{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyse de l'incidence de la varicelle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence de la varicelle sont disponibles sur le site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1990 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/all/inc-7-PAY.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202437760401385102FRFrance
1202436721808353525315FRFrance
2202435716202852955204FRFrance
3202434725606224498417FRFrance
4202433719715363406315FRFrance
520243274399194468547311FRFrance
620243174500221367877410FRFrance
7202430770044278973011715FRFrance
820242979270630312237141018FRFrance
920242879364649812230141018FRFrance
10202427710247709013404151020FRFrance
112024267143681039918337221628FRFrance
12202425711174803914309171222FRFrance
13202424712621935715885191424FRFrance
142024237146571133917975221727FRFrance
15202422711628836114895171222FRFrance
1620242179701685112551151119FRFrance
172024207136611020917113201525FRFrance
1820241971008364131375315921FRFrance
19202418713438951417362201426FRFrance
202024177153031121919387231729FRFrance
212024167181381354022736272034FRFrance
222024157249291731532543372648FRFrance
232024147161811254419818241929FRFrance
242024137183221420622438272133FRFrance
25202412712818912816508191325FRFrance
262024117159731240019546241929FRFrance
272024107143011076117841211626FRFrance
282024097143371087117803211626FRFrance
292024087158991199119807241830FRFrance
.................................
17331991267176081130423912312042FRFrance
17341991257161691070021638281838FRFrance
17351991247161711007122271281739FRFrance
1736199123711947767116223211329FRFrance
1737199122715452995320951271737FRFrance
1738199121714903897520831261636FRFrance
17391991207190531274225364342345FRFrance
17401991197167391124622232291939FRFrance
17411991187213851388228888382551FRFrance
1742199117713462887718047241632FRFrance
17431991167148571006819646261834FRFrance
1744199115713975978118169251832FRFrance
1745199114712265768416846221430FRFrance
174619911379567604113093171123FRFrance
1747199112710864733114397191325FRFrance
17481991117155741118419964271935FRFrance
17491991107166431137221914292038FRFrance
1750199109713741878018702241533FRFrance
1751199108713289881317765231531FRFrance
1752199107712337807716597221529FRFrance
1753199106710877701314741191226FRFrance
1754199105710442654414340181125FRFrance
17551991047791345631126314820FRFrance
17561991037153871048420290271836FRFrance
17571991027162771104621508292038FRFrance
17581991017155651027120859271836FRFrance
17591990527193751329525455342345FRFrance
17601990517190801380724353342543FRFrance
1761199050711079666015498201228FRFrance
17621990497114302610205FRFrance
\n", "

1763 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202437 7 604 0 1385 1 0 \n", "1 202436 7 2180 835 3525 3 1 \n", "2 202435 7 1620 285 2955 2 0 \n", "3 202434 7 2560 622 4498 4 1 \n", "4 202433 7 1971 536 3406 3 1 \n", "5 202432 7 4399 1944 6854 7 3 \n", "6 202431 7 4500 2213 6787 7 4 \n", "7 202430 7 7004 4278 9730 11 7 \n", "8 202429 7 9270 6303 12237 14 10 \n", "9 202428 7 9364 6498 12230 14 10 \n", "10 202427 7 10247 7090 13404 15 10 \n", "11 202426 7 14368 10399 18337 22 16 \n", "12 202425 7 11174 8039 14309 17 12 \n", "13 202424 7 12621 9357 15885 19 14 \n", "14 202423 7 14657 11339 17975 22 17 \n", "15 202422 7 11628 8361 14895 17 12 \n", "16 202421 7 9701 6851 12551 15 11 \n", "17 202420 7 13661 10209 17113 20 15 \n", "18 202419 7 10083 6413 13753 15 9 \n", "19 202418 7 13438 9514 17362 20 14 \n", "20 202417 7 15303 11219 19387 23 17 \n", "21 202416 7 18138 13540 22736 27 20 \n", "22 202415 7 24929 17315 32543 37 26 \n", "23 202414 7 16181 12544 19818 24 19 \n", "24 202413 7 18322 14206 22438 27 21 \n", "25 202412 7 12818 9128 16508 19 13 \n", "26 202411 7 15973 12400 19546 24 19 \n", "27 202410 7 14301 10761 17841 21 16 \n", "28 202409 7 14337 10871 17803 21 16 \n", "29 202408 7 15899 11991 19807 24 18 \n", "... ... ... ... ... ... ... ... \n", "1733 199126 7 17608 11304 23912 31 20 \n", "1734 199125 7 16169 10700 21638 28 18 \n", "1735 199124 7 16171 10071 22271 28 17 \n", "1736 199123 7 11947 7671 16223 21 13 \n", "1737 199122 7 15452 9953 20951 27 17 \n", "1738 199121 7 14903 8975 20831 26 16 \n", "1739 199120 7 19053 12742 25364 34 23 \n", "1740 199119 7 16739 11246 22232 29 19 \n", "1741 199118 7 21385 13882 28888 38 25 \n", "1742 199117 7 13462 8877 18047 24 16 \n", "1743 199116 7 14857 10068 19646 26 18 \n", "1744 199115 7 13975 9781 18169 25 18 \n", "1745 199114 7 12265 7684 16846 22 14 \n", "1746 199113 7 9567 6041 13093 17 11 \n", "1747 199112 7 10864 7331 14397 19 13 \n", "1748 199111 7 15574 11184 19964 27 19 \n", "1749 199110 7 16643 11372 21914 29 20 \n", "1750 199109 7 13741 8780 18702 24 15 \n", "1751 199108 7 13289 8813 17765 23 15 \n", "1752 199107 7 12337 8077 16597 22 15 \n", "1753 199106 7 10877 7013 14741 19 12 \n", "1754 199105 7 10442 6544 14340 18 11 \n", "1755 199104 7 7913 4563 11263 14 8 \n", "1756 199103 7 15387 10484 20290 27 18 \n", "1757 199102 7 16277 11046 21508 29 20 \n", "1758 199101 7 15565 10271 20859 27 18 \n", "1759 199052 7 19375 13295 25455 34 23 \n", "1760 199051 7 19080 13807 24353 34 25 \n", "1761 199050 7 11079 6660 15498 20 12 \n", "1762 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 2 FR France \n", "1 5 FR France \n", "2 4 FR France \n", "3 7 FR France \n", "4 5 FR France \n", "5 11 FR France \n", "6 10 FR France \n", "7 15 FR France \n", "8 18 FR France \n", "9 18 FR France \n", "10 20 FR France \n", "11 28 FR France \n", "12 22 FR France \n", "13 24 FR France \n", "14 27 FR France \n", "15 22 FR France \n", "16 19 FR France \n", "17 25 FR France \n", "18 21 FR France \n", "19 26 FR France \n", "20 29 FR France \n", "21 34 FR France \n", "22 48 FR France \n", "23 29 FR France \n", "24 33 FR France \n", "25 25 FR France \n", "26 29 FR France \n", "27 26 FR France \n", "28 26 FR France \n", "29 30 FR France \n", "... ... ... ... \n", "1733 42 FR France \n", "1734 38 FR France \n", "1735 39 FR France \n", "1736 29 FR France \n", "1737 37 FR France \n", "1738 36 FR France \n", "1739 45 FR France \n", "1740 39 FR France \n", "1741 51 FR France \n", "1742 32 FR France \n", "1743 34 FR France \n", "1744 32 FR France \n", "1745 30 FR France \n", "1746 23 FR France \n", "1747 25 FR France \n", "1748 35 FR France \n", "1749 38 FR France \n", "1750 33 FR France \n", "1751 31 FR France \n", "1752 29 FR France \n", "1753 26 FR France \n", "1754 25 FR France \n", "1755 20 FR France \n", "1756 36 FR France \n", "1757 38 FR France \n", "1758 36 FR France \n", "1759 45 FR France \n", "1760 43 FR France \n", "1761 28 FR France \n", "1762 5 FR France \n", "\n", "[1763 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from os import path as pth\n", "import requests\n", "# Si le fichier csv des données d'incidence existe en local\n", "# il n'est pas nécessaire de le télécharger par l'URL\n", "local_filename = \"incidence-PAY-7.csv\"\n", "if pth.exists(local_filename):\n", " # Le fichier existe en local dans le dossier courant\n", " raw_data = pd.read_csv(local_filename, skiprows=1)\n", "else:\n", " # le fichier de données n'existe pas en local,\n", " # nous allons télécharger les données et les écrire\n", " # dans un fichier en local\n", " # Téléchargement des données\n", " response = requests.get(data_url)\n", " # Ecriture des données téléchargées dans le fichier local\n", " with open(local_filename, \"wb\") as f:\n", " f.write(response.content)\n", " raw_data = pd.read_csv(local_filename, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Non, il n'y a pas de données manquantes dans ce jeux de données" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "raw_data['period'] = [convert_week(yw) for yw in raw_data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "sorted_data = raw_data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données sont cohérentes, nous traçons le graphe représentants ces dernières sur toute la durée disponible." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8HUWZPv6855x7b/Z9vwkESCAkAQKEGBBEFiGiwzYqwQUc0SCDg/v3hzsqcUBHUUQYQdAQZRMZYGRxIGwCISFAyELIRgLZSG72m+Vu59Tvj+7qrq6tq892t34+n+SeU6e6lu7qeuvdiTGGFClSpEiRQkSmvQeQIkWKFCk6HlLikCJFihQpFKTEIUWKFClSKEiJQ4oUKVKkUJAShxQpUqRIoSAlDilSpEiRQkFKHFKkSJEihYKUOKRIkSJFCgUpcUiRIkWKFApy7T2AYjFkyBA2duzY9h5GihQpUnQqvPbaa9sZY0Pj6nVa4jB27FgsWrSovYeRIkWKFJ0KRPSuS71UrJQiRYoUKRSkxCFFihQpUihIiUOKFClSpFCQEocUKVKkSKEgJQ4pUqRIkUJBShxSpEiRIoWClDikSJEiRQoFKXFI0Smw+0ALHluypb2HkSJFt0FKHFJ0CvzHvW/g6ntex4adB9p7KClSdAukxCFFp8CmXQcBAC35QjuPJEWK7oGUOKRIkSJFCgUpcUiRIkWKFApiiQMR9SCihUT0JhEtJ6If++XXEdEmIlrs/ztPuOY7RLSGiFYS0blC+YlEtNT/7WYiIr+8joju98sXENHY8k81RYoUKVK4woVzaAZwJmPsOABTAMwgoun+bzcxxqb4/x4HACKaCGAmgEkAZgC4lYiyfv3bAMwCMN7/N8MvvwLALsbYOAA3Abix9KmlSJEiRYpiEUscmId9/tca/x+zXHIBgPsYY82MsXUA1gCYRkQjAfRjjM1njDEAdwO4ULhmjv/5QQBnca4iRYoUKVJUH046ByLKEtFiANsAPMUYW+D/9BUiWkJEdxHRQL+sHsAG4fKNflm9/1kuj1zDGGsDsAfAYM04ZhHRIiJa1NDQ4DTBFF0E/lGB2Y4lKVKkKBuciANjLM8YmwJgNDwuYDI8EdER8ERNWwD80q+uO/EzS7ntGnkctzPGpjLGpg4dGpvIKEU3x9KNe7C2YV98xRQpUihIZK3EGNsN4DkAMxhjW32iUQBwB4BpfrWNAMYIl40GsNkvH60pj1xDRDkA/QHsTDSTFCkk/MstL+KsXz7f3sNIkaJTwsVaaSgRDfA/9wRwNoC3fR0Cx0UAlvmfHwUw07dAOgye4nkhY2wLgEYimu7rEy4D8IhwzeX+508AeMbXS6RIkSJFinaASw7pkQDm+BZHGQAPMMb+TkRziWgKPPHPegBXAgBjbDkRPQDgLQBtAK5mjOX9tq4C8CcAPQE84f8DgDsBzCWiNfA4hpllmFuKFClSpCgSscSBMbYEwPGa8s9ZrpkNYLamfBGAyZryJgCfjBtLihQpUqSoDlIP6RSdDre/sBbX/m1Jew8jRYoujZQ4pOgUEM3Zfvb427jv1Q3GuilSpCgdKXFIkSJFihQKUuKQopMhNWJLkaIaSIlDihRF4q4X1+Gh1zfGV0yRohPCxZQ1RYoUGvzk728BAC4+YXRMzRQpOh9SziFFihQpUihIiUOKFClSpFCQEocUKVKkSKEgJQ4pOgV4eo804laKFNVBShxSdCqktCFFiuogJQ4dFC+v2Y62fKG9h9HhkHIOKVJUBylx6ICYv3YHPv2HBbj5mTXtPZQOB5byDilSVAUpceiA2NbYBABYt31/O4+k4yHlHFKkqA5S4pCiUyElDilSVAcpcUjRqZCKlboeHn5jEzbsPNDew0ghISUOKToVUs6ha2H7vmZ87f7FuHLua+09lBQSUuKQolOA4quk6IRoy3vUfvW2xnYeSQoZscSBiHoQ0UIiepOIlhPRj/3yQUT0FBGt9v8OFK75DhGtIaKVRHSuUH4iES31f7uZfM8mIqojovv98gVENLb8U03RFdAdOYc12xox9trH8OLq7e09lLKDiwm743Pt6HDhHJoBnMkYOw7AFAAziGg6gGsBzGOMjQcwz/8OIpoIYCaASQBmALiViLJ+W7cBmAVgvP9vhl9+BYBdjLFxAG4CcGMZ5lY2vLCqAW9t3tvew0iB7qlzWLBuJwDgsaVb2nkklUP3e6odH7HEgXnY53+t8f8xABcAmOOXzwFwof/5AgD3McaaGWPrAKwBMI2IRgLoxxibzxhjAO6WruFtPQjgLM5VdARcdtdCnHfzP9t7GCnQPU+YfM4d540oH/jcWHd8sB0cTjoHIsoS0WIA2wA8xRhbAGA4Y2wLAPh/h/nV6wGICX43+mX1/me5PHINY6wNwB4Ag4uZUIquje64hfA5d0Ha0C2fZ2eBE3FgjOUZY1MAjIbHBUy2VNetYWYpt10TbZhoFhEtIqJFDQ0NccNO0QXRLU+YXXjO/Hl23Rl2XiSyVmKM7QbwHDxdwVZfVAT/7za/2kYAY4TLRgPY7JeP1pRHriGiHID+AHZq+r+dMTaVMTZ16NChSYaeoh1woKUN2/c1l7XNrrqJ7NrfgnkrtlrrdEWxEkcXpn+dFi7WSkOJaID/uSeAswG8DeBRAJf71S4H8Ij/+VEAM30LpMPgKZ4X+qKnRiKa7usTLpOu4W19AsAzrAMeEX/w8DI0tebbexidBhf97mVMvf5pp7pPLN2Cq+953fg73xg73qooD2bNXYQr5izC7gMtym9ddMoAuu7z7ApwySE9EsAc3+IoA+ABxtjfiWg+gAeI6AoA7wH4JAAwxpYT0QMA3gLQBuBqxhjfUa8C8CcAPQE84f8DgDsBzCWiNfA4hpnlmFy5MfeVdzFhZF985gOHFt3GtsYmNLcWMGZQrzKOrGNi5VZ32/Wr/uIRht99Oq5m19pNNu46gJa2Atbv8DyEm9vMkXipS2odUnRUxBIHxtgSAMdryncAOMtwzWwAszXliwAo+grGWBN84tLRkS+UtjlNmz0PALD+ho+VYzjdBvy+r966L6Zm58KpNz4LABjZvwcAoE2zvrry6borz62zI/WQToh0MbcP1jZ4EWqvfWhpO4+kMshlPa4gn9cRB6+sK+scUnQ8pMQhITqgKiRFF0DW3/nzmvXVtU1Z0/epoyIlDgmRLuUUlUA24xOHgkXn4BOQvy7agAcWbTDW60xIz1odFy4K6RQC0sXcvqjNZdBiUdp2VtRkvXOarHPY39yG9/c0Rcq+/eASAMCnpo5BZ0f6OnVcpMQhIdLF3D7oWZPFwdY8Jo3qhzfe293ewyk7Mj5X0CbpHC669SWs6mJK+BSdA6lYKSEyVRD8zl+7o/KddDJ8dPIIAMDHjhnZziOpDAKFtMQ5dHXCkOrwOi5S4pAQuWzlb9l9r3YNeXIl0FX3kpx/6miz6hyqNZrqoYs+zi6BlDgkRE01WIcURnRV6xYuVrK50XRFJ7iuSuy7AlLikKJToatuJpw42ObXFTmHFB0XKXFIiGruTak8VoXOg7hYbNp9EGOvfQwvrwkzrL3+3i68u2N/2fpwhr/xF7rdM+9u8+08SIlDQlTz3e12+4QDfvGPlWVr61U/w5qo47n41pdx+i+eK1sfAPCP5e/jhVVqiPkfPLws+MyZAivnUNZRdQyka7zjIjVlTYhqyry73ynSjM58J66c+xoANZ7W3FfeDT7zVKDdjVvsXrPtXEg5h4So5rvb1YgDYwy/nbca2/Y2xVeW4BLwsFBgePbtbWCMFdVHR4BVId0VWYcUHRYpcUiIam7XZRSvdwgs27QXv3xqFa65743E17oQh3sWvod/+9OreHjxJlz4u5di65drs13wzg7cPG91WdqycaZNrYWSowJ3NHSx80+XQipWSooqrubOJGK468V1OGnsIBwzur+xDg8qd7AlecIkl01xq88tbNh5EJv3VI9zuOT2VwAA15w1vuS2bNOc+8q7aG7rWsmmuqppcldAyjl0YHSmQ+JP/v4W/uWWF7W/yUSumGnpopXKqPUdFJPGXupItzlOlPjAoo1VGkl1IE73Ty+tax9LsRRapMQhIaorVupI21bx4NMoRYpTcKCUtTmfOOQ7b2A+l3l2VVz3v2/hU7+f397DSOEjJQ4JUV2FdPX6qiTKQeRc/BtqiuQcOhK6yjN3hbw09hxsbZ+BpFAQSxyIaAwRPUtEK4hoORF91S+/jog2EdFi/995wjXfIaI1RLSSiM4Vyk8koqX+bzeTH6CeiOqI6H6/fAERjS3/VMuDauoBOpPOwQZ5FrZpmebsQmC6BOdQpWfOGMOSje0f3VbWOVhCS6WoMlw4hzYA32SMHQ1gOoCriWii/9tNjLEp/r/HAcD/bSaASQBmALiViLJ+/dsAzAIw3v83wy+/AsAuxtg4ADcBuLH0qVUGqVgpOQKxki9XsikhTVN2UUhznUNrB+IcNuw8kKh+tQ4Ec15ej/NveQn/XK0651UT8nS7yprvCoglDoyxLYyx1/3PjQBWAKi3XHIBgPsYY82MsXUA1gCYRkQjAfRjjM1n3htwN4ALhWvm+J8fBHAW5yo6GqoqVuo4e1xJ4C88DxxXzD10EivlvPaTcg6V3JDfS0gcqiVWWrm1EYB5fL96ahW+/3D183W7GB6kqA4S6Rx8cc/xABb4RV8hoiVEdBcRDfTL6gGIMac3+mX1/me5PHINY6wNwB4Ag5OMrVpIOYfi4ULuTTOO4xxWbNmLV9Z6XsauOodqnD+S9lA9PwY7ob553mr8+ZX3qjSWEF1syZcFG3YewJ4D1dfFOBMHIuoD4G8AvsYY2wtPRHQEgCkAtgD4Ja+quZxZym3XyGOYRUSLiGhRQ0P7sMPlOmW6WKW013syf+0OvLh6e3xFR5SDyMW18dHf/BP3+3mVXYlDVUQ4CanD9x9ehv3NbZUZi4BQxNe+SIlBPE77+bM459fPV71fJ+JARDXwCMNfGGMPAQBjbCtjLM8YKwC4A8A0v/pGAGJy29EANvvlozXlkWuIKAegP4Cd8jgYY7czxqYyxqYOHTrUbYYdFK0OMqP2Ukhfescr+OydC+IrOkKeRjEK6SS3Yt7b29wrVxhJczDsOdiKO/75ToVGEyIYVcyNvfPFdRU1r02d4NywdW9z1ft0sVYiAHcCWMEY+5VQLuZrvAgADzH5KICZvgXSYfAUzwsZY1sANBLRdL/NywA8Ilxzuf/5EwCeYV3FVMeA1nz89KohYXhhVQO+OOfVipp/yqd+27Sq+dDLLVYq15KthmjJlXP46d/fqhixfXzpFpx/S3yYkxTtA5fwGR8E8DkAS4losV/2XQCXEtEUeOtrPYArAYAxtpyIHgDwFjxLp6sZY9zn/yoAfwLQE8AT/j/AIz5ziWgNPI5hZmnTSo55K7bi5CMGo1et/ZaUi2S1thWAOnudaugcrpz7Gg625rFzfwtG9O9RkT7KMYtK3olytc2Yqlcphv5UR9rlbhxQqXPaNx5YHF8pRbshljgwxl6EXnL6uOWa2QBma8oXAZisKW8C8Mm4sVQK7+7YjyvmLMLHjhmJ333mBGvdcrHBrQ4WNdXgHLh1SCUJkWLKaunL+FMFxldudbRuhMX0UY1DQRKiZTsw7djXjOa2AkYN6Jl8DF0yQ0XXQeohjXATXrZ5T2zdcr23zQ5inGpI1vjraduQ9hxsxZPLthTdB59HKZtBZ5Ax6u5hMaKrasw1TC4U31vP2qzxtxOvfxqn3PBMcWNIaUOHRkocAOQy3iptbIq3EinXi+vGOVTTG9v82zfuX4wv//l1vLcjmc2+S9tKXcMd7gwaqHKNsSpiJX9nduFOMxXaxFPa0LGREgeEm7C4YZ/406cw49cvKHXLpnOwKKSz/tt4TL05/HW5wE9vNkLEHaWaigwXnYTImap2BqsWPeeQvJ1qzrU972oH9XMtKyb98EnMeXl9ew+jKKTEAeHpSVyqO/a34O33G5W61dA5nH6kZ6Y7tG9lFMQiuKinWAuZQoHh9hfWWusEziyBziF5PxU9TVew7aLGXRXOwe/KYYCVGk5XJw2MMexvyeNHjy5v76EUhZQ4INwYXU4yxW5SjDH875ubg++2EA/BCbTC8oW/vbYRB1vzfp/FtfH8qgb87PG3rXWC8BkOsZWqiXIfXHWcQzFEtxx3Z/eBFjwqrDcZSfQ/FdN9dXHq0BlEoTakmeAQLn6dbDVp4DQTHnp9E7751zeD77bgcAFtKEvPZvzqqVVCn2pvjDFs2HnQ2oZTZrKAMytBId0JXjTdGIvZWMuxGf/HvW/gn6u3Y8roAThkcC/l9yRcXEobikNnD3+Tcg4QxEqao+RpP3828r3YF7dhX9TD0aZz4IuqvXNH/GXBe/jQL57F6m37yt62CWadQ+VQLk5GyzkU8RDLYcK8ebdH1FvyeuIdWCs5zN00nt0HWmKv/fLc1zD3lXe1v2UqpenuIOjsuTlS4oCQ9a/UWt246wBueCIqejG9tIDIOVRvdek2ttff3VWWtuV5WMNnaOa8fvt+rNiytyxjqSR00ypmg6iOtZLaV2u+gG2Nau5t04Foyk+eiu3nyeXv4wcPL9P+1rVJQ8cRnxaLlDhA3Bgro3O468X1SllLW0fjHDSdFfH28hOrCNkJLik+/F/PFXehI8rljMU0ksJ7FySPbFqNTYVzyWJP3/ufpZg2ex6aWqMHF5HA/Xbeaoy99rGyhPjo6tZK4ivVHlFVS0VKHBBujC6cQzGvxMFWlUuwWSsFxKGIvopFuQiRbtNIFFupxHG0p+morp0nl7+fuJ1SAt3t2NccWVum+0ma359c5o1VJg7ivG55dg0ANz8dEVfOXaSUdXGpUmTd3z1/fbuNo1ikCmmIOof4usVsXvLL5vVp4xyK7ysJRHGBblN3O1En57Yq6fmdJUKbY/vlDt9QNgJbZEP5AsOJ1z+NC6eMiq27fsd+AG6EURxOsVP8x/KtRV7ZeSHet92dMDd2yjlA1Dk4bHRFvB66LGYuYasrLV4QW9cRq3Kd7JJY5pY642KUnOXa1G0EP5dgXMWmwOb9/31JGOrEtKT5Zi0O2STm6eRGN+0GcT10RiYpJQ4QY//E49dPr07cflbTsG3jD2hJO1srlUskrCikbXVL3ImyCQZdbpG3beQZIuzcH2/dAxQvVtKb0sZdE39wqZRJpmuzjU2t+M/HV1Q0rHwlIE6vM6pXUuKAZE5wxUB3mnXjHCqLiLiggsfDQExWBWqXhHEo95QV3YrwvSVfwAk/fQrb9qrWQDJc8mXb+m8rMOxxFGNEOQdDHeGz6fYW5c/hWO83T6/G7194B399bUN85Rhs3HUAB1uKCwOTFKKBQmdUvnd7ncNldy3E9kbPB6FSz093mrW9/6HOoZqmrGpZ2ax4ZOsrqylraWhX23lp8LqYOtsamzGsnz0sSt4hS6C2e6H/7fs8LoUvvXXb9+P9PU04+YhoanaX+63jHFQ9kvr+lGv98mgCNsdRV5x647M45YjBuOdL00tuKw6pWKmT44VVDXjLt6F30TkUg6yWczC/OMpmWgW4BI07oDlxqRuCrm2pTtLBJYDuXptQ/vAZ0e+vrlf9RFz6dEgSqIWOM+PP44z/eg6X3vGK8fdoO+YC09B05XEMkCvx4LfsTy+vx8J1SvbgxHh57Y6S23CBOLvfv1D51K/lRrcnDiIqxTkkFSuFYpjKYcPOA3hfEHG4EIcLf1dsSkd3YlcqQSyGwBfTp84pT9ycCwWGx5YWnwOjGBTlcIf4062Wc1AcG9U6cb4QrsPlIpn1Ow7gU7+f73hV+yMNn9GFUCnWTydWsiuk4zfT+Wt3YOy1j2Hyj/5hrLN9X7PW4xUAZt4ePUU2NOoSmJdLrOT/ddkOSjR7TUIcSpndJ257WSkT98JX1+tPuC6iOpc5D++n5pgtZjPSKcnl/l0U3XrOoTybYycU1wPo/FZeKXEQUE2xkpPOwbKZchHBvmZzgqKp1z+NabPnaX+T4+K8sGq716coJy3T7VDESpX0c6jCil62aQ/2a0Rs4rwuuV0V4ZQTurVazG29e74a90huRs85xNeROQfZ2qjam2c1dXjt0V+5EfsqEdEYInqWiFYQ0XIi+qpfPoiIniKi1f7fgcI13yGiNUS0kojOFcpPJKKl/m83k88vElEdEd3vly8gorHln6oDqnhCcbJWquLa+tvrG7F1bxMeWBRahJTrdrAkYqUEcZh0yGXcqcMr7xQne/74b1/UlruM1cnR0mEMrhFgXQn83qbWIHWti0e7C3chO/Pd+eI6t8FIKJdhRLUD4XWHwHttAL7JGDsawHQAVxPRRADXApjHGBsPYJ7/Hf5vMwFMAjADwK1ExJPQ3gZgFoDx/r8ZfvkVAHYxxsYBuAnAjWWYW2JUinPQNWv3kK78qtL1sGprYyREt8vtkKvoxi4b3ySZXdI7UZtzJw5zNKfmUlAu4uDUl+bO6DYj16V07HX/Fxoc2Di9BPowOdbUQ69vNLdrQdnuWZVP8rMfX1HV/sqN2DeJMbaFMfa6/7kRwAoA9QAuADDHrzYHwIX+5wsA3McYa2aMrQOwBsA0IhoJoB9jbD7zntLd0jW8rQcBnEXtYBhcqQ51Jx/bMg09iqu7mOVxFnNi054yk0RlLVEEVVuEXKmSIbuLQpGK+3L1L7eia3bTrmiARV3fckIrxbLNcTzlsk6u9kn+fy3JljoDEr1JvrjneAALAAxnjG0BPAICYJhfrR6A6K2y0S+r9z/L5ZFrGGNtAPYAiBpke/3PIqJFRLSooaEhydCdUCnOQQfbpleNwHum7iPWK0XcDptNfDVoXU2u/bSXLtMrdzynSP9lur/yM9Rtqj9/MhqCXtf3u378Jo5iI7mW65zY2UNoVxvOxIGI+gD4G4CvMcZswfV1T5JZym3XRAsYu50xNpUxNnXo0KFxQ06MStEGXbsup+f20GdFPGZLvN5UZntJlVNrwv6L4RzKBZeTu5vOIb4dFz1AsXB5Xs+ubJDqqGiWFNBKgivH4ZZN95XShkRwepOIqAYeYfgLY+whv3irLyqC/3ebX74RwBjh8tEANvvlozXlkWuIKAegP4DSvV0SotQTym+e1se617XqonOo5ElH1zZR6dyKNlYP3Ofjoui0IYnOodg+4tqptDjwwimjnJwNi4VqieRwjYMXddGxkcocALIzoT0tnlyslQjAnQBWMMZ+Jfz0KIDL/c+XA3hEKJ/pWyAdBk/xvNAXPTUS0XS/zcuka3hbnwDwDKvgXTnnpue1oQ1KXYO/fcYLyucS697JCa4Cd4Ax5rzg5JOfDjJB1bVcrRDkQGXFNnHg99WWArYcjoCe+FOnkC7PDc7nZQIdfjcReB0BkccjvxfirxNG9DWOp3zWSmGPssiro6I9CZrLMeuDAD4H4EwiWuz/Ow/ADQA+QkSrAXzE/w7G2HIADwB4C8CTAK5mjHGj8KsA/AGeknotgCf88jsBDCaiNQC+Ad/yqRJobstj1dZ9+NGjy5XfElhBasGfoxw4Lam1Euc8il0X+QLDEwbv3LN+9TymXv+09jdCdDHe92ryQGd6nYM7N/D8KllckewuDOhVk6g+oH8+r67fibHXPoYlG3c7t8NHqkvuxFGODTyTIbewF0VCNGcGHDcoh/Gofg5hjZwudLEP8fmUopwWx3P6L54rvqEqoj2ZndjAe4yxF2E+VJ9luGY2gNma8kUAJmvKmwB8Mm4s5cCu/V60Sp1s2nZCmTFphDWrV0Njc7CptxUbkN9HQByKXBl3vvgOfvb429rf3mnwTkw9avSUsFRRli5mnBwOxDavx5e+j4tPCKWPYt0JI/ri7fcbrf33rMkqZYwxq8hQN57f+RnPXljVgGNHD7D2ycE3fl1yJ7lOKTCGuSiTXGn7vqi3vJsOJJ6TsUWbzVpOZuJ8cyXolDp7OItqo9t5SLf5u5dur7CdSo4bo24QhQILCMFJs8PTuCxW0G1MtoUavkTFLeb3dh6IrWPsvsT3R7+RcGIX3/jTK7Zi7LWPaQnsuGF9cMnUMZqrBCRU/pvwnK9wtYmITP3YiIPLWOKc8zJEBoV0fNsukMWJIsE3HaC0+z6T6zDjzxbGIfquGub4xNItOOem560EUr4/c18pr59LJdChdQ5dDWGcHw0sp8sMAR87diSOGNo7KLv0jlcw7ntPKHXbpOOz1hTLqnMojXNoKzasZxlEu+VSlC7frBrENbXmi8wRHeLxpVtw8n/OixAf2/DkZ2kDf242sZLLM911oBWrt5o5pJocaTeNcp2MZf8EJ6mSxRCBQ813EX62RdMVCZKJi/nmX9/Eqq37rHoyeYz3LXzPWLejoD15nW5HHAJo7rpt38kQKTL5BYbwwcrmrM0EZwbfuIomDlX09pGnphvzQ69vxMNvbEq00PMaArm3qS2WOGgdDoVGvv/wMmzZ0+ScDCcJoeXd2JLJuG7gtvEZOQenluMh6wbEMZs2Z60hgrRP25alzcdI5MRMt49fv2O/LoCkvv9etaoIsqOhoyukuxRCzkG96zaxUiZDxpdShou1kptCWl+nuc2eyapoZyO4zS9yjXTPNu1WRVr3LtyAr92/GK/6xNSFVdY9isYmc5BB03iA+E3zqbe2Gn9ryRcw8/b5ePbtbcY6yjW206tzK2bIhxQOV8ITp5tQTt8OzbooyBXDBKGGjXPYIoSWNw2FP/dTb3zWMsbo1T00+qmOhvlFxv8qB7ofcfCXlz5nsl2slCG3F1A5ueteHKns6/cvxs/8WCy6U7OIt7fYlbIunIOpRqlKzWvuXWz8jUcyTWL8Im4gHtGtTr4Gjn1NbXjlnZ3497+8HlvXxbO9LAppwzp1Ibrn3vQC/vMJe8yfFunw4TJmvZ9DtOyD44YYr7eLlez9yHVMkJd2NSMiFIvX3lUTRlUL3TZNqG7BWzkH8jgHlxdF5hxczDv/541NAIDvnnd0rCnrBTFJd0rZ4G2XTq7vp5T9/vlohqtWQZZAVPzGrPMSd7EC07vae408t3KbNn+BDUlEdC6e7eXzYtbpHOKvW7m1ESst+gwAeOWdqLg0CTG3jUfejEWRnY04iNeZxuKSHjZOB9IR0Z5Zb7sf52B5gW2mrBn2lVmkAAAgAElEQVQCQHpTTVMfpu8A8KglKFdbiaasskLRFZ6HtLlTXdKihVJSG9FEOCetbP7NbV4qgWzNs4jYSOfIZApVUigwfP6Prwr13N66JMTB5Nk+UPC9iIQn8Ydw6OBeSltxw9PqHCq017lxDtpSazvF6MbidA5Jru0MxKE9nTq7H3Gw/eigc3CBSzz8VVv36a8tMKtexAWuylYdrKdeh+tF4iCfBpNw8bpxtBUKkUeky9EMqN62+QLDPyQfFVe9TBKflUAUJjUt9mXq9sfnT1LbM4lQ9A7STkl5ioHYrGl92PJXc9g241LXncsJ2+XQVk70rcvhCx88rKQ22lPy1f2Ig2VFyCddEZ5Yye20IW88SRZhJEGK43WMMfx23mps3u2FUZazvCWB7f64zGOokL5STryzeptHEJMElhPH42I5RCAlvlJbgSkEU84tYEISP4cDzb5ORdkUxc/69i4/ZaxStn2f+hy//7GjtYYD+QLDXUUm04mDiyhMHz5D+i7R2UG9a8M+SuzfRevgIu4tJ1oLBdTYHDgckIqVqgjbcrB5X3oKaXI6car6aPdFKLbvetXahv345VOr8OU/v4Y//PMdI1ciDUoBIS59afyILj3pkOCzzDk8tsQL6bFNm69a6kujd2nJF+JNWUndJvIFpmQlOyCYm47s38PYnovlGcdn71wAQH3eUYWqc3NaH4svnna49h48+NoG/PU1leCVY2/5+xJ9KBYRxfg57BOsz6yHktje47F590Gc9vNnpfGUoWELWvMMNSVGCW6HtDYBuh9xKHJBEBGyGT1x+M5DS6U+iuccdgmnflflZeB81ZLH9Y+5ZZ/SR2UlKyFLeu9MnJhLO7oqbXnmJoOVFZ+FgrIRiPoK23hs3s4myO2Jw3GJXuoyLrkdFzPfYmHy5xHh4vwYFU+xiG5M/E0xqChxE29qzWOexhS5kt7H+QJDvlA6cWhPdN6RFw3zgnhhlTmBUJYIdbms1gPzXsnTUn0p3Bfhyf/5THid4zXFrHHdqelgax4rLGayLt2IxMXFgsTYDov+Bdw8z0njBJAvMGXDeXhxaBBgI4icwzAd4E4br5pnyq2JHJQ4jGLvjkHlEOCjk0cYx1Ju/NsHx3r9aDqS133Emc6ij5C5vKS6N7nfD/xsHn7w8DKlXiU5B85xlpp8qj3NbbsdcRDXzdhrH3O+LpPxcgW4xKR3UUi7wHXT5y+PaR1xXYQIHQf0tfvesNpVuxA5kbjorJtcEWwIQpeytZIeaoW2PLOKA0NCpNbp2yMXqSPjOgdFctQU0301mGrGmQiL+gtbPZs4zXVMhw/t45e7iFvNItMI51AE5y3ec9knxWSgUayzqAsC4pDJYMKIvhjSpzbmCj1SnUMVEbccTBtghgh1uQxa8oVYPwKXxT3K4cVMunRNIpdTbnhGWy5j1wG7lZPLS8r9NQC77XoceF/PrzZzc660p63AilY+xomVXDyDRblxkv3IbK1kF/+5KkF5mOxSxCtcdKgXK8mcQ/iZ93nptEPwv185FfUDe4b1ZAdtqe1tgsd0UEf4/MSy97G2wUHvVkFw44maLOHI4X3Rp644l7LUWqmKiHsPTIG7iEIrmDg/AsVkTmfmZx8GAPcE5dUy107K3peysPmc/irlFohrUtdnvlCwm1FKfYo42GqO4hvboA9R7Kw3N9WNTZ+zwfvFDjH8te2ZcWuyJOtH7psfAHRNqKajYQEPCzG8Xx2OGd0fP7lgEqb4kY9Vzjv6XcfdygSuGF1RORGKlTLIUPHSg9TPoQPhgCFoWoaAOp84xGVIc0nQXiza050+6TxKIg6G1ynOeoMARQkY52wV+pWokENJqOPRtOe3dOflU/HStWdi0qj+4o9lgW1DFw0BbPV4tVKGxEWH+igA0e/iY/jcnQsBhHq+XrU5fPzYkQA0OgepHfn3jogWQaxEjpEVdKgz5F2pBrodcYg7/ZpCNGeJgpcuXqwk9alV1lmbMOJfb3u5uAvLgKTih1KUabc8s6ao64jCF+pf/aRBbXlW9FiKIez8Ng3pU4f6AT3xm5lThPa8H9/bcaD4Q4PmJCo+GltWtUgzVAaxUtZdrKST8YvPhX9mMXH/dIm6ig5TXyFw/5ianBrN2RX7m9vww0fUjJXVQvcjDrFKB+9PbymcLxEF1jdxpwCVeNhFCTqFcTGotHzSdYFz7qaU4SwIIrgmv3ZEP09+XT/A0+vkC/ZMcPz56DbJYpSWvBneZd8eaviMD/3i2dh23t2hT9pEOuogQHQ+LDfnYNKn6P0cxHr690bUS/HPcZyD7lk2NkdNeYs1ly4XuGd9TdbjHIpZx+2tN4klDkR0FxFtI6JlQtl1RLRJyinNf/sOEa0hopVEdK5QfiIRLfV/u5n8J0xEdUR0v1++gIjGlneKUcQ9JCb95ajNUbAo4/YLF4W0WLZii5rYJgl4W3EpNEuF6/rm+avL7cAzZcwAp3wOP7lgEn4zcwqOP3QgAG/cNt24Saw0pE+dU1Y9pT1hLDKSiBe4U52MuBhYokLaVi9jEQm5Iqt5Jw625PHujv0BwXjya6fh3IkjtO+BKALkz0gdj/w+Rb8v27SnuMFXUDzVEiEOxXFnpRh0lAMunMOfAMzQlN/EGJvi/3scAIhoIoCZACb519xKRPwIfhuAWQDG+/94m1cA2MUYGwfgJgA3FjkXJ7goVb9yz+uK7uGIoX2EwHF200jZQ3mFZtMu57IsNe+zcz+OC5xzWEmWthwPKejTn1v9gJ6450sfiPymIxREQO+6HC6YUh/0X2DMOhbT5mjKmyFuvrp2+X3SjU+3bJLuG3H3tadjEpvw1J+sfxFcrCR6kl/559dw+i+eC9rt16MGmUw855AxiG3ly258Mpof/eO/fVFpd822+FN3Jd8abvJem82gJktoMYi9lm3aY0wOJYefqTZie2eMvQAg3kXSwwUA7mOMNTPG1gFYA2AaEY0E0I8xNp95b87dAC4Urpnjf34QwFlU7iOngFjOgenDBfSszQonLeD3L6w1tiEv3jUxIZJ1GNy7FiP6Rc1dTZtztfRzrhIW/vCSPMU4ncDI/j3QqzaXyHojI4g8bA55XF4tE3wXn5bDhvTGqVKeghj1d2ybLrA9855CEhtbvXK8ZJxQikp/rmTmRRkio1JWVJ5nDJy5fNXaBjUar4yv3W/OK8JRydhKfMPvWZtF79oc9jerHux7m1rx8d++iK/e94a2jfZ2ri6l+68Q0RJf7DTQL6sHINoebvTL6v3PcnnkGsZYG4A9AAaXMK6SIJ7CxUiZdbmsIKNleHe7u7ihtcBw8Qn1kbJoKAH1mppsxtkZqNLipKB/142tgtywSEN0hEIsyQgnY9uQuAhgthR6xCX8BxHh+x8/Wvu7K+dgspAzgWJMI3s6ZjjjB1Pdupr1ocO118hrkp9u8xpDjrzAQWUMcveIzoFMOofKbOKVPFTxZ9qrNovedTkcbM0rh49m30zaZIHY3smIiiUOtwE4AsAUAFsA/NIv13LZlnLbNQqIaBYRLSKiRQ0NZucoG1w4B47BgldjXS4TOdkkMTFjjGF4P9npzT6QXJaUjcRkwvetv77pPJZSoOv+jKOGmuuXsU/X90RkOkMZdtT2XwYXiTyxLBrW2xSIUZ6XSkT8TdFR56BLQGQ71RJIjd8ljMoWQFJux9SXaWOSq/K566LXcvEQwZxFUbSs4l3KYqVnV7q96zorJhsqShx8P4ueNVn0rvOI9YGWKPcQzNfi7CgiSRDIcqAo4sAY28oYyzPGCgDuADDN/2kjgDFC1dEANvvlozXlkWuIKAegPwxiLMbY7YyxqYyxqUOHmjcl69gTMP3iCawul4ks3rpcEuKgKkQjnIPmmlxG3QDaMzlJNqM/+WlHZNLqW2Da/BVLFfcmg8oFxqwKab4XyToGM+cQHZRMeGwEzfYIRa95m04rjnNw7c9mreS6z3JCpDMlveOfXpZACrIoaq4X7l1WYw24IEEO5SNH9HGuC1RW58Cd8HrUZIP1oRz2CnpxJoe8zsZ/74kyj9KOooiDr0PguAgAt2R6FMBM3wLpMHiK54WMsS0AGolouq9PuAzAI8I1l/ufPwHgGVbBcIlxLbcKcuYeNVkM6+vlJ+ALnLch5wywwduckrGImYwqo3XJQlcpZDXECtAvbD7u9s60JT4vl5HIT0g81YqOj3GcQ8ASa8VK5pE88dUPhfVsxAHRdfz+nib88aX12rq2w5DNDNU1Lha/R7PmLlJ+27jroN+PmymrTueQJNps0nesklFZ+fPLZijkYKVnGpfxUbcENu5Kbj1XLFxMWe8FMB/AUUS0kYiuAPBz3yx1CYAzAHwdABhjywE8AOAtAE8CuJoxxo9jVwH4Azwl9VoAnAzeCWAwEa0B8A0A15ZrcsVAVA71qMng0a+cir980bOS4YecAmOJLAkKTGUR45ZlVnPSak/P0FxGf/IzecYWCgzrDXb6OriYqDrVE34XFdLF3Dpxg4zk2WDAxSfU48mvnebVk4gDvye6zco2jv5COtEkz/qLd7+KLXvUeENxIAvn4BpRlxNGm97EEyuRluCJGzTvU7zX4i2UrdWUfhITh0TVnbDnQCsam1qD55cVMkgqaVJ9MZHpWeuI1/m32PPHlxOx0aAYY5dqiu+01J8NYLamfBGAyZryJgCfjBtHuRC3Ht7cGNpM96jJYkT/Hhjhs/viQ3Zn6/lGoS83IavjHCpEHDx5sL1ONqMP9qbjHBiANzbsLsvYlMQ5CTaAUKbrpkx3cbbiGD2wFyaM6AdAwzlwsZKuD8eVs22vJSGSNK7tjebMf3axktmU1TUPgcshiYIsinFtccunkEsTpzp6QJhrmzHVsTGpW0AlTMCP+8n/AfCsDYEwgySgzr8tRqykK9bppyqFbugh7b4getSoXtKAv9lY2jn/uFHBZ9GcLzKOmDHpZPxxYTuKBZ+XzcolpxkPYwyvvKOqh4qhYSYT1aAtg0+DrR3Rqco2pmNH9w/qidik8VwPfBiEMplzsIqVNKLBi46vV8q+aTEy4M3ysZhCvohj0SHQOWhujktk14f+/ZSI6M30TtTmMtrDjgweuVTMECcSgGjSJPX6pLY9lWTEd/ibeIZCjki+P3He99XyXzKh+xGHBHVl4iC+TLaFLv5W0GwmXhvh51lzX1Pa0HMODoO2wByO3PtrE2Xkshml/4Z9+tMtA8Mb77kHCEwSQTNuA4iYuvKTMezPnU87yf3Via/C9swULYllUFzfvCkXfwx9O2bOQeYIdHnJTzhkYGTspoCUnjGHXiwpol9PT6y2tykMHR8xTRYDCmquT3ofdc/iiaVb0BCTxjbJeo2KlaK/cSU+96CWiUV76hiB7kgcEmwAPSSlc2j6Z99IZPk0kDwrGpGakrTU5CSmuQeLV2hfTP4OcPl7tIHP/WGhsR/XdKXb9zVjwg+exFJDCATeY3D7EtzGiKzX8uD5Cc1FbJdk/egjtqpIKg7h65C3ZYs6a+Nwjxre1zimmpzeAkuGyDWZ1mfOV8rysYjrTLyCxzPb3xxuvtHAfOJ4iieyhw/prfQNAPua23DVX17H5Xfp1zUAvPLODkz4wZPOVlQZUSEt6xz83Z9A+NVTq3DEdx+PEJ52N+ho197bBe43XH5BxIdse3DiyxpwDsK6nTiyX6x4SyfGSbJYxg7upZSZrubsvNj+eceMiNTRiblWFuH5LSM26KA86JhbQJrPzKIjGjesT3BCcyIOQdthTwMERbLXnzqWP/7bScFYZCSNoSPvgTb7d9OMLpk6BuOH9zGOqVYSK5kONxGlvcVePyN4SJvt+tUxm5wedS28s90tUN2UQ7y8EXICHq4gtlkEPeKnl3Vd+1kSY7LJxCHcG/6ywEs1zD2pd+xrxrUPLXHqo1LodsQhCTHuKy0ekQ23Bftq0yROF081NbmMo7WSLFZyH3zP2ujYPYsd/fVc4W5jTDynPLf+K3ni0TlbiXhqxdbgc8gRWU6+RKFbhsOwdXGTiAiXThuDob7Zc5i2NazEY0fp7rELVzlxZD8s/uFHtGOJuyc69K7LCbGn1N8VhbShC/E+6HRi/HfRz0EkItGZq7J5M+cQfubEeeqhg/SDlPCzi45BhrzAiiJC/xTz8+AiPFnkDOjnL4qVkugQZz++Ass2lRaQs1R0P+LgWG/CiL5Ga4gCY3hpjZmtFM36QrPG8PfWtkLsQHSBypKIleTl3Zo3n551Dn2ygljcROMwdnBvx5rxCDZaqJYsOohhrm2mmhyi/4aL+ahZmxByVjrOwWYZ5OJT0LM2iwG9aiPtujwPsygRwQ3SrQyZOJhWT5xYibcj+jmIYzJxCboy8X0Ux1OTzeDMCcPws4uP0Y5RRo+aLCbX99d4mZvHwcHnoHtmOvGeFzokem3Ylt+v5tZ2hPwU3Y84ON5zXT3bCy5iwbqdwalAtHn/2UXe4j1kkCrykTGkT51yokuioJItDJvb8sZx68wR5bVv8pDWgYcLqATiTsmiWakYnsDENYnzcuMcom1H+2LGOrZQCS5iJXHjkRXSxYBIIF4OnIPpXBIhDlrxlNeOGFvJdMgJxYBiWTznwJjH/fZIENLGpiC3PQ3+HHTPTDevLJkV0oEORrM+S9UvlgPFZb3uxCjFK1J0govD/731PmZMHhlZEJdOG4OLT6jHz59cqT2H/e2qU3DE0N5Yt30/Xli1HcCWiD13EnGNfLJpaSsYvbpdNicXU0SOuHUtJ1JyQbgh2hu/8V+PDT5HnOAM9b38vu73lUkEIBifUKbTS5BGZMIxblh82Id8xPbffOLXjViHiMe/5nfVd8OuJwD0hxduEivGVrLpJrzxhL+Ln83xnljgaCdDtHyK9AV13i7ruyDoCWTouNpshowHgzBsSyGw9OL3QGyrNpcp2iKtFHQ7zsEVuhcvySZdl8vyhgCEYYt71GSNyT8OHdwLA3rV4vhDBmodZxJ5SEurt7mtYOYcNDbtckk2QZb02Ex5CaZhU8rrZMPiXCLhM4xzz4AxYJ6gq7Dh72964dznzF8fKSfh9jy5bEtQFo7F+6sbxmc+cEhsvyad81ub7XJp07zfadhv5Wbkkua2Al7XmCfHKaRrBM6Bn4blNKAcOs5BHIi4+cuiKSL9IWfb3qjn+O8+fYLflvoOhsYj5sNSXpIIRK7XzCsadkcSY1neE/F5n35kcXHkSkW3Iw6lMGs69nDSqH6ROt8+9ygAnsLPq6vqHHSnFiD6oulSksqLafZFisN5gC98cGzke0tbAdsNfgm6l0p+QcrJOSThgHb59vWkIZZxiHpI61HjK9qvmKPGBhLx8WO9cGL8Hm7fF7X798QmXi9Pr9imGQtXjpsPHTboQmIzBjQaTsZxaMkX9JuxD5lzmP3YClx8q5q/PCJWyqu2+qHOQRArRdZ0WFfrNBhRSoQfI9wFYyCQVg8gi0xH+qljdak7+S22PQ0+dh2xNunDTGIluzl82FZ7JYTrfsShJJ0D/y388bFrTovU4cpdUZ4IRC1SPM5BbT+rC18sVJQXpM2uWz5tNLcV8JV7DElFHDanXCaqkG6zmU/G3OQkDJCc2CWJl3jUQ1p/XU023nJMhCkcNkF92XWcQ7GiZFO8oTiYuutdm7Uq7MdIejGTH0pG0jmoxMH7PSsYWMQdDsSfxbpGnQN8xa9mF1X9NcLDmmLwobFEE7HgnR146i2Pw8wXCmhobMaX574WEGiTnsCskLZwDsJPO/ZVL2SGiO5HHBy3Apsnq+0Fl+XOPGVoNAyAfvVps2IJe7BsW81rH+/bbUd/k8VKeew5qD9luugcanzxC8dBi5do3AYetzkM6VOLsyYMi5TZcg+Y4CIGrMlmnNhJXsUUVoJIjVqre+bFcq4R4hDoL9R6Xz79iMh309SJRNNsnThI0jkIIz+mvj/+/h+nAogeUPIFprxfOUGsFBAHA6GTnfuA6LMTleQRyRMzH5Tk0tCSLHl4mu/+z9Lgc74A3PLMajy5/H08+JqXx8zkjEiadxmwr0txLE2GdLWVRrcjDrq3880fnYPfzJwSeylfaLaHyrOK8SqX3vEKAOCAlCZQR6Si4YvVvq65N3ry5y+E9sQivRWyQuvzp4wNPuuCrMnvWm0umplOZ2o39wovrUfcBij+/s/V25XfR/SXEyOF0E1VlLtHk/3oZdQicq7iMr+KjZDKrYg1TWGbXfGTC0IRYnjiV1fRVR8+Aq6wipVkU1ahzvTDB2FyvRePSuQ6dTGs+IFHtA4Sb4FOrCQSK/HZ9KjJYsakEdY6MkxKYNG0Vq2rf8YiF5svFJTwI0k5B92wdfGy2sustdsRB91t7t+zRskipavnkpC92T9Ry69txBTR0EZWs7FZNy6/us6SgQiYXB/qQ5rbCpEl/4OPTwwCBOrYcZnzEMUv+5vb8Op6NeDesaMH+GMOy86ZOFypx+e0bNMe/OIfK7V9y/Pmt0bnQPWbeauUMvGzF0XXu04kivK8bODjMSUAIo0iSSSwQTrNIqzlfnz+JHxIEBOKI5CbU4IA+hVseqUdmkifpkizQDSXiSjSzxc0xEGwVuLjibsHEc5BWtpTxw6M1Nm8+yAam9qMYkO5OBQrqX47IuGIww8eWR7ow3g7Jm7a6ARnMQQQ591eZq3d0JRVX+6yIGxRLDmCF0eqEtnADYY/4mlNjAC7bW+TwrIeN2ZAsOi0zjcA7pt1Mp59exv+4943vCxnkgz8iKGeCaVuw5PvR002HPSkH/1DM/rw/uzcHyq+e2rMVj3rIRa8XDJ27m/B0k17sEOjQI8LPxGV86vsvHx9Lqv336jLZfChI4cGMmZep5fveT5QCplBUDcbkcDyMZbzRWcMuHfhe5EyWX/EhPK8NEJe8+6X1ytty2tC3MhEJa8sVpI3PJ4FTeRyTdxT0JTws+lwxIu5knyJQSeinNaFvpghdpmrSuelNdv9sXjXrd++X1vPZAKvuw266VY7PShHN+QcTC+ntCQ01UILIn0LN11yHKYdNlhbR3zA8ql8WN86zDxpTKRMJETTfjYPp9zwTHR4jAWt6JTDGSL0qcsFBEDmLogokpBEhlziRWW1b2x8A1i4LuQqTMo0W1M8VLa88QF6c0GT+CjqBMc/R6/VhSkBgJ9/4lhMGRPqcvi66e9HDv3NzOMj9XXmyVHOwSfkvojAlns7DqIi+dE3N0d+M6VXUDmKsK6OSMtWPlHiIBA9WayktOOLlXi/MG/4Oj8HVckfTn7Hvma875uqyuu1Xw9uLRgt513nshnFoVIXGsUG2WItVufgoJDW7U+XnBRv6lwJdD/i4Mg56BXS5t8A4KLjR0fkwSIU6i/8nC8wxdcgTvmdL7Dg5dZ5DfNx8HZ1hw/+Mug4B9l5qNZB/KJ7qUwvmsv5Wae4j/o5eH9NnIO4iQbsukZprHucJg9hfn2fHlLcLahzinAxvjNUvlDAvua2IBmSSUwlQiE6Foc6hXPwq+gPAPo1Vj+gp7Iexa5Eq7pIGG2m3l8+vzCngaRziIxH7Ut5XsF1LBKmRozkCgDD+vF4YTLn4D+/umwQ5I4jsFZKmBkizgorzkNaGmBknHysHB87ZqR8RcXQ/YhDCdfyzWqDJWqjvMB50vhTxwsyY4o+/LaCmnZU5+cgYtSAntZ4Q0FaTf97gansPGejdRvHxJFR/43aBJyDWO0jE4fjt5cej2vOHBep66IEfndHyKZ/4sTR/nXmfuW+dWlCdRu4i9d8cD1T+wzbkdqWNplchtBaYLhy7iLsPuAR3+f/3xnxfWvGDOi5KDXxkHluJlPWUQN6aFKfCn1Ic+e6La1COiu3w3CgRZ8XWjce+TQeKq2jc5XfAV0cJ/F779oc9knEIfBzMNAGEx13VUirTneatvRdhG1V0enBJYf0XUS0jYiWCWWDiOgpIlrt/x0o/PYdIlpDRCuJ6Fyh/EQ/7/QaIrqZ/J2WiOqI6H6/fAERjS3vFN0g33LdQ+IbwrNvR52cXr72TPzTf8nlBT65vj+OHN4n4ndAiC7atnxBeRltXMrZRw/DLz91XNCXzpqB/yaaUG6VUk9ecephOHPCMHx2+qHK9ZedPBb//H9n4G9XnYKPTh6BoX3rYv0TTJvNvxw3CkP7RS2QTMRBPEk/sGhj8JmfmJKEvBZPbNawF5prCfImET0dyl0SqWlU5ZwYuUwG+UI0aGP9gJ7asbtAp9hVcpUHRM388PSmrNGt4aCwocv3+1vneI6fLPgPQt0w8B4A7D3Yio/d/GI4XnHsGhPdVlkcyseszEH/XfVK9v72rtMQh5gFblpn/CrT5WbOQdNWzDtWzRwPLpzDnwDMkMquBTCPMTYewDz/O4hoIoCZACb519xKRJwnug3ALADj/X+8zSsA7GKMjQNwE4Abi52MC8wxYuIpMl8bjU3RRTVqQM/AaUi2HW9uKyjhsz3OIUSbRaykG+65k0agX4+aoC+bwko8tXBrikumevqNwX3qcNfnT8LAXrXqdRnCmEG9cOKhA3HbZ08MXgybKWaSTFymNW6K/8TbPsoPfS3C5MQXzl3sj0l19GIlVcwY/StzBZzg8+f+tbPHK5tJLkNlNUt0UW4HISukcsbMa370wF7IZgiPXXNq4IV/QLDEkeclrnmjWMmvI8vp42Ygr22xL3H+pgjGqleyV1Cbyyhtm7I2yn3LMHEOI/pxb2z979oQHAaOJ+yrAxEHxtgLAGS7xQsAzPE/zwFwoVB+H2OsmTG2DsAaANOIaCSAfoyx+cyb3d3SNbytBwGcRS47dZEw3VqFc7CIL+QTh64dvlE0NDYrIbHljSVfYIrs2cY58CKeNWpvkzoemXMQ28kqhMg4HaU9W9YxUwwZICo3lccj4kPj9Ypa3v83PnKk2q9weyOtau7h5085LPg8qn8Prb07ABw1oh8+eeIYTBrVD0P61AZzMiktyTeN5LdHRygbm9tw10vrtPPj+MUnjrX+zvsCHImDP77dNwcAACAASURBVF4dUZLXWN+6HP77sycGBGHSqP7o28NTwEd0DjJx8P8ypr5fvK4o3jRBp69TiQOvI4WWkdqK0wPUZEnR1fHvm/c06S4xbh6mTIL3XzkdgPm9cIlpBSCy2Kpp1lqszmE4Y2wLAPh/uTtrPYANQr2Nflm9/1kuj1zDGGsDsAfA4CLHFQ/DvZXfZX3gPe+vKVeuV4eLcRgeWLQBb23Zi407VR2FuNm0FVjAfsvt6BYDH9ueA+a4OpwAiadnDkUJ6kIcHDyUdSEizpnoOS19dHJUkcYYsEsz/l8bnBH5/YiY+/pjOigoJnWJYsRER4cN6S2IAEnh4gBg5fUzcNiQ3hjatw6PXXMa6gf0FBTa0bZFtLQVjGInVxw+VM2FoROFAfG5LbxrGW5/YS1a8gUM6VOL7543wWuDNGIcAmZMHhGY64p9iVBFoKHoMo5zsBKHYMze34Mt+UA3c+tnTlDq6NLxyt/l/k45YrA/rozvlxH+bgsJY4OpL35/A67bSaykcnojBZFsNaOzllshrVtLzFJuu0ZtnGgWES0iokUNDQ1FDdCkoFOIg07UwDdIC/UWF+8zvm5CPomIGxJf4CrnYBYr8bKzNQ5mYh+RMUeIg52T0YEPz8Q5XPvRCVq2m3s7y5mzCowpHt+6ei6QxXwcoh/In1/xzGJFxXEmo7dWCiLqclDo3Rs4UUlvzgurvPXI055WkPm1KqQ5uMd/vgD87PG3AQAXHV+P+gFhzCRRuQvoX0QdEZTFeOF4mLJ5iakwAXWDvMB3xBQHwKtM/895+OVTnoPjGUcNi3TGEBVhmcxExeIhfeqCwwUPD8K5hbUN+/Cdh5aiGHDLPsV83X9ASWIr6d538T1vau34xGGrLyqC/5draDcCEA32RwPY7JeP1pRHriGiHID+UMVYAADG2O2MsamMsalDhxZnJ246uMgbpFas5N8tm4cnfwkeWLQB/1juOVD105k9+k3wl0fVOXh/dQtorJ8g3RYwL3jhBZ0Dh9yXyz4WyE014onLTz40iOmjO4nrUE7u+IRDB2rL+bQeen1TxB4+lC1zObg+Wq3YThhI0SuTN83zp3ibHCdUunuqy+ttHnV8Dds65DkixNP1+OF9g8NRhsIV72LRJEK2mOF1Xn9vt+KPw0WfOvHmH//tpMjGF4zIryPGAuObedAzix5U5FsR6FqE8ojfiU8kOPd15dzX8I7BiS0Ov3/+nUifHKP69/T7Vefe2NQaHCiSoJpxloolDo8CuNz/fDmAR4Tymb4F0mHwFM8LfdFTIxFN9/UJl0nX8LY+AeAZVkGti7Flhw0yOIlalIq8DicMADCkbzRXrU6GaOIcdJvo9MMHy80EeOjfT8HXzz4yUOyK9uUcssOdyxlXl4SEQxxjRmfTqUE5H3G/njXacn4PZdNJFvwO3LNAdbRT2wk/m5SWYwZ6Gz/fsHQn7q9r9CUykjAc8mb09bPD9kNRhnxa5R0Jm5b/SHVmkjrxmMI5+HdjwTo1de5AKbWp+O7ozIEB9XCRIUF3IdSJipX08zTrHLz3o7XNrpsQYSOi+QLD755dEynj0QF0UoCv3bcYDy+OOjCKdeT5PPjlkzFuWJ+OxTkQ0b0A5gM4iog2EtEVAG4A8BEiWg3gI/53MMaWA3gAwFsAngRwNWOMk7qrAPwBnpJ6LYAn/PI7AQwmojUAvgHf8qlSEG/5JVPHYOl15wBw2yDjnOBMkOM2cTS15vGDhz0LYVXnEPbVy5A5TfcyTxzZD189e3zYDtQxHz40mnnMxcrIZHEBRF8a15xAOqJ3/YXm/BRWiIpJ8aTo39IaKSyJS1IXEeI1TCgTwbvIS6IEEU732XE8Xl/RmzhzWkj0s5rTKiCIxSjMULbfJ576vtVSeRq2cOQ/9Z9pIJYU5PoqkeFjBP77+bVBeYGFcxb1JOI5hff93Lc+DMDjBrfva446TQp9BWKlQjRQpg22Ok+9tRVbBPHxSCF4pG7fWL1tn74Pw9szdewgTB7VDzv2NVfNYik2thJj7FLDT2cZ6s8GMFtTvgiA8vYzxpoAfDJuHOWCeGN71+UCawzVPlx9AC5WIrr3X26bf7tv4Xt46I1NAGw6B4ajRvTFG+95HrVHC85pLhuQLRWkbcxKncDhTm1JLDJ5HMvQ3cNTxw2JfO9Rk7GelDgXE/W4VTcD0VqMDOU2iGJAMR9ApI7EVeoIAS+bXN8PyzbpM7jpbOnlO8Wb/tvrGyPlwwXFpWmtivqFrb6obbkf1Vb32HRrTGep5bWttsDDjfA6LQJxMN3Dt99v1IZOEftmiAbw48+di1wBYN32/UaCzPVu/HmVuuHK93lYP5E4mKUAMoJ1pvntiKF98PDizWhuKxSlm0uKbu0hLWdnM9UL60dfOC0h0Jy0ZMZBZxZqC58hLqpPCykl9RuQ/rvdSiSeOvB2dJv6NWeOj9RzyZmha0eeT9z7+tX7Fvv19BV5e9GAhp7F0tVnHIE7LpsaO07ejmyRYiLCLgcHLsqwjdkGXuPpt8ypTUWxUl9f53WkoHMg8hzSRLhmqVN8PFzWGJ+7KFYymMQ2W+TqIncR9XNQ63ocu0ms5HMOefWAUQx0qXY5dPfH9Jhtw+CJi6rlCNftiIMI8QG5WCsFG6T/o04hrHvoJhmt+OJZ/RxEZbIhjlDQl8FM1br4XTgHDUG76sNHYMl150TyL7jGpdGG/HB4BjqY8gPoNlrPfJXw7XMnKNnOjCDBbp7L5w1iJZvOIRNskGZuyCXxkgurlw2IFXDhFM9qfMqYAaGlFpGyOdvWvK37MFeFbcjRzZiPQdeu1Row4ByAFVtC7ks39ppsBrc9t1b9AYLOgedfEbblOE/ogb1qIkEZAXuMLJv/DwDcN2t62Idfh0sKRGQdDiDlRLcjDnGbhw3B6ZCLDhxCXXtl+pdAvFzWOQSxlQrR00Q0IZB+89ON2bbTOu1HUBdmn7oc+vWIKoMz5Lapa6OrSgNpcbQ7N3VXLmtSEvoI9RVyX1zsZtY56EQrMnTP1CjysMwvCBNd8PxohvpGEaGHt3po0Z1I3e5hyKXYayASLM+gilNEl7+9NIyAKwYdXCPI7XX3aNnmPZF83qJIlp/0eV/ieowTN+ayGeX5mtLHAvFiJW5ZBtg5h6ywJ1QD3Y44iLc/ksZRNmW1OMHxBaXjHLR24aYEMcJnOS0jb2dvUyuWbAxj1Yt9uuR+dpF3uihmbQppuT8nnYOmkst8dDCHRLH/7grPAstvS2qbg4+9zXZw8P/aOYf48fC+bNMSxUr5QkG4RqAOEj5+7CilTCtWUg4giB0PX4ff+uubSlnQroHIRDIDCn0dInB+4hXHjvay1ImWUecdMwK3fDokMlznoHsWtigA3rWk3IMa6XmLFoFxol1bxsKegm6BP1MX58dyoNsRhyjnEH52EWkESj7D6RHQH+ZMVhkiZEcuPrY/SuEWRNlmEvm0y6nO2g6pC1PXfWNzG97aole2ishrFnixXsXi1HScYRIu/L8/e4JSRoJYSbT2ESHnstBtqryOLsS6XMcGbqYsOpyNlFKrZoS1mi+EG0tA3ECRTXD8sD5B2AwRutHIZaZ8BWLqXd20lLnyw5d0f2qzGbmK0p/4+eozvAjAoqhnypgBgfEJANTmos8imgJXv/kGZudZVXgqcg6rrv8oLp0W6gZJWodNrXm8uyOMmhBd99G5R6UL0f2n0uh+xEH4HMkDINXTh4b2/uocbIJ2HGS0ujrLN0c3VJOCMzJmh6fnxjnEt8OriC9u0rj3InSnM9dwxDdcfEzkuynGTkZD0Gw4/7hRmDFZjZcvMA6hWEYaKh/6H170iLluJlzUwzd1XQpVF50DF3uIYpJ7vjQ9UifMgudxDsGhItA5RNfWwN61WtFIEPBweBjw0KhzEJ7Dry+Zggum1Ct1RKgB/Ly/8poXgzGKqXojz11zKBDbF0U3gGitxBXSUeW2Te+Ry2RUzlG4dXLwSDlk9y3PRP0hxIOErGsQCWglsgna0P2Ig3BfJ43qH35ROAfN5uWkEIoXK/HFIG6GXzrtMKmO91feRMXTkJPOxK9ii8ni0g7vdltj6E1cikxfdw9NEVllRJ4bogRBfG46gmaDaT6eqMxrIxApygYEBlPkSPv+iFryBUw/fBBu11hLJeEcRM/73lJgQ3Ej8WJ3RU/3JBEHU698ODU58SClFwe9LmxsKlOgE0/JdTzIa75GwzkwsEgCq+vOnxh85tXFVs6cECXEOSl8huJhbTmdZzViJT6Wu78wTanPn+lSXzwsJ9ISl863H1wSvVjkHFKFdGXBdQl3XDYVMyaPCMqVSKkOyjmbXkKE6YUXS/vURV1OTIRIbMvloO1iIeMC/jKIoSYmS5u0jN9IQfSe+9aH8e1zvdj/usO8yVlQhurYpa/noifpW2cPMhf26bfl30clOZP0jG15uVvzBeV6jiScw37B87tGai/YSFg06q8oVhLvi2mNhutQnYfpu1em5woiYzQcmuTnNaRPrVDH+ytyDiuvn4GLjg+j84RjNq/5WiF8RqHAlA1bt2a4SfAPPj5RWSucO7W9/5yrNIkkOZqE8Ogp51BF8I1EjnMjP9Ri7fC1JoymF16oK7P0JuKQVOfA69g4B7GZDAF/u+pkY51mYeGeOn6IUk/EyP7RRDZjh/QOktvoRD2uxEG+7bacxPIJ2QaTYp6H4wbMsbDkoes2eTGMgskuXusEJw2fcw6i5Y+y4fDTM/M4BzmEQyYDnC7ksTblnuat2jZaF92bTQej9hVO+LjR/TGgl4Y4IBT9yDo9F91OoNzNM9zw5NuKs6XuMFWTzeCz0w/B6UcOVeZsc35UxXB24rBbiFYsrodqE4dYD+muBpO1ifxIdTJHOTuWDrpXXt4Hgr5F/wVD4D2ZxRZNXsU5XDBlFM4+WpVhi6dV85jDhq768BE48dBBmna8Ojv3q8noje1qT5TeXy3xddQ5iKKjjVLKVrlVxmANqGYKrxAZF0ERK8mcgRpOw75JmDgHJ7GSvw7FUOVqjo5wIykUwmRSZ04YhrpcBp+bPhYTR/VD/YCe2LT7oFF/pDvNKxu/X5LNhNyIugGqbZv8HMS+vnDqYZE6/L61tBUC7l71OeEbf7wolYHhkcWblN9167NN4PgUMRR3jDX2KPYd/S4/cjHgoPiTKV5WpdANOYeQsRYhb846hals/6x7RC5ipcCsUOzfsNnIREo8JYntHjWiL/7lONUUMeAc/BdFlyxH7NtkTtros903S8o0G3QthVZP5gV+TL1dXCVe+uU/v1aSyCwyCsOb/dzKBizZuMc7hTuKlWycg3e9O+cw5ZCowxUnoqK/hCyWFC1bxHwhI/r3wMrrP4qJozxlNl/3Jpqk27CVkzD3qbB4AOvfC6lOEKIlnJf8znGrrM17DoYRcg36HpfEVIWCniCbwsTI7xPHP5a/781B05Zc15QPg0MUK+muizO1LRe6HXHgkJ+h/LLrqLMi9tBZK2l2GHnx8ofLzR51/Zs5B/1GbtrUeTEXK42Qcjnz8Z3oh702nd537nPnGMK+dRuk9/eBRRuU3zj+65PHxbQc3pNlm/bi10+v1v3khEigvphzX2ueGTkH+f7bdA6APdyCjJPGRjk53peLkYFnraRmGpTbMonURJPYELI4KCqyUmvo7628x+kIkZxbg5ujHmjO4+Z5q6GD6d3R9VVgTE8cNCKpfIEF4sNmSQy1zudOdbdRfk4mPxEOMZlY/16h+W2qc2gnyNTcJPYQndXuvkK1THA5IW3zA579fcmWoEwJn2FgIcVNRezL7GjnlXM/CqOs22/MzDmYU6OaYOOiHno9ysrz7GwAjFFoOcrJVUcC9cXs101tebTlGTKkElH5Wq1YSdggTZu1i8Oeix6J99/Q2IwX12yPrRenFhPzeKgydN119vsDqKHUOcRNfcygqN6Kj3fJRjW8hFyHc3l3fd5sFVZgen2LrBNraSvgYGs+4MDkvAo80J6O0BzhR0EOwugr9y9awJ9rLkP40+fDPSa1VqowTA6i8qZpuv/8JHPIoF5BXoU4qMrCeO4itDIyWyvZYjPJ7Tz6phc73kRE+Ati4hz2HDSnJDVB15JpE3KOcwS7z4Yt6N/j15ym1recdmU0tebRVmBafYF8X3VEWKxiCrdgC8MQtMNPr1bOwfs7Z/67AIDX3t2lrRcSB/v6ETkHnmqTw6ZbCr+rleTQ8RyimHCgoIwGwnVu5wqidbQcrKCw371fXdvyBnzLMx6XwsVHMmEe5ocn0d2L2lwGp40fgsm+KO9WKd4TEXC8IDrkgQf/dtUpOEQwnEk5hwojjEopiwGit+LcSfoUnJz6GzdjB6Wqy8nXZI6XRFYttsNhUqrHbRLyZvfrS/S5nm19A2bxRbSO/Xfb6fqQQWoOZo5BvWuVsoiwJKbf5taCp5TUbvx2OTIQXRum59jfkLhIBH9WViMDotj5iG2Zq6obUt8e8hjVq1ULIrVlWU8SGk8Ihhqyia7D+yVaInl9m59XnjE0NqscjEx8tu71TLg5tyMvQc6l2IZnWrVEhH//8LjgOyc8st9PqpCuMIycg/BUJ4zoi5uFYF8i+KIyEQFdqWveAF0/ByXllOnlkAP3BeORqps5DF+sZBjqTy6YLNQFLjy+Xl/R0jfgas1hr2U7OJ0snWrF+DvaqSfQOXDOQa9slr/rxEohbDqHk2M4UpNSVIZLrCq+Hsw6B++v7bTq5P0s3VttmBKoRE9e1i66Gj5vOYezbsx/fGm9tg1Z5xDqmri1UvT31uD+mN+vAnMTG3KOUN43ZKJXaXRf4mCREU8Y0VdNMu+DVzNtsrp37LrzJ0ljcJcryyyvKda9eTxunENA9AybxKDetYFC3sWkFzAo58vBOSTQOp8gsOs6gn7vrA/E9svTbxaYtyHriL3ctm4zjYoBLVE8Y26vi84BcLNqyQTEQf+7i3WZXmxj5hxOP3KoMUwJECUOJs7BxW8nb/U98MqWCkEtRcg6B87Bc+Ik3w7el83qizGGu30xnw38Ha+rMXi9p5xDZSB6iIoQNzzTKdz7jSJ/ZcgLsTaXiTjxuII3I7O8Kkvv92vhZ6OyboPYKGZe4phcw1xoFdIOl8bGbErwbojPVbdJnHjoIEzzrYFML/aRwz3ZeIExNLcWtAcHue0dGn+QyHOwPi/7/PmlohNcseDjMA2Hl9tiDWk5B0UhHX43rR9eQxQryeuRe4LbEgLJJp9W83Lpt8tPPhSAStw5Z2AS7YRcinlfaMsz/OjR5drfxQNjIFbK6gljqnOoEPhDsHEOtoMxXxRyoDxdOwAwJEbObYJukb3w7TNwpBAATYRts3E5sWaCTcLcDp+bqyezXlEZzznEiZWTvBs1OZE46OuEQ7Jzg8znHHSbm7wZfljwPg7bEZ6DQ/x/E5wSAkn44Di9qCpO12RLD8uxv1ndqOVlJlr5mcSs/P6Idv7yXLmzn4ulVmvevGEHzQrTmjJmAM6YMMy/NjpfzhnkAuIQbY+LekxPJkNm/wUgujYCsVKNW9SESqEk4kBE64loKREtJqJFftkgInqKiFb7fwcK9b9DRGuIaCURnSuUn+i3s4aIbibXzO9FwHRbxcVre/l2aSwbIu0Ib8Wg3rX4ixQtE3BUSGuezCGDzRY9rpyDnDeCg29u9nbIb6N4sZKudTG6qLGSgCRiJTHOvmlufF5xohUGhpa2vHZzE6+9dNohGNKnTtNP+NnOORh/iow3CW65VJXxA4JCOoZw2pSgw/upc1X8PoQ1E8c5RMOCROvw++ZiqWXy1hbLRBHNt889Kjg8yRtwGHCRj13+3c45AGQVB4lXNRs4h5yBa6kUysE5nMEYm8IY48bE1wKYxxgbD2Ce/x1ENBHATACTAMwAcCsRcf78NgCzAIz3/80ow7j0MOgcRHpUzMvHIYYxuObMcThsiGo947K5JR2DlXMQlp4pMTlf8zYlJu9CjNBpg5WdF/D4NadGvovZ5S4/+dCIDwSQzM8hTqwExFvsiJvWP5ZvxdvvNyp1RMLj8uhsitVYsVIRnIPpGr7ZmeNKeX9tcYoG96nDqeOicbbk/tw4B12ZxDk4EQfOOXDiYO5LJAIfHDdEyBCn1znUGHQOrTE6hwzZFcnidV1ZIX0BgDn+5zkALhTK72OMNTPG1gFYA2AaEY0E0I8xNp95Mp+7hWsqBpuXom2jjTvVRkJRGB2dYocXe3qU4aIrAIDedfpwWnyTsPXL++hd6xaSS3dClDe+848bpTwLkYBNqu+v+EAkOTlt3HVQ6FtfJxA/G19s7wcxQYuMaFgTfZ1Imkob5xDz8IvJmGe0cuNzN1znmrMjLmS5eAo2GXu4CAxyCXQO+SBSqplzUNvXi27kUO3yGuSmrDYOzGZdJl6350AL+tbljISxs3AODMD/EdFrRDTLLxvOGNsCAP7fYX55PQAxZsJGv6ze/yyXKyCiWUS0iIgWNTQ0FDlg/Y2NcA6WlzPO0igXOUG6vVhnTRimlMknk/84c5xSR4RtwxBPWb0N3sd8k3ARK7k6rOm4FLl5ne+BCCuhdoD4IsWFpTYHn/P/WvoRh2nqR+Ri7DoHS0cOv+tg9o/hhwLDvZGG+cfPn+Q0JtUpMGxIDMGdFLzZl9bssNTxOYeCmXOI4yLl0/mhvkj38pPHAlAV9IHy22LK2iDkQlEdCcPrNu1uQv3AqGd4ZGydQecA4IOMsRMAfBTA1UT0IUtd3V1jlnK1kLHbGWNTGWNThw5VFX4uMPk5iAvIttHGKYN0IXZlXHxCSPumHTYId2peONEj+VNTR+Ob5xxl79cxVk8/g5NVuEGawQmHzW9DnHIPrWyecx8e4bj2oxNsw9XeQ1mEwXHfLFW/4yJW4l3Eyd1ttF4kqjaxEN+kS7JWKkasFHNSNnJV0oo4Q3OQAdR3Rv4uipUGa/QxriCiyL27zLcuEpEJNvh4hXRP6QATZIiT3vP+PWuQzVDg3yMf/PgBzGSNJ4/h15dMwedPGYsPHDZI+b25LY+emkNcp1JIM8Y2+3+3AfgfANMAbPVFRfD/bvOrbwQwRrh8NIDNfvloTXlFEJiySutFl1RDh7jnEtVd6OuceOggHD7U00V8RBNmGwCOGx3a55tEQSJcTtiHDOpl0Tl411uT1lOyjU3XlyjDPm50f+N4dO1x5LIZTJSU2GMH68OZuBgaxOocHF7KaFgTY7Vg01nbsM+prWlj1fDp4sY7ZlBPLP7hR8wd8mvi5h5DOOOgiGkVayXRVNzcaBIPaAC4SOOMKccgsukyhvaNEiquc5AjE7TmWWQtcV3if3/2RABhEiyjGE7ebzKE686fhPuvPFn5uTVf0Bp9mERelULRxIGIehNRX/4ZwDkAlgF4FMDlfrXLATzif34UwEwiqiOiw+Apnhf6oqdGIpruWyldJlxTdoScg3kRvrfTLFtOAptY6Z0GcxRHwJPX89O1HF9GBxc59OT6fsbfAgsPC3XgdVz8QACTWImz/IXEG4EImymyiFyEc9D3wZ+TUSnr/1VSOApwESuJWLXVQhz8xq45cxwe+LKaeElsf0S/Hk5+NKa5u1orJW1f8U8QiYOlUZM1nQjxcKIzzeY/NwcB7Mx15BAkuthNjU2tuP2FdyIJgXha1t51WfSsyca+z6aw/Rzi15a2gtZcfGCvWhABmwQ9WiVRSrKf4QD+x3+hcgDuYYw9SUSvAniAiK4A8B6ATwIAY2w5ET0A4C0AbQCuZoxxrdJVAP4EoCeAJ/x/FUEYWylaLj68rX7U1FLhsmFv3m3ua79v0jcwRi4PuJ24LMm8wtj4DqITlxfYNCZe5GVDcwgy57g7mbirSP7hmNOxq2Ojtk5ErBRb3d4Wv97Qr2j/7np/THMPxUomIlzcs7aJlWyOkDXZjJKVzdaXdo1JFk269crnu2VP9P3T6RxWb1MJOVeqt7QV0L9nTRDmxuSYKA/TFotL5lI4+veqQa+abFFBMItB0cSBMfYOACXwPmNsB4CzDNfMBjBbU74IwGT1ivLDRedQLrh4A7vEihnYyz0Ymw02K4cgfaRlM4jzDneBS/A5Ea5hSkyOeS598PkkCYkiQ7xvNmVpEpiGLnJkpZhdA+EGahSpRfp1d9yTZfYuuh/AzcEyEphP8/5wwhRwDpo244wGxPFv1JzUud6NE4f3/QOlKRiist9IQxKHs3TTHpw0diB0yGSo0yikOx2C2yo9rUr43SXJ8WyDi1jJRUlpDXUdeI6b2+FjtW24vIsHrlTFIWIbQHL5sg2mYbtcz+fsyjn8VhOUUTwpu3CeNqs3fmo1mXxGxlbiG/zYUi+niHyCDtoX5vX0N043tiPffzn/h0gcbHb6LqFZxGCUNge3Nzd4OR+0iZcM3chmsACweqvq1zJj8ggAwPjhfSKRdKceatjUDWapwXikDenV9eYQ653FlLXzgW+C0sOoCOfgZLcdXycu+Q3gduKybUh8wdmGkyR/9KDeJquo8LOLp3WcV3McXERgcURPLtWZ34rDcSFINuszfvq0bZTfO+9oAKVzDhwuuh1bsED5ejnVq/gcbA5s4ppwCQuve2YukVzjrLdE7kTnAHjBlHqs+MkMjBvWNyLmMx6uYsRKro8xl6GOr5DurDBZK7nGveE402DSJyKprNoEl03UxvJz2JYUX2+2jY3LOm2ZxTji0k7G9RXUiVEScwzrq6Y/9fpwOIn6cmLjs5CKdRuSOBcXgj95lDlPNhcb2EyG+W0pF3EwE8aw3Eas5HHIpphRayXzODgROXZ0f6ew8Lo1pPhYaNZAz5qs9iCkC27HuYiF341Ky/kcbTGTOOLyfcjf7/niB6BDhlLiUHHYXimTo5iIr541PraOSwgiF47FhTjUZuPHbBIdAMDXP3IkTho70GjHLsJJVGMqj5xEyydW+skFk7Tln/nAIbHXPr1iKwAYFaG6SLu2Oi6HC5uuiXMOdn8Siq3jghsuPsb6u+jVaBwfZgAAEP5JREFUa3NYjKNR4hq27W18w3UlenHpWL2+9QRkUG/V3yKn0Tm0FRj69sgFqUBlmERAIuKsuWS94lhN2B1+XUocKgQXcd2oAap3otKOQ19OWc8cwhO4KK1dZLUrtugjyQKe3fZfv3xKJK6RcTwOp3EXzsFlEzUSB6l9k2NVkvSjRu956bs+ZHf42YWg2Z6pKROYDnEe5nHglnCmpcpPxUpwRAlxlnniPbG9gyP8DfigYzhy3b02xSSS0adOfY6hL0FIFPMFVrKnfpwYe/zwvpHMeCZRcjZjD+BXTnRD4hCveP1WjDey2I4NLqasLgekGofN2IWAlAtyKGER/L7EZZyz1RFhoh/ilTNPGqOv5ON75x1t3dwC7sLwSGVxk27TdsnnLcJGYEOxkpkb5KdHm4PkDz8+MXYccSf0wX6oixmTRljruThqctgCT3Ifo5UaJTDHp6aGPrO64WcyFHGOiwtTLyIM9x3VObiIJ20QLx/cu1a7/4hZDE3OodXkHErxc+iUCHQOljo613UZhw/RJ0cX4bKeXJTNLlFQXURPLpuFC3pYNq3AX8JIHMLPLids0+YlviBxBPZLHzocX/rQ4cbfeSpR0ysnN3+4geXnKIkjQhj2wUaEuQGBrR1XfxQbRvbviVe/dzYGx3Aoww0iFxGXThuDexdusHvhO7w0k0b1RzQcmwq+bgb1rjW+zzoizt8jvr6eX9WA3QdaSr6XnBiMG9bHaPXFh0NkFhdmq6hz6H7EwRCyW4TthVv243PBGDNmZBPhIla6zA/kZYOLGMclMf0XTj0sto4LbMSzEMM5iPfE5YUzPQsx2YvN+sUFfEimbGfimE8/cmisEUGpRLglH6+QLjisYxdwIwPbyV8OMaFDT4GQmYwj+IZt47pdDksil2wSy3L6bDItFccTLfP+thUYGhqbcfldCwEAozWB8JKA92STJvC13iOXNe4d72zfj3e278ctny5pOE7ofsTB/2uT9dseYJ8E7LMLXOTKtk10+Y/PLckprRjYzGbjnOmScg5G4iAoSuNyKcchTu8jTsX2LIi8+U8Yoc/W54o2B4V0aHpsHo/JMk/E2UcPw/TDBzmJUm3gz+nSaYdg9oV6f9aAOJTUU9RPwsTR8L5GD7QkyPLrfO+8o4ODEw/s15YvRKyQbGlSXRDkaLeseU4QXCQX1UD3Iw4mF2kB5fKHK3VBff9jR+PRNzdbT3VJZL3lgpPC1UnnULz4RSQIJq9UV5hCqnCIxda8GfA2PtsG8IUPHobV28zydEC0VjJvEszBL4Uv9c9+QI1cyjGgVy3um6V3WEyEID6Vef78/trESnxet31Gn7kOAJZv3hN8NvXFiactugB/ljVZUkJyyKKbzRZLPxeE0QXMdfi7IUeK1WHr3iYnUV4p6HYKaQ4bASjVW5rHanfhCmz44mmH49GvnOqclrNaOH/KqNg6Ls5rLopb08lYDC9QKufQ3GrfjF0trPi6sc3rh/8yEXOv0Nuwc3BlqG39FGI4tGqDj8LFkMYmVuK/2MSkXC+hy4PCwbkLW9Rfvkaz0jOtyWbQVmCJPZFtnB4P1GcNWunfRBefpf99s2KBqwN0rF2nCnBgHErG/mYvdIDtVP/Qv5+CG//VbmPeUXFujOUK4BanyCUHhekFveFfjw0+2zJsuaDJzyrmkr6yJoZzAEqLPQWEeoABlg2y4GB119GQRKxkI8KnH+nl8/jWuWZRWIuDUt+UW4NzDkk50ru/MM34G98L+vUw7wmZBGKlahwYux9xQOVfqv9vxgSMGdTTKns+4ZCBuOSkeAetzgpjnKKEnsSmSLLiibC1rTTxXf0ATy59+FC9BZo75xD9Wyx46AlbUpxCgkNONehH2If5WUw/3MtNMbne7B3OxTm2vW/G5JF4+6czrObJ/3975x5sVV3F8c/i3gt45RVwkcvjAgophAKCBMjDmDDBlN5BKihO6kiD9E+K5jRTNqNNmQ+cEaZgKsvKSQoLdaxJp8xCUHzw9JnIoFaYIlRIrf7Yv83d3HP2b+97zzn77HPv+sycOfv+zu/8zvess+9ee/0e6xde2H0z68KxxcIV1cL7//0fR9p5Xk0dVbj3Rkh4jzPUs4YqvCY1ptiGN4thxi7nHEIqadsZowfyh6/MTfUjd1bSDEinGXNIE9qXGjksnjqce784jQWnJ0dEvmmEt35uIqMH9Uq1LsXHmiWTeXjlbP801TC1tCcPe5q1OOUiHNT3feR545t56sZ5nFVkA6OQy93A8Ogm/6B+0iZRYdecL3IIf6a4yOHNg+0bZ/DdcIa/hS/9fugQfbPDVn8hSPpY6fEG6JID0tVW0DVIMyCdhlTOoeSprHLcAqS2RDVveHof341JCHfBhCFcMCF5PCaJPj0b6DPYPzU57Hr415Hk755Fx1M4sydpnC1pRffCiUO5cMKQkiP7Y5GDx4lsc1lb322zP0I45nDPE39N9Vn3XTWdza8c8NYJv4/vdA7PsyZPxDh6UBDdZpG2u8tFDmmm93U2bvrEeNZcMjnTz0yasQKt/5w+Tonp6gHYcPUMoPTZSknk8VwJL3rheEkxPuy2TT03xRhRqYQputOkX0miHF2+afJThbm0nnrt+POwzk1lTTsT8KyR/Vn+kdHeOuH0b19Xangj5Iscwmi70uc8dMHIYf74wXzwpF6pcuV3Fi6eFj+VsT1sWjGLQ0eOJlf0EL1z8i14evXm8xPbCuewnxHZb7sSRK9Vs8YMrOhnpeVTZw5ly6sHWPnR+ASQY5v7pLJjufT8fMteFk31pzLJijCaTOp+gtbZhSFvvPNvfrnt+NlAK+b6L/5JXDSthb1vH+bKOfEr9UOtvnVE4Tob354Y5aLLOYcRA05kxID49Adnj47vXujqjBviT74GQUbbQ56kadEuoGvPO60kPU29e7BpxSxObvKnsyiVaLfS+kvPquhnpaWxez23LSrcdKhaDO/fyOPXza22jGOEEwd83ZJPrJrLIzve5PNtcnO1HcNqqBNWpMjC7KOxez1fX+jf7LK57wnHPi+O1qyxXShyEJHzgNuBOuB7qnpz1hr23DQ/89XGnY0Hr5l93CKltkRD5hED0mdMjSONwyqV6BmRJm+SUX1OG9ybza8c8K5+b+57QmL6mvNPb+Yuz4K8crJs5ki6CSz2pJkPJyIU24Co3OTCOYhIHXAXMI8go9aTIrJRVXdkqaPURWsGtAxopMVz0e/ZUEdL/0ZeO3C4Zuboh+G+3TfUDtcvGMukln7Hps92lHNObSqTomR61Ndx5ZxTvHWCFe3TEpM/loNcOAdgKvCiqr4MICI/BRYCmToHIxvuv3oG+4ps2p5XwminT4rkhkY+6NlQxycnDUuuWITTBvdm1xtBipMspoy2h+713Zh2cjZd33lxDkOBvZG/Xwf8OQaMmmVgrx4M9EzXyxs9G+q4YcFYZuZkMNqoLA+tnI2qsnP/wUy6LfNKXpxDsYC9oFNNRK4ArgBoaem8q4uN/OHbD8LofIhIl3YMkJ91Dq8D0SkDw4CCzFKqulZVp6jqlKam7PoCDcMwuhp5cQ5PAmNEZJSIdAcWARurrMkwDKPLkotuJVU9KiJfAh4mmMq6TlW3V1mWYRhGlyUXzgFAVTcBm6qtwzAMw8hPt5JhGIaRI8w5GIZhGAWYczAMwzAKMOdgGIZhFCBZ7hZVTkTkILA75uUW4LWEJvoC8Rnisq9jmrOpY5qzqWOas6nTEc2nqqp/qz0Itq+rxQewxfPa31K8f23O6phm02yaTXPFNfuundFHZ+1WSt5iDB7IWR3TnE0d05xNHdOcTZ1yaS6glruVtqjqlPa+lldMczaY5mwwzdnQEc1p31PLkcPaDr6WV0xzNpjmbDDN2dARzaneU7ORg2EYhlE5ajlyMAzDMCpETTgHEVknIm+JyPORsgki8oSIPCciD4hIH1feXUTWu/JnROScyHsmu/IXReQOqeA+lWXU/KiI7BaRbe4xqIKah4vI70Vkp4hsF5FrXHl/EXlERF5wzx+IvGeVs+duEflYpDwTW5dZcya2bq9mERng6r8nIqvbtJVLOydozqud54nIVmfPrSIyN9JWXu3s01yandNMaar2A5gNnAk8Hyl7EpjjjpcB33DHy4H17ngQsBXo5v7eDEwn2FzoQWB+DWh+FJiSkZ2bgTPdcW9gDzAO+BZwnSu/DrjFHY8DngF6AKOAl4C6LG1dZs2Z2LoDmk8EZgJXAavbtJVXO/s059XOk4Ah7ng8sK8G7OzTXJKdK/rjlNloIzn+QvsurWMmw4Ed7vgu4OJIvd8R7FHdDOyKlC8G1uRZczl+4BL1/wqYR7DYsNmVNQO73fEqYFWk/sPuHyhzW5equZq2TtIcqXcpkQttnu0cp7kW7OzKBfgHwU1E7u3cVnM57FwT3UoxPA9c6I4/S+tOcs8AC0WkXkRGAZPda0MJdpwLed2VZUl7NYesd2HhjZUKZ9siIiMJ7kr+ApykqvsB3HMYnhbb+3soVbJ1iZpDMrV1Ss1x5NnOSeTdzp8GnlbV/1A7do5qDumwnWvZOSwDlovIVoLw64grX0fw420BbgP+BBwl5T7VFaa9mgEuUtXTgVnucUmlRYpIL+AXwEpVfddXtUiZesorRhk0Q8a2bofm2CaKlOXFzj5ybWcR+RBwC3BlWFSkWq7sXEQzlGjnmnUOqrpLVc9V1cnAvQR9x6jqUVX9sqpOVNWFQD/gBYKL77BIE0X3qc6ZZlR1n3s+CPyEoIusYohIA8FJ+WNVvd8Vvykize71ZuAtVx6393emti6T5kxt3U7NceTZzrHk2c4iMgzYACxR1Zdcca7tHKO5ZDvXrHMIR95FpBvwVeBu93ejiJzojucBR1V1hwvFDorINBdeLSHoz8utZtfNNNCVNwAfJ+iaqpQ+Ab4P7FTVWyMvbQSWuuOltNptI7BIRHq47rAxwOYsbV0uzVnaugOai5JzO8e1k1s7i0g/4DcEY1KPh5XzbOc4zWWxcxaDKqU+CO6y9wPvE3jxy4FrCEby9wA30zrQO5Jg8GYn8FtgRKSdKc5ALwGrw/fkVTPBjI+twLPAduB23MyaCmmeSRAuPwtsc48FwACCQfIX3HP/yHtucPbcTWQGR1a2LpfmLG3dQc2vAgeA99z5NK4G7FygOc92JrhhOxSpuw0YlGc7x2kuh51thbRhGIZRQM12KxmGYRiVw5yDYRiGUYA5B8MwDKMAcw6GYRhGAeYcDMMwjALMORhGBRCRq0RkSTvqj5RIBl/DqDb11RZgGJ0NEalX1burrcMwSsGcg2EUwSU9e4gg6dkkgoWLS4CxwK1AL+DvwKWqul9EHiXIiXU2sFFEegPvqeq3RWQiwWr4RoJFVMtU9W0RmUyQV+sw8Mfsvp1hJGPdSoYRz6nAWlU9gyDd+nLgTuAzGuTHWgd8M1K/n6rOUdXvtGnnh8C1rp3ngK+58vXAClWdXskvYRgdwSIHw4hnr7bmq7kHuJ5gQ5VHXPbjOoIUKSE/a9uAiPQlcBqPuaIfAPcVKf8RML/8X8EwOoY5B8OIp21umYPAds+d/qF2tC1F2jeM3GDdSoYRT4uIhI5gMfBnoCksE5EGl0c/FlV9B3hbRGa5okuAx1T1n8A7IjLTlV9UfvmG0XEscjCMeHYCS0VkDUE2zDsJthW9w3UL1RNszrQ9oZ2lwN0i0gi8DFzmyi8D1onIYdeuYeQGy8pqGEVws5V+rarjqyzFMKqCdSsZhmEYBVjkYBiGYRRgkYNhGIZRgDkHwzAMowBzDoZhGEYB5hwMwzCMAsw5GIZhGAWYczAMwzAK+D8bH0oGdBVFNwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Faisons un zoom sur une plus petite partie des données pour observer leur comportement de plus près sur une période par trop étendue." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8JGd95/95qrqq71Z36xqNpBnNjOfyjO2xZ3xhAzbGByzE3GtIAgnenxMCWZKQ327Y327IbmIgJ3nxS0wCAWwSwu1gB3AA24CxMbbH53g8nvvSMbqlPqu7jmf/qHqqq1t9Seq7n/frpZda1V2tkrqqvs/nexJKKTgcDofDcSI0+wA4HA6H03pw48DhcDicFXDjwOFwOJwVcOPA4XA4nBVw48DhcDicFXDjwOFwOJwVcOPA4XA4nBVw48DhcDicFXDjwOFwOJwVuJp9AGulr6+Pjo2NNfswOBwOp6149tln5yil/ZVe17bGYWxsDAcPHmz2YXA4HE5bQQg5W83ruFuJw+FwOCvgxoHD4XA4K+DGgcPhcDgr4MaBw+FwOCuoaBwIIaOEkJ8QQo4QQg4TQj5qbf8TQsgEIeQF6+vNjn0+Tgg5QQg5Sgi51bF9PyHkkPXcZwkhxNruJoR8w9r+FCFkrPZ/KofD4XCqpRrloAH4GKV0N4BrAHyYEHKx9dxnKKX7rK8fAID13B0A9gC4DcA9hBDRev3nANwFYLv1dZu1/U4Ai5TSiwB8BsCfr/9P43A4HM5aqWgcKKVTlNLnrMdxAEcADJfZ5XYAX6eUZiilpwGcAHAVIWQIQIhS+iQ1x899BcDbHPvcZz3+NoCbmKrgcDgcTuNZVczBcvdcDuApa9NHCCEvEUK+RAiJWNuGAZx37DZubRu2Hhduz9uHUqoBWAbQu5pj43A4nHpyaHwZL55favZhNIyqjQMhJADgOwB+j1Iag+ki2gZgH4ApAH/NXlpkd1pme7l9Co/hLkLIQULIwdnZ2WoPncPhcNbNpx46grt/cKTZh9EwqjIOhBAJpmH4KqX0fgCglE5TSnVKqQHgCwCusl4+DmDUsfsIgElr+0iR7Xn7EEJcAHoALBQeB6X085TSA5TSA/39Fau/ORwOp2Yoqg5F1Zt9GA2jmmwlAuCLAI5QSv/GsX3I8bK3A3jZevwggDusDKQtMAPPT1NKpwDECSHXWO/5fgAPOPb5gPX4XQAeteISHA6H0xJoBkVWM5p9GA2jmt5K1wH4dQCHCCEvWNv+B4D3EkL2wXT/nAHwWwBAKT1MCPkmgFdgZjp9mFLKzO2HANwLwAvgIesLMI3PPxNCTsBUDHes78/icDic2pLVDG4cnFBKH0fxmMAPyuxzN4C7i2w/CGBvke0KgHdXOhYOh8NpFppBkeki48ArpDkcDqcKVN1AVufGgcPhcDgONJ0iwwPSHA6Hw3GS5cqBw+FwOIVoencFpLlx4HA4nCpQdQqDmkaiG+DGgdMxGAbFFx47hbiiNvtQOB2IahmFbnEtcePA6RhOzCZw9w+O4OEj080+FE4HYhuHLnEtcePA6RhSWTOTJK5oTT4STqehG6ZLCeDGgcNpO1jfG24cOLVGdbiSuqUQjhsHTseQtoxDjMccODVGM3Kt3njMgcNpMxTLrZTgyoFTY1SHWuBuJQ6nzVA07lbi1AfV4G4lDqdtSWfNi5ansnJqjao73ErcOHA47QWLOSQyXDlwaouz8I0bBw6nzSiXrfSTozOYS2QafUicDsGZrZTVu6P5HjcOnI6hlHFIZjR88N5n8J5/fBIzcaUZh8Zpc7hbicNpY9J2EVx+zCGuaKAUODWbxJ33HmzGoXHaHF7nwOG0MSxbKZHR4BxBzmIQY70+HJpYhm7w8eSc1cGVA4fTxrBsJYMCyWzOL5y0jMNgyAMg537icKolP+bAjQOH01Y4b/pO1xIzDr0BGUD3uAU4tUPjyoHDaV+cxsFZJc3cSr1+94rXcTjVwGMOHE4bk3bc9GMO45DM5isHbhw4q0XldQ4cTvuSVnX4ZRFAvlspkTGNQW+AKYfuuLg5tYMHpDmcNkZRDQxYQWdnlTSLOfT5LeWgceXAWR2awQPSHE7boqg6+i114CyES2Y0CATo8Un26yilXbMC5KyfLO/KyuG0L+msjv4QMw5Ot5IGv+yCVzJdThnVwIMvTuLqTz7cNRc6Z3045znwgDSH02Yomo5evwxC8pVDQtHgd7vgsYyDouo4PZfEYkq1XU4cTjlYQNojCV2zoODGgdMxpLM6vLKIgNuV71bKavC7xZxx0HS71QaPP3CqgRmEgNvFYw4cTjthGBQZzYDHJSLkkfKVQ0ZHwO2CRzJPd0U1kLKMQ4ZnLnGqgLmVfLIL2S5ZUHDjwOkImB/YK4sIelwrKqT9bhc8rpxbKcWVA2cVsDGhPlnkbiUOp51gBXBeyXQrFaay+t0uuB3KIa2az3PlwKkG1VIOfreLB6Q5nHaCGQePJFjKIb99RtChHDJaTjl0y4XOWR+qbkASCWSRB6RtCCGjhJCfEEKOEEIOE0I+am2PEkJ+TAg5bn2POPb5OCHkBCHkKCHkVsf2/YSQQ9ZznyWEEGu7mxDyDWv7U4SQsdr/qZxO4+P3v4Q/fuBlALmWGB5JRNAjIVbErSQI5sWtqAZSVtU0b6XBqQZNN+ASBMgugQekHWgAPkYp3Q3gGgAfJoRcDOCPADxCKd0O4BHrZ1jP3QFgD4DbANxDCBGt9/ocgLsAbLe+brO23wlgkVJ6EYDPAPjzGvxtnA5GUXXc/9wEnjmzCCA36McriRgKezC1pNhzG5IZHX63CwDglgQz5sDcSl2yCuSsD1WnpnJwceVgQymdopQ+Zz2OAzgCYBjA7QDus152H4C3WY9vB/B1SmmGUnoawAkAVxFChgCEKKVPUnMSy1cK9mHv9W0ANzFVweEU48lT88hoBpZSWQD5ymFz1I+sbuBCTEFWM5DVDQTcov28063ElQOnGky3ksCNQyksd8/lAJ4CMEgpnQJMAwJgwHrZMIDzjt3GrW3D1uPC7Xn7UEo1AMsAeov8/rsIIQcJIQdnZ2dXc+icDuNnR83PfyHJjEMuW2ms1wcAODuXtIvcmHLwSKZbKc1jDpxVwIyD2yV0zTlTtXEghAQAfAfA71FKY+VeWmQbLbO93D75Gyj9PKX0AKX0QH9/f6VD5nQolFI8+uoMAPPmns7quYC0S8TmPj8A4Mx8ys5aso2DS8xPZeXKgVMFmk7hEgncPOaQDyFEgmkYvkopvd/aPG25imB9n7G2jwMYdew+AmDS2j5SZHvePoQQF4AeAAur/WM43cHpuSTOLaSwdzgEAFhIZXOprLKAoZAHskvA2YWkPcshYCsH0zhw5cBZDVndgCwKPFvJieX7/yKAI5TSv3E89SCAD1iPPwDgAcf2O6wMpC0wA89PW66nOCHkGus931+wD3uvdwF4lDonxHM4Dl69EAcA3LRrEACwmMzmxRwEgWA04sXZuVRRt1Iyo9urP64cONXAlEM3xRxcVbzmOgC/DuAQIeQFa9v/APBpAN8khNwJ4ByAdwMApfQwIeSbAF6Bmen0YUopuwI/BOBeAF4AD1lfgGl8/pkQcgKmYrhjnX8Xp4OZjikAgN1DpnJYTOUbBwAY6/XjzHzSHvTjDEhfWFbs9+LKgVMNzoB0pkuq6isaB0rp4ygeEwCAm0rsczeAu4tsPwhgb5HtCizjwuFUYjqWgSQSbOs3YwuLKTUvlRUANvf68YuT8/YsaTuV1SVi0cpwAtA1FzpnfagGhUsUIIsiDGrVPYidXUPc2X8dpyOZiSkYCHoQtSa7mW4l1lLZUg59PqRVHafnEgAAv5yrc1hM5QrkePsMTjWomgHZcisB3TENjhsHTtsxE89gIORGj1cCIWY6a1rVIYsCRMEUuZuiZjrrK1NmYl3Aka2k5w1u4cqBUxnNyFVIA90xDY4bB07bMR1TMBj0wCUKCHkkLFkxB9aSGwC2WOmsT50yk96cAWknClcOnCrI6hSSy6xzALhx4HBakumYgkFrHGjUL2MhpUJRzUE/jE1RH969fwTzyayZgmhd1MztxODKgVMNmm5AEnJupW5IZKgmW4nDaRnSWR0xRcNAyAMACPtM5SAQOe/GTwjBp995KQDg2HTc3u5UDqJAuHLgVIWzQhrojpgDNw6ctmImbqahDgQt5eCTcSGmwO0S7EwlhigQ/OW7L4OzZIa17QaAiE/iyoFTFXadg8jdShxOSzIdywAABm3lIGMxmcUL55ewa0Ow6D7OHo5OdRHxyTxbiVMVdoV0F8UcuHLgtBWsAI4Zh6hfwqRV1HbtthW9GlfgdCtF/DJSWa3Mqzndzj/+7CR6vFJehTTA3UocTssxE2fKwXQrhX2y/dy1W/sq7u+W8t1Ki8lsmVdzup37n5tA2CflKqQtt1I3KE5uHDhtxUxMgewS0OOVAMAuhBsOezEa9Vbcn7mVZJcAn+yCwmMOnDIomo65hGEbB3b+dENPLm4cOG0FS2NlcYSIzzQS12ztRTXzoVi2iU8W4ZGErlgBctZORjWwrOn2JLiQtShxjqHtVLhx4LQV07EMBoMe++fegOleqibeAOSUg08S4bZmO3A4pVA0HUspFQIBXGJOsS6nO9848GwlTttAKcWJ2QRGrdYYAHDFpgg+9Y5L8NbLhqp6D4+lHLyy2FVTvThrgy0eDApIooCQx1xPd4Nx4MqB0zacnU9hNp7BgbGIvU0UCN571aaq38NWDrILbklERjNAKa3KJcXpLiileUWSkkDgEgUE3K6uMA5cOXDahqfPmH2SrhyLrvk9mHFgygHojlYInNVTmK4qWedLj1fixoHDaSWeOb2AsE/CRf2BNb8Hq3MwA9KmoeDGgVOMwtYqLqvjb8grIcaNA4fTOjxzZgEHNkchCGt3AeXcSg7lwIPSnCIUnheyrRy4W4nDaRlm4grOzKdw1ZZI5ReXgfVW8kourhw4ZVmpHLhbicNpOZ4/twQAOLCOeANgToIDAL87pxx4OiunGIVNGSXRVKzcOHA4LcS5+RQAYNs64g2AWQRHCA9IcypTqBwkkSsHDqflmFhKI+h22UVIa4UQgk++/RK858Cow63ElQNnJay1Cos1OI2Dohodf95w48BpC8YX09gYrtw7qRree9UmbOsPONxKXDlwVsLcjSPWeedyuJWAzi+E48aB0xZMLKUxHKmNcWBw5cApB+u7xc471pHV7q/EjQOH03wmFlMYrpFyYLDgNFcOnGIwt9JIhCsHDqcliSsqYopWc+XgdnHlwCkNWzSwRYkz5gBw48DhNJ2JpTQA1Fw5eLhy4JSBLRr2jUbgkQT7/OsW48Ab73FanolFyzjUSznwOoeuhVIKVad2RhIAfOnx0xjr89mLhktGevDqn77Jft42DqnONg5cOXBaHqYcRuqkHHidQ/fy4IuTuPqTDyOdzS0Q/v9Hj+NbB8ftbCXn3HEgF5BeTnf2/HFuHDgtz8RiGrIooM8a7FMrmHLgbqXu5dx8CospFeOLZpFlOqtjMaUirmjIqDoIyWUpMSRRgE8WO96txI0Dp+UZX0pjY9izroZ7xRAFAkkkPCDdxaQsdTBuqdOpZfN7XFGR0Qyron7ledcNVdLcOHBanonF2tc4MMxRoVw5dCvMnTRpGYcLywoAIKZoUFTdroUphBsHAISQLxFCZgghLzu2/QkhZIIQ8oL19WbHcx8nhJwghBwlhNzq2L6fEHLIeu6zxDLHhBA3IeQb1vanCCFjtf0TOe2MblCcnE1gc6+/Lu8/1OPBsel4Xd6b0/ow48CSHiYt4xBXVCiqYXfxLaQbZjpUoxzuBXBbke2foZTus75+AACEkIsB3AFgj7XPPYQQ9t/9HIC7AGy3vth73glgkVJ6EYDPAPjzNf4tnA7klckY4oqGq7esrxtrKd6wewC/PDWPmNLZF/rfPXocX33qbLMPo+VIW24llvQwZX2PKRoUTbcLJQuJ+CQsprKNOcgmUdE4UEofA7BQ5fvdDuDrlNIMpfQ0gBMAriKEDAEIUUqfpJRSAF8B8DbHPvdZj78N4CbCB/pyLH55ah4AcM3W3rq8/827B6EZFI8dm63L+7cK3zh4Ht945nyzD6PlSJVQDlnNQCytllQO/UE3ZhOZxhxkk1hPzOEjhJCXLLcTm8AyDMB5Bo5b24atx4Xb8/ahlGoAlgHU507AaTuePDWPrX1+DIY8dXn/yzdFEPXLePiV6bq8fytAKcVMLIOTMwmYazMOQylUDlZAGgDmEtkVaayMwaAHSym1o2eBrNU4fA7ANgD7AEwB+Gtre7EVPy2zvdw+KyCE3EUIOUgIOTg729krPQ6g6QaeOb2Aq+ukGgAzY+nGnQN49NUZaHpnBqZjioaMZiCZ1TEd6+zV7mpJZc1ahemYAlU37IA0AMzGM3CXCEizxcpsvHP/n2syDpTSaUqpTik1AHwBwFXWU+MARh0vHQEwaW0fKbI9bx9CiAtAD0q4sSiln6eUHqCUHujv71/LoXPaiMOTMcQzGq7dVl8heWAsgpiiYbpDL/TZeO6Gd3I20cQjaT3SVqaaQc1MpcmltN0mYy6Rsdu6FzIQMmtuZhz/205jTcbBiiEw3g6AZTI9COAOKwNpC8zA89OU0ikAcULINVY84f0AHnDs8wHr8bsAPEq59uUAeHlyGQBwxaZwXX+PT+7sNhozDrXAjUM+6ayGXr8MADg2HUdM0bBzQxAAoBm0ZCorUw7llNj9z43j1s881rauvIq9lQghXwNwA4A+Qsg4gE8AuIEQsg+m++cMgN8CAErpYULINwG8AkAD8GFKKbviPgQz88kL4CHrCwC+COCfCSEnYCqGO2rxh3HanyWrd02tK6ML6fRxoTMORXRyhhsHJ2lVx7aBAOZPL+Dg2UUAwM4NQTz66gwAlDQOA0HznJyOlVYOL0/EcHQ6juW0irBPrvGR15+KxoFS+t4im79Y5vV3A7i7yPaDAPYW2a4AeHel4+B0HzFFhSwKJaV9rci10ehQ5WC5Prb2+XFyNtnko2kt0lkd2/oDePr0An521Ixj7hjMzSn3lDj3Ij4ZkkjKKgeWHj2XyNjG4d4nTuOSkR7s31yf1OxawiukOS1LLK0h5JWKti+oJZ2uHKZjGXgkAZeNhrlbqYC0qiPsk7BzMIhXpmIAgIuHeuznS9U5CALBQNBTNubAiuScyu2vfnQM3zo4XmqXloK37ObUhC8+fhp9ARm37xuu/OIqiaVVhLz1P0Xd9rjQzjQOM/EMBkMeXDQQwL89P4FERkPAzS99VTeg6hQ+ScQDH7kOr16II53VsX0gAEIASlGyzgEwg9IzZZRDXDEzoVhGk25QJDKaXVvR6nDlwFk3M3EFn/rBEdzzk5NFn6eU4geHplY0uKOU4lMPHcHRC8XbV8QUFSGPVPPjLYQph451K8UUDATd2NpntiA5M8ddS0CuOtori/BIIvaNhnHttl4IAkFANo1nqZgDYNY6lIs55NxKZiV1ImMaC5Y+2+pw48BZN994+jw0g5rBtyIDUE7NJfE7X30OD78yk7c9pmj4x5+dwvdfmlyxD8CUQ/2NQ6fPdZiNZzAQ9GDAyrCZ6/DK3mpRsjnjUEjQw4xD6VvkQMhdlXFgyiFu/cyVA6cr0HQD//r0OTuj6NlzZonKydkErv7kwzgxk0DCkteF/YvYCmqmRH1BTNHsqVv1pNMnws3EM+gPuhH2dcd4y2phN2lvEXXAFiXuMm6lwZDH7t5ajFg6363Efk5y49AdGAbNmyLVbTxxch5Tywr+11t2QxIJnj5tpgN+59lxTMcyODWbsC+ewv8TuzhLGoe0ipCnETEHy63UgcohldWQyGgYCLkRtm54SzUeb0kpbctcfuZW8q1VOVjprDOxDBRVx9vveQLPnjUXR4ZBbaXAlJqtHDLcrdTxzCcy+M+ffxJv/uzPm30oTePcgjlB69qtvdg73IODZxZAKcX3XpoCYN5wmbsmXbDCSmWYcVgpzSmlWG6QW6mTlQMLmA4EPbYKq3U30fd+4Zf4qx8drel7NgK2OCkWVwhasa5S7TMARyFcXMF0TMHz55bwwnmzcDOZ1WBY9jLnVmIxh/Y4z3jKwhpRVB3v+ocncXouCULMTASxxpPK2oE568SP+mVcORbFvU+cwbNnF22joag6FCvgWxiIs91KjowPNvBdMwxoBm1IQLqTYw5MlQ0E3XCJAoJuV82Vw9n5VN0LFesBU7RF3UqeygFp1kJjOqbY6iOZYS5U87skErt7azzDYg5cOXQ0Ry/EcXouiSs2hUEpsNThvd1LMZfIIOKT4BIFXLutF1ndwG98+Rn7+Yyq2+6awhUT+3kukYFuLbMeeMEc+M4MRiNSWdmM4E40DmzV2m+5QML+2k8wy2oG1BZqWjifyODAn/0Yz59bLPs6dv755JXnmK0cyhRgMiUWVzQkLRWctG78rMZhU9SHhWQWukFt5cBjDh0OKyZ6/Y4BAMBCsjuNw3wia68ab9jRj795z2UYjfrwny41228pqlEx5mBQ84IGgOMzcSymVByxCpIaEZAmhMDtEjrSrcQMQcSq0A175ZovZLKagWwLGdZj0wnMJbIVq8Fzqawrb4PBKpQDqxVJKBoSTBVYRoIZh239AegGxWIqaxuHrGa0RQdg7lZaIydmEnAJBJdbTeHmk1lsb/IxNYO5RMY2DoQQvOOKEbzjihGouoHvvzRlzuFVmVsp/+abdMjrmXgGAyGPfTM7YtU+NMKtBJgrxE5UDixDjCmwsE/CUo2VQ8YqJmsV2EyGwrqaQtLW+ectoxxKtc8AAL/sAiFmoDlRoByYIdjaHwAwjdl4Ji9bL6XqCImtvTZv7aNrYcy5xj7b79itymEukUFvYGVTMUkUIAoEaVW3b7qFxsGpJFhQetlK92PKoREBacBcIVa6mbQjy2kVLoHYfvUer1S0FmWtUEpN5dBCK+EpayZDRi1/TOmyqayVlQMrlotnNDtd21YOClMOZuHhXCJjGwzn61oZbhzWyImZBLb1BxC12v3Od2lh0ZzDrVSIxyXku5XU/EBcnnKIsVxw86J69YJlHBqQygqY6axKhZtJOxJLq+hx9KcK13j2MVMMrRRzmLSmulUyWKkyqaysjXewwvkX9LismAOLJ+THHLYNmE38ZuP5xiHZBkFpbhzWgKobODufwkUDAduXO9+FykFRdSQymh3sLMQjiVA03b7pFlMOrKce627J3ErnF8wLvBExB8BMZ+1E5RBTtDz1FfbKWE6rMIzauIHYDbiVjEO1ykGxzr9iQeebdg/i3t+80nILlSbgcSGhaIgz41CQrcRalpjGIafY2qE2ihuHNXB2PgXNoNjWH4AkCujxSl3pVmLFPX1F3EqAZRxUvWRAOpnR4ZddiPgk260UK/CHBxsUc/BIQsWbSTtSWEgY9kkwKOybWTmWUlm87i9+gu9bNSvFYIHoVgpIM+VQydinsjq8kli0668kCrhh50DF3xVwu5DI5JQDWwDF0ir8sogerwSfLOJCTEFc0ex092QbFMJx47AGWKbSRZZk7PXLXakcWEOxXn8p5WDecBWNuZUKlIOqwSeLVuvjfOUAmL5guc6zHBhul2gfZydRWEjI5gpUE3f44uOncW4hhWfOFJ3aCyBnFForIG0phwoGK63qReMNqyHokcyAtFLgVlJUu938aMSH8wtpxNIq+i0XbDsUwnHjsAZOWNO0tlrBpqhfxkKi+4wDi7P0lXMrqbq9Il+RrZTRTeMQcmMmnrGrohmNqHFgmKmsrbP6rRXsJsWwW2iky5+vyykV9z5xBgBw3ipoLEarKYdUVrPPocrZSnrRpnurIeCxAtLZgoB0WrMz7UajXowvphBXNAz2eKzj5Mah41hOqfj3Fyexscdjuzyifpm7lYpgxxxY+4widQ5e2YWBoAezMQWprA7NoNgU9QFoXLwB6OBUVsdNCoDdfK9SlfS/PHUW8YyGrf1+nF8sbRzYDbhVYg6TS7lWLKUM1mPHZvGRf33Odiuth5AVcyiuHMzFzUjEh3MLKcQVFRus7EYekG5DfnZsFl947BSeOjW/oplYVjPwq1/8JU7NJvFnb89NPO0N1N+t9NSpefzDz4rPS2gWzK1UMltJys9WSmW1vP9pKqvB71AOLItm95A54L1RNQ7msYodN8+BUmpnKzFs41Ch1uHnx2exdziEG3YM4PxCumRjPWZQWyWVldU4AKXdSo+fmMP3XprC0en4+pWDOz9bSVEN6AZFTFHtxeOmqA+prI5kVscGqx9TOzTf48ahgE888DLu/sER/OfP/xKHJpbznjs+E8fLEzH88Vsvxht2Ddrbe/1uLKayNcsAKca/PT+Bv334WN3efy3MJTIIuF0lc8E9rvyAtEHzL9iUJes39nigGdSuaGVjGhtV4wB0pnLIWPUHTvdcj9dUeeWqpDXdwIvnl3FgcxSjUS/Sql5y8WNnK7XI/27KUg5eSSzpJmQppafnkutWDgG3hLSq5xnbZFZDXNHsRIBRSwkDyLmV2mAhwo2DA92gmFhK48ad/QCwYt4u68fOYg2MqF+GbtC69slfTqt5q/BWwKxxKO5SAlbGHIB815KpHFzYGPYCyBW+5ZRDI2MOnZfKyjK/VutWevVCHGlVxxWbIxiNmDe2cyXiDq0WkGbB6E1RX8nP05lSul7lwOogppdz7qxURs8bVDUa9drP9QXcEAgvgms7LsQUqDrF63aYxoHl2jPsVgQF7g5WIVxP1xL73a00qGUunkFvmW6crLDMeZE6V0yprBmQLjQOG8NeDPV47O2NwCN1nnJg54rTrSSJAgIVOrM+e9ZsWHfFpjA29ZrGoVRQOutwK7XCTIep5TT6Am4EPK6Sn2fC4dIpVgC3GgKWcYhncoOpEhnNrC9hAelITjmEPC74ZRePObQb7AK4aCCAgaB7xQXB5GihcWBV0sWC0j86fAGnChTIWmAXeq3bLa+VhWQWZ+aTFZVDxlEEB+T62QCWcXCvNA49Xgnf/fB1+MgbLqrT0a/E3YExh1xfpfzztccrlc1Weu7cIgZDbgyHvRiJmJ/N+GIah8aXV6TAOoO+raAezF5fMtwuoWRAOuGoVC7XHqMagu4ede4SAAAgAElEQVScus0N/1GgG9Q2Fn63y1FxLcHnFnkRXLvBpPNoxIfRqG9FlgaT6YUl9TnjsLKFxu9/4wV8/rFT6z425tJqhdbgZ+aSuOUzj2E+kcXbLx8u+TqvJJquME2H31qhpbPOmIMGn+xCj1dC0O2yYw49PgmDIU/RVsr1gsUcWmH1WyvYOVPongv7yvdXevbsIvZvjoAQAp/sQl9AxuPH5/C2e57AFx/PP5edgehWyFhKZXX43a6yMaS4otlt2terHJxFmqzP2un5ZN7PADBixR2CHhd8sqst2nZz4+BgfCEFgZhujdGId4VbiSmHQuPAisDmCmodUlkNyayOC44h5KxR2WqxlUMLuJV+cnQGc4kMvvnb1+K2vUMlX2dmK5kB6YhlQNmgE92gUFTDvjg3hr3QDQqBAIEGGoXcsYqgtDVWv7WCKYfClOCIT8ZCiUXGQjKL8cU09o2G7W0jER+ePDUP3aB55zJQqByabxzSqumqLBdDSmQ0HBiLACjedG81BBz3gsGgGWw+M2caB2dbmVFLgQU9ZsU0z1ZqM84vpjHU44XsEjAa9WFqOZ13wscUFT5ZhKug1W5fQMZA0I1/fepc3uvn4uYFeMEKVv3u157Hjv/5EC773z+yawSqwTmPthViDsxI7tkYKvs6j0uEZlAkM7qtrlJqfrV0zjiYF1bIK0FowkQ91l+nk6qk2blS6FbqDZSuy2HDgZzxnk2ObJvC/ZzGoRXSWdNZHR6rsr6UcogpKnYMBvFr12zCjbsqt8goh3OhOGClqZ6eMz0OA5axAHL/wyCPObQn5xdSto91NOKDQXOpcYCZ5VAs994lCvjfv7IHr0zF8MXHT9vb2XjA6ZgCSil+/MoFBD1m6ptzNGYlEo55tLVst7xW4ooKjyRAqtCPnvlzExnNbtvAfK1s5cR66bObUSML35ww49BJVdLFspUAU+nOl6jon0/mxr4ydgwG4HYJ2DEYWJF0kXEYhFaoklaslhilYg6UUiQyGoIeF/7sbZfgNdv61vX7nDGHQeZWmjNjjE630psvGcL7rt6EqE+GV+Yxh7bj3ELKzklm350pfLG0VrKF75suGcIbdw/is48ct+sdWHuJxZSKyWUFimrg0hEzh381qyynQajU9qARxBWtqoZ4bDYzAEStFMpUVoemG3b7AL/DrQQ00ziYx9FJ6awxRSvan6o3ICOR0YoG4BeT5rnm7Jf1X167FY/+4Q3YtSFUVjm0gkuOVT27S2SfpbI6KM1NcVsvTrcSUwrnF9Jwu4Q8w7F3uAeffPslEAQCv1vkMYd2QlF1zMQztvxjucnOoHQ8o5YtzLr+ol6ksrpd6euMQbD0wG1WC+DVjKR0TpBqhWwl0zhUvrjcDn8uizlcWE5j3//5Mb77wgSAnFtpuNnGwTJknTTTYTmlFu1PxTJniqVes6SKiD/3OXgkEcNhb9EeYq0Yc/CymEORaywXN6zNeeaVRLvTKlMKWd3AQMhdtNsrYM6s5jGHNmJ80Qw+M6Mw1OOFSyB56azllAOQ8zmyDqPOAUDPWp0tbeOwCgnujDO0QkDa2RqgHM40wajlVnpxfBmJjIZHX50BkBvuzpRDI6uinXSmcijuBmW1KfOJDH5+fBb//uKk/dxCMn/mdN5+fhnxjJb3P8qLObSKW0kWS2YrsVnPgRoVWBJCbBUS8Ul2FpQz3lCIXxZ5hXQ7wRQCK1gRBYKNYS/OL+YylkrFHBh2nrNlHJxB54OWcmDV1au5kFhKolcSWyTmoFVVveycv8sqc1+ZjOV9LwxIN1s5dFIhXExRi/4/7aLNRBb3/OQkPv3Qq/ZzC8kMQh5X0XhS1NqPuZ4AIKvnbnLNVg6qNcuaudI0g0IvaGlTKuNwPbD3Crgl+N3m+TxQolMxYMbZeIV0G8ECdM70s+GwF1NLTuNQQTlYq4UZK91vLpG1JfyRqRiiftkO9K3mJsQCi5uivhaJOahVXVxO5eCVXfBIAias/6dmXbRMOQyGPHC7hLIXVT3xMOXQSW6ldHE3aJ8VT5hPZnF+MYXJ5bQdf1hIqSWr3nuLFHu2knJgf4MZkDY/z8Jjso1DjWIOQC5+4XeL9vlc7jz2yyKyutF0Y1qJisaBEPIlQsgMIeRlx7YoIeTHhJDj1veI47mPE0JOEEKOEkJudWzfTwg5ZD33WWI55AghbkLIN6ztTxFCxmr7J1ZHwvLrOwNVYZ9ku3QopRXdKczn6FQO2/rNTA+DAiMRry07nSuuSrCYw2jU1zoxB3flFb6zb43bJRTNKWfKQRIFfOdDr8FvXreldge6CuyYQwe5lUotZphymI4pmFpWQCkwbinnhWQGEV/xzzZqGZVSxqHZAWmWHu2x3ErASjcha51RK7cSkFMOftmVUw6h0m4ln3WPafWZDtUoh3sB3Faw7Y8APEIp3Q7gEetnEEIuBnAHgD3WPvcQQtgd4XMA7gKw3fpi73kngEVK6UUAPgPgz9f6x6wHlj0QKBipuGQPDjEla7kBNB5JRNDjsnPF5xIZ9AVlbLA6MY5GfHbmyGpWqMtpFQIxjUuruJWqUg6unDHwSLlVldMl5axQ3Tvcw1NZa0i6xLwCnyzCIwk4PLlsu13OzDHjoNpGoJCoFaSed3QCaKUKaZYe6rOylYCVCj1R44A0ey+/LEIQiH2Ol5qrDuRUSyt0OyhHReNAKX0MQOGcwNsB3Gc9vg/A2xzbv04pzVBKTwM4AeAqQsgQgBCl9Elq9if4SsE+7L2+DeAmUirMX0dYSb3bcUPrsYaxs774QOWTqj/otuchzyez6PW77crJkYjXvgmtJpU1ljYVS8RnBgSbeRGquoG0qq86ldUjCbaSeOPuXLtzXw3l/XroxIC0oupFewcRQtDrd+PF87mW9Geslg8LyYxtBAopphwyLVQEx5QDy1YCVhr7WBEPwXoJuF3wO1xLQHm30s4NZtfhlydiNTuGerDWmMMgpXQKAKzvrMxwGMB5x+vGrW3D1uPC7Xn7UEo1AMsAetd4XGsmkVFXSM0er4SsZkBRDcSU4n1qChkIujEbz0DVDSylVPQF3HYP95Ho2pVDyOuyg7qxJmYsJVYR0HPemEzlYP68b1PYHnqy3vYFtYIZsk5SDopm2CvoQvoCsh3/IcQ0DpRSLJZRDmGvBIG0bsyBKQdnbUdJt1INjcMHXjOGj795FwDTtQSUz1baPRSCLAp4cXypZsdQD2odkC624qdltpfbZ+WbE3IXIeQgIeTg7OzsGg+xOAlFW3HC5KZmZUu26y5kIOjBTDxjX0C9ARmD1irCVA5WoGw1ykEx2wFXO8Wrnqwm28N5Y/K4RNsQjPX6sWsoCI8k2DnizabTlAPr4eV07TlhiRECAXZtCOHsfAqJjIasbpRUDoJAEPHlTz3Maob9uTbdrcRiDpIz5rAyIO2XxZqed/s3R/D2y0cAwFYQzuroQmSXgIs3hvDCuc40DtOWqwjW9xlr+ziAUcfrRgBMWttHimzP24cQ4gLQg5VuLAAApfTzlNIDlNID/f39azz04iQyuv3BMpj/ezmt5tp1Vxh6PxB0YyaWseMOfQG3I+bghSSaJ+VqiuCW02YKLTseZ1D6ey9N4vV/+ZOGXZjMSK62zsEtCbZy2NLnx217NuC122v7Ga6HTktlZX9HqZbULCNpQ8iD7QMBnJlP2imqpZSD+Vx+IVxWN+zrptnGQclzK5WOOdQyGF2ITxbhEohd11OKfaNhHJpYhtbCGUtrNQ4PAviA9fgDAB5wbL/DykDaAjPw/LTleooTQq6x4gnvL9iHvde7ADxKm9A3OZFRV6S3hR0342pjDgMhN9KqjrPzZoCvLyDjLZduxB/cvANb+wIghJgFOquMOZjKwTzhlh3prN99fhJn51N2VXa9qdZIAgUBaZcZkJZFARvDXtxx1SZ84f0H6nacq4UdazvMdNANit/48tP4xcm5kq9R7FV08UucZSyNRHwY6/VhYjFtd1wtpRzM5+QVbqWAm6nh5mYrsewfnzPmYClBTTeQzGhIZFZ6CGrJWy7diN99w/aKzSP3jYaRVnUcm17/rJd6UU0q69cAPAlgJyFknBByJ4BPA7iZEHIcwM3Wz6CUHgbwTQCvAPgPAB+mlLKr7UMA/glmkPokgIes7V8E0EsIOQHgD2BlPjWaRGbliqLHMVKx1KCfQpiv8ZUpM9jHlMN/vSl3wsguYfUxB4+UZ6wA84T/5al5ALWNQ1BK8XePHi86pChepXsNACSRgF0jHknAZaM9uHFXf8u4kpxIIgEh7aEcllJZ/PToLH55qqjABpBrA+Iu4VZitQ4jES/G+vwwKPCS5QMvpxx6A/ntvrOaYV83rRRzKFSC9/z0JG75zGNYTldX3b9Wrt3Wi4++cXvF17GW6C+cb13XUkUTSil9b4mnbirx+rsB3F1k+0EAe4tsVwC8u9Jx1JuEomFrX3G3UiytOtwpld1KAPDTo7MgpHhKm9slrjLmoKLHl4s5LFrGgbWiAIDldO16tcQzGv7qR8eQyur4b7ftyn9uFTEHQgg8kohUVodbEnHX67bV7Bhrja3o2sA4sM+83IKgauUQ9WFzr1m1zxYavf7SLpEVykE37CBsq7iVPJJo1xOxRdjpuSQmltJYTGWxf3Ok5Hs0is29PkR8Ev7p56cw1ONZd+vwesArpC2KxRyYG2cpnUVcUSEKpOLkKBaIOjwZw7v3j6x4T8CaOlalcmBjNkMeF0IeCaJA7OZoT5zIuRVqqRwUawXG0hudxFcRcwBy2UilblKthNvVHqNCmYF2NmQshBXzVYo5jES82LMxhMGQGw8fMUOHkbLGwY3FVNauj8iohu2mUZutHBwxB3a+sUUYc7umsnpNW2esFUII/vo9l0GnFB+87xmcmy8+o7uZtP4V2yASmZUtIfxWcGk5rdpN9yqVYPRbbiWfLOIPb9lZ9DVul1C1crBHPVpDcHr9sj1E6PETc3ZqbbkbxWphLolTs8WMw+p603gkEYTAXsm1Mh5pde6+ZmEbhzJqkX2GpYzy7qEgdg4GceVYFB5JxMduNs9V2SXYbdSL0ReQQWkunTWrG/DK5mfcbOXARtA622ewxI9FRxJHPWMOq+ENuwbxqXdckleh3kq0/hXbAFTdrGUoPGkIIeYw9pRasekeI+Rx4dKRHvz323aVLKE3Yw7VrVCTlgvB76i8nE1koBsUz59btAvKaqocrFXn2fmUPVP5sWOz+L2vP4+ldHWDfhhuSYDbJVQ0qq2AVxLbYkKX7VYqsyBg51epVNaBoAc//P3XYUuf6VJ65/4R7BgMoD9QutU0APQHWIsYM3id1QzILvN8WE2SRT1IqRpkl5keXZit5KxGDlTR+qVR9AVyfa5ajdYwoU0mWaYwpsdqoRFLqyV7zjghhODBj1xf9jWrUQ7ODAzAPJnmEhnMJTJQdYq9wz24//mJmo4PZavntKpjOpZBTFHxoX95Fsmsjr3DoVUF9DwusaRro9XoDbhLjs9sJVjb6bIxB+umWKoIrhBRIPjC+w+smINeCHObslTtjGbA7RLgFgWoWnOylU7MxEGp6Q5lbsxctpLlVkpmsX0ggOMziZZwKzGiRZoZtgqt819qIkymF8t/DnslxNIqjk8n8JpttSncXk22Ulo1j421megLuHF8Oo4pay715l4fPJJgV3DXAmfzuVOzCfx/330ZbsmcXvXyRMxuO14NHkkouXptNXr9ctE4S6vBqtTjZT5zFjspla1UjM29fjs4XQq787BlHLKaDlkUILmEprmVPvatlyCLBFv6/LZxcFZI6wZFTNHwq9cMIuhxYd+mcFOOsxgRnwxCWlM5cLcSYLsSiioHr4RzCylciCnYPhisye9bTbZSoXLoD7oxl8jiwrLZ+mAw5EHII9W0IZ8zKPvt58Zxei6JT7z1Ymy1XBCrUg6S2BbBaADoC5aerdxKxJTVZCvV1jCz7DumHLI6cyuRphgHVTdwZDKGySUFadWw+3cx45DVDFtVDwTduP93rsONO1snM0gUCMJeKW8wWKvQHldtnWErsWLGIeyT7YK2HYOBmvw+2SVU3aYhmcnlbgNmQDCrGzh6waxBGOrxoMcr1SUgDQAPvjAJWRTwhl0DuMZSTtUM+mH4ZFfbuJX6/GYOfytXrQK5mEM8o60YZsPIVAhIrxWPJCLkcdkzS5wxh2bUOZyYSSCrG5iJK0hnNfs6EQUCSSTIaIadqVRsul0r0KruTG4cYF5kQHG3krOF9I6aKYfqLyTbreRQDgBwaGIZsigg6pcR8ko1jTmwVackEmgGxfXb+xD0SLhmq2kcVuOz/ehN2/HHb724ZsdWT/qCblCan9nSiiQc7qRECddSpVTW9WB2Hs5A0w0YFJBFs66gGV1ZD1sTBVWdYnJJKZghIiKjGnYwOlxFzLAZRP0ydyu1Koky06GYcfBaQ9ZrgbyKYqucWykXcwCAlyeWMdjjtjOqaqsczN/J5l3fusfMiLpmaxQAqhr0w7hkpAev2dZXs2OrJ732hLTmS3xF1ZEqkTkVd3zWMUXF4cnlFZ9/vdxKQK65JDMGskuA3KSYw+HJXNvxs/PJvC6/bkuhL5aZi90K9Ppl7lZqVZJllANbbWwfDFTsl1Itq1IOzDi485XDhZiCoZBprEIeV9mc99XCMl32DvdAFIidLjsQ9OA3XjOGmy8eLLd729JnVQ2zOpJm8okHDuPOew8WfY65lQAzkPnOz/0Cn/vpybzXZOz2GbW/xAdCZlt6dg4zt1IzJsEdnozZ8YVkNn9+BVuEtb5bSeZupVaFXWzFqpmZctg+UBuXErA65cBiDj4pl8rKYHMiau1WYjnyH71pO77929fmzRT+k1/Zgzd2qHHoDbSOcji7kMQrU8WHwcQVze5ZdXw6DkU18GrBaxVNt/zudTAO1kCrfOOQC0hPLqXxtr9/AnN1Xg0bBsWRyRiu3ZrLIvQVjKZ1BqTDZRoKNpOo342ltFoyftQsuHFALiWQFZo5YcqhVsFowMpWqtatpJoT6lzWRR72SnbjuiHLOPR4JcQVFUaNTi7mkhgIuXH5pub3oWkUrMBrNp7B+YWUXejVDJbTGpbTap5KYMQVzR6W9OqFOADgREGTREU14KmDagBMBamohu0nd4tWEZx1Th+ejOGF80s4Nh2vy+9nnF9MIZ7RcOPOXOv3fLeSaLqVUlmIAinqNm4Fev2yFetqLfXAjQNM5VBqAMhIxAcg10WxFqwmWymd1fOCbKyFBgD7BhHySDAokKhRdW9GM9qm5UUtCXldcAkE88ks/p+vHMRv/fOzTTsWlqY6aU1rc5LIaBiOmC7FI5ZiGF9M2y5IoPSI0FrACuHGF81jc0v5MQfW46jefaoeO2YO/Lp6a6+dQZcXkJaYW0lF2Cu1bJU+K4RrtTTq7rr6S5As0q6bsWMwiCf+6A24emvtJpe6XaZ/tpqVfiqrr+h1w+IOGxzKAahdCw1F1eFxiS17MdULQgh6AzLOzCVxdDqO588t4eWJ5co71gEWYJ5YLG4cNobzjQOlwEmHelBUo27GgSks1g9IFgXIYs44sMaNrNdRPaCU4qtPncPe4RB2D4XsVjWewoC0la3UqplKQK5Dbiu4M51w4wAzlbVYvIFRqywlhl2gUyS747vPT+DLT5y2fy5UDkAu7rDBjjmYx16ruIN5Y+nOU6Mv4Mbjx+fAxk199alzDT8Gw6C2O2miQDlQShFXVGzo8YCQ/LTbPOOg6XUJRgMrlYMdkLbaZzDlkK6jcnju3BJevRDH+67aDAAYtI7JuyIgbWYrtWowGshlybVaULo77wAFJBStof5Iu9d8kbjD5356El947JT9czKr2WmsDGYcWMyBNQSsVcaSouqrarvQSfQG3Hbdyxt3D+KBFybyUkcbQTyj2cap0DhkNAOqThHySPY5u2tDEAIxC8Ls16nmDI16wDoP28rBZbbPYIudlK0c6tfE8GtPn4NfFvEr+zYCyLX18BXUOWR1M1sp3MLGgbuVWphiU+DqCbtoC+MOy2kVx2bimIop9nOpIsphOOyB2yXY8j5kuZXmEhkcPFN6Oli1KFo3KwfzQt0U9eFXr96EVFa3g76NwukeLIw5MEUR9Ljsz33M6omUZxzq+BmGPC64XQLOLVjKQTSzlViSRb2VA6UUj746g1v3bLC7GjA145GLuZWqa5rZLCI+qSX7K3XnHaCAhFLfubKFuMVc3xcnL5xfAqWw+rubF146q68YMHTn9Vvxrd++1s5gYjGHTz/0Kt71D0+uO8umnsHMVoepsktHeuxKcGegtxE4C9oKYw7OeRpMMW4Me7GtP5BnHFjcqB4QQnDZaNiOd8guwYqjGfbvBuoXczg1l8RCMourtkTtbUw5FBbBLaayWExlyw4wajYuUUDYK9lDvFoFbhxgVpw2ssd74XxbxrNnF+3HbDJUKqutSLHt8Um4dCSXPcVWkMwFMRNb30mm1NEl0eow5XDZSNg2kI2eDsdiR8Nh70rlYPcBk+xY03DEi+2DAZyZT9p9oeodN3rrpUP241wRHHMrmceYUuvjVnr2jHmdHBjLpVkXizm8+ZIhLCSzyGhGSwekAauFBncrtRaUUswlsugLNm5lIZdQDs+dXbTTU88tMOOw0q1USNDtgjOxaL350pk65si3OiwT7NKRHts41DOwWgwWO9o9FMSFmJLXliKeyc0yZ8phOOzBSMQLVae2a6Le6u+2vUN2IZ67oPEeUwxKnRTXwbMLCPskbO3L1R6xpBFnL7Rb9mzA37/vCsguwe4o3KpE/TKvc2gV5hIZKKqOWFpDVjds/30jKKYc2GS3my8ehFcS7U6wqSJupUIEgaA/4LYL9dab9aBo3etWuuXiDfizt+3FlWNR2yg3enQocyvtHgrBoMB0LOcmjDs6CDPFOBz22RkvrCq5ntlKgGlEr7W69MqimNc+Q6lzzOHg2UXs3xTJa2ezbzSMe3/zyhUzV950yRBe+sQtuG3vUOHbtBQRn2z3gGoVutY43P53T+CzjxzHbMK88NiKsRHIonnTcSqH4zNxJLM69m+OYFPUZyuHYqmsxfjaXdfgn95/JQBz6tV6yHRxKqvf7cKvXbMZgkBs9VRv5ZDVDHz72XFbIbCA9K4NIQD5cYdE0ZiDJ9cXKsGUQ/3qHBjvOTAKjyQg7JcgiwRZ3QCl1BGQrr1RnU9kcGo2iQNj0bzthBDcsHOgaP+zdljoRHytpxxas568ziQzGiaW0jg+k8Cs1WStOcohd9OZtuIEo1EvNvX6cNbyH2d1o2hbj0K29QegGxSEAAvrbDndzcrBCTPK9Y45/OzYLP7wWy8illbxweu3IKZoIAS4ZLgHgNmenRVh5rKVJFy+KYz94xFE/bKtKFh3z0YkFdy+bxi37tkAjyTatTuaQe2YQz1SWZ8/twQA2L+5s9q6hP3mrHpKacsUn3bl8pCN2JxaTmPWupgaqxxWxhxYELLHK2GzpRySBVPgKsGmSq1XOdQz06WdYP+DeisHphLv+ekJpLIaYmkVQbcLm3p9uGS4B999YQKAuahhqsLvFvHWyzbiOx96jV3ZDeTcShnNqHp+9HpgBkhynNNpNT+ltZawQr+dG2rXCLMViPjMIV6pBmfGlaMrlcOUNWJzakmxxx020jgUizksW5KyxytjU68PimrgrDXPuBq3EiNiTTNbD91cIe1EEAhkl5A3Ga8ejC+mIAoEc4ksvvzEGcQU1Y4nvP3yYfyf772Crz19Dp948DAMg1qpo/nnRMBt1h7MJ7IwDIqsZjTUwDPjoOqGo31G7W90Z+aTiPrlvMBzJ8DqMBZT2bLdGhpJV94BmHKYT2YxsZiGJJKGnmyVlMOmqNnsjxVfVascALPD48I6U+K6uc6hEI9LqLlb6dULMVxYzgWZxxfTuKg/gKu3RPHvL04illbteMKv7NsIUSD4+P2HMBhy47Xb+/DmvRtWvCchBH0BN2YTGXvR0cjPUHK0hKlnzOH0XBJjvb6av2+zYe09Wiko3RomqsFMLeUuzEMTS+gLuBvq5ytWIb2UUuGTTd/t5l4z7e4VawSiV6r+Y4r4ZNtNsRYopaZLoktTWQvxymLNjcOH/uU57NkYwt+97woAwPmFFEYiXlw0GMCXHj8Nryzai5W+gBs37RrA4yfm8E/vv7KsO6U3YObKs+Nt5GfotpUDrWv7jLPzKTtLqpNgRXqtFJTuyjvAhVgu++PliVhDXUpAaeXAbggjES9cArGHvfjd1a8Ao/71TZViq85uLYIrxCOJa/ad3//cOM7MJVdsn0tkHN1UKSYW0xiN+rB7QwiqTnF4MmYXuAHAX7/nMvz4D15f0c/eF3CbKdp1nB9dCsllLq5UzahbKms6q2NqWcGW3tauWVgLTrdSq9CVxmFySbH7v6dVPW+6WiMoFnNYchgHSRSwKerDEUs5rMatFLGKaShd2+Cfes4ebke80tqUg6ob+Ni3XsR9T57J2846rp6ZTyGjmXU28YyGkYgXu4bMm39WM2y3EmBmJlXTGbjXz5QDcys17vJm6dmKpufcSjWOOZxdMA3t5hYvaFsLrDHg0jozDWtJVxqHqeU09jkmnDUyjRUo3pV1OaXmxT3G+vx2d9DVuJWiPhmqTotOEKuGZtxYWhm3JK7Jdz6fyILSlY3zWMdV3aA4NZvEeauz6UjEi619AUiiuQIPrSEG1hd0Yz6ZaYqBZ+fuXDxrp1TXOpDPVFgnKoewlyuHlsCUpj67VW6j3UrMF5wpcCs5+79scayOVqscgLUHtlgchKeymniltQWkWUrp5FJ+E0Rnx9Vj03G7weJIxAfZJWBbv1nl7lQO1dLrNxcGLAOvkQY+Ys1nZsYw7JWQ1Q2711MtOD1nGtKxvs4LSLtEASGPa91p6LWk64xDIqMhrmgYCnvteQisurRREEIgO3rRAMBSOpunHPKMw6piDuZ7rDWdNaccuHEAzP/DWowDq58pnJ532NQAABaaSURBVMfAitUA4OiFuD0TYcQa+7nLiis4Yw7V0hcoGN/ZQAPPsm3Y38sWXrWMO5ydT6IvICO4BsPZDpgu4Q5xKxFCzhBCDhFCXiCEHLS2RQkhPyaEHLe+Rxyv/zgh5AQh5Cgh5FbH9v3W+5wghHyW1DF1aMo6eYd6PBjqMS9INrykkbgL5kibyiFnpLbmKYfVZSsBa2+hkXNJdN26oShrjTnMWav3hWQ2z/fubMfNlEPQ7bIXBruGzJYZa0mtZsZhYsk0OA1VDtZ5x2qI6mEczDTWznMpMcIt1kKjFmfPjZTSfZTSA9bPfwTgEUrpdgCPWD+DEHIxgDsA7AFwG4B7CCFsafM5AHcB2G593VaD4yoKq3EY6vFiOGwahUa7lQCzzTFTDoqqQ1GNFTEHhncVq3h2Ua41Y4kHpPNZa7bSnKPWZHI5px6YW2ms14dj0wmML6YwHPHaqdRMOazFOLAq6WYoB68swu0SbDcaMxa1Ckr/4sQcnj27iL1WS5FOJOKTOj4gfTuA+6zH9wF4m2P71ymlGUrpaQAnAFxFCBkCEKKUPknNFJuvOPapOWxlM9TjwZCVAdJotxLAlEN+ozXnDWFDyAOPZA5REYs0EytFdJ350orGA9JOTLfS6v3mLOYA5AelmVtp/+Yozi2k8MirM7jYUgsAcP1Fffjjt1yM6y7qW/XvtJWDZRwabeCjftn+W5mhqoVyOL+Qwm//y7PY2u/HH9yyY93v16pEfetLQ681670DUAA/IoQ8Swi5y9o2SCmdAgDr+4C1fRjAece+49a2Yetx4fYVEELuIoQcJIQcnJ2dXdMBJzI6ZJeAwZAHt+3ZgF+/ZrNdkdxInMphyTIOzoC0IBCM9fpXFYwGzDYKkkjWPHIwV0DFlQNgGslq5hK8MhnDN5/Jnd5ziYzdjM7ZVZW5lW7buwEeScCd123Bn9y+x37eJQr44PVb1nRjZ+MmWQ1Fow182CfbKsl2K9VAOTz08hRiiobP//qBNQXq24WwT8ZSC7mV1lshfR2ldJIQMgDgx4SQV8u8ttjyl5bZvnIjpZ8H8HkAOHDgwJoS+e+8fgt+8zVj5s23z48/fdvetbzNupFdAk7MJDC1nM5rneHkooHAqv3dhBBEfLLdnXO1cLdSPl5JtIvKyvEvT53F158+h1v3bECPT8JcIoPdG4I4NLGcpxzYIJ8bd/bj1T99U02P1SWa2U7ziQzec+UoNvZUro2oJRGfhCOWyrLdSjVQDmfmU4j4pDxXaycS8UlIZnVkNcNeWDSTdRkHSumk9X2GEPJvAK4CME0IGaKUTlkuoxnr5eMARh27jwCYtLaPFNleN4r1fG80d1y5CZ/8wRG84a9+hj+8dScAIOzNd2/90Zt2rUlm7twQtFsbrxY22Ia3zzDxSCJUnULTDXtmdzGWUyoMCjx5ah637d2A2XgGY71+zMQzmHCks8YUFX5ZLPte6+H7//V6CITYjfAaScSRUGG7lWqgHM7MJTveMABA2M8K4bIYCDU+SaaQNZ9BhBA/ISTIHgO4BcDLAB4E8AHrZR8A8ID1+EEAdxBC3ISQLTADz09brqc4IeQaK0vp/Y59OpYPXr8F//671yOt6vju82ZL5kLlMBLx5c2KrpbXbe/HcUuVrJZmtF5oZVgygKKVjzsw9ff4CdPdaY6edWNjwRzouKLWNRXT7RKbYhiAXK0DAEStyXS1UA5n51MdnaXEYC00CtOfm8V6zqJBAI8TQl4E8DSA71NK/wPApwHcTAg5DuBm62dQSg8D+CaAVwD8B4APU0rZmfMhAP8EM0h9EsBD6ziutmH3UAjDYS8OTSwDAHpqNAT9tTvMYObPj89VvU8yo+G6Tz+K7704BYAHpBns/1BpBcyMwxMn5qHpBhZTWfQF3BgOe/Mu9lhaW1MNQzvgVA7RGmUrKaqOyeV0VxiHPRt7IIsC3veFp/Bvz49X3qHOrPkOQCk9RSm9zPraQym929o+Tym9iVK63fq+4NjnbkrpNkrpTkrpQ47tBymle63nPkLX2hioDbl6iznukBAgWKM+7jsHgxgIuisah7lEBpd84od49uwCxhfTmFhK4+kz5sfFlYMJ+z9Uiv0sp1UIxMzFPzSxDEqB/oCMjWEvppbTMAzzlI4pascGVZ11OlHLrbTejrbnF1KgtDOrogvZ0ufHj37/dRiOePGlx880+3C6r0K61bjKMg49XqlmsRBCCF67vR+PH5+FbpS2s2fmkohnNByejOWlXopCc3zWrchqjAP7LL/znLnq6wu4sWej2Wn18ROmoXYO8uk0mFuEkFyvoPVONjtt9VPqBuUAmPVNlwz3tEQxHL8DNBk2G7jWw4Zu3NWPxZSKB1+cKPkaFuyei2ds4yCLAjw8GG2TMw6lYw6GQRFTVBzYHMWOwQC++YxlHIJu3LJnEH0BGff94gwAs86BdQTuNFhfL68k2rGatcQcltOqneZ9dt7qp9QlxgEw3XOt0GOJ3wWazFivD/1Bt73SqhVv2juE/Zsj+MQDhzEdU4q+hhmH2UTGruj9g1t24KbdgzU9lnammpsc67Qa9kn4rddtQ9ZqNtcXcMPtEvG+qzbh0aMzODefMudDd6hbicUcfLIIQSBwu4RVGwdF1XHDX/4Er/n0I/jbh4/h1FwCEZ9Us3hcOxD1mymttR4ytVq4cWgyhBD87hsuwrsOjFZ+8SoQBYK/evdlyOoG/uZHx4q+hjXnm41nMJ/IwCUQ3PXarfjsey+v6bG0MywgXe5CZRXuIa+Et162cUVDx/ddvRkiIfjaM+cQUzo5IG3ewJna8sriqgPSjx+fw2JKxXDEh799+Di+eXDcnozYLUTslNbmttLgxqEFeP+1Y/j1azbX/H239Plx2UjY9tsWwmZNzyaymEtk0BuQW6IGpJXwVKEcnEWMskvAH96yE1dviSJgJRhs6PHg8k1hPHJkGrpBOz4gzdSWV1q9cXj4yDSCbhe+9VvX4ndu2AbdoB05M7ocLNOr2XGHzlzCcGyifhnHZxJFn2PKYS6eQZ9fRq+/8Q0IW51qAtKFvbHeuX8E79w/kveaK8eiuOenJwGsbZBPOxDyuCAKxG754pVX17TQMCgePjKD1+/sh+wS8P/euhMDQTeu2BypvHMHkZvJ0lzjwJVDhxPx5we3ZmIK3nHPEzi/kMrFHOIZzFrKgZOPV65sHEq1P3Fy5VjUftypysFs3SLl3EqrbHf+/PklzCUyuPniQfv9fuO6LWsqBG1n7M7KTVYO3Dh0OFGrRzzLs//psVk8d24JT59esI1GVjdwei7Z8HGp7QDL3CqXrVSNcbhicwRsSkmwQ7OVADMozQyqVxJXlcr6w8MX4BIIbtg5UPnFHcx6Z7LUis49SzkATOVgUDO/PuyT8eJ5s+fS+GIa88msOZFONxBXNK4cisBudNXGHErR45Wwa0MIR6ZiHetWAoD/ftsuBCzj1+OVcKFEplwhmm7gu89P4IadAzVP6243WHfmhTWO+q0VXDl0OPbYUGsV8oJlHM4vprCYzGJrfy4TpI8rhxWwWdqV3Eouh6+9FFeOmb7zTq1zAIA3XjyIa6zand6AnFdcWY4nTs5jJp7BO68o2q2/q5BEAUGPq+kBaW4cOpyII/MhndXx6oU4AODETALJrG5PHgOAXm4cViAIBHKFfP3ltIoer4RK021v37cRl42GsTHc2FbazaIv4MZ8IufSLMf9z42jxyvhDbu726XEiPqbP/iHG4cOh2UgLSRVHJ5chm5QRHwSXrEGwmwfdBoH7lYqhscl2K3Mi8GMQyX2b47igQ9f1zV9q3oDbmhW9Xg5FFXHDw9fwFsuHeJDpiwiLTBPmhuHDoe1UV5MZm2X0m17h+z2BFv7/JBEc8XLA9LFqVTMtZzu3H5J64EVAVZyLZ2cTUBRDVy7rbcRh9UWRP3cOHDqjDMt7vnzSxgOe3H5aC41sDfgtmMNXDkUx1NhGlysSuXQbbDzirVmKcXxabMOZ4dDxXY7Zn8lFQ++OIl7nzjdlGPgxqHD8Uoi3C4Bi8ksjkzFsHc4hJFozucd9Us548CL4IpSqdK3WrdSt5EzDuWVw9HpOCSRdFVzvUpE/RLmkxn8xX+8is88fBzNmGLAjUOHQwhB1C/jQkzB2fkUdgwGMRrJtSOI+t3oD7oR8rhaYm5tK+KWxLKT4LhxKA5TovMVlUMcW/r8/PxzEPHLUFQD44vmjPnxxcZPh+vcnDqOTcQn49mzi9ANiosGAhjq8UAUCAxK0eOVcP1FfR2dXrleerwSZkrk61NKEVM0bhyKEPHJEEh1yuGyLquCroRzqh4AHJpYxsRSGucWUnhPjZt0loLfEbqAqF+2s5N2DAbhEgUM9XiQzGgQBYIPXr+lyUfY2ly9JYq//OFRzMYz6A/mu94SGQ26QblxKIIomKq1XMwhldVwfiGN9+xvzA2vXWDGYf/mCF4aX8JL48t44sRcQ40D13FdAGvkJRDYRW8jEa8drOaU57XbzZncT5xYOXb1G8+cBwBsG+D+8mL0BdxllQMLRm/nweg8mEvuVy7biJ0bgvjh4Qs4NLGM5bSKREZryDFw49AFRK1y/LFev51H/tGbduC/3barmYfVNuzd2IOIT8Jjx2ftbbpB8YuTc/iL/ziKWy4exI1d3g+oFL0BGfNljMOxabMoc+cGbhycXD4axv/8T7vx7gMjuGS4J6/t/uRSY+IP3K3UBTDlsH0wYG/jOeXVIwgE12/vx8+Pz4FSivlkFrf/3ROYWEqjP+jGp95xScXq6G6lL+DG8+eWij73tafP4Z6fnoBXErEp2l0zGyrhEgX8l9duBQDsHe4BcB4BtwuJjIaJpXRD0n65cugCmPto+wBfna2V123vw2w8g1emYnj4lWlMLKXxp7fvwQ9/73W87UgZev3F3Uovnl/Cx+8/hIhPxj2/dgVEPmSqJCxY/96rzFjDRIMyl7hy6AJYcMupHDir44adAxAFgu+/NIVTs0kM9Xjwa9ds5oqhAn1BGamsjlRWg0/O3W4eeGESsijgn++8mgfzK7B3uAdf/o0rce22Xnz5iTOY4G4lTq24ZLgHW/v9uGpLtPKLOUXpD7rxuu19+LfnJ5BQNLzlso3cMFRBn1VYOZ/Iwhc1bze6QfG9lybx+p393DBUyY27zJjWUNjTsJgDdyt1AWN9fjz6sRsw1NMd3UDrxTuuGMHUsoJ4RsMNO/ubfThtQV9wZX+lp06b7blv37exWYfVtmzs8TbMrcSNA4dTJTdfPIig2wVJJLjuor5mH05bsKUvAEKAv//JSWi6WWV+/3MT8Mkibto12OSjaz+GI96GuZW4ceBwqsQjifjQjdvwq1dvRsDNPbLVsKXPjz956x48fGQa/+uBlzG1nMYDL0zgXftH7Cl7nOoZDnsxHVOg6qXbudQKfoZzOKvgd264qNmH8H/bu/cQucozjuPfn9k1JsQmUZOwbrTbYo1RkVhD0Wq1itYmUIRaUBGzpniDltY/Co0iVFBBpVov2KZLTWnrlV7E1IQEkSheUIxo1RBzxRLbNI0lzUVJi/j4x3kHJzuz0WTPmXPOzu8Dh5l95+y7z/sw7DPnPXPeUzuDXx9g2669/PLZTbz29x1EwDVnf7nssGqpf8oEPg741869HFPw13995GBmhfvJt2Zx3gnTWb9tDxfN6WfmVF/XcDAadxHsxElpHzmYWeEOOUT84pI5PLBqIwvPHCg7nNrqn5oVh06cd3BxMLOOmDyhlxvnzy47jFrrnzKB82fP6MiFl5WZVpL0bUnrJG2UtKjseMzMquaw3nH8ZnAu5xxf/FepK1EcJI0DHgDmAScCl0k6sdyozMy6VyWKA/A1YGNEbI6I/wOPAReVHJOZWdeqSnHoB7Y0/fxeajMzsxJUpTi0W6Sm5Y7akq6RtFrS6u3bt7f5FTMzy0NVisN7QPO972YC/xy+U0QMRcTciJg7bZrXtjEzK0pVisOrwFckfUnSocClwNKSYzIz61qVuM4hIj6S9ENgJTAOWBIRa0oOy8ysa1WiOABExHJgedlxmJkZKKLlvG8tSNoNrBvWPBnYmdOfOAp4P6e+IN/Y6tCf8zc6eeav6mPNu78G53BfjXx8MSI++6RtRNRyA1a3aRsqsv9R9pdbbDXpz/mrSP5qMNZc+3MO88lHVU5I5+WvZQewH3nHVvX+8lb18VY5f1Ufa5Vz11D1MeeewzpPK62OiLl17X+sc/5Gx/kbPedwXweajzofOQzVvP+xzvkbHedv9JzDfR1QPmp75GBmZsWp85GDmZkVpGuKg6RjJK2StFbSGkk/Tu1HSHpa0ob0ODW1XyDpNUlvpcfzmvq6TdIWSXvKGk+n5ZU/SRMlLZP0Turn9jLH1Sk5v/9WSPpb6mdxWvJ+zMszh019LpX0dqfHUgtFfIWsihvQB3w1PT8cWE9274g7gUWpfRFwR3p+KnB0en4y8I+mvk5P/e0pe1x1yx8wETg3PT8UeB6YV/b46pK/9PMX0qOAPwOXlj2+uuUwtX0XeAR4u+yxVXErPYDSBg5PAheQXUjXl9r6gHVt9hXwH2D8sPauKQ5F5C+9di9wddnjqWP+gF6yrzBeUvZ46pZDYBLwQiouLg5ttq6ZVmomaYDsU8UrwIyI2AqQHqe3+ZWLgdcj4n+dirHK8sqfpCnAd4Bnioy3avLIn6SVwL+B3cCfCg65cnLI4S3AXcCHhQdbU11XHCRNIjsUvz4idn2O/U8C7gCuLTq2Osgrf5J6gEeB+yJicxGxVlFe+YuIC8k+JY8HWubSx7LR5lDSHOC4iHii0EBrrquKg6ResjfVwxHxl9S8TVJfer2P7NNYY/+ZwBPAgojY1Ol4qybn/A0BGyLinuIjr4a8338RsZdsafuuuaVuTjk8AzhN0rtkU0vHS3q2MyOoj64pDpIEPAisjYi7m15aCgym54Nk85iNKY9lwA0R8WInY62iPPMn6VayhcKuLzruqsgrf5ImNf0j7AHmA+8UP4Ly5ZXDiPhVRBwdEQPAWcD6iPhm8SOombJPenRqI3sTBPAm8Eba5gNHks15b0iPR6T9bwI+aNr3DWB6eu1OsrvXfZweby57fHXJH9ld/gJY29R+Vdnjq1H+ZpDdHOtNYA1wP9BT9vjqlMNhfQ7gE9JtN18hbWZmLbpmWsnMzD4/FwczM2vh4mBmZi1cHMzMrIWLg5mZtXBxMCuApOskLTiA/Qe8OqhVSU/ZAZiNNZJ6ImJx2XGYjYaLg1kbaWG3FWQLu51Ktjz0AmA2cDfZqp7vA1dGxNa0/MJLwJnAUkmHk63a+/O0ls9isuXKNwHfj4gdkk4DlpAt/vZC50Zn9tk8rWQ2slnAUEScAuwCfkB2RfL3IqLxj/22pv2nRMQ5EXHXsH5+D/w09fMW8LPU/lvgRxFxRpGDMDsYPnIwG9mW+HRNnoeAG8luGvN0tswP44CtTfs/PrwDSZPJisZzqel3wB/btP8BmJf/EMwOjouD2ciGry2zG1izn0/6HxxA32rTv1lleFrJbGTHSmoUgsuAl4FpjTZJveleASOKiJ3ADknfSE1XAM9FxH+BnZLOSu2X5x++2cHzkYPZyNYCg5J+Tbbi5/3ASuC+NC3UA9xDtjrq/gwCiyVNBDYDC1P7QmCJpA9Tv2aV4VVZzdpI31Z6KiJOLjkUs1J4WsnMzFr4yMHMzFr4yMHMzFq4OJiZWQsXBzMza+HiYGZmLVwczMyshYuDmZm1+ATdeNzW/xYoyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl8Y3d57/9+JNmyLXnfx54Zz75mnwxJBkhCCAkUSNJCCS0kUNpQmtJSeluW8ivctuG290Jp6S2hYWkCzQVCgCZAyEJIyDZZZpIwSzL76vG+L5Ks7fv745wjy5a827JkP+/Xy6+RvzpH/spzrM95djHGoCiKoijJuBZ7A4qiKEr2oeKgKIqipKDioCiKoqSg4qAoiqKkoOKgKIqipKDioCiKoqSg4qAoiqKkoOKgKIqipKDioCiKoqTgWewNzJaqqirT1NS02NtQFEXJKfbu3dtljKme6ricFYempib27Nmz2NtQFEXJKUTk9HSOU7eSoiiKkoKKg6IoipKCioOiKIqSgoqDoiiKksKU4iAiK0XkCRF5XUQOisif2+tfEJFzIvKq/fWOpHM+IyLHROSwiFyXtH6JiOy3n/uqiIi97hWRH9jrL4hI0/y/VUVRFGW6TMdyiAJ/aYzZAlwG3C4iW+3nvmKMudD+egjAfu5mYBtwPfA1EXHbx98J3AZssL+ut9c/AvQaY9YDXwH+ae5vTVEURZktU4qDMabVGPOy/XgQeB1omOSUG4DvG2NGjDEngWPAThGpB0qMMbuNNX7uO8CNSefcYz++H7jGsSoURVneGGOIx3ViZaaZUczBdvdcBLxgL/2piOwTkW+LSLm91gCcTTqt2V5rsB+PXx9zjjEmCvQDlWl+/m0iskdE9nR2ds5k64qi5Ch/df8+Pv79VxZ7G8uOaYuDiPiBHwGfMMYMYLmI1gEXAq3Al51D05xuJlmf7JyxC8bcZYzZYYzZUV09ZYGfoihLgBOdQxzvGFrsbSw7piUOIpKHJQz3GmN+DGCMaTfGxIwxceAbwE778GZgZdLpjUCLvd6YZn3MOSLiAUqBntm8IUVRlhaBcIzBUHSxt7HsmE62kgDfAl43xvxz0np90mE3AQfsxw8CN9sZSGuwAs8vGmNagUERucx+zVuAB5LOudV+/B7gV3ZcQlGUZU4wEmNoRMUh00ynt9Iu4IPAfhF51V77LPB+EbkQy/1zCvgogDHmoIjcB7yGlel0uzEmZp/3MeBuoBD4hf0Flvh8V0SOYVkMN8/tbSmKslQIhC1xMMageSqZY0pxMMY8Q/qYwEOTnHMHcEea9T3A9jTrIeC9U+1FUZTlRzAcIxY3BCMxivJztldozqEV0oqiZC3GGAJhy6U0pHGHjKLioChK1jISjeOUOAxq3CGjqDgoipK1BMOxxGO1HDKLioOiKFlLIDIqDprOmllUHBRFyVqC4VFBGBqJLOJOlh8qDoqiZC2BsFoOi4WKg6IoWcvwSFLMQQPSGUXFQVGUrCUYGRUEtRwyi4qDoihZS7JbSS2HzKLioChK1qIxh8VDxUFRlKzFqXMoKfCo5ZBhVBwURclaHMuhtqSAwZCmsmYSFQdFUbKWYDiKCFT5vVohnWFUHBRFyVoC4RiFeW6K1a2UcVQcFEXJWgKRGEX5bvwFHg1IZxgVB0VRspZgOEZhvptir0djDhlGxUFRlKwlEI5SlOehuCAvMQ1OyQwqDoqiZC0B23LwF3iIG2uetJIZVBwURclagmE75uC1xoNq3CFzqDgoipK1BGxxKC5Qccg0Kg6KomQtwUiMwnxPQhw0nTVzqDgoipK1DI9EKcpz4/fmAToqNJOoOCiKkrU4qayjMQdNZ80UKg6KomQlxphEEVwi5qBupYyh4qAoSlYSjsWJxc0YcVC3UuZQcVAUJStx2nUX5XvwaSprxlFxUBQlKwkkxMFNnttFQZ6LoRGNOWQKFQdFUbISRxwK890AiRYaSmZQcVAUJStJdisBdvM9FYdMoeKgKEpWEghbQlBkWw7atjuzqDgoipKVBCLj3Uo68CeTqDgoipKVBJMC0gB+r0dTWTPIlOIgIitF5AkReV1EDorIn9vrFSLymIgctf8tTzrnMyJyTEQOi8h1SeuXiMh++7mviojY614R+YG9/oKINM3/W1UUJZdIZCvlWTEHv1cD0plkOpZDFPhLY8wW4DLgdhHZCnwaeNwYswF43P4e+7mbgW3A9cDXRMRtv9adwG3ABvvrenv9I0CvMWY98BXgn+bhvSmKksME7ZhDsltpQNtnZIwpxcEY02qMedl+PAi8DjQANwD32IfdA9xoP74B+L4xZsQYcxI4BuwUkXqgxBiz21jjnL4z7hznte4HrnGsCkVRlieBcW4lJ+ag0+Ayw4xiDra75yLgBaDWGNMKloAANfZhDcDZpNOa7bUG+/H49THnGGOiQD9Qmebn3yYie0RkT2dn50y2rihKjpGoc8gbjTkYM7quLCzTFgcR8QM/Aj5hjBmY7NA0a2aS9cnOGbtgzF3GmB3GmB3V1dVTbVlRlBwmEI5SkOfC5bI+Hvw60yGjTEscRCQPSxjuNcb82F5ut11F2P922OvNwMqk0xuBFnu9Mc36mHNExAOUAj0zfTOKoiwdrClwnsT32rY7s0wnW0mAbwGvG2P+OempB4Fb7ce3Ag8krd9sZyCtwQo8v2i7ngZF5DL7NW8Zd47zWu8BfmXUsagoy5pgOJZwKQGUFFgDf7QQLjN4pj6EXcAHgf0i8qq99lngH4H7ROQjwBngvQDGmIMich/wGlam0+3GGMdJ+DHgbqAQ+IX9BZb4fFdEjmFZDDfP8X0pipLjOPOjHdStlFmmFAdjzDOkjwkAXDPBOXcAd6RZ3wNsT7MewhYXRVEUIDHox8GvbbszilZIK4qSlQTD0TExBx34k1lUHBRFyUrGu5WKvXbMQd1KGUHFQVGUrCQYjiWqowF8XuuxWg6ZQcVBUZSsZLzl4HG7KMxzayprhlBxUBQlKwmMizmAtu3OJCoOiqJkJcHIWLcS2AN/VBwygoqDoihZwf7mflr7gwBEYnEiMUNR3lhxKNaZDhlDxUFRlKzgY/fu5YsPHQKSmu6lsxw05pARVBwURckKuoZGeK2lH0ieAjcu5uDN0yK4DKHioCjKohOKxAhF4pzqDhCKxAjYg36KxlkOtSVe2vpDOtMhA6g4KIqy6AwELVdRLG441jE0oVtpZUURgyNR+gLqWlpoVBwURVl0+oKjH/aH2wZTpsA5rKooAuBMTyBzm1umqDgoirLoJFsCh9oGJnQrrapUccgUKg6Koiw6/bblkO92cahtMBGQLswbG5BWyyFzqDgoirLo9AXCAFy4smxSt1JRvocqv5cz3SoOC42Kg6Ioi45jObxhbQUdgyO09FnFcEVed8qxqyoK1XLIACoOiqIsOv3BCC6BHU0VALxytg9IrXMAy7Wk4rDwqDgoirLo9AUilBbmsaWuGIBXzvQCjJkh7bCqoojW/iDhaDyje1xuqDgoirLo9Actcagu9lJelEdvIILX48LtSp1QvLKiiLgh4XpSFgYVB0VRFp2+YITSonxEhM11JUBqMNphdaUP0IylhUbFQVGURac/EKa00BoDusl2LaWLN8BoOutpFYcFRcVBUZRFpz8YocwWh822OIxvneFQU+wl3+PirIrDgqLioCjKotMXjFBWNN5ySC8OLpewsrxQax0WGBUHRVEWlXjcMGAHpAE21tqWQ5pMJQdNZ114VBwURVlUBkeixA0JcfB5PTRVFlFckDfhOasqijjbE9DW3QtI+oiPoijKAnGobYBVFUWJgHO/3XTPEQeAr7zvwgkD0gCrKn2J1t3lvvyF3fAyRS0HRVHmhf5ghE/dvy/RJykdfYEw7/q3Z/jO7tNjzgMoKxr9kL9oVXki9pAOzVhaeFQcFEWZF/ae7uEHe87yyMG2CY95+UwvkZjhZOdwYq0vaIlJsuUwFdqddeFRcVAUZV7oHrI+5F842TPhMS+ftnomtfSPVjePWg7TF4eVFYUAms66gKg4KIoyL/QMW+Lw4iTisPe01TPpXO+oODiDfspmYDlo6+6FR8VBUZR5wRGH5t4g59L0PYrG4rxqd1s91xdMZBo5lkPJDMQBtHX3QjOlOIjIt0WkQ0QOJK19QUTOicir9tc7kp77jIgcE5HDInJd0volIrLffu6rIiL2uldEfmCvvyAiTfP7FpXZcKprmAPn+hd7G0oO0T0cxumT91Ia6+FQ2yDBSIxLVpczEo3TbYtJfzBCQZ6LgknqGtKxutLH6e7hqQ9UZsV0LIe7gevTrH/FGHOh/fUQgIhsBW4GttnnfE1EnP/xO4HbgA32l/OaHwF6jTHrga8A/zTL96LMI59/8CAf+s8XicU1j1yZHj3DYTbVlVBc4Ekbd3BcSu86vx4YdS31JfVVmgkbav209IcSqbDK/DKlOBhjngImdiKO5Qbg+8aYEWPMSeAYsFNE6oESY8xuY9mS3wFuTDrnHvvx/cA1jlWhLA7GGPaf66drKJzoq68oU9E9HKbKn8+lTRW8dCq9ONSVFHDpGmugj+N6svoqzbxW4fyGMgD2q4W7IMwl5vCnIrLPdjuV22sNwNmkY5rttQb78fj1MecYY6JAP1CZ7geKyG0iskdE9nR2ds5h68pktPSHEv7jR19rX+TdKLlCz/AIlT5LHI51DNE1NDLm+b2ne7lkdTmNZVYaqjOPoS8QoXQGmUoO5zWUArDvXN8cd66kY7bicCewDrgQaAW+bK+nu+M3k6xPdk7qojF3GWN2GGN2VFdXz2zHyrRxYg01xV4eOdimLQqUadE9FKbS72WnbRnsSbIe2vpDnOsLcvHqckoKPfjy3TT3jloOs3ErlRblsbqyiP3NajksBLMSB2NMuzEmZoyJA98AdtpPNQMrkw5tBFrs9cY062POEREPUMr03VjKAnDwXD9ul/DHV67jdHeAI+1Di70lJcsJRWIEwjEqfPmc11BKQZ5rTNzhZds9ecnqckSEhvLCcW6lmYsDWNbDXN1KsbjhK48doXNwZOqDlxGzEgc7huBwE+BkMj0I3GxnIK3BCjy/aIxpBQZF5DI7nnAL8EDSObfaj98D/Mroreqisv9cP+ur/bzzgnpE4NFJKl4VBUhkHlX68sn3uLh4VfmYeoe9p3vxelxsrbemvDWUFY51K81SHM5vLKW5N5hwg86G11sH+NfHj/LAq+dm/RpLkemksn4P2A1sEpFmEfkI8L/ttNR9wNXAXwAYYw4C9wGvAQ8DtxtjYvZLfQz4JlaQ+jjwC3v9W0CliBwDPgl8er7enDI7DrQMsK2hhJriAi5aWaZxB2VKeuzq6Aq7Cd7ONRW81jrAQMjKJNp7upcLGsvI91gfOSvKLMthJBojGInNqDo6mfPmISjtuLdeaxmY9LhzfUGGRqKz/jm5xpRdWY0x70+z/K1Jjr8DuCPN+h5ge5r1EPDeqfahZIaOgRCdgyNsX2EF+962rY5//MUhzvUFaSgrXOTdKdlK97Dlkqn0j4qDMXDZFx+nptjL2d4gf/SmtYnjG8oL6QtEaO0LATPrq5TM9gbLEtnf3MeVG2cXh2zutQrpXmudXBzee+dzvOO8ej73zq2z+jm5hlZIK2Nw7sDOa7TFYWstAI+pa0mZBMetU+HzAnDZmkr+57u3cfOlqzivsYxd66u48aIVieOdGw3nA7m0aHZtt4sL8lhb5WPfHILSjuVwrGOIkWgs7TGBcJSW/tCy6gKr8xyUMRw4N4AIbLF9w2ur/Wyo8fPIwXY+tGvNIu9OyVZGxcH6kHe5hFuvaJrw+IQ42K6c2QakwbqRmayf01Q44hCNG462D7HdTpFNxomPjE/PXcqo5aCMYf+5ftZU+fB7R+8b3rihilfO9mpKqzIh3cNh8txCScH07jcbyi1xONhi3fHP1q0EVsZSa3+IjsHQrM5v7g2wtsoHWMHpdJyz3V/LKaNJxUEZw8GW/kRxkcPaKh+hSJz2geXzh6HMjJ6hMOVF+Uy3uUFNcQEelyTcSrMNSAOc32gFpWfTC8wYw7neIFesr6Qwzz1h3MFp9dE1NLJsbpJUHJQEXUMjtPaHEsFohyb7ruqUNjlTJqB7OJxwKU0Ht0uoKy1I3HDMxXLYtqIEEdLGHQZDEf7r+dMTfqAPBKMMjkRZXeFjc33xhJaD41YKReLLJmNJxUFJ4Nx5bbMzQByaKm1x6Mp+cdh7upe7njq+2NtYdvQMjyQylaaLE3cQsQLLs8Xn9bC+2p+2Uvqh/a187r8PcLQjfSFnc58VYG4sL2RLfQmvtQykFZKWpBbkXUOzr6nIJVQclAQH7eDgtnGWw4qyQvLcwqkcGKzyk1ea+fKjRxZ7G8uOnuFwIlNpujhxh5KCPNyuufXaPK+xlH1p3EotdqygfSB9PMIJRjeWF7G1voSBUDTtLIrmvmCiHflyiTuoOCgJDpzrZ3VlUYqJ73YJKyuKcsJyGApFGYnGicbii72VrOYX+1v51aH5K27sHg5TOQO3EoxaDnNxKTlsrC2mc3AkxeXjiMJEH+ij4lDI1hWWxfx662DKcS19QTbWFgPLJ2NJxUFJcKJzmA01/rTPran05UTMwflwGA6nz1dXLP7+Z6/x9V+fmJfXCkfjDIaiM4o5wKg4zCUY7VBfWgBA67i7/jZbHDomFIcAvnw3ZUV5bK4rRiS1UjoWN7T1h7jADnyr5aAsK4wxnO0NsLKiKO3z1tStQNZnagyGLHEIhJdH0HA2tPQFaekPJX5Xc6U3MLbGYbo4bqX5sBxW2ELT0j/WfdTWP7Xl0FhehIhQlO9hTaUvJSjdMRgiGjdsbyjBJWo5KMuMnuEwgXCMxvL04rCmqohgJDbhHVi2kLAclklGyWxwOqQOBOdnglr30GjTvZmwYh7dShNZDu1TWg5BGstH28JsqS9JSWd1gtGNFUVU+LxqOSjLi7O273Vlefr+SavtjKWTWR53cMRhaETdShPhjOt0muLNlfHV0dNlPt1KtSUFiIy1HEKRGL32CNHOCQrkmnsDY8Rh64oSzvQEGEz63TgFcI1lhVQXe9VyUJYXZ+2eMRO5ldbYtQ7ZPtB9yHErqeUwIS/b4jA0EiU+DzPCxzfdmy4FeW5uvXw1126tm/Me8twuaoq9tPWPWg6O1SCS3nLoD0YYDEXHWMtb6q2g86G20aC0UwBXX1ZIlT9fLQdleXG2d3JxqC8tIM8tnOya/3TWaCzOXU8dn5dsqMGE5aDikI5gOMbBlgF8+W6MgaF5iM2Mb7o3E/7nDdtn3U11PPWlhbQmWQ5OvGFtlS/tB7rTjXWM5VBvpXEn10y09AUpLczD7/XYloPWOSjLiObeIOVFeWN6KiXjcbtYWVE075ZDNBbnz7//Kl986BD//sSxOb3WSDRGOGqlsAY0Wykt+5r7iMYNb9xQBcxP3KFnOIxL5tY8bz6oLy0YU6zmZCqd31jGYChKKDL2mkiucXCoKy2gsbyQ5090J9ZaktrVV/utmEO2J2bMByoOCmC5lSayGhyaKn3zGnNwhOHn+1upKfby3PHuOf3RDSVl36jlkJ69djD6yo01APOSsdQ9bPVVcs2xkG2uOJaDcw05biWny+p46yG5xiGZXeuqeP5ENzHb5XauL5gInlcXewnH4gzMU6ZXNqPioADWH8rKCTKVHJrmMZ3VGMMnfmAJw+d+awsff8t6zvUFOT2HKuxkQdBU1vS8fLqXtdU+Vlda/9ezsRwGQhEePtCWuA56hmbWV2mhWFFWQCAcYyBo/d+39Y9QlO9mbbUVLxsfd0iucUjmivWVDISiiXYy1qArKxuqym+5zpZD3EHFQSEetzpTNlZMPumtaR7TWZ880snP9rXyl9du5A/ftJYr1ltujmePd836NQfHWA7qVhqPMYa9p3u5ZFU5JXYvo9ncAf/3K+f44//ay27b9dIzHJ5xMHohqC91ah0si6B9IERdSQE1xc4H+tiMpeQah2SuWGddi88d72YgZAWtnZqMavu1lkPGkoqDQvtgiHAsPmGNg8N8NuD7xlMnqC3x8tEr1wFW0LCupIDnjnVPcebEjLEc1K2UwsmuYXoDES5ZXU6xPXdhcBbprI475u5nTwFWtlLlLILR8029fXffaotD20CI2pKCxAd6OrfSeJcSWAKwqbaY5453JWIYjltJLQdlWXG2Z/IaB4eEOMwxKH3gXD/PHe/mw7vWJAbOiwhXrK/kueNds06vTI45DKtbKQWnvuGS1eWU2MHj2biVnA/MX77eztmegN10b/EthxW25eBkLLX1h6grLaDS58WVJp11fI1DMlesr+SlUz2JG6HkmAOo5aAsE5qnSGN1WFFWMC/dWb/x9Al8+W7ev3PVmPVd66roDUR4vW3yQe8T4VgOLoFhdSul8PKZXkoKPKyr9icsh9m4lVr7Q6yt9iEi3P3cKfqCkawQh+piLx6X0NoXIh43dAxaloPbJVT6x1Y2p6txSGbXuipCkTg/3dcKWAVwYGVkuV2iloOyPHAsByddbyI8bhcry+fWnfVcX5Cf7Wvl5p2rUtom7LLjDruPz8615NQ4VBd7tX1GGl4508eFq8pxuYQ8t4vCPPes3Ept/SEubCzj7dvr7EE6My+AWwjcLqG2pICW/iDdw2EiMUNdiXWnXz1OHJyiz4kshzesrcDtEh472E6eWxLuJJdLqPLnq+WgLA/O9gaoLfFSkOee8timqrmls9797EkAPryrKeW5utIC1lb7ePaYFZTuC4T53a/vnnb9g/NBV1dSoG6lNHQMjoxxHZYUehKZPdMlFje0DYSoLyvgw7uaGLHrSrLBcgDrGmrtCyXSWOvsnks1Jd4xbiWnud7GuuK0r1NckMf5jaWEY3HqSwvHpOkul0I4FQfFqnGYIhjtsLqyiNPdgVnFBYZGonzvxbP81nn1k5rzL57soWtohA986wVePNXDrw51TO/1Q1E8LqHCl69upXHE4obewNjYQElB3oz7K3UOjhCLG+pKC7l4VXli3ni2iEN9aQGt/cFEdXRd6djiNYcD5/rx5btZY8fR0rHLzlpaYQe6Har8y6P5noqDYtU4TBFvcNhQU0wwEks7LWsqDp7rZ2gkyk0XN0x4zK71lQyHY7z7357hSNsQ5zWUcqR9cFq1FUMjUfwFHnxej1oO4+gPRjBm7Id4SWHejIvgnDTRFaUFiAh/9Oa1iDDtm4uFZkWZVQjX6lgOJaOWQ9fQSOKm5kDLAFtXlExauHfF+koAGsrGvrdq//JovqfisMyJxOK09genzFRy2FRnDQM60p46LWsqnDm+zkStdFy2thIR6Bwa4c4PXMx7LmlkMBSdVm3FUCiK3+vBl+/RmMM4euzmeMniUFzgmbHl0Gp3KHVqCt59wQpe+Ow10765WGjqSwsYicY51DqAS6DKjoVU+71EbespFje81jKQqJyeiItXlVPhy08043OosjuzLvUWGukb6SjLhta+EHHDlDUODhvsD/bD7YNcs6V2Rj/rWMcQRfluVpQWTHhMWVE+f3/DdtZW+bhifRXP2fGHo+1D1JZMfB5YAWm/17IcAupWGkPPsCUC491KM00ucGoIkl0tNcWT/79kEke0XjnTZ2Uvua3732p7jx2DI/QGwgQjMbavmFwcCvLcPPlXV+HLH/sxWe33EokZ+oMRyoqyw522EKjlsMxxurFOVR3tUFKQx4rSAo60zdxyON45xLpqf0pF6ng+cNnqRMX0+lrLUjnaMfXPGwpFKSnIw+d1MxyOLvk7u5ngWA7lRcluJc+M3Uqt/SEK89zzMqBnIXBE63D7YMKlBJZbCayYyX67LcZUlgNY17t7nOupaoKiuqWGisMyJzHHYQY+4411xRxuHxqzFo+bxGtNxLGOoQlnVE9Etd9LaWFewiU1Gckxh7iBUCQ+o5+1lHEsh+SU02I7ID0TEW3tD1JfVjClwC8WjuUQi5sxlma1nYraMTjCgXMDFOS5WFc9cTB6MpzX6lzicQcVh2XO2d4AbpckxixOh021xRzvGCIaG/3w/fEr57jqS09OmOY6GIrQ2h9i3QzFQUTYUOPnWPs0xcHrwZfvTnyvWDhznsdYDgV5RGJmRiLa0hea0bWSaSp9+eS5LeGqS9pncguNA+f62VJfknA5zZTq4vzEay1lVByWOWd7gqwoK5jRH8rG2mLCsfiYSulfH+kkFjcTpp0e77REY/0MxQFgQ62fIx1TZywNhiIJywG0M2sy3UNhfPnuMbUsJYUz76/U2h9M3J1nIy6XJEQh2XLw2TcN7QMhDrYMTBlvmIxqv/W6S73WQcVhmdPcO/0aB4dNduGQk7FkjElUNT95OL04HLPdQrMRh/U1xfQFInQPT/7HOBiKUuz1UGQHENVyGKU3EKZiXBVzcaIz6/TEIRKL0zE4MmlCQTbgiFfduASGmpIC9pzuYWgkyvaGklm/fkmhh3y3Sy0HEfm2iHSIyIGktQoReUxEjtr/lic99xkROSYih0XkuqT1S0Rkv/3cV8V2WoqIV0R+YK+/ICJN8/sWlcnoGgonWhpPl/U1fkTgsB2UPtYxRNfQCNXFXl442UMwzRS2Yx1D5LmF1bNIeXTiFEcncS2Fo3FGonH8Xk9imp0Wwo3SPRymYlxmTYndX6l/mlXSHYMjGGPNUs5mHPGqGydi1X4vB85ZldHb5mA5iFgtNDoGQlMfnMNMx3K4G7h+3NqngceNMRuAx+3vEZGtwM3ANvucr4mIY8feCdwGbLC/nNf8CNBrjFkPfAX4p9m+GWXm9AXCM07HK8hz01TpS1gOTl//T7x1A+FonN0nUmcyHOsYZE2Vb1Z+Xqcu4tgkGUtOXYO/wEOR17rktBBulN40nVOdzqzTdSu12oWP2RxzgFHxShEH+yYo3+2atNZmOly4qoxfHe5IeyO0VJjyL9UY8xTQM275BuAe+/E9wI1J6983xowYY04Cx4CdIlIPlBhjdhvLcfydcec4r3U/cI1kayrEEiMWNwyEorNKS9xY6+ewIw7Hu2koK+R3Lm6kMM/Nk4c7U44/1jE0K5cSQG2Jl2KvZ9KMJceFNNZyUHFw6BkOUz5eHGbYmbXFbkmxIssth0tWldNYXpjSSNIRh011xYlW8bMk0C9/AAAgAElEQVTllsub6AtEeODVc3N6nWxmtr+hWmNMK4D9b4293gCcTTqu2V5rsB+PXx9zjjEmCvQDlel+qIjcJiJ7RGRPZ2fqB5AyM5w7xvFjEqfDptpiTnUNEwzHeP5EN5etraQgz80V6yp58nDnmOBxKBLjTE+A9dWzEwcRYX2tf1K3kpOvX1yQR5GdraSFcKP0DIepTBGHmc10cCyH8Xfk2cZbt9byzKfektJI0hGHucQbHN6wpoLNdcXc/dypJVtPM98B6XR3/GaS9cnOSV005i5jzA5jzI7q6upZblFx6AtYHwqzshzqiokbeGh/K72BCJevs/T8qk3VnOkJjElpPdU9TNzA+jmY8htq/NOyHIoLRi0HDUhbBMMxgpFYquWQcCtN7/fU2h/C7/UkRCXXcGJrc4k3OIgIH97VxKG2QV44Od6xsjSYrTi0264i7H+dFJVmYGXScY1Ai73emGZ9zDki4gFKSXVjKUlEYnHue+kssVlOTHPoC87NcgC4Z/cpgCRxsIzIZNeSc8c/W8sBrIZ/XUMj9E6QsTQ0Yr0Xf1K2kqayWvTYNQ7jLQevx0WeW6adrdTSF8z6eMNkbKorxuMS3rCmYl5e74YLGygrykuMS11qzFYcHgRutR/fCjyQtH6znYG0Bivw/KLtehoUkcvseMIt485xXus9wK/MUrXT5omnj3by1z/aN+uhOA599odGaeHM+8M0VfnIcwv7mvtZVVGU8O+urChibbWPJ4+MisOxjiFEYO0sK1JhtI3Gsc701oNz9+sv8JDvcZHvdjGkbiUAeoZSC+DAuvstKcib0K30zNEuvvDgwYTbxJrjkN3xhsk4v7GMfV94W6I/2FwpyHNz86WrePS1tsQ0xaXEdFJZvwfsBjaJSLOIfAT4R+BaETkKXGt/jzHmIHAf8BrwMHC7Mcb5C/0Y8E2sIPVx4Bf2+reAShE5BnwSO/NJmZhz9oD3s3O8IPvnYDnkuV2ssy2BK9aNDRFdtbGG5090JwLCxzqHWFleNK1hQhMxVTprIuZgu5SKvG61HGwSlkOaaW2Tte3+8cvN3P3cKX6+3xqV2dIXyvoah6koyp/fXqMfvHw1AF948DWePtq5pK65KX9Txpj3T/DUNRMcfwdwR5r1PcD2NOsh4L1T7UMZxckamevdiiMOs22itrG2mENtgwmXksM7zqvj28+e5A/v2cNdt1zC8TlkKjmsKC2kKN89YQO+oaRUVgBfvkdjDjbpmu45TNa2+4QdN/rfDx/mqk01dA2NZH0wOtM0lBXyR29ayzefOckvX2/H4xI+cNlqvvDubYu9tTmjFdI5iJM10tw784E7ycwlIA2wbUUJbpdw+dqx4rCjqYKvvO8CXjrVw813Pc+JzuEZN9wbj8slrK/xTzhHYigUxe0SCm3rxOd1a7aSTaLpni+12HEit5IxhhOdlqif6Qnw5UcPA5ZIK2P5zDu28JvPv417/mAnF60q44FXzy2JDCYVhxzEsRym6oI6FX2BCH6vh7xZNiC75fImHrh9FzVp5izcdFEj37h1Byc6hwnH4jNuuJeOrfUlHGwZSPuH5zTdc0pkdBrcKD3DI7hdQnFBqqNgorbdvYEIA6EoN1+6kl3rK7n7uVMA1Jep5ZAOv9fDlRurefv2enoDkSXRd0nFIQdxBq7M1XLoD0bm1Je/MN89aU/8qzfVcO8fvYGrN1Vz5ca5px5vayilLxBJO6J00J4C56DT4EbpGY5QXpSfdiRmsTf9HGknFXlttY/PvH0Ljh5nc9O9bGCDM39kFpMSsw0VhxwjHje09YfwuISOwRFCkdm7TvqD4QUf2nLxqnL+88M7p5ziNh22r7CKlw62DKQ8NzQSGXNn7PO6l2VvpVAkxtVfepIfvHQmsdYzPEKFL/3/c0mhh4E0vZUccVhT5Wd7Qyk3XdSAxyVjJsApqThtOaYzfyTbUXHIMbqGR4jETOKOPd1d9HTpC0Rmlam0WGypt2IcB+1JXsk4biWH5epWeuRgGye7hnni0Ggqce9wJKWvkkNJQR7BSIxIbOxMh5NdQ3hcQqM9W/yOm7Zz/8eumPdsn6VGTbGXkgLPrGasZxsqDjlGmx1v2GkX8szFtdQXzC1xKMhzs77az4E0lsNgKJrIVILl61b6wUtW95r9SQLaPTwyoTg41tb4uMPJrmFWVRQl4lFF+R4uXFm2EFteUogIG2uLJ231kiuoOOQYLX2WOFza5IjD7IPSfYHIrArgFpNtDSUcSGc5jI85eD0ML+GOmek42xPguePd1JZ4OdcXpMeuJu8NTGI5FKbvr3Sic5g1VbMvWlzOTHc4Vbaj4pBjOMHoC1eWkeeWWVsOxhgGcsxyANi+opSOwZGUXvqDI9GxMYd8N+FoPMVdspT54Z6ziMBfX7cZsKyHWNxYg34maMvu9ElKthziccOpbhWH2bLBHk6V6xlLKg6LxM/3tfIvvzwy4/Na+0N4PS6q/PmsKCsck87aH4xw7T//elptNYKRGOFYfMED0vONE2sZH5ROZznA8unMGosbfri3mTdtqObabbUA7G/uoz8YwRimdCslZyy1DYQIReKsmUO7k+VMIiid43EHFYdF4r49Z/n3J47NONvIaX4mIqwsLxpjOTx/opujHUN878Uzk7yChVMAV5Zj4rDVzlhKdi1FY3GCkVhi7CVY2UoAQ2mC0qFIjB/uOZvzZn8yzxzrorU/xPt2rKSkII+myiL2n+sfrY6egVtpNFNJxWE2bLTTWXM9KK3isEg09waIxAyvnu2b0Xmt/aFErnljeeEYcXjJbh38q0MdjEQnF52EOOSYW8nv9bC2yseBllFxcFJW01sOqeLwyME2/ur+fRxqy+0/3mTue+ks5UV5vHWr1RX3vMYyDpwbmLQ6GtK37VZxmBvVdsZSrqezqjgsAsaYxIf6izPsBd/aF0xUqTaWF9I1NFrr8OKpHnz5boZGojx7LHVUZzKjfZVyKyANlvXgzAIGGHTadY/LVoL0Mx2cwfBdQ0tjQPyhtgEefa2NGy5swOuxLKbzGko41xdM9KIqn6DOIZ1b6WTXMIV5bmqLtaZhNiyVjCUVh0Wgc2iEkagVKH3p1PTFIRY3tA+OJHrqN5YXAZYVMjwS5WDLAB+4fDXFXg+/2N826Wv1B5123bllOYAVdzjXF0zMdkgM+kljOaQrhHOyeHommA2RS/QOh/mj7+yhvCifj121LrHuxGaeslunT2Q5+PM9iKS6lZqqfGkrqpXpsaG2OOczllQcFoGzPZbVsKqiiL2ne4lOM6Omc3CEWNwk3EorK6x/z/YGeflML7G4Yde6Kq7ZUsNjr7dPmqmTq24lsDKWAF5rtayHodDYjqxAYlRoukK43sDSEIdoLM7t/+9l2vtH+PoHLxlThe6Iw3PHrOSEiSwHl0so9nrGzJE+2TXMWnUpzYmNtf6cz1hScVgEnNqEmy5qIBCOpW0HkY4WO411Rdl4yyHIiyd7cAlcvLqc67fX0xeI8MKJia2SuUyBW2y2jQtKJwb9JFkO/oTlkCoO3UNLQxy++NAhnjvezT/ctJ2LV5WPea6kII81VT4G7cpxx92UjuKC0f5KkVicMz0BjTfMkQ01uZ+xpOKwCDjxht++uAGYvmup1S6AcyyHar+XfI+L5p4AL57sYXtDaaI7ZGGem4cPtk74Wv3BCPluV6LFdS5R7sunoawwUQU8mDQ/2qHI61gOE7uVunNYHPae7uHbz57kQ1c08bs7VqY9xrEeJrIaHEoK8xL9lc72BIjFjYrDHFkKGUsqDotAc2+AKn8+qyt9NFUWTXtAuVMA5/TUd7mExrJCjncO8+rZvkTVdGG+m6s3V/PIwXbiE8yZ7gtEKCnMS7S4zjXesKaCX77ezsmu4VG3knf0Q3Ayy8GZjDbRPOpc4M4nj1NelMdfX79pwmPOa7AsrIoJ4g0OJQUeuodHMMaMZippjcOcqC72UlqYx5EczlhScVgEzvYEabBdQpc2VbDnVM+EH+LJtPSFKMp3U1I4eofcUF7I00c7GYnGE+IAcN22OjoHR9h7pjfta/UHwznpUnL46+s3k+928Zf3vZrIvEq2HArz3IikT2XNdcvhSPsgv3y9g1sub5q0Ed55DVYvpIop/p+31Jfwypk+rv+Xp/m+3ZtJYw5zw8pY8nMshzOWVBwWgebeACvtbpc711TQG4hwrHPqi6i1P0idXQDn0FhelMh8urRp1O/8ls01uMQaEp+OvkAk5wrgkqkrLeDvb9zOy2f6+M9nTyIyGoQG64/TGhU61q0UjcUTwfhctRz+49cnKMhzcesVTZMet22alsPf/NYWvvK+CzAYHnutnfKiPMomaLehTJ/1NcUTjrXNBbT/boaJxQ3n+oJcv70eGO2u+uLJnkTZ/US09IdSxjQ6LZXX1/ip9I9+CBQX5NFU6ePwBIVe/cFIIiU2V3n3BSt45GAbD+1vo7jAk+IiK8p3pwx877WFwe2SnAxIt/QFeeDVc3zgstUTtsRwKCnI4yNvXJMyxnU8eW4XN13UyA0XNPDrI5143Lnpasw21lX76A1E6B0OT1ihns2o5bAATOYi6hgMEYmZxIf6qooiaoq90yqGa+sPpnygr6wYdU+NZ1NdMYfa0mdCOTGHXEZE+Icbz6PK7000kEvG7/WkFME5aayrK4roDYSn5c7LJr71zEkM8JE3rpnW8f/fO7fy1q210zrW5RKu3lzDmzbMfWqfMlphfsKO4+QaKg4LwM13Pc8Hv/VC2mCoU+PgfKiLCDvXVPDc8a601bwOkVicjsER6svGWg5rKq0L8LK16cXhdE8g5e4ZLMuhLAero8dT4cvn7g9fyt/dsC3luSKvm8C4bCUnjXVdjZ+4Ga0UzwX6AxG+9+IZ3nV+feL6UbKXtdVWxtKJabiMsxEVh3mmfSDEi6d6ePpoFx/81gsp83mdGgfHcgD40BVN9AyH+Zuf7J+worJ9IIQxsGKc5bC9oYR7//ANvPP8FSnnbK4rxhhSyvgjsThDI9GcDkgns72hlGu2pN4dWzGHscLouJLW11h/uLkUlH78UDuBcGzKWIOSHawsL8TjErUcFIvnT1gVqR9/y3r2n+vn97/xwpjAp2M5NCRZADuaKviLt27kgVdb+OHeZsDqv/TQ/lZu/38v879+8Xqi0+p4y0FE2LW+CneaVgeb6qyA5Pi4w0AOF8DNBJ/Xk2I1OWms6+27ulyKOzxxuJMqv5cLGnUiWy7gcbtYVVnEyc7cFAcNSM8zu493U1Lg4RNv3cjFq8r56H/t5a/u38c3b90BWJZDTbGXgnHFZ39y9Xp2n+jm8w8cpKbYy3d2n+ZXhzqo8ufzaDBCJGZZFKtn4E5YVVFEQZ4rpftoX6Lp3tIXh+GusW6lnqGxlkOuiEM0FuepI51cu7VWex7lEGur/Jzoyk23korDDAiGY/zWV5/mc+/cwls2pw/y7T7Rzc41lbjt4N4fvnEN//HUCbqGRqjyeznbG0jrL3a7hH9534W8/V+f5kP/+RJF+W4+91tb+JDtQjjdYzXXa5pB/rnbZXWHPNw+NijtpHIueXHId6fEfXqGRygu8CT6EOWKOLxy1hrcc/WmmsXeijID1lX7eOpoJ7G4SWvdZzPL2q1kjKEvMP0Ph5Ndw5zoGuY7u0+nfb6lL8jp7gCXrxtNHbzpogZiccPPftMCWK0zkuMNydSUFPD1D17C779hFb/85JX84ZvW4nG78LhdrKv2c/4s3AmbaotT3EpOR9alnsvu83pSxSEQodKXn2gp4QzDyXaeONSB2yW8aWPVYm9FmQFrq32Eo3Fa+mY3zncxWdbi8IsDbez84uOJthRT4QSTnznalfaO04k3JOeVb6gtZtuKEn7yagvRWJzW/hAryyd2DV3aVMEdN53HirL0AjJTNtUV0zUUHjO7wMnQyeUiuOng83oYDsfGpKv2DI9Q4cvH63Hj93oSw3CynScOd7JjdXnalF0le1lTZbkvj+dgxtKyFoeXTvUQjsYn7V6azDlb/aNxw8MHUucl7D7eTVlRHpvrxhaz3XhhA78528fuE93E4mZCy2Eh2JwmKJ3L7bpnQk2xVRTYNhBKrHUPhRPFYxW+/JywHNr6Q7zeOsDVm9WllGustXtUncjBoPSyFofX7XkAL06zK2pzb5DCPDdrq338bF9LyvO7T3TzhjUVKQHDd1+4AhH4t18dA8hojvomW6gOpRGH4iV+F5ruD7M3MCoO5b78nEhlffJwB4DGG3KQSl8+JQWenAxKL1txMMYkPjBfmmZX1ObeAI3lhbzr/BXsPtFNR9Id6dmeAM29wbStCmpLCti1ripRBZ1Jy6G62EulL5/DSZXS/cEIJQWenAuQzZR1drrqSfsP0xhDz3A40Wuo0pefqJjOZp443MGK0oJEG2gldxAR1lT7E91uc4llKw7tAyP0BSI0lBVytGNoWk3YmnuDNJQX8q4L6jEGHto/Oi8hEW9Ylz5geONF1uwGl4zOY8gUm+rGBqX7g5ElH4wGy63ky3dz3LYcBkeiRGKGSsdyKMpPpLZmK+FonGeOdnHV5pqcba++3FlX5Vt+biUROSUi+0XkVRHZY69ViMhjInLU/rc86fjPiMgxETksItclrV9iv84xEfmqZOCv4HX7Tvr33rAKmN7AnXN9VqbR+ppittSX8NN9o+Kw+0Q3Fb78Ce/urttWS0Gei7qSAvI9mdXkTXXFHGkfSgRm+wK53a57ulh3bb5EhapzA+A0Qav0W26lbJ3z2xcI8/kHDzAcjnHVRu13lKusrfbR2h9K28Ymm5mPT6mrjTEXGmN22N9/GnjcGLMBeNz+HhHZCtwMbAOuB74mIk4l2J3AbcAG++v6edjXpDjxht/dsZJ8t4s9p9PPPXAYDEXoC0QSoznfeX49e0/38uOXm/nbBw7wyIE2LltbMeHdXXFBHrdc3jTtJmjzyea6YoKRGGd6rGyrvmBkydc4OKyt8id62zjxhcqkgPRINE4wkjotbjGJxw33vnCaq7/0JD946SwfuqIpbXsQJTdwMpZyzbW0ELewNwD32I/vAW5MWv++MWbEGHMSOAbsFJF6oMQYs9tYt3DfSTpnwTjUOkhDWSHVxV4uWFk6ZVdUJ1PJaXvxLruX0Sfv+w0/3NPM5euq+OS1E0/lAvjsO7bwdzdsn4fdzwynjcazx7v49ZFOzvUGl404rKnyca4vSCgSS7iQEtlKtmutO8tcS//96jn+5icH2FhbzM//7E184d3blnx8aCmTqxlLc62QNsCjImKA/zDG3AXUGmNaAYwxrSLipFg0AM8nndtsr0Xsx+PXUxCR27AsDFatWjWnjR9qG0iknF7aVMFdT50gEI5OOFnrnD33OdFqu7KI//jgJRTmudm5piKlHUY2sbHWjwj8zU8OJNac+cJLnbXVPoyB092BRG1KciorWFXS2dTl9NGD7dSXFvD92y7TOMMSING6e5mJwy5jTIstAI+JyKFJjk13lZtJ1lMXLfG5C2DHjh2zdhSHIjGOdw7ztq11AFy6poKvPXmcV8/0ccX69AHl5oQ4jH6IXLetbrZbyChF+R6+8rsXMhiKsKG2mI21xVMOilkqrEtqm+w03UuIg98WhyzKWIrE4jxzrIt3XVCvwrBEKMhz01BWmHPprHMSB2NMi/1vh4j8BNgJtItIvW011AMd9uHNwMqk0xuBFnu9Mc36gnGsY4hY3LC53rIcLl5VjohV7zCxOATwelxU+XPzQ9XJllpuNCUNXOkPRvB6XIlxoo5bKZsylvac6mVoJMpVWtOwpFhb7Vs+MQcR8YlIsfMYeBtwAHgQuNU+7FbgAfvxg8DNIuIVkTVYgecXbRfUoIhcZmcp3ZJ0zoLg1Dc41cOlhXlsrithz6mJg9JOGqvezeUWfq+H2hIvJzqH6R4KU+nLT/wfJiyHLCqEe/JIB3luqw27snRYV+1n/7l+bvras3z50cPsb+5f7C1NyVwC0rXAMyLyG+BF4OfGmIeBfwSuFZGjwLX29xhjDgL3Aa8BDwO3G2OcNJGPAd/EClIfB34xh31NyaHWAbweV8IXCLCzqZyXz/QSjcXTnmOlsWaPX1qZPk7b5N7A2Fm+xV4PeW7JKrfSk4c62bG6Ar9XGyYvJf7kqnV8/Or1CPC1J49z09eenXTyYzYwa3Ewxpwwxlxgf20zxtxhr3cbY64xxmyw/+1JOucOY8w6Y8wmY8wvktb3GGO228/9qVngxPPX2wbYVFc8JgPksrWVBMIx7n3hTNpzJuumqmQ3a2yTvns4PCbWIiJZVQjX0hfkcPsgV2/WmoalRk1JAZ982yZ+/Ce7+OrNFxGNm6wfH7rsKqSNMbzeOpjSHO9t2+q4ZnMNf/ez1xK9bBwC4Sg9w2EVhxxlbZWPvkCEE51DiRoHh4os6q/05OFOAI03LHGcQtls79S67MShc2iEnuFwIt7g4HYJX33/RWyqLeZP/98rY9pNOGmsDfPURlvJLE7G0mAomuir5FCR4f5KD/6mhT+4+yW+9MhhHjnYRufgaFfYJw930FBWyIYa7aG0lFlVWYTbJRzvyO4A9bJzbB5qtT70t9SXpDzn83r41od2cOO/P8sf3P0SP/34G6nw5adNY1VyB6cICaDCN7b4r8KXz8GWgfGnLAjtAyE+++P9uF3Cr49Y08Hy3MLvv2E1f3zlOp491sUNFzVo0sMSx+txs6qiKOsth2UnDk7bjPFuJYf60kK+ccsObvj3Z/nG0yf41PWbE0N+VqpbKSdpKCskzy1EYibFcqj05WcsW+nvfvoa4Vicx/7szdSWFHCwZYD79zbz3edPc+8Lp4nEjLblXiasq87+ZnzLzq103bY6vvK+C8ZkrYzn/MYy3nFePd/dfZr+YITmviD5bhdVfu+E5yjZi8ftYnWlZT2ML/4r9+XTH4wQmSBLbb544nAHP9/fysevXs/qSh8FeW4uWV3O//rt83j0L97MtVtrWVvl44p1qS3flaXHOruNdyyenU0fYRlaDk1VvkRh1GT8yVXr+Pm+Vr67+1SixmH8EB8ld1hb5eNYx1CKODgB6t5AmJriggX52aFIjL994ADrqn3cduXalOfXVfv52u9fsiA/W8lO1lX7CcfiNPcGEjcu2caysxymy7YVpVy9qZpvP3uKY+1DmqmU46ypTm85OG6m3gWcJf0vvzzK2Z4g/3DjeXg92duDS8kc62qs6zGb4w4qDpNw+9Xr6RkOc7h9UMUhx3nj+ipWVxalZJxV23OmW/qDC/JznznaxX88dZybL13J5eoyUmzW2m28szljScVhEnY0VbBzTQWgaay5zps2VPPrv7qawvyxd+5OzvmRpNTl+aJzcIRP/OBV1lf7+dt3bZ3311dyl3JfPpW+fLUccpk/vXo9MDqwQ1lalBXlU1dSMKauZT6Ixw2fvO9VBkMR/u/vXTxhK3hl+bK22qfikMu8eWM1D9y+i+u26SSupcqmuuJEM8b54q6nT/D00S7+57u3sWmCtGllebOu2p+Yb56NqDhMgwtWluFx669qqbK5rphjHUPzls4ajcX55tMnuGpTNe+7dOXUJyjLknXVfnqGw4nZ5tmGfuIpy57N9cWEY3FOzVO//RdO9tA1FOZ9O1ZqtbMyIU7GkjMEKBqLs/f05OOKM4mKg7Ls2VRrtVKZL9fST3/Tgi/fzdWbtdpZmRin55eTsfSvjx/ld+7czdNHOxdzWwlUHJRlz7oaH26XzEtQOhyN8/DBNq7dWpvVc8WVxaexvIh8t4vjnUMcahvgziePA3Dv8+nHBmQaFQdl2eP1uFlb5eNQ29wb8D17rIu+QIR3nr9iHnamLGXcLmFNlY8j7YN86kf7KS3M43d3NPLY6+10DITGHHuqa5gFHnOTgoqDogCb60vmxa30030tlBR4eNNGHfOpTM26Gh9PHunkN2f7+Nt3beVPrlpPLG64b8/ZxDEPH2jlqi89ycMH2jK6NxUHRcHKWGruDTIYmn0bjVAkxqMH27luW522yVCmxbpqP8bA1ZuqefcFK2iq8rFrfSXfe/Essbihe2iEv/nJAQCeOdaV0b2pOCgKsKnWqkU40j576+HXRzoZGonyrgvUpaRMj13rq1hf4+cfbjovkdn2eztXc64vyFNHO/ncfx9gMBRlQ42fF09mNpNJyzYVBRKFaofaBrlkdcW0z4vG4hxpH2L/uT7ufeEMFb58bbutTJvL1lbyy09eOWbt2q21VPnz+Zsf76elP8Snrt9M3Bj+zyOH6Rk3B30hUXFQFKCxvBC/1zOjjKXhkSg3fe1ZjrRbeerFXg//47pNWjCpzIl8j4v37ljJnU8e56JVZdz25rW8fKYXgJdO9XDdtrqM7EPFQVEAEZlxG42//9lrHO0Y4h9u3M6u9VWsrijSmR/KvHDL5at5rWWAz79rK26XcH5jKfkeFy+dVHFQlIyzqa6Yn/2mBWPMlJXNjx5s4/svneVjV63jA5etztAOleVCfWkh9/zBzsT3Xo+bC1eW8eKpzMUd1P5VFJvNdcUMhKK0jcsxH0/HYIhP/3g/21aU8Bdv3Zih3SnLnZ1NFRxsGWBoJJqRn6fioCg2W+qtNhpffOgQbf3pBSIWN/z1/fsYHonyrzdfSL5H/4SUzLBzTQWxuOHl070Z+Xl6ZSuKzY7V5Xz0yrU8cqCNq770BP/nkUNj7tLiccOnfrSPJw938v+9cyvra7QVt5I5Ll5djkusoHQmUHFQFBsR4TNv38Ljf3kl122r49+fOM61//xrHjnYhjGGzz94kPv3NvOJt27QOIOScfxeD9sbSnkhQ/UOGpBWlHGsrCjiX2++iFuvaOKzP97PR7+7l421fo60D/HRN6/lz6/ZsNhbVJYplzZV8N3nTzMSjS14Fb5aDooyARevKuenH38jn33HZpp7g9x6+Wo+/fbNOqNBWTQubaogHI2zv7l/wX+WWg6KMgl5bhe3vXkdH961hg0IVH0AAAkDSURBVDwtblMWmUubygH4TXM/O5qmX8k/G1QcFGUaqDAo2UCl38vuz7yFupKCBf9ZWXPFi8j1InJYRI6JyKcXez+KoijZSH1pYUZcm1khDiLiBv4deDuwFXi/iGxd3F0piqIsX7JCHICdwDFjzAljTBj4PnDDIu9JURRl2ZIt4tAAnE36vtleG4OI3CYie0RkT2dndgzhVhRFWYpkizikc6ClDEw1xtxljNlhjNlRXV2dgW0piqIsT7JFHJqBlUnfNwIti7QXRVGUZU+2iMNLwAYRWSMi+cDNwIOLvCdFUZRlS1bUORhjoiLyp8AjgBv4tjHm4CJvS1EUZdkixqS49nMCERkEDqd5ahVwZpYvWwrMtC59pufo/uZ2ju5v7uc4zHSvur+x5NL+qoAu+/FqY8zUQVtjTE5+AXsmWO+cw2vetdDn6P50f4u5v7nsVfeXu/ub6PNysq9siTnMJ31zOPenGThH9ze3c3R/cz/HYaZ71f2NZantbwy57FbaY4zZMd31bEH3Nzd0f/NHtu9V9zc3kvc3m73msuVw1wzXswXd39zQ/c0f2b5X3d/cuGuCx9MiZy0HRVEUZeHIZctBURRFWSBUHBRFUZQUclIcRKRRRB4QkaMiclxE/tWurJ7o+E+ISFGG9ziUyZ83E0TkJhExIrJ5sfcyGVP9DkXkSRHJeEAwF66/cT9fr8U5shyvxZwTB7GmXPwY+G9jzAZgI+AH7pjktE8Ai/bHmYW8H3gGq03JtLHnbixr9Pqbd/RanCULfi3OtsBisb6Aa4Cnxq2VAN2AD/gSsB/YB3wc+DMgbK89kcF9Dtn/UY8DL9s//wb7uSbgdeAbwEHgUaAwQ/vyA+fsC+mQvXYV8BTwE+A14OuAK+l9/B3wAvDGDP9fD9l7+1nS2v8FPmQ/fhLYodefXot6Lc7/tZgVvZVmyDZgb/KCMWZARM4AfwisAS4yVr+mCmNMj4h8ErjaGNOV5vUWkhBwk72/KuB5EXEaCm4A3m+M+SMRuQ/4HeC/MrCnG4GHjTFHRKRHRC6213diTeE7DTwM/DZwP9ZFdsAY87cZ2FsukEvXXzJ6LS49FvRazDm3Etbsh3T5twK8Gfi6MSYKYIzpyeTG0iDAF0VkH/BLrAFGtfZzJ40xr9qP92LdwWWC92NN2sP+9/324xeNNYkvBnwPeKO9HgN+lKG95QK5dP0lo9fi0mNBr8VctBwOYt3ZJBCREqx5ECdI/8taLH4fqAYuMcZEROQUUGA/N5J0XAwoXOjNiEgl8BZgu4gYrA64BniI1N+b833I/iNdLKKMvYkpmOjADJFL118yei3OnWV1Leai5fA4UCQit0AiMPVl4G4sf+kfi4jHfq7CPmcQKM78VikFOuw/xquB1Yuwh2TeA3zHGLPaGNNkjFkJnMS6M9tpz9NwAe/DChJmA6eBrSLiFZFSLD/rYpJL118yei3OnWV1LeacOBgr6nIT8F4ROQocwfKnfhb4JlaL2n0i8hvg9+zT7gJ+ISJPZGKP9n/ICHAvsENE9mDduR3KxM+fhPdjBfqS+RHW72k38I/AAaw/0vHHZRTnd2iMOQvchxVUuxd4ZTH3lQvXXzJ6Lc6d5XotavuMBUBELgC+YYzZudh7mQ4ichXwP4wx71zsvTjk2u8wW8m136Nei9lDzlkO2Y6I/DFWEO1zi72XXEV/h/OD/h7nznL+HarloCiKoqSgloOiKIqSgorDHBGRlSLyhIi8LiIHReTP7fUKEXnM7nnymIiU2+vXisheEdlv//uWpNd6WER+Y7/O17VFgDIT5vNaTHrNB0XkQKbfi7L4qFtpjohIPVBvjHlZRIqxiohuBD4E9Bhj/lFEPg2UG2M+JSIXAe3GmBYR2Q48YoxpsF+rxK5wFKyK0B8aY76f9gcryjjm81q0X++3sVJOzzfGbM/4G1IWFbUc5ogxptUY87L9eBCrT00DcANwj33YPVh/pBhjXjHGtNjrB4ECEfHazw3Y6x4gn+wtqFKykPm8FkXED3wS+IfMvQMlm1BxmEdEpAm4CKsxWK0xphWsP1qgJs0pvwO8YowZSXqNR4AOrGKV+xd4y8oSZR6uxb/HKqgKLPhmlaxExWGesO+0fgR8IskCmOz4bcA/AR9NXjfGXAfUA16s9gKKMiPmei2KyIXAemPMohafKYuLisM8ICJ5WH+M9xpjfmwvt9s+YMcX3JF0fCNW1ectxpjj41/PGBMCHsRyByjKtJmna/Fy4BK7/9IzwEYReTIz70DJFlQc5ogdPP4W8Lox5p+TnnoQuNV+fCvwgH18GfBz4DPGmGeTXsef9AfsAd7B4rc4UHKI+boWjTF3GmNWGGOasHodHTHGXLXw70DJJjRbaY6IyBuBp7EGaMTt5c9i+XrvA1Zh9Th5r91P/XPAZ4CjSS/zNqw2uz/Dcie5gV8Bf+G03FWUqZiva9EYk2xZNGENuNFspWWGioOiKIqSgrqVFEVRlBRUHBRFUZQUVBwURVGUFFQcFEVRlBRUHBRFUZQUVBwUZQEQkT92ZvtO8/gm7X6qZBOexd6Aoiw1RMRjjPn6Yu9DUeaCioOipMEu/noYq4DsIqzh7bcAW4B/BvxAF/AhY0yr3V7iOWAX8KDdMnvIGPMlu1fR14Ei4DjwB8aYXhG5BPg2VnO7ZzL37hRlatStpCgTswm4yxhzPjAA3A78G/AeY4zzwX5H0vFlxpgrjTFfHvc63wE+Zb/OfuDz9vp/An9mjLl8Id+EoswGtRwUZWLOJvUc+i+sVhTbgcesNka4gdak438w/gVEpBRLNH5tL90D/DDN+neBt8//W1CU2aHioCgTM763zCBwcJI7/eEZvLakeX1FyRrUraQoE7NKRBwheD/wPFDtrIlInj0LYUKMMf1Ar4i8yV76IPBrY0wf0G83ywP4/fnfvqLMHrUcFGViXgduFZH/wOpc+m/AI8BXbbeQB/gXrBGbk3Er8HURKQJOAB+21z8MfFtEAvbrKkrWoF1ZFSUN2qpaWe6oW0lRFEVJQS0HRVEUJQW1HBRFUZQUVBwURVGUFFQcFEVRlBRUHBRFUZQUVBwURVGUFP5/KFwnZMGZQYAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-100:].plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4Y3d57z+vLNmSbHnfZmzPePY1yUyWSUJ20oSw9AZoUkIpSQttKDfcQjcu9PZe+vQ2LbSXtRQoDZSwFAgUSFgCZCMkZJnMTDL74tnHy3jfLcmW9Lt/nHNk2ZJteZVsv5/n8WP7p3Pkn+QjffXuYoxBURRFURJxZXoDiqIoSvah4qAoiqIkoeKgKIqiJKHioCiKoiSh4qAoiqIkoeKgKIqiJKHioCiKoiSh4qAoiqIkoeKgKIqiJOHO9AZmSnl5uamvr8/0NhRFURYVe/fu7TDGVEx13KIVh/r6evbs2ZPpbSiKoiwqRORcOsepW0lRFEVJQsVBURRFSULFQVEURUlCxUFRFEVJQsVBURRFSULFQVEURUlCxUFRlEVDLGaIxnR65UKg4qAoyqLhH352lN9/6OVMb2NZoOKgKMqi4UTbAIeaezO9jWWBioOiKIuG3qFh+kMRBsORTG9lyaPioCjKoqEnOALAxb5Qhney9FFxUBRl0dAzZItDr4rDfKPioCjKoiAaM/SFVBwWChUHRVEWBf2hEYydxapupflHxUFRlEWB41ICtRwWAhUHRVEWBU4wGtRyWAhUHBRFWRT0DA0DEPC607YcjDFqZcwQFQdFURYFvbblsLk6kLbl8PSxNq75x6e476u7OXaxbz63t+RQcVAUZVHgxBw2VQfoGAgzEo1Nec7JtgEA9p3v5k2ffY6P/uCA9mZKExUHRVEWBaPiUIgx0NYfnvKc9v4wPk8Oz334Fu6+oo5v777Aaxe653urSwIVB0VRFgW9wRECeW5qi31AehlL7QNhKgJ5FPtzedc1qwDoHhyZ4iwFVBwURVkk9ASHKfJ7qC7yAumJQ1ufJQ4AhV4PQLyQTpkcFQdFURYFvUMjFPk8VBfa4pBGULp9IEylLQ5FPksceoMqDumg4qAoyqKgJzhCsd9Dsd9DrttFazri0D9qOQS8bgD6gtrRNR1UHBRFWRT0DA1T7MtFRFhR5KVlCrdSaCRKb3CEigJLHNw5Lgry3Go5pImKg6Ioi4Le4AhFfss1VFXopXUKcegYsLKZKgvz4mtFPo+KQ5qoOCiKkvUYY+gZGqHYjhtUF3qnjDm026mujlsJLNeSBqTTQ8VBUZSsZ3A4SiRmKLYthxVFljgYM3FBm1MHUVHgja+p5ZA+Kg6KomQ9Tl+lYl8uYLmVhiMxuocmfqN3LIdEt1Khz0PfOHHoHhxm+8d+wYunOud624saFQdFUbIepzraiTk4tQ4tvcEJz2nvDyMCpfm58bWiFOJwvmuIgXCEhrb+ud72okbFQVGUrMdxBcVjDrY4TJbO2j4QptSfiydn9G2u0JvsVuoatKyS/pCmuCai4qAoStbjWA7FfssKiBfC9U7cXymxOtqhyOex4hcJTfs6bXEYb1Esd1QcFEXJenqCdszBditVBPIQgYuTuZUGksWh0GcXwiVYCd2OOGgW0xhUHBRFyXriMQfbreTJcVFRkDdpOmtHf2rLAcZaCXHLQd1KY1BxUBQl6+kNjuD1uPB6cuJr1ZNUSRtjxrTOcEjVX6lr0HJNqVtpLCoOiqJkBYeaeifMPnJaZyRSVeidMCDdGxxhOBqjMuAds17oS+7M2mW38FbLYSxTioOI1InIMyJyVEQOi8gH7fVSEXlCRBrs7yUJ53xURE6KyHEReUPC+hUictC+7XMiIvZ6noh8115/WUTq5/6hKoqSrbT1hbjrSy/wzz8/nvL2nqGReLzBoa7Ez4WuIMOR5IlwqaqjYXLLoV9jDmNIx3KIAH9hjNkCXAM8ICJbgY8ATxljNgBP2b9j33YPsA24A/iCiDi24BeB+4EN9tcd9vp7gW5jzHrg08An5uCxKYqySPjMUw2ERmKcah9IeXtPcCT+xu6wa00JwZEoBxp7ko4frY4eF5D2phIHJ1tJLYdEphQHY0yLMWaf/XM/cBSoAe4EHrYPexh4q/3zncB3jDFhY8wZ4CSwS0RWAIXGmBeNVfP+9XHnOPf1feBWx6pQFGVpc7p9gO++cgFPjnC2cyjlMb0pLIdr1pYhAr85mVzZnKo6GhID0qNC0KXZSimZVszBdvfsBF4GqowxLWAJCFBpH1YDXEg4rdFeq7F/Hr8+5hxjTAToBcpS/P37RWSPiOxpb2+fztYVRclSPvnLE+S5Xbz3+rX0BkfiqaWJ9ASTYw7F/ly2rSzkhVMdScdP5Fbyelx4ciRuOYxEY/SFIng9LoYjMUIj0bl6WIuetMVBRAqA/wI+ZIzpm+zQFGtmkvXJzhm7YMyXjTFXGmOurKiomGrLiqJkOQcae/jpwRb+6Po1XFVvhS3Pdg4mHZcq5gBw3bpyXj3fQ3B47Jt6W3+IPLeLQJ57zLqIWC00bCvBEaLVpfmAVkknkpY4iIgHSxi+ZYz5gb3caruKsL+32euNQF3C6bVAs71em2J9zDki4gaKgK7pPhhFURYX//yL45Tm5/LHN65ldZn1Bj1eHEIjUcKRWLyvUiKvW1/OcDTGK2fHvl2094epLMwjlXc6sYVGl93Qr77cD6hrKZF0spUE+Apw1BjzqYSbHgPus3++D3g0Yf0eOwNpDVbgebfteuoXkWvs+7x33DnOfd0FPG0m68WrKMqiZyAc4bmGDn7/6lUEvB7qSn24BM52jI07jC+AS+Sq+hI8OcIL4zqqtg+Ek4LRDomdWbsGbHEoU8thPO6pD+E64N3AQRF5zV77a+DjwCMi8l7gPHA3gDHmsIg8AhzBynR6wBjj2HzvB74G+IDH7S+wxOcbInISy2K4Z5aPS1GULOdoi+Wd3rGqGIA8dw4ri31JlkO8dca4mAOAP9fNzrqSpLhDe3+YNeX5Kf9ukc8TbwHuVEc7VosWwo0ypTgYY54ndUwA4NYJznkQeDDF+h5ge4r1ELa4KIqyPDjSbInD1hVF8bX6svykjKXRpnvJlgPA69aX8bmnGugdGh0j2tYfZtea0pTHF/o8nLMFqFvdShOiFdKKomSEI819lObnUpWQbrq6zB9/43aYzK0E8Lp15cQMvHTGci2FI1F6hkaSqqMdinzueDV0p+1WWlVqiYO6lUZRcVAUJSMcaelj64rCMUHjNeX59AyNxN0+AL3jOrKOZ0ddMT5PDi+ctFxLzhv++DRWBycgbYyhe2iYYr+HErsVuLqVRlFxUBRlwRmJxjje2s/WlYVj1kczlkZdS+NnOYwn1+1i15pSnj3RzkA4MmF1tEORz0M0ZhgajtI5OExpfi7+3BxyXKJupQRUHBRFWXBOtw8yHImxdcVYcVhj+/7Pdoy6lnqCI7hdQn5uDhPxtp01nO0c4uZ/foaHXzgLJFdHOxQm9FfqGhim1J+LiBDwurWFRgIqDoqiLDiHm3sBkiyH2hI/ImNrHZwCuMk66rx1Zw2PPnAd6yoK+OGrTQCUT2I5gBV87h4ajs+YLvR6tPleAumksiqKoswpR5r7yHO7WDsu3dTryWFlkY9zCW6l3uDwhMHoRC6rK+Y791/Dk0fbOH6xjxVFEwWkbcthaITOwWF21FmptIUJgWpFxUFRlAxwpKWPzdUB3DnJzov6cj9nbLdSLGY4frF/wuDyeESE27ZWcdvWqgmPcTqz9th9nBzLIZDn0YB0AupWUhRlQTHGWJlK41xKDqvL8uPprE8fa+NU+yC/e2VdymNngmM5NHUHicTMqFvJ59ZU1gRUHBRFWVBaekP0DI0kBaMd6sv8dA+N0Ds0whd+dZKaYh+/fdnKOfv7hT7LYeLENRJjDpqtNIqKg6IoC8phpzJ6AsvB6XP0yJ4L7Dvfw/tuWosnhftppgRst5Ljuoq7lbzqVkpExUFRlAXlSHMfIrCpegJxsIPUn37yBGX5udx9xdy5lAByXEIgzx0Xh7J8K55R6HMzOBwlEk0eO7ocUXFQFGVBOdLSS31ZPgV5qfNhnFYWQ8NR3nP9GnyT1DfMlEKfh6aeIAAl+ZYl4QSqB8IadwAVB0VRFpjJgtHgpLN6Kchz8/vXrJ6XPRT6PDhDARzLIeC1xEoL4Sw0lVVRlAXjXOcgF7qCvOvqyd/0/+TmdeTnutOqb5gJRXZQ2ufJiVsmhQnFcYqKg6IoC8h//OYsnhzh7TtrJj3u3mvr53Ufjug4wWgYdSupOFioW0lRlAWhNzjCI3su8NuXrqSyMHX18kLhCEGiOKhbaSwqDoqiLAjffeV8PMicaVJZDs6a9leyUHFQFGXeiURjPPzCOXatKWV7TdHUJ8wzhZO6ldRyABUHRVEWgF8cbqWpJ8h7s8BqgNSWQ0HcraSWA6g4KIqyAHzl+dOsKvXzW1smboi3kDgtNBLFIcclFOS5NSBto+KgKMq8crZjkH3ne7j32tXkuCaeybCQpLIcAAq92nzPQcVBUZR5Ze+5bgBu2FCR4Z2M4syMHj9KtNCn/ZUcVBwURZlX9p7vJpDnZkNlQaa3Euey2mI+9buXcdOmsYIV8KpbyUHFQVGUeWXfuW52rCrGlSUuJQCXS3j75bVJ3V6tUaHqVgIVB0VR5pH+0AjHW/u5YnVJpreSFoU+nengoOKgKMq8sf9CL8awaMQh4HVrhbSNioOiKPPG3nPdiMCOuuJMbyUtLLfSCMZp2bqMUXFQFGXe2Hu+m01Vgfj0tWyn0OcmZmBwOJrprWQcFQdFUeaFWMzw6vludq5aHC4lGB0hqumsKg6KoswTJ9sH6A9FFk28AUb7K2nGkoqDoijzxD67+G1RiYPdVkMzllQcFEWZJ/ae66Y0P5f6Mn+mt5I26lYaRcVBUZR5Ye/5bi5fVYxI9hS/TUWh3ZlV3UoqDoqizAPdg8Ocbh9cVMFoGJ3z0N4fzvBOMo+Kg6Ioc8739l4A4KaN2dNsLx3K8nPZsqKQr71wltDI8k5nnVIcROSrItImIocS1v5WRJpE5DX7600Jt31URE6KyHEReUPC+hUictC+7XNi25oikici37XXXxaR+rl9iIqiLCThSJSHnjvDdevLsmLq23QQEf7mzVto6gny1d+cyfR2Mko6lsPXgDtSrH/aGLPD/voZgIhsBe4BttnnfEFEcuzjvwjcD2ywv5z7fC/QbYxZD3wa+MQMH4uiKFnAD/Y10dYf5v03rc/0VmbEdevL+a0tlXzhmVPL2r00pTgYY34NdKV5f3cC3zHGhI0xZ4CTwC4RWQEUGmNeNFZd+teBtyac87D98/eBW2UxRbAURYkTjRn+7dlTXFJTxHXryzK9nRnz12/aQmgkyqeeOJHprWSM2cQcPiAiB2y3kxN1qgEuJBzTaK/V2D+PXx9zjjEmAvQCKa8qEblfRPaIyJ729vZZbF1RlPng54cucrZziPffvG5RZSmNZ21FAe++djXffeU8xy72ZXo7GWGm4vBFYB2wA2gBPmmvp7oazCTrk52TvGjMl40xVxpjrqyoWFyBLkVZ6hhj+OKzJ1lbns8btlVnejuz5oO3bsAlwo/3N2d6KxlhRuJgjGk1xkSNMTHg34Fd9k2NQF3CobVAs71em2J9zDki4gaKSN+NpShKlrC/sZdDTX388Y1rs2ZW9Gwo9udS6PPQu0wL4mYkDnYMweFtgJPJ9Bhwj52BtAYr8LzbGNMC9IvINXY84V7g0YRz7rN/vgt42mi/XEVZdJzpGABg15rSDO9k7gh43cu2IM491QEi8m3gZqBcRBqBjwE3i8gOLPfPWeB9AMaYwyLyCHAEiAAPGGOcZOH3Y2U++YDH7S+ArwDfEJGTWBbDPXPxwBRFWViauoMArCzyZXgnc0eh17NsW2lMKQ7GmHemWP7KJMc/CDyYYn0PsD3Fegi4e6p9KIqS3TT1hCjLz8WXmzP1wYuE5Ww5aIW0omQ50dji8LI29wRZWbx0rAZwJsOpOCiKkmX86NUmLv+/T3C4uTfTW5kSSxy8md7GnBLwupdt+24VB0XJUo5d7OMjPzhAb3CEh56bWSuHL//6FC+f7kz7+IeeO80ff33PtP+OMWZpWg4+tRwURcki+kIjvP+b+wh4Pdy5YyU/OdBMa19owuMHwxFSJfl95skGvr+3McUZqXnpdBdPHW0lOM0Zyn3BCIPDUWqWmDgEvG4GwpFF49qbS1QcFCXLMMbw4e8d4HzXEP/6e5fz57dtJBIzfPOlcymPP9Haz5V//ySPvja2WGskGmNoOEr30HDaf7trMEzMWPc5HZp67EylJScOVgvvgWVoPag4ZBnGGCLRWKa3oWSQJ4608vPDF/nIHZvZtaaU1WX53Lq5im+9fD6pjXQsZvjoDw4SHIlyrnNozG1OCmbn4HTEwTr2aMv0WkYsVXFwhv8sx7iDikOWEI5EeWTPBW7/9K+59uNPM6ICsWw50NhLjku473X18bX3XF9P1+Awj77WNObY/9x9nr32rObxlbx99qfd7mmIQ+fAzMSh2RaHpedWsseGqjgomeDFU53c8Iln+PD3D9A+EKa9P8yFrqGpT1SWJCda+6kv85PrHn15Xru2jM3VAb76/Nl4bKG1L8QnHj/GtWvLWFHkTRIH5/euNMUhHInSH7YE5WjL9NxKzT1Bct0uyvJzp3VetlPoW75jQ1UcsoDPP9OAS4Svv2cXX7nvKgBOtw9meFdKpjjZNsCGysCYNRHhPdev4XhrP7d/+tf8n0cP8ReP7CccjfEPb7+EohQ9gBy3Ul8okpYl2j1oHe/1uDh6sS9lgBvglbNd/LfPP89gePQNs6knyMoiL64l0FMpkULHcliGVdIqDhlmIBxh95ku7tyxkhs3VrC+ogCAU+0DGd6ZkgnCkShnOwfZWFWQdNvvXF7L/37LVqqLvHxvTyPPn+zgg7duYE15PkW+5DYPia6QdILSHQPWYJur6kvpD0XicYTxvHCykwONvew73x1fW4pprGBlK8HytBymbJ+hzC/PN7QzEjXcsrkSgCK/h/KCXLUclilnOgaJGVhfFUi6LcclvPf6Nbz3+jWMRGOc7RhkfaUlIkU+D+fHuSITLYnuwREqA5MXqDnup+vXl/NcQwdHW/qpLfEnHdfYbf2dV8/3cMMGq3V+c0+I6zeUT+ORLg4KNeagZIqnj7UR8Lq5YnVJfG1teQGnO9RyWI40tFr/9w2VyZZDIp4cFxuqAvGBOqndSqOfdtOJOzjHvG6d9SY/UVC60W6w51gOw5EYrf2hJWk5FCxjy0HFIYPEYoanj7Vz48YKPDmj/4q1FfmcUsthWdLQ2o9LYE15/rTOSykOM3Qr1ZX6WF3mn1AcHHfTq+d7MMbQ2hfCGKhZYq0zwBJhf26OxhyUheVQcy8dA2FutV1KDusqCugaHKZnGsVLytKgoW2A1WX5eD3T62xa5PMwNBwdE3juDY7gxIfTqXXoGhzG7RIKvR62VBdy7GJyxlI0ZrXJqAzk0Rsc4XTHYFwsaoqTXVBLgeXamVXFIYM8fawNEbhp49iRp2srrE+Naj0sPxraBqZ0KaWiyG/5xhOth77gCDUllqsnnVqHrsFhSvJzcbmELSsKOds5yNDw2DfF1r4QkZjhTZdY8772neuO1zgstaZ7DoVej8YclIXlmWNt7Kgrpqwgb8z6Wjtj6bRmLC0rhiNWkHlDikylqSjyJYtDb3CE0vw8Al53WjGHjoHheJ3ClhUBjCHJenCshJs2VRDwunn1Qk+COCy9mAOo5aAsMG39IfY39vL6TZVJt9WV+PDkiFoOy4xznYNEYiapxiEdnKyaMZZDKEKRz0Npfm5aMYeuwTBlBY44FALJQWknU2lVqZ8ddcXsO9cdH/IzXVfYYiHg9dCvloOyUPzqeDtAPIU1EXeOi9Vl+Wo5LDNO2JlK62fgVipMYTn0B0co9Lop8eemna1Umm9ZsbUlPgJed7I4dI22ydi5qoQTrf00tPYvWasBrOe2Ty0HZb7pD43wmSdP8Hc/PkJNsY9tKwtTHre2PJ/THWo5LCca2voRsRISpovjVuob51Yq9Hkoy09PHDoHR91KImIFpce10WjsDlJekIfXk8Plq4qJGdh7vnvJxhvAcSstP8tBi+CmgTGG77xygdBIlMqAl6rCPC6rKx6ThjoZTx1t5S+/t5/uoRHu2FbNh+/YFM9TH8+6ygKeOd5GJBrDneb9ZyOD4Qif+Pkx/uK2TfGgqZKahrYB6kr8M5rBPD7mYIyhLzRCkc/DcCQ2ZSO9cCRKfygypjfSlhUBvr+3kWjMkGOnPTX1BKm1g9w760rsv7V04w1gB6SDy89yUHGYBg1tA3z0BwfHrP3VGzbxwC3r0zr/S8+eIj/Pzdf+cBeX1RVPeuza8nxGooYL3cFp57xnE7vPdvH1F89xVX0pv33ZykxvJ6s52TqQsm1GOsTFYcgSh9BIjJGoodDrIRozdA4OY4yZ8MOI01eptGBUHC6rK+bhF89xqn2AjXbFdmP3ENtriqy/6fewzq7JWWrdWBMJeN0MR2OERqJLNq6SisX7kTQDvHymC4DHPnAdP//QDWysKuD5ho60z2/uCXFVfemUwgCW5QCLP2Opya6mvdCtXWYnIxKNcbpjgPUzCEYD5Lpd+Dw58ZRLx4Io9Fkxh3AkRnBk4ulunYNWAVyi5bBzlWUZvGpXQsdihuaeUDw9FuBy+5ilLA7LdaaDisM02H2mi+pCL5fUFLG5upDr1pfz6oVuhiNTd7yMxqxK0hVF6flm15UvjQZ8TuqjtiCfnLOdQ4xEzYxqHBwSq6SdN7IiO+YAk7fQcOY4JKZV15f5KfZ7ePV8DwDtA2GGo7Ex/ZYut9u+pOrBtFRwgv3LLZ1VxSFNjDHsPtPJrjWlcdP86jWlhEZiHGzqnfL8joEwkZhhRZqfsIr81ot6ug34OgfCE7ZazgRxy6ErdYdPxbq2XjlrWaUzqXFwSBSHuOXg9VBii4PjOkqFIxylCZaDiLCjrjguDk4aa22C5fC2nTV8+h2Xsb0mdWLFUmC5dmZVcUiT811DtPaF2bWmNL52Zb31827b3TQZLb3WcPgVhelndayrKJiWOLT1hbj2H5/mZwcvpn3OfOMUSI3vGKpY7dr//deneeNnn+OjPzhIVWHejGocHMZYDsFRy6E03/rk67iOUuG01xg/rGdnXQkn2vrpD43EG+7VJnzA8XpyeNvO2gljGUuB5TrTQcUhTZx4w9UJ4lBekMe6ivz4p77JaLHfJFdMI+XPasCXvlvpcEsfw9EYu890pn3OfOO4lZp7gkRj2WPRZANffvYUD/7sKF5PDv/3rdv5xYdunFGmkkOhz0OvnVXjuJUKfR5K/LblMEkhXOdAmBy7r1IiO1cVY4w1utQRh8SYw3LAGRW63CwHzVZKk91nuijNz00qUNq1poyfHGgek+6XimbbclhZlP4La31lAd955QKPvtbEnTtqpjz+pF1Edag5OW1x3/luTlzsZyAcYWg4ypsuqZ5x8DNdRqIxWvtCVAbyaOsP09IbXNK+6elyodtKC/3RA9fNyf0V+TzxlFUna6nQ68btsj4Ddk3hViq1+yol4iRPvHp+tBLan7u83jacUaHLLSC9vP7Ls2D3mS6uqi9JMp93rSnh27vPc+xiH9tWFk14fktPEK/HRfE0cv3vvrKOXx5u5YPfeY1T7YN86NYNk45hbGizCpaOtvSNEavgcJR7vvzSmMB5Y/cQ/3TXZWnvZSZc7A0RM3DN2jIe29/M+a4hFYcEWnqDaScopMPYgLT1KbfQ5yFHhByXTNp8L7EAbvx9rq8s4NXzPQxHY8vOaoBEy2F5iYO6ldLgYm+I811D7FpTlnSbs/bKFHGHlt4QK4t80/LNFvk8fOOPdnH3FbV87qkG/vQ7rxKbxDXT0GZZDkPDUc4kVFc7GVWfeccO9n/sdjZUFixIUY/jUrpmrfUcNWpQegwXe0NUT8OSnIpCn5uBcIRINEZfcAR/bg6eHBcul1Di90zatrtzIDwmGJ3IzrpiXrvQQ1N3cEwwermQn5uDS1h2hXAqDmmw+2xyvMGhpthHTbEvfsxEtPQGqZ7Bp8Q8dw7/dNel/I/Xr+cnB1p4rbEn5XHGGE62DrDLDpIfbh7NoNpzthsRuGVTJUU+DwGv9SYy3ziZSrvWlOASrXVIxBhDS2/6qc3pEG+hEYpYrTMS4gcl/twxlkNLb5C2vlD8967B4aTuwA47VhXTOTjM6Y7BZWn5iciybL6n4pAGu890UpDnjneqHM+uNaXsPtM1aQqp9UYws09dIsLvXlkHTDy6sbUvTH84wh3bq8lzuzicEHd45WwXm6oC8fYVBV7PwoiDbTnUlvhZWezTjKUEeoZGCEdiVE8je20qEltoOK0zHErzc+lKCEj/8df38L5v7o3/PpFbCUbbZADL0nKA5dm2W8UhDXaf6eKK1SUTBpx3rSmlY2B4jCsnkYgdmJ1Nc7LaEh8Fee6kRmgOTrxh84oAm6sDHLJrLyLRGPvOdXNV/ajVE8hbOMvBadJWV+LXQrgE4qnN82A59AZH7KZ7oyHF0vxRy6GtP8Shpj5ePd/Dha6heF+lidxKG6sK8NtZVEu5EnoyluPAHxWHKegeHOZE68CY+obxOLdNVO/Q1h8mZpix5QCW9bC5OsCxi6kth9HB9AG21RRxqKkXYwxHW/oZHI5yZf3op7+CPDcDC/ApqLk3GA9g1pX6OK8xhzgX+6znYiauxokYYzkEI2Msh5KEzqwvnBxNdX78UEu8OK6sILU4uHNcXFprJVssR7cSWJbDcmvbreIwBWc6LWtgy4qJ0z7XludT5POwvzF1pXRL7/RrHFKxZYXVQjmV+6qhbYBiv4fygly2rSykLxShsTsYr8FItBwKFjDm4BRMrSr10zEQJjg8cX+f5cSo5TB3n8QT23b3hcbGHEr91sCfWMzwXEMHxX4P21YW8tMDLSn7Ko3HsZyXY7YSWBlLWgSnjMEJ2lVN4hsWEVaX+ePtBcbTMoMah1RsXhGgPxyJFyMlcrKtnw2VBYgI2+2U2sPNvbxytouaYt+YlsoFtltpssyn2WJ9gRQJAAAgAElEQVSMoakn0XKwPnFO9BwtNy72hshxCRWB1EHgmZDsVhobc4gZ67bfnOzgunXlvOXSlexv7OWA/aHGGfSTivfdtI5v//E1FOQtz+z3Qp/GHJIQka+KSJuIHEpYKxWRJ0Skwf5eknDbR0XkpIgcF5E3JKxfISIH7ds+J3ZOp4jkich37fWXRaR+bh/i7Gjtsz5VVQYm/9RfV+JP+aYN0NJjicNsXQibq1OPbjTGcKJ1tKPnpuoAOS7hUFMfr5zt5qoElxIQf4EPDs/fxd4xMEw4EmOl/ZgdcdCgtEVLr1UcOFnh5HRxxKBnaJiBcCRJHMBKTrjYF+L6DeW8+ZIVAHzzpXPAxG4lsHzuk7lWlzoac0jN14A7xq19BHjKGLMBeMr+HRHZCtwDbLPP+YKIOP0AvgjcD2ywv5z7fC/QbYxZD3wa+MRMH8x80NZvfcKbzOQGqC310dQdTPlpvLk3SH5uTrz170zZXG29+Y8f+t4xMExvcCTe0dPryWFDZQE/O9RCx0CYq8a9qAvsfcyna8npqVRj+6jr7O8alLawahzmdnqa15NDnttFU08QYxhzvTnN9x7b3wzA9evLWVXm55Kaonhm21TX+HKm0Dv/1na2MaU4GGN+DYyPtN4JPGz//DDw1oT17xhjwsaYM8BJYJeIrAAKjTEvGsth/vVx5zj39X3gVseqyAZa+8JUFORNWpkM1pvfcDRGa38o6baWnhAriqdXAJeK/Dw3q8v8SUFpJ1MpsaPn1pWF8aZ9ifEGGLUc5jMo7aSxOtkt5QW5+Dw5GpS2mevqaIcinydunY2xHOz+Sk8ebWV1mT9uyb3Jth5S9VVSRgl4PRgDA/NobWcbM405VBljWgDs75X2eg1wIeG4Rnutxv55/PqYc4wxEaAXSC5FBkTkfhHZIyJ72tvbZ7j16dHWH6aqcGq/sJP/nao19Vy+EWypLuTouHTWk3ZltDOtC4jHHYr9HtaPm0nsWA7982g5NI1r0iYi1JX6tBCO0QK4yeJYM6XI54lfg2PqHGyXUWgkxvXry+PrjmspVV8lZRQnLXg5xR3mOiCd6uoyk6xPdk7yojFfNsZcaYy5sqKiYoZbnB5tfSEq03gRO5/EUrlNnNYZc8HmFQHOdg4ylPAJpqF1gIDXTWVCcNMZ5Xjl6pKkF31ggSyHgjz3GNdGurUOvzx8kbMT1IwsBfrt5ofzZTk4Lr3x2UoON2wYFQfHtVQ5h4Hxpchy7K80U3FotV1F2N/b7PVGoC7huFqg2V6vTbE+5hwRcQNFJLuxMobTVXQqHPfJ+KD0cCRG+0B4zvzLW1YUYgwcT4g7NCRkKjlsXVlIIM/NTZsqk+5jIWIOTT1Basa50upKLXGYrJL8ZNsA7/vmXv7t16fmbW+Z5mKvk6Aw92mhRT4PEdsvnmg5+HJz8HpcuASuXVs+5pzP3LODf7rr0jnfy1LCGfiznPorzVQcHgPus3++D3g0Yf0eOwNpDVbgebfteuoXkWvseMK9485x7usu4GmTJaPMwpEo3UMjaZn/Xk8OVYV5SW6T1r4QxjCr6uhEttgZS4lB6ZNtg0lDYgry3Dz/kdfzrl2rku5jQWIO3cGknPi6Uj+Dw9ZzOhGff7oBY5JFdikxH9XRDolxhsQKabCsh0tqi+NtVBzWVRRM2lFYGbXClpPlMGX6jIh8G7gZKBeRRuBjwMeBR0TkvcB54G4AY8xhEXkEOAJEgAeMMU7V0/uxMp98wOP2F8BXgG+IyEksi+GeOXlkc0B7v5PGmp7JncptMtfFTrUlPvJzczhmp7N2Dw7TMRBOOV4y8ZNjIoE8+0KfZ8vh8tXFY9bqbLE43zWUslXD6fYBHtvfjMhoQDvb+cB/7uPyVSW85/o1aZ9z0S6KnMu+Sg5FY8Rh7P//w3dsVvfRDIlbDioOoxhj3jnBTbdOcPyDwIMp1vcA21Osh7DFJdtos8Uh3cBhXak/qYWGUx09V5aDyyVsXmEFpYPDUT703dcA2LmqZIozR8nPs7KLB+dJHAbCVlfQmuKxrRZWlVm/n+scZEddcdJ5n3/mJLluF2/cvoLHD7VgjMn68ZPPnmjnRGv/tMTB+cAwHwFpRxBcAgXjhvK8defUA6OU1DjPqwakFWC0OroyjWwlsD7Vt/QGGYmODtVpmQf/8ubqAEdb+rjvq7v5dUM7n/idS7hidfri4M5x4fPkzFvMYbTGYexjri/LxyVwqi159OnZjkEefa2Z3796NZfWFhEaiU06fyAbiMYM/aEIJ1oHaO1LTmGeiIu9IcoL8sh1z/3Lz7EcAl6PZh/NIaMxh+VjOag4TEK61dEOdSV+Yma0IhqsCXABr3tO2w5sWVFIfzjCvvPd/Ms7d/KOq5LjClNRMI8tiEdrHMY+b15PDvVl+RxvTe4s+6/PnMTtEu6/aW08uN+c5a6lxJjN8w0daZ93sW9u5zgk4ojD+HiDMjvy3Dnkul1qOSgW6VZHO9SW2rUOCUHp5jlMY3W4cUMFW1YU8u/3XslbLl05o/uYz7bdHbY7rqIg+Q1wY1Ug3kHWYWg4wg9fbeIdV9VRGfDG+0A1ZXlQujfhU+TzJ1OLQ2gkymefbODzTzfE1+ajOtrBEYeJ4k3KzCn159I+EM70NhYM/XgxCelWRzukahFxqm2ANeX5c7qvVWV+Hv/gDbO6j/w8NwPzFFxzWkOXpujVs7GqgF8euUhoJIrXY8U+jjT3EYkZbthg1a44BYXZHpR2gpMBr5vnT3YkxUj2nuvmw9/fzym7Uv2O7dWsrwzQ0huatz5FcctBq53nnHWV+fH/5XJALYdJSLc62mFFkZccl8Qth5NtA5zuGOTGjQtTsDcdCubRcugaHCY3x0V+bk7SbRurA8QMnGoftR4O2oOJnJkBRT4P/tycrBcHx3K4fWs17f3hMe6yLz17iru+9AKhkRifvWcHXo+Lf3v2NEPDVrBeLYfFx/qKAk62pm6ZvxRRcZiEtr4QFWnGG8AK9K4s9sbbF/zyyEUAbttaNS/7mw3zGXPoGhymND83ZaaR0+Ij0bV0sLGXikBePHtHRKgp9mV9zMEJTr750moAnjthuZaOX+znn39xnNu3VvGLP7uRO3fU8I4r6/jRa028dt6aAT7vMQe1HOac9VUBBoej8SSTpY6KwyS09oWmZTmA07rbshx+ebiVS2uLxsxSyBbmM+bgiEMq6svycbuEEwmfsg829XJpzdgirJoS36KxHDZVF7KuIp/nbNfSxx47RMDr5uNvvzSeiPBHN6wlZuDBnx0FoLpwfq4JDUjPH07X44YU2XZLERWHCZhOdXQitSU+LnQHae0L8dqFHm7PQqsB5ncaXOfg8ISzAXLdLtZW5MfFYTAc4WT7QLwXlMPKYh/NPdn9Cc2JORR63dywoYLdZzr5r31NvHS6i7+8fVO8TTZYNTC/femKeHvs+bIcvB4Xb750BddvyD5X5mInLg4psu2WIioOEzDd6miHuhI/7f1hfmz3zb99W/Wc720ucOZIz4f/dDLLAWBDVYATtlvpSEsfxsAl4y2HYh9dg8NjGgxmG73BEXJcQkGem+vXlxMaifHXPzzItpWFvDNF25I/uXld/Of5ijmICP/6e5dzUxbGuRY7ZQV5lObnjomXLWVUHCZgutXRDk531odfPEt9mT/+aSPbKPC6icQM4Uhs6oOnyVTisKkqwIXuIYaGI/ERlZfUJosDZHetQ18wQqHXjYhwzboy3C5hOBLj7+7clnLC2+bqQm7dXElVYV48U0tZXKyvLEhKxV6qqGNyApzq6OnO+K0rHZ3r8L4b12Zt+wenbXd/KDKnb1ThSJSBcGRMi+jxbKwqwBgrm+tQUy+VCcFoh5p4OmsoPv4020ic01yQ5+ZtO2sIeD1csXriNNVP/e4OOgaXT678UmN9ZQE/PbA4WrvMFhWHCXCqo6dtOZSM9hO6fVt2xhtgbNvuuRxyP1mNg8MGO2PpROsABxp74imsiSyGQrje4MiYlNF/vvuyKc8p8nuSuqIqi4cNlQX0BkdoHwin3TlhsaJupQmYbnW0Q0Ugjzy3i/KCPHbUpd/vaKEpsDuzznXzPUccJnveVpf6yXW72He+m9Mdg0nBaICqQB45Lslut1JoRFNGlxlOa/yTCa6lV8528crZrBlBM2eoOEzAdKujHUSE69aX846ralP6nbOFgrz5GXsYtxzyJ7ZG3Dku1lUU8LODLRhDSsvBneOiutCb1ems4y0HZenjtMY/aQelR6Ix3v/Nvfz+Qy9zpLlvslMXHSoOEzDd6uhEvvoHV/FXb9g8xzuaWwLzNA1uVBwmt7g2VRXQYw/9SWU5gBWUzmZx6AtGtJ5gmVEZyCPgdceD0k8dbaNjwLrmH/jPfUtqGJCKwwRMtzp6sRGfBhee3sX8m5Md/O1jhye8vXNgarcSjMYdqgu9E/pua0p8WRtzMMbQlxCQVpYHIsKGygIa2qxah0f2XKCqMI//+MOrON81xEf+6+CSaa+h4jABM6mOXkzkz2BUqDGGB396lK+9cDZp4p1D1+AwLpm6t4/TRmMiqwGsAUkX+0JEonOfbjtbwpEYw9GYxhyWIesrCzjZNsDF3hC/Ot7GXVfU8rp15fzVGzbx04MtfOOlc5ne4pyg4pCCmVZHLyYct9J0RoXuO9/NEXs86YunO1Me0zk4TIk/d8pYzeZqSxxSxRscaor9RGMmXnMyNBwhNBKd8PiFxGmdoTGH5ceGygAdA8M89NxpYgZ+98o6AO6/YS2XryrmWy+dz/AO5wYVhxTMtDp6MZHnduF2ybQsh4dfOEfA66bE7+GlCcShe4oCOIe6Uj+fvWcH9167esJjnNGqTT1B2vpCvOEzv+bP7LGomcZpuqdupeXHejso/fUXz3HN2lJWl1kt+V0uYUNlgJ5gdk8wTBeNpqXAGfm4lC0HEZlWf6W2vhA/O9jCvdfWc7EvyEunOlMWAk1VHZ3InTsmn2nszHU4drGf//PoYS50BRGyIwNMLYfli9P1YDga4x1X1Y25rdjviSdaLHbUckjBqTZroMfairkd0pNtOP2V0uHbuy8QiRnefe1qrl1bRnNvKN6aPJHOwfCETfemi1MI9/c/OUJDaz/Xri2jsXuI4Xlo+TFdEpvuKcuLlUU+/Lk5BLxu3rh9xZjbivwewpFY1rg/Z4Ne2Sk43tqP1+MaU+28FCnIc6cVcxiJxvjWy+e4aWMFa8rz4wHil053sqps7HM0HcthKvy5lgure2iET7/jMoyxYh3nu4ZYn+GeVWo5LF9cLuGtO2uoLfEltZ5xroeeoRGqixZ3/6xlbTmc6xzkb350MOmT6InWfjZWBaZdALfYCHjTsxx+ebiVtv4w973Oig+sryygvCA3KSgdjRl6giOT9lWaLu+9fg3/+PZLeNvO2vi41bMdmR/V2Be0njeNOSxP/uFtl/Dfb16ftF7ss679xPnii5VlLQ4/2NfEN186z4HGnjHrxy/2x1MtlzLpjgp96lgr5QV53LSxErDiFVevLeOl051jcrq7h4YxZuoCuOnwgddviLe/dsThTBaIg/Pi11RWJZFiv2M5LP6g9LIWB0cUXrswKg7dg8O09YfZtBzEwetJSxwudA2xtiJ/TDuQa9aW0dIb4lznaL3DaNO9+cnyKvbnUuz3cKYz8+LQFxzB58kh172sX0LKOOJuJbUcFi/GmPgsgURxcCaUbaxeBuKQpuXQ2B1Mir9cu9ZqS52Y0ppO073ZsqY8nzPtmRcH7aukpMK5JtSttIhp7A7SOTiM2yXsb0wWh+VgOaQTcwhHolzsC8XnVDisqyigvCAvpTjMpVtpPGvK8jmbBZaDioOSCset1LsE0lmXrTg4VsMd26u50BWkc8AqfDve2k+h172kW2c4FOS5CY5EJ21P0dwTwhiSLAcR4Zq1pbyYEHfoXCDLoaU3RHA4s6mCfaERbbqnJFGQ5ybHJUuiEG4Zi0MPuTku7rlqlf27JRYnLg6wqTqw5Kc8wWh/pcHwxG+0Tg8lpyAtkWvXldHaF47P1O2ym+4Vz2G20njqnYylDFsPvcGIWg5KEiJCkc+jbqXFzP7GHrasCLBzVTEuseIOxhiOXexbFplKkDAqdJLOrI12V1RnNnYiN26whtg/19ABQNdgmIDXPa9B2mxJZ+0L6qAfJTXFvqVRJb0sxSEaMxxs7OXS2mLy89xsrAqwv7GH1r4wfaEIm5ZBMBrGjgqdiAvdQ3hyJGUrkbpSP/Vl/rg4dA4Oz6tLCUYth9PZIA5qOSgpKFTLYfFyun2AweEol9UVA3BZbTH7L/Rw7KLVcXS5WA4FabTtvtA1xMpi34RT7W7cWMGLpzoJR6JzWh09EQV5bioCeRm1HKIxQ384ouKgpKTYr+KwaNlvxxcus9tFX1ZXTPfQCE8ebQWWkTik0bb7Qoo01kRu2FBBcCTK3nPdtjjMfyB/TXlmM5acaV8ac1BSoW6lRcyBxh7yc3NYW2H157mszhKJR19rpiKQN++ffrOFQBqWQ1P3UFIaayLXrC3F7RKea+igawHcSmCls2aySjreOkOb7ikpKPJ5tEJ6sbL/Qg/ba4rirpKNVQG8Hhf9ociyqG9wmCrmMDQcoWNgmNpJLIeA18Plq0t49ng73UPDlCyEOFTk0zEwnLF5vdp0T5mMIn8u/eEI0djiHhc6K3EQkbMiclBEXhORPfZaqYg8ISIN9veShOM/KiInReS4iLwhYf0K+35OisjnZB7zSIcjMY629LPDjjcAeHJcbF9pWQ/LxaUEU8ccnEylVGmsidy4oZwjLX2MRM2CWA71ZU7GUupRpfNNvF23ioOSgmKfB2PI2IeXuWIuLIdbjDE7jDFX2r9/BHjKGLMBeMr+HRHZCtwDbAPuAL4gIk5P2y8C9wMb7K875mBfKTl2sY/haIxLa4vHrDvB6U3VmW0FvZDk504ec3BqHFKlsSZy48aK+M8L4ZJbE89YGpj3v5UKtRyUyUhs272YmQ+30p3Aw/bPDwNvTVj/jjEmbIw5A5wEdonICqDQGPOisUptv55wzpzjBKPHzy6+crVl4GxbOfFM46WGyyWTDvyJ1zhMMddi28oiSuy2AaVzNOhnMlaX+RHJoOWgI0KVSYi30FjkGUuzFQcD/FJE9orI/fZalTGmBcD+Xmmv1wAXEs5ttNdq7J/HrychIveLyB4R2dPe3j6jDa8rz+fd16xOcpW8YVs1P3rgOrbXLB9xAMu1NDiJ5eD1uCif4g0/xyVct74cmN/WGQ5eTw4ri3ycUctByULibbvnSBx6hoZ58+eeY9/57jm5v3SZrThcZ4y5HHgj8ICI3DjJsaniCGaS9eRFY75sjLnSGHNlRUVFqkOm5HXry/m/b92e1B7D5ZIxcYjlQqHPzc8PX+Qvv7efH73aNMZPeqF7iNoSf1qtRN64fQW5bhc1xZPHJ+aKtRX5HGjsJZaBoF9faIQcl5Cfu7gnfSnzw6hbaW4ylo4093G4uY9PPH5sTu4vXWYlDsaYZvt7G/BDYBfQaruKsL+32Yc3AonTuGuBZnu9NsW6sgD8zZu3ct36Mp440sqHvvsa9351d7yRntWqO703+zdfuoJX/tdvUTZPsxzGc9cVtZzuGORnh1oW5O8l0hscodDrXhb9t5TpU2RPg+ubI8uhscdy7758pmtMF+T5ZsbiICL5IhJwfgZuBw4BjwH32YfdBzxq//wYcI+I5InIGqzA827b9dQvItfYWUr3JpyjzDM3bqzgC++6gn3/+zb+15u28Or5Hl463QVYbqXJ0ljHs5BulrdcupINlQV85smGBUkZTJx41xvU6mhlYuY6IN3YHcQlUF6Qx2efbJiT+0yH2VgOVcDzIrIf2A381Bjzc+DjwG0i0gDcZv+OMeYw8AhwBPg58IAxxmkH+n7gIawg9Sng8VnsS5kBOS7h3deupiw/l4eeO01vcIS+UGTSArhMkuMS/uy2jZxsG+Cx/U3z+rfCkSiv+/jTfO4p64XZp7MclEnIdbvw5+bMWcyhqTtIdaGXP7lpLS+e7mT3ma45ud+pmLE4GGNOG2Mus7+2GWMetNc7jTG3GmM22N+7Es550BizzhizyRjzeML6HmPMdvu2D5jEj2nKguH15HDvtfU8dayNXx23vIFTZSplkju2VbNlRSGffbJh0pkU6dLaF2LXg09y0M5oczjTMUhLb4hPPXGCR19rst1KKg7KxMxlC43G7iFqSny86+rVlBfkxT+kzDfLskJamZh3X7uaPLeLj9vBr6lqHDKJyyX8+W0bOds5xA/2zd562H+hh7b+MC+c6hiz3tBqZUWtKc/nr75/gNPtA2o5KJNS5M+ds1TWxu4gtSV+fLk5vO/GtTx/soO95+bfelBxUMZQmp/LXVfU0tIbAqaujs40v7Wlkstqi/jHx4/y8iyDdU6/puP2qFiHhrYBXAL/+cdXU13opS+kMQdlcop8bnrnYBpcJBrjYl8ongX4rmtWsbk6QHt/eNb3PRUqDkoS771+DSJWY75s/4QsInz6HTsoyc/lXQ+9zNd+c4aZeiUdcTgxThxOtQ2wqtTPiiIfX7nvSgq97qyNxSjZQbEvd07cShf7QkRjJv4hzZ/r5vEP3sAd21fM+r6nQttKKkmsrSjgv122kra+8KJI11xbUcCPHriOP//ufv72x0c43THI3925fdr34wwQamgdIBoz8caMDW39rK+0em5tqArwwkdvxe/RGgdlYuZqpkOT3aWgJsGCX6jXpFoOSko+efdlfPOPrs70NtKm0Ovhy+++grdfXsM3XzpHODLxXOyJONMxiM+TQzgS47zdVyoSjXGmY5D1laM9twry3LgmGH6kKGC37Q6OzNiKdRhtfrnwsT8VByUl7hzXhNPfshWXS7hhQzkxM9o0MF36QyO094e5eZNVeX/cngp4rmuIkahhQ+XyaciozJ4iv4fhSIzQyOyy6JrsArgVRcljeucbFQdlSeG08z4zSVM+Ywyn2sf2ZXKa+N22tQoROH7Rut3JVNpQpeKgpE+xXSU9W9dSY/cQlYE8vBlwY6o4KEsKp533ZDOmv7enkVs/+SzHL44Gnp3239tWFrGq1B8PSp9ss76vq1BxUNInXiU9y4ylxu7gmHjDQqLioCwpiv25lPg98eByKr758jkAXkyoZzjTMYiI1Q58Y1Ugns56sm2AmmIf+Xmau6GkT7wz6ywzlpp6ghmJN4CKg7IEqS/Pn9ByONTUywG7AvqVs6MtkM90DLKyyIfXk8OmqgBnOgYJR6I0tA2MCUYrSjo4lsNs3EqxmKG5J7hgnY7Ho+KgLDnWlOdztjO1OHx793ny3C5u2VTB7rNd8WySMx2DrK2wXFIbqwNEY4aTbQOcah/QYLQybeLiMAvLoa0/zEjUZKwQVcVBWXKsKcunpTdEcHhsOutgOMKjrzXzlktXcuuWKtr7w5zvGsIYw5n2wXi8YpM9R/yZY22ERmJqOSjTZnTgz8xjDo3dVpJEpmIO6khVlhz1TlC6c5AtKwrj6z850MxAOMLvXV1HQZ714t19pgt/rpv+cCQuDmvK83G7hJ8csGZFaKaSMl0K8tzkuGRWbiUnjTXdmSpzjVoOypJjooyl/9x9gY1VBVy+qoQNlQUU+TzsOdsdb5vhnJfrdrGuooBjdjbT+orAAu5eWQqIiFUINwu3klMAt1JjDooyNziWQ2LG0pHmPvZf6OGdu1YhIrhcwlX1Jbxytis+i3pt+aiFsLHaEoTKQB5F/uzuL6VkJ8V2lfRMaeweoiw/F39uZhw8Kg7KkqMgz01FIG+M5fDo/ibcLuFtO2via1fVl3K6Y5DdZ7rx5MgY3+4m25Wk8QZlphT5PbMaFZrJGgdQcVCWKOMzlp440sq168oo9ufG166sLwXgZwdbWF2WP6ZdyEY7KK2ZSspMma1bqak7mNGW+SoOypJkTVl+PJZwqn2A0+2D3La1aswxl9QU4fW4CI5E4/EGh60rCxFhTEBbUaZDsc9Da1+I2AxmnBtjaMpgjQOoOChLlPryfDoGhukPjfDEkVYAfmvLWHHIdbvYUVcMwNpx4lBb4udH//06fueK2oXZsLLkuGVzJW39YR4/dHHa57YPhAlHYhmrjgYVB2WJMpqxNMQTR1rZXlOYMuvjKtu1NN5yALisrhhPjr5ElJnxlktXsqGygE8/eYLoNKwHYwyPvdYMZHYSo175ypLEebPffbaLfee7uW1LdcrjbtxotejetrJowfamLA9yXMKHfmsjJ9sG+PH+5rTOCQ5H+avvH+Dvf3qUGzaUc9368nne5cRoEZyyJFld5kcEvvbCGYwhKd7gcFV9KS//9a1UFS58v3xl6fPG7dVsrg7w2acaeMulK3CPs0SNMRxs6uVMxyDnO4f46cEWjrf286e3buCDt27I6EwVFQdlSeL15LCyyMeFLiuot2XFxIVsKgzKfOFyCX9220be9429/PDVJu6+sm7M7V95/gx//9Oj8d9rS3x89Q+u4pZNlQu91SRUHJQlS325n6aeoD3AZ3FNtVOWDrdvreKSmiI+82QDb750RbyorXdohM891cD168v52G9vpbbEjy83e2aTa8xBWbI4cYfbt6V2KSnKQiAi/M2bt9DcG+Qff3Ysvv7FZ0/RH47wv968hQ1VgawSBlBxUJYwt26u4rr1ZfGMJEXJFFevLeM9163hGy+d49cn2rnYG+I/fnOGt+6oydpaGnUrKUuWWzZXcsvmzPtuFQXgr96wiWdPtPPh7x/gqjWlxIzhz2/bmOltTYhaDoqiKAuA15PDp373MtoHwvx4fzPvuno1daWZK3KbChUHRVGUBeLS2mL+8vZNrCjy8oHXr8/0diZF3UqKoigLyPtvXsf9N67NaA1DOqjloCiKssBkuzCAioOiKIqSAhUHRVEUJQkVB0VRFCUJFQdFURQliawRBxG5Q0SOi8hJEflIpvejKIqynMkKcRCRHOBfgQHHpyUAAAhvSURBVDcCW4F3isjWzO5KURRl+ZIV4gDsAk4aY04bY4aB7wB3ZnhPiqIoy5ZsKYKrAS4k/N4IXD3+IBG5H7jf/jUsIodS3FcR0DvDfczk3FXA+QX6ewuxv2x//rJ9f7P5e7o//f+OZ672Vw502D+vTutsY0zGv4C7gYcSfn838C9TnLNngvUvz2If0z4XaF+ov7cQ+8v25y/b95ft/99s35/+f+dnfxO9X072lS1upUYgcURSLZDe0NVkfjyLfczk3J4F/HsLsb9sf/6yfX+z+Xu6P/3/jmch9zcGsVUlo4iIGzgB3Ao0Aa8Av2eMOTzJOXuMMVcu0BYnJFv2MRG6v9mh+5sdur/ZMVf7m8n9ZEXMwRgTEZEPAL8AcoCvTiYMNl+e/52lRbbsYyJ0f7ND9zc7dH+zY672N+37yQrLQVEURckusiXmoCiKomQRKg6KoihKEioOaSIiA5new0SIyNtExIjI5kzvZTKmeg5F5FcisuDBQRGpFZFHRaRBRE6JyGdFJHeS4z8kIgs23zGbrz3Q6282ZPO1p+KwNHgn8Dxwz3ROstuWLGtERIAfAD8yxmwANgIFwIOTnPYhIHuH/y48ev3NgGy/9lQcpoGIFIjIUyKyT0QOisid9nq9iBwVkX8XkcMi8ksR8S3UnoDrgPdivzhF5GYR+bWI/FBEjojIl0TEZd82ICJ/JyIvA9cuxB7H7fdmEflJwu+fF5E/WOh9JPB6IGSM+Q8AY0wU+DPgPSKSLyL/z/5fHxCR/yEifwqsBJ4RkWcWapPZeO05+0Kvv5mS1deeisP0CAFvM8ZcDtwCfNJWf4ANwL8aY7ZhFa78zgLt6a3Az40xJ4AuEbncXt8F/AVwCbAOeLu9ng8cMsZcbYx5foH2mM1sA/YmLhhj+rBaFvwRsAbYaYy5FPiWMeZzWAWatxhjblnAfWbjtQd6/c2GrL72VBymhwD/ICIHgCexekJV2bedMca8Zv+8F6hfoD29E6tRIfb3d9o/7zZWI8Mo8G3gens9CvzXAu1tMSBAqnxuAW4EvmSMiQAYY7oWcmMp9pNt1x7o9Tcbsvray4oiuEXEu4AK4ApjzIiInAW89m3hhOOiwLyb9iJShmWabhcRg1VAaICfkXzROb+H7Bdspogw9kOJd6IDF4jDjPukLSKFWO1cTpP6xZsJsuraA73+5oCsvvbUcpgeRUCb/eK8hXS7G84fdwFfN8asNsbUG2PqgDNYn9J2icga29f7DqyAYTZwDtgqInkiUoTVMiWTPAX4ReReiAdJPwl8Dfgl8CditXdBRErtc/qBwALvM9uuPdDrb7Zk9bWn4pAG9j8oDHwLuFJE9mB9kjuW0Y1ZJvwPx639F/B7wIvAx4FDWC/Y8cctKM5zaIy5ADwCHMB6Pl/N5L6M1SLgbcDdItKA1eMrBPw18BCW//eAiOzHel7BakXw+EIEBbP42gO9/mZF1l972j5jakTkMuDfjTG7Mr2XdBCRm4G/NMa8JdN7cVhsz2G2sBifN73+lgZqOUyBiPwJVkDtbzK9l8WKPoczQ5+3uUGfx5mhloOiKIqShFoOiqIoShIqDuMQkToRecauOj0sIh+010tF5AmxeqA8ISIl9vptIrLXrmTcKyKvT7ivB0XkgmR5bxwle5ir609E/CLyUxE5Zt/PxzP5uJTFh7qVxiEiK4AVxph9IhLAKip6K/AHQJcx5uMi8hGgxBjzP0VkJ9BqjGkWke3AL4wxNfZ9XYOVOtdgjCnIyANSFhVzdf2J1ZztamPMM2I1cnsK+AdjzOOZeWTKYkPFYQpE5FHg8/bXzcaYFvsF/CtjzKZxxwrQAaw0xoQT1gdUHJSZMBfXn33bZ7HaVvz7Am1dWeSoW2kSRKQe2Am8DFQZY1oA7O+VKU75HeDV8S9MRZkJc3X9iUgx8NtY1oOipIW2z5gAsbpN/hfwIWNM32iPswmP3wZ8Arh9AbanLHHm6vqzi7++DXzOGHN6nrarLEHUckiBiHiwXpjfMsb8wF5utc15xy/clnB8LVYF6L3GmFMLvV9laTHH19+XsWJen5n/nStLCRWHcdh+268AR40xn0q46THgPvvn+4BH7eOLgZ8CHzXG/GYh96osPeby+hORv8fqyfSh+d63svTQgPQ4ROR64DngIBCzl/8ay+/7CLAKq+fJ3caYLhH5G+CjQEPC3dxujGkTkX/C6omyEqsP+0PGmL9dkAeiLErm6voDcoELWD2YnBjE540xD837g1CWBCoOiqIoShLqVlIURVGSUHFQFEVRklBxUBRFUZJQcVAURVGSUHFQFEVRklBxUJR5QET+xJkNnObx9SJyaD73pCjTQdtnKMocIyJuY8yXMr0PRZkNKg6KkgK76d3PsYrPdmINf78X2AJ8CijA6oD6B3an1F8BLwDXAY/Z7bYHjDH/T0R2AF8C/MAp4D3GmG4RuQL4KjAEPL9wj05RpkbdSooyMZuALxtjLgX6gAeAfwHuMsY4b+wPJhxfbIy5yRjzyXH383Xgf9r3cxD4mL3+H8CfGmOunc8HoSgzQS0HRZmYCwn9ir6J1cZiO/CE3SU1B2hJOP674+9ARIqwRONZe+lh4Hsp1r8BvHHuH4KizAwVB0WZmPG9ZfqBw5N80h+cxn1LivtXlKxB3UqKMjGrRMQRgncCLwEVzpqIeOw5ChNijOkFukXkBnvp3cCzxpgeoNdutAfwrrnfvqLMHLUcFGVijgL3ici/YXU9/RfgF8DnbLeQG/gMcHiK+7kP+JI91/k08If2+h8CXxWRIft+FSVr0K6sipICO1vpJ8aY7RneiqJkBHUrKYqiKEmo5aAoiqIkoZaDoiiKkoSKg6IoipKEioOiKIqShIqDoiiKkoSKg6IoipLE/wfPHJNaORWA1gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:-100].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La période creuse pour la varicelle semble plus être située sur le mois de septembre (contrairement à l'incidence de la varicelle qui semblait avoir une période creuse au mois d'août).\n", "\n", "Pour la varicelle, le pic de l'épidémie se situe au printemps.\n", "Cependant, son pic est bien moins marqué que celui de la grippe,\n", "et son incidence s'étale largement entre deux années civiles.\n", "En effet, la période creuse semble se trouver au mois de septembre.\n", "Nous définissons donc la période de référence entre deux minima de l'incidence,\n", "du 1er septembre de l'année $N$ au 1er septembre de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er septembre de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er septembre.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Period('1990-12-03/1990-12-09', 'W-SUN')" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data.index[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Encore un petit détail, comme on peut le voir ci-dessus via la première valeur de l'index du dataframe pandas qui est composé des semaines des données acquises (i.e. la semaine la plus ancienne pour laquelle les valeurs d'incidence de la varicelle ont été enregistrées), les données commencent en décembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en septembre 1991." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHARJREFUeJzt3X9wndV95/H3x8iRDLWJDDLxD8DuxGFiSGriO7a7yXZL3Npm08FmCok2NGgWz7gBNiWdnQE7sMMsuDPQ2dm0nkxYPKFgIPxw3TJ4u3hBmM3U2zq25UAKhrhSAjEODhIrB5vMWEX2d/+4R/WVkKXnSlf3lz6vmTv3uV895+g8fnT9vc855zlXEYGZmVkWUyrdADMzqx1OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmDZVuQKldeOGFMX/+/Eo3w8ysphw4cOC9iGgZbb+6Sxrz58+no6Oj0s0wM6spkn6eZT93T5mZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZjWg+/hJvvzgHrpPnKx0U2ySc9IwqwGbd3Wy/61eNr/YWemm2CRXd/dpmNWTy+7aSV//6X99/fjewzy+9zCNDVM4tOnqCrbMJitfaRRwF4BVm923X8U1i+fQNDX/Vm2aOoU1i+ew+46rKtwym6ycNAq4C8CqzawZTUxvbKCv/zSNDVPo6z/N9MYGZk1v+si+/tBj5eDuKdwFYNXtvQ/6uGHZpXx16SU8se8wPWdJCoUfejZd+5kyt9ImC0VEpdtQUrlcLopde6r7+Ek2PfcGLxz8JSc/PE3T1CmsuvwT3PmlTw/7ic6smgz90DPAH3qsGJIORERutP3cPUVxXQBm1cbjHlZO7p5KsnYBmFUbf+ixcnLSSB782pmrsk1rr6hgS8yK5w89Vi4e0zAzM49pmJlZ6TlpmJlZZpmShqQ/lXRQ0muSnpTUJGmmpHZJnem5uWD/jZK6JB2StKogvkTSq+lnmyUpxRslPZ3ieyXNLyjTln5Hp6S20h26mZkVa9SkIWku8CdALiKuAM4BWoENwK6IWAjsSq+RtCj9/HJgNfBdSeek6h4A1gML02N1iq8DjkXEJ4FvA/enumYCdwPLgKXA3YXJyczMyitr91QDME1SA3Au8A6wBtiafr4VWJu21wBPRURfRLwJdAFLJc0GZkTEnsiPvj86pMxAXduBFekqZBXQHhG9EXEMaOdMojEzszIbNWlExC+A/wYcBo4C70fEC8BFEXE07XMUmJWKzAXeLqjiSIrNTdtD44PKREQ/8D5wwQh1mZlZBWTpnmomfyWwAJgDnCfpj0YqMkwsRoiPtUxhG9dL6pDU0dPTM0LTzMxsPLJ0T/0e8GZE9ETEh8DfAv8GeDd1OZGeu9P+R4CLC8rPI9+ddSRtD40PKpO6wM4Hekeoa5CI2BIRuYjItbS0ZDgkMzMbiyxJ4zCwXNK5aZxhBfAGsAMYmM3UBjybtncArWlG1ALyA977UhfWCUnLUz03DikzUNd1wEtp3ON5YKWk5nTFszLFzGwS8zLwlTPqMiIRsVfSduBHQD/wMrAF+A1gm6R15BPL9Wn/g5K2Aa+n/W+NiFOpupuBR4BpwM70AHgIeExSF/krjNZUV6+ke4H9ab97IqJ3XEdsZjXPy8BXjpcRsbrWffwk/+nJl/nOV6/0An51wMvATxwvI2KGv42x3ngZ+MrzKrdWl/xtjPXJy8BXnq80rC75E2n9GlgG/plbPs8Nyy6l54O+SjdpUvGVhtUlfyKtX/7um8py0rC65S8mMis9z56ymuWZUWal49lTNm7VfgOVZ0aZlZ+7p+ysqvUGKs+MMqscd0/ZR1T7DVTdx0+y6bk3eOHgLzn54Wmapk5h1eWf4M4vfbrmuqncxWbVwt1TNmbVPl21nmZGuYvNao27p+wjauE/5VqfGeUuNqtVTho2rGr/T7nW5+rvvv2qs3axmVUzJw0bVq3/p1ztauFqzmw4ThpmFVLtV3Nmw/HsKTMz8+wpMzMrPScNMzPLzEnDzMwyc9IwmwDVvm6X2Vg5aZhNAN/pbfXKU27NSsh3elu985WGWQlV+7pdZuPlpGFWQr7T2+rdqElD0mWSXil4HJf0TUkzJbVL6kzPzQVlNkrqknRI0qqC+BJJr6afbZakFG+U9HSK75U0v6BMW/odnZLaSnv4ZqU3cKf3M7d8nhuWXUrPB32VbpJZyRR1R7ikc4BfAMuAW4HeiLhP0gagOSLukLQIeBJYCswBXgQ+FRGnJO0DbgN+CDwHbI6InZJuAT4bEV+X1ApcGxFfkTQT6AByQAAHgCURcexsbfQd4Wbl5e8EqQ8TdUf4CuCnEfFzYA2wNcW3AmvT9hrgqYjoi4g3gS5gqaTZwIyI2BP5TPXokDIDdW0HVqSrkFVAe0T0pkTRDqwuss1mNoE8U2xyKXb2VCv5qwiAiyLiKEBEHJU0K8Xnkr+SGHAkxT5M20PjA2XeTnX1S3ofuKAwPkwZM6sgzxSbnDJfaUj6GHAN8Nej7TpMLEaIj7VMYdvWS+qQ1NHT0zNK88ysFDxTbHIqpnvqauBHEfFuev1u6nIiPXen+BHg4oJy84B3UnzeMPFBZSQ1AOcDvSPUNUhEbImIXETkWlpaijgkMxurYmeK+S75+lBM0vgPnOmaAtgBDMxmagOeLYi3phlRC4CFwL7UlXVC0vI0XnHjkDIDdV0HvJTGPZ4HVkpqTrOzVqaYnYXfmFZOxcwU89hHfcg0e0rSueTHFn4zIt5PsQuAbcAlwGHg+ojoTT+7E7gJ6Ae+GRE7UzwHPAJMA3YC34iIkNQEPAZcSf4KozUifpbK3AR8KzXlzyLi4ZHaOtlnT931zKt8f99hblh6CZuu/Uylm2P2kbGPAR77qC5ZZ0/5S5jqRLFvTE+TtHLpPn7yrN+H7r+96uEvYZpkih2UdFeBlYvvkq8vXrCwTmR9Y3qapFWCvw+9fjhp1JEsb8zdt1911q4Cs4ny4NfO9HpsWntFBVti4+WkUUeyvDHdVWBm4+ExjQlSzVNfvaCemY2VZ09NEE99NbNaknX2lLunSswDzWZWz9w9VWLFTn2t5m4sM7OhnDRKrNiBZt8vYWa1xN1TEyDL1Fd3Y5lZLfKVRpGydCc9+LUcm9ZewaI5M9i09opBU2EHeFlpqxR3idaWajtfThpFKlV3ku+XsEpxl2htqbbz5Sm3GU3ESp1//FgHLdObBnVjDXdVYlYKXm22tpT7fHmV2xLzSp0Gtb06sP+Ga0u5z5dXuS0xdyfVt6z9xtXWVVAM/w3Xlmo9X549VQSv1Fm/CpPBcHfw18tsN/8N15ZqPF/unrJJLWu/8WTs2qnlrjgrnrunrOpU29RByD71uVq7CiZSLXfF2cRx95SNW9ZPpKN1AVVCMcmgGrsKJkK9dMXZxHD3lI3baCv6VvtUT099HmwydsWZV7m1Msj6ibTavy3Q3yo32GTsirPsPKZhY+bxgPrlL+qys/GVho2ZxwPqV6Wuvjxjq/plutKQ9HFJ2yX9RNIbkn5b0kxJ7ZI603Nzwf4bJXVJOiRpVUF8iaRX0882S1KKN0p6OsX3SppfUKYt/Y5OSW2lO3QrhayfSLMs4mjmGVvVL9NAuKStwO6I+J6kjwHnAt8CeiPiPkkbgOaIuEPSIuBJYCkwB3gR+FREnJK0D7gN+CHwHLA5InZKugX4bER8XVIrcG1EfEXSTKADyAEBHACWRMSxs7XVA+FmtafaJ0tMBiW7T0PSDOB3gIcAIuJfIuJXwBpga9ptK7A2ba8BnoqIvoh4E+gClkqaDcyIiD2Rz1SPDikzUNd2YEW6ClkFtEdEb0oU7cDq0dpsZrXFXxVQO7J0T/0m0AM8LOllSd+TdB5wUUQcBUjPs9L+c4G3C8ofSbG5aXtofFCZiOgH3gcuGKGuQSStl9QhqaOnpyfDIZlZNfFkidqRJWk0AJ8DHoiIK4FfAxtG2F/DxGKE+FjLnAlEbImIXETkWlpaRmiamVUrz9iqDVlmTx0BjkTE3vR6O/mk8a6k2RFxNHU9dRfsf3FB+XnAOyk+b5h4YZkjkhqA84HeFP/dIWV+kOnIzKym1ML9Mp7dleFKIyJ+Cbwt6bIUWgG8DuwABmYztQHPpu0dQGuaEbUAWAjsS11YJyQtT+MVNw4pM1DXdcBLadzjeWClpOY0O2tlipmZlZ1nd2W/T+MbwPfTzKmfAf+RfMLZJmkdcBi4HiAiDkraRj6x9AO3RsSpVM/NwCPANGBnekB+kP0xSV3krzBaU129ku4F9qf97omI3jEeq5nZmHg9rjO89pSZ2Sgmw3pcXhrdzKxEPLvrDC8jYmaWgZfCyXP3lJmZuXuq3lTjt96Z2eTjpFEjPNXPzKqBxzSqnKf6mVk18ZVGlfNCbmZWTZw0qpyn+pmNnccCS89JowZ4ITezsfFYYOl5yq2Z1R1/qVPxPOXWzCatYscC3Y2VnZOGmdWdYscC3Y2VnafcmlldyrLsh6e0F89jGmY2aU2G1Wuz8piGmdkoPKW9eO6eMrNJzavXFsfdU2Zm5u4pMzMrPScNqzqeM29WvZw0rOp4zrxZ9fJAuFUNz5k3q36+0rCq4WXgzaqfk4ZVDc+ZN6t+mZKGpLckvSrpFUkdKTZTUrukzvTcXLD/Rkldkg5JWlUQX5Lq6ZK0WZJSvFHS0ym+V9L8gjJt6Xd0Smor1YFbdfIy8GbVLdN9GpLeAnIR8V5B7M+B3oi4T9IGoDki7pC0CHgSWArMAV4EPhURpyTtA24Dfgg8B2yOiJ2SbgE+GxFfl9QKXBsRX5E0E+gAckAAB4AlEXHsbG31fRpmZsUrx30aa4CtaXsrsLYg/lRE9EXEm0AXsFTSbGBGROyJfKZ6dEiZgbq2AyvSVcgqoD0ielOiaAdWj6PNZmY2DlmTRgAvSDogaX2KXRQRRwHS86wUnwu8XVD2SIrNTdtD44PKREQ/8D5wwQh1DSJpvaQOSR09PT0ZD8nMzIqVdcrt5yPiHUmzgHZJPxlhXw0TixHiYy1zJhCxBdgC+e6pEdpmZmbjkOlKIyLeSc/dwDPkxyveTV1OpOfutPsR4OKC4vOAd1J83jDxQWUkNQDnA70j1GVmZhUwatKQdJ6k6QPbwErgNWAHMDCbqQ14Nm3vAFrTjKgFwEJgX+rCOiFpeRqvuHFImYG6rgNeSuMezwMrJTWn2VkrU8zMzCogS/fURcAzaXZsA/BERPxvSfuBbZLWAYeB6wEi4qCkbcDrQD9wa0ScSnXdDDwCTAN2pgfAQ8BjkrrIX2G0prp6Jd0L7E/73RMRveM4XjMzGwcvjW5mZl4a3czMSs9Jw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQknSPpZUl/l17PlNQuqTM9Nxfsu1FSl6RDklYVxJdIejX9bLMkpXijpKdTfK+k+QVl2tLv6JTUVoqDNjOzsSnmSuM24I2C1xuAXRGxENiVXiNpEdAKXA6sBr4r6ZxU5gFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcXZiczMysvDIlDUnzgC8B3ysIrwG2pu2twNqC+FMR0RcRbwJdwFJJs4EZEbEnIgJ4dEiZgbq2AyvSVcgqoD0ieiPiGNDOmURjZmZllvVK4y+A24HTBbGLIuIoQHqeleJzgbcL9juSYnPT9tD4oDIR0Q+8D1wwQl1mZlYBoyYNSX8AdEfEgYx1aphYjBAfa5nCNq6X1CGpo6enJ2MzzcysWFmuND4PXCPpLeAp4IuSHgfeTV1OpOfutP8R4OKC8vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWjIckpmZjcWoSSMiNkbEvIiYT36A+6WI+CNgBzAwm6kNeDZt7wBa04yoBeQHvPelLqwTkpan8Yobh5QZqOu69DsCeB5YKak5DYCvTDEzM6uAhnGUvQ/YJmkdcBi4HiAiDkraBrwO9AO3RsSpVOZm4BFgGrAzPQAeAh6T1EX+CqM11dUr6V5gf9rvnojoHUebzcxsHJT/QF8/crlcdHR0VLoZZmY1RdKBiMiNtp/vCDczq4Du4yf58oN76D5xstJNKYqThplZBWze1cn+t3rZ/GJnpZtSlPGMaZiZWZEuu2snff1nbnl7fO9hHt97mMaGKRzadHUFW5aNrzTMzMpo9+1Xcc3iOTRNzf/32zR1CmsWz2H3HVeNq95ydXc5aZiZldGsGU1Mb2ygr/80jQ1T6Os/zfTGBmZNbxpXveXq7nL3lJlZmb33QR83LLuUry69hCf2HaZnHFcH5e7u8pRbM7Ma1n38JJuee4MXDv6Skx+epmnqFFZd/gnu/NKni7p68ZRbM7NJYKK6u87G3VNmZjWulN1do3H3lJmZuXvKzMxKz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLbNSkIalJ0j5JP5Z0UNJ/TfGZktoldabn5oIyGyV1STokaVVBfImkV9PPNktSijdKejrF90qaX1CmLf2OTkltpTx4MzMrTpYrjT7gixHxW8BiYLWk5cAGYFdELAR2pddIWgS0ApcDq4HvSjon1fUAsB5YmB6rU3wdcCwiPgl8G7g/1TUTuBtYBiwF7i5MTmZmVl6jJo3I+yC9nJoeAawBtqb4VmBt2l4DPBURfRHxJtAFLJU0G5gREXsi/yUejw4pM1DXdmBFugpZBbRHRG9EHAPaOZNozMyszDKNaUg6R9IrQDf5/8T3AhdFxFGA9Dwr7T4XeLug+JEUm5u2h8YHlYmIfuB94IIR6jIzswrIlDQi4lRELAbmkb9quGKE3TVcFSPEx1rmzC+U1kvqkNTR09MzQtPMzGw8ipo9FRG/An5Avovo3dTlRHruTrsdAS4uKDYPeCfF5w0TH1RGUgNwPtA7Ql1D27UlInIRkWtpaSnmkMzMrAhZZk+1SPp42p4G/B7wE2AHMDCbqQ14Nm3vAFrTjKgF5Ae896UurBOSlqfxihuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBDRn2mQ1sTTOgpgDbIuLvJO0BtklaBxwGrgeIiIOStgGvA/3ArRFxKtV1M/AIMA3YmR4ADwGPSeoif4XRmurqlXQvsD/td09E9I7ngM3MbOyU/0BfP3K5XHR0dFS6GWZmNUXSgYjIjbaf7wg3M7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMSqz7+Em+/OAeuk+crHRTSs5Jw8ysxDbv6mT/W71sfrGz0k0puYZKN8DMrF5cdtdO+vpP/+vrx/ce5vG9h2lsmMKhTVdXsGWl4ysNM7MS2X37VVyzeA5NU/P/tTZNncKaxXPYfcdVFW5Z6ThpmJmVyKwZTUxvbKCv/zSNDVPo6z/N9MYGZk1vqnTTSsbdU2ZmJfTeB33csOxSvrr0Ep7Yd5ieOhsMV0SMvIN0MfAo8AngNLAlIv5S0kzgaWA+8Bbw5Yg4lspsBNYBp4A/iYjnU3wJ8AgwDXgOuC0iQlJj+h1LgP8HfCUi3kpl2oC7UnM2RcTWkdqby+Wio6Mj+7+AmZkh6UBE5EbbL0v3VD/wnyPi08By4FZJi4ANwK6IWAjsSq9JP2sFLgdWA9+VdE6q6wFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcLak5Q5vNzGwCjJo0IuJoRPwobZ8A3gDmAmuAgU/9W4G1aXsN8FRE9EXEm0AXsFTSbGBGROyJ/OXNo0PKDNS1HVghScAqoD0ietNVTDtnEo2ZmZVZUQPhkuYDVwJ7gYsi4ijkEwswK+02F3i7oNiRFJubtofGB5WJiH7gfeCCEeoyM7MKyJw0JP0G8DfANyPi+Ei7DhOLEeJjLVPYtvWSOiR19PT0jNA0MzMbj0xJQ9JU8gnj+xHxtyn8bupyIj13p/gR4OKC4vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWrIckpmZjcGoSSONLTwEvBER/73gRzuAtrTdBjxbEG+V1ChpAfkB732pC+uEpOWpzhuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBWabcfgHYDbxKfsotwLfIj2tsAy4BDgPXR0RvKnMncBP5mVffjIidKZ7jzJTbncA30pTbJuAx8uMlvUBrRPwslbkp/T6AP4uIh0dpbw/w84zHXy0uBN6rdCPGycdQHXwM1aPWjuPSiBi1q2bUpGETT1JHlvnR1czHUB18DNWjXo5jKC8jYmZmmTlpmJlZZk4a1WFLpRtQAj6G6uBjqB71chyDeEzDzMwy85WGmZll5qQxAST9laRuSa8VxH5L0h5Jr0r6n5JmpPjHJD2c4j+W9LsFZX4g6ZCkV9Jj1jC/bqKO4WJJ/0fSG5IOSrotxWdKapfUmZ6bC8pslNSV2ryqIL4kHV+XpM3pPp1aO4aKnItij0HSBWn/DyR9Z0hdNXEeRjmGmnlPSPp9SQfSv/kBSV8sqKsi56IkIsKPEj+A3wE+B7xWENsP/Lu0fRNwb9q+FXg4bc8CDgBT0usfALkKHcNs4HNpezrwz8Ai4M+BDSm+Abg/bS8Cfgw0AguAnwLnpJ/tA36b/LIwO4Gra/AYKnIuxnAM5wFfAL4OfGdIXbVyHkY6hlp6T1wJzEnbVwC/qPS5KMXDVxoTICL+nvxNioUuA/4+bbcDf5i2F5FfWp6I6AZ+BVR8bneUZ3XjmjiGcrT1bIo9hoj4dUT8X2DQN//U0nk42zFU2hiO4+WIGFj26CDQpPxKGRU7F6XgpFE+rwHXpO3rObOm1o+BNZIalF92ZQmD19t6OF2G/5dKXcJq4lY3LptxHsOAip6LjMdwNrV0HkZTK++JQn8IvBwRfVTJuRgrJ43yuYn8F1gdIH9p+y8p/lfk/2g6gL8A/pH88isAN0TEZ4B/mx5fK2uLmfDVjcuiBMcAFT4XRRzDWasYJlat52EktfSeGNj/cvJfLPfHA6FhdquZaaxOGmUSET+JiJURsQR4knx/ORHRHxF/GhGLI2IN8HGgM/3sF+n5BPAEZe4q0cSvbjzhSnQMFT0XRR7D2dTSeTirGntPIGke8AxwY0T8NIUrei7Gy0mjTAZmeUiaQv47z/9Hen2upPPS9u8D/RHxeuquujDFpwJ/QL6Lq1ztLcfqxjVxDJU8F2M4hmHV2Hk4Wz019Z6Q9HHgfwEbI+IfBnau5LkoiUqPxNfjg/yVxFHgQ/KfKtYBt5GfbfHPwH2cubFyPnCI/KDai+RXmoT8DJIDwD+RH0T7S9JMnjIdwxfIXzL/E/BKevx78t+ouIv81dAuYGZBmTvJX0EdomA2CPmB/dfSz74zcOy1cgyVPBdjPIa3yE/E+CD9/S2qwfPwkWOotfcE+Q+Hvy7Y9xVgViXPRSkeviPczMwyc/eUmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmltn/B3v28ZbrUIyxAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ " yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2023 366227\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2022 641397\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ " yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une analyse rapide nous montre que l'incidence des cas de varicelles annuel est plutôt stable à travers le temps et que le nombre de cas recensés se trouve globalement entre 600000 et 800000. On peut également s'apercevoir que les plus petites incidences se retrouvent sur les années 2020, 2021 et 2023. Cette constatation nous fait directement penser à la période de COVID et aux confinements associés qui ont dus grandements freiner la propagation du virus. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Traçons l'histogramme de ces données pour confirmer notre analyse sur la distribution de l'incidence annuel de la varicelle." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEuVJREFUeJzt3X2wXHV9x/H3l0Q0cCGigUsbtKFIqZSolGvxYUrvBXVQqFa0VUQLHW3s+ERtOg51QLT1Ia3iaB1oJyqCol4V7MiD9WHUq+IDkoBjwIhQQSQoikr0UgQC3/7xO5feXBOSu2dzd89v3q+ZTM6e3T37/d6z+9mzv3PObmQmkqTu223QBUiS+sNAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFVi8UI+2LJly3LFihVbzbvzzjvZc889F7KMvrOH4WAPw8Ee+m/9+vW3Z+a+O7rdggb6ihUrWLdu3VbzpqamGB8fX8gy+s4ehoM9DAd76L+I+OHO3M4hF0mqhIEuSZUw0CWpEga6JFXCQJekSuww0CPi3Ij4aURcM2veIyLi8xFxffP/Pru2TEnSjuzMFvp5wLFz5p0GfCEzDwa+0FyWJA3QDgM9M78C/GLO7OcA5zfT5wN/0ee6JEnzFDvzm6IRsQK4NDMPay7fkZkPn3X9LzNzm8MuEbEKWAUwOjp6xOTk5FbXT09PMzIy0mv9Q8EehkNXe9iwafMD06NL4La7FuZxVy5fukuW29X1MNuw9TAxMbE+M8d2dLtdfqZoZq4F1gKMjY3l3LOvhu2MrF7Yw3Doag+nnHbZA9OrV27hrA0LcwL3TSeN75LldnU9zNbVHno9yuW2iPgdgOb/n/avJElSL3oN9IuBk5vpk4FP9accSVKvduawxY8C3wAOiYhbIuKlwBrg6RFxPfD05rIkaYB2OFiXmSdu56pj+lyLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEayPi2oi4JiI+GhEP61dhkqT56TnQI2I58BpgLDMPAxYBL+xXYZKk+Wk75LIYWBIRi4E9gFvblyRJ6kXPgZ6Zm4B3ADcDPwY2Z+bn+lWYJGl+IjN7u2PEPsBFwAuAO4BPABdm5gVzbrcKWAUwOjp6xOTk5FbLmZ6eZmRkpKcahoU9DIeu9rBh0+YHpkeXwG13Lczjrly+dJcst6vrYbZh62FiYmJ9Zo7t6HaLWzzG04AbM/NnABHxSeApwFaBnplrgbUAY2NjOT4+vtVCpqammDuva+xhOHS1h1NOu+yB6dUrt3DWhjYvy51300nju2S5XV0Ps3W1hzZj6DcDT4qIPSIigGOAjf0pS5I0X23G0K8ALgSuAjY0y1rbp7okSfPU6rNdZp4JnNmnWiRJLXimqCRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEwyPiwoj4XkRsjIgn96swSdL8LG55/3cDn8nM50fE7sAefahJktSDngM9IvYGjgJOAcjMe4B7+lOWJGm+IjN7u2PEE4C1wHeBxwPrgVMz8845t1sFrAIYHR09YnJycqvlTE9PMzIy0lMNw8IehkNXe9iwafMD06NL4La7BlhMH+xMDyuXL12YYno0bM+liYmJ9Zk5tqPbtQn0MeCbwFMz84qIeDfwq8w8Y3v3GRsby3Xr1m01b2pqivHx8Z5qGBb2MBy62sOK0y57YHr1yi2ctaHtSOhg7UwPN605boGq6c2wPZciYqcCvc1O0VuAWzLziubyhcAft1ieJKmFngM9M38C/CgiDmlmHUMZfpEkDUDbz3avBj7cHOHyA+Bv2pckSepFq0DPzG8DOxzXkSTtep4pKkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SapE60CPiEURcXVEXNqPgiRJvenHFvqpwMY+LEeS1EKrQI+IA4DjgPf1pxxJUq8iM3u/c8SFwNuAvYB/zMzjt3GbVcAqgNHR0SMmJye3un56epqRkZGeaxgG9jAc2vSwYdPmPlfTm9ElcNtdg66iHXvYtpXLl/Z834mJifWZObaj2y3u9QEi4njgp5m5PiLGt3e7zFwLrAUYGxvL8fGtbzo1NcXceV1jD8OhTQ+nnHZZf4vp0eqVWzhrQ88vy6FgD9t200njfV3etrQZcnkq8OyIuAmYBI6OiAv6UpUkad56DvTM/KfMPCAzVwAvBL6YmS/uW2WSpHnxOHRJqkRfBokycwqY6seyJEm9cQtdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0XOgR8SjIuJLEbExIq6NiFP7WZgkaX4Wt7jvFmB1Zl4VEXsB6yPi85n53T7VJkmah5630DPzx5l5VTP9a2AjsLxfhUmS5icys/1CIlYAXwEOy8xfzbluFbAKYHR09IjJycmt7js9Pc3IyEjrGgZpV/WwYdPmvi9ze0aXwG13lemVy5cu2OP2U5v1sJB/6wczez10lT1sW5vX1cTExPrMHNvR7VoHekSMAF8G3pKZn3yw246NjeW6deu2mjc1NcX4+HirGgZtV/Ww4rTL+r7M7Vm9cgtnbSgjcDetOW7BHref2qyHhfxbP5jZ66Gr7GHb2ryuImKnAr3VUS4R8RDgIuDDOwpzSdKu1eYolwDeD2zMzHf2ryRJUi/abKE/FXgJcHREfLv596w+1SVJmqeeB4ky83Ig+liLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEp354b9B/uZjV39js4varOfVK7dwypD8Nqg0CG6hS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0SrQI+LYiLguIm6IiNP6VZQkaf56DvSIWAScDTwTOBQ4MSIO7VdhkqT5abOF/ifADZn5g8y8B5gEntOfsiRJ8xWZ2dsdI54PHJuZL2suvwQ4MjNfNed2q4BVzcVDgOvmLGoZcHtPRQwPexgO9jAc7KH/fi8z993Rjdr8SHRsY95vvTtk5lpg7XYXErEuM8da1DFw9jAc7GE42MPgtBlyuQV41KzLBwC3titHktSrNoF+JXBwRBwYEbsDLwQu7k9ZkqT56nnIJTO3RMSrgM8Ci4BzM/PaHha13eGYDrGH4WAPw8EeBqTnnaKSpOHimaKSVAkDXZIqYaBLUiU6GegRcXREHDjoOtroeg9dr39GDX3Yw+ANS/2d2inafFfMJHAHcD9wZmZ+ebBVzU/Xe+h6/TNq6MMeBm/Y6h/qLfSIOCAi9p416wXARZl5FOWPeGJEPHkw1e2crvcwn/ojYltnDw+Frq8HsIdhMOz1D2WgR8RjI+LTwOXAP0fEzJd+/QbYo5n+OOW7Fp40jEHS9R56qT+H8ONe19cD2MMw6Er9QxPoEbHnrItPAG7JzBXAF4F3NPN/AdwdEXtl5i+A7wOjwIoFLHW7ut7Dg9T/JX67/pGm/usZkvpndH09gD0wBD10sf6BBnpE7BMR50XElcCaiNi3eWd7HPC1ZqvvYuCOiDiO8sfaC1jZLOJ6yrei3TOI+qH7PTxI/Stn1f+pbdT/uGYR3x9k/TO6vh7AHppFDOvroRP1D3oL/ShgC/Asyrc3vh7Ym1LX/rM+wp8PvAj4FvBryo9qkJnfAI4GfrWwZW+l6z1sr/5FdKP+GV1fD2APw9BDt+vPzF3+jxIOLwe+TPlu9GXN/I8Dr2mmDwTWNNc/kTJWtai5bgT4WbOc5cBG4FXAB4BzgD3soe76a+rDHgbfQ9fr396/hdpCPx54NvAm4MnAvzXzPw88pZn+EfBV4JmZeSXl3XECIDOngSuAJ2bmJuAllHGqnwCnZ+b/2kP19dfUhz0Mvoeu179NbX7gYiszRzlExBMpH0W+ClyWmXcDfwD8IDO/GBE3Am+PiGcA64HnRsSyzLw9Iq4H7oyIRwPvAV4cEftRvmv955SPN2TmOmBdv2qvpYeu119bH00v9uDrYcH0ZQt91h/uKOBcyqE8TwPe1tzkfuD7EbEkM2+kfDx5HGXs6VbKsZwA91E+wuwGXET5CsuTgCOAtZl5fz/q3U4Pi5oe/ozysalTPTR1ZUSM09F10PSxd9f7iIhHNv8/BTivoz3sFxGPjIgxynhxp3qIiN27/HruWa9jNZRjL/8O+Ajwt8BDgL8HXtlcvw/wHeBwyh9nDbCiue54yh9mWTO9AVhK2ZnwaWD3WY+zW7/HmWYte0/gZZQVtZqy86NrPewFXEb5PnqA13ap/lnPpZOBL1BO0uhUH/z/Gdd/SRlnnaL8fm7Xnkt7AqdQhh02A8d1qQdKBr0CuAT4D+AxwKldqb8f/3raQo+I/YFLgXHgQ5SdBidQxqK2AGTmL4FPAa9pniD7AY9tFvEV4M+AezLzUuD9wIXA2ZStgXtnHit33Tv4npQAORp4L/AM4HmUnR/3d6GHxhLgocBBEbEMOIiyRdGJ+iPiIcC1wPOBt2fm85qrDp/1+EPdR2ZmRCwF/gp4V2aOZ+Z1lK24TvQQEY+hDEkcA5wObAJupuwY7Mrz6ZWU1/O7KL9vfEJz+b6O1N9ej++ES4AjZ10+hbJT4WTgW7Pm/y5wazP9Ssqpsfs0978EePSs2y5b6Hcz4OGzpl9HWdEndayHk4G3A2cALwX+HLiyK/U3j/tJ4KQ5814AXNGVPihbhv/STM9ssZ/QlR4oof3QWZfPpbzJPqdDPVwC/HUz/VLg1c3zqDOv57b/eh1D/w3wreaAeygfY47MzPMpW4r7A2TmrcC1EXFkZp4N3AB8jPID05dn5s0zC8zM23uspWeZeUdE7B0R51GGXJZRVupBETE6zD3M+tvvBvwPZSv36My8BDhw2Ouf41zgzIg4KyKmIuINwDcpv1m7X1PbsPdxO/CnEXESsD4izqdsGf5h88lpqHvIzPuy7Cyc2QcQlC+cuoSyHrrwmv5v4OSI+ATwRuDxwDVN/ft2oP72Wr4jzmyJnA+c2kx/CPjXZvoRwPto3vUoY1yHAQ8b9DvZnD5eQflouZYypv514A2UJ/VQ9wB8grJ1tZRyTO3plCfxGR1bB5+lnMTxKMoL7FTgGx1aDwc39f47ZYvvRcA7Kccqv47yxjvUPczp52rghGb6gq68ppvX77mUjbM3AmcC1zXPrU6tg17+tTrKJTMzIg4A9qe8O9L8EYmISylj1IuyedfLzHsz85rM/E2bx+23zDwny57ucyjjnv9J+Qh2MUPcQ0SMULYM3wt8hrKX/kjgRGCfiLiEIa5/judm5lsz80fAWymHlb2HDqyHxs2U070XZxmrvbSZdyllp28XeiAiZjLhcspORYC3lKs68Xw6FJjKsnX9AcrGzkfpzvOolX4ch344ZY/wjRHxMspHl9dTxq6+l5lX9eExFsrPKTsVT8/MD0bEi4FrM/PqAde1PVsoYXEvZcv8PuD1mbkB+IcO1P+A3PpEjDsogX5GZn6kC31k5t0RsQZ4czNrN8pBAmsy8+ou9ABlh19EzHx74A3NvI3A65rhpO8Oaw8RsYiSP0cBHwTupBzk8IrMvLEr66CN1j9wERFfA34fuIly/OabMvM77UtbGM3RCcdQPiIfShl2OTsz733QOw6h5uSHE4DJzPzJoOuZj4h4KHAs5Yy7P6IcdnZOZm4ZaGHzFBFvobweDgc+R/nBg18Otqr5i4jrgDdk5sdmzjMZdE07IyIOoryG76Gsh/8C3pzlzM7qtQr05pCzM4EbgQuy2anSJRGxmPKdDndTeujcR69my+T+rrzoticiXk45ZPRDXVwPMyLiEOCHXexh1kmCT6DsaN/StedVs2FzMPD1zLxr0PUspE79BJ0kafsG/fW5kqQ+MdAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJf4Pm1ZPCOJC1cIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On constate bien un pique de distribution autour des 600 000 cas avec une plus grande régularité d'avoir plus de 650 000 cas que moins de 600 000. Quand aux incidences annuelles plus faibles (moins de 400 000 cas), on constate qu'elles correspondent plutôt à des situations exceptionnelles." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }