Last change to conclude the work and analyses on the chickenpox occurence data

parent 194c9e5c
...@@ -59,7 +59,7 @@ ...@@ -59,7 +59,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -1024,7 +1024,7 @@ ...@@ -1024,7 +1024,7 @@
"[1763 rows x 10 columns]" "[1763 rows x 10 columns]"
] ]
}, },
"execution_count": 5, "execution_count": 3,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -1060,7 +1060,7 @@ ...@@ -1060,7 +1060,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -1107,7 +1107,7 @@ ...@@ -1107,7 +1107,7 @@
"Index: []" "Index: []"
] ]
}, },
"execution_count": 6, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -1143,7 +1143,7 @@ ...@@ -1143,7 +1143,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -1173,7 +1173,7 @@ ...@@ -1173,7 +1173,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -1192,7 +1192,7 @@ ...@@ -1192,7 +1192,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -1212,16 +1212,16 @@ ...@@ -1212,16 +1212,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f155e596860>" "<matplotlib.axes._subplots.AxesSubplot at 0x7f2138097668>"
] ]
}, },
"execution_count": 14, "execution_count": 8,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -1251,16 +1251,16 @@ ...@@ -1251,16 +1251,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f155c3f6cc0>" "<matplotlib.axes._subplots.AxesSubplot at 0x7f2135f411d0>"
] ]
}, },
"execution_count": 15, "execution_count": 9,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -1283,16 +1283,16 @@ ...@@ -1283,16 +1283,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f155c3729e8>" "<matplotlib.axes._subplots.AxesSubplot at 0x7f2135e18f98>"
] ]
}, },
"execution_count": 16, "execution_count": 10,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -1315,16 +1315,16 @@ ...@@ -1315,16 +1315,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f155c322f28>" "<matplotlib.axes._subplots.AxesSubplot at 0x7f2135d609b0>"
] ]
}, },
"execution_count": 17, "execution_count": 11,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -1371,18 +1371,221 @@ ...@@ -1371,18 +1371,221 @@
"premier jour de la semaine qui contient le 1er septembre.\n", "premier jour de la semaine qui contient le 1er septembre.\n",
"\n", "\n",
"Comme l'incidence de syndrome grippal est très faible en été, cette\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
"modification ne risque pas de fausser nos conclusions.\n", "modification ne risque pas de fausser nos conclusions."
"\n", ]
"Encore un petit détail: les données commencent an octobre 1990, ce qui\n", },
"rend la première année incomplète. Nous commençons donc l'analyse en 1985." {
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Period('1990-12-03/1990-12-09', 'W-SUN')"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data.index[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Encore un petit détail, comme on peut le voir ci-dessus via la première valeur de l'index du dataframe pandas qui est composé des semaines des données acquises (i.e. la semaine la plus ancienne pour laquelle les valeurs d'incidence de la varicelle ont été enregistrées), les données commencent en décembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en septembre 1991."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
" for y in range(1991,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_september_week[:-1],\n",
" first_september_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Voici les incidences annuelles."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f2135d01240>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHARJREFUeJzt3X9wndV95/H3x8iRDLWJDDLxD8DuxGFiSGriO7a7yXZL3Npm08FmCok2NGgWz7gBNiWdnQE7sMMsuDPQ2dm0nkxYPKFgIPxw3TJ4u3hBmM3U2zq25UAKhrhSAjEODhIrB5vMWEX2d/+4R/WVkKXnSlf3lz6vmTv3uV895+g8fnT9vc855zlXEYGZmVkWUyrdADMzqx1OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmDZVuQKldeOGFMX/+/Eo3w8ysphw4cOC9iGgZbb+6Sxrz58+no6Oj0s0wM6spkn6eZT93T5mZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZjWg+/hJvvzgHrpPnKx0U2ySc9IwqwGbd3Wy/61eNr/YWemm2CRXd/dpmNWTy+7aSV//6X99/fjewzy+9zCNDVM4tOnqCrbMJitfaRRwF4BVm923X8U1i+fQNDX/Vm2aOoU1i+ew+46rKtwym6ycNAq4C8CqzawZTUxvbKCv/zSNDVPo6z/N9MYGZk1v+si+/tBj5eDuKdwFYNXtvQ/6uGHZpXx16SU8se8wPWdJCoUfejZd+5kyt9ImC0VEpdtQUrlcLopde6r7+Ek2PfcGLxz8JSc/PE3T1CmsuvwT3PmlTw/7ic6smgz90DPAH3qsGJIORERutP3cPUVxXQBm1cbjHlZO7p5KsnYBmFUbf+ixcnLSSB782pmrsk1rr6hgS8yK5w89Vi4e0zAzM49pmJlZ6TlpmJlZZpmShqQ/lXRQ0muSnpTUJGmmpHZJnem5uWD/jZK6JB2StKogvkTSq+lnmyUpxRslPZ3ieyXNLyjTln5Hp6S20h26mZkVa9SkIWku8CdALiKuAM4BWoENwK6IWAjsSq+RtCj9/HJgNfBdSeek6h4A1gML02N1iq8DjkXEJ4FvA/enumYCdwPLgKXA3YXJyczMyitr91QDME1SA3Au8A6wBtiafr4VWJu21wBPRURfRLwJdAFLJc0GZkTEnsiPvj86pMxAXduBFekqZBXQHhG9EXEMaOdMojEzszIbNWlExC+A/wYcBo4C70fEC8BFEXE07XMUmJWKzAXeLqjiSIrNTdtD44PKREQ/8D5wwQh1mZlZBWTpnmomfyWwAJgDnCfpj0YqMkwsRoiPtUxhG9dL6pDU0dPTM0LTzMxsPLJ0T/0e8GZE9ETEh8DfAv8GeDd1OZGeu9P+R4CLC8rPI9+ddSRtD40PKpO6wM4Hekeoa5CI2BIRuYjItbS0ZDgkMzMbiyxJ4zCwXNK5aZxhBfAGsAMYmM3UBjybtncArWlG1ALyA977UhfWCUnLUz03DikzUNd1wEtp3ON5YKWk5nTFszLFzGwS8zLwlTPqMiIRsVfSduBHQD/wMrAF+A1gm6R15BPL9Wn/g5K2Aa+n/W+NiFOpupuBR4BpwM70AHgIeExSF/krjNZUV6+ke4H9ab97IqJ3XEdsZjXPy8BXjpcRsbrWffwk/+nJl/nOV6/0An51wMvATxwvI2KGv42x3ngZ+MrzKrdWl/xtjPXJy8BXnq80rC75E2n9GlgG/plbPs8Nyy6l54O+SjdpUvGVhtUlfyKtX/7um8py0rC65S8mMis9z56ymuWZUWal49lTNm7VfgOVZ0aZlZ+7p+ysqvUGKs+MMqscd0/ZR1T7DVTdx0+y6bk3eOHgLzn54Wmapk5h1eWf4M4vfbrmuqncxWbVwt1TNmbVPl21nmZGuYvNao27p+wjauE/5VqfGeUuNqtVTho2rGr/T7nW5+rvvv2qs3axmVUzJw0bVq3/p1ztauFqzmw4ThpmFVLtV3Nmw/HsKTMz8+wpMzMrPScNMzPLzEnDzMwyc9IwmwDVvm6X2Vg5aZhNAN/pbfXKU27NSsh3elu985WGWQlV+7pdZuPlpGFWQr7T2+rdqElD0mWSXil4HJf0TUkzJbVL6kzPzQVlNkrqknRI0qqC+BJJr6afbZakFG+U9HSK75U0v6BMW/odnZLaSnv4ZqU3cKf3M7d8nhuWXUrPB32VbpJZyRR1R7ikc4BfAMuAW4HeiLhP0gagOSLukLQIeBJYCswBXgQ+FRGnJO0DbgN+CDwHbI6InZJuAT4bEV+X1ApcGxFfkTQT6AByQAAHgCURcexsbfQd4Wbl5e8EqQ8TdUf4CuCnEfFzYA2wNcW3AmvT9hrgqYjoi4g3gS5gqaTZwIyI2BP5TPXokDIDdW0HVqSrkFVAe0T0pkTRDqwuss1mNoE8U2xyKXb2VCv5qwiAiyLiKEBEHJU0K8Xnkr+SGHAkxT5M20PjA2XeTnX1S3ofuKAwPkwZM6sgzxSbnDJfaUj6GHAN8Nej7TpMLEaIj7VMYdvWS+qQ1NHT0zNK88ysFDxTbHIqpnvqauBHEfFuev1u6nIiPXen+BHg4oJy84B3UnzeMPFBZSQ1AOcDvSPUNUhEbImIXETkWlpaijgkMxurYmeK+S75+lBM0vgPnOmaAtgBDMxmagOeLYi3phlRC4CFwL7UlXVC0vI0XnHjkDIDdV0HvJTGPZ4HVkpqTrOzVqaYnYXfmFZOxcwU89hHfcg0e0rSueTHFn4zIt5PsQuAbcAlwGHg+ojoTT+7E7gJ6Ae+GRE7UzwHPAJMA3YC34iIkNQEPAZcSf4KozUifpbK3AR8KzXlzyLi4ZHaOtlnT931zKt8f99hblh6CZuu/Uylm2P2kbGPAR77qC5ZZ0/5S5jqRLFvTE+TtHLpPn7yrN+H7r+96uEvYZpkih2UdFeBlYvvkq8vXrCwTmR9Y3qapFWCvw+9fjhp1JEsb8zdt1911q4Cs4ny4NfO9HpsWntFBVti4+WkUUeyvDHdVWBm4+ExjQlSzVNfvaCemY2VZ09NEE99NbNaknX2lLunSswDzWZWz9w9VWLFTn2t5m4sM7OhnDRKrNiBZt8vYWa1xN1TEyDL1Fd3Y5lZLfKVRpGydCc9+LUcm9ZewaI5M9i09opBU2EHeFlpqxR3idaWajtfThpFKlV3ku+XsEpxl2htqbbz5Sm3GU3ESp1//FgHLdObBnVjDXdVYlYKXm22tpT7fHmV2xLzSp0Gtb06sP+Ga0u5z5dXuS0xdyfVt6z9xtXWVVAM/w3Xlmo9X549VQSv1Fm/CpPBcHfw18tsN/8N15ZqPF/unrJJLWu/8WTs2qnlrjgrnrunrOpU29RByD71uVq7CiZSLXfF2cRx95SNW9ZPpKN1AVVCMcmgGrsKJkK9dMXZxHD3lI3baCv6VvtUT099HmwydsWZV7m1Msj6ibTavy3Q3yo32GTsirPsPKZhY+bxgPrlL+qys/GVho2ZxwPqV6Wuvjxjq/plutKQ9HFJ2yX9RNIbkn5b0kxJ7ZI603Nzwf4bJXVJOiRpVUF8iaRX0882S1KKN0p6OsX3SppfUKYt/Y5OSW2lO3QrhayfSLMs4mjmGVvVL9NAuKStwO6I+J6kjwHnAt8CeiPiPkkbgOaIuEPSIuBJYCkwB3gR+FREnJK0D7gN+CHwHLA5InZKugX4bER8XVIrcG1EfEXSTKADyAEBHACWRMSxs7XVA+FmtafaJ0tMBiW7T0PSDOB3gIcAIuJfIuJXwBpga9ptK7A2ba8BnoqIvoh4E+gClkqaDcyIiD2Rz1SPDikzUNd2YEW6ClkFtEdEb0oU7cDq0dpsZrXFXxVQO7J0T/0m0AM8LOllSd+TdB5wUUQcBUjPs9L+c4G3C8ofSbG5aXtofFCZiOgH3gcuGKGuQSStl9QhqaOnpyfDIZlZNfFkidqRJWk0AJ8DHoiIK4FfAxtG2F/DxGKE+FjLnAlEbImIXETkWlpaRmiamVUrz9iqDVlmTx0BjkTE3vR6O/mk8a6k2RFxNHU9dRfsf3FB+XnAOyk+b5h4YZkjkhqA84HeFP/dIWV+kOnIzKym1ML9Mp7dleFKIyJ+Cbwt6bIUWgG8DuwABmYztQHPpu0dQGuaEbUAWAjsS11YJyQtT+MVNw4pM1DXdcBLadzjeWClpOY0O2tlipmZlZ1nd2W/T+MbwPfTzKmfAf+RfMLZJmkdcBi4HiAiDkraRj6x9AO3RsSpVM/NwCPANGBnekB+kP0xSV3krzBaU129ku4F9qf97omI3jEeq5nZmHg9rjO89pSZ2Sgmw3pcXhrdzKxEPLvrDC8jYmaWgZfCyXP3lJmZuXuq3lTjt96Z2eTjpFEjPNXPzKqBxzSqnKf6mVk18ZVGlfNCbmZWTZw0qpyn+pmNnccCS89JowZ4ITezsfFYYOl5yq2Z1R1/qVPxPOXWzCatYscC3Y2VnZOGmdWdYscC3Y2VnafcmlldyrLsh6e0F89jGmY2aU2G1Wuz8piGmdkoPKW9eO6eMrNJzavXFsfdU2Zm5u4pMzMrPScNqzqeM29WvZw0rOp4zrxZ9fJAuFUNz5k3q36+0rCq4WXgzaqfk4ZVDc+ZN6t+mZKGpLckvSrpFUkdKTZTUrukzvTcXLD/Rkldkg5JWlUQX5Lq6ZK0WZJSvFHS0ym+V9L8gjJt6Xd0Smor1YFbdfIy8GbVLdN9GpLeAnIR8V5B7M+B3oi4T9IGoDki7pC0CHgSWArMAV4EPhURpyTtA24Dfgg8B2yOiJ2SbgE+GxFfl9QKXBsRX5E0E+gAckAAB4AlEXHsbG31fRpmZsUrx30aa4CtaXsrsLYg/lRE9EXEm0AXsFTSbGBGROyJfKZ6dEiZgbq2AyvSVcgqoD0ielOiaAdWj6PNZmY2DlmTRgAvSDogaX2KXRQRRwHS86wUnwu8XVD2SIrNTdtD44PKREQ/8D5wwQh1DSJpvaQOSR09PT0ZD8nMzIqVdcrt5yPiHUmzgHZJPxlhXw0TixHiYy1zJhCxBdgC+e6pEdpmZmbjkOlKIyLeSc/dwDPkxyveTV1OpOfutPsR4OKC4vOAd1J83jDxQWUkNQDnA70j1GVmZhUwatKQdJ6k6QPbwErgNWAHMDCbqQ14Nm3vAFrTjKgFwEJgX+rCOiFpeRqvuHFImYG6rgNeSuMezwMrJTWn2VkrU8zMzCogS/fURcAzaXZsA/BERPxvSfuBbZLWAYeB6wEi4qCkbcDrQD9wa0ScSnXdDDwCTAN2pgfAQ8BjkrrIX2G0prp6Jd0L7E/73RMRveM4XjMzGwcvjW5mZl4a3czMSs9Jw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQknSPpZUl/l17PlNQuqTM9Nxfsu1FSl6RDklYVxJdIejX9bLMkpXijpKdTfK+k+QVl2tLv6JTUVoqDNjOzsSnmSuM24I2C1xuAXRGxENiVXiNpEdAKXA6sBr4r6ZxU5gFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcXZiczMysvDIlDUnzgC8B3ysIrwG2pu2twNqC+FMR0RcRbwJdwFJJs4EZEbEnIgJ4dEiZgbq2AyvSVcgqoD0ieiPiGNDOmURjZmZllvVK4y+A24HTBbGLIuIoQHqeleJzgbcL9juSYnPT9tD4oDIR0Q+8D1wwQl1mZlYBoyYNSX8AdEfEgYx1aphYjBAfa5nCNq6X1CGpo6enJ2MzzcysWFmuND4PXCPpLeAp4IuSHgfeTV1OpOfutP8R4OKC8vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWjIckpmZjcWoSSMiNkbEvIiYT36A+6WI+CNgBzAwm6kNeDZt7wBa04yoBeQHvPelLqwTkpan8Yobh5QZqOu69DsCeB5YKak5DYCvTDEzM6uAhnGUvQ/YJmkdcBi4HiAiDkraBrwO9AO3RsSpVOZm4BFgGrAzPQAeAh6T1EX+CqM11dUr6V5gf9rvnojoHUebzcxsHJT/QF8/crlcdHR0VLoZZmY1RdKBiMiNtp/vCDczq4Du4yf58oN76D5xstJNKYqThplZBWze1cn+t3rZ/GJnpZtSlPGMaZiZWZEuu2snff1nbnl7fO9hHt97mMaGKRzadHUFW5aNrzTMzMpo9+1Xcc3iOTRNzf/32zR1CmsWz2H3HVeNq95ydXc5aZiZldGsGU1Mb2ygr/80jQ1T6Os/zfTGBmZNbxpXveXq7nL3lJlZmb33QR83LLuUry69hCf2HaZnHFcH5e7u8pRbM7Ma1n38JJuee4MXDv6Skx+epmnqFFZd/gnu/NKni7p68ZRbM7NJYKK6u87G3VNmZjWulN1do3H3lJmZuXvKzMxKz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLbNSkIalJ0j5JP5Z0UNJ/TfGZktoldabn5oIyGyV1STokaVVBfImkV9PPNktSijdKejrF90qaX1CmLf2OTkltpTx4MzMrTpYrjT7gixHxW8BiYLWk5cAGYFdELAR2pddIWgS0ApcDq4HvSjon1fUAsB5YmB6rU3wdcCwiPgl8G7g/1TUTuBtYBiwF7i5MTmZmVl6jJo3I+yC9nJoeAawBtqb4VmBt2l4DPBURfRHxJtAFLJU0G5gREXsi/yUejw4pM1DXdmBFugpZBbRHRG9EHAPaOZNozMyszDKNaUg6R9IrQDf5/8T3AhdFxFGA9Dwr7T4XeLug+JEUm5u2h8YHlYmIfuB94IIR6jIzswrIlDQi4lRELAbmkb9quGKE3TVcFSPEx1rmzC+U1kvqkNTR09MzQtPMzGw8ipo9FRG/An5Avovo3dTlRHruTrsdAS4uKDYPeCfF5w0TH1RGUgNwPtA7Ql1D27UlInIRkWtpaSnmkMzMrAhZZk+1SPp42p4G/B7wE2AHMDCbqQ14Nm3vAFrTjKgF5Ae896UurBOSlqfxihuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBDRn2mQ1sTTOgpgDbIuLvJO0BtklaBxwGrgeIiIOStgGvA/3ArRFxKtV1M/AIMA3YmR4ADwGPSeoif4XRmurqlXQvsD/td09E9I7ngM3MbOyU/0BfP3K5XHR0dFS6GWZmNUXSgYjIjbaf7wg3M7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMSqz7+Em+/OAeuk+crHRTSs5Jw8ysxDbv6mT/W71sfrGz0k0puYZKN8DMrF5cdtdO+vpP/+vrx/ce5vG9h2lsmMKhTVdXsGWl4ysNM7MS2X37VVyzeA5NU/P/tTZNncKaxXPYfcdVFW5Z6ThpmJmVyKwZTUxvbKCv/zSNDVPo6z/N9MYGZk1vqnTTSsbdU2ZmJfTeB33csOxSvrr0Ep7Yd5ieOhsMV0SMvIN0MfAo8AngNLAlIv5S0kzgaWA+8Bbw5Yg4lspsBNYBp4A/iYjnU3wJ8AgwDXgOuC0iQlJj+h1LgP8HfCUi3kpl2oC7UnM2RcTWkdqby+Wio6Mj+7+AmZkh6UBE5EbbL0v3VD/wnyPi08By4FZJi4ANwK6IWAjsSq9JP2sFLgdWA9+VdE6q6wFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcLak5Q5vNzGwCjJo0IuJoRPwobZ8A3gDmAmuAgU/9W4G1aXsN8FRE9EXEm0AXsFTSbGBGROyJ/OXNo0PKDNS1HVghScAqoD0ietNVTDtnEo2ZmZVZUQPhkuYDVwJ7gYsi4ijkEwswK+02F3i7oNiRFJubtofGB5WJiH7gfeCCEeoyM7MKyJw0JP0G8DfANyPi+Ei7DhOLEeJjLVPYtvWSOiR19PT0jNA0MzMbj0xJQ9JU8gnj+xHxtyn8bupyIj13p/gR4OKC4vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWrIckpmZjcGoSSONLTwEvBER/73gRzuAtrTdBjxbEG+V1ChpAfkB732pC+uEpOWpzhuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBWabcfgHYDbxKfsotwLfIj2tsAy4BDgPXR0RvKnMncBP5mVffjIidKZ7jzJTbncA30pTbJuAx8uMlvUBrRPwslbkp/T6AP4uIh0dpbw/w84zHXy0uBN6rdCPGycdQHXwM1aPWjuPSiBi1q2bUpGETT1JHlvnR1czHUB18DNWjXo5jKC8jYmZmmTlpmJlZZk4a1WFLpRtQAj6G6uBjqB71chyDeEzDzMwy85WGmZll5qQxAST9laRuSa8VxH5L0h5Jr0r6n5JmpPjHJD2c4j+W9LsFZX4g6ZCkV9Jj1jC/bqKO4WJJ/0fSG5IOSrotxWdKapfUmZ6bC8pslNSV2ryqIL4kHV+XpM3pPp1aO4aKnItij0HSBWn/DyR9Z0hdNXEeRjmGmnlPSPp9SQfSv/kBSV8sqKsi56IkIsKPEj+A3wE+B7xWENsP/Lu0fRNwb9q+FXg4bc8CDgBT0usfALkKHcNs4HNpezrwz8Ai4M+BDSm+Abg/bS8Cfgw0AguAnwLnpJ/tA36b/LIwO4Gra/AYKnIuxnAM5wFfAL4OfGdIXbVyHkY6hlp6T1wJzEnbVwC/qPS5KMXDVxoTICL+nvxNioUuA/4+bbcDf5i2F5FfWp6I6AZ+BVR8bneUZ3XjmjiGcrT1bIo9hoj4dUT8X2DQN//U0nk42zFU2hiO4+WIGFj26CDQpPxKGRU7F6XgpFE+rwHXpO3rObOm1o+BNZIalF92ZQmD19t6OF2G/5dKXcJq4lY3LptxHsOAip6LjMdwNrV0HkZTK++JQn8IvBwRfVTJuRgrJ43yuYn8F1gdIH9p+y8p/lfk/2g6gL8A/pH88isAN0TEZ4B/mx5fK2uLmfDVjcuiBMcAFT4XRRzDWasYJlat52EktfSeGNj/cvJfLPfHA6FhdquZaaxOGmUSET+JiJURsQR4knx/ORHRHxF/GhGLI2IN8HGgM/3sF+n5BPAEZe4q0cSvbjzhSnQMFT0XRR7D2dTSeTirGntPIGke8AxwY0T8NIUrei7Gy0mjTAZmeUiaQv47z/9Hen2upPPS9u8D/RHxeuquujDFpwJ/QL6Lq1ztLcfqxjVxDJU8F2M4hmHV2Hk4Wz019Z6Q9HHgfwEbI+IfBnau5LkoiUqPxNfjg/yVxFHgQ/KfKtYBt5GfbfHPwH2cubFyPnCI/KDai+RXmoT8DJIDwD+RH0T7S9JMnjIdwxfIXzL/E/BKevx78t+ouIv81dAuYGZBmTvJX0EdomA2CPmB/dfSz74zcOy1cgyVPBdjPIa3yE/E+CD9/S2qwfPwkWOotfcE+Q+Hvy7Y9xVgViXPRSkeviPczMwyc/eUmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmltn/B3v28ZbrUIyxAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
" yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2020 221186\n",
"2023 366227\n",
"2021 376290\n",
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2022 641397\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" yearly_incidence.sort_values()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Une analyse rapide nous montre que l'incidence des cas de varicelles annuel est plutôt stable à travers le temps et que le nombre de cas recensés se trouve globalement entre 600000 et 800000. On peut également s'apercevoir que les plus petites incidences se retrouvent sur les années 2020, 2021 et 2023. Cette constatation nous fait directement penser à la période de COVID et aux confinements associés qui ont dus grandements freiner la propagation du virus. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Traçons l'histogramme de ces données pour confirmer notre analyse sur la distribution de l'incidence annuel de la varicelle."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f2135dbbf28>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEuVJREFUeJzt3X2wXHV9x/H3l0Q0cCGigUsbtKFIqZSolGvxYUrvBXVQqFa0VUQLHW3s+ERtOg51QLT1Ia3iaB1oJyqCol4V7MiD9WHUq+IDkoBjwIhQQSQoikr0UgQC3/7xO5feXBOSu2dzd89v3q+ZTM6e3T37/d6z+9mzv3PObmQmkqTu223QBUiS+sNAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFVi8UI+2LJly3LFihVbzbvzzjvZc889F7KMvrOH4WAPw8Ee+m/9+vW3Z+a+O7rdggb6ihUrWLdu3VbzpqamGB8fX8gy+s4ehoM9DAd76L+I+OHO3M4hF0mqhIEuSZUw0CWpEga6JFXCQJekSuww0CPi3Ij4aURcM2veIyLi8xFxffP/Pru2TEnSjuzMFvp5wLFz5p0GfCEzDwa+0FyWJA3QDgM9M78C/GLO7OcA5zfT5wN/0ee6JEnzFDvzm6IRsQK4NDMPay7fkZkPn3X9LzNzm8MuEbEKWAUwOjp6xOTk5FbXT09PMzIy0mv9Q8EehkNXe9iwafMD06NL4La7FuZxVy5fukuW29X1MNuw9TAxMbE+M8d2dLtdfqZoZq4F1gKMjY3l3LOvhu2MrF7Yw3Doag+nnHbZA9OrV27hrA0LcwL3TSeN75LldnU9zNbVHno9yuW2iPgdgOb/n/avJElSL3oN9IuBk5vpk4FP9accSVKvduawxY8C3wAOiYhbIuKlwBrg6RFxPfD05rIkaYB2OFiXmSdu56pj+lyLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEayPi2oi4JiI+GhEP61dhkqT56TnQI2I58BpgLDMPAxYBL+xXYZKk+Wk75LIYWBIRi4E9gFvblyRJ6kXPgZ6Zm4B3ADcDPwY2Z+bn+lWYJGl+IjN7u2PEPsBFwAuAO4BPABdm5gVzbrcKWAUwOjp6xOTk5FbLmZ6eZmRkpKcahoU9DIeu9rBh0+YHpkeXwG13Lczjrly+dJcst6vrYbZh62FiYmJ9Zo7t6HaLWzzG04AbM/NnABHxSeApwFaBnplrgbUAY2NjOT4+vtVCpqammDuva+xhOHS1h1NOu+yB6dUrt3DWhjYvy51300nju2S5XV0Ps3W1hzZj6DcDT4qIPSIigGOAjf0pS5I0X23G0K8ALgSuAjY0y1rbp7okSfPU6rNdZp4JnNmnWiRJLXimqCRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEwyPiwoj4XkRsjIgn96swSdL8LG55/3cDn8nM50fE7sAefahJktSDngM9IvYGjgJOAcjMe4B7+lOWJGm+IjN7u2PEE4C1wHeBxwPrgVMz8845t1sFrAIYHR09YnJycqvlTE9PMzIy0lMNw8IehkNXe9iwafMD06NL4La7BlhMH+xMDyuXL12YYno0bM+liYmJ9Zk5tqPbtQn0MeCbwFMz84qIeDfwq8w8Y3v3GRsby3Xr1m01b2pqivHx8Z5qGBb2MBy62sOK0y57YHr1yi2ctaHtSOhg7UwPN605boGq6c2wPZciYqcCvc1O0VuAWzLziubyhcAft1ieJKmFngM9M38C/CgiDmlmHUMZfpEkDUDbz3avBj7cHOHyA+Bv2pckSepFq0DPzG8DOxzXkSTtep4pKkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SapE60CPiEURcXVEXNqPgiRJvenHFvqpwMY+LEeS1EKrQI+IA4DjgPf1pxxJUq8iM3u/c8SFwNuAvYB/zMzjt3GbVcAqgNHR0SMmJye3un56epqRkZGeaxgG9jAc2vSwYdPmPlfTm9ElcNtdg66iHXvYtpXLl/Z834mJifWZObaj2y3u9QEi4njgp5m5PiLGt3e7zFwLrAUYGxvL8fGtbzo1NcXceV1jD8OhTQ+nnHZZf4vp0eqVWzhrQ88vy6FgD9t200njfV3etrQZcnkq8OyIuAmYBI6OiAv6UpUkad56DvTM/KfMPCAzVwAvBL6YmS/uW2WSpHnxOHRJqkRfBokycwqY6seyJEm9cQtdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0XOgR8SjIuJLEbExIq6NiFP7WZgkaX4Wt7jvFmB1Zl4VEXsB6yPi85n53T7VJkmah5630DPzx5l5VTP9a2AjsLxfhUmS5icys/1CIlYAXwEOy8xfzbluFbAKYHR09IjJycmt7js9Pc3IyEjrGgZpV/WwYdPmvi9ze0aXwG13lemVy5cu2OP2U5v1sJB/6wczez10lT1sW5vX1cTExPrMHNvR7VoHekSMAF8G3pKZn3yw246NjeW6deu2mjc1NcX4+HirGgZtV/Ww4rTL+r7M7Vm9cgtnbSgjcDetOW7BHref2qyHhfxbP5jZ66Gr7GHb2ryuImKnAr3VUS4R8RDgIuDDOwpzSdKu1eYolwDeD2zMzHf2ryRJUi/abKE/FXgJcHREfLv596w+1SVJmqeeB4ky83Ig+liLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEp354b9B/uZjV39js4varOfVK7dwypD8Nqg0CG6hS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0SrQI+LYiLguIm6IiNP6VZQkaf56DvSIWAScDTwTOBQ4MSIO7VdhkqT5abOF/ifADZn5g8y8B5gEntOfsiRJ8xWZ2dsdI54PHJuZL2suvwQ4MjNfNed2q4BVzcVDgOvmLGoZcHtPRQwPexgO9jAc7KH/fi8z993Rjdr8SHRsY95vvTtk5lpg7XYXErEuM8da1DFw9jAc7GE42MPgtBlyuQV41KzLBwC3titHktSrNoF+JXBwRBwYEbsDLwQu7k9ZkqT56nnIJTO3RMSrgM8Ci4BzM/PaHha13eGYDrGH4WAPw8EeBqTnnaKSpOHimaKSVAkDXZIqYaBLUiU6GegRcXREHDjoOtroeg9dr39GDX3Yw+ANS/2d2inafFfMJHAHcD9wZmZ+ebBVzU/Xe+h6/TNq6MMeBm/Y6h/qLfSIOCAi9p416wXARZl5FOWPeGJEPHkw1e2crvcwn/ojYltnDw+Frq8HsIdhMOz1D2WgR8RjI+LTwOXAP0fEzJd+/QbYo5n+OOW7Fp40jEHS9R56qT+H8ONe19cD2MMw6Er9QxPoEbHnrItPAG7JzBXAF4F3NPN/AdwdEXtl5i+A7wOjwIoFLHW7ut7Dg9T/JX67/pGm/usZkvpndH09gD0wBD10sf6BBnpE7BMR50XElcCaiNi3eWd7HPC1ZqvvYuCOiDiO8sfaC1jZLOJ6yrei3TOI+qH7PTxI/Stn1f+pbdT/uGYR3x9k/TO6vh7AHppFDOvroRP1D3oL/ShgC/Asyrc3vh7Ym1LX/rM+wp8PvAj4FvBryo9qkJnfAI4GfrWwZW+l6z1sr/5FdKP+GV1fD2APw9BDt+vPzF3+jxIOLwe+TPlu9GXN/I8Dr2mmDwTWNNc/kTJWtai5bgT4WbOc5cBG4FXAB4BzgD3soe76a+rDHgbfQ9fr396/hdpCPx54NvAm4MnAvzXzPw88pZn+EfBV4JmZeSXl3XECIDOngSuAJ2bmJuAllHGqnwCnZ+b/2kP19dfUhz0Mvoeu179NbX7gYiszRzlExBMpH0W+ClyWmXcDfwD8IDO/GBE3Am+PiGcA64HnRsSyzLw9Iq4H7oyIRwPvAV4cEftRvmv955SPN2TmOmBdv2qvpYeu119bH00v9uDrYcH0ZQt91h/uKOBcyqE8TwPe1tzkfuD7EbEkM2+kfDx5HGXs6VbKsZwA91E+wuwGXET5CsuTgCOAtZl5fz/q3U4Pi5oe/ozysalTPTR1ZUSM09F10PSxd9f7iIhHNv8/BTivoz3sFxGPjIgxynhxp3qIiN27/HruWa9jNZRjL/8O+Ajwt8BDgL8HXtlcvw/wHeBwyh9nDbCiue54yh9mWTO9AVhK2ZnwaWD3WY+zW7/HmWYte0/gZZQVtZqy86NrPewFXEb5PnqA13ap/lnPpZOBL1BO0uhUH/z/Gdd/SRlnnaL8fm7Xnkt7AqdQhh02A8d1qQdKBr0CuAT4D+AxwKldqb8f/3raQo+I/YFLgXHgQ5SdBidQxqK2AGTmL4FPAa9pniD7AY9tFvEV4M+AezLzUuD9wIXA2ZStgXtnHit33Tv4npQAORp4L/AM4HmUnR/3d6GHxhLgocBBEbEMOIiyRdGJ+iPiIcC1wPOBt2fm85qrDp/1+EPdR2ZmRCwF/gp4V2aOZ+Z1lK24TvQQEY+hDEkcA5wObAJupuwY7Mrz6ZWU1/O7KL9vfEJz+b6O1N9ej++ES4AjZ10+hbJT4WTgW7Pm/y5wazP9Ssqpsfs0978EePSs2y5b6Hcz4OGzpl9HWdEndayHk4G3A2cALwX+HLiyK/U3j/tJ4KQ5814AXNGVPihbhv/STM9ssZ/QlR4oof3QWZfPpbzJPqdDPVwC/HUz/VLg1c3zqDOv57b/eh1D/w3wreaAeygfY47MzPMpW4r7A2TmrcC1EXFkZp4N3AB8jPID05dn5s0zC8zM23uspWeZeUdE7B0R51GGXJZRVupBETE6zD3M+tvvBvwPZSv36My8BDhw2Ouf41zgzIg4KyKmIuINwDcpv1m7X1PbsPdxO/CnEXESsD4izqdsGf5h88lpqHvIzPuy7Cyc2QcQlC+cuoSyHrrwmv5v4OSI+ATwRuDxwDVN/ft2oP72Wr4jzmyJnA+c2kx/CPjXZvoRwPto3vUoY1yHAQ8b9DvZnD5eQflouZYypv514A2UJ/VQ9wB8grJ1tZRyTO3plCfxGR1bB5+lnMTxKMoL7FTgGx1aDwc39f47ZYvvRcA7Kccqv47yxjvUPczp52rghGb6gq68ppvX77mUjbM3AmcC1zXPrU6tg17+tTrKJTMzIg4A9qe8O9L8EYmISylj1IuyedfLzHsz85rM/E2bx+23zDwny57ucyjjnv9J+Qh2MUPcQ0SMULYM3wt8hrKX/kjgRGCfiLiEIa5/judm5lsz80fAWymHlb2HDqyHxs2U070XZxmrvbSZdyllp28XeiAiZjLhcspORYC3lKs68Xw6FJjKsnX9AcrGzkfpzvOolX4ch344ZY/wjRHxMspHl9dTxq6+l5lX9eExFsrPKTsVT8/MD0bEi4FrM/PqAde1PVsoYXEvZcv8PuD1mbkB+IcO1P+A3PpEjDsogX5GZn6kC31k5t0RsQZ4czNrN8pBAmsy8+ou9ABlh19EzHx74A3NvI3A65rhpO8Oaw8RsYiSP0cBHwTupBzk8IrMvLEr66CN1j9wERFfA34fuIly/OabMvM77UtbGM3RCcdQPiIfShl2OTsz733QOw6h5uSHE4DJzPzJoOuZj4h4KHAs5Yy7P6IcdnZOZm4ZaGHzFBFvobweDgc+R/nBg18Otqr5i4jrgDdk5sdmzjMZdE07IyIOoryG76Gsh/8C3pzlzM7qtQr05pCzM4EbgQuy2anSJRGxmPKdDndTeujcR69my+T+rrzoticiXk45ZPRDXVwPMyLiEOCHXexh1kmCT6DsaN/StedVs2FzMPD1zLxr0PUspE79BJ0kafsG/fW5kqQ+MdAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJf4Pm1ZPCOJC1cIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.hist(xrot=20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On constate bien un pique de distribution autour des 600 000 cas avec une plus grande régularité d'avoir plus de 650 000 cas que moins de 600 000. Quand aux incidences annuelles plus faibles (moins de 400 000 cas), on constate qu'elles correspondent plutôt à des situations exceptionnelles."
]
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment