You need to sign in or sign up before continuing.

Set a color for each piece personnage

parent 8787a94c
......@@ -1325,7 +1325,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 14,
"metadata": {},
"outputs": [
{
......@@ -1441,7 +1441,7 @@
"5753 Harpagon"
]
},
"execution_count": 16,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1486,10 +1486,96 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE+9JREFUeJzt3X+MXPV57/H3s2sv9rqG0OziNraJXRRxb0qagDZVbizRCBrhNhQaiURJSYWaVpal/gj9ofyodYuiKypXrVoqtaplASFSXQh1EzXlpjgIWllJG8RiSA3xTVPqgO2A2QVjLK/N2rvP/WNmjXfZ9e7snNmZc+b9ktDsPHPw+cje/fj4e87MicxEklR+Pe0OIEkqhoUuSRVhoUtSRVjoklQRFrokVYSFLkkVYaFLUkVY6JJUERa6JFXEsqXc2cDAQG7YsGEpdylJpffkk0+OZubgfNstaaFv2LCB4eHhpdylJJVeRDy/kO1ccpGkirDQJakiLHRJqggLXZIqwkKXpIqYt9Aj4t6IeDkinpnltT+IiIyIgdbEk6SS27ULNmyAnp7a465dLdvVQo7Q7wM2zxxGxHrgw8ALBWeSpGrYtQu2bIHnn4fM2uOWLS0r9XkLPTP3Aq/O8tJfAJ8FvIedJM1m2zYYG5s+GxurzVtgUWvoEXETcCQzv7uAbbdExHBEDI+MjCxmd5JUTi/MsYAx17xJDRd6RPQD24A/Wsj2mbkzM4cyc2hwcN53rkpSdVx+eWPzJi3mCP0KYCPw3Yj4IbAO2BcRP1FkMEkqvTvvhP7+6bP+/tq8BRou9Mzcn5mXZeaGzNwAHAauycyXCk8nSWV2662wcye8850QUXvcubM2b4F5P5wrIu4HPgQMRMRh4I7MvKclaSSpam69tWUFPtO8hZ6Zn5zn9Q2FpZEkLZrvFJWkirDQJakiLHRJqggLXZIqwkKXpIqw0CUJYM/X4KMfgA9eXnvc87V2J2rYkt4kWpI60p6vwfbPwelTtecvHak9B7jho+3L1SCP0CVpx5+8WeZTTp+qzUvEQpekoz9qbN6hLHRJWvOOxuYdykKXpK2fgxUrp89WrKzNS8STopI0deJzx5/UllnWvKNW5iU6IQoWuiTV3PDR0hX4TC65SFJFWOiSVBEWuiRVhIUuSRVhoUtSRVjoklQRC7lJ9L3AjcDLmXlVffanwC8B48BzwK9l5mutDCpJADyxBx7aAceOwqVr4Mat8P4b2p2qIyzkCP0+YPOM2SPAVZn5M8B/Al8oOJckvdUTe+CB7XDsJSBrjw9sr801f6Fn5l7g1Rmzb2bm2frT7wDrWpBNkqZ7aAecOT19duZ0ba5C1tA/DfzzXC9GxJaIGI6I4ZGRkQJ2J6lrHTva2LzLNFXoEbENOAvsmmubzNyZmUOZOTQ4ONjM7iR1u0vXNDbvMosu9Ii4jdrJ0lszM4uLJElzuHErLF8xfbZ8RW2uxX04V0RsBj4H/FxmjhUbSZLmMHU1i1e5zGohly3eD3wIGIiIw8Ad1K5quQh4JCIAvpOZ/hUpqfXef4MFPod5Cz0zPznL+J4WZJEkNcF3ikpSRVjoklQRFrokVYSFLkkVYaFLUkVY6JJUEYt6Y5Ekzeu5vTD8d3DyFVj1dhj6Fbji2nanqjQLXVLxntsL39oBE+O15ydHa8/BUm8hl1wkFW/4794s8ykT47W5WsZCl1S8k680NlchLHRJxVv19sbmKoSFLql4Q78CvX3TZ719tblaxpOikoo3deLTq1yWlIUuqTWuuNYCX2IuuUhSRVjoklQRFrokVYSFLkkVYaFLUkXMW+gRcW9EvBwRz5w3+/GIeCQiflB/vLS1MSVJ81nIEfp9wOYZs88Dj2bmu4BH688lldQbo8O89tQXefXx23ntqS/yxuhwuyNpEeYt9MzcC7w6Y3wz8OX6118GfrngXJKWyBujw5w8+BUmx48BMDl+jJMHv2Kpl9Bi19DXZOaLAPXHy4