlixhwoQJzJ49m/vvv59du3YVy2u4N52lIyIJq9lJTVi5YhVvv/kuXc85c5/Htmzewl+uHcCypT9gZlEHZI9LLqBMmTIAfDppCh9+8DGDn/pfAHbsyGLVyh/5XeMT8trXrVeHLxd8wZTPpjFl8lQuPOdyXnn9eTqfcdo+/aal1adps9xjDxo3aUTn00/DzGjarDErV+Se+TNj+mxeG/UiAJ1O78imTb+weXPu0cznn38+ycnJJCcnU6tWLX766Sfq1atX2JfskBT4IpLQzrugK/9z1wOMnziaTRt/ybv/gfsf5/ed2vPG2y+xYvkqzut6SVT9VYrsv0PuCZevjXqBExsdf8jnJCcn0/WcM+h6zhnUqlWTD8Z9dEDg732EsiUlkRy5nZSURHZ2Tt54+zOzvDH2KFOmDNnZ2VHNpzC0pSMiCe2qPldw18Cb81bPe+xzVPKrb+b73NTUVDIzMw/a95ldOvP8sy/lBXF+2zXz/vMVa9esA3Kv2Fm0cDHH1C/ayrtDx7a8NeodIPePrVevfiRVqlQpUl9FkVgr/N+dDDMy4l1F6Jwa7wIk4Sz+dfE+pzhujMt/EiO1/NE0OvZo7rg195jklHLVKZuUTGr5oxl417306dOHZwcP54wzzsAoQ2r5o/dp07PHH+nZsyfjP/iUZ555hnJJKVQoe0Te3B4Y9Cg33XQT7dPPxt1JS0vjgw8+2KeKzF/mM+D6P7Fjxw4A2rRpw603DaRC+QqRMWtD+UySrGxev3uPU6n8jrzHHnrgca655hrap59NxYoVefWV12P4egZ4PHJRpKene0aGAl8k3vI7hlfiL5GPRxYRkQSiwBcRCQkFvojkK5G2e6V4vh4KfBE5QIUKFdi4caNCP0G4Oxs3bqRChQqH1U9iXaUjIgmhXr16rF69mvXr18e7FImoUKHCYf8ilgJfRA5Qrlw5GjZsGO8ypJhpS0dEJCQU+CIiIaHAFxEJiYT6TVsz+w34Jt51xEkNYEO8i4gjzV/zD+v8D3fuDdy9ZjQNE+1N22+i/RXh0sbMMsI6d9D8Nf/wzj+Wc9eWjohISCjwRURCItECf2i8C4ijMM8dNH/NP7xiNveEetNWRESCk2grfBERCYgCX0QkJGIe+GZ2jpl9Y2ZLzeyufB43MxscefwrM2sZ6xqDFMX8/xiZ91dmNt3MmsejzqAUNP+92rU2sxwz6xnL+oIWzfzNrLOZzTOzRWY2JdY1BiWK//tVzex9M5sfmfs18agzKGb2kpn9bGYLD/J48Nnn7jH7AMoAy4BjgfLAfKDJfm3OA8YDBrQFZsWyxgSYf3vgiMjn54Zt/nu1+xT4EOgZ77pj/PWvBnwN1I/crhXvumM494HAo5HPawKbgPLxrr0YX4PfAy2BhQd5PPDsi/UKvw2w1N2/d/edwCjgov3aXAS84rlmAtXM7Oj9OyqhCpy/u093918iN2cCh3ceamKJ5usPcCMwBvg5lsXFQDTz7wW84+4rAdy9tLwG0czdgcpmZkAquYGfHdsyg+Pun5M7p4MJPPtiHfh1gVV73V4dua+wbUqqws7tWnK/45cWBc7fzOoCPYDnYlhXrETz9T8ROMLMJpvZXDPrHbPqghXN3IcAjYE1wAJggLvvjk15CSHw7Iv10QqWz337XxcaTZuSKuq5mdnp5AZ+x0Ariq1o5v80cKe75+Qu9EqVaOZfFmgFnAmkADPMbKa7fxt0cQGLZu5nA/OAM4DjgIlm9oW7bwm6uAQRePbFOvBXA8fsdbseud/NC9umpIpqbmZ2MvAicK67b4xRbbEQzfzTgVGRsK8BnGdm2e7+bmxKDFS0//83uPtWYKuZfQ40B0p64Ecz92uARzx3Q3upmf0A/A6YHZsS4y7w7Iv1ls4c4AQza2hm5YErgHH7tRkH9I68Y90W2Ozua2NcZ1AKnL+Z1QfeAa4qBau6/RU4f3dv6O5p7p4GjAauLyVhD9H9/38POM3MyppZReBUYHGM6wxCNHNfSe5PNpjZUUAj4PuYVhlfgWdfTFf47p5tZv2BCeS+a/+Suy8ys+sijz9H7pUZ5wFLgW3kftcvFaKc/71AdeBHuC9OAAAAeElEQVTZyCo320vJKYJRzr/Uimb+7r7YzD4CvgJ2Ay+6e76X8ZUkUX7tHwBGmNkCcrc37nT3UnNkspm9AXQGapjZauA+oBzELvt0tIKISEjoN21FREJCgS8iEhIKfBGRkFDgi4iEhAJfRCQkFPgiIiGhwBcRCYn/D9rIWAuF95K4AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEICAYAAACphgboAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4VdW97vH3lyuJiUBICJgAwUBIuBiRCAICWxQLtBtrwWsVVPACx9JqFXrc7fFUt2fLg26VeqqiRUq9dYtWMPVSPSogKDSKQUIugEJgcwdJCMRcx/kjCaUYYCVmrZXMfD/Psx6y1hxrzt9IePJmzDXHHOacEwAAaNtCgl0AAAD4/gh0AAA8gEAHAMADCHQAADyAQAcAwAMIdAAAPIBABwDAAwh0tAtm9pGZfWNmkT62TzEzZ2ZhzTxempktM7P9ZnbIzN41s37N2RcA+IJAh+eZWYqkUZKcpEkBOmwnScsl9ZOUKGmdpGUBOjaAdohAR3swVdKnkhZLmnbiBjOLMrNHzWy7mZWY2cdmFiVpZX2Tw2ZWZmbD69vfYmb59aP9d82sV2MHdM6tc879wTl3yDlXJekxSf3MrIu/OgmgfSPQ0R5MlfRi/eMHZpZ4wrZHJA2RNEJSnKQ5kmolja7f3sk5F+Oc+8TMfizpPkk/kZQgaZWkl32sYbSkPc65g9+3MwDQGONe7vAyM7tY0oeSujvnDphZgaRnnHOPmVmIpKOSLnLO5Z70vhRJX0sKd85V17/2tqSlzrk/1D8PkVQmKcM5t/00NSRLWivpHuecr38AAECTMEKH102T9Dfn3IH65y/pH6fd4yV1kLTVx331kvSEmR02s8OSDkkySUmneoOZJUj6m6TfE+YA/KlZV/ACbUH9Z+FXSwo1sz31L0dK6mRmmZK+lPStpFRJuSe9vbFTVzskPeSce9HH43dWXZgvd8491IwuAIDPGKHDy34sqUZSf0nn1z8yVPfZ91TnXK2kRZL+08zOMbNQMxteP7Vtv+o+Sz/3hP09Lel/mtkASTKzjmZ2VWMHNrOzJb0rabVz7lf+6R4A/AOBDi+bJul551yxc25Pw0PSk5J+Wj/H/B7VjdT/rrpT6PMkhTjnjkl6SNLq+lPsFznn/lK//RUzK5W0UdKEUxz7SkkXSrq5/ir5hkdPf3YYQPvFRXEAAHgAI3QAADyAQAcAwAMIdAAAPIBABwDAA1rVPPT4+HiXkpIS7DIAoM347LPPDjjnEoJdB4KvVQV6SkqKcnJygl0GALQZZnbK2w6jfeGUOwAAHkCgAwDgAQQ6AAAe0Ko+QwcAtA6fffZZ17CwsOckDRSDv9agVtLG6urqGUOGDNnXWAMCHQDwHWFhYc9169YtIyEh4ZuQkBDuER5ktbW1tn///v579ux5TtKkxtrwVxcAoDEDExISSgnz1iEkJMQlJCSUqO6MSeNtAlgPAKDtCCHMW5f6n8cpc5tABwB4wlNPPRW3efPmiGDXESx8hg4AOLPhPYa06P4+2fGZL82Ki4vDZs2a1TM3Nzc6IiLCJScnV/zud7/bMXny5D6bN2/Oa2j32GOPxR85ciSkb9++lc0tacGCBV0mTZpUmpKSUtXcfQRT6wr0gg3S8B7BrqLdWfv6ncEuAWi3hnWfG+wSWq3a2lpNmjSpz/XXX38wOzv7K0las2ZN1K5du8JPbnvXXXcd+L7He+GFF+LPP//88rYa6JxyBwC0StnZ2bFhYWFuzpw5+xteGzFiRHnv3r2Pj8Krq6t1++23Jw8cODAjLS2t//z58+MlqaSkJGT48OFp/fv3z0hLS+v/wgsvdJKkwsLCiHPPPXfAtdde26tPnz4DRo4c2besrMyef/75zhs3boyeOnXquenp6f3Lysps1apV0RdeeGG/AQMGZFx88cV9t2/f/p0/JFoTAh0A0Cpt2LAhKjMz89jp2jz++OPxHTt2rNm4cWN+bm5u/h//+MeEgoKCiOjo6Nq//vWvWzZt2pS/YsWKovvuuy+5trZWklRcXNxh9uzZ+7Zs2ZLXsWPHmiVLlnS++eabvxk4cOCxJUuWfFVQULApPDxcs2fP7rls2bKteXl5+dOmTTtwzz33JAWk483Uuk65AwDQBO+///7ZBQUF0cuXL+8sSUeOHAndtGlTh969e1f94he/SP70009jQkJCtG/fvoidO3eGSVJSUlLFiBEjyiVp8ODBx7Zt2xZ58n43bNgQuXnz5qixY8emSXWn/xMSElr1qXgCHQDQKg0aNKj8jTfe6Hy6Ns45e/TRR4snT55ceuLrCxYs6HLw4MGwL7/8Mj8yMtIlJSUNKi8vD5GkiIiI49PxQkNDXcPrJ++3T58+5V988UVBS/XH3zjlDgBolf71X//1SGVlpT366KPxDa+tWLEiesuWLcenpo0bN67kqaeeSqioqDCpbmRdWloaUlJSEhofH18VGRnp3nzzzdhdu3adcTpbTExMTUlJSagknXfeed8eOnQo7P333z9LkioqKiwnJ6dDy/ey5TBCBwCcmY/TzFpSSEiIli9fvnXWrFk9Hn/88W6RkZHHp601tLnrrrsObNu2LXLQoEEZzjmLi4ureuutt7bOmDHj0IQJE/oMHDgwY8CAAcd69+797ZmON3Xq1AM/+9nPet177721OTk5+a+88srW2bNn9zxy5EhoTU2NzZw5c29WVtYZ9xMs5lzruRFQVkyEyxmUGOwy2h2mrQHB832nrZnZZ865rBYq57jc3NxtmZmZ33sqGFpWbm5ufGZmZkpj2/x2yt3MFpnZPjPb6K9jAACAOv78DH2xpPF+3D8AAKjnt0B3zq2UdMhf+wcAAP8Q9Kvczew2M8sxs5z9VbXBLgcAgDYp6IHunFvonMtyzmUlhAe9HAAA2iQSFAAAD2AeOgDgzBZNadnlU29ZesZ57aGhoUP69u1b3vB82bJlW/r169fs5VElacyYMX1ee+21r+Pj42u+z35aI78Fupm9LOlfJMWb2U5J9zvn/uCv4wEAvCUyMrK2oKBg06m2V1VVKTy8aQugrVixYsv3LqyV8udV7tc557o758Kdc8mEOQDg+1qwYEGXCRMmnDt27Ng+o0aNSqutrdXtt9+e3Ldv3wFpaWn9n3322c6StH379vCsrKx+6enp/fv27TvgnXfeiZGkpKSkQbt37w471TKqkpSXlxc5atSovgMGDMgYMmRIv/Xr17fqW7424JQ7AKBVqqioCElPT+8vST169Kh47733tkrS559/HrNhw4a8xMTEmsWLF3f68ssvo/Lz8/N2794dNnTo0IzLL7+8bNGiRXGXXnppybx58/ZUV1fryJEj3xnAFhcXd3jhhRe+GjFixPaJEyeeu2TJks6zZs06NGPGjF4LFy7cPmjQoIoPPvjgrJkzZ/b89NNPiwLd/6Yi0AEArdKpTrmPGjWqNDExsUaSVq1aFXv11VcfCgsLU48ePaqHDRtW9vHHH0dfdNFFR2+//faUqqqqkClTpnzTsFzqiRpbRrWkpCRk/fr1MVdddVVqQ7vKykrzZz9bCle5AwDalOjo6OM3LTnVeiQTJkwoW7lyZWFSUlLlTTfd1PvJJ5/scnKbk5dRra6utpqaGsXGxlYXFBRsanh89dVXeX7pSAsj0AEAbdaYMWOOLF26NK66ulq7du0KW7duXcyoUaOOFhUVRSQlJVX98pe/PHDDDTcc+Pzzz6N92V9cXFxtcnJy5aJFizpLUm1trT755JMo//aiZXDKHQBwZj5MMwuGG2+88fCaNWtiMjIyBpiZ++1vf7uzZ8+e1b/73e+6LFiwoFtYWJiLjo6uefHFF7/2dZ8vv/zyV7feemuvefPmda+urrYrr7zy0PDhw79zyr61aV3Lp2ZluZycnGCXAQBtBsunti9BWT4VAAAEDoEOAIAHEOgAAHgAgQ4AgAcQ6AAAeACBDgCABzAPHQBwZmYtu3yqc2ec1x4dHT342LFj6xueL1iwoEtOTs5ZS5YsKW7RWjyCEToAwJOqqqqCXUJAMUIHALQ5L730UseHH364e1VVVUjnzp2r//znP3/Vo0eP6rvvvvuc3bt3hxcXF0fExcVVjxs3rnTZsmWdKisrQ3bs2BE5efLkg48++uhuSbrssstSd+/eHVFRURFyxx137L3nnnsOSNJjjz0W/8QTT3Tr2rVr1bnnnvttRESEW7JkSXFRUVHEtGnTUg4ePBjWpUuX6iVLlmzr27dv5eTJk1NiY2NrcnNzz9q/f3/4gw8+uPPmm2/+JtDfE0boAIBWqWH51IbHf/zHf5zTsG3cuHFlX3zxRUF+fv6mKVOmHHrggQe6NWzbsGFD9LvvvrvlzTff/Lr++VmvvvrqVxs3bsxbvnx53MqVK6Ml6cUXX9yWl5eX/8UXX2x65plnEvfs2RO6bdu28EceeaT72rVr81etWlW0efPm42uh33HHHT2vv/76g0VFRZuuueaagzNnzuzRsG3v3r3hOTk5BcuWLdt8//33JwXmO/TPGKEDAFqlk5dPbfgMXZK+/vrriB//+MfJ+/fvD6+srAzp0aNHRUO78ePHH46JiTl+X/OLL764tFu3bjWS9MMf/vCbjz76KGb06NHH5s2bl/jXv/61kyTt2bMnPC8vr8OuXbvChw0bdqRhedYrr7zym6Kiog6StH79+rPefvvtrZI0c+bMQ7/97W+TG44xadKkw6GhoRoyZMi3Bw8eDPfvd6ZxjNABAG3OnXfe2XPWrFn7ioqKNj355JPbKyoqjufZWWedVXtiW7N/Xs7czJSdnR27YsWK2JycnILCwsJNGRkZ5eXl5SHNXd+kQ4cOx98YrDVSCHQAQJtz5MiR0J49e1ZJ0uLFi7+z1vmJPv7447P37t0bWlZWZm+99VanMWPGlB0+fDi0Y8eONbGxsbXr16/vkJube5YkjRo16ujatWtj9+/fH1pVVaVly5Z1btjP4MGDjz733HOdJemZZ56Jy8rKKvNnH5uKU+4AgDPzYZpZIP3bv/3bruuuuy41MTGxMisr62hxcXHkqdpmZWWVXXPNNb23bdvWYfLkyQdHjx59rLy8vHzhwoUJaWlp/VNTU7/NzMw8Kkm9e/euuuuuu3ZfeOGFGV27dq1KS0sr79ixY40kPfXUU8XTpk1LeeKJJ7o1XBQXoO76hOVTAaANY/nU02vO3PWSkpKQjh071lZVVekHP/hBn5tuuunA1KlTD/uzTl+xfCoAAD669957z0lPT++flpY2oGfPnhU33HBDqwjzM+GUOwDAs2bPnn1Q0sGmvGfhwoU7/VSOXzFCBwDAAwh0AAA8gEAHAMADCHQAQLtTVVWlhx9+OOHbb7+1M7duG1rXRXEFG6ThPc7cDt/1aZu8hqPdWrvr4dNun1g8NUCVINgODuse7BJ8snb3vBZdPnVY97lNXj7VV9nZ2bHXXXddalJSUqUkxcXFVa9Zs6bo7rvvPicmJqbmgQce2BseHq7hw4cfveWWW3r+6U9/2h4aGnrK/RUWFkb86Ec/6rt58+a8ptYSSK0r0AEAaAFZWVllH3744ZbTtRkzZsyxMWPGbA9UTf7GKXcAQJvx0ksvdTzvvPPSMzIy+o8YMSJtx44dzRqY5uXlRY4aNarvgAEDMoYMGdLv888/7yBJO3bsCBs3blxqv379+vfr16//e++9d5Yk1dTU6Nprr+3Vp0+fASNHjuxbVlZmje1n/fr1HU53XH8i0AEAbcbplk09UU5OTkzDsqtz5879Tpvp06f3+v3vf1+cl5eXP2/evJ0zZ87sKdUtkTpq1KgjhYWFm/Ly8jZdcMEF30pScXFxh9mzZ+/bsmVLXseOHWuWLFnSWZJmzJhxfD/z588/vp9g4JQ7AKDNON2yqSc63Sn3kpKSkNzc3LOmT5+e0vBaaWlpqCStWbMmdunSpV9LUlhYmLp06VJz4MCB0KSkpIoRI0aUS9LgwYOPbdu2LbKkpCRk/fr1MVdddVVqw34qKyuDdpEdgQ4AaDPuvPPOnj//+c/3/PSnPy3Jzs6OfeCBB85p6j5qamoUExNTs27dukJf3xMREXF84ZPQ0FBXXl4eUlNTo9jY2OoT12wPJk65AwDajKYsm3oqcXFxtcnJyZUNS6HW1NRo9erVUZI0cuTII/Pnz0+QpOrqah06dOiUOdmwn0WLFnWWpNraWn3yySdRzampJfhthG5mPSQtkdRNUq2khc65J/x1PACA//gyzaylffvttyGJiYnnNTyfOXPm3qYsm3o6L7/88le33nprr/nz53evrq62K6+88tDIkSPLn3rqqeKbbrqpV1paWnxISIiefPLJ7T169Kg6037mzZt3fD/Dhw8vb05N35fflk81s+6SujvnPjezWEmfSfqxc+6UpyayYiJczqBEv9TjecxDb1OYh44G33ceOsunti9BWT7VObfbOfd5/ddHJOVLSvLX8QAAaM8C8hm6maVIGixpbSCOBwBAe+P3QDezGEmvSfqFc660ke23mVmOmeXsr6r1dzkAAHiSXwPdzMJVF+YvOudeb6yNc26hcy7LOZeVEM5F9wAANIffEtTMTNIfJOU75/7TX8cBAAD+HaGPlHSjpLFm9kX9Y6IfjwcAQLvlt3nozrmPJXlmnVkAaM+6rN3dosunHhzW/Yzz2s1syBVXXHHojTfe+FqqW8O8a9eumeeff/7R062ktnLlyuhFixZ1Wbx48Y7s7OzYyMjI2nHjxh1tbq01NTWaPn16j9WrV59tZi4iIsItXbp0a3p6euWYMWP6vPbaa1/Hx8fXNHf/LYVbvwIAWqWoqKjawsLCqLKyMouJiXF/+ctfzk5MTDzlTV4ajB49+tjo0aOPSdIHH3wQGxMTU9NYoFdVVSk8PPyMdTz33HNxe/bsCS8oKMgLDQ3V1q1bw88+++xaSVqxYsVpl2gNJK5CAwC0WpdeemnJq6++2kmSXn755bjJkycfatj24YcfRg8ePDg9IyOj/+DBg9Nzc3MjJSk7Ozv2kksu6VNYWBixZMmShKeffjoxPT29/zvvvBMzefLklBkzZiQPGzYsbdasWcmlpaUhV111VcrAgQMzMjIy+r/wwgudTq5h9+7d4YmJiVWhoaGSpNTU1KqEhIQaSUpKShq0e/fusMLCwojevXsPuOaaa3r17dt3wKRJk3q/8cYbsRdccEF6r169Bn744YfRkrR3797Qyy67LDUtLa1/ZmZm+tq1a6Mk6e677z7nqquuShk6dGi/5OTkQf/+7//etanfKwIdANBq3XjjjYf+/Oc/dz527Jjl5+dHDx8+/PhIOzMz89t169YV5Ofnb7r//vv/e86cOcknvrdfv36VU6dO3X/HHXfsLSgo2DR+/PgySdq6dWuH1atXFz377LM777vvvu6XXHJJ6caNG/NXrVpV+Otf/zq5tLQ05OQa3n///U7p6en9b7311uSG+76fbMeOHR1++ctf7isoKMjbunVrhxdffLFLTk5OwUMPPbTzoYce6i5Jc+bMOSczM/NYUVHRpgcffPC/p02b1rvh/Vu2bOmwYsWKor///e/5jzzyyDkVFRVN+tiaQAcAtFrDhg0r37lzZ+Szzz4bd9lll5WcuO3QoUOhEydOTO3bt++AOXPm9CgqKurgyz5/8pOffBMWVveJ80cffXT2Y4891j09Pb3/xRdf3K+iosK2bNkScWL71NTUqi1btmx84IEHdoaEhGjixIn9li1bFnvyfpOSkiqGDh1aHhoaqrS0tPKxY8eWhoSE6IILLji2c+fOSElat25d7PTp0w9K0qRJk44cPnw47ODBg6GSdPnllx+Oiopy3bt3r46Li6vauXNnkz4W5zN0AECrNn78+MP3339/j7/97W+F+/btO55bc+fOTRozZsyR9957b2thYWHE2LFj+/myv5iYmON3MXPOaenSpVsyMzMbXVe9QVRUlLv66qtLr7766tLExMSq119/vdMVV1xx5MQ2Jy6xGhISog4dOjhJCg0NVU1NjTUc72Rm5iQpMjLyxCVaVV1d3aQReusK9PTzpE9ygl0F4HfDzrD94PdbrwPwlJkzZx7o2LFjzdChQ8uzs7OPj4xLS0tDk5OTKyXpmWeeiW/svbGxsTWlpaWhp9r3JZdcUvroo48mLl68uDgkJESrV6+OGjly5D+tlvbxxx9HJycnV6WkpFTV1NToyy+/jBo0aFCzVlS76KKLjjz//PNd5s+fvzs7Ozu2c+fO1XFxcS1ym9TWFegAgFbJl2lm/pKamlr1m9/8Zt/Jr8+dO3fPjBkzei9YsKDbqFGjvnNrcUmaPHny4SlTpqS+/fbbnR5//PHik7c//PDDu2677bae6enp/Z1zlpycXHHylLg9e/aE3X777b0qKytDJOn8888/+qtf/eo79fhi3rx5u66//vqUtLS0/lFRUbWLFy/+ujn7aYzflk9tjqysLJeTwwgdAHzF8qntS1CWTwUAAIFDoAMA4AEEOgCgMbW1tbXcvrsVqf95nPICOgIdANCYjfv37+9IqLcOtbW1tn///o6SNp6qDVe5AwC+o7q6esaePXue27Nnz0Ax+GsNaiVtrK6unnGqBgQ6AOA7hgwZsk/SpGDXAd/xVxcAAB5AoAMA4AEEOgAAHkCgAwDgAQQ6AAAeQKADAOABBDoAAB5AoAMA4AEEOgAAHkCgAwDgAQQ6AAAeQKADAOABBDoAAB7g02prZpYo6f9IOsc5N8HM+ksa7pz7Q4tWc2CrtGhK0983/bUWLQMAAsa5YFcAj/B1hL5Y0ruSzql/XiTpF/4oCAAANJ2vgR7vnPsv1S2wLudctaQav1UFAACaxNdAP2pmXSQ5STKziySV+K0qAADQJD59hi7pbknLJaWa2WpJCZKa8WE3AADwB58C3Tn3uZmNkdRPkkkqdM5V+bUyAADgM19H6JI0VFJK/XsuMDM555b4pSoAANAkvk5b+5OkVElf6B8XwzlJBDoAAK2AryP0LEn9nfN9wqSZdZC0UlJk/XGWOufub3qJAADgTHy9yn2jpG5N3HeFpLHOuUxJ50saX391PAAAaGG+jtDjJW0ys3WqC2pJknNu0qneUD+aL6t/Gl7/4JZIAAD4ga+B/r+bs3MzC5X0maQ+kv6vc25tI21uk3SbJPXsEtWcwwAA0O75dMrdObdC0jZJ4fVf/13S5z68r8Y5d76kZElDzWxgI20WOueynHNZCTGRTSoeAADU8SnQzexWSUslPVP/UpKkN3w9iHPusKSPJI1vYn0AAMAHvl4U9z8kjZRUKknOuc2Sup7uDWaWYGad6r+OknSZpILmlwoAAE7F18/QK5xzlWYmSTKzMJ35Arfukv5Y/zl6iKT/cs5lN7tSAABwSr4G+gozu09SlJmNkzRL0pune4NzboOkwd+zPgAA4ANfT7n/StJ+SV9Kul3SW5J+7a+iAABA0/g6Qo+StMg596x0fDpalKRj/ioMAAD4ztcR+v9TXYA3iJL0fsuXAwAAmsPXQO/gnGu465vqv472T0kAAKCpfA30o2Z2QcMTM8uSVO6fkgAAQFP5+hn6zyW9ama7VDdd7RxJ17R4NfGp0i1Lm/6+W1q8EgAA2hRfA7236qag9ZR0paSLxEIrAAC0Gr6ecv+Nc65UUidJ4yQtlPSU36oCAABN4mug19T/+0NJTzvnlkmK8E9JAACgqXwN9P82s2ckXS3pLTOLbMJ7AQCAn/kayldLelfS+PqV0+Ik3eu3qgAAQJP4dFGcc+6YpNdPeL5b0m5/FQUAAJqG0+YAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHgAgQ4AgAcQ6AAAeIBP66EHzIGt0qIpwa6i3Vo74cJglwC0O8O6zw12CfAIRugAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAH+D3QzSzUzNabWba/jwUAQHsViBH6zyXlB+A4AAC0W34NdDNLlvRDSc/58zgAALR3/h6hPy5pjqRaPx8HAIB2zW+BbmY/krTPOffZGdrdZmY5Zpazv6zCX+UAAOBp/hyhj5Q0ycy2SXpF0lgze+HkRs65hc65LOdcVkJMpB/LAQDAu/wW6M65/+mcS3bOpUi6VtIHzrkb/HU8AADaM+ahAwDgAQFZPtU595GkjwJxLAAA2iNG6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHhAQK5y91l8qnTL0mBX0W4NC3YBAIBmY4QOAIAHEOgAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHgAgQ4AgAcQ6AAAeACBDgCABxDoAAB4AIEOAIAHEOgAAHgAgQ4AgAeEBbuAf3Jgq7RoSrCrANCY6a8FuwJvci7YFcAjGKEDAOABBDoAAB5AoAMA4AEEOgAAHkCgAwDgAQQ6AAAeQKADAOABfp2HbmbbJB2RVCOp2jmX5c/jAQDQXgXixjKXOOcOBOA4AAC0W5xyBwDAA/wd6E7S38zsMzO7rbEGZnabmeWYWc7+sgo/lwMAgDf5+5T7SOfcLjPrKuk9Mytwzq08sYFzbqGkhZKUldKZmxoDANAMfh2hO+d21f+7T9JfJA315/EAAGiv/BboZnaWmcU2fC3pckkb/XU8AADaM3+eck+U9BczazjOS865d/x4PAAA2i2/Bbpz7itJmf7aPwAA+AemrQEA4AEEOgAAHkCgAwDgAQQ6AAAeQKADAOABgVicxXfxqdItS4NdBYDG3BLsAgCcDiN0AAA8gEAHAMADCHQAADyAQAcAwAMIdAAAPIBABwDAAwh0AAA8gEAHAMADCHQAADyAQAcAwAPMORfsGo4zsyOSCoNdR5DESzoQ7CKCiP7T//ba/+/b917OuYSWKgZtV+u6l7tU6JzLCnYRwWBmOe217xL9p//tt//tue9oWZxyBwDAAwh0AAA8oLUF+sJgFxBE7bnvEv2n/+1Xe+47WlCruigOAAA0T2sboQMAgGYg0AEA8ICAB7qZjTezQjPbYma/amS7mdmC+u0bzOyCQNfoTz70/6f1/d5gZmvMLDMYdfrLmfp/QrscWN2jAAADUUlEQVQLzazGzKYEsj5/86X/ZvYvZvaFmeWZ2YpA1+gvPvzf72hmb5pZbn3fbw5Gnf5iZovMbJ+ZbTzFdk//7kMAOOcC9pAUKmmrpHMlRUjKldT/pDYTJb0tySRdJGltIGtsBf0fIalz/dcT2lv/T2j3gaS3JE0Jdt0B/vl3krRJUs/6512DXXcA+36fpHn1XydIOiQpIti1t+D3YLSkCyRtPMV2z/7u4xGYR6BH6EMlbXHOfeWcq5T0iqQrTmpzhaQlrs6nkjqZWfcA1+kvZ+y/c26Nc+6b+qefSkoOcI3+5MvPX5J+Juk1SfsCWVwA+NL/6yW97pwrliTnnFe+B7703UmKNTOTFKO6QK8ObJn+45xbqbo+nYqXf/chAAId6EmSdpzwfGf9a01t01Y1tW/TVfcXu1ecsf9mliTpSklPB7CuQPHl558mqbOZfWRmn5nZ1IBV51++9P1JSRmSdkn6UtLPnXO1gSmvVfDy7z4EQKBv/WqNvHbyvDlf2rRVPvfNzC5RXaBf7NeKAsuX/j8uaa5zrqZuoOYpvvQ/TNIQSZdKipL0iZl96pwr8ndxfuZL338g6QtJYyWlSnrPzFY550r9XVwr4eXffQiAQAf6Tkk9TnierLq/xpvapq3yqW9mdp6k5yRNcM4dDFBtgeBL/7MkvVIf5vGSJppZtXPujcCU6Fe+/v8/4Jw7Kumoma2UlCmprQe6L32/WdLDzjknaYuZfS0pXdK6wJQYdF7+3YcACPQp979L6mtmvc0sQtK1kpaf1Ga5pKn1V3xeJKnEObc7wHX6yxn7b2Y9Jb0u6UYPjMpOdsb+O+d6O+dSnHMpkpZKmuWRMJd8+/+/TNIoMwszs2hJwyTlB7hOf/Cl78WqOzMhM0uU1E/SVwGtMri8/LsPARDQEbpzrtrM7pT0ruquel3knMszszvqtz+tuiubJ0raIumY6v5q9wQf+/+/JHWR9Pv6UWq188hKTD7237N86b9zLt/M3pG0QVKtpOecc41Oc2pLfPzZPyhpsZl9qbrTz3Odc55ZUtXMXpb0L5LizWynpPslhUve/92HwODWrwAAeAB3igMAwAMIdAAAPIBABwDAAwh0AAA8gEAHAMADCHQAADyAQAcAwAP+P6+dLVloH/qZAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -1839,7 +2127,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8jvX/wPHXe7PZbEWOOaRJymkO25wrp1DI6TciQkQqp3SkQr460VeKbwdlphJCS/UtXxSpHIfRGCPmTBtZlm22+fz+uOfWmO3Grvu+t/v9fDw8vruv63Ndn/fnXt/3fe1zfe73JcYYlFJKFX1erg5AKaWUc2jCV0opD6EJXymlPIQmfKWU8hCa8JVSykNowldKKQ+hCV8ppTyEJnzlEURktYj8KSLFHWwfJCJGRIpdY39lReRXETkpIqdFZJ2ItLiWcylVUDThqyJPRIKAuwEDdHFStynAIKAccBPwJvDNtX6AKFUQNOErT9AfWA9EAgP+uUNE/EXk3yJyQESSReQXEfEH1mQ3OS0iKSLSLLv9IBGJy/5r4X8icmtuHRpj0owxu40x5wEBsrAl/tLWDFGp/OnVhvIE/YFpwAZgvYhUMMacyN73FlAHaA4cB5oA54F7gP1AKWNMJoCIdAPGAQ8Ae4AXgPnZx+ZKRLYDNQEf4GNjzB8FPjqlHCRaS0cVZSJyF7AKqGiMSRKRXcCHxpi3RcQL+BtoaozZdslxQdgSvs8/Ev73wGJjzOzs117Ypm5qGWMO5BGDH9Ad8DXGzC3oMSrlKJ3SUUXdAGC5MSYp+/XnXJzWKQv4Ab87eK5bgXeyb8KeBk5hm66pnNdB2dM784EXRKT+1Q5AqYKiUzqqyMqei+8FeIvI8ezNxYFS2Yn3NyANqA5su+Tw3P70PQS8aoyZd40h+QC35dKXUk6hV/iqKOuG7WZpbaBB9r9awM9A/+wbqhHANBGpJCLeItIse+lmIra5/Nv+cb4PgLEiUgdAREqKSM/cOhaRpiJyl4j4Zt8Yfh6ogO0+glIuoQlfFWUDgDnGmIPGmOMX/gEzgb7ZSySfwXalvwnbFM2bgJcx5izwKvBr9hROU2NMVPb+BSLyFxAL3H+FvosD/wFOAkeAjkAnY8xRy0arVD70pq1SSnkIvcJXSikPoQlfKaU8hCZ8pZTyEJrwlVLKQ7jVOvyyZcuaoKAgV4ehlFKFxubNm5OMMeUcaetWCT8oKIjo6GhXh6GUUoWGiFyxrMeldEpHKaU8hCZ8pZTyEJrwlVLKQ7jVHH5uMjIyOHz4MGlpaa4ORTnAz8+PKlWq4OPj4+pQlFKXcK+Ev2s7NLslx6bDT4znhuCGBPn6ICIuCqyI+fucJac1wMnkZA5/8w3VRo2ypA+lclNudrKrQ7hmiYNudFpfbj+lk1bpVsposi8UBChTrBhpt9/u6lCUUrlw+4SPl2iyL0QEwMv9/7NSyhNZ+v9MERklIrEiskNERlvZl1JKqbxZNocvInWBIUBj4BywTET+a4zZcz3nbfZ+zYIIz27d47vybeNdtyHBNWpgMHh7eTHzpbE0b9gg17bNH+rP2s8/cbj/1Rs38dacuXz7/kyHj8nP1z+uZufvv/PCkMEFdk6lVOFn5U3bWsD67AdJICI/YXuQ8xQL+7SEf/HixER9AcD/fvmVsW+/y0+fRORok5WVhbe391Ule6t0adOKLm1auTgKpZS7sXJKJxa4R0TKiEgJbE/8ueXSRiIyVESiRSQ6MeO8heEUjL9S/uamG2131Vdv3ETrgYN56NkXCO4aDkBgaFP7vlYDBhM++mlqdupK32fHcuFhM8t+/pWanbpyV78BfLniB/u5N27/jeYP9adhj140f6g/u/cnANDkwb7s2LPX3q7VgMFs3rGTU6eT6TZ8NPW6hdO0dz+2744HIDJqKcMnvwbAwHEvM/LVN2j+UH9ua9+Rxf9bYT/P1E8/pVH//tTr04cJH35o0TumlHIXll3hG2PiRORNYAWQgu3BzZm5tJsFzAIIC/R1y8dvpaan06B7L9LOpXMsMYkf53xk37fxt1hily6hWpUqlx23NW4XO77+kkrly9Gi7wB+3bKVsLp1GDLhFX6M+Ijbb63Kg2Oes7eveVs11nwSQbFixVi5dj3jpr/Lknem0bvjfXyxbDmv1LidY4mJHP3jD0Lr1GbE5NdpWKsmX82czo/rN9D/hZfsf4n807HEJH75LJJd+/bT5clRhN/VkuXr17Pn4EE2zp2LMYYuTz/Nmi1buCckxJo3USnlcpauwzfGzAZmA4jIa8BhK/uzyj+ndNbFbKP/Cy8S+/WXADQOrptrsr+wr8rNFQBoUPNOEo4cJbBECapVrkyNoFsB6PdAJ2YtWgxA8pkUBox9iT0HDiIiZGTaPh973deedoOH8cqIJ/hi2XJ6dmgPwC9btrLknWkAtGnahJPJp0k+c+ayOLq1bY2Xlxe1b6/OiZMnAVi+fj3LN2ygYd++AKSkprLn0CFN+EoVYZYmfBEpb4z5Q0SqAj2AZlb25wzNGtQn6fRpEk+dAiDA3/+KbYv7Xvy2qbe3F5lZWQBXXGb68oz/0LpxI6JmTCfhyBFaDXgUgMoVKlCmVEm2745n4ff/48OJLwOQ2+OIczt3cV9f+88XppWMMYwdOJDHevTIa7hKqSLE6gXTS0RkJ/AN8KQx5k+L+7Pcrn37yco6T5lSpa7p+Jq3VWP/4SP8fvAQAPO/+96+L/nMGSpXsP1FEBn1dY7jene8jymz55B85gzBd9QA4J6wEOZ9+1/Ads+gbKlS3BgY6FAcHZo1I+Lrr0k5exaAI3/8wR/ZH2JKqaLJ6imduwv6nI4soyxoF+bwAQyGua//C29v72s6l1/x4sx6ZTydHh9O2ZtKcVdIQ2Kzb8g+N/gRBox9iWlzP6VNk0Y5jgtv345Rr0/h5WFD7dsmPvk4j7w4nnrdwinh58fc1yc7HEf7pk2J27+fZoMGARBYogSfTZpE+dKlr2lcSin3Jya3eQEXCQsLM5c+ACUuLo5atWq5KCJ1LfR3ppTziMhmY0yYI231O/BKKeUhNOErpZSH0ISvlFIeQhO+Ukp5CE34SinlITThF7B58+Zx8OBBV4ehlFKXca9HHDqi2WX1167PukP5Njl+/DijR49m06ZNFC9enKCgIKZPn06PHj2IjY21t5s9ezZnzpyhatWq1xxOZGQk7du3p1KlStd8DqWUyk3hS/hOZoyhe/fuDBgwgAULFgAQExPDiRMnLms7ePD115+PjIykbt26mvCVUgVOp3TysWrVKnx8fBg2bJh9W4MGDbjllot/aWRlZfHss8/SqFEj6tWrx4fZpYZTUlJo27YtISEhBAcHs3TpUgASEhKoVasWQ4YMoU6dOrRv357U1FQWL15MdHQ0ffv2pUGDBqSmprJ582ZatmxJaGgoHTp04NixY859A5RSRYYm/HzExsYSGhqaZ5vZs2dTsmRJNm3axKZNm/joo4/Yv38/fn5+REVFsWXLFlatWsXTTz9tL162Z88ennzySXbs2EGpUqVYsmQJ4eHhhIWFMW/ePGJiYihWrBgjRoxg8eLFbN68mUGDBvHiiy86Y9hKqSJIp3QKwPLly9m+fTuLF2eXOU5OZs+ePVSpUoVx48axZs0avLy8OHLkiH0qqFq1ajRoYHtMYmhoKAkJCZedd/fu3cTGxtKuXTvA9pdExYoVnTMopVSRowk/H3Xq1LEn8isxxjBjxgw6dOiQY3tkZCSJiYls3rwZHx8fgoKCSEtLA6B48eL2dt7e3qSmpuZ63jp16rBu3boCGIlSytO5VcLfdcjQbOS5HNtee9DAwYuPPizoklxxB/N+rGLF21tx+sw4Jr35IT37DAHgt22bSEs9S3qG7fh6jdoxZdp7VLy9FT4+PiTsi6f8zZWJTzhNMf9y7D3mzYa1P3DgwAH2HrH1d+FYgBN/Gs6eNcQdPI8UCyR2bzIB5c9z3r8GR44lMj/qVxqENiMjI4OE/fHUuKNOAb8LBev4KcOgS36PrrBuRvH8Gynlak4sYOlWCd8RcQsPOLU/EWHGrCW8/spTfPzeFHyL+1G5yq28MOFte5vw3o9y5PABwjuFYYyhdOlyzPjoSzp3e4gnBnWlZ+fG1Kxdn9uq18y3v27hA3jlxSco7ufP/Khfmf7+F7w2cTQpZ5LJzMyk/+CRbp/wlVLuydLyyCLyFPAoYIDfgEeMMWlXah9YIdQEP5hz+uK1B/dy8y35J0rlPo4f2sW4hbe7Ogy9wleFw3XmYLcojywilYGRQJgxpi7gDfS2qj+llFJ5s3pZZjHAX0SKASWAoxb3p5RS6gosS/jGmCPAW8BB4BiQbIxZblV/Siml8mbllM5NQFegGlAJCBCRfrm0Gyoi0SISnZGaZFU4Sinl8ayc0rkX2G+MSTTGZABfAs0vbWSMmWWMCTPGhPn4l7UwHKWU8mxWJvyDQFMRKSEiArQF4izsTymlVB4sW4dvjNkgIouBLUAmsBWYdb3nrbWy1/WeIoe4e7/It03daj7UqBlsfz1z1pdUviXouvp9bEAnpr47jxtLlrqu8yillKMs/eKVMWYCMMHKPpyhuJ8/Ud9vueL+zMxMihW7urfyw7n/vd6wlFLqqmi1zGsUtSiS0Y/34olBXRjS7z6MMUx99Tm6tKtH1/b1+f6bhQAknjjGwz1b0f3+ELq0q0f0xp8BuLfFbfx5KokjhxLo3KYO458fygP3BvNovw6kpdnq6hw88DtD+99PeKdG9Atvyb69u1w2XqVU4edWpRVq3iKse9c3x7a4OKFWVes+lxw5d3paKn26hAC2KpdRUVFsKOPFjm3r2b59O6VLl2bJkiUc2reNXTu3kZSURKNGjejToxXfrVlA9y4dePHFF8nKyuLs2bPccIMXPt5wRxUvUlK8OJCwhyWL59Ogwcf06tWLHRuj6NevH8MfGUbERx9Qo0YNNmzYwNixw/nxxx8tey8KzN+X/x5d4l3n1ShRqjBwq4Tvrvz9/YmJiblse7t27ShdujQAv/zyC3369MHb25sKFSrQsmVLNm3aRKNGjRg0aBAZGRl069bNXhL5n3IrlZySksLatWvp2bOnvV16erpFI1RKeQKd0rkOAQEB9p+vVJPonnvuYc2aNVSuXJmHH36YTz755LI2l5ZKzszM5Pz585QqVYqYmBj7v7g4XeSklLp2mvALyD333MPChQvJysoiMTGRNWvW0LhxYw4cOED58uUZMmQIgwcPZsuWK9/8/acbb7yRatWqsWjRIsD2gbJt2zYrh6CUKuIK35TOoLwfRuIq3bt3Z926ddSvXx8RYcqUKdx8883MnTuXqVOn4uPjQ2BgYK5X+Fcyb948Hn/8cSZPnkxGRga9e/emfv36Fo5CKVWUWVoe+WqFhYWZ6OjoHNvi4uKoVaugH3uirKS/M6Wcxy3KIyullHIvmvCVUspDaMJXSikPoQlfKaU8hCZ8pZTyEJrwlVLKQ7jXOvxd26HZLTm3vRYBZFx8XbuA16HvzP/LTIGhTUnZvN7+OjJqKdE7djDzpXEFG0tRcfwEDGrv6iicb0iTq2s/eIk1cbiJSeZbV4dQKIynk9P60it8J8jMzHR1CEop5WZX+IXQN6tWM/mDjziXkUGZUqWYN+V1KpQtw8SZ73M0MZGEI0coe9NNtG/ejKiVP5KecY79h4/wUKeOTHhyGADdho/m0PHjpKWnM+rhvgztFQ7A7CVf8ubHc6hUvjw1bq1KcV8fZr40jgNHjjLopQkk/vkn5W66iTmvTqJqpYoMHPcyNwYEEL1jJ8eTkpjy9FOEd2jnyrdHKeVGLEv4InInsPAfm24DxhtjplvVp1VS09Np0P3ik7ZOJSfTpU1LAO4KCWH9gs8QET5e/CVTZs/h388/A8DmHTv55bNI/P38iIxaysbfYon9egkl/Pxo1OshOrW8m7C6dYiY/AqlS5UkNS2NRr0e4v/a30v6uXP86/2P2LJ4ATcElKDNI0OoX/MOAIa/+jr9uz7AgG5diFgSxcjX3uSrmba39VhiEr98Fsmuffvp8uQoTfhKKTsrH3G4G2gAICLewBEgyqr+rORfvDgxURcfhXhhDh/g8IkTPPj0sxxLTOJcRgbVqlS2t+vSuhX+fn721+2aN6VMKdsjDXu0a8svW7YSVrcO7372OVE/2OrcHzp+gj0HDnI8MYmWjUIpXaokAD07tCP+wAEA1sVs58t3pgHwcJfOPPfvi5+h3dq2xsvLi9q3V+fEyZNWvB1KqULKWXP4bYHfjTEHnNSf04x49Q2GP9SH35Yu4cOJL5OWfs6+L8DfP0db27Pcc75evXETK9evZ93nn7AtahENa9UkLT0dg+M1jv553uK+Fx884k51kpRSrueshN8bmJ/bDhEZKiLRIhKdmHHeSeEUnOQzZ6hcoTwAc7/6Os+2K9au59TpZFLT0vjqh1W0aNiA5DMp3HTjjZTw92fXvv2s37YdgMbBdflp02b+TP6LzMxMlqz4wX6e5g3rs+D7ZQDM+/Y77gq5/KEqSil1Kctv2oqIL9AFGJvbfmPMLGAWQFigb/6XpA4so3SmiU8+Ts+nnqFy+fI0rV+P/UeOXrHtXSENefiFF9l78CAPdepIWN06BN9Rgw8WLqJet3DuDAqiaf16AFSuUIFxQwfTpHdfKpUvT+3qt1Ey8AYA3h33PINemsDUiLn2m7ZKKZUfy8sji0hX4EljTL4Ls8MCfU10cIUc2+Jei6DWzRWucEThcS1r91P+PktgQAkyMzPpPvIpBvXoRvd721oYZcGIO36CWuMGuToM59N1+DnoOnzHXO86/Kspj+yMZZl9uMJ0jsrbxP+8z8p1G0g7l0775s3o1raNq0NSShViliZ8ESkBtAMes7KfwmBg964M7N71qo5567mnLYpGKeWJLE34xpizQBkr+1BKKeUY9/qmbc16sC7nIw6JiwN9XF4hEwfrDrk6CPdXxG9zjHd1AOoyWktHKaU8hCZ8pZTyEO41peOAchF/Fej5EgfdmG+bwMBAUlJSrvrcq1evpnXr1nz88ccMHjwYgK1btxISEsLUqVN55plnHD5XZGQk0dHRzJw586rjaNWqFW+99RZhYQ6t3FJKFVF6hW+x4OBgFi68WENuwYIF1K9/dTX9tbyyUqogaMK/Rt988w1NmjShYcOG3HvvvZw4cSLXdlWrViUtLY0TJ05gjGHZsmXcf//99v2///479913H6Ghodx9993s2rULgIEDBzJmzBhat27N888/n+OcAwcOZPHixfbXgYGB9p+nTJlCcHAw9evX54UXXrBvX7RoEY0bN+aOO+7g559/BiArK4tnn32WRo0aUa9ePT788MPrf2OUUm6r0E3puIu77rqL9evX28oif/wxU6ZM4d///neubcPDw1m0aBENGzYkJCSE4sWL2/cNHTqUDz74gBo1arBhwwaeeOIJfvzRVjkzPj6elStX4u3tTWRkZL4xff/993z11Vds2LCBEiVKcOrUKfu+zMxMNm7cyHfffccrr7zCypUrmT17NiVLlmTTpk2kp6fTokUL2rdvT7Vq1a7vzVFKuSVN+Nfo8OHDPPjggxw7doxz587lmSR79erFgw8+yK5du+jTpw9r164FICUlhbVr19KzZ0972/T0dPvPPXv2xNvb2+GYVq5cySOPPEKJEiUAKF26tH1fjx49AAgNDSUhIQGA5cuXs337dvtfC8nJyezZs0cTvlJFlCb8azRixAjGjBlDly5dWL16NRMnTrxi25tvvhkfHx9WrFjBO++8Y0/458+fp1SpUsTExOR6XEBAQK7bixUrxvnztsqixhjOnTtn//nSEswXXPirwtvb235PwBjDjBkz6NChQ/4DVkoVejqHf42Sk5OpXNn2sJO5c+fm237SpEm8+eabOa7Yb7zxRqpVq8aiRYsAWwLeti3/aqBBQUFs3rwZgKVLl5KRYXvIe/v27YmIiODs2bMAOaZ0ctOhQwfef/99+/Hx8fH8/fff+favlCqcCt0VviPLKAva2bNnqVKliv31mDFjmDhxIj179qRy5co0bdqU/fv353mO5s2b57p93rx5PP7440yePJmMjAx69+6d7yqeIUOG0LVrVxo3bkzbtm3tfwncd999xMTEEBYWhq+vLx07duS111674nkeffRREhISCAkJwRhDuXLl+Oqrr/LsWylVeFleHvlqhIWFmejonKUV4uLiqKWlFQoV/Z0p5TzuVh7ZcUm/Q0R4zm3BIyHJN/f2RUnCn66OoOAkJUHt2q6OQlmgsNW4r56e6OoQ8tW3+ECn9aVz+Eop5SE04SullIewNOGLSCkRWSwiu0QkTkSaWdmfUkqpK7N6Dv8dYJkxJjz7YeYlLO5PKaXUFViW8EXkRuAeYCCAMeYccM6q/pRSSuXNyiv824BEYI6I1Ac2A6OMMTm+2SMiQ4GhAFXL+Od70klldxVokOOTaubbRsrdTr+eXfn0PVutnMzMTCrWbUaTkAZ8+/lHDvd19PgJRo6dxOI5/7nmeJVS6lpZOYdfDAgB3jfGNAT+Bl64tJExZpYxJswYE1YusPilu91CQIkSxMbFk5qaBsCK1b9S+eabr+ocmZmZVLq5giZ7pZTLWJnwDwOHjTEbsl8vxvYBUCjd37Yl/12xCoD5Ud/Qp0dn+76NW7bRvGNPGrZ+gOYde7J77z4AIucvoeeg4TzQdwjtew4k4eBh6t5tK42ccPAwd3fuTUibLoS06cLa7JIKqzdvptVjjxH+/PPUDA+n70svceHLcZvj4mg5dCihDz9MhxEjOJaU5My3QClVyFmW8I0xx4FDInJn9qa2wE6r+rNa7+6dWRD1LWlp6WzfsZsmoRfLH9SscRtrvp7P1lXfMOn50YybfLFM8rrorcydOZUfoz7Lcb7yZcuwYvFctvz4NQs/epeR/yitvHX3bqaPGcPOL75g39Gj/LptGxmZmYyYOpXFb77J5k8/ZdADD/Die+9ZP3ClVJFh9SqdEcC87BU6+4BHLO7PMvXq1CTh0BHmf/kNHe9tmWNf8l9nGDD8OfbsS0BEyMi4+ISqdi3vovRNpS47X0ZmJsNfmEhMbBzeXt7E79tn39e4Th2qVKgAQIM77iDh6FFKBQYSu28f7Z58EoCs8+epWLasFUNVShVRliZ8Y0wMUGQepNrlvrY8M/ENVn81j5N/XiyF8PLr02ndoilRc98n4eBhWnXra98XUCL3G9FvfxBBhXJl2bb6W86fP49flTr2fcV9L5aS8PbyIjMrCwPUue021kVEFPzAlFIewb1q6ZStDoMW59wWF2fbblewq3RynvsKRKBsdQYNf4aSFasRfE9HVq9eDb4loGx1ktPPU/nO+lC2OpEzPwWvYrbz3lAe/Ete7CPFG7x9bcdkeFPltlp4la/B3DlzyMrKgrAwSEmBkiVtPwOULw/VqnFnjx4kvvQS6zIyaNasGRkZGcTHx1OnTp0rhu0ycXHgRkX5VMEZ7+oArpZ7rgNxGfdK+A4YTyeX9V2lShVGjRp12fbnnnuOAQMGMG3aNNq0aePQuZ544gn+7//+j0WLFtG6desrPuzkAl9fXxYvXszIkSNJTk4mMzOT0aNHu2fCV0q5JS2PrAqc/s6Ucp6rKY+sxdOUUspDaMJXSikPoQlfKaU8hCZ8pZTyEA4lfBGpICKzReT77Ne1RWSwtaEppZQqSI5e4UcC/wMqZb+OB0ZbEZBSSilrOJrwyxpjvgDOAxhjMoEsy6IqInbv3s2cOXNcHYZSSgGOf/HqbxEpAxgAEWkKJFsWVR5ObSjYPyxKN5mebxsRoV+/fnz66adAdj38ihVp0qQJ33777RWPGzduHIGBgdSuXZvU1FR8fX1p3rz5NceakJBA586diY2NveZzKKU8l6MJfwzwNVBdRH4FygHhlkXlZgICAoiNjSU1NRV/f39WrFhB5cqV8zzmyJEjjBw5ksaNG7Ns2TK2bdtGYGBgrgk/MzOTYsUK3ZeelVKFjENZxhizRURaAncCAuw2xmQUeDRJv0PEJZ8jwSMhyTf39gXVZ36M4f6WTfnv/NmEd7mf+ZGz6NOlPT+vj4ak39m4ZRujX5pMamoa/v5+zHn3Te68/Tb2nD5Mz66vMPONCTz+2H/w9vbms8gIZrw+ntnzFlH6ppJs/W0nIfXqMKnPQEZMncpve/eSmZXFxKFD6doyZ1VOjh6F1FSIjibh6FEenjCBv1NTAZj57LM0r28r2Tzlk0/49Lvv8PLy4v5mzXhjxAg2x8Ux6F//ooSfH3fVr8/3a9cSu3Ahkd98Q3RcHDOfew6Azk89xTP9+tEqNJTl69czYdYs0s+do3qVKswZP57AEiV4YcYMvv75Z4p5e9O+SRPeGn3JX11JSVC79nX/apTyCE6sdnA1l5WNgaDsY0JEBGPMJ5ZE5YZ6d+/MpLdm0Ll9G7bv2M2gh8JtCZ+L9fCLFSvGyp9+Zdzkf7Mk8uKTrYKqVmHYwD4EBgTwzJOPAjB73iLif09g5ZJP8Pb2Ztyzk2kTFkbE+PGcPnOGxgMHcm/jxgT4515ts3zp0qyYORO/4sXZc/AgfV56iehPPuH7X3/lq9Wr2RAZSQk/P04l22beHpk0iRnPPEPL0FCefeedfMebdPo0kyMiWPmf/xDg78+bc+cybd48hvfqRdTq1exavBgR4fSZM9f71iqlnMShhC8inwLVgRgu3qw1gMck/Guth5+Xnl3ux9vbG4DlGzbw9Zo1vPWZ7UEpaenpHDx+nFrVquV6bEZmJsOnTCEmPh5vLy/iDx4EYOXGjTzywAOU8PMDoHTJkiSnpHD6zBlahoYC8HDHjny/dm2esa3/7Td27ttHi8G21bfnMjNpFhzMjQEB+BUvzqOTJ9OpRQs63323Q2NVSrmeo1f4YUBtc5WV1kQkATiD7UMi09ECP+7qWurh5+WftfKNMSx5803uDApy6Ni3P/+cCqVLs+3zz2319O+6y3YebDeZ/8kYc9m2C4p5e3P+/Hn767T0dPsx7Zo0Yf6rr152zMbISH7YtIkFy5czc9Eifnz/fYdiVkq5lqPLMmOBq3tq90WtjTENCnuyBxj0UDjjnx5OcO07c2xPPnOGyhVtT6iKXLBK9lfwAAAQqklEQVQk12NvCAzgTErKFc/doWlTZnzxhf35tVt3784zluSUFCqWLYuXlxeffvedrZ4+0L5JEyK+/pqzabYHrp9KTqbUDTdQMjCQX2JiAJi3bJn9PEGVKhETH8/58+c5dPw4G3fankLZNDiYX7dtY++hQwCcTUsj/sABUs6eJTklhY4tWjB9zBhi4uPzjFMp5T4cvcIvC+wUkY1A+oWNxpgulkSVh9LVRzi7S7sqlSoy6rGBl21/bvgQBgx/jmnvR9Dm7ma5HvtAh7aEDxrO0u9/YMbrlz9G4uXBgxk9bRr1+vTBGENQpUp8+/bbOdpkZmXZn4b1RHg4//f88yz64Qdah4ba5/rva96cmPh4wvr3x7dYMTq2aMFrTz7JnPHj7TdtOzRtaj9ni/r1qVapEsG9e1O3enVC7rR9mJW76SYiJ0ygz4svkp5huz8/edgwbggIoOvTT5N27hzGGN5+6qmrfyOVUi7hUD387BU6lzHG/JTPcfuBP7HNNHxojJmVS5uhwFCAqmX8Qw9M6Zhjf1zwSGpVy3sJZJGQ8Ge+TZb+9BPzli3ji9dfv76ujh6l81NPEbtw4XWd50rikpKodf/9lpxbqSLnOlfpXE09fEeXZf4kIrcCNYwxK0WkBODtwKEtjDFHRaQ8sEJEdhlj1lxy7lnALICwoJvc52ksbmb8Bx+wdM0aIidMcHUoSqlCytHiaUOAxcCH2ZsqA1/ld5wx5mj2//4BRGFb2qmuwaRhw9j2+ec0vPPO/BvnI6hSJcuu7pVS7svRm7ZPAi2AvwCMMXuA8nkdICIBInLDhZ+B9thu/iqllHIBR2/aphtjzl1Y2icixciuq5OHCkBU9jHFgM+NMcvyPkQppZRVHE34P4nIOMBfRNoBTwDf5HWAMWYfUP8641NKKVVAHE34LwCDgd+Ax4DvgI8LPJqy1WHQ4pzb4uJs2wupjRs3kpqaSstL6+Jcqqxz4nGKuDin1gdRSjnG0YTvD0QYYz4CEBHv7G1nrQrsikbmvs79mr27Ls/drVq1YuzYsXTo0MG+bfr06cTHx/Pee+/lekxgYCAp2V+yCg0NZdSoUfj6+tKsWQHHrpRSV8HRm7Y/YEvwF/gDKws+HPfTp08fFixYkGPbggUL6NOnj0PHe3t7M3PmzCsme2NMjtIGSillFUcTvp8xxl4XIPvnEtaE5F7Cw8P59ttvSc+uMZOQkMDRo0dp0KABbdu2JSQkhODgYJYuXZrr8VOnTqVRo0bUq1ePCdlr6BMSEqhVqxZPPPEEISEhHDp0iOXLl9OsWTNCQkLo2bOn/S8EpZQqKI4m/L9FJOTCCxEJA1KtCcm9lClTxv4QE7Bd3T/44IP4+/sTFRXFli1bWLVqFU8//TSXfmt5+fLlxMfHs3HjRrZu3cqmTZv46Sfbl5N3795N//792bp1KwEBAUyePJmVK1eyZcsWwsLCmDZtmtPHqpQq2hydwx8FLBKRo9iWY1YCHrQsKjdzYVqna9euLFiwgIiICIwxjBs3jjVr1uDl5cWRI0c4ceIEN998scbc8uXLWbt2La1btwbg9OnT7N+/n1tvvZVbb72Vptk1bdavX8/OnTtp0aIFAOfOndP5fqVUgXM04VcDGgJVge5AU/Jfh19kdOvWjTFjxrBlyxZSU1MJCQkhMjKSxMRENm/ejI+PD0FBQaRlV6i8wBjDiBEjGDZsWI7tCQkJBAQE5GjXrl075s+f75TxKKU8k6NTOi8bY/4CSgHtsNW+8Zgi6IGBgbRq1YpBgwbZb9YmJydTvnx5fHx8WLVqFQcOHLjsuA4dOjBnzhz7fPzhw4f5448/LmvXtGlTfv31V/bu3QvA2bNnideyw0qpAuboFf6Fp1x1Aj4wxiwVkYnWhJSPfJZRWqVPnz706NHDvmKnb9++PPDAA4SFhdGgQQNq1qx52THt27cnLi7OPj0TGBjIZ599Zn/K1QXlypUjMjKSPn362G8OT548mTvuuMPiUSmlPImj5ZG/BY4A9wKh2G7YbjTGFOg3acPCwkx0dHSObXFxcdSqVasgu1EW09+ZUs5zNeWRHZ3S6QX8D7jPGHMaKA08e43xKaWUcgFH6+GfBb78x+tjwDGrglJKKVXwHJ3Dd46k3yEiPOe24JGQ5OuaeNS1SUmEiJddHcU1mzToEVeHoDzIeDo5rS9Hp3SUUkoVcprwHXT+/Hk69BzIwcNHXR2KUkpdE8sTvoh4i8jW7JU+hdb+A4cYN/pxqlap5OpQlFLqmjhjDn8UEAfcWBAnm3fDzwVxGru+Z+7Ot413hTsIrnXxWbK9u3fihVHDaNX1Id56ZSxhDYLp2Hswn3/4NqVKFsgwlVKqwFma8EWkCrYva70KjLGyLyv5+/kRszrPB3zx3YLZTopGKaWujdVTOtOB54ArFnwXkaEiEi0i0Ykp6RaHY52gkJYknTzF33+fpVOfR6nfqjN1776fhVH/BWDztlhadulDaNuudOg5kGPHLy+xoJRSVrLsCl9EOgN/GGM2i0irK7UzxszCVpuHsKCb3LIgW2paGg1aPWB/PXbUMB7snvtSqmU/rqHSzeX573zbEyCT/zpDRkYGI8a+wtJPPqBc2TIsjPovL742jYh333BK/EopBdZO6bQAuohIR8APuFFEPjPG9LOwT0s4MqVzQXDtO3lm4hs8P2kKndu15u5mjYiNiyc2Lp524QMByDqfRcUK5SyMWCmlLmdZwjfGjAXGAmRf4T9TGJP91bqjejU2r/yK71auZuzkt2jf+i66d2xPnZo1WPf94vxPoJRSFtF1+AXs6PETlPD3p1/Pbjzz5KNs2b6DO2+vRmLSKdZt2gJARkYGO3Zp+WOllHM5pbSCMWY1sLogzuXIMsqCdukc/n1t7uaN8c/l2va3nbt59pU38RIvfHyK8f7USfj6+rI4YiYjx/2L5DNnyMzMZPRjA6lTU8sfK6Wcx6HyyM6i5ZGLBv2dKeU8VpRHVkopVchpwldKKQ9RKBK+O007qbzp70op9+X2Cd/Pz4+TJ09qIikEjDGcPHkSPz8/V4eilMqFez0AJRdVqlTh8OHDJCYmujoU5QA/Pz+qVKni6jCUUrlw+4Tv4+NDtWrVXB2GUkoVem4/paOUUqpgaMJXSikPoQlfKaU8hCZ8pZTyEJrwlVLKQ7jXKp2k3yEi3NVRKOXWTtXRZa9FSekm053Wl17hK6WUh9CEr5RSHsKyhC8ifiKyUUS2icgOEXnFqr6UUkrlz8o5/HSgjTEmRUR8gF9E5HtjzHoL+1RKKXUFVj7T1gAp2S99sv9pBTSllHIRS+fwRcRbRGKAP4AVxpgNubQZKiLRIhKdmJJuZThKKeXRLE34xpgsY0wDoArQWETq5tJmljEmzBgTVi6wuJXhKKWUR3PKKh1jzGlsDzG/zxn9KaWUupyVq3TKiUip7J/9gXuBXVb1p5RSKm9WrtKpCMwVEW9sHyxfGGO+tbA/pZRSebBylc52oKFV51dKKXV13KuWTtnqMGixq6NQyq2VdnUAqtDS0gpKKeUhNOErpZSH0ISvlFIeQhO+Ukp5CE34SinlITThK6WUh9CEr5RSHkITvlJKeQhN+Eop5SE04SullIfQhK+UUh5CE75SSnkItyqelvn3IU5tGO3qMJQqMkrPu+yposrdvLvOaV3pFb5SSnkIK594dYuIrBKROBHZISKjrOpLKaVU/qyc0skEnjbGbBGRG4DNIrLCGLPTwj6VUkpdgWVX+MaYY8aYLdk/nwHigMpW9aeUUipvTpnDF5EgbI871DtISinlIpYnfBEJBJYAo40xf+Wyf6iIRItI9MnTqVaHo5RSHsvShC8iPtiS/TxjzJe5tTHGzDLGhBljwsqU8rcyHKWU8mhWrtIRYDYQZ4yZZlU/SimlHGPlFX4L4GGgjYjEZP/raGF/Siml8mDZskxjzC+AWHV+pZRSV0e/aauUUh7CrWrpFAu4hdJNprs6DKWKjiauDkC5E73CV0opD6EJXymlPIQmfKWU8hCa8JVSykNowldKKQ+hCV8ppTyEJnyllPIQmvCVUspDaMJXSikPoQlfKaU8hCZ8pZTyEG5VS2fXIUOzkecAWLep+tWfYP3hAo5Iubtys5NzvN5dZ7yLIlHuoPS8QvgU1XfXOa0rvcJXSikPoQlfKaU8hJWPOIwQkT9EJNaqPpRSSjnOyiv8SOA+C8+vlFLqKliW8I0xa4BTVp1fKaXU1XH5HL6IDBWRaBGJzkhNcnU4SilVZLk84RtjZhljwowxYT7+ZV0djlJKFVkuT/hKKaWcQxO+Ukp5CCuXZc4H1gF3ishhERlsVV9KKaXyZ1lpBWNMH6vOrZRS6uqJMcbVMdiFhYWZ6OhoV4ehlFKFhohsNsaEOdJW5/CVUspDaMJXSikPoQlfKaU8hCZ8pZTyEJrwlVLKQ7jVKh0ROQPsdnUcLlIW8ORiQjp+Hb+njv96x36rMaacIw3d6hGHwG5HlxcVNSIS7aljBx2/jt9zx+/MseuUjlJKeQhN+Eop5SHcLeHPcnUALuTJYwcdv47fczlt7G5101YppZR13O0KXymllEU04SullIdwesIXkftEZLeI7BWRF3LZLyLybvb+7SIS4uwYreTA+Ptmj3u7iKwVkfquiNMq+Y3/H+0aiUiWiIQ7Mz6rOTJ+EWklIjEiskNEfnJ2jFZx4L/9kiLyjYhsyx77I66I0yoiEiEif4hI7BX2W5/7jDFO+wd4A78DtwG+wDag9iVtOgLfAwI0BTY4M0Y3GH9z4Kbsn+/3tPH/o92PwHdAuKvjdvLvvxSwE6ia/bq8q+N24tjHAW9m/1wOOAX4ujr2AnwP7gFCgNgr7Lc89zn7Cr8xsNcYs88Ycw5YAHS9pE1X4BNjsx4oJSIVnRynVfIdvzFmrTHmz+yX64EqTo7RSo78/gFGAEuAP5wZnBM4Mv6HgC+NMQcBjDFF5T1wZOwGuEFEBAjElvAznRumdYwxa7CN6Uosz33OTviVgUP/eH04e9vVtimsrnZsg7F94hcV+Y5fRCoD3YEPnBiXszjy+78DuElEVovIZhHp77TorOXI2GcCtYCjwG/AKGPMeeeE5xYsz33OLq0guWy7dF2oI20KK4fHJiKtsSX8uyyNyLkcGf904HljTJbtQq9IcWT8xYBQoC3gD6wTkfXGmHirg7OYI2PvAMQAbYDqwAoR+dkY85fVwbkJy3OfsxP+YeCWf7yugu3T/GrbFFYOjU1E6gEfA/cbY046KTZncGT8YcCC7GRfFugoIpnGmK+cE6KlHP3vP8kY8zfwt4isAeoDhT3hOzL2R4A3jG1Ce6+I7AdqAhudE6LLWZ77nD2lswmoISLVRMQX6A18fUmbr4H+2XesmwLJxphjTo7TKvmOX0SqAl8CDxeBq7pL5Tt+Y0w1Y0yQMSYIWAw8UUSSPTj23/9S4G4RKSYiJYAmQJyT47SCI2M/iO0vG0SkAnAnsM+pUbqW5bnPqVf4xphMERkO/A/bXfsIY8wOERmWvf8DbCszOgJ7gbPYPvWLBAfHPx4oA7yXfZWbaYpIFUEHx19kOTJ+Y0yciCwDtgPngY+NMbku4ytMHPzd/wuIFJHfsE1vPG+MKTIlk0VkPtAKKCsih4EJgA84L/dpaQWllPIQ+k1bpZTyEJrwlVLKQ2jCV0opD6EJXymlPIQmfKWU8hCa8JVSykNowldKKQ/x/7fJOE/GlOb5AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAEICAYAAABYjV1lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XtYVdW+P/73h9sCBBFEMUEEkbuICuIlUfNytpbZTiytTPOSpd8yPZXuLuavOtuzfcq2USe3WmamaTu1vKZbT6VWXjYqIndE8X4F5SIILNb4/QHLYwi6VOZai8X79Tw8sdYcc87PWPbwWWPMOeZHlFIgIiIi22Vn6QCIiIhIW0z2RERENo7JnoiIyMYx2RMREdk4JnsiIiIbx2RPRERk45jsiYiIbByTPTUJIvKLiFwREZ2J7QNERImIwz2ez1tEfhORfBG5KiJ7ROTBezkWEdH9YrInmyciAQDiASgAw8102hIAEwC0AuAJYB6Ajff65YGI6H4w2VNTMBbAXgDLAIy7eYOIuIjIfBE5ISKFIvKriLgA2FXT5KqIlIhIr5r2E0Qko2aWYJuItK/rhEqp60qpLKWUAYAAqEJ10vfSpotERPXjKIOagrEAPgKwD8BeEfFRSl2o2fYhgEgAvQGcB9ADgAFAXwDHAbRQSukBQET+DOBNAI8CyAHwFwCravatk4ikAAgD4Ajgc6XUxQbvHRHRHQifjU+2TET6APgZwANKqcsikglgkVLq7yJiB+AagJ5KqcO19gtAdbJ3vCnZ/whgjVLqi5rXdqierg9XSp24TQzOAB4H4KSU+qqh+0hEdCecxidbNw7Av5RSl2tef4P/m8r3BuAMINfEY7UH8HHNDXdXARSgeore93Y71UzprwLwFxGJvtsOEBHdL07jk82qufb+JAB7ETlf87YOQIuapHsEwHUAQQAO19q9rimvUwD+qpRaeY8hOQLoUMe5iIg0xZE92bI/o/rGuAgAXWp+wgHsBjC25ua5pQA+EpG2ImIvIr1qluddQvW1+w43He8fAN4QkUgAEBEPEXmirhOLSE8R6SMiTjU3Ac4C4IPq+waIiMyKyZ5s2TgAXyqlTiqlzht/AHwK4JmaZXCvoXqE/29UT8vPA2CnlCoF8FcAv9VM2/dUSn1fs321iBQBSAUwtJ5z6wD8D4B8AGcAPAzgEaXUWc16S0RUD96gR0REZOM4siciIrJxTPZEREQ2jsmeiIjIxjHZExER2TirWmfv7e2tAgICLB0GEVGjceDAgctKqVaWjoOsm1Ul+4CAACQlJVk6DCKiRkNE6n1UM5ERp/GJiIhsHJM9ERGRjWOyJyIisnFWdc2eiIisw4EDB1o7ODh8DqATODBsDAwAUvV6/aSYmJiLtTdaVbLPPKXQa1oFAGDPv4Pu/gB7TzdwRGTtWn1R+IfXWZHvWCgSsgZeKxthnaHEPZaOoE4ODg6ft2nTJrxVq1ZX7Ozs+Fx1K2cwGOTSpUsR58+f/xzA8Nrb+W2NiIjq0qlVq1ZFTPSNg52dnWrVqlUhqmdibt1u5niIiKhxsGOib1xq/r3qzOuaJXsRWSoiF0UkVatzEBER0Z1pec1+Garrhi/X8BxERGQGvaZVxDTk8fYkOh24Uxt7e/uY4ODgMqUU7O3t1ccff3xy8ODB1+pq27Vr17BDhw5lmnr+TZs2uc+fP9/n559/Pno3cd/OypUrPdLS0lzmzp17vqGO2VA0S/ZKqV0iEqDV8YmIyLbpdDpDZmZmOgCsXbu2+Ztvvuk3ePDgrJvb6PV6ODg44G4SvVaeeeaZQgCFd2xoARa/Zi8ik0UkSUSSKssuWzocIiKyQoWFhfYeHh56oHpU3qNHj5BHH300MDQ0NBIAXF1duxq3xcXFhQ4ZMqRDYGBg5PDhwwMNBgMAYM2aNc0DAwMjY2JiQtesWdPCeOyff/7ZtWvXrmHh4eERXbt2DTt8+LAOADp37hyWlJTkbGwXFxcXunv3btcLFy7YDxo0KCgkJCQiOjo6bN++fS4AkJiY2HLs2LH+AJCQkBDw3HPPtevatWuYn59f1JdffulpPM7s2bN9OnXqFB4SEhIxY8aMtpp/eLCCpXdKqcUAFgOAm08MbwYhIiIAQHl5uV1YWFhEeXm5XL582XHLli3Zxm0pKSnNDh06lBYWFlZRe7+MjAyX5OTkYwEBAZUxMTFh27dvd4uPj7/20ksvBWzfvj0rMjKyfNiwYR2M7aOjo6/v378/09HRET/88IP7zJkz/bZt25abkJBQsHLlSq/Y2NizJ06ccLx48aJjfHx86bhx49pFR0eX7tixI3fDhg3u48aNCzTOQNzswoULjklJSZnJycnOjz/+eMfx48dfWbduXfOjR486p6SkZCilMGjQoI4//vij29ChQ0u0+yStYGRPRERUF+M0/vHjx9O+//77nPHjx98YpXfu3PlaXYkeAKKioq4FBQVV2tvbIzIysjQ3N9cpOTnZ2c/PrzwqKqrczs4OzzzzTL6xfUFBgf3DDz8cFBwcHDlz5sx22dnZzgAwduzYKxs2bPAEgOXLl3s++uijVwBg//797hMnTswHgOHDhxdfvXrVIT8/3752HMOHD79qb2+PmJiY6/n5+Y4AsHXr1ua7du1qHhEREREZGRmRm5vrnJmZ6Vx734Zm8ZE9ERHRnQwaNOjalStXHM6dO+cAAK6urob62up0uhuzxPb29tDr9QIAIlJn+1mzZvn269evePv27blZWVlOAwYMCAWAwMDAyhYtWuj37dvnsm7dOq9FixadAAClbp2EFpFb3nR2dr7xnnEfpRSmT59+7vXXXzfrdWstl96tArAHQKiInBaRiVqdi4iIbNuhQ4ecDQYDfHx89Peyf5cuXa6fPn3aKS0tTQcAq1ev9jJuKyoqsvfz86sAgEWLFnnfvN/IkSML5s6d26a4uNg+Li6uDAB69uxZ/OWXX7YEqu8R8PT01Ht5edX75eNmQ4cOLfr666+9CwsL7QDg+PHjjmfOnNF84K3l3fhPaXVsIiIyL1OWyjU04zV7oHpEvHDhwjwHh3tLW66uruqTTz45MWzYsI5eXl76Hj16lGRkZLgAwKxZs85PmjQpMDExsU18fHzRzfuNGTPmyuzZs/1feeWVs8b35s2bd/bpp58OCAkJiXBxcTEsW7bsuKlxjBgxoigtLc25e/fuYTVxGVauXHnc19f3nr7EmErqmo6wlNjYWJWUlGTpMIiIGg0ROaCUim3o4x4+fDgvOjqaS6QamcOHD3tHR0cH1H6fN+gRERHZOCZ7IiIiG8dkT0REZOOY7ImIiGwckz0REZGNY7InIiKbsHDhQq+cnBwnS8dhjfgEPSIiurNe7Rq0xC32nDJp3f7Jkycdpk6d6n/48GFXJycn5efnV/7JJ5+cSkhI6JiTk5NmbPf3v//du7i42C44OLjOR+iaIjExseXw4cOLAgICKu/1GNaKyZ6IiKySwWDA8OHDOz799NP5mzZtOgYAv//+u8vZs2cda7edMWPGfT8TYMWKFd5dunQps8Vkz2l8IiKySps2bXJ3cHBQM2fOvGR8r3fv3mWBgYE3Ru96vR4vvPCCn7Fk7AcffOANAIWFhXa9evUKiYiICA8JCYlYsWJFCwDIyspy6tChQ+To0aPbd+zYMfLBBx8MLikpkS+//NIzNTXVdezYsR3CwsIiSkpKZPfu3a7du3cPjYyMDO/Tp0/wiRMnbvmS0Vgw2RMRkVVKSUlxiY6OLr1dmwULFnh7eHhUpaamZhw+fDjjq6++apWZmenk6upq2Lx589H09PSMnTt3Zr/55pt+xop5J0+edJ42bdrFo0ePpnl4eFQtX77cc/z48Vc6depUunz58mOZmZnpjo6OmDZtmv/69etz09LSMsaNG3f5tdde8zVLxzXAaXwiImq0duzY0TwzM9PVWIq2uLjYPj093TkwMLBy+vTpfnv37nWzs7PDxYsXnU6fPu0AAL6+vuW9e/cuA4CuXbuW5uXl6WofNyUlRZeTk+MyYMCAEKD6kkKrVq0a7fQ+kz0REVmlqKiosh9++MHzdm2UUjJ//vyTCQkJfyhgk5iY2DI/P9/hyJEjGTqdTvn6+kaVlZXZAYCTk9PNJXCV8f3ax+3YsWNZcnJyZkP1x5KsKtnrr51Cwb7plg6DyGZ4rdxn6RDoThL3WDoCq/Xoo48Wz549W+bPn+/96quvXgaAnTt3upaUlNxIzoMHDy5cuHBhq2HDhhXrdDqVkpKiCwgIqCwsLLT39vau1Ol0auPGje5nz56945I8Nze3qsLCQnsA6Ny58/WCggKHHTt2NBs0aNC18vJyOXLkiC42Nva6dj3WjlUleyIislImLpVrSHZ2dtiwYUPu1KlT2y1YsKCNTqe7sfTO2GbGjBmX8/LydFFRUeFKKfHy8qrcsmVL7qRJkwqGDh3asVOnTuGRkZGlgYGBd0zSY8eOvfzyyy+3f/311w1JSUkZq1evzp02bZp/cXGxfVVVlUyZMuVCY032mpW4FZF2AJYDaAPAAGCxUurj2+3TJdxH/bTsKU3iIWqKOLJvBO5zZM8St3Sz+krcajmy1wN4VSl1UETcARwQke1KqXQNz0lERES1aLb0Til1Til1sOb3YgAZABrtsgUiIqLGyizr7EUkAEBXAJxTJCIiMjPNk72IuAFYC2C6Uqqoju2TRSRJRJLyr5ZpHQ4REVGTo2myFxFHVCf6lUqpdXW1UUotVkrFKqViW7Zw0TIcIiKiJkmzZC8iAuALABlKqY+0Og8RERHdnpZ34z8I4FkAR0Qkuea9N5VSWzQ8JxERaWHpyIYtcTthzR3X7dvb28cEBwffuL67fv36o6GhofdcwhYA+vXr13Ht2rXHvb29q+7nOI2NZsleKfUrANHq+EREZNt0Op0hMzOz3uXalZWVcHS8u0J0O3fuPHrfgTVCrHpHRESNRmJiYsuhQ4d2GDBgQMf4+PgQg8GAF154wS84ODgyJCQkYsmSJZ4AcOLECcfY2NjQsLCwiODg4MitW7e6AYCvr2/UuXPnHOordQsAaWlpuvj4+ODIyMjwmJiY0EOHDjlbss8Nwaoel+vQrB28eiywdBhEtqOHpQMgunfl5eV2YWFhEQDQrl278u3bt+cCwMGDB91SUlLSfHx8qpYtW9biyJEjLhkZGWnnzp1ziIuLC/+P//iPkqVLl3oNHDiwcN68eef1ej2Ki4tvGdyePHnSecWKFcd69+594uGHH+6wfPlyz6lTpxZMmjSp/eLFi09ERUWV//TTT82mTJniv3fv3mxz978hWVWyJyIiMqpvGj8+Pr7Ix8enCgB2797t/uSTTxY4ODigXbt2+h49epT8+uuvrj179rz2wgsvBFRWVtqNHDnyirGk7c3qKnVbWFhod+jQIbcnnngiyNiuoqKi0V+S5jQ+ERE1Kq6urgbj7/XVdxk6dGjJrl27snx9fSuee+65wE8//bRl7Ta1S93q9XqpqqqCu7u7PjMzM934c+zYsTRNOmJGTPZERNRo9evXr3jNmjVeer0eZ8+eddi/f79bfHz8tezsbCdfX9/KV1999fKYMWMuHzx40NWU43l5eRn8/Pwqli5d6gkABoMBe/bsafQPgeE0PhER3ZkJS+Us4dlnn736+++/u4WHh0eKiHr33XdP+/v76z/55JOWiYmJbRwcHJSrq2vVypUrj5t6zFWrVh17/vnn28+bN+8BvV4vjz/+eEGvXr0a9SNeNStxey9iY2NVUlKSpcMgImo0WOKWblZfiVtO4xMREdk4JnsiIiIbx2RPRERk45jsiYiIbByTPRERkY1jsiciIrJx1rXO/nIusHSkpaMgsmoFkX6WDoEaUKOpByLSsCVulbrjun1XV9eupaWlh4yvExMTWyYlJTVbvnz5yQaNpQngyJ6IiGxSZWWlpUOwGtY1siciIjLBN9984/G3v/3tgcrKSjtPT0/9t99+e6xdu3b6//zP/2x77tw5x5MnTzp5eXnpBw8eXLR+/foWFRUVdqdOndIlJCTkz58//xwADBo0KOjcuXNO5eXldi+++OKF11577TIA/P3vf/f++OOP27Ru3bqyQ4cO152cnNTy5ctPZmdnO40bNy4gPz/foWXLlvrly5fnBQcHVyQkJAS4u7tXHT58uNmlS5cc33///dPjx4+/YtlP6I80G9mLiLOI7BeRwyKSJiLvanUuIiKyPcYSt8af//7v/25r3DZ48OCS5OTkzIyMjPSRI0cWvPfee22M21JSUly3bdt2dOPGjcdrXjf77rvvjqWmpqZt2LDBa9euXa4AsHLlyry0tLSM5OTk9EWLFvmcP3/ePi8vz/HDDz98YN++fRm7d+/OzsnJuVHL/sUXX/R/+umn87Ozs9NHjRqVP2XKlHbGbRcuXHBMSkrKXL9+fc6cOXN8zfMJmU7LkX05gAFKqRIRcQTwq4j8qJTaq+E5iYjIRtQucWu8Zg8Ax48fd/rzn//sd+nSJceKigq7du3alRvbDRky5Kqbm9uNZ8H36dOnqE2bNlUA8Mgjj1z55Zdf3Pr27Vs6b948n82bN7cAgPPnzzumpaU5nz171rFHjx7FxhK6jz/++JXs7GxnADh06FCzH3/8MRcApkyZUvDuu+/euIFm+PDhV+3t7RETE3M9Pz/fUdtP5u5pNrJX1UpqXjrW/FjPg/iJiKjReumll/ynTp16MTs7O/3TTz89UV5efiOfNWvWzHBzW5E/lqMXEWzatMl9586d7klJSZlZWVnp4eHhZWVlZXb3Wi/G2dn5xo7WVHPGSNMb9ETEXkSSAVwEsF0pta+ONpNFJElEki6VlN96ECIiolqKi4vt/f39KwFg2bJlt9Sqv9mvv/7a/MKFC/YlJSWyZcuWFv369Su5evWqvYeHR5W7u7vh0KFDzocPH24GAPHx8df27dvnfunSJfvKykqsX7/e03icrl27Xvv88889AWDRokVesbGxJfWd09poeoOeUqoKQBcRaQHgexHppJRKrdVmMYDFABAb4Gl9X4eIiMikpXLm9NZbb5196qmngnx8fCpiY2OvnTx5Uldf29jY2JJRo0YF5uXlOSckJOT37du3tKysrGzx4sWtQkJCIoKCgq5HR0dfA4DAwMDKGTNmnOvevXt469atK0NCQso8PDyqAGDhwoUnx40bF/Dxxx+3Md6gZ6bu3jezlbgVkTkArimlPqyvTWyAp0p6Z6BZ4iFqrLjO3rbc7zp7lri9vXtZm19YWGjn4eFhqKysxJ/+9KeOzz333OWxY8de1TLOhmL2Erci0qpmRA8RcQEwCECmVucjIiJqCK+//nrbsLCwiJCQkEh/f//yMWPGNIpEfztaTuM/AOArEbFH9ZeKfyqlNml4PiIioj+YNm1aPoD8u9ln8eLFpzUKx2I0S/ZKqRQAXbU6PhEREZnGup6g5x0ETFhj6SiIrJqXpQMgokaHz8YnIiKycUz2RERENs66pvGJiMgqtVpa1KAlbi9NaH7XJW5NtWnTJvdHH3005KOPPjoxY8aMywDw22+/ufTp0ydi9uzZp997770Lph7rfsrqxsXFhX744Yen+vbtW3q3+zY0juyJiMjmBAcHl61Zs+bG0+9WrFjhFRoaWnY3x7ClErlM9kRE1Gh88803Hp07dw4LDw+P6N27d8ipU6fqnKH29fWtKC8vtzt16pSDwWDATz/95DFw4MBC4/a0tDRdfHx8cGRkZHhMTEzooUOHnAEgISEhYNKkSX49evQImTp16h+eYJWQkBDw5Zdf3vgC4erqemPF2dtvv+0TEhISERoaGjF16tQbVe9WrVrlGRUVFR4QENBp69atbgCg1+vxwgsv+HXq1Ck8JCQk4oMPPvBuuE+obkz2RETUaNyutG1tf/7zn698/fXXnjt27GgWFRVVqtPpbjwydtKkSe0/++yzk2lpaRkffPDB6SlTpvgbt+Xm5jr/9ttv2UuWLDFpvf0///nP5ps3b/Y8cOBAZlZWVvqcOXPOG7fp9Xo5cuRIxrx580699957bQFgwYIF3h4eHlWpqakZhw8fzvjqq69aZWZmOt3bJ2IaXrMnIqJG43albWsbO3ZsQUJCQlBmZqbL008/XfDrr7+6AdWPwz106JDbE088EWRsW1FRcaM03ogRI644OJieHrdv3958zJgxl93d3Q0AYCyPCwBPPPHEFQDo3bv3tddff90JAHbs2NE8MzPTdcOGDZ5AdVGf9PR057CwsAqTT3qXmOyJiKjReOmll/xfeeWV888880zhpk2b3I2j5br4+/vrHR0d1a5du5ovXbr0pDHZV1VVwd3dXZ+ZmZle135ubm6Gut53cHBQVVXVedxgMKCyslKA6pK2tcvoGhlL3zo4OKCqqsrYXubPn38yISGhyPSe3x9O4xMRUaNxN6VtAeDdd9898/7775++eaTu5eVl8PPzq1i6dKknUJ249+zZ43KnY7Vv377iwIEDrgCwcuXKFnq9XgBgyJAhRV9//bV3cXGxHQBcuHDB/nbHGTx4cOHChQtblZeXCwCkpKToioqKNM3HHNkTEdEdmbJUrqFdv37dzsfHp7Px9ZQpUy7cTWlbABg8ePC1ut5ftWrVseeff779vHnzHtDr9fL4448X9OrV67Z367/88suXhg0b1jEqKiq8b9++RS4uLgYAGDlyZNHBgwddu3TpEu7o6KgGDRpU+Omnn56p7zgzZsy4nJeXp4uKigpXSomXl1flli1bcm//adwfs5W4NUVsbKxKSkqydBhERI0GS9zSzeorcWtdI/vLucDSkZaOgpq49yaMt3QI1IS8g0csHQI1AbxmT0REZOOY7ImIiGyc5sleROxF5JCIbNL6XERERHQrc4zsXwGQYYbzEBERUR00TfYi4gfgEQCfa3keIiIiqp/Wd+MvADATgHt9DURkMoDJAODf8o7PNCAiIgso2De9QUvcevVYcMd1+yIS89hjjxX88MMPx4HqKnStW7eO7tKly7Wff/75aH377dq1y3Xp0qUtly1bdmrTpk3uOp3OUN96e1NkZWU5DRs2LDgnJyftXo9haZqN7EVkGICLSqnb/oMqpRYrpWKVUrGt3G77bAQiImpCXFxcDFlZWS4lJSUCAN9//31zHx+fO9ad7du3b+myZctOAcBPP/3kvnv3bre62tlSCds70XIa/0EAw0UkD8BqAANEZIWG5yMiIhszcODAwu+++64FAKxatcorISGhwLjt559/du3atWtYeHh4RNeuXcMOHz6sA4BNmza5P/TQQx2zsrKcli9f3uof//iHT1hYWMTWrVvdapewLSoqsnviiScCOnXqFB4eHh6xYsWKFreLJysryykmJiY0IiIiPCIiInz79u3NjNvqKnO7e/du19DQ0IguXbqEvfDCC37BwcGRAJCYmNhy7NixNyrtPfTQQx03bdrkDgDr1q1r3qVLl7CIiIjwoUOHdigsLLQDgKlTp/oGBQVFhoSEREyePNkPd0GzZK+UekMp5aeUCgAwGsBPSqkxWp2PiIhsz7PPPlvw7bffepaWlkpGRoZrr169bkzHR0dHX9+/f39mRkZG+pw5c87MnDnzDwkwNDS0YuzYsZdefPHFC5mZmelDhgwpAf5YwvbNN9984KGHHipKTU3N2L17d9bbb7/td7vn1Ldt21a/e/fu7PT09Ixvv/322IwZM/yB+svcTpw4MeCjjz46mZycnGlKf8+dO+cwd+7cB3bt2pWdnp6e0a1bt9L333/f58KFC/ZbtmzxzMnJScvOzk6fO3fuubv5HK3rCXpEREQ36dGjR9np06d1S5Ys8Ro0aFDhzdsKCgrsR40aFZiXl+csIspYhe5Obi5h+8svvzTftm1bi8TExDYAUF5eLkePHnXq1q3b9br2raiokIkTJ7ZPT093sbOzw4kTJ3RA3WVu8/Pz7YuLi+0feeSREgCYMGFC/k8//eRxu9h++eWXZrm5uc5xcXFhAFBZWSkxMTElXl5eVTqdzjB69Oj2jzzySOGoUaMKb3ec2syS7JVSvwD4xRznIiIi2zJkyJCrc+bMafevf/0r6+LFizfy1qxZs3z79etXvH379tysrCynAQMGhJpyvJtL2CqlsGbNmqPR0dHlpuz717/+1ad169aVa9euPW4wGODi4hJjPE7tMre3K33r4OCgDIb/q6RbXl5uZ9ynT58+RRs3bjxee5/k5OSMDRs2NF+9erXnwoULW+/duzfblJgBaxvZewcBE9ZYOgpq4t6xdABE9AdTpky57OHhURUXF1dmvK4NAEVFRfZ+fn4VALBo0SLvuvZ1d3evKioqqrfk7EMPPVQ0f/58n2XLlp20s7PDb7/95vLggw/WW/2usLDQ3s/Pr8Le3h6ffvppS2N9+yFDhhT99a9/bfv8888XuLu7Gy5cuGDv4+NT5ebmVrVt2za3P/3pTyXLli3zMh4nKCioYsmSJa5VVVU4fvy4Y0pKSjMA6N+//7VXX33VPzU1VdepU6fy4uJiu+PHjzu2b9++sqSkxG7UqFGF/fv3LwkJCYm6m8/QupI9ERFZJVOWymklKCiocvbs2Rdrvz9r1qzzkyZNCkxMTGwTHx9fVNe+CQkJV0eOHBn0448/tliwYMHJ2tv/9re/nZ08ebJ/WFhYhFJK/Pz8ymsv66usrBQnJycDAEyfPv1iQkJC0A8//ODZp0+f4juVuf3iiy/yJk2aFODi4mIYMGDAjRgHDx5c8j//8z/loaGhkaGhoWURERGlQPU9AYsWLcobPXp0h4qKCgGAOXPmnPHw8DAMGzasY3l5uQDAf/3Xf526m8+QJW6JiBoxlrjV3ooVK1p88803Xlu2bDl2P8cxx3r9xlHiloiIyIpMnz697Y8//thi6dKlt1xDb0xY9Y6IiKgeCxYsOJuVlZV+u+v4pgoNDa2w1FP4mOyJiIhsHJM9ERGRjTMp2YuIj4h8ISI/1ryOEJGJ2oZGREREDcHUkf0yANsAtK15nQ1guhYBERERUcMy9W58b6XUP0XkDQBQSulFpErDuIiIyIq8h80NWuL2HTyiWYnb2vLy8hxffPHFdlu3br2vpXONmakj+2si0hKAAgAR6Qngrp7LS0REdDfutcTtzSorKxEQEFDZlBM9YHoYlxGUAAATPElEQVSy/08AGwAEichvAJYDeFmzqIiIiHBvJW4TExNbDh06tMOAAQM6xsfHh2RlZTkZS8vWV6J206ZN7nFxcaFDhgzpEBgYGDl8+PBA47Prd+/e7dq9e/fQyMjI8D59+gSfOHHC0ewfxH0yaRpfKXVQRPoBCAUgALKUUnf17cokl3OBpSMb/LCNwsS1lo6AiCzBip5iao2effbZgjlz5jwwatSoqxkZGa4TJ07M//33392A/ytx6+joiB9++MF95syZftu2bcsFgIMHD7qlpKSk+fj4VGVlZTkZj2csUevq6qqOHDmie+qppzqkpqZmAEBGRoZLcnLysYCAgMqYmJiw7du3u/Xv3//atGnT/Ddv3ny0bdu2+iVLlni+9tprvt99912eRT6Qe3Q3T9CLAxBQs083EYFSarkmUREREeHeS9zGx8cX+fj43HJvWX0lagEgKirqWlBQUCUAREZGlubm5jp5eXnpc3JyXAYMGBACAAaDAa1atWr4wa7GTEr2IvI1gCAAyQCMH55C9XQ+ERGRZu6lxK2rq6uhrmPVV6IWAHQ63Y1pFnt7e+j1elFKSceOHcuSk5MzteqfOZg6so8FEKHusmqOiOQBKEb1FwS9FsUaiIjItt1Pidva6itRW5/OnTtfLygocNixY0ezQYMGXSsvL5cjR47oYmNjr99Xp8zM1GSfCqANgHP3cI6HlFKsnERE1IiZslROK/dT4ra2+krU1sfZ2VmtXr06d9q0af7FxcX2VVVVMmXKlAuNLdmbVOJWRH4G0AXAfgDlxveVUsPvsF8egFhTk31sgKdKemegKU1tD2/QI2qa7vMGPZa4pZvdb4nb/+8ez6sA/EtEFIBFSqnFtRuIyGQAkwHAv6XLPZ6GiIiI6mPq0rudItIeQLBSaoeIuAKwN2HXB5VSZ0WkNYDtIpKplNpV69iLASwGqkf2dxk/ERER3YGphXCeB7AGwKKat3wB/HCn/ZRSZ2v+exHA96hevkdERERmZOoT9P4fgAcBFAGAUioHQOvb7SAizUTE3fg7gP9A9Y1+REREZEamXrMvV0pViFQ/r0BEHFDznPzb8AHwfc0+DgC+UUptvddAiYiI6N6Ymux3isibAFxEZDCAqQA23m4HpdQxANH3GR8REdFd+/nnn11LS0vtHnnkkRJLx2INTE32fwEwEcARAC8A2ALg8waPxjsImLCmwQ/bKEywdABERLcxrVeDlrhF4p7brtuPi4sLnTVr1rmEhIQb6+ffe++91tnZ2c4rVqw4Wdc+rq6uXUtLSw8BQHx8fOmECRP8dTqdGjRo0LUGjb0RMjXZuwBYqpRaAgAiYl/zXqlWgRERUdP1xBNP5NdUubuR7NeuXes1b96806bs7+DggOXLl9f5pQCofsa9Ugr29qYsLGv8TL1B739RndyNXADsaPhwiIiIgGefffbK//7v/3qUlZUJUF2a9uLFi449evQo7dWrV0hERER4SEhIxIoVK1rUtf/s2bN9OnXqFB4SEhIxY8aMtsZjdOjQIXLMmDH+kZGREbm5uU7r1q1r3qVLl7CIiIjwoUOHdigsLDQ1LzYqpnbKWSl147pHze+u2oRERERNXZs2baqio6OvrV271gMAvvrqK6/hw4dfcXNzM2zevPloenp6xs6dO7PffPNNP2PdeaN169Y1z8nJcU5JSclIT09PP3jwoOvmzZvdACAvL895/Pjx+RkZGenu7u6GuXPnPrBr167s9PT0jG7dupW+//77PhboruZMnca/JiLdlFIHAUBEYgGUaRcWERE1dU8++WTBt99+6zlmzJir69at8/r888/zDAaDTJ8+3W/v3r1udnZ2uHjxotPp06cd/P399cb9tm7d2jwpKcmtZ8+eoUB1wZzc3Fxdx44dKx544IGKgQMHXgOAX375pVlubq5zXFxcGABUVlZKTEyMTd7QZ2qyfwXAdyJyFtVL7toCGKVZVERE1OQ988wzV99+++12v/76q+v169ft+vTpU5qYmNgyPz/f4ciRIxk6nU75+vpGlZWV/WGWWimFyZMnX5w5c+alm9/Pyspyurn0rVIKffr0Kdq4ceNxc/XJUkydxg8E0BXAFADbAWThzuvsiYiI7pmHh4ehZ8+exZMmTQoYMWJEAVBdotbb27tSp9OpjRs3up89e9ap9n5Dhw4tWrFiRUvj9ffc3FzHM2fO3DK47d+//7WkpCS31NRUHQAUFxfbpaSk6LTulyWYOrKfrZT6TkRaABgMYD6AhQB6aBYZERFZjzssldPK6NGjC8aNGxe0atWqYwAwadKkgqFDh3bs1KlTeGRkZGlgYOAtpWZHjBhRlJaW5ty9e/cwAHB1dTWsXLnyuIODwx8GqW3bttUvWrQob/To0R0qKioEAObMmXOmc+fO5bWP2diZWuL2kFKqq4j8N4AjSqlvjO81ZDCxsbEqKSmpIQ9JRGTTWOKWblZfiVtTp/HPiMgiAE8C2CIiurvYl4iIiCzI1IT9JIBtAIYopa4C8ALwumZRERERUYMxtZ59KYB1N70+B+CcVkERERFRwzH1Bj3zuJwLLB1pevuJa7WLhaiBvKc2WTqEJiuo/NKdG1nYM7rnLB0CNQG87k5ERFarqqoKffr0Cc7JyblliR2ZjsmeiIisVmZmpu6NN944FxwcXGHpWBozTafxa9blfw6gE6ofwjNBKbVHy3MSEVHDW1m+rEFL3D6je+6O6/bt7e1jgoODywDg1VdfxYgRIwrmzp17Pi4uLvTDDz881bdv39J+/fp1XLt27XFvb++qhozP1mh9zf5jAFuVUiNFxAksnkNERCbS6XSGzMzM9Nu12blz51FzxdOYaTaNLyLNAfQF8AUAKKUqapbtERERNQhfX9+oc+fOORQVFdn179+/Y2hoaERwcHDkkiVLPAFg9+7drt27dw+NjIwM79OnT/CJEyccLR2zJWh5zb4DgEsAvhSRQyLyuYg0q91IRCaLSJKIJF0qsbknFBIR0T0qLy+3CwsLizD+GBN4XdatW9e8TZs2lVlZWek5OTlpI0aMKCovL5dp06b5r1+/PjctLS1j3Lhxl1977TVfc/bBWmg5je8AoBuAl5VS+0TkYwB/ATD75kZKqcUAFgNAbIAni+sQEREA06bxjbp161b21ltvtZsyZYrvY489VjhkyJCSf//73845OTkuAwYMCAEAg8GAVq1aVWobtXXSMtmfBnBaKbWv5vUaVCd7IiKiBtW5c+fygwcPpq9du9bjrbfe8t2xY0fRk08+ebVjx45lycnJmZaOz9I0m8ZXSp0HcEpEQmveGgjApG9oREREdyMvL8/R3d3dMHXq1ILp06dfSE5Odu3cufP1goIChx07djQDgPLycklKSnK2dKyWoPXd+C8DWFlzJ/4xAOM1Ph8REWnAlKVyDc14zd74esCAAYWfffbZmbraHjhwwOWNN97ws7Ozg4ODg/rss89OODs7q9WrV+dOmzbNv7i42L6qqkqmTJlyITY29payuLZO02SvlEoG0OClF4mIyPZVVVXV+QVj//79Wcbfz5w5cwQAEhISihISEm6ZPe7du3dZUlJSVu33mxrreja+dxAwYY3p7SdoFwpRQ3nH0gE0ZTpLB0BkHfi4XCIiIhvHZE9ERHUxGAwGsXQQZLqafy9DXduY7ImIqC6ply5d8mDCbxwMBoNcunTJA0BqXdut65o9ERFZBb1eP+n8+fOfnz9/vhM4MGwMDABS9Xr9pLo2MtkTEdEtYmJiLgIYbuk4qGHw2xoREZGNY7InIiKycUz2RERENo7JnoiIyMYx2RMREdk4JnsiIiIbZ11L7zJTgF7tLB0F0f15vsfd7zNxbcPHYUXeU5ssHYLVegePWDoEagI4siciIrJxTPZEREQ2TrNkLyKhIpJ800+RiEzX6nxERERUN82u2SulsgB0AQARsQdwBsD3Wp2PiIiI6mauafyBAHKVUifMdD4iIiKqYa5kPxrAqro2iMhkEUkSkaRLlXWW4SUiIqL7oHmyFxEnVFdO+q6u7UqpxUqpWKVUbCtH3i9IRETU0MyRXYcCOKiUumCGcxEREVEt5kj2T6GeKXwiIiLSnqbJXkRcAQwGsE7L8xAREVH9NH1crlKqFEBLLc9BREREt2ddz8YP6wzsSbJ0FETmN8HSAWjrHUsHQNTE8fZ3IiIiG8dkT0REZOOY7ImIiGwckz0REZGNY7InIiKycUz2RERENo7JnoiIyMYx2RMREdk4JnsiIiIbx2RPRERk45jsiYiIbByTPRERkY2zqkI4macUek2rsHQYZCP2fKKzdAhEd6aUpSOgJoAjeyIiIhunabIXkRkikiYiqSKySkSctTwfERER3UqzZC8ivgCmAYhVSnUCYA9gtFbnIyIiorppPY3vAMBFRBwAuAI4q/H5iIiIqBbNkr1S6gyADwGcBHAOQKFS6l9anY+IiIjqpuU0vieAxwAEAmgLoJmIjKmj3WQRSRKRpMqyy1qFQ0RE1GRpOY0/CMBxpdQlpVQlgHUAetdupJRarJSKVUrFOrp4axgOERFR06Rlsj8JoKeIuIqIABgIIEPD8xEREVEdtLxmvw/AGgAHARypOddirc5HREREddP0CXpKqTkA5mh5DiIiIro9PkGPiIjIxlnVs/HD2gn2JDpZOgyyFYl85jgREcCRPRERkc1jsiciIrJxTPZEREQ2jsmeiIjIxjHZExER2TgmeyIiIhvHZE9ERGTjmOyJiIhsHJM9ERGRjWOyJyIisnFM9kRERDbOqp6Nj8wUoFc7S0dh+/aetnQERA2q1ReFlg7hnl2a0NzSIVATwJE9ERGRjWOyJyIisnGaJnsReUVEUkUkTUSma3kuIiIiqptmyV5EOgF4HkAcgGgAw0QkWKvzERERUd20HNmHA9irlCpVSukB7ATwuIbnIyIiojpomexTAfQVkZYi4grgYQC33GovIpNFJElEki5VGjQMh4iIqGnSbOmdUipDROYB2A6gBMBhAPo62i0GsBgAYt2clFbxEBERNVWa3qCnlPpCKdVNKdUXQAGAHC3PR0RERLfS9KE6ItJaKXVRRPwBjADQS8vzERER0a20foLeWhFpCaASwP9TSl3R+HxERERUi6bJXikVr+XxiYiI6M6s69n4YZ2BPUmWjoKIGplLlg6AyMrxcblEREQ2jsmeiIjIxjHZExER2TgmeyIiIhvHZE9ERGTjRCnreUKtiBQDyLJ0HBbiDeCypYOwIPaf/W+q/b/fvrdXSrVqqGDINlnX0jsgSykVa+kgLEFEkppq3wH2n/1vuv1vyn0n8+E0PhERkY1jsiciIrJx1pbsF1s6AAtqyn0H2H/2v+lqyn0nM7GqG/SIiIio4VnbyJ6IiIgaGJM9ERGRjTN7sheRISKSJSJHReQvdWwXEUms2Z4iIt3MHaOWTOj/MzX9ThGR30Uk2hJxauVO/b+pXXcRqRKRkeaMT2um9F9E+otIsoikichOc8eoFRP+3/cQkY0icrim7+MtEadWRGSpiFwUkdR6ttv03z6yMKWU2X4A2APIBdABgBOAwwAiarV5GMCPAARATwD7zBmjFfS/NwDPmt+HNrX+39TuJwBbAIy0dNxm/vdvASAdgH/N69aWjtuMfX8TwLya31sBKADgZOnYG/Az6AugG4DUerbb7N8+/lj+x9wj+zgAR5VSx5RSFQBWA3isVpvHACxX1fYCaCEiD5g5Tq3csf9Kqd+VUldqXu4F4GfmGLVkyr8/ALwMYC2Ai+YMzgxM6f/TANYppU4CgFLKVj4DU/quALiLiABwQ3Wy15s3TO0opXahuk/1seW/fWRh5k72vgBO3fT6dM17d9umsbrbvk1E9Td9W3HH/ouIL4DHAfzDjHGZiyn//iEAPEXkFxE5ICJjzRadtkzp+6cAwgGcBXAEwCtKKYN5wrMKtvy3jyzM3I/LlTreq732z5Q2jZXJfRORh1Cd7PtoGpF5mdL/BQBmKaWqqgd4NsWU/jsAiAEwEIALgD0islcpla11cBozpe9/ApAMYACAIADbRWS3UqpI6+CshC3/7SMLM3eyPw2g3U2v/VD9Lf5u2zRWJvVNRDoD+BzAUKVUvpliMwdT+h8LYHVNovcG8LCI6JVSP5gnRE2Z+v//ZaXUNQDXRGQXgGgAjT3Zm9L38QD+ppRSAI6KyHEAYQD2mydEi7Plv31kYeaexv83gGARCRQRJwCjAWyo1WYDgLE1d6b2BFColDpn5ji1csf+i4g/gHUAnrWB0Vxtd+y/UipQKRWglAoAsAbAVBtJ9IBp//+vBxAvIg4i4gqgB4AMM8epBVP6fhLVMxoQER8AoQCOmTVKy7Llv31kYWYd2Sul9CLyEoBtqL47d6lSKk1EXqzZ/g9U34H9MICjAEpR/W3fJpjY/3cAtATwWc3oVq9spCKWif23Wab0XymVISJbAaQAMAD4XClV51KtxsTEf/v3ASwTkSOontKepZSymbK3IrIKQH8A3iJyGsAcAI6A7f/tI8vj43KJiIhsHJ+gR0REZOOY7ImIiGwckz0REZGNY7InIiKycUz2RERENo7JnoiIyMYx2RMREdm4/x8/Z0chbtaOcgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -1851,7 +2139,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VNX9//HXh7AkLIKsEhBDrQUJaxJWoaAWEFQUCxXZG5VaZWuLytIKVduK+nNFRSka9ctiDeKOigtQNQIJBgiC4BIBAQWUyJJAlvP7IyFFDTCB3JlJ7vv5eMyDmblnzv2chMd7bs7cOdecc4iISMVXKdQFiIhIcCjwRUR8QoEvIuITCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXXzCzZWb2vZlVC7B9jJk5M6tcBvseVdTXdafbl8jpUOBLhWdmMUAPwAEDgrzvM4EpwIZg7lekJAp88YORwEdAEjDq2A1mFmVm/8/MvjKzLDN738yigBVFTfaZ2QEz61rUPtHMNhb9tfCmmZ1zkn3/C3gI2FOmIxI5BQp88YORwLyiW18za3TMtnuBeKAbUBe4BSgAfl20vY5zrqZzLsXMrgSmAlcBDYD/AguOt1Mz6wQkALPLdjgip0aBLxWamXUHzgH+45xLAz4HhhZtqwQkAhOcc1875/Kdcx865w4fp7s/AP9yzm10zuUB/wTal3SUb2YRwKPAOOdcQdmPTKT0FPhS0Y0C3nLOHZ1Smc//pnXqA5EUvgkE4hzgQTPbZ2b7gO8AA5qU0PZGYJ1zLuWUKxcpY6bVMqWiKpqL3wVEAAeKnq4G1AHaA+uBg0AX59zan7z2HCATqFJ0NI+ZvQk845ybF8C+XwR6Akf/WqgLZAPPOufGnt7IRE6NjvClIrsSyAdaURjw7YHzKZx7H1k01fIkcJ+ZRZtZhJl1LTp1czeFc/m/OKa/2cAUM4sFMLPaZjb4OPseXbSvo/tNBf4OTCvbIYoEToEvFdko4Cnn3Fbn3K6jN2AWMKzoHPtJFB7pr6ZwimYmUMk5dwj4B/BB0RROF+fc4qLtC83sByAD6FfSjp1z+36yzyPAD865LI/HLHJcmtIREfEJHeGLiPiEAl9ExCcU+CIiPqHAFxHxidNeCbAs1a9f38XExIS6DBGRciMtLW2Pc65BIG3DKvBjYmJITU0NdRkiIuWGmX0VaFtN6YiI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE8o8EVEfCKsTsskLQ3MQl2FiEjwBHEBSx3hi4j4hAJfRMQnFPgiIj6hwBcR8QnPAt/MWphZ+jG3H8xsolf7ExGRE/PsLB3n3KcUXrwZM4sAvgYWe7U/ERE5sWBN6VwMfO6cC3hVNxERKVvBCvwhwIKSNpjZGDNLNbPU3UEqRkTEj8x5fNK/mVUFdgCxzrlvTtQ2wcxpNXwR8ZXTzGAzS3POJQTSNhhH+P2ANScLexER8VYwAv8ajjOdIyIiweNp4JtZdaA38IKX+xERkZPzdPE059whoJ6X+xARkcDom7YiIj6hwBcR8YnwWg8/Ph5SdWKmiIgXdIQvIuITCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE8o8EVEfEKBLyLiEwp8ERGfUOCLiPiEAl9ExCcU+CIiPqHAFxHxifBaHnnTOuh6dqirqDBWvjA21CWIyEl0bnxr0PalI3wREZ9Q4IuI+IQCX0TEJxT4IiI+4Wngm1kdM0s2s01mttHMunq5PxEROT6vz9J5EHjDOTfIzKoC1T3en4iIHIdngW9mZwC/BkYDOOeOAEe82p+IiJyYl1M6vwB2A0+Z2cdm9m8zq/HTRmY2xsxSzSx1d26Bh+WIiPibl4FfGYgDHnPOdQAOApN/2sg594RzLsE5l9Cgij5DFhHxipcJux3Y7pxbWfQ4mcI3ABERCQHPAt85twvYZmYtip66GPjEq/2JiMiJeX2WzjhgXtEZOl8Av/d4fyIichyeBr5zLh1I8HIfIiISGH1KKiLiEwp8ERGfCK/18Fu2hZTUUFdRYXQOdQES1nJzc9m+fTs5OTmhLsXXNu7bGFC7yMhImjZtSpUqVU55X+EV+CISNNu3b6dWrVrExMRgZqEuR07AOcfevXvZvn07zZs3P+V+NKUj4lM5OTnUq1dPYV8OmBn16tU77b/GFPgiPqawLz/K4nelwBeRcmHevHls3bo11GWUa5rDF5FCXc8u2/5Stp20ya5du5g4cSKrV6+mWrVqxMTE8MADD3DVVVeRkZFR3G7u3Lns37+fZs2anXI5SUlJ9OnTh+jo6FPuo7xT4ItISDjnGDhwIKNGjWLhwoUApKen88033/ys7bXXXnva+0tKSqJ169a+DnxN6YhISLz33ntUqVKFG264ofi59u3bc/bZ//tLIz8/n5tvvpmOHTvStm1bHn/8cQAOHDjAxRdfTFxcHG3atOGll14CIDMzk/PPP5/rr7+e2NhY+vTpQ3Z2NsnJyaSmpjJs2DDat29PdnY2aWlp9OzZk/j4ePr27cvOnTuD+wMIAQW+iIRERkYG8fHxJ2wzd+5cateuzerVq1m9ejVz5szhyy+/JDIyksWLF7NmzRree+89/vKXv+CcA2DLli3cdNNNbNiwgTp16rBo0SIGDRpEQkIC8+bNIz09ncqVKzNu3DiSk5NJS0sjMTGRadOmBWPYIaUpHREJW2+99Rbr1q0jOTkZgKysLLZs2ULTpk2ZOnUqK1asoFKlSnz99dfFU0HNmzenffv2AMTHx5OZmfmzfj/99FMyMjLo3bs3UPiXROPGjYMzqBBS4ItISMTGxhYH+fE453j44Yfp27fvj55PSkpi9+7dpKWlUaVKFWJiYorPUa9WrVpxu4iICLKzs0vsNzY2lpSUlDIYSfmhKR0RCYmLLrqIw4cPM2fOnOLnVq9ezVdffVX8uG/fvjz22GPk5uYCsHnzZg4ePEhWVhYNGzakSpUqvPfeez96zfHUqlWL/fv3A9CiRQt2795dHPi5ubls2LChLIcXlnSELyKFAjiNsiyZGYsXL2bixIncddddREZGFp+WedR1111HZmYmcXFxOOdo0KABL774IsOGDePyyy8nISGB9u3b07Jly5Pub/To0dxwww1ERUWRkpJCcnIy48ePJysri7y8PCZOnEhsbKyXQw45O/pBRzhISEhwqalaPE0kGDZu3Mj5558f6jKkFEr6nZlZmnMuoOuOaEpHRMQnwmtKZ9O6sv+2n0iwfbQ91BUEZskSOHgw1FVIQvAuCqgjfBERn1Dgi4j4hAJfRMQnFPgiIj7h6Ye2ZpYJ7AfygbxATx0SkRBYd1fZ9td28kmbRHTuTJtzzy1+/OK99xJzmqtZ9p8wgfl33kmdWrVOq5+KKBhn6VzonNsThP2ISDkTVa0a6fPnH3d7Xl4elSuXLqZef/DB0y2rwgqv0zJFxPeSXnmF1z74gJzDhzmYk8M7jz7KLQ89xJIPP8TM+GtiIlf36cPOPXu4eupUfjhwgLz8fB6bPJkeHToQM2AAqc88w4FDh+g3YQLd27Xjw3XraNKwIS/dey9RkZF8vn07N82cye59+6geGcmcadNoGRMT6qF7zuvAd8BbZuaAx51zT/y0gZmNAcYANKsa4XE5IhJOsg8fpv3QoQA0b9KExffcA0DK+vWsmz+furVrs+jdd0nfvJm18+ezZ98+Oo4axa/j4pj/xhv07dKFaYmJ5Ofnc6iEC3xv2baNBXfeyZy//pXfTZnConffZXj//oz5xz+YPWUK5zVrxsqMDG6cOZN3H3ssqGMPBa8D/wLn3A4zawgsNbNNzrkVxzYoehN4AiChZtXwWedBRDx3vCmd3p06Ubd2bQDeT0/nmr59iYiIoFG9evSMi2P1hg10bNWKxDvuIDcvjyt79qR9ixY/66d5dHTx8/EtW5K5cycHDh3iw/XrGTz5f58xHC5anK2i8zTwnXM7iv791swWA52AFSd+lYj4XY2oqOL7x1vv69dxcax44glee/99Rkyfzs0jRjDy0kt/1KZalSrF9yMqVSI7P5+CggLq1Kx5ws8OKirPTss0sxpmVuvofaAPkHHiV4mI/NivO3TguaVLyc/PZ/f337Pi44/pFBvLVzt30vDMM7l+4ECuHTCANZs2BdTfGTVr0jw6mufffhsofENZu3mzl0MIG14e4TcCFpvZ0f3Md8694eH+ROR0BHAaZSgMvPBCUtavp93QoZgZd48bx1n16/P0q69yz7PPUqVyZWpWr84zM2YE3Oe8O+7gj3fdxZ1PPkluXh5Devem3a9+5d0gwkR4LY9cs6pLbdMo1GWInJ5ysnjaxiVLOL9+/VCXIaVYPE3LI4uISEAU+CIiPhFeX7xq2RZSdMUrkaDYuBF0xStf0RG+iIhPKPBFRHxCgS8i4hMKfBEpZFa2twDUrFnzR4+TkpIYO3asF6MTFPgiUo7l5eWFuoRyJbzO0hERKfLKK69w5513cuTIEerVq8e8efNo1KgRM2bMYMeOHWRmZlK/fn369OnD4sWLOXz4MF9++SVDhw5l+vTpAFx55ZVs27aNnJwcJkyYwJgxYwCYO3cuM2fOJDo6mvPOO49q1aoxa9YsvvrqKxITE9m9ezcNGjTgqaeeolmzZowePZozzjiD1NRUdu3axd13382gQYNC+eM5Nc65sLnFx8c7EQmOTz755MdPQNneAlCpUiXXrl274tvZZ5/tbrrpJuecc999950rKChwzjk3Z84c9+c//9k559z06dNdXFycO3TokHPOuaeeesqdddZZbs+ePe7QoUMuNjbWrV692jnn3N69e51zrvj5PXv2uK+//tqdc845bu/eve7IkSOue/fuxfu87LLLXFJSknPOublz57orrrjCOefcqFGj3KBBg1x+fr7bsGGDO/fcc0/1x35afvY7c84BqS7AjNURvoiETFRUFOnp6cWPk5KSSE0t/C7O9u3bufrqq9m5cydHjhyhefPmxe0GDBhA1DEravbu3Zt69eoBcNVVV/H++++TkJDAQw89xOLFiwHYtm0bW7ZsYdeuXfTs2ZO6desCMHjwYDYXLZ6WkpLCCy+8AMCIESO45ZZbivdx5ZVXUqlSJVq1asU333zjxY/Dc5rDF5GwNG7cOMaOHcv69et5/PHHyTnmAic1atT4UVv7yYfEZsayZct4++23SUlJYe3atXTo0IGcnJzjLrdckmP7rVatWvH90vQRThT4IhKWsrKyaNKkCQBPP/30CdsuXbqU7777juzsbF588UUuuOACsrKyOPPMM6levTqbNm3io48+AqBTp04sX76c77//nry8PBYtWlTcT7du3Vi4cCEA8+bNo3v37h6NLjQ0pSMihcLsqHXGjBkMHjyYJk2a0KVLF7788svjtu3evTsjRozgs88+Y+jQoSQkJNCmTRtmz55N27ZtadGiBV26dAGgSZMmTJ06lc6dOxMdHU2rVq2oXXR1rYceeojExETuueee4g9tK5KAlkc2s0bAP4Fo51w/M2sFdHXOzS3LYhISEtzR+TsR8VZJS+2WR0fn/WfNmhXwaw4cOEDNmjXJy8tj4MCBJCYmMnDgQA+rLBvBWh45CXgTiC56vBmYGOBrRUTCyowZM2jfvj2tW7emefPmXHnllaEuKSgCndKp75z7j5lNAXDO5ZlZvod1iYgEZPTo0YwePbpUr7n33nu9KSbMBRr4B82sHuAAzKwLkFXm1WxaB13PLvNupUg5uRJTqH330YRQlxAUBdUGk3dga6jL8L3KNZsFb18Btvsz8DJwrpl9ADQAyuHXzERE/CugwHfOrTGznkALwIBPnXO5nlYmIiJlqjTn4XcC2gFxwDVmNtKbkkRETl9eXh6PzXmGI0eOhLqUsBHQEb6ZPQucC6QDRz+sdcAzHtUlIkGWtn9BmfYXX+uak7apc9b57Nu1sdR9L/9vClcNuZ6Ycwo/86tf70zefGU+t//zfmrWqM6fJ/yBypUrkxDXjgmTpvPIA/+gUqXjH99mfrWNKwcnkr5qaalrKU8CncNPAFq5U/g+sZlFAKnA1865y0r7ehGRknTv2pGXkk/8xaiO8e3oGN8uSBWFv0CndDKAs05xHxOA0r+Fi4gvvfr623S78AoSLuhH38uH8s23u0+pn8+/+IpLB46kU49L6dVnEBs3bQHgm293M+iaMcR1vYS4rpfw4UeFX/bMz8/nD2NvpV3H39DviuFkZ+eU2M+mTz8rm4GGQKCBXx/4xMzeNLOXj95O9iIzawpcCvz7dIoUEf+4oGtHPnj3RVI/WMLvfns5994/u8R276esJr5bP+K79eNf9zz8s+03jLuVB+75O6v++xr/umMK4/78VwD+dPMMenTvzJqUN1j9/mvEnv8rALZ8nskfx4xk7eq3qVP7DF546XUA/jh+cnE/M/8xrbif8ijQKZ0Zp9j/A8AtQK3jNTCzMcAYgGZVI05xNyJSUWzfsZOho29i565vyT2SS0xMyd/NOdGUzoEDB1mVms4N4yYXP7cv6wcA3lv+IU89cR8AERER1K59Bt/vy6J5zNm0bxsLQFz7Nny1dTsHDhwkZWUaQ0beWNzPkcOHy2ScoRDoaZnLzewc4Dzn3NtmVh04YTqb2WXAt865NDPrdYK+nwCeAEioWTW8Vm8SkaCbOGk6E8dex+WX9mb5f1O4/Z8PlLqPgoICzqhVk3eWPBfwa6pVrVp8PyKiEtk5+RQUFFCn9hmkfbik1DWEo4CmdMzseiAZeLzoqSbAiyd52QXAADPLBBYCF5nZ/51inSLiE1k//EB0dOFHhs/MW3SS1iU744xaxJxzNs+/8CpQ+Abw8doMAC7qdQGz/10YRfn5+fzww/6T9pO8+DWgcB38tes/OaWawkGgUzo3UXge/koA59wWM2t4ohc456YAUwCKjvAnOeeGn3qpIuKlQE6jLGuHDmUT06Jz8eMJY6/jtil/4pqRfyS68Vl07tiBzK+2nVLfz8x9kLF/+iv/umcWebm5/G7QADq0a819d0/nj+Om8NQzzxEREcGs+++k8VnHj7Oj/fzz7oeL+2nXptUp1RRqgS6PvNI519nMPnbOdTCzysAa51zbgHbyv8A/4WmZCTWrutQ2jQLpUk6F1tIJiF/W0tlZbTAtfqm1q0KtNGvpBGt55OVmNhWIMrPewPPAK4EW6ZxbpnPwRURCK9DAnwzsBtYDfwBeB8rvuUkiIj4U6Bx+FPCkc24OFH97Ngo45FVhIiJStgIN/HeA3wAHih5HAW8B3cq0mpZtIUWXOJTQqhvqAoLkm40bg7oWu4ReoFM6kc65o2FP0f3q3pQkIiJeCDTwD5pZ3NEHZpYAZHtTkoiIeCHQKZ0JwPNmtoPCZZGjgas9q0pEgu52XivT/m7j0pO2MTOGDx/Os88+CxSuYd+4cWM6d+7Mq6++GvC+duzYwfjx40lOTj7lev0g0MBvDnQAmgEDgS4UXd9WRORU1ahRg4yMDLKzs4mKimLp0qU0adKkVH3k5eURHR2tsA9AoFM6f3PO/QDUAXpTuPbNY55VJSK+0a9fP157rfCviwULFnDNNf/7xu+qVavo1q0bHTp0oFu3bnz66acAJCUlMXjwYC6//HL69OlDZmYmrVu3BiAzM5MePXoQFxdHXFwcH374IQDLli2jV69eDBo0iJYtWzJs2DCOfvE0LS2Nnj17Eh8fT9++fdm5c2cwfwRBE2jgH73K1aXAbOfcS0DVE7QXEQnIkCFDWLhwITk5Oaxbt47Onf+31ELLli1ZsWIFH3/8MbfffjtTp04t3paSksLTTz/Nu++++6P+GjZsyNKlS1mzZg3PPfcc48ePL9728ccf88ADD/DJJ5/wxRdf8MEHH5Cbm8u4ceNITk4mLS2NxMREpk2b5v3AQyDQKZ2vzexxCk/NnGlm1Sjd9XBFRErUtm1bMjMzWbBgAf379//RtqysLEaNGsWWLVswM3Jzc4u39e7dm7p1f34SbW5uLmPHjiU9PZ2IiAg2b95cvK1Tp040bdoUgPbt25OZmUmdOnXIyMigd+/eQOGCao0bN/ZiqCEXaOD/DrgEuNc5t8/MGgM3e1eWiPjJgAEDmDRpEsuWLWPv3r3Fz//tb3/jwgsvZPHixWRmZtKrV6/ibTVq1Cixr/vvv59GjRqxdu1aCgoKiIyMLN5WrVq14vsRERHk5eXhnCM2NpaUlJSyH1iYCego3Tl3yDn3gnNuS9Hjnc65t7wtTUT8IjExkdtuu402bdr86PmsrKziD3GTkpIC6isrK4vGjRtTqVIlnn32WfLz80/YvkWLFuzevbs48HNzc9mwYUPpB1EOBHqELyIVXCCnUXqladOmTJjw81VKb7nlFkaNGsV9993HRRddFFBfN954I7/97W95/vnnufDCC4/7l8BRVatWJTk5mfHjx5OVlUVeXh4TJ04kNjb2lMYSzgJaHjlYEhISXGqqllYQCYaSltqV8Bas5ZFFRKScU+CLiPiEAl9ExCfC60PbTeugqy65JmGiol8ScskSOHgw1FVIQkDT72VCR/giIj6hwBeRcufTzEyeevnlUJdR7oTXlI6IhMx3+f9Xpv3VjRh+0jbWsSPD+/Xj2dtvB4qWR+7Xj86tW/Pq/fcf93VTH32UmtWr0+oXvyD78GGqVq5Mt3btTrnWzB07uOxPfyLjuedOuY/yQIEvIiFTIyqKjM8/Jzsnh6jISJauXEmTBg1O+Jqvv/2W8VdfTafYWN5ISWHtli3UjIoqMfDz8vKoXFkxd5RnUzpmFmlmq8xsrZltMLO/e7UvESm/+nXrxmsffADAgrfe4pq+fYu3rdqwgW6JiXQYNoxuiYl8mplJk4YNccDgKVPo0KIFsxct4v4FC2g/dCj//fhjRs+YwZ/vv58Lb7iBWx9+mIPZ2STefjsdR46kw7BhvLR8+Qnrydyxgx7XX0/c8OHEDR/Oh2vXFm+7+5lnaDNkCO2GDmXyww8DkLZxI+2GDqVrYiI3P/ggra8uvDZU0iuvMPbuu4tfe9mf/sSytDQA3vroI7omJhI3fDiDBw/mwIHCK8hOnjyZVq1a0bZtWyZNmnT6P9yf8PKt7zBwkXPugJlVAd43syXOuY883KeIlDND+vTh9n//m8u6d2fdli0kDhjAf9PTAWh5zjmseOIJKleuzNsrVzL10UdZdEyIxkRHc8Nvf0vNqCgmjRgBwNyXXmLz1q28/cgjREREMPWRR7goIYEnb7uNffv302n0aH7TqRM1oqJKrKdh3bosnTWLyGrV2LJ1K9f89a+kPvMMSz74gBeXLWNlUhLVIyP5LisLgN/ffjsPT5pEz/h4bn7wwZOOd8++fdz55JO8/cgj1IiKYuY773DfffcxduxYFi9ezKZNmzAz9u3bd7o/2p/xLPBd4ZoNRy98XqXoFj7rOIhIWGh73nlk7tzJgjffpP8FF/xoW9aBA4z6+9/ZsnVr4fLIeXkB9Tn44ouJiIgA4K2VK3l5xQru/b/CzyhyDh9m665dnN+8eYmvzc3LY+zdd5O+eTMRlSqxeetWAN5etYrfX3451YtW36xbuzZZBw6wb/9+esbHAzCif3+WFF1w5Xg+Wr+eT774gguuvRaAI5Ur07VrV8444wwiIyO57rrruPTSS7nssssCGmtpeDq5ZWYRQBrwS+AR59zKEtqMAcYANKsa4WU5IhKmBvTowaSHHmLZ7NnsLTpyBvjb7NlcGB/P4nvuIXPHDnrdcENA/R179O6cY9HMmbSIiQnotffPn0+junVZO39+4fLK3bsX9kPhNXiP5Zz72XNHVY6IoKCgoPhxzuHDxa/p3bkzC/7xj8INx5yHv2rVKt555x0WLlzIrFmzfnZxl9Pl6WmZzrl851x7oCnQycxal9DmCedcgnMuoUEVnSUq4keJAwZw27XX0uaXv/zR81kHD9KkYUMAko5zUfNa1auz/9Ch4/bdt0sXHv7Pf4ovZ/hx0WUSjyfrwAEa169fuLzy668XL6/cp3Nnnnz5ZQ7l5ADwXVYWdWrVonbNmrxfNAU17403ivuJiY4mffNmCgoK2LZrF6s++QSALm3a8MHatXy2bRsAhw4dYvPmzRw4cICsrCz69+/PAw88QHpRn2UpKB9fF100ZRmFF1HJCMY+RaR0AjmN0itNGzViwjHXsj3qlhEjGPX3v3PfvHlcdJxvpF7eoweDJk/mpeXLefjmn1+X6W/XXsvE++6j7TXX4JwjJjr6Z6d85uXnU61q4VVbbxw0iN/eeivPv/MOF8bHF/+1cEm3bqRv3kzCyJFUrVyZ/hdcwD9vuomnbruNxDvuoHpkJH27dCnu84J27WgeHU2bIUNofe65xLVoAUCDM88kafp0rpk2jcO5uRAVxZ133kmtWrW44ooryMnJwTnH/Sc4LfVUebY8spk1AHKLwj4KeAuY6Zwr+W0aSKhZ1aW2aeRJPSKlVsGXVti4ZAnn168f6jLCwkvLlzPvjTf4z7/+dVr9nNL5/KVYWuF0l0f28gi/MfB00Tx+JeA/Jwp7EZFQuG32bF5asYKk6dNDXYrnwusCKDrCl3CiI3wJhiAe4etTUhERn1Dgi4j4RHgtMtGyLaTomrYiQbFxI4TBNW0LCgro168fc+bMoVmzZqEup0LTEb6IhNSXX37J1KlTFfZBEF5H+CISMvMOJ5Vpf8OqjT5pm4iICNq0aVP8eMiQIUyePJlevXpx7733kpCQQP/+/Zk/fz516tQp0/r8SIEvIiETFRV10m+Uvv7660GqpuLTlI6IhLWYmBj27NnDwYMHufTSS2nXrh2tW7fmuaIvN6WlpdGzZ0/i4+Pp27cvO3fuDHHF4UuBLyIhk52dTfv27Ytvz53gG6pvvPEG0dHRrF27loyMDC655BJyc3MZN24cycnJpKWlkZiYyLRp04I4gvJFUzoiEjKBTOkc1aZNGyZNmsStt97KZZddRo8ePcjIyCAjI4PevXsDkJ+fT+PGjb0suVxT4ItIufCrX/2KtLQ0Xn/9daZMmUKfPn0YOHAgsbGxpKSkhLq8ckFTOiJSLuzYsYPq1aszfPhwJk2axJo1a2jRogW7d+8uDvzc3Fw2bNgQ4krDl47wRQQI7DTKsnZ0Dv+oSy65hLvuuqvEtutu5La2AAAG2ElEQVTXr+fmm2+mUqVKVKlShccee4yqVauSnJzM+PHjycrKIi8vj4kTJxIbGxusIZQr4bV4WkKCS03VN21FgqGkhbgkvGnxNBERCYgCX0TEJxT4Ij4WTlO6cmJl8btS4Iv4VGRkJHv37lXolwPOOfbu3UtkZORp9RNeZ+lsWgddzw51FcFXwa+sJOGp6Zlnsn3GDHb/8pdQScd+ZeFgs3qlfk0NqxlQu8jISJo2bVrq/o8VXoEvIkFT5fvvaT5hQqjLqFDm5TxV6tcE83RYva2LiPiEAl9ExCcU+CIiPuFZ4JvZ2Wb2npltNLMNZqbJQhGREPLyQ9s84C/OuTVmVgtIM7OlzrlPPNyniIgch2dH+M65nc65NUX39wMbgSZe7U9ERE4sKHP4ZhYDdABWlrBtjJmlmlnq7tyCYJQjIuJLnge+mdUEFgETnXM//HS7c+4J51yCcy6hQRV9hiwi4hVPE9bMqlAY9vOccy94uS8RETkxL8/SMWAusNE5d59X+xERkcB4eYR/ATACuMjM0otu/T3cn4iInIBnp2U6594HzKv+RUSkdPQpqYiITyjwRUR8IryWR27ZFlJ0EXMRKZ+GhbqAk9ARvoiITyjwRUR8QoEvIuITCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE8o8EVEfEKBLyLiEwp8ERGfUOCLiPiEAl9ExCcU+CIiPhFe6+FvWgddzw51FeXX9Z1DXYGUQ7cn/j7UJZQ75x7eXWZ9Das2usz6Ohkd4YuI+IQCX0TEJxT4IiI+4Vngm9mTZvatmWV4tQ8REQmcl0f4ScAlHvYvIiKl4FngO+dWAN951b+IiJROyOfwzWyMmaWaWeru3IJQlyMiUmGFPPCdc0845xKccwkNqoS8HBGRCksJKyLiEwp8ERGf8PK0zAVACtDCzLab2bVe7UtERE7Os7V0nHPXeNW3iIiUnqZ0RER8QoEvIuIT4bU8csu2kJIa6ipEfOW2UBdQHlULdQGnRkf4IiI+ocAXEfEJBb6IiE8o8EVEfEKBLyLiEwp8ERGfUOCLiPiEOedCXUMxM9sPfBrqOkKkPrAn1EWEkMav8ft1/Kc79nOccw0CaRheX7yCT51zCaEuIhTMLNWvYweNX+P37/iDOXZN6YiI+IQCX0TEJ8It8J8IdQEh5Oexg8av8ftX0MYeVh/aioiId8LtCF9ERDyiwBcR8YmgB76ZXWJmn5rZZ2Y2uYTtZmYPFW1fZ2Zxwa7RSwGMf1jRuNeZ2Ydm1i4UdXrlZOM/pl1HM8s3s0HBrM9rgYzfzHqZWbqZbTCz5cGu0SsB/N+vbWavmNnaorH/PhR1esXMnjSzb80s4zjbvc8+51zQbkAE8DnwC6AqsBZo9ZM2/YElgAFdgJXBrDEMxt8NOLPofj+/jf+Ydu8CrwODQl13kH//dYBPgGZFjxuGuu4gjn0qMLPofgPgO6BqqGsvw5/Br4E4IOM42z3PvmAf4XcCPnPOfeGcOwIsBK74SZsrgGdcoY+AOmbWOMh1euWk43fOfeic+77o4UdA0yDX6KVAfv8A44BFwLfBLC4IAhn/UOAF59xWAOdcRfkZBDJ2B9QyMwNqUhj4ecEt0zvOuRUUjul4PM++YAd+E2DbMY+3Fz1X2jblVWnHdi2F7/gVxUnHb2ZNgIHA7CDWFSyB/P5/BZxpZsvMLM3MRgatOm8FMvZZwPnADmA9MME5VxCc8sKC59kX7KUVrITnfnpeaCBtyquAx2ZmF1IY+N09rSi4Ahn/A8Ctzrn8wgO9CiWQ8VcG4oGLgSggxcw+cs5t9ro4jwUy9r5AOnARcC6w1Mz+65z7weviwoTn2RfswN8OnH3M46YUvpuXtk15FdDYzKwt8G+gn3Nub5BqC4ZAxp8ALCwK+/pAfzPLc869GJwSPRXo//89zrmDwEEzWwG0A8p74Acy9t8Dd7nCCe3PzOxLoCWwKjglhpzn2RfsKZ3VwHlm1tzMqgJDgJd/0uZlYGTRJ9ZdgCzn3M4g1+mVk47fzJoBLwAjKsBR3U+ddPzOuebOuRjnXAyQDNxYQcIeAvv//xLQw8wqm1l1oDOwMch1eiGQsW+l8C8bzKwR0AL4IqhVhpbn2RfUI3znXJ6ZjQXepPBT+yedcxvM7Iai7bMpPDOjP/AZcIjCd/0KIcDx3wbUAx4tOsrNcxVkFcEAx19hBTJ+59xGM3sDWAcUAP92zpV4Gl95EuDv/g4gyczWUzi9catzrsIsmWxmC4BeQH0z2w5MB6pA8LJPSyuIiPiEvmkrIuITCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE/8f0QruAE6oCDyAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAEICAYAAABYjV1lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl0VFW6NvDnTWUgISEQEgJkIAyZGU0EGQKC0g3ixdag4AQoCCZXEUeubfflE2/bstQrphEEbJqOKNqCAkaUxs9mUEC6mAKZIGAISBgjGSAklap9/0gVTYckVKBOVeXk+a1Vi1SdYb+7wqo3e9fZ5xWlFIiIiEi/PFwdABEREWmLyZ6IiEjnmOyJiIh0jsmeiIhI55jsiYiIdI7JnoiISOeY7ImIiHSOyZ5aBRHZLCK/iIiPnftHiYgSEU8HtD3Feq7pN3suIqIbwWRPuiciUQBSACgA453cdgcALwPIcWa7RERXY7Kn1mAygJ0AVgCYcvUGEfEVkbdF5JiIlInI9yLiC2CrdZcLIlIpIoOt+z8uInnWWYKNItLtOm3/EUAGgHMO7RERUTMw2VNrMBnAR9bHr0Uk9KptbwFIAjAEQBCAlwBYAAy3bm+vlPJXSu0Qkd8A+C2A+wCEANgGYFVjjYrIQADJAN53bHeIiJqHyZ50TUSGAegG4G9Kqd0AjgB4yLrNA8DjAJ5RSv2slDIrpbYrpaobOd1MAH9USuUppWoBvA6gf0OjexExAFgE4GmllMXxPSMish+TPendFAB/V0rZptE/xr+m8oMBtEHdHwD26AbgXRG5ICIXAJQCEABhDeybDiBbKbXjhiMnInIQYdU70ivrd++nABgAVFpf9gHQHkB/AAcAXARwm1Jqf71juwEoAuBlHcVDRDYCyFRKfWRH22sBjABgmyUIAlAF4EOl1FM31zMioubhyJ707DcAzAASUJfc+wOIR9137ZOt0+vLAfyviHQVEYOIDLYuzzuLuu/ue1x1vvcBvCwiiQAgIoEicn8jbU+1tmVr1wjgVQCvOLaLRETXx2RPejYFwF+UUsVKqVO2B4CFAB62rqF/AXUj/H+iblp+PgAPpdQlAH8A8IN12v42pdQX1u2fiEg5gIMAxjbUsFLqQr02awCUK6XKNO4zEdE1OI1PRESkcxzZExER6RyTPRERkc4x2RMREekckz0REZHO3XRFL0cKDg5WUVFRrg6DiKjF2L179zmlVIir4yD35lbJPioqCkaj0dVhEBG1GCJyzNUxkPvjND4REZHOMdkTERHpHJM9ERGRzrnVd/ZEROQedu/e3cnT0/MDAL3BgWFLYAFwsLa2dnpSUtKZ+huZ7ImI6Bqenp4fdO7cOT4kJOQXDw8P3lfdzVksFjl79mzCqVOnPgAwvv52/rVGREQN6R0SElLORN8yeHh4qJCQkDLUzcRcw71G9vnZwOAIV0fRcj0xyNURUAs07/HHXB1Ci9Oz+qzDzvWwz1SHncvBPJjoWxbr76vBQTxH9kREpAuLFy8OOnz4sLer43BH7jWyJyIi9zQ4Ismh59txfLc9uxUXF3ump6dH7t+/38/b21uFh4dX/+lPfzqempra6/Dhwzm2/d55553giooKj+jo6JobDSkjI6Pj+PHjy6Oiokw3eg53xWRPRERuyWKxYPz48b0eeuih81lZWUcBYPv27b4nT570qr/vs88+e+5m21u5cmVw//79q/SY7DmNT0REbikrKyvA09NTvfTSS1cukhgyZEhV9+7dr4zea2trMXPmzPDevXvHx8TEJLz55pvBAFBWVuYxePDgmISEhPiYmJiElStXtgeAgoIC7x49eiROmjSpW69evRKHDh0aXVlZKX/5y186HDx40G/y5Mk94uLiEiorK2Xbtm1+t956a2xiYmL8sGHDoo8dO3bNHxkthWbJXkSWi8gZETmoVRtERKRf2dnZvv369bvU1D4LFiwIDgwMNB88eDBv//79eX/9619D8vPzvf38/CxfffVVYW5ubt6WLVsO/fa3vw23WCwAgOLi4jazZs06U1hYmBMYGGjOzMzs8Nhjj/3Su3fvS5mZmUfz8/Nzvby8MGvWrMh169YdycnJyZsyZcq5F154IcwpHdeAltP4KwAsBJCpYRtERNSKffvtt+3y8/P91q9f3wEAKioqDLm5uW26d+9umj17dvjOnTv9PTw8cObMGe8TJ054AkBYWFj1kCFDqgBgwIABl4qKinzqnzc7O9vn8OHDvqNGjYoB6r5SCAkJabHT+5ole6XUVhGJ0ur8RESkb3369Klau3Zth6b2UUrJ22+/XZyamlp+9esZGRkdz58/73ngwIE8Hx8fFRYW1qeqqsoDALy9va8sKTQYDMr2ev3z9urVq2rfvn35juqPK7n8O3sRmSEiRhExnjVZXB0OERG5if/4j/+oqKmpkbfffjvY9tqWLVv8CgsLryyvGz16dNnixYtDqqurBagbkZeXl3uUlZUZgoODTT4+PurLL78MOHny5HWX5Pn7+5vLysoMANC3b9/LpaWlnt9++21bAKiurhaj0djG8b10Dpdfja+UWgpgKQAk+3vzBg5ERO7IzqVyjuTh4YH169cfSU9Pj1iwYEFnHx+fK0vvbPs8++yz54qKinz69OkTr5SSoKAg04YNG45Mnz69dOzYsb169+4dn5iYeKl79+6Xr9fe5MmTzz399NPdXnzxRYvRaMz75JNPjsyaNSuyoqLCYDabJS0t7XRycvJ1z+OORCnt8qt1Gj9LKdXg7fvqS/b3VsY+oZrFo3u8gx7dAN5Br/nc6Q56IrJbKZXsmGj+Zf/+/UX9+vW76eVs5Fz79+8P7tevX1T9110+jU9ERETa0nLp3SoAOwDEisgJEZmmVVtERETUOC2vxn9Qq3MTERGR/TiNT0REpHNM9kRERDrn8qV3/yauL7DD6OooiFqV/3Z1AC3RNfdbI3Jv7pXsiYjIPS2f4NgSt4+vvu66fYPBkBQdHV1le75u3brC2NjYGy5hCwAjRozotWbNmp+Cg4PNN3OelobJnoiI3JKPj48lPz8/t7HtJpMJXl7NK0S3ZcuWwpsOrAXid/ZERNRiZGRkdBw7dmyPUaNG9UpJSYmxWCyYOXNmeHR0dGJMTEzCsmXLOgDAsWPHvJKTk2Pj4uISoqOjE7/55ht/AAgLC+tTUlLi2VipWwDIycnxSUlJiU5MTIxPSkqK3bt3b4u9Ta4NR/ZEROSWqqurPeLi4hIAICIionrTpk1HAGDPnj3+2dnZOaGhoeYVK1a0P3DggG9eXl5OSUmJ58CBA+N/9atfVS5fvjzojjvuKJs/f/6p2tpaVFRUXDO4LS4ubrNy5cqjQ4YMOXbXXXf1yMzM7JCenl46ffr0bkuXLj3Wp0+f6u+++65tWlpa5M6dOw85u/+OxGRPRERuqbFp/JSUlPLQ0FAzAGzbti3ggQceKPX09ERERETtoEGDKr///nu/22677eLMmTOjTCaTx4QJE36xlbS9WkOlbsvKyjz27t3rf//99/e07VdTUyNa9tMZOI1PREQtip+f35USqY3Vdxk7dmzl1q1bC8LCwmqmTp3afeHChR3r71O/1G1tba2YzWYEBATU5ufn59oeR48ezdGkI07EZE9ERC3WiBEjKlavXh1UW1uLkydPeu7atcs/JSXl4qFDh7zDwsJMzz///LlHHnnk3J49e/zsOV9QUJAlPDy8Zvny5R0AwGKxYMeOHb7a9kJ7nMYnIqLrs2OpnCs8+uijF7Zv3+4fHx+fKCLq1VdfPREZGVn7pz/9qWNGRkZnT09P5efnZ/7oo49+svecq1atOvrEE090mz9/fpfa2lq59957SwcPHnzN1wAtiaYlbpsrOTlZGY28qQ4Rkb1Y4pauxhK3RERErRSTPRERkc4x2RMREekckz0REZHOMdkTERHpnHstvcvPBgZHuDoK59t5wtUREJEDfHT5L80+5mGfqY4PhKge90r2RETknkQcW+JWqeuu2/fz8xtw6dKlvbbnGRkZHY1GY9vMzMxih8bSCnAan4iIdMlkMrk6BLfBkT0REbU4H3/8ceAbb7zRxWQyeXTo0KH2008/PRoREVH73HPPdS0pKfEqLi72DgoKqh09enT5unXr2tfU1HgcP37cJzU19fzbb79dAgB33nlnz5KSEu/q6mqPJ5988vQLL7xwDgDeeeed4Hfffbdzp06dTD169Ljs7e2tMjMziw8dOuQ9ZcqUqPPnz3t27NixNjMzsyg6OromNTU1KiAgwLx///62Z8+e9XrttddOPPbYY7+49h36dxzZExGRW7KVuLU9/vjHP3a1bRs9enTlvn378vPy8nInTJhQOm/evM62bdnZ2X4bN24s/PLLL3+yPm/72WefHT148GDO+vXrg7Zu3eoHAB999FFRTk5O3r59+3KXLFkSeurUKUNRUZHXW2+91eXHH3/M27Zt26HDhw9fqWX/5JNPRj700EPnDx06lDtx4sTzaWlpVy4yO336tJfRaMxft27d4blz54Y55x2yn2YjexGJAJAJoDMAC4ClSql3tWqPiIj0pX6JW9t39gDw008/ef/mN78JP3v2rFdNTY1HREREtW2/MWPGXPD3979yL/hhw4aVd+7c2QwA48aN+2Xz5s3+w4cPvzR//vzQr776qj0AnDp1yisnJ6fNyZMnvQYNGlRhK6F77733/nLo0KE2ALB37962X3/99REASEtLK3311VfDbW2MHz/+gsFgQFJS0uXz5897afvONJ+WI/taAM8rpeIB3AbgP0UkQcP2iIiolXjqqaci09PTzxw6dCh34cKFx6qrq6/ks7Zt21qu3lfk38vRiwiysrICtmzZEmA0GvMLCgpy4+Pjq6qqqjxutF5MmzZtrhzoTjVnbDRL9kqpEqXUHuvPFQDyALjd1AYREbU8FRUVhsjISBMArFix4ppa9Vf7/vvv250+fdpQWVkpGzZsaD9ixIjKCxcuGAIDA80BAQGWvXv3ttm/f39bAEhJSbn4448/Bpw9e9ZgMpmwbt26DrbzDBgw4OIHH3zQAQCWLFkSlJycXKllHx3JKRfoiUgUgAEAfmxg2wwAMwAg0tvgjHCIiKi57Fgq50yvvPLKyQcffLBnaGhoTXJy8sXi4mKfxvZNTk6unDhxYveioqI2qamp54cPH36pqqqqaunSpSExMTEJPXv2vNyvX7+LANC9e3fTs88+W3LrrbfGd+rUyRQTE1MVGBhoBoDFixcXT5kyJerdd9/tbLtAz0ndvWmal7gVEX8AWwD8QSn1eVP7Jvt7K2OfUE3jcUu8qQ6RLrjipjoscdu0G1mbX1ZW5hEYGGgxmUz49a9/3Wvq1KnnJk+efEHLOB3FJSVuRcQLwBoAH10v0RMREbmDF198sWtcXFxCTExMYmRkZPUjjzzSIhJ9U7S8Gl8A/BlAnlLqf7Vqh4iIqDGzZs06D+B8c45ZunSp7qZbtRzZDwXwKIBRIrLP+rhLw/aIiIioAZqN7JVS3wOQ6+5IREREmuId9IiIiHSOyZ6IiFodk8mEN954I+Ty5cutYgbavQrhxPUFdhhdHQUR0Q152NUBaOjHkvkOLXE7qMucZpe4tVdWVlbAgw8+2DMsLKwGAIKCgmq3b99+6Lnnnuvq7+9vnjdv3mkvLy8MHjz44uOPPx754YcfHjMYGr/PS0FBgffdd98dffjw4ZzmxuIu3CvZExEROUBycnLlP/7xj8Km9hkxYsSlESNGHHNWTK7EaXwiImoxPv7448C+ffvGxcfHJwwZMiTm+PHjNzRozcnJ8UlJSYlOTEyMT0pKit2zZ08bADh+/Ljn6NGje8bGxibExsYmbNq0qS0AmM1mTJo0qVuvXr0Shw4dGl1ZWSkNnWfv3r1tmmrXVZjsiYioxWiqtO3VjEajv6007pw5c67ZZ9q0ad0WLVpUnJOTkzd//vwTaWlpkUBdGduUlJSKgoKC3JycnNxbbrnlMgAUFxe3mTVr1pnCwsKcwMBAc2ZmZgcAmD59+pXzvPnmm1fO4244jU9ERC1GU6Vtr9bUNH5ZWZnH/v37206bNi3K9lp5ebkBALZv3x6wevXqnwDA09MTHTt2NJ87d84QFhZWPWTIkCoAGDBgwKWioiKfsrIyj7179/rff//9PW3nqampccsL/pjsiYioxXjqqacin3nmmVMPP/xwWVZWVsC8efO6NvccZrMZ/v7+5l27dhXYe4y3t/eVQjIGg0FVVVV5mM1mBAQE1Obn5+c2NwZn4zQ+ERG1GM0pbduYoKAgS3h4eI2tXK3ZbMYPP/zgCwBDhw6tePPNN0MAoLa2FqWlpY3mSdt5li9f3gEALBYLduzY4XsjMWmNI3siIroue5bKOdrly5c9QkND+9qep6WlnW5OadumrFq16ugTTzzR7c033+xSW1sr9957b+nQoUOrFi9eXDx16tRuMTExwR4eHli4cOGxiIgI0/XOM3/+/CvnGTx4cNWNxKQlzUvcNkdycrIyGrnOnojIXixxS1dzSYlbIiIicj0meyIiIp1jsiciItI5JnsiIiKdY7InIiLSOSZ7IiIinXOvdfb52cDgCFdHQVRn5wlXR0CtgRstf25K6Y+zHVriNmjQguuu2xeRpHvuuad07dq1PwF1Neg7derUr3///hebqmi3detWv+XLl3dcsWLF8aysrAAfHx/L6NGjL95orCxxS0REpBFfX19LQUGBb2Vlpfj7+6svvviiXWhoaKM3uLEZPnz4peHDh18CgO+++y7A39/f3FCyN5lM8PLy0iJ0t8NpfCIiclt33HFH2WeffdYeAFatWhWUmppaatv2j3/8w2/AgAFx8fHxCQMGDIjbv3+/DwBkZWUFjBw5sldBQYF3ZmZmyPvvvx8aFxeX8M033/inpqZGTZ8+PXzQoEEx6enp4eXl5R73339/VO/evePj4+MTVq5c2b6peAoKCryTkpJiExIS4hMSEuJtJXAB4He/+11oTExMQmxsbEJ6enoYAGzbts0vNjY2oX///nEzZ84Mj46OTgSAjIyMjpMnT75SIW/kyJG9srKyAgDg888/b9e/f/+4hISE+LFjx/YoKyvzAID09PSwnj17JsbExCTMmDEjvDnvI0f2RETkth599NHSuXPndpk4ceKFvLw8v2nTpp3fvn27PwD069fv8q5du/K9vLywdu3agJdeeil848aNR2zHxsbG1kyePPmsv7+/ed68eacBYNmyZcFHjhxp88MPPxzy9PTEU089FTZy5Mjyzz77rOjcuXOG5OTk+PHjx5e3a9fO0lA8Xbt2rd22bdshPz8/deDAAZ8HH3ywx8GDB/P+9re/tfvqq6867N69Oz8gIMBy+vRpAwBMmzYt6p133ikeN25c5cyZM6+boEtKSjxff/31Llu3bj3Url07yyuvvNL5tddeC33xxRfPbNiwocPRo0cPenh44Ny5c4bmvI9M9kRE5LYGDRpUdeLECZ9ly5YF3XnnnWVXbystLTVMnDixe1FRURsRUSaTya7ysvfdd98vnp516W/z5s3tNm7c2D4jI6MzAFRXV0thYaG3rY59fTU1NTJt2rRuubm5vh4eHjh27JgPAGzatKndI488ci4gIMACAKGhoebz588bKioqDOPGjasEgMcff/z8d999F9hUbJs3b2575MiRNgMHDowDAJPJJElJSZVBQUFmHx8fy6RJk7qNGzeubOLEiWVNnac+zZK9iLQBsBWAj7Wd1UqpuVq1R0RE+jRmzJgLc+fOjfj73/9ecObMmSt5a86cOWEjRoyo2LRp05GCggLvUaNGxdpzPn9//yujdqUUVq9eXdivX79qe479wx/+ENqpUyfTmjVrfrJYLPD19U2ynUfk3//WaOg1G09PT2Wx/GvyoLq62sN2zLBhw8q//PLLn+ofs2/fvrz169e3++STTzosXry4086dOw/ZEzOg7Xf21QBGKaX6AegPYIyI3KZhe0REpENpaWnnnn/++ZMDBw78t2py5eXlhvDw8BoAWLJkSXBDxwYEBJgrKioanfIeOXJk+dtvvx1qS7y2UreNKSsrM3Tp0sVkMBiwaNGijmazGQAwZsyY8g8//DC4oqLCAwBOnz5tCA4ONvv7+5s3btzoDwArVqwIsp2nZ8+eNTk5OX5msxmFhYVe2dnZbQHg9ttvv2g0Gv0PHjzoAwAVFRUe2dnZPmVlZR7WmYyy999//3heXp7f9d63q2k2sld15fQqrU+9rI+WscaEiIj+jT1L5bTSs2dP0+9///sz9V+fM2fOqenTp3fPyMjonJKSUt7QsampqRcmTJjQ8+uvv26/YMGC4vrb33jjjZMzZsyIjIuLS1BKSXh4eHX9ZX0mk0m8vb0tADB79uwzqampPdeuXdth2LBhFb6+vhYAmDBhQvmePXv8+vfvH+/l5aXuvPPOsoULF/785z//uWj69OlRvr6+llGjRl2JcfTo0ZXvvfdedWxsbGJsbGxVQkLCJaDumoAlS5YUTZo0qUdNTY0AwNy5c38ODAy03H333b2qq6sFAP7nf/7neHPeQ01L3IqIAcBuAL0AvKeUmtPAPjMAzACASG9D0rFbumgWD1GzcJ09OcNNfgazxK32Vq5c2f7jjz8O2rBhw9GbOY8z1us3VuJW0wv0lFJmAP1FpD2AL0Skt1LqYL19lgJYCgDJ/t4c+RMRkduYPXt216+//rr98uXLr/kOvSVxyjp7pdQFAJsBjHFGe0RERI6wYMGCkwUFBblDhw6tuv7eTYuNja1x1V34NEv2IhJiHdFDRHwB3AkgX6v2iIiIqGFaTuN3AfBX6/f2HgD+ppTK0rA9IiIiaoCWV+NnAxig1fmJiIjIPrw3PhERkc7xdrlERHRd8/CVQ0vc/jfGaVbitr6ioiKvJ598MuKbb765qaVzLZl7Jfu4vsAOo6ujICIiN3CjJW6vZjKZEBUVZWrNiR7gND4REbmxGylxm5GR0XHs2LE9Ro0a1SslJSWmoKDA21ZatrEStVlZWQEDBw6MHTNmTI/u3bsnjh8/vrvtFrrbtm3zu/XWW2MTExPjhw0bFn3s2DEvp78RN4nJnoiI3Najjz5a+umnn3a4dOmS5OXl+Q0ePPiibZutxG1eXl7u3Llzf37ppZeulJDds2eP/6pVq36qXyzGVqI2Nzc379NPPz367LPPXqkpn5eX5/vee+8dLywszCkuLvbZtGmTf3V1tcyaNSty3bp1R3JycvKmTJly7oUXXghzTu8dx72m8YmIiK5yoyVuU1JSykNDQ831z9dYiVoA6NOnz8WePXuaACAxMfHSkSNHvIOCgmoPHz7sO2rUqBgAsFgsCAkJadZXCe6AyZ6IiNzajZS49fPzszR0rsZK1AKAj4/PlVu2GwwG1NbWilJKevXqVbVv374WfVM4TuMTEZFbu5kSt/U1VqK2MX379r1cWlrq+e2337YFgOrqajEajW1usCsuw5E9ERFdlz1L5bRyMyVu62usRG1j2rRpoz755JMjs2bNiqyoqDCYzWZJS0s7nZycfPlG++MKmpa4ba7k5GRlNHLpHRGRvVjilq7WWIlbTuMTERHpHJM9ERGRzjHZExER6RyTPRERkc7ZlexFJFRE/iwiX1ufJ4jING1DIyKi1s5sNmPYsGHRhw8f9nZ1LC2ZvSP7FQA2AuhqfX4IwGwtAiIiIrLJz8/3efnll0uio6NrXB1LS2bvOvtgpdTfRORlAFBK1YpI03ciICIi3fioeoVDS9w+7DP1uuv2DQZDUnR0dBUAPP/887jvvvtKX3/99VMDBw6Mfeutt44PHz780ogRI3qtWbPmp+DgYOakJtib7C+KSEcACgBE5DYAZU0fcgPys4HBEQ4/LVntPOHqCFqE0p3PuDoEakWCBi1wdQhuy8fHx5Kfn5/b1D5btmyxu659a2bvNP5zANYD6CkiPwDIBPC0ZlERERHZISwsrE9JSYlneXm5x+23394rNjY2ITo6OnHZsmUdAH2Up3UEu0b2Sqk9IjICQCwAAVCglGpxVX+IiKjlqK6u9oiLi0uwPX/++edLnnjiiV8a2vfzzz9v17lzZ9PmzZsLAeD8+fMGW3nar776qrBr1661y5Yt6/DCCy+EffbZZ0VO6oLbaM698QcCiLIec4uIQCmVqUlURETU6tkzjW9zyy23VL3yyisRaWlpYffcc0/ZmDFjKv/5z3+20UN5WkewK9mLyIcAegLYB8B2EYRC3XQ+ERGRS/Xt27d6z549uWvWrAl85ZVXwr799tvyBx544IIeytM6gr3f2ScDGKqUSldKPW19zLLnQBExiMheEcm68TCJiIgaV1RU5BUQEGBJT08vnT179ul9+/b56aU8rSPYO41/EEBnACU30MYzAPIAtLuBY4mIyA3Ys1TO0ep/Zz9q1KiyRYsW/dzQvrt37/Z9+eWXwz08PODp6akWLVp0TC/laR3B7nX2AHJFZBeAatuLSqnxTR0kIuEAxgH4A+qu6CciIrKL2Wxu8A+MXbt2Fdh+/vnnnw8AQGpqanlqauo13+8PGTKkymg0FtR/vbWxN9n/vxs8/wIALwEIaGwHEZkBYAYARHobbrAZIiIiaoxd39krpbYAKALgZf35nwD2NHWMiNwN4IxSqsmpH6XUUqVUslIqOcSLdXmIiIgczd5COE8AWA1gifWlMABrr3PYUADjRaQIwCcARonIyhuMk4iInMtisVjE1UGQ/ay/L0tD2+wdSv8n6pJ3OQAopQ4D6NTUAUqpl5VS4UqpKACTAHynlHrE3qCJiMilDp49ezaQCb9lsFgscvbs2UDUXVB/DXu/s69WStWI1P3ORcQT1vvkExGR/tTW1k4/derUB6dOneoN+weG5DoWAAdra2unN7TR3mS/RUR+C8BXREYDSAfwpb0RKKU2A9hs7/5ERORaSUlJZwA0ueKKWg57/1r7LwBnARwAMBPABgC/0yooIiIichx7R/a+AJYrpZYBdXfFs752SavAiIiIyDHsTfb/H8CdACqtz30B/B3AEIdGE9cX2GF06CmJmivI1QEQETmYvdP4bZRStkQP689+2oREREREjmRvsr8oIrfYnohIMoAqbUIiIiIiR7J3Gv8ZAJ+JyEnULbnrCmDo3t9fAAAI6ElEQVSiZlERERGRw9ib7LsDGAAgEsC9AG4D19kTERG1CPZO4/9eKVUOoD2A0QCWAlisWVRERETkMPYme7P133EA3ldKrQPgrU1IRERE5Ej2JvufRWQJgAcAbBARn2YcS0RERC5kb8J+AMBGAGOUUhdQtxT5Rc2iIiIiIoex6wI9pdQlAJ9f9bwEQIlWQREREZHjcCqeiIhI55jsiYiIdI7JnoiISOeY7ImIiHSOyZ6IiEjn7L1drnPkZwODI1wdBdHN2XnC1RFQS6J453HSHkf2REREOsdkT0REpHNM9kRERDrHZE9ERKRzml6gJyJFACpQVzWvVimVrGV7REREdC1nXI0/Uil1zgntEBERUQM4jU9ERKRzWid7BeDvIrJbRGY0tIOIzBARo4gYz5osGodDRETU+mg9jT9UKXVSRDoB2CQi+UqprVfvoJRaCmApACT7e/PuEkRERA6m6cheKXXS+u8ZAF8AGKhle0RERHQtzZK9iLQVkQDbzwB+BeCgVu0RERFRw7Scxg8F8IWI2Nr5WCn1jYbtERERUQM0S/ZKqaMA+ml1fiIiIrIPl94RERHpHJM9ERGRzrlXPfu4vsAOo6ujICIi0hWO7ImIiHSOyZ6IiEjnmOyJiIh0jsmeiIhI55jsiYiIdI7JnoiISOeY7ImIiHSOyZ6IiEjnmOyJiIh0jsmeiIhI55jsiYiIdI7JnoiISOeY7ImIiHSOyZ6IiEjn3KvEbX42MDjC1VHoxo+fP+XqEIjoOgZ1mePqEKgV4MieiIhI55jsiYiIdI7JnoiISOeY7ImIiHRO02QvIu1FZLWI5ItInogM1rI9IiIiupbWV+O/C+AbpdQEEfEG4Kdxe0RERFSPZsleRNoBGA5gKgAopWoA1GjVHhERETVMy2n8HgDOAviLiOwVkQ9EpG39nURkhogYRcR41mTRMBwiIqLWSctk7wngFgCLlVIDAFwE8F/1d1JKLVVKJSulkkO8eL0gERGRo2mZXU8AOKGU+tH6fDXqkj8RERE5kWbJXil1CsBxEYm1vnQHgFyt2iMiIqKGaX01/tMAPrJeiX8UwGMat0dERET1aJrslVL7ACRr2QYRERE1jVfEERER6RyTPRERkc65Vz37uL7ADqOro9CNQa4OgIiI3AJH9kRERDrHZE9ERKRzTPZEREQ6x2RPRESkc0z2REREOsdkT0REpHNM9kRERDrHZE9ERKRzTPZEREQ6x2RPRESkc0z2REREOsdkT0REpHNM9kRERDrHZE9ERKRzTPZEREQ651717HfvBkRcHQURkfMo5eoIqBXgyJ6IiEjnmOyJiIh0jsmeiIhI5zRL9iISKyL7rnqUi8hsrdojIiKihml2gZ5SqgBAfwAQEQOAnwF8oVV7RERE1DBnTePfAeCIUuqYk9ojIiIiK2cl+0kAVjW0QURmiIhRRIxnnRQMERFRayJK4zWeIuIN4CSARKXU6ab2TRZRRk2jISJyMzf5GSwiu5VSyQ6KhnTKGSP7sQD2XC/RExERkTackewfRCNT+ERERKQ9TZO9iPgBGA3gcy3bISIiosZpem98pdQlAB21bIOIiIiaxjvoERER6RyTPRERkc65V4nbpCTAyMV3REREjsSRPRERkc4x2RMREekckz0REZHOMdkTERHpHJM9ERGRzjHZExER6RyTPRERkc5pXuK2OUSkAkCBq+NwkWAA51wdhAux/+x/a+3/zfa9m1IqxFHBkD651011gILWWpdZRIytte8A+8/+t97+t+a+k/NwGp+IiEjnmOyJiIh0zt2S/VJXB+BCrbnvAPvP/rderbnv5CRudYEeEREROZ67jeyJiIjIwZjsiYiIdM7pyV5ExohIgYgUish/NbBdRCTDuj1bRG5xdoxasqP/D1v7nS0i20Wknyvi1Mr1+n/VfreKiFlEJjgzPq3Z038RuV1E9olIjohscXaMWrHj/36giHwpIvutfX/MFXFqRUSWi8gZETnYyHZdf/aRiymlnPYAYABwBEAPAN4A9gNIqLfPXQC+BiAAbgPwozNjdIP+DwHQwfrz2NbW/6v2+w7ABgATXB23k3//7QHkAoi0Pu/k6rid2PffAphv/TkEQCkAb1fH7sD3YDiAWwAcbGS7bj/7+HD9w9kj+4EACpVSR5VSNQA+AXBPvX3uAZCp6uwE0F5Eujg5Tq1ct/9Kqe1KqV+sT3cCCHdyjFqy5/cPAE8DWAPgjDODcwJ7+v8QgM+VUsUAoJTSy3tgT98VgAAREQD+qEv2tc4NUztKqa2o61Nj9PzZRy7m7GQfBuD4Vc9PWF9r7j4tVXP7Ng11f+nrxXX7LyJhAO4F8L4T43IWe37/MQA6iMhmEdktIpOdFp227On7QgDxAE4COADgGaWUxTnhuQU9f/aRizn7drnSwGv11/7Zs09LZXffRGQk6pL9ME0jci57+r8AwByllLlugKcr9vTfE0ASgDsA+ALYISI7lVKHtA5OY/b0/dcA9gEYBaAngE0isk0pVa51cG5Cz5995GLOTvYnAERc9TwcdX/FN3eflsquvolIXwAfABirlDrvpNicwZ7+JwP4xJrogwHcJSK1Sqm1zglRU/b+/z+nlLoI4KKIbAXQD0BLT/b29P0xAG8opRSAQhH5CUAcgF3OCdHl9PzZRy7m7Gn8fwKIFpHuIuINYBKA9fX2WQ9gsvXK1NsAlCmlSpwcp1au238RiQTwOYBHdTCaq++6/VdKdVdKRSmlogCsBpCuk0QP2Pf/fx2AFBHxFBE/AIMA5Dk5Ti3Y0/di1M1oQERCAcQCOOrUKF1Lz5995GJOHdkrpWpF5CkAG1F3de5ypVSOiDxp3f4+6q7AvgtAIYBLqPtrXxfs7P9/A+gIYJF1dFurdFIRy87+65Y9/VdK5YnINwCyAVgAfKCUanCpVkti5+/+NQArROQA6qa05yildFP2VkRWAbgdQLCInAAwF4AXoP/PPnI93i6XiIhI53gHPSIiIp1jsiciItI5JnsiIiKdY7InIiLSOSZ7IiIinWOyJyIi0jkmeyIiIp37P5s6GxjT/ce0AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -1863,7 +2151,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8zvX/+PHHczM7oOR8qkYfxxkzc2aGtjFnIT4kh1Iph4pCv5Q+6lPpoPh+6KCm0siEDirkFOawMcJEGOaQU8Ywdnj9/thcyHBh7+vadj3vt9tu7brer/fr9Xxduj33vl7X63q+xRiDUkqpgs/N2QEopZRyDE34SinlIjThK6WUi9CEr5RSLkITvlJKuQhN+Eop5SI04SullIvQhK9cgogsF5G/RcTTzva+ImJEpNAdjGlE5KyIpGT/fHq7fSmVGzThqwJPRHyBFoABOjl4+LrGmKLZP485eGylrqIJX7mCfsBaIBJ49MoDIuItIu+KyD4RSRaRVSLiDazMbnIq++q8SXb7gSKSkP1u4RcRud+RE1HqTmjCV66gHzAz+ydcRMpecewdoD7QFCgBvABkAsHZx4tnX53HiEgXYCzQDSgN/AZE3WTslSJyRES+zX6noZTTiNbSUQWZiDQHlgHljTHHRWQH8JEx5n0RcQPOAo2NMZv/cZ4vsBfwMMakZz/3ExBtjJme/dgNSAFqGmP25TB2MFnvLHyACUAIEHCpP6UcTa/wVUH3KLDIGHM8+/HXXF7WKQV4Abvt7Ot+4AMROSUip4CTgAAVc2psjFlpjLlojDkFDAcqAzVvbxpK3bnb3oGgVF6XvRbfE3AXkSPZT3sCxUWkLvA7kAo8AGz+x+k5vfU9ALxujJl5myEZsv5AKOUUeoWvCrIuQAZQCwjI/qlJ1tp7P2NMJvAZ8J6IVBARdxFpkr118xhZa/lVruhvGjBGRPwARORuEemR08Ai4iciAdl9FgXeBQ4CCZbMVCk7aMJXBdmjwOfGmP3GmCOXfoApQJ/sPfYjybrS30DWEs1bgJsx5hzwOrA6ewmnsTFmXvbxWSJyGtgKtLvO2GWB2cBpYA/gC3QwxqRZNVmlbkY/tFVKKRehV/hKKeUiNOErpZSL0ISvlFIuQhO+Ukq5iDy1D79UqVLG19fX2WEopVS+ERcXd9wYU9qetnkq4fv6+hIbG+vsMJRSKt8QkWvKelyPLukopZSL0ISvlFIuQhO+Ukq5CE34SinlIjThK6WUi9CEr5RSLkITvlJKuYg8tQ9/rzlLnwvrnB1GgTQzpLuzQ1CXrE1ydgR5ymvmB4eN9cy6xbnST8R9T+VKPwBry1fPtb5uRq/wlVLKRWjCV0opF6EJXymlXIQmfKWUchGa8JVSykVYmvBFpLiIRIvIDhFJEJEmVo6nlFLq+qzelvkB8LMxpruIFAZ8LB5PKaXUdViW8EXkLiAY6A9gjLkIXLRqPKWUUjdm5ZJOFeAY8LmIbBKRT0WkyD8bichgEYkVkdjUY6csDEcppVyblQm/EBAITDXG1APOAqP/2cgY87ExJsgYE+RVuriF4SillGuzMuEnAUnGmEu1EqLJ+gOglFLKCSxL+MaYI8ABEblUKKINsN2q8ZRSSt2Y1bt0hgIzs3fo7AEGWDyeUkqp67A04Rtj4oEgK8dQSillH/2mrVJKuQhN+Eop5SI04SullIvQhK+UUi5CjDHOjsEmKCjIxMbGOjsMpZTKN0Qkzhhj1+YYvcJXSikXoQlfKaVchCZ8pZRyEVZ/01Yp5WRpaWkkJSWRmprq7FDUHfDy8qJSpUp4eHjcdh+a8JUq4JKSkihWrBi+vr6IiLPDUbfBGMOJEydISkqicuXKt92PLukoVcClpqZSsmRJTfb5mIhQsmTJO36XpglfKRegyT7/y41/Q034SinlInQNXykX0+fCups3ugUzPRvZ1W7evHl069aNhIQEatSokWvjR0ZGEhsby5QpU3Ktz4JKr/CVUg4RFRVF8+bNmTVrlrNDcVma8JVSlktJSWH16tVMnz7dlvCXL19OSEgI3bt3p0aNGvTp04dLpV5Gjx5NrVq1qFOnDiNHjgTg2LFjPPTQQzRo0IAGDRqwevXqa8bp378/Tz31FK1ataJKlSqsWLGCgQMHUrNmTfr3729rt2jRIpo0aUJgYCA9evQgJSXF+hchD9AlHaWU5ebPn0/btm2pVq0aJUqUYOPGjQBs2rSJbdu2UaFCBZo1a8bq1aupVasW8+bNY8eOHYgIp06dAmD48OE8++yzNG/enP379xMeHk5CQsI1Y/39998sXbqU7777jo4dO7J69Wo+/fRTGjRoQHx8PJUqVWLChAksWbKEIkWK8NZbb/Hee+8xbtw4h74mzqAJXylluaioKEaMGAFAr169iIqKon379jRs2JBKlSoBEBAQQGJiIo0bN8bLy4vHHnuM9u3b06FDBwCWLFnC9u2Xb4t9+vRpzpw5c81YHTt2RETw9/enbNmy+Pv7A+Dn50diYiJJSUls376dZs2aAXDx4kWaNGli6fzzCk34SilLnThxgqVLl7J161ZEhIyMDESEiIgIPD09be3c3d1JT0+nUKFCrF+/nl9//ZVZs2YxZcoUli5dSmZmJjExMXh7e99wvEt9urm5XdW/m5sb6enpuLu7ExoaSlRUlDUTzsN0DV8pZano6Gj69evHvn37SExM5MCBA1SuXJlVq1bl2D4lJYXk5GQiIiKYNGkS8fHxAISFhV21E+fS87eqcePGrF69mj///BOAc+fOsXPnztvqK7/RK3ylXIy92yhzS1RUFKNHj77quYceeoipU6fywAMPXNP+zJkzdO7cmdTUVIwxvP/++wB8+OGHPP3009SpU4f09HSCg4OZNm3aLcdTunRpIiMj6d27NxcuXABgwoQJVKtW7TZml7/oDVCUKuASEhKoWbOms8NQuSCnf8tbuQFKnrrC32vO5vqXQlTumenV2Nkh5AmvmR+cHcItCaU8hzh1zfNlUk5T6ORZJ0SkrnKf4/4Y6xq+Ukq5CE34SinlIjThK6WUi9CEr5RSLkITvlIqT5k573v2Hzzk7DAKJEt36YhIInAGyADS7d06pJSyToUm/rnb4exFN21y5OgxRrz2Jhs2b8WzsAe+lSoy6ZUxdHtiGFsXf2drN33WXM6cPct9FSvcdjiRc+YRFtyMCmXL3HYfBZUjtmW2MsYcd8A4Sqk8yBhD18HDeLR7Z2ZNeReA+G0J/HX82rQwqNdDdzxeZPR8alevqgk/B7qko5Sy1LI16/DwKMSTfXvZngvwq8m95cvbHmdkZDDq9Yk06NiTOuFd+GjmbABSzp6lTe8BBEY8hH9YZxYs+hWAxAMHqdm6A4+/OA6/BzsS1vcxzqemEv3jL8Ru2Uqf4S8Q0K4r51NTift9Gy179qN+++6EP/I4h/865tgXIA+xOuEbYJGIxInI4JwaiMhgEYkVkdjUY9d+OUQplb9t3bmL+v5+N2wzffZc7i5WjA3ff8OG777hk6ho9u5PwsvTk3kfT2bjwrksmxXJ8xPettXM35W4j6f79Wbbku8pflcx5i5cRPf24QTVqc3MD94m/qd5FHJ3Z+i414meOom4H6MZ2LMbL02c5Ihp50lWL+k0M8YcEpEywGIR2WGMWXllA2PMx8DHACXr18w7dR6UUg6zaOUatuz4g+iffgEg+XQKuxL3Ual8Wca+PYmV62NxcxMOHjnKX8eyloIq31uRAL+sb6nW9/cjMenaD3r/2JPI1p27CO07CICMjEzKlyntoFnlPZYmfGPMoez/HhWReUBDYOWNz1JKFSR+Vf9F9MIbf7BrjGHy+JcIb9n8qucj58zj2MmTxP0wBw8PD3ybPUjqhYsAeBYubGvn7ubG+Yz0HPv1q/ovYua7XinknFi2pCMiRUSk2KXfgTBgq1XjKaXyptbNGnPh4kU+iZpje27D5t/Zd8XWy/CWzZj61SzS0tIA2LknkbPnzpF8JoUyJUvg4eHBsjXr2JfDVfw/FStShDMpWTWCqlfx5djJk8TEZZVSTktLY9vOXbk5vXzFyiv8ssA8Ebk0ztfGmJ8tHE8pZYdDMb8DjiueJiLM+3gyI8b/lzf/9ylenoWzt2VeLpn8WK/uJCYdJLB9d4wxlC5RgvmfTKZPlw50HDiEoA49CKhVgxoPVLnpeP27d+HJl8bj7eVJzLwooqdOYtirb5B8JoX09HRGDOqHX7WqVk45z8pT5ZFL1q9p2q6JdHYY6jq0WmaWfFctM6E899e8NlFqtcw84haqZd5peWTdlqmUUi5CE75SSrkITfhKKeUi8tQdrypLEYffb1Pdgjz0eY8zjXN2ALcogQQqUPzaA0WLQ1HHx6OcR6/wlVLKRWjCV0opF5GnlnSUUg7wWffc7W9g9E2buLu74+9/uSzz/Pnz8fX1vaNhIyIi+PrrrylePIflKpUjTfhKKct5e3sTHx9/3ePp6ekUKnRr6WjhwoV3GpbL0SUdpZRTREZG0qNHDzp27EhYWBjGGEaNGkXt2rXx9/dn9uysEsmHDx8mODiYgIAAateuzW+//QaAr68vx48fJzExkZo1a/L444/j5+dHWFgY58+fB2D37t20bduW+vXr06JFC3bs2OG0+eYFeoWvlLLc+fPnCQgIAKBy5crMmzcPgJiYGLZs2UKJEiWYO3cu8fHxbN68mePHj9OgQQOCg4P5+uuvCQ8P56WXXiIjI4Nz585d0/+uXbuIiorik08+oWfPnsydO5e+ffsyePBgpk2bRtWqVVm3bh1Dhgxh6dKlDp17XqIJXylluest6YSGhlKiRAkAVq1aRe/evXF3d6ds2bK0bNmSDRs20KBBAwYOHEhaWhpdunSx/eG4UuXKlW3P169fn8TERFJSUlizZg09evSwtbtw4YJFM8wfdElHKeU0RYoUsf1+vbpewcHBrFy5kooVK/LII4/wxRdfXNPG09PT9ru7uzvp6elkZmZSvHhx4uPjbT8JCQm5P4l8RBO+UipPCA4OZvbs2WRkZHDs2DFWrlxJw4YN2bdvH2XKlOHxxx9n0KBBbNy40a7+7rrrLipXrsycOVllmY0xbN682cop5Hm6pKOUq7FjG6UzdO3alZiYGOrWrYuI8Pbbb1OuXDlmzJjBxIkT8fDwoGjRojle4V/PzJkzeeqpp5gwYQJpaWn06tWLunXrWjiLvC1PlUcOCgoysbGxzg5DqQIlp5K6Kn/S8shKKaXsoglfKaVchCZ8pZRyEZrwlVLKRWjCV0opF6EJXymlXETe2od/fPfVpVsHzXVeLCrPObl2+HWPlZi5zrJxZ058wrK+HaG68eNE5nHb45LupXO1/xMZx27a5v677mff6X22x1GRUcTHxfPW5LdyNZb8qKRbKYeNpVf4Sqk8Lz093dkhFAh56wpfKeVyfv7+F9574z3SLl7knpIlmPblVMqULcNb49/myKEjHEg8QIlSJWgVGsKP8xdy8cIF9iXu56HeD/HCuFEAPNK1HweTDnIh9QKDhw7m0cH9APhq+ld8OHEy5SqUo8q/quDpWZi3Jr/FgX0HGPbYcE4cO0HJ0iWZPP1DKt1XiWcGPEOxu4oRH7eZo0eO8sqb4+jUvZMzX55cpQlfKWW58+dTCQkMsT3+++Qp2nYMB6Bx80b8suZnRIQvP/2SyROn8J93XgNg88bN/LjyB7y9vYmKjGLjho2s2vIb3j7ehDYKIzQilHpBAXw4/QPuKXEP58+fJ7RRGB0f6sCFCxd59/X3WBr7K0WLFaXrg13xq+MHwItDR/Nw3570erQXMz+byZjhY/lyXlbJhr8O/8WPK39g145d9O3SVxO+UkrdCm9vL5ZvXG57fGkNH+BQ0iEe6/U4fx35i4sXL3K/7322dm07tsXb29v2OOTBEEqUzCqn3L5re9atXku9oAA+nvwJC+dn3QHr4IGD7Nm1h6NHjtI0uAn3lLgHgE7dO7F7524AYtfGMmNuJAA9H+nJ+NGv2cZo1zkCNzc3qteqztG/bv75RH6ia/hKKacaPXwMg54exG+bV/Lu1HdJvaJmvU8Rn6vaivCPx8Kq5atZ+esKflq9kBWbluNfz5/U1AvXLbecE7miY0/PwpcP5KFaY7nB8oQvIu4isklEfrB6LKVU/nMm+TTlK5YHYPYXs27YdvmSFfx98m/Onz/PTwt+omHTRpxOPs3dxYvj4+PDrh27iFsbB0Bgw0DWrIzh1N+nSE9P5/tvL6egBk0aMG9W1l23omdG06hZI4tml7c4YklnOJAA3OWAsZRSN2HPNkpHGjXuBQY9PIjyFctRv1EQ+xL3X7dt42aNeKrfEPbu3stDvR+iXlAAtfxrMuOjSIIDWvKvag9Qv3F9AMpXLM+I0SMIaxJOuQrlqF6zOnfdnZWG/vvBGwx7bDhT3v0/24e2rsDS8sgiUgmYAbwOPGeM6XCj9kG+95jYcW0uP6H78NUVdB/+7am+24/KNSo7O4w7djt791NSUihatCjp6en06/YofQb8m/Zd21sY5a27lX34d1oe2eor/EnAC0Cx6zUQkcHAYID7Snpfr5lSSt2yt8dPZOWvK0hNvUCr0BAiukQ4OySnsizhi0gH4KgxJk5EQq7XzhjzMfAxZF3hWxWPUip/692/N737976lc16bON6iaPInKz+0bQZ0EpFEYBbQWkS+snA8pZRSN2BZwjfGjDHGVDLG+AK9gKXGmL5WjaeUUurGdB++Ukq5CId809YYsxxY7oixlFJK5UxLKyjlYtr/dSJX+/uxbMmbtvlneeRbsXH9Rsa98ArH/jqGiNCoWSP++8Eb+Pj43PzkO3T40BHGDh/D53M+z5X+/vvKmzRt0YSWD7bMlf5ulV0JX0TKAm8AFYwx7USkFtDEGDPd0uiUUi7t6F9HGfjwID75+mMaNGmAMYbv535PypkUhyT88hXK5VqyBxgzfnSOz2dkZODu7p5r41yPvWv4kcAvQIXsxzuBEVYEpJRyDcePHad/9/482CiUBxuFsm71tV+em/6/z3i438M0aNIAyKp506l7J8qULcPfJ//mka79CA5oSXjTtmzbsg2At8a/zdP9n6Z7eA/qVQnkh29/4NUXx9OibjA92/UkLS0NgHpVApnw0gTaNmtHm4YPsnnjZnq07UFQ1QZ8Pi0SgP2J+2lepwUAO7btILRxGCGBIQQHtGT3rt2cPXuWXh1607JeCM3rtGDe7KxyDRP/8w4PNgqleZ0WPPvEc7a6Ps8MeIbvor+zjT/xP+/QvHlz5syZw+7du2nbti3169enRYsW7NixI9dfc3uXdEoZY74RkTEAxph0EcnI9WhKPQADoy8/HpjrI6h8rMSNDlpYCqWPdV07RIIk/OPbnLm7pGPfN0XlmnZDnx3Gi8+Npnnz5uzfv5/w8HASEhKuarNn2x4effTRHMd4dfx4GgU2YuGChSxdupRh/YcTHx+Pj/iQtOcgy5YtY/v27TRp0oS5c+cyeeJkunbtytqf1tGlSxfccKPafdV5P2YSzz77LCMGPsvq1atJTU3Fz8+PkUNGcsYtBXfcKelWilkfz+b54c/Tp08fLl68SEZGBgsXLsS3oi+LFy4GIDk5mbvd7uaFoS/w5itvAvDII48Qs3AtHTt2xFO8KOZ2FyXdSuGGGyW8S7Bq1SoA2rRpw7Rp06hatSrr1q1jyJAhLF269Db+Ra7P3oR/VkRKAgZARBoDybkaiVLKpSxZsoTt27fbHp8+fZozZ85QrNh1v5h/lVWrVjF3blb5ldatW3PixAmSk7PSUrt27fDw8MDf35+MjAzatm0LgL+/P4mJibY+OnXqZHs+JSWFYsWKUaxYMby8vDh16tRV4zVp0oTXX3+dpKQkunXrRtWqVfH392fkyJG8+OKLdOjQgRYtst4NLFu2jLfffptz585x8uRJ/Pz86Nix4zVzePjhh4GsEhBr1qyhR48etmMXrqgamlvsTfjPAd8BD4jIaqA00P3Gpyil1PVlZmYSExNzVb37f/Lz8yMuLo7OnTtfcyynOmCXyhx7enoC4ObmhoeHh+15Nze3q26XeGW7S7/n1A7g3//+N40aNeLHH38kPDycTz/9lNatWxMXF8fChQsZM2YMYWFhvPDCCwwZMoTY2FjuvfdeXn31VVJTU3OcX5EiRWyvRfHixYmPj7/ua5Eb7FrDN8ZsBFoCTYEnAD9jzBYrA1NKFWxhYWFMmTLF9jinZPfMM88wY8YM1q27vL7/1VdfceTIEYKDg5k5cyYAy5cvp1SpUtx1l3VFeffs2UOVKlUYNmwYnTp1YsuWLRw6dAgfHx/69u3LyJEj2bhxoy25lypVipSUFKKjo2/SM9x1111UrlyZOXPmAFl/zDZv3pzrc7iVbZkNAd/scwJFBGPMF7kekVLKUmvLV3f4mOfOnaNSpUq2x8899xwffvghTz/9NHXq1CE9PZ3g4GCmTZt21Xlly5Zl1qxZjBw5kqNHj+Lm5kZwcDDdunXj1VdfZcCAAdSpUwcfHx9mzJhh6Rxmz57NV199hYeHB+XKlWPcuHFs2LCBUaNG2d5JTJ06leLFi/P444/j7++Pr68vDRo0sKv/mTNn8tRTTzFhwgTS0tLo1asXdevWzdU52FUeWUS+BB4A4oFLH9YaY8yw3AwmKCjIxMbG5maXSrm8nErqqvzJUeWRg4Baxsri+UoppSxl7z78rUA5KwNRSillLbv34QPbRWQ9YNsrZIzpZElUSimlcp29Cf9VK4NQSillPbsSvjFmhYjcD1Q1xiwRER/A+sIPSimlco1da/gi8jgQDXyU/VRFYL5VQSmllMp99i7pPE3WPvx1AMaYXSJSxrKolFKWeY0fc7W/cbS/aRsRoW/fvnz55ZcApKenU758eRo1asQPP/xg91iHDh1i2LBhdn2ZSV3L3l06F4wxFy89EJFCZNfVUUqpmylSpAhbt27l/PnzACxevJiKFSveUh/p6elUqFBBk/0dsDfhrxCRsYC3iIQCc4DvrQtLKVXQtGvXjh9/zHp3ERUVRe/evW3H1q9fT9OmTalXrx5Nmzbljz/+ACAyMpIePXrQsWNHwsLCSExMpHbt2gAkJibSokULAgMDCQwMZM2aNUBWmYWQkBC6d+9OjRo16NOnj63uTlxcHC1btqR+/fqEh4dz+PBhR74ETmdvwh8NHAN+J6uWzkLg/1kVlFKq4OnVqxezZs0iNTWVLVu20KjR5ZrWNWrUYOXKlWzatInXXnuNsWPH2o7FxMQwY8aMa0oFlylThsWLF7Nx40Zmz57NsGGXv/i/adMmJk2axPbt29mzZw+rV68mLS2NoUOHEh0dTVxcHAMHDuSll16yfuJ5iL1r+N7AZ8aYTwBExD37uXNWBaaUKljq1KlDYmIiUVFRREREXHUsOTmZRx99lF27diEitpuUAISGhlKixLV3Q0hLS+OZZ54hPj4ed3d3du7caTvWsGFDW+2egIAAEhMTKV68OFu3biU0NBTIustU+fLlrZhqnmVvwv8VeBBIyX7sDSwiq3qmUkrZpVOnTowcOZLly5dz4sTlG7G8/PLLtGrVinnz5pGYmEhISIjt2KUSwv/0/vvvU7ZsWTZv3kxmZiZeXl62Y1eWOnZ3dyc9PR1jDH5+fsTExOT+xPIJexO+lzHmUrLHGJOSvRc/d8XFQXbdauV6Tq4dbvu9xMxrb3enbtPDb8D+Kx7fl8v970+4eRuTCfsTGBjegrszU/G/uxDLt++D8ymwP4HkI0lULFwP9icQ+cEUyEjL6vfEITjz9+UxDh6EtAtZ5yTtpVK5srgl/cGMb74lIyMjq91fl/sFss4/cYjq3vU4dvggMfOiaFI/gLS0NHbuTcSvWtVcfkFu0X2OK2x3K3e8Csyui4+IBAHnrQtLKWWVcfurOG3sSuXLMXzgI9c8/8ITg3j0+TG89+kMWje1736VQx7pxUNPjmDOwl9o1aQhRXyufyMVgMKFCxM9dRLDXn2D5DMppKenM2JQP+cnfAeytzxyEDAbOETWdswKwMPGmLjcDCZIxGhxZNelV/jWSHj4DWreq7UP86xbuMJ3VHnkykA9st4MdgUao/vwlVIqX7F3W+bLxpjTQHEgFPgYmGpZVEoppXKdvQn/0l2u2gPTjDELgMLWhKSUUsoK9ib8gyLyEdATWCginjc7V0S8RGS9iGwWkW0iMv5Og1VKKXX77E34PYFfgLbGmFNACWDUTc65ALQ2xtQFAoC2ItL4tiNVSil1R+yth38O+PaKx4eBGxahyL7/7aW9+x7ZP/pBr1JKOYm9V/i3RUTcRSQeOAosNsZcs9dORAaLSKyIxB6zMhilVL7zx+69fP7NtzdvqOxi77bM22KMyQACRKQ4ME9Eahtjtv6jzcdk7fohSETfAShlsZOHP7p5o1tQovwTN20j99eib9eOfDnpLSC7Hn6DljQKqMMPn19/w9/YtydRtIgPtao+wPnUCxT28KBpUL3bjjXxwEE6DHyKrYu/u+0+8jNLE/4lxphTIrIcaAtsvUlzpVQBU8THm61/7OJ8aireXl4s/m0NFcvd+B5KB4/8xbABfWkY4M/Py1exOWEHRX18ckz46enpFCrkkHSWr1m2pCMipbOv7BERb7KKr+2wajylVN7WrlULfvx1BQBR3y2kd6fLd8paH7+Fpl3/Tb123Wja9d/8sXsvFcuVxRhDj6eepZ5fTabNnM37078goF1XflsfS//nx/Lca2/R6uH+vPjfdzl77hwDR75Eg449qdeuGwsW/XrDeBIPHKRF974ERjxEYMRDrIndZDv29rTp+Id1pm7brox+8z0A4n7fRt22XWnSpTejXp9I7dBOAETOmcczL0+wndthwFMsj1kPwKKVq2nSpTeBEQ/R46kRpJw9C8DoN9+jVpsO1AnvwsiRI3Ph1bWPlX8SywMzskspuwHfGGPsv5eZUqpA6dUxgtc+mEqHNiFs2fEHA3t247f1WdVZajxQhZVzvqBQoUIsWbWGsW9PYu5HH9jO9b23Ik/2eZiiPj6MfGIgANNnf8vOvYks+Xo67u7ujH37fVo3bcRn77zOqeTTNOz8MA82b0IRn5zrPJYpVYLFX03Hy8uTXXsT6T10FLE/zOGnZSuZ/8uvrFul5RtWAAAS/0lEQVQwCx9vb06eOgXAgJEvMXn8S7Rs3IBRr0+86XyPn/ybCZOnseTr6RTx8eGtqZ/y3qczeObRfzPvlyXsWPojIsKpuxxXotmyhG+M2UJWOQallKJOzeokJh0k6rsfiWgVfNWx5DNnePT5Mezauy+rHn56ul199mgfjru7OwCLVq7hu8XLeOeTzwFIvXCB/QcPU7PqAzmem5aWzjPjJhC/fQfu7m7s3LMPgCWrYhjQsys+3lnF2EoUL07y6TOcOn2alo0bAPBIt078tPy3G8a2dtNmtu/aTbOH+gBw8WIaTQIDuKtoUbw8PXnshZdp37olHQY8addcc4MueimlHKZTaCtGvj6R5bNncOLvU7bnX353Mq2aNGTex5NJPHCQkF6P2tVfEe/LFTKNMcyd9gHVH6hs17nvT59B2VIl2fzzvKx6+tXqZfcDwtVl2o0xyHVKtxdydyczM9P2OPXCBds5oS2aEjX5nWvOWb9gNr+ujmHW9z8xZfb8a+7mZRVLt2UqpdSVBvbsxrjhQ/CvUe2q55PPnKFi2bIAREbPy/HcYkWKcCZ7DTwn4S2bMTlypu3+tZu2br9hLMlnUihfpjRubm58+e13WfX0gbDgpnz2zbecy77h+slTpyh+913cXawYqzZkLUHNnH95ddr33orEb99BZmYmBw4dZv3m3wFoXK8uq2M38mdi1juHc+fPs3NPIilnz5J85gwRrVsy6ZXRxMfH3zDO3KRX+Eq5GHu2UVrlTurhd3ywFd2fGsGCxUuZPP7ae9G+POwpRoz/L3XCu2CMwbdSxWu2fKZnpONZOKsM2PXq6bcNaUH89h0EdehB4cIeRLQK5o0XnuXzd15n4Kj/h4+XF+Etm9n6bBYUSOV7K+If1pna1asSWLsWAKVLliDynTfoPXQUFy5eBGDCyGEUK1KEzo8/Q+qFCxhjeP/992/jlbw9dtXDd5SgoCATG6sV8ZXKTTnVUHdVCxYsYObMmXzzzTd31E9iYiIdOnRg61bH7jJ3VD18pZTK18aNG8eCBQuIjIx0dihOo2v4SimX8Nprr7F582bq1bvzzYO+vr4Ov7rPDZrwlVLKRWjCV0opF6EJXymlXIQmfKVUnrZ+/XpWrFjh7DAKBN2lo5SrGdYkd/v7MOaGh0NCQhgzZgzh4eG25yZNmsTOnTv53//+l+M5RYsWJSUl6/5J9evXZ/jw4RQuXJgmTXI5dhejV/hKKUv17t2bWbNmXfXcrFmz6N27t13nu7u7M2XKlOsme2PMVaUN1PVpwldKWap79+788MMPXMiuMZOYmMihQ4cICAigTZs2BAYG4u/vz4IFC3I8f+LEiTRo0IA6derwyiuv2PqoWbMmQ4YMITAwkAMHDrBo0SKaNGlCYGAgPXr0sL1DUJdpwldKWapkyZI0bNiQn3/+Gci6un/44Yfx9vZm3rx5bNy4kWXLlvH888/zz2/+L1q0iJ07d7J+/Xo2bdrEhg0bbOv5f/zxB/369WPTpk0UKVKECRMmsGTJEjZu3EhQUBDvvfeew+ea1+kavlLKcpeWdTp37sysWbP47LPPMMYwduxYVq5ciZubGwcPHuSvv/6iXLlytvMWLVrEmjVraNWqFQCnTp1i79693H///dx///00btwYgLVr17J9+3aaNcuqcXPx4kVd78+BJnyllOW6dOnCc889x8aNGzl//jyBgYFERkZy7Ngx4uLi8PDwwNfXl9TU1KvOM8YwdOhQnnzy6prxiYmJFClS5Kp2oaGhREVFOWQ++ZUu6SilLFe0aFFCQkIYOHCg7cPa5ORkypQpg4eHB8uWLWPfvn3XnBceHs7nn39uW49PSkri6NGj17Rr3Lgxq1ev5s8//wTg3Llz7Ny508IZ5U96ha+Uq7nJNkqr9O7dm27dutl27PTp04eOHTsSFBREQEAANWrUuOacsLAwEhISbMszRYsW5auvvrLd5eqS0qVLExkZSe/evW0fDk+YMIFq1apd06cr0/LIShVwWh654LjT8si6pKOUUi5CE75SSrmIvLWGHxcH17lRsLp1jQ/tcHYI+cLC/VNv3igfy/TsQXrKfmeHoa6jUNH7HDaWXuErpZSL0ISvlFIuQhO+Ukq5iLy1hq+UslzzM+dztb9Vxbxv2qZ4uZqcOpJgd58pKWcZNXYCS5evwsvTkxIl7uHNCWNp1ODO70drj8FPv8CIoY9Rq8ad7+OP3biFr6LmMmni+FyI7M5owldK5TlPPPMivvffS0L8Ctzc3Nizdz87/tjlsPE//r+3c62voMA6BAXWueb59PR0ChVybAq2bElHRO4VkWUikiAi20RkuFVjKaXyj3cnTaNxy47UaxzO+NevrWi5e88+1sdu4rVxI3Fzy0pRVSrfR0TbNgC8P/kTAhqGEtAwlA/+bzoAifsOUDuwNYOffoGAhqE8MmgYvy5bRfCD3agZ0JL1sfEAvPbG+wwY/BztOvflX37NmLfgJ0b/vzcIaBRG+679SEtLA6BNu4eJ3biFjIwMBj7xfNZ4jcKYNOVTACZP/Zw6QW2o1zicPv2fAWB9bDwt2nQlqFk7WrTpyh87dwOw4rcYOncfYBv/yaGjade5LwMGP0tGRgajRo2ylX/+6KOPrHrZAWuv8NOB540xG0WkGBAnIouNMdstHFMplYct/nUlu3YnErP8O4wxdO05iN9WraNF80a2NtsTdlLX3++a8gkAcZt+Z8ZXc1i9bAHGGJq16kxw80bcU/xu/tyTSNSX/8OvZjUat+xI1DfzWbF4Lt//uJi33vk/5s76BIA9e/exZOEstu/YRYs2Xfnmq2m8OWEs3XsPZuHPS+nc8fKdueK3bOfQ4SPEr18MwKlTyQBMfO9/7Nq6Ck9PT9tzNao9wLJf5lCoUCF+XbaKl8e/zTczr03gG+N/Z8WiuXh7e/HJZ19z9913s2HDBi5cuECzZs0ICwujcuXKufeiX8GyhG+MOQwczv79jIgkABUBTfhKuajFv65kydLfCGoWAcDZs2fZtXvvVQn/RlbHbKBLx3CKFPEBoEuntqxas4GOEQ9S2fde/P2y6vHUqlmN1iHNEBFq+9UgcX+SrY+2YSF4eHjg71eDjIxMwkNDAKjtV/2qdgBVfO9jb+J+ho8cR0R4a0LbBAPgX7sm/QYNp1OHMDp3yPoDkXz6DAOfeJ4/d+8FEdLT0nOcQ8eIULy9vQBYsnQlv2//k+jo6Kw+kpPZtWtX/kv4VxIRX6AesC6HY4OBwQCO+/qBUsoZjDG88PwQBg/sc902tWpWY8vW7WRmZtqWdK48/3o8Cxe2/e4mbnh6Zj12cxMy0tOvaefm5oaHRyEk+8uebm5uV7UDuOeeu4lb8zOLfl3B1I+/YM63P/Dp1Hf4Lvpzflu9ju8XLuGNtyazecNiXvnPu7QMbkJ01Mck7jvAgxG9coyziM/lD7mNMUyePPmq+/1ayfJtmSJSFJgLjDDGnP7ncWPMx8aYIGNMUGmrg1FKOVXYgy2J/PIbUlLOAnDw0BGOHjt+VZsHqtxP/Xp1GP/6e7YEv+vPvXz3wyJaNGvIgh8Wce7cec6ePceC73+hedMGlsV7/PhJMjMz6dY5gldffp5Nm7eRmZnJgaRDhAQ35c3/jOFU8mlSUs5y+vQZKlYoC8AXM6Pt6j+0TUumTp1q++xg586dnD171rL5WHqFLyIeZCX7mcaYb60cSyllH3u2UVoltE0wCX/8SfM2XQEoWsSHGZ9+QJnSpa5q99GUtxg1dgI16gbj7e1NyextmYEB/vTr052mIZ0AGPBoL+rVrU3ivgOWxHvw8BEee2okmZlZf3hef/UFMjIyePSxESSfPgPGMPzpQRQvfjfPj3iCQU88z6TJn9KqZVO7+h/UvxcHjpwmMDAQYwylS5dm/vz5lswFLCyPLFnvk2YAJ40xI+w5J0jEaHHk3KO1dOxT0GvpHPbsQfV/3evsMNR13EotnbxcHrkZ8AjQWkTis38iLBxPKaXUDVi5S2cVoKUvlVIqj9BaOkop5SI04SullIvQhK+UcojMzEwiujzC/gMHnR2Ky9KEr5RyiL2JBxg98mnuu7eis0NxWXmrWmb9+hCrGzNzy1pnB5BflJ/k7Ags9VdCwlVb/2ZeiMzV/vt49r9pG3d3d/z9/W2Pe/XqxejRowkJCeGdd94hKCiIiIgIvv76a4oXL56r8anL8lbCV0oVSN7e3sTHx9+wzcKFCx0UjevSJR2lVJ7g6+vL8ePHOXv2LO3bt6du3brUrl2b2bNnAxAXF0fLli2pX78+4eHhHD582MkR5z+a8JVSljt//jwBAQG2n0tJPCc///wzFSpUYPPmzWzdupW2bduSlpbG0KFDiY6OJi4ujoEDB/LSSy85cAYFgy7pKKUsZ8+SziX+/v6MHDmSF198kQ4dOtCiRQu2bt3K1q1bCQ0NBSAjI4Py5ctbGXKBpAlfKZWnVKtWjbi4OBYuXMiYMWMICwuja9eu+Pn5ERMT4+zw8jVd0lFK5SmHDh3Cx8eHvn37MnLkSDZu3Ej16tU5duyYLeGnpaWxbds2J0ea/+gVvlIuxp5tlLnt0hr+JW3btuXNN9/Mse3vv//OqFGjsm9Q4sHUqVMpXLgw0dHRDBs2jOTkZNLT0xkxYgR+fn6OmkKBYFl55NsRFBRkYnUfvlK5KqeSuip/ysvlkZVSSuUhmvCVUspFaMJXygXkpaVbdXty499QE75SBZyXlxcnTpzQpJ+PGWM4ceIEXl5ed9SP7tJRqoCrVKkSSUlJHDt2zNmhqDvg5eVFpUqV7qgPTfhKFXAeHh5UrlzZ2WGoPECXdJRSykVowldKKRehCV8ppVxE3lrDj4sDEWdHofKhxod2ODsEpW7L2vLVHTaWXuErpZSL0ISvlFIuQhO+Ukq5CE34SinlIjThK6WUi7As4YvIZyJyVES2WjWGUkop+1l5hR8JtLWwf6WUUrfAsoRvjFkJnLSqf6WUUrfG6Wv4IjJYRGJFJFZr+SmllHWcnvCNMR8bY4KMMUGlnR2MUkoVYE5P+EoppRxDE75SSrkIK7dlRgExQHURSRKRQVaNpZRS6uYsq5ZpjOltVd9KKaVunS7pKKWUi9CEr5RSLkITvlJKuYi8dcer+vUhNtbZUah8aK2zA1AqH9ArfKWUchGa8JVSykVowldKKRehCV8ppVyEJnyllHIRmvCVUspFaMJXSikXoQlfKaVchBhjnB2DjYicAf5wdhxOUgo47uwgnEjnr/N31fnf6dzvN8bYdf+ovPVNW/jDGBPk7CCcQURiXXXuoPPX+bvu/B05d13SUUopF6EJXymlXEReS/gfOzsAJ3LluYPOX+fvuhw29zz1oa1SSinr5LUrfKWUUhbRhK+UUi7C4QlfRNqKyB8i8qeIjM7huIjIh9nHt4hIoKNjtJId8++TPe8tIrJGROo6I06r3Gz+V7RrICIZItLdkfFZzZ75i0iIiMSLyDYRWeHoGK1ix//7d4vI9yKyOXvuA5wRp1VE5DMROSoiW69z3PrcZ4xx2A/gDuwGqgCFgc1ArX+0iQB+AgRoDKxzZIx5YP5NgXuyf2/navO/ot1SYCHQ3dlxO/jfvziwHbgv+3EZZ8ftwLmPBd7K/r00cBIo7OzYc/E1CAYCga3XOW557nP0FX5D4E9jzB5jzEVgFtD5H206A1+YLGuB4iJS3sFxWuWm8zfGrDHG/J39cC1QycExWsmef3+AocBc4Kgjg3MAe+b/b+BbY8x+AGNMQXkN7Jm7AYqJiABFyUr46Y4N0zrGmJVkzel6LM99jk74FYEDVzxOyn7uVtvkV7c6t0Fk/cUvKG46fxGpCHQFpjkwLkex59+/GnCPiCwXkTgR6eew6Kxlz9ynADWBQ8DvwHBjTKZjwssTLM99ji6tIDk89899ofa0ya/snpuItCIr4Te3NCLHsmf+k4AXjTEZWRd6BYo98y8E1AfaAN5AjIisNcbstDo4i9kz93AgHmgNPAAsFpHfjDGnrQ4uj7A89zk64ScB917xuBJZf81vtU1+ZdfcRKQO8CnQzhhzwkGxOYI98w8CZmUn+1JAhIikG2PmOyZES9n7//9xY8xZ4KyIrATqAvk94dsz9wHAmyZrQftPEdkL1ADWOyZEp7M89zl6SWcDUFVEKotIYaAX8N0/2nwH9Mv+xLoxkGyMOezgOK1y0/mLyH3At8AjBeCq7p9uOn9jTGVjjK8xxheIBoYUkGQP9v3/vwBoISKFRMQHaAQkODhOK9gz9/1kvbNBRMoC1YE9Do3SuSzPfQ69wjfGpIvIM8AvZH1q/5kxZpuIPJl9fBpZOzMigD+Bc2T91S8Q7Jz/OKAk8L/sq9x0U0CqCNo5/wLLnvkbYxJE5GdgC5AJfGqMyXEbX35i57/9f4BIEfmdrOWNF40xBaZksohEASFAKRFJAl4BPMBxuU9LKyillIvQb9oqpZSL0ISvlFIuQhO+Ukq5CE34SinlIjThK6WUi9CEr5RSLkITvlJKuYj/D7FGZb/u7lSGAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAEICAYAAAApw0wKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlYVOf5N/DvPSwDCCoIooIIIsMuGhDU4hKXKtGYJrjFGE0Tq9HXGk2M+aW28W221jS+sTSJW2pTo4mp0cQ1JuaXuMVoixuCKIjiBm6gwyrbPO8fMNYg6qgcGJjv57rmkpnznHPuZ/Bi7nnOeZ5blFIgIiIi26Jr7ACIiIio4TEBICIiskFMAIiIiGwQEwAiIiIbxASAiIjIBjEBICIiskFMAIiIiGwQEwCyCSKyXUSuiojewvb+IqJExP4BzqlEpFhEimoeH93vsYiI6hsTAGr2RMQfQB8ACsCIBj59lFLKteYxqYHPTUR0W0wAyBZMALAXwMcAJt68QUScRWSBiJwWEaOI7BYRZwA7a5pcq/n23qum/bMikl4zmvCNiHRqyI4QEdUXJgBkCyYAWFXzGCIi3jdtexdANIDeADwAzAFgAtC3Znvrmm/vP4nIrwD8DsATALwA7ALw2V3OvVNELojIupqRCCIiqyCsBUDNmYjEA/gBQHul1BUROQZgiVLqPRHRASgG0FMpdbjWfv4ATgFwUEpV1rz2NYAvlFJ/r3muA1AEIFQpdbqOc/dF9ciDC4A3AfQH0M18PCKixsQRAGruJgL4Vil1peb5p/jvZQBPAE4Asiw8VicAfxWRayJyDUA+AAHgU1djpdROpVS5UuoagBcABAAIvb9uEBHVr/u+w5nI2tVcyx8NwE5ELtS8rAfQWkSiABwBcB1AIIDDtXava2jsLIC3lFKr7jMkheqEgYio0XEEgJqzXwGoAhAGoFvNIxTV1+4nKKVMAJYD+H8i0kFE7ESkV81Uwcuovheg803HWwzgVREJBwARaSUio+o6sYiEi0i3mmO6AlgA4DyAdE16SkR0j5gAUHM2EcA/lFJnlFIXzA8A7wN4qmaO/2xUjwT8B9VD+vMB6JRSJQDeAvBjzZB/T6XUlzXbV4tIAYBUAAm3Obc3gM8BFAA4CcAfwHClVIVWnSUiuhe8CZCIiMgGcQSAiIjIBjEBICIiskFMAIiIiGwQEwAiIiIbZFXrAHh6eip/f//GDoOIqMnYv3//FaWUV2PHQU2PVSUA/v7+SE5ObuwwiIiaDBG5ZRlqIkvwEgAREZENYgJARERkg5gAEBER2SCrugeAiIisw/79+9va29t/BCAC/LLYFJkApFZWVk6Kjo6+VFcDJgBERHQLe3v7j9q1axfq5eV1VafTcc34JsZkMsnly5fDLly48BGAEXW1YVZHRER1ifDy8irgh3/TpNPplJeXlxHVIzh1t2nAeIiIqOnQ8cO/aav5/d32c966LgHs3w+INHYU1AT1zDnW2CEQ3Ze97YMbOwSyUdaVABARkVV6qmxfdH0eb5U+br8l7VasWNF64sSJgQcOHEjr3r379fo6f1JSUpvk5OQWK1asOFNfx2xqeAmAiIis1urVqz0eeuihok8++cSjsWNpbpgAEBGRVTIajbrk5GTXf/zjH9lffvmlOwBs2rTJLTY2Nnjo0KGdAwICwkeMGBFgMpkAANOmTfMJDAwMNxgMYZMnT/YFgJycHPshQ4YERkREhEZERIR+++23LWqfJzEx0f+pp57yi4uLM/j6+kZu3rzZddSoUf6dO3cOT0xM9De3W7duXctu3bqFhIWFhSYkJHQ2Go1N+jOUlwCIiMgqrVq1qnX//v2NXbt2LWvdunXV7t27XQAgPT3d+dChQyf9/f0roqOjQ7Zt2+barVu30i1btrifPHkyVafT4cqVK3YAMGXKlI4vvvjixSFDhhRlZmY6DhkyJOjkyZNptc9lNBrtf/rpp4xPP/209ZgxY4K+//77Y9HR0aVdu3YN3bNnj3NAQEDF22+/3X7nzp0ZLVu2NM2dO7fdG2+84f3uu+/mNvT7Ul+YABARkVX617/+5fHCCy9cAoDExMT8Tz75xOPRRx81RkZGFgcGBlYAQHh4eElWVpbjgAEDivR6vWns2LGdhg0bZhwzZowRAH788ceWmZmZzuZjFhUV2V29evWWb+7Dhg27ptPp8NBDD5W0adOmIjY2thQADAZDaVZWlv706dOOWVlZTrGxsSEAUFFRIdHR0UUN8T5oRbMEQESWAxgO4JJS6rbzEImIiGq7cOGC3d69e1tmZGQ4T58+HVVVVSIiavjw4Ua9Xn9jeqKdnR0qKyvFwcEBhw4dSt+wYUPL1atXuy9atKjt3r17M5RSSE5OTnd1db3jlEYnJydlPp6jo+ONtjqdDpWVlWJnZ6fi4+MLNm7ceEq7XjcsLa9ffAxgqIbHJyKiZuqTTz5xf+KJJ/JycnKOnD9//siFCxdSfH19y3fu3OlaV3uj0ajLz8+3GzNmjHHx4sVn09PTXQAgPj6+YP78+W3N7fbs2eNc1/53079//+Lk5GTX1NRUPQAUFhbqUlJS9PdzLGuh2QiAUmqniPhrdXwiImo4lk7bqy9r1qxpM2fOnJ9dX3/ssceuLl++3KtTp05ltdtfu3bNbvjw4V3KysoEAN58882zALB06dKzkyZN8jMYDGFVVVUSFxdX2Lt373ue+tehQ4fKJUuWZI8dO7ZzeXm5AMC8efPOd+3a9ZZYmgpRSruFnmoSgE13ugQgIpMBTAYAPyD6tGbRUHPGhYCoqXrQhYBEZL9SKqaewrnh8OHD2VFRUVfq+7jUsA4fPuwZFRXlX9e2Rp/CoJRaqpSKUUrFeDV2MERERDai0RMAIiIianhMAIiIiGyQZgmAiHwG4CcAwSJyTkSe0+pcREREdG+0nAXwpFbHJiIiogfDSwBERNQsLFq0yCMzM9OxseNoKrgUMBER3V2vjvVaDhg/nbVoXYEzZ87YT5s2ze/w4cMujo6OytfXt+xvf/vb2cTExC6ZmZk31vR/7733PAsLC3VBQUHl9xtSUlJSmxEjRhT4+/tX3O8xmhImAEREZJVMJhNGjBjRZdy4cXmbNm06CVSv5JeTk+NQu+2sWbMeeM2ClStXenbr1q3UVhIAXgIgIiKrtGnTJjd7e3s1Z86cy+bXevfuXRoQEHDjW35lZSWmTJniGxEREWowGML+8pe/eALVSwP36tXLEBYWFmowGMJWrlzZGgCOHz/u2Llz5/CxY8d26tKlS/gvfvGLoKKiIvnHP/7hnpqa6jJhwoTOISEhYUVFRbJr1y6XHj16BIeHh4fGx8cHnT59+pbEoymzrhGA6GggObmxo6AmaG9jB0BE9S4lJcU5Kiqq5E5tFi5c6NmqVauq1NTU9NLSUunRo0fIo48+WhAYGFi+efPmEx4eHqbc3Fz7uLi4kHHjxl0DgDNnzjitXLnyZO/evU8/8sgjnVesWOE+bdq0/EWLFrV99913z/bt27ekrKxMZsyY4bd58+YTHTp0qFy2bJn77NmzfdasWZPdIJ1vANaVABAREd2D7777ruWxY8dcNmzY4A4AhYWFdkePHnUKCAiomDlzpu/evXtddTodLl265Hju3Dl7APDx8Snr3bt3KQB07969JDs7+5aiPikpKfrMzEznAQMGGIDqyxFeXl7N6tIAEwAiIrJKkZGRpV999ZX7ndoopWTBggVnEhMTC25+PSkpqU1eXp79kSNH0vV6vfLx8YksLS3VAfhZuV87Oztlfr32cbt06VJ66NChZltohPcAEBGRVXr00UcLy8vLZcGCBZ7m13bs2OFy4sSJG1P9Bg8ebFy0aJGXuQpgSkqKvqCgQGc0Gu08PT0r9Hq92rhxo1tOTs5dpwe6urpWGY1GOwDo2rXr9fz8fPvvvvuuBQCUlZVJcnKyU/33svFwBICIiO7Owml79Umn02HDhg1Z06ZN67hw4cJ2er3+xjRAc5tZs2Zdyc7O1kdGRoYqpcTDw6Niy5YtWZMmTcpPSEjoEhERERoeHl4SEBBw/W7nmzBhwpXf/va3nV5++WVTcnJy+urVq7NmzJjhV1hYaFdVVSVTp069GBMTc9fjNBWalgO+VzExMSqZNwESEVmM5YDpTqy6HDARERE1PCYARERENogJABERkQ1iAkBERGSDmAAQERHZICYARERENojrABAR0d0tH1m/5YCf/eKu6wrY2dlFBwUFlZqfr1+//kRwcPB9l/sFgH79+nVZu3btKU9Pz6oHOU5zwASAiIiskl6vNx07duzo7bZXVFTAweHeCvTt2LHjxAMH1kzwEgARETUZSUlJbRISEjoPGDCgS58+fQwmkwlTpkzxDQoKCjcYDGHLli1zB4DTp087xMTEBIeEhIQFBQWFb9261RUAfHx8InNzc+1vVxYYANLS0vR9+vQJCg8PD42Ojg4+ePBgs1oC2IwjAEREZJXKysp0ISEhYQDQsWPHsm3btmUBwIEDB1xTUlLSvL29qz7++OPWR44ccU5PT0/Lzc21j42NDf3lL39ZtHz5co+BAwca58+ff6GyshKFhYW3fOG9XVngSZMmdVq6dOnpyMjIsu+//77F1KlT/fbu3ZvR0P3XGhMAIiKySre7BNCnT58Cb2/vKgDYtWuX2+jRo/Pt7e3RsWPHyri4uKLdu3e79OzZs3jKlCn+FRUVupEjR141l/+9WV1lgY1Go+7gwYOuo0aNCjS3Ky8vFy372Vh4CYCIiJoUFxcXk/nn29WzSUhIKNq5c+dxHx+f8meeeSbg/fffb1O7Te2ywJWVlVJVVQU3N7fKY8eOHTU/Tp48maZJRxqZdY0A7N8PSLNMtBpFz5xmW8a6Xm05s6ixQyAb5hG3sLFDaNL69etXuGzZMq/p06fnXbp0yf7f//63a1JS0tmMjAzHgICA8pdeeulKcXGx7sCBAy4A8u52PA8PD5Ovr2/58uXL3Z999tmrJpMJ+/btc+7Vq9ctIwhNnXUlAEREZJ0smLbXGJ5++ulre/bscQ0NDQ0XEfXHP/7xnJ+fX+Xf/va3NklJSe3s7e2Vi4tL1apVq05ZeszPPvvs5G9+85tO8+fPb19ZWSmPP/54fnNMAKyrHLCIYjHg+sMRAMtwBIAa04OOALAcMN0JywETERHRzzABICIiskFMAIiIiGyQZgmAiHQUkR9EJF1E0kTkBa3ORURERPdGy1kAlQBeUkodEBE3APtFZJtS6rbrOhMREVHD0GwEQCmVq5Q6UPNzIYB0AD5anY+IiIgs1yDrAIiIP4DuAPbVsW0ygMkA4NcQwRAR0b0Tqd9ywErddV0BFxeX7iUlJQfNz5OSktokJye3WLFixZl6jcVGaX4ToIi4AlgLYKZSqqD2dqXUUqVUjFIqxkvrYIiIyGZUVFQ0dghWTdMRABFxQPWH/yql1Dotz0VERLbj008/bfXnP/+5fUVFhc7d3b3y888/P9mxY8fKF198sUNubq7DmTNnHD08PCoHDx5csH79+tbl5eW6s2fP6hMTE/MWLFiQCwCDBg0KzM3NdSwrK9M9//zzF2fPnn0FAN577z3Pv/71r+3atm1b0blz5+uOjo5qxYoVZzIyMhwnTpzon5eXZ9+mTZvKFStWZAcFBZUnJib6u7m5VR0+fLjF5cuXHd54441zv/71r6827jt0d1rOAhAAfweQrpT6f1qdh4iImidzOWDz409/+lMH87bBgwcXHTp06Fh6evrRkSNH5r/++uvtzNtSUlJcvvnmmxMbN248VfO8xZo1a06mpqambdiwwWPnzp0uALBq1arstLS09EOHDh1dsmSJ94ULF+yys7Md3n333fb79u1L37VrV0ZmZqaT+bjPP/+837hx4/IyMjKOjhkzJm/q1KkdzdsuXrzokJycfGz9+vWZ8+bNaxL3u2k5AvALAE8DOCIih2pe+51SaouG5yQiomaidjlg8z0AAHDq1CnHX/3qV76XL192KC8v13Xs2LHM3G7o0KHXXF1db6xzHx8fX9CuXbsqABg2bNjV7du3u/bt27dk/vz53ps3b24NABcuXHBIS0tzysnJcYiLiys0lxt+/PHHr2ZkZDgBwMGDB1t8/fXXWQAwderU/D/+8Y++5nOMGDHimp2dHaKjo6/n5eU5aPvO1A8tZwHsVkqJUqqrUqpbzYMf/kRE9MCmT5/uN23atEsZGRlH33///dNlZWU3Ps9atGhhurmt1KoyKyLYtGmT244dO9ySk5OPHT9+/GhoaGhpaWmp7n7r4zg5Od3Y0Zpq7NwJVwIkIqImp7Cw0M7Pz68CAD7++OM2d2q7e/fulhcvXrQrKiqSLVu2tO7Xr1/RtWvX7Fq1alXl5uZmOnjwoNPhw4dbAECfPn2K9+3b53b58mW7iooKrF+/3t18nO7duxd/9NFH7gCwZMkSj5iYmCIt+6g1lgMmIqK7s2DaXkOaO3duzpNPPhno7e1dHhMTU3zmzBn97drGxMQUjRkzJiA7O9spMTExr2/fviWlpaWlS5cu9TIYDGGBgYHXo6KiigEgICCgYtasWbk9evQIbdu2bYXBYCht1apVFQAsWrTozMSJE/3/+te/tjPfBNhA3dUEywE3YywHbBmWA6bGxHLA2rqftQOMRqOuVatWpoqKCgwZMqTLM888c2XChAnXtIxTK3cqB2xdIwDR0UAyU4D6srexA2gq2j/YH2Aial5efvnlDjt37mxZVlYm/fr1Kxg/fnyT/PC/G+tKAIiIiOrRjBkz8gDk3cs+S5cuPadROFaFNwESERHZICYARERENogJABERkQ1iAkBERGSDeBMgERHdVc/c4/VaDnhv++B7LgfcFLzzzjteLi4upunTp9/TjYe3071795CDBw9qMqebCQAREVE9mTNnzuX6PF5dH/6VlZWwt3/wj29eAiAioiYjJyfHfsiQIYERERGhERERod9++22L2m0qKysxefJkX4PBEGYwGMLeeuuttgCwfv16t9DQ0DCDwRA2atQo/9LSUgEAHx+fyOnTp/t069YtJCIiInT37t0u8fHxQR07dox45513vABg06ZNbj169Ah+5JFHOvv7+0dMmzbNZ9GiRR6RkZGhBoMhLC0tTQ8AL774YofXXnvNGwDefPPNtoGBgeEGgyFs+PDhnQFg8+bNrubqhqGhoWFXr17VGY1GXa9evQxhYWGhBoMhbOXKla3NfXFxceluPn9cXJzh0UcfDQgODg4HgA8//NAjMjIyNCQkJGzcuHGdKisr7+m95AgAERE1GVOmTOn44osvXhwyZEhRZmam45AhQ4JOnjyZdnObBQsWeJ0+fVqflpZ21MHBARcvXrQrKSmRKVOmBHz77bfHu3btWvb444/7/+Uvf/F67bXXLgFAx44dyw8dOnTsueee6/jss8/679u371hpaakuIiIi3Pyt/tixY85ffPHFybZt21Z26tQpUq/XXzly5Ej6G2+80XbBggVtly9ffvbmOJKSktqdPn36iLOzs7py5YpdTWztkpKSTv/yl78sNhqNOhcXFxMAbN68+YSHh4cpNzfXPi4uLmTcuHHXdLqff0dPSUlpcfDgwbSQkJDyAwcOOH3xxRceycnJx/R6vRo/frzf4sWL29zLpQcmAERE1GT8+OOPLTMzM53Nz4uKiuyuXr2qc3d3v1EB8Pvvv2/5/PPPX3ZwqK7K6+3tXfXTTz85+/r6lnXt2rUMAJ555pm8Dz74oC2ASwAwevToawAQGRlZUlxcrHN3dze5u7ub9Hq9yfzhHRkZWdypU6cKAPDz8ytLSEgwAkBUVFTpjh073GrHGhwcXPr4448HjBgx4tpTTz11DQB69uxZNHv27I6jR4/Of/LJJ68GBgaaysrKZObMmb579+511el0uHTpkuO5c+fs/fz8fvaVvmvXrsUhISHlALB161a31NRUl6ioqFAAuH79uq5t27b3NATABICIiJoMpRSSk5PTXV1db1vIRikFEVG1X7sTczlfnU4HR0fHG411Oh0qKioEAPR6/c9ev3mfqqoqqX3MH374IfPrr792++qrr1q/8847HTIzM1PffvvtC7/61a+M69evb9W7d+/QrVu3ZuzatatFXl6e/ZEjR9L1er3y8fGJLC0tveUSvXm0oKY/MmrUqLwPPvjg/B07dge8B4CIiJqM+Pj4gvnz57c1P9+zZ49z7TaDBg0qWLx4sVdFRQUA4OLFi3bdunW7fv78ecfU1FQ9AKxYsaJNnz59CrWKs6qqCllZWY6PPvpo4YcffniusLDQzmg02qWlpeljY2NL33rrrQuRkZHFqampTkaj0c7T07NCr9erjRs3uuXk5Dje7fhDhw4t2LRpk/v58+ftzX3MyMi463434wgAERHdlSXT9urb9evXdd7e3l3Nz6dOnXpx6dKlZydNmuRnMBjCqqqqJC4urrB3794/q/Q3a9asyxkZGfqQkJBwe3t7NXHixMu/+93vLi9evDh71KhRgVVVVYiKiiqZPXt2vd6xf7PKykoZN25cQGFhoZ1SSqZMmXLR09Oz6qWXXuqwZ8+eljqdThkMhtKRI0car127ZpeQkNAlIiIiNDw8vCQgIOD63Y4fHR19/fe///35gQMHGkwmExwcHFRSUtIZg8FQbmmM1lUOOCZGJbMaIBGRxVgOmO7kTuWAeQmAiIjIBjEBICIiskFMAIiIiGyQdd0EuH8/ILfMpCAbkb/3hRs/e6za14iREDWgpJ8aOwKyURwBICIiskFMAIiIiGyQdV0CICIiq5S/b2a9lgP2iFt413UFRCT6sccey//qq69OAUBFRQXatm0b1a1bt+IffvjhxO3227lzp8vy5cvbfPzxx2c3bdrkptfrTYMHDy6+31iPHz/uOHz48KDMzMy0u7duOpgAEBGRVXJ2djYdP37cuaioSFxdXdWXX37Z0tvbu+Ju+/Xt27ekb9++JQDw/fffu7m6ulbVlQBUVFTAXC/AFvESABERWa2BAwca16xZ0xoAPvvsM4/ExMR887YffvjBpXv37iGhoaFh3bt3Dzl8+LAeqC6d+/DDD3c5fvy444oVK7wWL17sHRISErZ161bXxMRE/0mTJvnGxcUZpk2b5ltQUKAbNWqUf0RERGhoaOjPSvHW5fjx447R0dHBYWFhoWFhYaHbtm27UY7497//vbfBYAgLDg4OmzZtmg8A7Nq1yyU4ODisW7duIVOmTPENCgoKB4CkpKQ2EyZM8DPv+/DDD3fZtGmTGwCsW7euZbdu3ULCwsJCExISOhuNRh0ATJs2zcdcXnjy5Mm+D/reajYCICJOAHYC0Nec5wul1DytzkdERM3P008/nT9v3rz2Y8aMuZaenu7y3HPP5e3Zs8cVAKKioq7/+9//Pubg4ICvvvrKbc6cOb7ffPNNlnnf4ODg8gkTJlx2dXWtev311y8CwLJlyzyzsrKcfvzxxwx7e3tMnz7d5+GHHy5Ys2ZN9pUrV+xiYmJCR4wYUdCyZUtTXfF06NChcteuXRkuLi7qyJEj+ieffLJzampq+r/+9a+Wmzdvdt+/f/8xNzc308WLF+0A4LnnnvN/7733zgwbNqxoypQpd/3Qzs3NtX/77bfb79y5M6Nly5amuXPntnvjjTe8X3755UtbtmxxP3nyZKpOp4O5QuGD0PISQBmAAUqpIhFxALBbRL5WSu3V8JxERNSMxMXFlZ47d06/bNkyj0GDBhlv3pafn283ZsyYgOzsbCcRUeaqfXfzxBNPXLW3r/742759e8tvvvmmdVJSUjsAKCsrkxMnTjg+9NBDda7HX15eLs8991yno0ePOut0Opw+fVoPANu2bWs5fvz4K25ubiagugRxXl6eXWFhod2wYcOKAODZZ5/N+/7771vdKbbt27e3yMrKcoqNjQ0BgIqKComOji7y8PCo0uv1prFjx3YaNmyYccyYMcY7HccSmiUAqrrIQFHNU4eah/UUHiAioiZh6NCh1+bNm9fx22+/PX7p0qUbn1uvvPKKT79+/Qq3bduWdfz4cccBAwYEW3I8V1fXm8vq4osvvjgRFRVVZsm+b731lnfbtm0r1q5de8pkMsHZ2TnafByptY5NXa+Z2dvbK5Ppv4MMZWVlOvM+8fHxBRs3bjxVe59Dhw6lb9iwoeXq1avdFy1a1Hbv3r0ZlsR8O5reAyAidiJyCMAlANuUUres7iIik0UkWUSSNSvLRERETdbUqVOvvPTSSzmxsbGlN79eUFBg5+vrWw4AS5Ys8axrXzc3t6rCwsLbDpc//PDDBQsWLPA2fxj/+OOPt5QXvpnRaLRr3759hZ2dHT788MM2VVVVAKrL837yySeehYWFOqC6PK+np2eVq6tr1TfffOMKAB9//LGH+TiBgYHlaWlpLlVVVThx4oRDSkpKCwDo379/cXJysqu5bHFhYaEuJSVFbzQadTUjHsbFixefTU9Pd7nb+3Y3ms4CUEpVAegmIq0BfCkiEUqp1FptlgJYCgAxIhwhICKyQpZM29NKYGBgxR/+8IdLtV9/5ZVXLkyaNCkgKSmpXZ8+fQrq2jcxMfHayJEjA7/++uvWCxcuPFN7+5///OecyZMn+4WEhIQppcTX17es9hTDiooKcXR0NAHAzJkzLyUmJgZ+9dVX7vHx8YXOzs4mABg5cmTBgQMHXLp16xbq4OCgBg0aZHz//ffP//3vf8+eNGmSv7Ozs2nAgAE3Yhw8eHDRBx98UBYcHBweHBxcGhYWVgJU32OwZMmS7LFjx3YuLy8XAJg3b975Vq1amYYPH96lrKxMAODNN988e//vaLUGKwcsIvMAFCul3r1dmxgRxWLAtotLAZNNesClgFkOWHsrV65s/emnn3ps2bLl5IMcpzHWE7hTOWAtZwF4AahQSl0TEWcAgwDM1+p8RERE9W3mzJkdvv7669bLly+/5Zp8U6flJYD2AP4pInaovtfgX0qpTRqej4iIqF4tXLgwZ+HChTn1cazg4OBya1pNUMtZACkAumt1fCIiIrp/XAmQiIjIBlmUAIiIt4j8XUS+rnkeJiLPaRsaERERacXSEYCPAXwDoEPN8wwAM7UIiIiIiLRn6T0Ankqpf4nIqwCglKoUkap6jyY6GkjmREBb5XHzk7htVafwAAASTElEQVTGioKI6vI6NtdrOeDXMEyzcsC1ZWdnOzz//PMdt27d+kDT+JobS0cAikWkDWqW8hWRngAeeB1iIiKi27m5HDAAWFoO+GYVFRXw9/ev4If/rSxNAF4EsAFAoIj8CGAFgN9qFhURERHurxxwUlJSm4SEhM4DBgzo0qdPH8Px48cdzWV4b1fOd9OmTW6xsbHBQ4cO7RwQEBA+YsSIAPPywLt27XLp0aNHcHh4eGh8fHzQ6dOnHRr8jdCARQmAUuoAgH4AegOYAiC8ZpofERGRZp5++un8zz//3L2kpETS09NdevXqVWzeZi4HnJ6efnTevHnn58yZc6Pc7oEDB1w/++yzU7UL5pjL+R49ejT9888/Pzlr1iw/87b09HTnDz744OyJEyfSzpw5o9+2bZtrWVmZzJgxw2/9+vVZaWlp6RMnTrwye/Zsn4bpvbbuZR2AWAD+Nfs8JCJQSq3QJCoiIiLcfzngPn36FHh7e99yr9rtyvkCQGRkZHFgYGAFAISHh5dkZWU5enh4VGZmZjoPGDDAAAAmkwleXl73dBnCWlmUAIjIJwACARwCYH5DFaovBRAREWnmfsoBu7i4mOo61u3K+QKAXq+/URzHzs4OlZWVopSSLl26lB46dOiYVv1rLJaOAMQACFMNVTmIiIioxtSpU6+0atWqKjY2tnTTpk1u5tctKQdcm9FotPP19S23s7PD+++/f6Oc7+107dr1en5+vv13333XYtCgQcVlZWVy5MgRfUxMzPUH6pQVsDQBSAXQDkCuhrEQEZGVsmTanlYepBxwbbcr53s7Tk5OavXq1VkzZszwKywstKuqqpKpU6debA4JgEXlgEXkBwDdAPwbQJn5daXUiPoMJiYmRiVzHQAiIouxHDDdSX2UA/6/9RYNERERNTqLEgCl1A4R6QQgSCn1nYi4ALDTNjQiIiLSiqXFgH4D4AsAS2pe8gHwlVZBERERkbYsXQnw/wD4BYACAFBKZQJoq1VQREREpC1LE4AypVS5+YmI2KOmLgARERE1PZYmADtE5HcAnEVkMIA1ADZqFxYREdH9++GHH1w2b97s2thxWDNLZwH8D4DnABxBdS2ALQA+0iooIiKyMjN61Ws5YCT9dMd1BWJjY4NfeeWV3MTExBvz+19//fW2GRkZTitXrjxT1z4uLi7dS0pKDgJAnz59Sp599lk/vV6vBg0aVFxXe1tnaQLgDGC5UmoZAIiIXc1rJVoFRkREtmvUqFF5NdX/biQAa9eu9Zg/f/45S/a3t7fHihUr6kwUgOo1/ZVSsLOz3Qltll4C+F9Uf+CbOQP4rv7DISIiAp5++umr//u//9uqtLRUgOoyvpcuXXKIi4sr6dWrlyEsLCzUYDCErVy5snVd+//hD3/wjoiICDUYDGGzZs3qYD5G586dw8ePH+8XHh4elpWV5bhu3bqW3bp1CwkLCwtNSEjobDQaLf1cbPIsHQFwUkoVmZ8opYpq1gKoX1eygOUj//v8ubX1fgpquvL3vnDbbR6r9ml23lV/maLZsYme0j/T2CFYpXbt2lVFRUUVr127ttX48eOv/fOf//QYMWLEVVdXV9PmzZtPeHh4mHJzc+3j4uJCxo0bd02n++/n9rp161pmZmY6paSkpJtMJgwcOLDL5s2bXbt06VKenZ3ttGzZsuyVK1eeyc3NtX/77bfb79y5M6Nly5amuXPntnvjjTe83333XZtY9t7SBKBYRB5SSh0AABGJAVCqXVhERGTrRo8enf/555+7jx8//tq6des8Pvroo2yTySQzZ8703bt3r6tOp8OlS5ccz507Z+/n51dp3m/r1q0tk5OTXXv27BkMVBcNysrK0nfp0qW8ffv25QMHDiwGgO3bt7fIyspyio2NDQGAiooKiY6OLqo7mubH0gTgBQBrRCQH1dP/OgAYo1lURERk85566qlrv//97zvu3r3b5fr167r4+PiSpKSkNnl5efZHjhxJ1+v1ysfHJ7K0tPRnw/ZKKUyePPnSnDlzLt/8+vHjxx1vLhOslEJ8fHzBxo0bTzVUn6yJpdc6AgB0BzAVwDYAx8F1AIiISEOtWrUy9ezZs3DSpEn+TzzxRD5QXc7X09OzQq/Xq40bN7rl5OQ41t4vISGhYOXKlW3M1/OzsrIczp8/f8sX3v79+xcnJye7pqam6gGgsLBQl5KSote6X9bC0hGAPyil1ohIawCDASwAsAhAnGaRERGR9bjLtD2tjB07Nn/ixImBn3322UkAmDRpUn5CQkKXiIiI0PDw8JKAgIBbyvI+8cQTBWlpaU49evQIAQAXFxfTqlWrTtnb2//si2uHDh0qlyxZkj127NjO5eXlAgDz5s0737Vr17Lax2yOLC0HfFAp1V1E/gTgiFLqU/Nr9RlMjL+7Sn5t4H9f4E2AdBPeBEjN0YPeBMhywHQndyoHbOklgPMisgTAaABbRERv6b4iYiciB0Vkk4XnIiIiIo1ZmgCMBvANgKFKqWsAPAC8bOG+LwBIv4/YiIiISCMWJQBKqRKl1LqaKoBQSuUqpb69234i4gtgGLhsMBERkVXResWjhQDmADDdroGITBaRZBFJvlxkE/ddEBERNTrNEgARGQ7gklLqjneOKqWWKqVilFIxXq42M/uCiIgsUFVVhfj4+KDMzMxbpvvRg9FyBOAXAEaISDaA1QAGiMhKDc9HRETNzLFjx/SvvvpqblBQUHljx9LcWLoOwD1TSr0K4FUAEJH+AGYrpcZrdT4iItLOqrKP67Uc8FP6Z+66roCdnV10UFBQKQC89NJLeOKJJ/LffvvtC7GxscHvvvvu2b59+5b069evy9q1a095enpW1Wd8tkCzBICIiOhB6PV607Fjx47eqc2OHTtONFQ8zU2DlD1USm1XSg1viHMREZHt8PHxiczNzbUvKCjQ9e/fv0twcHBYUFBQ+LJly9wBYNeuXS49evQIDg8PD42Pjw86ffq0Q2PHbC04AkBERFaprKxMFxISEmZ+/tJLL+X+5je/uVpX23Xr1rVs165dxfbt208AQF5enl1ZWZnMmDHDb/PmzSc6dOhQuWzZMvfZs2f7rFmzJruBumDVmAAQEZFVsuQSgNlDDz1UOnfu3I5Tp071eeyxx4xDhw4t+s9//uOUmZnpPGDAAAMAmEwmeHl5VWgbddPBBICIiJq8rl27lh04cODo2rVrW82dO9fnu+++Kxg9evS1Ll26lB46dOhYY8dnjawrAfAMBJ794r/Pn228UMj6eNxpo4Z1KZ/S7tBEVE+ys7Md2rZtWzlt2rR8Nzc30z//+c82b7755oX8/Hz77777rsWgQYOKy8rK5MiRI/qYmJhbKgjaIutKAIiIyCpZMm2vvtW+B2DAgAHGDz/88Hxdbffv3+/86quv+up0Otjb26sPP/zwtJOTk1q9enXWjBkz/AoLC+2qqqpk6tSpF5kAVLOoHHBDiYmJUcnJyY0dBhFRk8FywHQn9VEOmIiIiJoRJgBEREQ2iAkAERHVxWQymaSxg6D7V/P7u201XiYARERUl9TLly+3YhLQNJlMJrl8+XIrAKm3a8NZAEREdIvKyspJFy5c+OjChQsR4JfFpsgEILWysnLS7RowASAioltER0dfAjCiseMg7TCrIyIiskFMAIiIiGwQEwAiIiIbxASAiIjIBjEBICIiskFMAIiIiGwQEwAiIiIbxASAiIjIBjEBICIiskFWtRLgKVWMp8r2NXYYdBurnHo2dghWIX/vCwCA9+MGN3IkD+61GW82dgiU9FNjR0A2iiMARERENogJABERkQ1iAkBERGSDmAAQERHZICYARERENkjTWQAikg2gEEAVgEqlVIyW5yMiIiLLNMQ0wIeVUlca4DxERERkIV4CICIiskFaJwAKwLcisl9EJtfVQEQmi0iyiCRfv3xN43CIiIgI0P4SwC+UUjki0hbANhE5ppTaeXMDpdRSAEsBoE10qNI4HiIiIoLGIwBKqZyafy8B+BJArJbnIyIiIstolgCISAsRcTP/DOCXAFK1Oh8RERFZTstLAN4AvhQR83k+VUpt1fB8REREZCHNEgCl1EkAUVodn4iIiO4fpwESERHZICYARERENogJABERkQ1iAkBERGSDRCnrWXsnJiZGJScnN3YYRERNhojsZ6E1uh8cASAiIrJBTACIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJBTACIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJBTACIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJBTACIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJB9o0dwM1OqWI8VbavscNollb1H9nYIZDZ3nONHYFV6ZlzrN6OteXMono5zvtxg+vlOJZ4DcMa7FxEN+MIABERkQ1iAkBERGSDmAAQERHZICYARERENogJABERkQ3SNAEQkdYi8oWIHBORdBHppeX5iIiIyDJaTwP8K4CtSqmRIuIIwEXj8xEREZEFNEsARKQlgL4AngEApVQ5gHKtzkdERESW0/ISQGcAlwH8Q0QOishHItKidiMRmSwiySKSfP3yNQ3DISIiIjMtEwB7AA8BWKSU6g6gGMD/1G6klFqqlIpRSsU4ebXWMBwiIiIy0zIBOAfgnFLKvLbvF6hOCIiIiKiRaZYAKKUuADgrIsE1Lw0EcFSr8xEREZHltJ4F8FsAq2pmAJwE8GuNz0dEREQW0DQBUEodAhCj5TmIiIjo3nElQCIiIhvEBICIiMgGMQEgIiKyQaKUauwYboiJiVHJycmNHQYRUZMhIvuVUrzXiu4ZRwCIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJBTACIiIhsEBMAIiIiG8QEgIiIyAYxASAiIrJBVrUQkIgUAjje2HE0Ek8AVxo7iEbE/rP/ttr/B+17J6WUV30FQ7ZD63LA9+q4ra5oJSLJttp3gP1n/223/7bcd2pcvARARERkg5gAEBER2SBrSwCWNnYAjciW+w6w/+y/7bLlvlMjsqqbAImIiKhhWNsIABERETUAJgBEREQ2qMETABEZKiLHReSEiPxPHdtFRJJqtqeIyEMNHaOWLOj/UzX9ThGRPSIS1RhxauVu/b+pXQ8RqRKRkQ0Zn9Ys6b+I9BeRQyKSJiI7GjpGrVjwf7+ViGwUkcM1ff91Y8SpFRFZLiKXRCT1Ntub9d8+skJKqQZ7ALADkAWgMwBHAIcBhNVq8wiArwEIgJ4A9jVkjFbQ/94A3Gt+TrC1/t/U7nsAWwCMbOy4G/j33xrAUQB+Nc/bNnbcDdj33wGYX/OzF4B8AI6NHXs9vgd9ATwEIPU225vt3z4+rPPR0CMAsQBOKKVOKqXKAawG8FitNo8BWKGq7QXQWkTaN3CcWrlr/5VSe5RSV2ue7gXg28AxasmS3z8A/BbAWgCXGjK4BmBJ/8cBWKeUOgMASqnm8h5Y0ncFwE1EBIArqhOAyoYNUztKqZ2o7tPtNOe/fWSFGjoB8AFw9qbn52peu9c2TdW99u05VH8jaC7u2n8R8QHwOIDFDRhXQ7Hk928A4C4i20Vkv4hMaLDotGVJ398HEAogB8ARAC8opUwNE55VaM5/+8gKNfRSwFLHa7XnIVrSpqmyuG8i8jCqE4B4TSNqWJb0fyGAV5RSVdVfBJsVS/pvDyAawEAAzgB+EpG9SqkMrYPTmCV9HwLgEIABAAIBbBORXUqpAq2DsxLN+W8fWaGGTgDOAeh403NfVGf799qmqbKobyLSFcBHABKUUnkNFFtDsKT/MQBW13z4ewJ4REQqlVJfNUyImrL0//8VpVQxgGIR2QkgCkBTTwAs6fuvAfxZKaUAnBCRUwBCAPy7YUJsdM35bx9ZoYa+BPAfAEEiEiAijgDGAthQq80GABNq7ojtCcColMpt4Di1ctf+i4gfgHUAnm4G3/pqu2v/lVIBSil/pZQ/gC8ATGsmH/6AZf//1wPoIyL2IuICIA5AegPHqQVL+n4G1SMfEBFvAMEATjZolI2rOf/tIyvUoCMASqlKEZkO4BtU3xW8XCmVJiLP12xfjOo7vx8BcAJACaq/FTQLFvb/NQBtAHxY8y24UjWTSmEW9r/ZsqT/Sql0EdkKIAWACcBHSqk6p401JRb+7t8A8LGIHEH1cPgrSqlmUyJYRD4D0B+Ap4icAzAPgAPQ/P/2kXXiUsBEREQ2iCsBEhER2SAmAERERDaICQAREZENYgJARERkg5gAEBER2SAmAERERDaICQAREZEN+v9mHuuHJPiBzgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -1929,16 +2217,21 @@
" sortedPersos = np.sort(actPersos)\n",
" colors = []\n",
" for perso in sortedPersos:\n",
- " if not re.search('î',perso) and not re.search('le co',perso, re.IGNORECASE):\n",
- " colors.append(avarePersoDict[perso]['color'])\n",
- " else:\n",
- " if re.search('î',perso):\n",
- " colors.append(avarePersoDict[perso.replace('î','i')]['color'])\n",
- " else:\n",
- " colors.append(avarePersoDict['Le commissaire']['color'])\n",
- " print(colors)\n",
+ " colors.append(avarePersoDict[perso]['color'])\n",
+ " #print(colors)\n",
" #plt.sca.ax(axs[actNum])\n",
" #df.plot.barh(color={\"speed\": \"red\", \"lifespan\": \"green\"})\n",
+ "\n",
+ " #df_total = df[\"Studied\"] + df[\"Slept\"] + df[\"Other\"] \n",
+ " #df_rel = df[df.columns[1:]].div(df_total, 0) * 100\n",
+ " \n",
+ " #for n in df_rel: \n",
+ " #for i, (cs, ab, pc) in enumerate(zip(df.iloc[:, 1:].cumsum(1)[n], \n",
+ " #df[n], df_rel[n])): \n",
+ " #plt.text(cs - ab / 2, i, str(np.round(pc, 1)) + '%', \n",
+ " #va = 'center', ha = 'center', rotation = 20, fontsize = 8)\n",
+ "\n",
+ "\n",
" percentDf.plot(\\\n",
" x = 'scene', \\\n",
" kind = 'barh', \\\n",
@@ -1946,7 +2239,28 @@
" stacked = True, \\\n",
" title = \"Acte {}\".format(actNum), \\\n",
" mark_right = True)\n",
- " pass"
+ " ax = plt.gca()\n",
+ " ax.invert_yaxis()\n",
+ " actPersosNumber = len(sortedPersos)\n",
+ " for i, bar in enumerate(ax.patches):\n",
+ " print(bar)\n",
+ " # On calcul l'index du personnage dans la liste des personnages de l'acte\n",
+ " persoIdx = np.floor(i/actPersosNumber)\n",
+ " # On calcul la ligne de la donnée\n",
+ " # On récupère le nom du personnage\n",
+ " persoName = sortedPersos[persoIdx]\n",
+ " if bar.get_width() != 0:\n",
+ " # Si la largeur de la barre en cours est différente de 0\n",
+ " # l'auteur associé a prononcé un certain nombres de mots\n",
+ " # on va l'afficher au milieu du rectangle correspondant\n",
+ " ax.text(bar.get_x()+bar.get_width()/2, \\\n",
+ " bar.get_y()+bar.get_height()/2, \\\n",
+ " )\n",
+ " # cf. (https://stackoverflow.com/questions/66837088/how-to-write-text-inside-the-bar-in-a-horizontal-bar-graph-matplotlib) \n",
+ " # ax.text(0.1, bar.get_y()+bar.get_height()/2, disease, color = 'white', ha = 'left', va = 'center')\n",
+ " # Positionnement de la légende en haut à droite en dehors du plot\n",
+ " # cf. (https://www.geeksforgeeks.org/how-to-place-legend-outside-of-the-plot-in-matplotlib/)\n",
+ " plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')"
]
},
{
--
2.18.1