qLJGkpnTr0f2HyzPTh5JnaXKXS8pOiEbElIoYjYnhkZKTVu5PUoKkj84XO1bkWW+hHI+InAeqPL8+1YWbuzMyhzBwaHBxc5O4ktUpP3+zXNMw1V+dabKF/Hbit/vVtwD8WE0fSUlu5/iPQs3z6sGd5ba5SmffDuSLifuBDwEBEHAbuALYDD0bErwMvAB9rZUhJrXPRwBBQW0ufHD9GT9+lrFz/kXNzlce8hZ6Zn5zjpesLziKpTS4aGLLAK8B3ikpSRVjoklQRFrokVYSFLkkVYaFLUkVY6JJUEd4kWiqR0bFnOXRiL+OTr9PXczHrV1/LQP9PtzuWOoSFLpXE6NizHDz+MJOcBWB88nUOHn8YwFIX4JKLVBqHTuw9V+ZTJjnLoRN725RIncZCl0pifPL1hubqPha6VBJ9PRc3NFf3sdClkli/+lp6Zpz26mEZ61df26ZE6jSeFJVKYurEp1e5aC4WulQiA/0/bYFrTi65SFJFWOiSVBEWuiRVhIUuSRVhoUtSRTRV6BHxuxHxbEQ8ExH3R8SKooJJkhqz6MsWI2It8DvAuzPzVEQ8CHwCuK+gbFJpHTz7HE9P7GOMk/Szivf1XsPGZVe0O5Yqrtnr0JcBKyPiDNAP/Kj5SFK5HTz7HI9P/BsTTAAwxkken/g3AEtdLbXoJZfMPAL8GfAC8CJwPDO/WVQwqayenth3rsynTDDB0xP72pRI3WLRhR4RlwI3AxuBdwCrIuJTs2y3JSKGI2J4ZGRk8UmlkhjjZENzqSjNnBT9eeBgZo5k5hngq8AHZ26UmTszcygzhwYHB5vYnVQO/axqaC4VpZlCfwH4QET0R0QA1wMHioklldf7eq+hl95ps156eV/vNW1KpG6x6JOimfl4ROwG9gFngaeAnUUFk8pq6sSnV7loqTV1lUtm3gHcUVAWqTI2LrvCAteS852iklQRFrokVYSFLkkVYaFLUkVY6JJUERa6JFWEN4lWV9vPER7j+xznFJewkuu4kvewtt2xpEWx0NW19nOEh9jPmfoHaR3nFA+xH8BSVym55KKu9RjfP1fmU84wwWN8v02JpOZY6OpaxznV0FzqdBa6utYlrGxoLnU6C11d6zquZPmMT0VcTi/XcWWbEknN8aSoutbUiU+vclFVWOjqau9hrQWuynDJRZIqwkKXpIqw0CWpIix0SaoIC12SKsJCl6SKaOqyxYh4G3A3cBWQwKcz89+LCCbN9O2zozw4cYhRxhmgj4/3rmfTsoF2x5I6RrPXof8l8HBm3hIRfUB/AZmkt/j22VHunjjIOJMAjDLO3RMHASx1qW7RSy4RcTFwLXAPQGaOZ+ZrRQWTzvfgxKFzZT5lnEkenDjUpkRS52lmDf2ngBHgSxHxVETcHRGrZm4UEVsiYjgihkdGRprYnbrZKOMNzaVu1EyhLwOuAf4mM68GTgKfn7lRZu7MzKHMHBocHGxid+pmA/Q1NJe6UTOFfhg4nJmP15/vplbwUuE+3ruevhnfrn308PHe9W1KJHWeRRd6Zr4EHIqIqc8avR74XiGppBk2LRvgN3o3njsiH6CP3+jd6AlR6TzNXuXy28Cu+hUu/w38WvORpNltWjZggUsX0FShZ+bTwFBBWSRJTfCdopJUERa6JFWEhS5JFWGhS1JFWOiSVBHeJFqFe3jsODtOjHJ08ixrepaxdfUAm/svaXcsqfIsdBXq4bHjbD9+lNMkAC9NnmX78aMAlrrUYi65qFA7ToyeK/Mpp0l2nBhtUyKpe1joKtTRybMNzSUVx0JXodb0zL6KN9dcUnEsdBVq6+oBVhDTZisItq72M1ikVvOwSYWaOvHpVS7S0rPQVbjN/ZdY4FIbuOQiSRVhoUtSRVjoklQRFrokVYSFLkkVYaFLUkU0XegR0RsRT0XEQ0UE0tLZPTrGe586ysDjL/Lep46ye3Ss3ZEkNaGI69A/AxwALi7g19IS2T06xu0Hj3Nqsvb88Pgktx88DsAtA/1tTCZpsZo6Qo+IdcBHgLuLiaOl8n8OnThX5lNOTdbmksqp2SWXu4DPApNzbRARWyJiOCKGR0ZGmtydinJkfPY/srnmkjrfogs9Im4EXs7MJy+0XWbuzMyhzBwaHBxc7O5UsLV9s//RzzWX1Pma+endBNwUET8EHgCui4i/LSSVWu5/r1/Nyhl/+it7anNJ5bToQs/ML2TmuszcAHwCeCwzP1VYMrXULQP93LXxEtb19RDAur4e7tp4iSdEpRLz0xa72C0D/Ra4VCGFFHpm/ivwr0X8WpKkxfEMmCRVhIUuSRVhoUtSRVjoklQRFrokVYSFLkkVYaGXwO7nxrn6Kye47N7XuforJ9j93Hi7I0nqQL6xqMPtfm6c3/vWaU5N1J4fPpn83rdOA3DLFX1tTCap03iE3uHuHH7jXJlPOTVRm0vS+Sz0DnfkZDY0l9S9LPQOt3ZVNDSX1L0s9A63begiVvZOn63src0l6XyeFO1wUyc+7xx+gyMnk7Wrgm1DF3lCVNJbWOglcMsVfRa4pHm55CJJFWGhS1JFWOiSVBEWuiRVhIUuSRWx6EKPiPUR8S8RcSAino2IzxQZTJLUmGYuWzwL/H5m7ouI1cCTEfFIZn6voGyltOeJCXY8NMHRY7DmUth6Yy83vL93/v9Rkpq06ELPzBeBF+tfn4iIA8BaoGsLfc8TE2x/YILTZ2rPXzoG2x+ofbKWpS6p1QpZQ4+IDcDVwONF/HplteOhN8t8yukztbkktVrThR4RPwb8A3B7Zr4+y+tbImI4IoZHRkaa3V1HO3qssbkkFampQo+I5dTKfFdmfnW2bTJzZ2YOZebQ4OBgM7vreGsubWwuSUVq5iqXAO4BDmTmnxcXqby23tjLiuXTZyuW1+aS1GrNXOWyCfhVYH9EPF2f/WFmfqP5WOU0deLTq1wktUMzV7l8C/AuCzPc8H4LXFJ7+E5RSaoIC12SKsJCl6SKsNAlqSIsdEmqCAtdkiqia28S/e09k/z9DnjlKLx9DXxsK2y6wb/fJJVXVxb6t/dMcu92GD9de/7KS3DvdoBJS11SaXVle/39jjfLfMr46dpcksqqKwv9laONzSWpDLqy0N++prG5JJVBVxb6x7ZC34rps74VtbkklVVXnhStnfj0KhdJ1dKVhQ618t50Q7tTSFJxPCSVpIqw0CWpIix0SaoIC12SKsJCl6SKaKrQI2JzRHw/Iv4rIj5fVChJUuMWXegR0Qv8NfALwLuBT0bEu4sKNmX/LrhrA3yxp/a4f1fRe5CkamjmCP1ngf/KzP/OzHHgAeDmYmLV7N8F/7QFjj8PZO3xn7ZY6pI0m2YKfS1w6Lznh+uzwjy6Dc6MTZ+dGavNJUnTNVPoMcss37JRxJaIGI6I4ZGRkYZ2cPyFxuaS1M2aKfTDwPrznq8DfjRzo8zcmZlDmTk0ODjY0A4uubyxuSR1s2YK/QngXRGxMSL6gE8AXy8mVs31d8Ly/umz5f21uSRpukV/OFdmno2I3wL2AL3AvZn5bGHJgPfcWnt8dFttmeWSy2tlPjWXJL2pqU9bzMxvAN8oKMus3nOrBS5JC+E7RSWpIix0SaoIC12SKsJCl6SKsNAlqSIi8y1v7mzdziJGgOcX+b8PAKMFxmm1MuUtU1YoV94yZYVy5S1TVmgu7zszc953Zi5poTcjIoYzc6jdORaqTHnLlBXKlbdMWaFcecuUFZYmr0suklQRFrokVUSZCn1nuwM0qEx5y5QVypW3TFmhXHnLlBWWIG9p1tAlSRdWpiN0SdIFlKLQy3Iz6ohYHxH/EhEHIuLZiPhMuzPNJyJ6I+KpiHio3VnmExFvi4jdEfH/6r/H/6vdmS4kIn63/n3wTETcHxEr2p1pSkTcGxEvR8Qz581+PCIeiYgf1B8vbWfG882R90/r3wv/ERFfi4i3tTPjlNmynvfaH0RERsRAK/bd8YW+VDejLshZ4Pcz838CHwB+s4OzTvkMcKDdIRboL4GHM/N/AO+lg3NHxFrgd4ChzLyK2kdMf6K9qaa5D9g8Y/Z54NHMfBfwaP15p7iPt+Z9BLgqM38G+E/gC0sdag738dasRMR64MNAy+651vGFzhLcjLoomfliZu6rf32CWuEUep/VIkXEOuAjwN3tzjKfiLgYuBa4ByAzxzPztfammtcyYGVELAP6meWOXu2SmXuBV2eMbwa+XP/6y8AvL2moC5gtb2Z+MzPP1p9+h9pd09pujt9bgL8APssst+osShkKveU3o26FiNgAXA083t4kF3QXtW+wyXYHWYCfAkaAL9WXiO6OiFXtDjWXzDwC/Bm1o7EXgeOZ+c32pprXmsx8EWoHJ8Blbc7TiE8D/9zuEHOJiJuAI5n53VbupwyFvqCbUXeSiPgx4B+A2zPz9XbnmU1E3Ai8nJlPtjvLAi0DrgH+JjOvBk7SWUsC09TXn28GNgLvAFZFxKfam6qaImIbteXOXe3OMpuI6Ae2AX/U6n2VodAXdDPqThERy6mV+a7M/Gq781zAJuCmiPghtWWs6yLib9sb6YIOA4czc+pfPLupFXyn+nngYGaOZOYZ4KvAB9ucaT5HI+InAeqPL7c5z7wi4jbgRuDW7NxrsK+g9hf7d+s/b+uAfRHxE0XvqAyF3vKbURclIoLaGu+BzPzzdue5kMz8Qmauy8wN1H5PH8vMjj2CzMyXgEMRcWV9dD3wvTZGms8LwAcior/+fXE9HXwSt+7rwG31r28D/rGNWeYVEZuBzwE3ZeZYu/PMJTP3Z+Zlmbmh/vN2GLim/j1dqI4v9PpJj6mbUR8AHiz6ZtQF2gT8KrWj3afr//1iu0NVyG8DuyLiP4D3AX/c5jxzqv9LYjewD9hP7WetY97ZGBH3A/8OXBkRhyPi14HtwIcj4gfUrsbY3s6M55sj718Bq4FH6j9rO9oasm6OrEuz7879V4okqREdf4QuSVoYC12SKsJCl6SKsNAlqSIsdEmqCAtdkirCQpekirDQJaki/j/iEpsFyBdzggAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from matplotlib import cm\n",
"\n",
"# On affiche une sélection automatique de couleur dans une colormap\n",
"# matplotlib\n",
"nbPersos = len(persoList)\n",
"color = iter(cm.rainbow(np.linspace(0, 1, nbPersos)))\n",
"for i in range(nbPersos):\n",
" c = next(color)\n",
" plt.plot(i, i, 'o', c=c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette sélection nous convient, on va affecter ces couleurs aux personnages."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Harpagon': {'links': [\"Père de Cléante et d'Élise\", 'Amoureux de Mariane'],\n",
" 'color': array([1.0000000e+00, 1.2246468e-16, 6.1232340e-17, 1.0000000e+00])},\n",
" 'Cléante': {'links': [\"Fils d'Harpagon\", 'Amant de Mariane'],\n",
" 'color': array([1. , 0.21994636, 0.11065268, 1. ])},\n",
" 'Élise': {'links': [\"Fille d'Harpagon\", 'Amante de Valère'],\n",
" 'color': array([0.64509804, 0.9741386 , 0.62211282, 1. ])},\n",
" 'Valère': {'links': [\"Fils d'Anselme\", \"Amant d'Élise\"],\n",
" 'color': array([1. , 0.42912061, 0.21994636, 1. ])},\n",
" 'Mariane': {'links': ['Amante de Cléante', \"aimée d'Harpagon\"],\n",
" 'color': array([0.50392157, 0.99998103, 0.70492555, 1. ])},\n",
" 'Anselme': {'links': ['Père de Valère et de Mariane'],\n",
" 'color': array([0.35490196, 0.9741386 , 0.78292761, 1. ])},\n",
" 'Frosine': {'links': [\"Femme d'Intrigue\"],\n",
" 'color': array([1. , 0.61727822, 0.32653871, 1. ])},\n",
" 'Maitre Simon': {'links': ['Courtier'],\n",
" 'color': array([0.07254902, 0.78292761, 0.9005867 , 1. ])},\n",
" 'Maitre Jacques': {'links': [\"Cuisinier et Cocher d'Harpagon\"],\n",
" 'color': array([0.92745098, 0.78292761, 0.43467642, 1. ])},\n",
" 'La Flèche': {'links': ['Valet de Cléante'],\n",
" 'color': array([0.78627451, 0.9005867 , 0.53165947, 1. ])},\n",
" 'Dame Claude': {'links': [\"Servante d'Harpagon\"],\n",
" 'color': array([0.5, 0. , 1. , 1. ])},\n",
" 'Brindavoine': {'links': [\"laquais d'Harpagon\"],\n",
" 'color': array([0.21764706, 0.42912061, 0.97551197, 1. ])},\n",
" 'La Merluche': {'links': [\"laquais d'Harpagon\"],\n",
" 'color': array([0.07647059, 0.61727822, 0.94518383, 1. ])},\n",
" 'Le commissaire': {'links': [],\n",
" 'color': array([0.21372549, 0.9005867 , 0.84695821, 1. ])},\n",
" 'son clerc': {'links': ['assistant du commissaire'],\n",
" 'color': array([0.35882353, 0.21994636, 0.99385914, 1. ])}}"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"color = iter(cm.rainbow(np.linspace(0, 1, nbPersos)))\n",
"for i in range(nbPersos):\n",
" c = next(color)\n",
" perso = sortedData[\"perso\"].iloc[i]\n",
" #print(perso)\n",
" avarePersoDict[perso][\"color\"] = c\n",
"\n",
"avarePersoDict"
]
},
{
"cell_type": "markdown",
......@@ -1507,15 +1593,33 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5\n"
"ename": "TypeError",
"evalue": "Argument 'obj' has incorrect type (expected list, got DataFrame)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-15-49d3f95199b9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mactDict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"scene\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msceneNum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0msceneDf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mactDf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mactDf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"scene\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0msceneNum\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0mscenePersos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munique\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msceneDf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 28\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mperso\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mactPersos\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0mtmpDf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msceneDf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0msceneDf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"author\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0mperso\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/algorithms.py\u001b[0m in \u001b[0;36munique\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 349\u001b[0m \"\"\"\n\u001b[1;32m 350\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 351\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ensure_arraylike\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 352\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 353\u001b[0m \u001b[0;31m# categorical is a fast-path\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/algorithms.py\u001b[0m in \u001b[0;36m_ensure_arraylike\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 174\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlist_to_object_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 175\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: Argument 'obj' has incorrect type (expected list, got DataFrame)"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD8CAYAAABq6S8VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAD1ZJREFUeJzt3VGIXmdex/Hvz8SCjmK3pkpJu2yVmDEUF3bGtoiWVS9MehOELTSKpaUwFKl4ucULvfCm3lmxdhlKWHrTXuiiEapFEI2wjXamuLuJ28pY6XZoYYmVSrfQkt2/F2fgnSbTvk9O5p3J8+b7gYGek/Oc9z9/kl9OnzzPmVQVkqR+/dB+FyBJujYGuSR1ziCXpM4Z5JLUOYNckjpnkEtS56YGeZLTSb6b5PxeFCRJujotT+RfBY7PuA5J0khTg7yqzgLv7kEtkqQRDu7WjZKsACsACwsLS4uLi7t1a0mae+vr6xer6tYxY3ctyKtqFVgFWF5errW1td26tSTNvSRvjh3rqhVJ6pxBLkmda1l++DzwMnA0yWaSR2dfliSp1dQ58qo6tReFSJLGcWpFkjpnkEtS5wxySeqcQS5JnTPIJalzBrkkdc4gl6TOGeSS1DmDXJI6Z5BLUucMcknqnEEuSZ0zyCWpcwa5JHXOIJekzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXMGuSR1ziCXpM4Z5JLUOYNckjpnkEtS5wxySeqcQS5JnTPIJalzTUGe5HiS15NsJHli1kVJktpNDfIkB4CngRPAMeBUkmOzLkyS1KblifxuYKOq3qiqj4AXgJOzLUuS1OpgwzWHgbe2HW8C91x+UZIVYGXr8MMk56+9vLlwCLi430VcB+zDhL2YsBcTR8cObAny7HCurjhRtQqsAiRZq6rlsUXNE3sxsA8T9mLCXkwkWRs7tmVqZRO4Y9vx7cDbYz9QkrS7WoL8FeBIkjuT3AQ8CJyZbVmSpFYtUyurwC3AawxP56er6kLDGA3sxcA+TNiLCXsxMboXqbpiuvvjFyT3Ae8Dz1XVXWM/SJI0G1OnVqrqLPDuHtQiSRqhZWqlyfblhwsLC0uLi4u7dWtJmnvr6+sXq+rWMWNHB3mS48BTwAHg2ap6kq05nuXl5VpbG72SRpJuOEneTBKGXL0f+AB4uKpenTZ21Euz3LYvSTNxAjiy9bUCPNMyaOzbD922L0m77yTDwpKqqnPAzUlumzao5aVZzwMvA0eTbCZ5lJ237R8eV7ckacuobJ06R15Vpy4/l+SBnS6ddi9J0qdqeiXK5cZOrbhtX5J236hsHRvkbtuXpN13Bngog3uB96rqnWmDRi0/rKpLSR4HXmJYfni6qi4keQxgaWlpzG0l6Ub3IsPSww2G5YePtAyaukV/DNeRS9LVSbI+9pW+/vBlSeqcQS5JnTPIJalzBrkkdc4gl6TOGeSS1DmDXJI6Z5BLUucMcknqnEEuSZ0zyCWpcwa5JHXOIJekzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXMGuSR1ziCXpM4Z5JLUOYNckjpnkEtS5wxySepcU5AnOZ7k9SQbSZ6YdVGSpHZTgzzJAeBp4ARwDDiV5NisC5MktWl5Ir8b2KiqN6rqI+AF4ORsy5IktTrYcM1h4K1tx5vAPZdflGQFWNk6/DDJ+Wsvby4cAi7udxHXAfswYS8m7MXE0bEDW4I8O5yrK05UrQKrAEnWqmp5bFHzxF4M7MOEvZiwFxNJ1saObZla2QTu2HZ8O/D22A+UJO2uliB/BTiS5M4kNwEPAmdmW5YkqVXL1MoqcAvwGsPT+emqutAwRgN7MbAPE/Ziwl5MjO5Fqq6Y7v74Bcl9wPvAc1V119gPkiTNxtSplao6C7y7B7VIkkZomVppsn354cLCwtLi4uJu3VqS5t76+vrFqrp1zNjRQZ7kOPAUcAB4tqqeZGuOZ3l5udbWRq+kkaQbTpI3k4QhV+8HPgAerqpXp40d9dIst+1L0kycAI5sfa0Az7QMGvv2Q7ftS9LuO8mwsKSq6hxwc5Lbpg1qeWnW88DLwNEkm0keZedt+4fH1S1J2jIqW6fOkVfVqcvPJXlgp0un3UuS9KmaXolyubFTK27bl6TdNypbxwa52/YlafedAR7K4F7gvap6Z9qgUcsPq+pSkseBlxiWH56uqgtJHgNYWloac1tJutG9yLD0cINh+eEjLYOmbtEfw3XkknR1kqyPfaWvP3xZkjpnkEtS5wxySeqcQS5JnTPIJalzBrkkdc4gl6TOGeSS1DmDXJI6Z5BLUucMcknqnEEuSZ0zyCWpcwa5JHXOIJekzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXMGuSR1ziCXpM4Z5JLUOYNckjrXFORJjid5PclGkidmXZQkqd3UIE9yAHgaOAEcA04lOTbrwiRJbVqeyO8GNqrqjar6CHgBODnbsiRJrQ42XHMYeGvb8SZwz+UXJVkBVrYOP0xy/trLmwuHgIv7XcR1wD5M2IsJezFxdOzAliDPDufqihNVq8AqQJK1qloeW9Q8sRcD+zBhLybsxUSStbFjW6ZWNoE7th3fDrw99gMlSburJchfAY4kuTPJTcCDwJnZliVJatUytbIK3AK8xvB0frqqLjSM0cBeDOzDhL2YsBcTo3uRqiumuz9+QXIf8D7wXFXdNfaDJEmzMXVqparOAu/uQS2SpBFaplaabF9+uLCwsLS4uLhbt5akube+vn6xqm4dM3Z0kCc5DjwFHACeraon2ZrjWV5errW10StpJOmGk+TNJGHI1fuBD4CHq+rVaWNHvTTLbfuSNBMngCNbXyvAMy2Dxr790G37krT7TjIsLKmqOgfcnOS2aYNaXpr1PPAycDTJZpJH2Xnb/uFxdUuStozK1qlz5FV16vJzSR7Y6dJp95IkfaqmV6JcbuzUitv2JWn3jcrWsUHutn1J2n1ngIcyuBd4r6remTZo1PLDqrqU5HHgJYblh6er6kKSxwCWlpbG3FaSbnQvMiw93GBYfvhIy6CpW/THcB25JF2dJOtjX+nrD1+WpM4Z5JLUOYNckjpnkEtS5wxySeqcQS5JnTPIJalzBrkkdc4gl6TOGeSS1DmDXJI6Z5BLUucMcknqnEEuSZ0zyCWpcwa5JHXOIJekzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXMGuSR1ziCXpM41BXmS40leT7KR5IlZFyVJajc1yJMcAJ4GTgDHgFNJjs26MElSm5Yn8ruBjap6o6o+Al4ATs62LElSq4MN1xwG3tp2vAncc/lFSVaAla3DD5Ocv/by5sIh4OJ+F3EdsA8T9mLCXkwcHTuwJcizw7m64kTVKrAKkGStqpbHFjVP7MXAPkzYiwl7MZFkbezYlqmVTeCObce3A2+P/UBJ0u5qCfJXgCNJ7kxyE/AgcGa2ZUmSWrVMrawCtwCvMTydn66qCw1jNLAXA/swYS8m7MXE6F6k6orp7o9fkNwHvA88V1V3jf0gSdJsTJ1aqaqzwLt7UIskaYSWqZUm25cfLiwsLC0uLu7WrSVp7q2vr1+sqlvHjB0d5EmOA08BB4Bnq+pJtuZ4lpeXa21t9EoaSbrhJHkzSRhy9X7gA+Dhqnp12thRL81y274kzcQJ4MjW1wrwTMugsW8/dNu+JO2+kwwLS6qqzgE3J7lt2qCWl2Y9D7wMHE2ymeRRdt62f3hc3ZKkLaOydeoceVWduvxckgd2unTavSRJn6rplSiXGzu14rZ9Sdp9o7J1bJC7bV+Sdt8Z4KEM7gXeq6p3pg0atfywqi4leRx4iWH54emqupDkMYClpaUxt5WkG92LDEsPNxiWHz7SMmjqFv0xXEcuSVcnyfrYV/r6w5clqXMGuSR1ziCXpM4Z5JLUOYNckjpnkEtS5wxySeqcQS5JnTPIJalzBrkkdc4gl6TOGeSS1DmDXJI6Z5BLUucMcknqnEEuSZ0zyCWpcwa5JHXOIJekzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXNNQZ7keJLXk2wkeWLWRUmS2k0N8iQHgKeBE8Ax4FSSY7MuTJLUpuWJ/G5go6reqKqPgBeAk7MtS5LU6mDDNYeBt7YdbwL3XH5RkhVgZevwwyTnr728uXAIuLjfRVwH7MOEvZiwFxNHxw5sCfLscK6uOFG1CqwCJFmrquWxRc0TezGwDxP2YsJeTCRZGzu2ZWplE7hj2/HtwNtjP1CStLtagvwV4EiSO5PcBDwInJltWZKkVlOnVqrqUpLHgZeAA8DpqrowZdjqbhQ3J+zFwD5M2IsJezExuhepumK6W5LUEXd2SlLnDHJJ6tzoIJ+2bT+DP9v69W8m+cK1lXr9aujFb2/14JtJvp7k8/tR515ofZ1Dkl9M8v0kX9rL+vZSSy+SfDHJvye5kOSf97rGvdLwZ+Qnkvxtkm9s9eKR/ahz1pKcTvLdT9pnMzo3q+qqvxj+0fO/gJ8BbgK+ARy77Jr7gb9jWId+L/CvYz7rev9q7MUvAZ/Z+u8TN3Ivtl33j8CLwJf2u+59/H1xM/AfwGe3jn9qv+vex178AfAnW/99K/AucNN+1z6DXtwHfAE4/wm/Pio3xz6Rt2zbPwk8V4NzwM1Jbhv5edezqb2oqq9X1f9uHZ5jWIs/j1pf5/B7wF8B393L4vZYSy9+C/haVX0HoKrmtR8tvSjgx5ME+DGGIL+0t2XOXlWdZfjePsmo3Bwb5Dtt2z884pp5cLXf56MMf+POo6m9SHIY+E3gK3tY135o+X3xc8BnkvxTkvUkD+1ZdXurpRd/Dvw8w2bDbwG/X1U/2JvyriujcrNli/5OWrbtN23tnwPN32eSX2UI8l+eaUX7p6UXfwp8uaq+Pzx8za2WXhwEloBfB34EeDnJuar6z1kXt8daevEbwL8Dvwb8LPAPSf6lqv5v1sVdZ0bl5tggb9m2f6Ns7W/6PpP8AvAscKKq/mePattrLb1YBl7YCvFDwP1JLlXVX+9NiXum9c/Ixar6HvC9JGeBzwPzFuQtvXgEeLKGieKNJP8NLAL/tjclXjdG5ebYqZWWbftngIe2/hX2XuC9qnpn5Oddz6b2Islnga8BvzOHT1vbTe1FVd1ZVZ+rqs8Bfwn87hyGOLT9Gfkb4FeSHEzyowxvFf32Hte5F1p68R2G/zMhyU8zvAnwjT2t8vowKjdHPZHXJ2zbT/LY1q9/hWFFwv3ABvABw9+4c6exF38I/CTwF1tPopdqDt/41tiLG0JLL6rq20n+Hvgm8APg2aqau9c/N/6++GPgq0m+xTC98OWqmrvX2yZ5HvgicCjJJvBHwA/DteWmW/QlqXPu7JSkzhnkktQ5g1ySOmeQS1LnDHJJ6pxBLkmdM8glqXP/D4dbPsnmLi8hAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 5 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment