{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/all/inc-3-PAY.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020243735935650585.068127.08976.0102.0FRFrance
120243633343527654.039216.05041.059.0FRFrance
220243532740422036.032772.04133.049.0FRFrance
320243432671721003.032431.04031.049.0FRFrance
420243332062315349.025897.03123.039.0FRFrance
520243232318717532.028842.03527.043.0FRFrance
620243132603520267.031803.03930.048.0FRFrance
720243033639328593.044193.05543.067.0FRFrance
820242933956032592.046528.05949.069.0FRFrance
920242835434245781.062903.08168.094.0FRFrance
1020242734736440234.054494.07160.082.0FRFrance
1120242634421936956.051482.06655.077.0FRFrance
1220242534720440300.054108.07161.081.0FRFrance
1320242434111034671.047549.06252.072.0FRFrance
1420242333587530610.041140.05446.062.0FRFrance
1520242233377228274.039270.05143.059.0FRFrance
1620242132196317556.026370.03326.040.0FRFrance
1720242032005715780.024334.03024.036.0FRFrance
1820241931537511274.019476.02317.029.0FRFrance
1920241832240917653.027165.03427.041.0FRFrance
2020241732704221410.032674.04133.049.0FRFrance
2120241632888223305.034459.04335.051.0FRFrance
2220241533022924648.035810.04537.053.0FRFrance
2320241433181326529.037097.04840.056.0FRFrance
2420241333509029607.040573.05345.061.0FRFrance
2520241234063934582.046696.06152.070.0FRFrance
2620241135026843331.057205.07565.085.0FRFrance
2720241036010752623.067591.09079.0101.0FRFrance
2820240937112162920.079322.010795.0119.0FRFrance
29202408310456694520.0114612.0157142.0172.0FRFrance
.................................
205119852132609619621.032571.04735.059.0FRFrance
205219852032789620885.034907.05138.064.0FRFrance
205319851934315432821.053487.07859.097.0FRFrance
205419851834055529935.051175.07455.093.0FRFrance
205519851733405324366.043740.06244.080.0FRFrance
205619851635036236451.064273.09166.0116.0FRFrance
205719851536388145538.082224.011683.0149.0FRFrance
20581985143134545114400.0154690.0244207.0281.0FRFrance
20591985133197206176080.0218332.0357319.0395.0FRFrance
20601985123245240223304.0267176.0445405.0485.0FRFrance
20611985113276205252399.0300011.0501458.0544.0FRFrance
20621985103353231326279.0380183.0640591.0689.0FRFrance
20631985093369895341109.0398681.0670618.0722.0FRFrance
20641985083389886359529.0420243.0707652.0762.0FRFrance
20651985073471852432599.0511105.0855784.0926.0FRFrance
20661985063565825518011.0613639.01026939.01113.0FRFrance
20671985053637302592795.0681809.011551074.01236.0FRFrance
20681985043424937390794.0459080.0770708.0832.0FRFrance
20691985033213901174689.0253113.0388317.0459.0FRFrance
207019850239758680949.0114223.0177147.0207.0FRFrance
207119850138548965918.0105060.0155120.0190.0FRFrance
207219845238483060602.0109058.0154110.0198.0FRFrance
2073198451310172680242.0123210.0185146.0224.0FRFrance
20741984503123680101401.0145959.0225184.0266.0FRFrance
2075198449310107381684.0120462.0184149.0219.0FRFrance
207619844837862060634.096606.0143110.0176.0FRFrance
207719844737202954274.089784.013199.0163.0FRFrance
207819844638733067686.0106974.0159123.0195.0FRFrance
20791984453135223101414.0169032.0246184.0308.0FRFrance
208019844436842220056.0116788.012537.0213.0FRFrance
\n", "

2081 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202437 3 59356 50585.0 68127.0 89 76.0 \n", "1 202436 3 33435 27654.0 39216.0 50 41.0 \n", "2 202435 3 27404 22036.0 32772.0 41 33.0 \n", "3 202434 3 26717 21003.0 32431.0 40 31.0 \n", "4 202433 3 20623 15349.0 25897.0 31 23.0 \n", "5 202432 3 23187 17532.0 28842.0 35 27.0 \n", "6 202431 3 26035 20267.0 31803.0 39 30.0 \n", "7 202430 3 36393 28593.0 44193.0 55 43.0 \n", "8 202429 3 39560 32592.0 46528.0 59 49.0 \n", "9 202428 3 54342 45781.0 62903.0 81 68.0 \n", "10 202427 3 47364 40234.0 54494.0 71 60.0 \n", "11 202426 3 44219 36956.0 51482.0 66 55.0 \n", "12 202425 3 47204 40300.0 54108.0 71 61.0 \n", "13 202424 3 41110 34671.0 47549.0 62 52.0 \n", "14 202423 3 35875 30610.0 41140.0 54 46.0 \n", "15 202422 3 33772 28274.0 39270.0 51 43.0 \n", "16 202421 3 21963 17556.0 26370.0 33 26.0 \n", "17 202420 3 20057 15780.0 24334.0 30 24.0 \n", "18 202419 3 15375 11274.0 19476.0 23 17.0 \n", "19 202418 3 22409 17653.0 27165.0 34 27.0 \n", "20 202417 3 27042 21410.0 32674.0 41 33.0 \n", "21 202416 3 28882 23305.0 34459.0 43 35.0 \n", "22 202415 3 30229 24648.0 35810.0 45 37.0 \n", "23 202414 3 31813 26529.0 37097.0 48 40.0 \n", "24 202413 3 35090 29607.0 40573.0 53 45.0 \n", "25 202412 3 40639 34582.0 46696.0 61 52.0 \n", "26 202411 3 50268 43331.0 57205.0 75 65.0 \n", "27 202410 3 60107 52623.0 67591.0 90 79.0 \n", "28 202409 3 71121 62920.0 79322.0 107 95.0 \n", "29 202408 3 104566 94520.0 114612.0 157 142.0 \n", "... ... ... ... ... ... ... ... \n", "2051 198521 3 26096 19621.0 32571.0 47 35.0 \n", "2052 198520 3 27896 20885.0 34907.0 51 38.0 \n", "2053 198519 3 43154 32821.0 53487.0 78 59.0 \n", "2054 198518 3 40555 29935.0 51175.0 74 55.0 \n", "2055 198517 3 34053 24366.0 43740.0 62 44.0 \n", "2056 198516 3 50362 36451.0 64273.0 91 66.0 \n", "2057 198515 3 63881 45538.0 82224.0 116 83.0 \n", "2058 198514 3 134545 114400.0 154690.0 244 207.0 \n", "2059 198513 3 197206 176080.0 218332.0 357 319.0 \n", "2060 198512 3 245240 223304.0 267176.0 445 405.0 \n", "2061 198511 3 276205 252399.0 300011.0 501 458.0 \n", "2062 198510 3 353231 326279.0 380183.0 640 591.0 \n", "2063 198509 3 369895 341109.0 398681.0 670 618.0 \n", "2064 198508 3 389886 359529.0 420243.0 707 652.0 \n", "2065 198507 3 471852 432599.0 511105.0 855 784.0 \n", "2066 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "2067 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "2068 198504 3 424937 390794.0 459080.0 770 708.0 \n", "2069 198503 3 213901 174689.0 253113.0 388 317.0 \n", "2070 198502 3 97586 80949.0 114223.0 177 147.0 \n", "2071 198501 3 85489 65918.0 105060.0 155 120.0 \n", "2072 198452 3 84830 60602.0 109058.0 154 110.0 \n", "2073 198451 3 101726 80242.0 123210.0 185 146.0 \n", "2074 198450 3 123680 101401.0 145959.0 225 184.0 \n", "2075 198449 3 101073 81684.0 120462.0 184 149.0 \n", "2076 198448 3 78620 60634.0 96606.0 143 110.0 \n", "2077 198447 3 72029 54274.0 89784.0 131 99.0 \n", "2078 198446 3 87330 67686.0 106974.0 159 123.0 \n", "2079 198445 3 135223 101414.0 169032.0 246 184.0 \n", "2080 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 102.0 FR France \n", "1 59.0 FR France \n", "2 49.0 FR France \n", "3 49.0 FR France \n", "4 39.0 FR France \n", "5 43.0 FR France \n", "6 48.0 FR France \n", "7 67.0 FR France \n", "8 69.0 FR France \n", "9 94.0 FR France \n", "10 82.0 FR France \n", "11 77.0 FR France \n", "12 81.0 FR France \n", "13 72.0 FR France \n", "14 62.0 FR France \n", "15 59.0 FR France \n", "16 40.0 FR France \n", "17 36.0 FR France \n", "18 29.0 FR France \n", "19 41.0 FR France \n", "20 49.0 FR France \n", "21 51.0 FR France \n", "22 53.0 FR France \n", "23 56.0 FR France \n", "24 61.0 FR France \n", "25 70.0 FR France \n", "26 85.0 FR France \n", "27 101.0 FR France \n", "28 119.0 FR France \n", "29 172.0 FR France \n", "... ... ... ... \n", "2051 59.0 FR France \n", "2052 64.0 FR France \n", "2053 97.0 FR France \n", "2054 93.0 FR France \n", "2055 80.0 FR France \n", "2056 116.0 FR France \n", "2057 149.0 FR France \n", "2058 281.0 FR France \n", "2059 395.0 FR France \n", "2060 485.0 FR France \n", "2061 544.0 FR France \n", "2062 689.0 FR France \n", "2063 722.0 FR France \n", "2064 762.0 FR France \n", "2065 926.0 FR France \n", "2066 1113.0 FR France \n", "2067 1236.0 FR France \n", "2068 832.0 FR France \n", "2069 459.0 FR France \n", "2070 207.0 FR France \n", "2071 190.0 FR France \n", "2072 198.0 FR France \n", "2073 224.0 FR France \n", "2074 266.0 FR France \n", "2075 219.0 FR France \n", "2076 176.0 FR France \n", "2077 163.0 FR France \n", "2078 195.0 FR France \n", "2079 308.0 FR France \n", "2080 213.0 FR France \n", "\n", "[2081 rows x 10 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from os import path as pth\n", "import requests\n", "# Si le fichier csv des données d'incidence existe en local\n", "# il n'est pas nécessaire de le télécharger par l'URL\n", "local_filename = \"incidence-PAY-3.csv\"\n", "if pth.exists(local_filename):\n", " # Le fichier existe en local dans le dossier courant\n", " raw_data = pd.read_csv(local_filename, skiprows=1)\n", "else:\n", " # le fichier de données n'existe pas en local,\n", " # nous allons télécharger les données et les écrire\n", " # dans un fichier en local\n", " # Téléchargement des données\n", " response = requests.get(data_url)\n", " # Ecriture des données téléchargées dans le fichier local\n", " with open(local_filename, \"wb\") as f:\n", " f.write(response.content)\n", " raw_data = pd.read_csv(local_filename, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
18441989193-NaNNaN-NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1844 198919 3 - NaN NaN - NaN NaN \n", "\n", " geo_insee geo_name \n", "1844 FR France " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020243735935650585.068127.08976.0102.0FRFrance
120243633343527654.039216.05041.059.0FRFrance
220243532740422036.032772.04133.049.0FRFrance
320243432671721003.032431.04031.049.0FRFrance
420243332062315349.025897.03123.039.0FRFrance
520243232318717532.028842.03527.043.0FRFrance
620243132603520267.031803.03930.048.0FRFrance
720243033639328593.044193.05543.067.0FRFrance
820242933956032592.046528.05949.069.0FRFrance
920242835434245781.062903.08168.094.0FRFrance
1020242734736440234.054494.07160.082.0FRFrance
1120242634421936956.051482.06655.077.0FRFrance
1220242534720440300.054108.07161.081.0FRFrance
1320242434111034671.047549.06252.072.0FRFrance
1420242333587530610.041140.05446.062.0FRFrance
1520242233377228274.039270.05143.059.0FRFrance
1620242132196317556.026370.03326.040.0FRFrance
1720242032005715780.024334.03024.036.0FRFrance
1820241931537511274.019476.02317.029.0FRFrance
1920241832240917653.027165.03427.041.0FRFrance
2020241732704221410.032674.04133.049.0FRFrance
2120241632888223305.034459.04335.051.0FRFrance
2220241533022924648.035810.04537.053.0FRFrance
2320241433181326529.037097.04840.056.0FRFrance
2420241333509029607.040573.05345.061.0FRFrance
2520241234063934582.046696.06152.070.0FRFrance
2620241135026843331.057205.07565.085.0FRFrance
2720241036010752623.067591.09079.0101.0FRFrance
2820240937112162920.079322.010795.0119.0FRFrance
29202408310456694520.0114612.0157142.0172.0FRFrance
.................................
205119852132609619621.032571.04735.059.0FRFrance
205219852032789620885.034907.05138.064.0FRFrance
205319851934315432821.053487.07859.097.0FRFrance
205419851834055529935.051175.07455.093.0FRFrance
205519851733405324366.043740.06244.080.0FRFrance
205619851635036236451.064273.09166.0116.0FRFrance
205719851536388145538.082224.011683.0149.0FRFrance
20581985143134545114400.0154690.0244207.0281.0FRFrance
20591985133197206176080.0218332.0357319.0395.0FRFrance
20601985123245240223304.0267176.0445405.0485.0FRFrance
20611985113276205252399.0300011.0501458.0544.0FRFrance
20621985103353231326279.0380183.0640591.0689.0FRFrance
20631985093369895341109.0398681.0670618.0722.0FRFrance
20641985083389886359529.0420243.0707652.0762.0FRFrance
20651985073471852432599.0511105.0855784.0926.0FRFrance
20661985063565825518011.0613639.01026939.01113.0FRFrance
20671985053637302592795.0681809.011551074.01236.0FRFrance
20681985043424937390794.0459080.0770708.0832.0FRFrance
20691985033213901174689.0253113.0388317.0459.0FRFrance
207019850239758680949.0114223.0177147.0207.0FRFrance
207119850138548965918.0105060.0155120.0190.0FRFrance
207219845238483060602.0109058.0154110.0198.0FRFrance
2073198451310172680242.0123210.0185146.0224.0FRFrance
20741984503123680101401.0145959.0225184.0266.0FRFrance
2075198449310107381684.0120462.0184149.0219.0FRFrance
207619844837862060634.096606.0143110.0176.0FRFrance
207719844737202954274.089784.013199.0163.0FRFrance
207819844638733067686.0106974.0159123.0195.0FRFrance
20791984453135223101414.0169032.0246184.0308.0FRFrance
208019844436842220056.0116788.012537.0213.0FRFrance
\n", "

2080 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202437 3 59356 50585.0 68127.0 89 76.0 \n", "1 202436 3 33435 27654.0 39216.0 50 41.0 \n", "2 202435 3 27404 22036.0 32772.0 41 33.0 \n", "3 202434 3 26717 21003.0 32431.0 40 31.0 \n", "4 202433 3 20623 15349.0 25897.0 31 23.0 \n", "5 202432 3 23187 17532.0 28842.0 35 27.0 \n", "6 202431 3 26035 20267.0 31803.0 39 30.0 \n", "7 202430 3 36393 28593.0 44193.0 55 43.0 \n", "8 202429 3 39560 32592.0 46528.0 59 49.0 \n", "9 202428 3 54342 45781.0 62903.0 81 68.0 \n", "10 202427 3 47364 40234.0 54494.0 71 60.0 \n", "11 202426 3 44219 36956.0 51482.0 66 55.0 \n", "12 202425 3 47204 40300.0 54108.0 71 61.0 \n", "13 202424 3 41110 34671.0 47549.0 62 52.0 \n", "14 202423 3 35875 30610.0 41140.0 54 46.0 \n", "15 202422 3 33772 28274.0 39270.0 51 43.0 \n", "16 202421 3 21963 17556.0 26370.0 33 26.0 \n", "17 202420 3 20057 15780.0 24334.0 30 24.0 \n", "18 202419 3 15375 11274.0 19476.0 23 17.0 \n", "19 202418 3 22409 17653.0 27165.0 34 27.0 \n", "20 202417 3 27042 21410.0 32674.0 41 33.0 \n", "21 202416 3 28882 23305.0 34459.0 43 35.0 \n", "22 202415 3 30229 24648.0 35810.0 45 37.0 \n", "23 202414 3 31813 26529.0 37097.0 48 40.0 \n", "24 202413 3 35090 29607.0 40573.0 53 45.0 \n", "25 202412 3 40639 34582.0 46696.0 61 52.0 \n", "26 202411 3 50268 43331.0 57205.0 75 65.0 \n", "27 202410 3 60107 52623.0 67591.0 90 79.0 \n", "28 202409 3 71121 62920.0 79322.0 107 95.0 \n", "29 202408 3 104566 94520.0 114612.0 157 142.0 \n", "... ... ... ... ... ... ... ... \n", "2051 198521 3 26096 19621.0 32571.0 47 35.0 \n", "2052 198520 3 27896 20885.0 34907.0 51 38.0 \n", "2053 198519 3 43154 32821.0 53487.0 78 59.0 \n", "2054 198518 3 40555 29935.0 51175.0 74 55.0 \n", "2055 198517 3 34053 24366.0 43740.0 62 44.0 \n", "2056 198516 3 50362 36451.0 64273.0 91 66.0 \n", "2057 198515 3 63881 45538.0 82224.0 116 83.0 \n", "2058 198514 3 134545 114400.0 154690.0 244 207.0 \n", "2059 198513 3 197206 176080.0 218332.0 357 319.0 \n", "2060 198512 3 245240 223304.0 267176.0 445 405.0 \n", "2061 198511 3 276205 252399.0 300011.0 501 458.0 \n", "2062 198510 3 353231 326279.0 380183.0 640 591.0 \n", "2063 198509 3 369895 341109.0 398681.0 670 618.0 \n", "2064 198508 3 389886 359529.0 420243.0 707 652.0 \n", "2065 198507 3 471852 432599.0 511105.0 855 784.0 \n", "2066 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "2067 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "2068 198504 3 424937 390794.0 459080.0 770 708.0 \n", "2069 198503 3 213901 174689.0 253113.0 388 317.0 \n", "2070 198502 3 97586 80949.0 114223.0 177 147.0 \n", "2071 198501 3 85489 65918.0 105060.0 155 120.0 \n", "2072 198452 3 84830 60602.0 109058.0 154 110.0 \n", "2073 198451 3 101726 80242.0 123210.0 185 146.0 \n", "2074 198450 3 123680 101401.0 145959.0 225 184.0 \n", "2075 198449 3 101073 81684.0 120462.0 184 149.0 \n", "2076 198448 3 78620 60634.0 96606.0 143 110.0 \n", "2077 198447 3 72029 54274.0 89784.0 131 99.0 \n", "2078 198446 3 87330 67686.0 106974.0 159 123.0 \n", "2079 198445 3 135223 101414.0 169032.0 246 184.0 \n", "2080 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 102.0 FR France \n", "1 59.0 FR France \n", "2 49.0 FR France \n", "3 49.0 FR France \n", "4 39.0 FR France \n", "5 43.0 FR France \n", "6 48.0 FR France \n", "7 67.0 FR France \n", "8 69.0 FR France \n", "9 94.0 FR France \n", "10 82.0 FR France \n", "11 77.0 FR France \n", "12 81.0 FR France \n", "13 72.0 FR France \n", "14 62.0 FR France \n", "15 59.0 FR France \n", "16 40.0 FR France \n", "17 36.0 FR France \n", "18 29.0 FR France \n", "19 41.0 FR France \n", "20 49.0 FR France \n", "21 51.0 FR France \n", "22 53.0 FR France \n", "23 56.0 FR France \n", "24 61.0 FR France \n", "25 70.0 FR France \n", "26 85.0 FR France \n", "27 101.0 FR France \n", "28 119.0 FR France \n", "29 172.0 FR France \n", "... ... ... ... \n", "2051 59.0 FR France \n", "2052 64.0 FR France \n", "2053 97.0 FR France \n", "2054 93.0 FR France \n", "2055 80.0 FR France \n", "2056 116.0 FR France \n", "2057 149.0 FR France \n", "2058 281.0 FR France \n", "2059 395.0 FR France \n", "2060 485.0 FR France \n", "2061 544.0 FR France \n", "2062 689.0 FR France \n", "2063 722.0 FR France \n", "2064 762.0 FR France \n", "2065 926.0 FR France \n", "2066 1113.0 FR France \n", "2067 1236.0 FR France \n", "2068 832.0 FR France \n", "2069 459.0 FR France \n", "2070 207.0 FR France \n", "2071 190.0 FR France \n", "2072 198.0 FR France \n", "2073 224.0 FR France \n", "2074 266.0 FR France \n", "2075 219.0 FR France \n", "2076 176.0 FR France \n", "2077 163.0 FR France \n", "2078 195.0 FR France \n", "2079 308.0 FR France \n", "2080 213.0 FR France \n", "\n", "[2080 rows x 10 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "Empty 'DataFrame': no numeric data to plot", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2501\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2502\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2503\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2504\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2505\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1926\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1927\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1928\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1929\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1727\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1729\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1730\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1731\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 363\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 365\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 366\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: Empty 'DataFrame': no numeric data to plot" ] } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'68422'" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data['inc'][0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous constatons que les données de la colonne 'inc' ne sont pas numériques mais du texte. Il faut donc convertir ses données." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "sorted_data['inc'] = sorted_data['inc'].astype('int')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXeYHMWZ/7/vhJ3V7mqVJYQkkAARBAaMhACDwTbREd8Z7vDZRtj4sH38HO589sE5YMNhw9kHd5wNZ86I4EAwxgeYZJGjUbAAoSwkIa3SarWrzWlm6vdHV/VUd1eHybOr9/M8ejRb3RW6u7reekNVkxACDMMwDFMssWo3gGEYhhkdsEBhGIZhSgILFIZhGKYksEBhGIZhSgILFIZhGKYksEBhGIZhSgILFIZhGKYksEBhGIZhSgILFIZhGKYkJKrdgEoyefJkMXv27Go3g2EYZkSxYsWKNiHElLDzDiiBMnv2bCxfvrzazWAYhhlRENG7Uc5jkxfDMAxTEligMAzDMCWBBQrDMAxTEligMAzDMCWBBQrDMAxTEkIFChEtJqJWInpbS5tIREuIaKP8f4J27Goi2kRE64nofC19PhGtksduISKS6Skiul+mv05Es7U8i2QdG4lokZY+R567UeatK/5WMAzDMMUQRUO5C8AFrrSrADwjhJgL4Bn5N4hoHoBLABwr89xKRHGZ5zYAVwCYK/+pMi8H0CGEOALAzQBulGVNBHANgFMALARwjSa4bgRws6y/Q5bBMAzDVJFQgSKEeBFAuyv5QgB3y993A/ikln6fEGJQCLEFwCYAC4loOoBmIcRrwvrm8D2uPKqsBwGcLbWX8wEsEUK0CyE6ACwBcIE89iF5rrv+UUcmK/DAsu3IZPlTzQzD1DaF+lCmCSF2AYD8f6pMnwFgu3Zei0ybIX+70x15hBBpAJ0AJgWUNQnAfnmuu6xRx69e24pv//4t/PrPkdYVMQzDVI1SO+XJkCYC0gvJE1SWt0FEVxDRciJavnfvXr/Tapa2niEAQGf/cJVbwjAME0yhAmWPNGNB/t8q01sAzNLOmwlgp0yfaUh35CGiBIBxsExsfmW1ARgvz3WX5UEIcbsQYoEQYsGUKaFb0dQcaWnqisdMcpRhGKZ2KFSgPAJARV0tAvCwln6JjNyaA8v5vlSaxbqJ6FTpA7nUlUeVdRGAZ6Wf5SkA5xHRBOmMPw/AU/LYc/Jcd/2jjkw2CwBIsEBhGKbGCd0ckojuBfABAJOJqAVW5NUNAB4gossBbANwMQAIIVYT0QMA1gBIA7hSCJGRRX0FVsTYGABPyH8AcAeAXxHRJliaySWyrHYiug7AMnnetUIIFRzwLwDuI6J/A7BSljEqYQ2FYZiRQqhAEUJ82ufQ2T7nXw/gekP6cgDHGdIHIAWS4dhiAIsN6ZthhRKPelR0F2soDMPUOrxSvsZRAiUe50fFMExtw6NUjZMVlkBhBYVhmFqHBUrNY0kSwesaGYapcVig1DgkNROWJwzD1DosUGoc29LFKgrDMDUOC5QahzUUhmFGCixQahwy7jTDMAxTe7BAGSGwxYthmFqHBUqNY5u8WKIwDFPjsECpcZTBi8UJwzC1DguUGkd+KZlNXgzD1DwsUEYILE8Yhql1WKDUOOxDYRhmpMACpcbhsGGGYUYKLFBqnJyGUt12uNm8twezr3oMf968r9pNYRimRmCBUuPkorxqS6K8JgXJw2/sqHJLGIapFVig1Di1qqEwDMO4YYFS49hhw1VuB8MwTBgsUGqcWnXJc7AAwzBuWKDUOnLcztaozatGm8UwTBVggcIUBLGCwjCMCxYoTFGwhsIwjIIFClMQrKAwDOOGBcoIgZ3gDMPUOixQGIZhmJLAAoUpilpbwc8wTPVggTJCqLWBm6O8GIZxwwKFKQqO8mIYRsEChSkIDhJgGMYNC5QRzgPLt2PBvz1dtQ9wsYLCMIyiKIFCRP9IRKuJ6G0iupeI6oloIhEtIaKN8v8J2vlXE9EmIlpPROdr6fOJaJU8dgvJHRGJKEVE98v014lotpZnkaxjIxEtKuY6RjJX/f4ttPUMIpPloZ1hmOpSsEAhohkAvgZggRDiOABxAJcAuArAM0KIuQCekX+DiObJ48cCuADArUQUl8XdBuAKAHPlvwtk+uUAOoQQRwC4GcCNsqyJAK4BcAqAhQCu0QXXgQSxd5xhmBqhWJNXAsAYIkoAaACwE8CFAO6Wx+8G8En5+0IA9wkhBoUQWwBsArCQiKYDaBZCvCYsu809rjyqrAcBnC21l/MBLBFCtAshOgAsQU4IHZBUXD9hOcYwjIuCBYoQYgeAnwLYBmAXgE4hxJ8ATBNC7JLn7AIwVWaZAWC7VkSLTJshf7vTHXmEEGkAnQAmBZQ16ojq/OZoK4Zhqk0xJq8JsDSIOQAOBtBIRJ8NymJIEwHpheZxt/MKIlpORMv37t0b0LyRTbXWqbAgYxhGUYzJ6xwAW4QQe4UQwwAeAvA+AHukGQvy/1Z5fguAWVr+mbBMZC3ytzvdkUea1cYBaA8oy4MQ4nYhxAIhxIIpU6YUeKm1T6UHdrZ4MQzjphiBsg3AqUTUIP0aZwNYC+ARACrqahGAh+XvRwBcIiO35sByvi+VZrFuIjpVlnOpK48q6yIAz0o/y1MAziOiCVJTOk+mHXBUe2CvtRX8DMNUj0ShGYUQrxPRgwD+AiANYCWA2wE0AXiAiC6HJXQuluevJqIHAKyR518phMjI4r4C4C4AYwA8If8BwB0AfkVEm2BpJpfIstqJ6DoAy+R51woh2gu9lpEM1fgXHRmGOXAoWKAAgBDiGljhuzqDsLQV0/nXA7jekL4cwHGG9AFIgWQ4thjA4jybPGphecIwTLXhlfKjhErLE17/wjCMGxYoI4QwDaRaW6+wC4VhGAULlFFCxTWUCtfHMEztwwJlhOBnYVILH1lBYRim2rBAGS2MsJH9nte24qY/ra92MxiGKSEsUEYJI209yPcfXo1bnt1U7WYwDFNCWKCMdOx1KBWulp0oDMO4YIEySqjaB7Z4AQzDMBIWKCMEv3FbKQqVX4dS4QoZhql5WKCMEjjKi2GYasMCZZRQaad81O+0MAxz4MACZbTAqgLDMFWGBcoogeUJwzDVhgXKCEc5x6vmQ2FJxjCMhAXKCEf5Mir9PRSO8mIYxg0LlBon6sBdLUWBFRSGYRQsUEYJvMCQYZhqwwJlhBAmMKrnQ2FBxjCMBQuUEQ77MhiGqRVYoIwQwr/YWJl2uOFPATMMo2CBUuNEFRTV2r6eTV4MwyhYoIwQwobtSo/rrJkwDOOGBcoIRw3rlV6HomD9hGEYBQuUEUKoD6UyzbBh/YRhGDcsUGoce2sVH5GhTE9Vc2WwisIwjIQFyqhhdI3suzsHkKn0d40ZhikKFih58MKGvVjxbkdV6q7VsOFysLd7EKf++Bnc8MTaajeFYZg8YIGSB4sWL8Wnbnu12s0wMpo+AdzRNwQAeH793vJVwjBMyWGBUuMozaPWwobtessgykaTtsUwBxIsUEY4SlEYjZ8A5qUuDDOyYIFS49iCwm/aLgfdbLYy7XFTDm2iWqv+GYYpjqIEChGNJ6IHiWgdEa0lotOIaCIRLSGijfL/Cdr5VxPRJiJaT0Tna+nziWiVPHYLyVhYIkoR0f0y/XUimq3lWSTr2EhEi4q5jpFAqMmr0hoKaw8Mw7goVkP5LwBPCiGOBnACgLUArgLwjBBiLoBn5N8gonkALgFwLIALANxKRHFZzm0ArgAwV/67QKZfDqBDCHEEgJsB3CjLmgjgGgCnAFgI4BpdcI0qou7lNQon9ZUwqzEMUzoKFihE1AzgTAB3AIAQYkgIsR/AhQDulqfdDeCT8veFAO4TQgwKIbYA2ARgIRFNB9AshHhNWDsN3uPKo8p6EMDZUns5H8ASIUS7EKIDwBLkhNCoZDQKDD8OpGtlmNFEMRrKYQD2AriTiFYS0S+JqBHANCHELgCQ/0+V588AsF3L3yLTZsjf7nRHHiFEGkAngEkBZY06wsZW2ylftQ9sla9sNqsxzMiiGIGSAHASgNuEEO8F0Atp3vLBNDyIgPRC8zgrJbqCiJYT0fK9e0fuuoYwH0nlo7zKD2sqDDOyKEagtABoEUK8Lv9+EJaA2SPNWJD/t2rnz9LyzwSwU6bPNKQ78hBRAsA4AO0BZXkQQtwuhFgghFgwZcqUAi6zukT93shoWofCMMzIpGCBIoTYDWA7ER0lk84GsAbAIwBU1NUiAA/L348AuERGbs2B5XxfKs1i3UR0qvSPXOrKo8q6CMCz0s/yFIDziGiCdMafJ9NGLbW223Al6mOTF8OMLBJF5v8qgN8QUR2AzQA+D0tIPUBElwPYBuBiABBCrCaiB2AJnTSAK4UQGVnOVwDcBWAMgCfkP8By+P+KiDbB0kwukWW1E9F1AJbJ864VQrQXeS01SdhKebXbcNW+h8IKCsMwkqIEihDiDQALDIfO9jn/egDXG9KXAzjOkD4AKZAMxxYDWJxPe0cioU55tb19hQf2ctbHQophRia8Un6EED7I8ig8Gjj2+0/i2w++We1mMExBsECpcaLO1iuuobAAKwu9Qxk8sLwl/ESGqUFYoIwQwsOGq0M56h2twmrplnbs7R6sdjMYpmywQKlxog6uo8mHoqBRFub1N794DZ/8+SvVbgbDlA0WKCOF4M2GI69XKRWjU4coPzv291e7CUY2tfZgU2t3tZvBjHBYoNQ4kT+wVfaW+NRbju3ry3wxd72yBQ+/saO8lbjIZmtbBJ9z0ws456YXq90MZoRT7DoUpspUax1KJTSichm8fvDoGgDAhSdWbvu3dI0LFIYpBayhjBBCB3Aer2qadLW+gDbK+eLdy3DM956sdjMYCQuUUUL15EltflN+YDiD1q6B4gsqEcMZlvjl4Om1regfzoSfyFQEFig1jtJMQhWUUTReKfNdMUFely5eioU/eqZELSqeDJu8mAMAFigjHDvKq8I6Slm3XilBGUu31NbWbukMm7yY0Q8LlBpHuP73PW8UrZSvdAh0JWCnPHMgwAJllFDx7evLWKEae2t1XePz61sxlM5P42BxUl5G4yRkJMICpcax16GE+lCqZfIqx6gfzW9UDZZvbcdldy7DT55al1e+SjyfjXu6seLd2jL1VQpWAGsDXodSAEKIim8L4mdiqtr29eUsu4YHh46+YQDAlrbevPJV4prOvdlamLj1ho+Wv7IawxLYNarSHkCwhlIAfrOh+5Zuw1+2dZS0rnBfBUU8r7SUc8ZdyyavmGwTR22VhmxW4Mx/fw7/t7K4nQv4cdQGLFAKwG9V+lUPrcJf3/pqSeuKbvIqabV5UI51KLU7OsRiameC/PLV8CVVlaFMFtva+/DPvyvuGzDV+mIp44QFSgHU4ux0VJm8ylh2scQK3OpmtG7JXyqKjYJjeVIbsEApgErOhqLWVPH3qaxRXnJhYw3axJXJK2+BMoIHvHW7u8q2uWWp7gtrKLUBC5QCqCUNhQoc4IqlrDPu2rm9HmwNJc91ijV8SYEs29qOC/7zJdz92taylF+qfsQCpTZggVIAldznL+dD8Ynycp1XKcoZNlzKSym1P6Zgk9cIHfDe3L4fAPDuvr6ylF+q2zIy7+7ogwVKAWSqMDiE1zh6PrBVir28FEGPqpBBvmCTV5RzalDoqE0tU8nyDBWl0iwE72xTE7BAKYDKqtfBdeVMXhVoipHa3G1YEfSsCrlncSlR8jV7RrmmGrKk2lBus7iyUKpi2eRVG7BAKYBqfH2v1sKGa31zyChlFTIIFao1RdE+alFDKbM8KZlmwQKlNmCBUgAmk1e5BoOwYlUk1GhyyueivIon2ORVggqitqNE51SLsvXvkjnlS1IMUyQsUArAZO4od+RX6NYrZa3dS1kH4xKWHTRgFSKE7SCJAvMFUYuz7HJv7VOq14bX+dQGLFAKwBTlVS5HfdRiK745ZFnLLl3ppdZQCm1ZlGuqQXlia8BlM3mVyilfg/fuQIQFSgGYhEe5Q4n9XphqhQ3nKix92LB9L0sQ5hV0XwrRCAr1n43UAa/cGgo75UcXLFAKwNR5y6ahqK3cI55XecoQ5VXSskps8iq0HSPU5KUoV/8q1TWzD6U2YIFSAKZZarVWz1OBK7eLpawmrxIOrIEmrwLKK3QAHKkmr7JTomuuRuQl46VogUJEcSJaSUR/lH9PJKIlRLRR/j9BO/dqItpEROuJ6HwtfT4RrZLHbiE5ShJRiojul+mvE9FsLc8iWcdGIlpU7HXkg9nkVV4fSmjYcFlqD6ivjBXa29eXoKygZhYUshrxeXiyjVANRU1Yat0pz9QGpdBQvg5grfb3VQCeEULMBfCM/BtENA/AJQCOBXABgFuJKC7z3AbgCgBz5b8LZPrlADqEEEcAuBnAjbKsiQCuAXAKgIUArtEFV7kxRnlVeTCo/Bcbyx/mVYoagtpZkA9lhKy/KRXl3p6T9/IaXRQlUIhoJoCPAvillnwhgLvl77sBfFJLv08IMSiE2AJgE4CFRDQdQLMQ4jVhvf33uPKosh4EcLbUXs4HsEQI0S6E6ACwBDkhVHaMUV7l0lAMv3T4i43BBD2WwnwohQm7KFXV4phY7o+clW634dKUwxRHsRrKfwL4NgB9iJ0mhNgFAPL/qTJ9BoDt2nktMm2G/O1Od+QRQqQBdAKYFFBWRTBpI9XegfiHj66uqJYyUkxeQSN/IZdQ6HVH86HU3qiYiyKsdad87d27A5GCBQoRfQxAqxBiRdQshjQRkF5oHmelRFcQ0XIiWr53795IDQ2jkgsbo/pQeocy6OpPl6UNJnLNKW7YNw1UJV2HUuIor4Kd8iNWQyn3OpRSlVN5k+/tL76DXZ39Fa231ilGQzkdwCeIaCuA+wB8iIh+DWCPNGNB/t8qz28BMEvLPxPATpk+05DuyENECQDjALQHlOVBCHG7EGKBEGLBlClTCrtSb5metHLNkGwTi986lKp/g6q46zZdVylvZe0sbCxf2Z5yytAXy7YOZYSavLa39+NHj6/D39+zvLIV1zgFCxQhxNVCiJlCiNmwnO3PCiE+C+ARACrqahGAh+XvRwBcIiO35sByvi+VZrFuIjpV+kcudeVRZV0k6xAAngJwHhFNkM7482RaRajG1it+VOurhiVb4WxIK+n29QHHCtt6pVANJTxfybZyL2FXzG3tU94JU9HlVPj1S0tHas9A5awCI4FyrEO5AcC5RLQRwLnybwghVgN4AMAaAE8CuFIIkZF5vgLLsb8JwDsAnpDpdwCYRESbAPwTZMSYEKIdwHUAlsl/18q0imAMGy7zUuKwvbysP/IrOp3J4nfLt4/qGP5Sb19fuA+lfGW78bvm3Z0DSGcKW7BU62HD7EOpDRKlKEQI8TyA5+XvfQDO9jnvegDXG9KXAzjOkD4A4GKfshYDWFxom4vBHOVV+XYUyx0vb8GPn1iHrBD425MPyStvaW3f5EorTdlhZRWibdgDYL4f2IrkQymVg9qb1tk3jFN//AwWnXYofnih51ULaFNJmhRQ/sh2ylP1bc41Ba+UL4BKRnkVOH5FYn//MACgrWco77wlM1UY0kq6fX1AOwvyoRT8ICJEeRVYshvT4Nopn/Wz61s9x4JQ11s2p3ypyhlFYfMjGRYoBTA4nPGkVW2GVETeZNx6/MMFqFfFXG7YoFzSW1nidSiFzhsqGeVlKicnpPPrMep6y+eUH+EaSlVqrV1YoBRAv0GglC9sOHiGqKvc+WrfSfk520IESjHo774xyquUdXnqzqUU9sgKdMpHOKecazJUSizPPlLuYbqcQpSpPCxQIqIPRH1DBoEyAmdICamhpDMFRDsVUa9w/PYPcCjUPu0UGsJ1zFtPPpRVQymsaA+m6yr0nubuZXn6NzvlRxcsUCKi99cBk8mrBnwo+Q6/ybiVY6iKJi9jOUXeSv1RuMvPhtUdQsFRXhEyltMpr4o2rggOqDfqwtpCGamfAGb5ZYYFSgHU0ieAnefkRzxW+E6yxQwEYTmLHWQcAiug7sKivApzUlcybNh8XQESJQD7essVNlwia2vVNkdlJ4oDFigR0btrJXcbDis2ES/FVw0LMHkVpaEEHy92Ly+nhiJcx4rzoRQc41VBp3z+Gop/WTmDV7k08JGpodjvO2sqDligREQfmKrxCWC/jpuI5R5hvgNSrMz7NPmhDyLl2HolyKxVrA+l4JXyEe5yOZ3yqs/GDD6UoFrL7Zso92LOclHpD9qNFFigRMShoRic2OX7BHAwsSKeYNW2vtc1CMMVFm/yMv8G3BpK4ZpZ3lmr7JRXWrXJJ19VH0rJzHylKScq9j1mk5cDFigR0TtsJb/YaNfvly4inBRaduVm6lGwTV4FvqwODcV1bUEO+3zLzodoPpQSaSiG2bNKM61DCaq1/AsbS1NypX0oHFVmhgVKRPSOXy6nfEfvEAbTzgiyci4CLObzrqXyoZj9x9Ecwa3dA/jCXcvsVeCKIJNX9aK8ws8pZwit2swwXyFd7oWNpbvm0pSTb32soDhhgRIRh4ZSJqf8e69bgi/ebd4OO1LYaZ6zPfvjSXnlKjxPLq+uQRRe9q3PvYNn17XiwRUtjvQgpa1oH0reOVS+SDpKgaU7yXcdilPAC99j5cAZQl54ZZXWGKr9Qb1ahQVKAZg6U6lMXi9tbHP8LVz/uylFrdXUUExkA+z9Ouo5JFzLv4Vm8vEOkMX5UHJhw/nlrWSUl6kctXjV/GW6cI0u6Hq/cd9KfPXelXm30yrf/Dv/cio7wNfi1zVrARYoEamEhmKuOORwESacXMRPITP1wq/XoUEYGh215LQSKK7Q6aDQYIcPJWI9BTWugGylmvSa+oEd5WV440XAPRGGc9z83xs78eibxu/bRaA4Ae8txUlbzyCO/f6TeGP7/oLLNsEaihkWKBHRB9B0AT6UvqE0Vm7rKLz+KDPcPMssJsqrOA0lxOQVseyM9Au4NRTnwCR8jxWzsDFfymGyzKccO8orxOrv3apGGNNLRbEmyFw55ryvvbMPvUMZ/O+Lm/Mq7/9W7sCXfuX/NcZc4Ah7UXRYoBSA0eQV8jJc/dAq/NWtr6K1ayCvusIGmVK855UPuQyuO+rOuEqwu9dWRN16paILG6OcU0YHdVDYcFAb1P0q14y82Kg7u5yQdSH5Cutv3P8Gnlq9x78+NnkZYYESkbCw4bDtsDa19gAAdnXmJ1Ds+qOck2cnVxP7oJetvXcIr25q86RHMYX4UqJ3MeNj8grcekWfERcwSJZTQyndJ4CDNBTT+dpv1x0rxToUIQTuW7rNuAdesT6tsLzlUiBYoJhhgRIRvfuYFjaGDU6NddbHMU1b3wP+A05Yvy3GTKI0gKA6PvvL1/F3v3zdO0MtYn2Co82GAqKbvKwT4y7HgNNH48xTtIZSqA8lismyVD4UQ1pOQ/GOsMFh1t5z8uWp1btx1UOrcPPTGwx1m3/ni1/eKH28ENiHYoYFSkTCtl4p1ikf1j+jCJxymGPW7+kG4P1mSk5Dyb/WoBkxEH3w8ovyCloNH1Y3ADz0lxb84JHVxmP2Qr88LztfgVJMFFGghmKYsWcCBIq6R1EG0PZe85c/uwbSAIC2bu9x/RmUw4dSrt0gVHnsQXHCAiUiDg0lxClv7NwhPc/vZbJNDhHaVShBL5tqtjsQIaxdgfVFPB6mfb36zj4AhftQ/K77nx54E3e9ujWwbfkSyWTpGFwLrAjBUV6mbqhr134COEp7Vu3oNKbnYglN6qj2s4j9sfyaF1h3BPwsD6yhmGGBEpGwsOGophS/QawUtvm8Z80Qjv9NqLE67dFQCpupW3mC2xxlEFu5rcNeIR93ayi6cPfxCVjl59/4QtcbRfseilZPUf4Eb1qQycsxGfK0STj+D8JfS7CddYFtLYcPJajE1zfvwysG/6COKaJTr4+DvJwkqt2AEUOIQMm4ZnlxH5XEr+P7RanYA6LPm1HMPMlucqCGQgAEhgv4qqMfwud3rl3hg1hbT8584r7TTtORuWzrd0hDDZRTQyl248pcXf790/QJ4CDtWh2KYtItbOeB0lyz37PMmUW9c+e/vf3PAICtN3zUt1w/TYSd8mZYQ4lIPnt5BXW2sBlPMRS6ejsol5qBeXwoxZi8HAO+fwlBA77uN3Hfu6B7WeyMuNC9rSL5UELOH85k8eCKllAtyTQ5Uf3OFIqdCRCy+Zi8CvmUdKmc8n79SD3jmEmSRsBPkLLFywxrKBHR+5VJKDhml4YXmuxj+QmU3MAdQUUp1OQVMNop/4R7sLCVmyJnpcbjETSUmEOguMuHdixA2BRprsszZ4Syzb8Vd76yBT96fB2yQuBvFswKqMnQPwN2M3RMkHw0umLCnoP2Yyj3Xl6q37q/Q+eeIPlhiugE2IfiB2soBWD+3oT2O+DF8FehC2tLKUxekTSUrFlDCaNvKI1TfvS0cy1LyJieC1X1L1fXUIK+yuiJWipSQylv2HDupLRhVtIto6V27Q9ey2SqK6eheNGr8lspH2UA9Rujc5FW3jKczyO0Cl/87q+6j+7AjaF0NIFieg5A9MW3pebZdXvwlV+vqGid+cACJSJ6fw3TUIJePj9h4xsWbB/3aZc+ePrW6kOEEFg7ysujoYTnBYD1u7uxp2sQNz65ztjOYKd8uOZknefO739PnAvpfIv3pdBooSi5HH3MMDNukGuZeofSweUYKgtyIuuDpud+ufIH4Tf4Bjmuy+1DGVIaisvkFVlDqTEfyhfuWo4n3t5dlbqjwAIlIo6BKMyHEiRQ8tRQbJNXBItXvgjX/yZUhI7nBQwzxbnyO7I6NBTDrFWmBWoo8SAfil6X/7FifCh+CCFw2/PvoK1n0JUeoWytcLdGCADJuM+zcLch0CkftrDRrO1FEb5h99Ns8oqev5C6VXSiW6AMRRUoeQbRVIpyf9CvUFigRMSpoXh7U5hTXr3H+c548rEr5/s+qk4ZVIffOpR863RoJSFCKOf4jqqhBJi8PGX7m8PcBJlo/LKu2dWFG59ch6/f59zOPYpmo59hiqqLRfwgWr57eWUcJi9Xm5S2GGEA83PKB5mFitnLK4r/RbXJ7ZSPbPLyuaZqR3mVbXfzImGIvX8LAAAgAElEQVSBEhHHTMr0iVXd5BUYZZSnQLH/L25ADy47AN91KNHqD9s7KmjaGtXx6QkNDvgeSj67DZvqDxMMaia8tzt/DcUR+GGYQauyQzUBo49PChRTlFfAup18tl4Jb5cprXCTVxT/i9L04uQ2eUWrq9ZMXopaDQpggRIRR9hwwAsLBKvDfh0hio8krF0Ff/QpIJt6Dd0vYL7bmvsFVxnlifw/SDAHDURBH4zKxwls0srCLjcZt16pgWGzAA5CvyaTWSsWouUqTIfTARpKsNYW3eQV5pQ3UUzYcJR1O+kIPpSgd8w/zN/6v1oLG6st0PxggRIVffZo8qFE1FDyXYcSpglE6Vfv7uvFs+u8W3FH+Rqf8oG4zXxhvp1cfnjqCFspb9vtI/qigoSGu4R8bPZhM2oTqs3uQT/a91BymGbQ6lmED7zeE3JfwfSOgOmAe6muI8oAlvGZSQWZCaOu3zKWa6jDjUnTs9L1ev3ryNeiUCmCJhVPrd7t8eFVioIFChHNIqLniGgtEa0moq/L9IlEtISINsr/J2h5riaiTUS0nojO19LnE9EqeewWkr2eiFJEdL9Mf52IZmt5Fsk6NhLRokKvIyr64zMNdI79kAzHlakh372Bwp3A5t86H/jp8/jCXf4fCwp6N2K2ycutBaj25f9i6VlMwlclBZsO9d9uM43/AJnPanTzt9lVuT4z4gh+KT/0LGYNRflQ8heEQWHDxZi89P7s14czAffEEWGW5z2LYr4cirCOJGhw9vehqHrDWlke/KwgvYNpfOlXK7Bo8dLKNkhSjIaSBvBNIcQxAE4FcCURzQNwFYBnhBBzATwj/4Y8dgmAYwFcAOBWIorLsm4DcAWAufLfBTL9cgAdQogjANwM4EZZ1kQA1wA4BcBCANfogqscOOzbxigv/bdpdimP+Trf/epVWkSENvqlh2g3wQLFarg7KkaEDDSKsO3DTQLWFlYBpsMgLSeqsAkjSNj5oQagIM3ID71tJg1FWtMiCEL/sk05gz+ZrDQuc136PfLTvjMBdYdpCh29Q5h91WN47K1dnmNRzJf3L9tmtcF1gi7IAsP8/SZ6ITO97e19uOe1rYHnFIPfOKLu59a23rLVHUTBAkUIsUsI8Rf5uxvAWgAzAFwI4G552t0APil/XwjgPiHEoBBiC4BNABYS0XQAzUKI14Q1StzjyqPKehDA2VJ7OR/AEiFEuxCiA8AS5IRQWXCuhDfNXLUZT9DMukAnXzlmQtFMXtb/futQwjQo070Ii7RSx/3WNbjrDRIaQSHFofc8JPjChF+b84/y8r/2sIhXsyYgn1dIyLsniCFE44pisgoafPX7Zcq/uc36MN0vX/Z+wjeK+bKjb9h43KGhBJqoQxY2+vhQFi1eiu8/vBodPlv6F4ufoFMTvyopTqXxoUhT1HsBvA5gmhBiF2AJHQBT5WkzAGzXsrXItBnytzvdkUcIkQbQCWBSQFmmtl1BRMuJaPnevXsLu0A4H1Bo2HAZ1qH4dZFitq5QZwdnM/tQotaZM3fk0kIHdaHy+pcbNKt21OVePuOYGPiXD/hoKMFZ8g660HFqKN7GRQmn1s9zpAX4QoL8UaEmL30i5XM//TQXwKmJmZ6HCnIw3Y98tvt3H9fbVJCGElLffrkTdrnCe/2eR9QFm+WiaIFCRE0Afg/gG0KIrqBTDWkiIL3QPM5EIW4XQiwQQiyYMmVKQPOCcX4zwns8aIM9QJvp56mh5EwOPgOVMTUaQc5SRW5zSJeGYg80wXWEDWBBg3bwJo/+M+OgLUzy0VCMYcMqYCDUh+LOF1iVPEkrx/RVUNUXwjQrwxNNFyhQMiH9zzkwB8/mTR0tTMNRuwSb70fud7hfyax5udvgxm+9SpjJS/key7UA0VdDke2tlm+nKIFCRElYwuQ3QoiHZPIeacaC/L9VprcA0He0mwlgp0yfaUh35CGiBIBxANoDyqoIxu+hROyg+S5gzDmozeVFccqHtSUoX27rlZDBwgdbQ/HJY7puv0gpHREwmOjZ3GWUamGjX9OKEfy6IDCt5M5pGYa8jhvi366wyZD3+zHBfcTZ783n5PqAtxBn+K45P2C+H1G+BTQmablp3f00TEOpS1hDo98nu8N9cXJXgwIFSjqTxZW/+Qve9vlomV8/G7ZNXtWRKMVEeRGAOwCsFULcpB16BMAi+XsRgIe19Etk5NYcWM73pdIs1k1Ep8oyL3XlUWVdBOBZ6Wd5CsB5RDRBOuPPk2llw94Gm4rbvt7vpfM1eSlfRQlmOn5lBK6UtzeHNA80oRqKwQYf9k0SW0OJKJj9HMmA/5cmrXpChGGA/yc0ystnYA5Cn+AHmbyCos/cvxVBkVZB2ndY2LAzWsrcuU1mT0U65L0Jnpzpv03CX2AwnfGc6y7XlDcVDxMovs0CkNNQhiOuyHezrb0Pj63aha/eu9J43O95DKbNm2FWimK2rz8dwOcArCKiN2TavwK4AcADRHQ5gG0ALgYAIcRqInoAwBpYEWJXCiHU0/oKgLsAjAHwhPwHWALrV0S0CZZmcoksq52IrgOwTJ53rRCivYhrCUV1oEQ8ZhYoDlty/hpK2Pb1/utUoguajBCIadbCKBFkue3rC/umfOgi0AAtoBRhw0EaSr52dyDc76QGVY/JK7gqzzlBkxajUAjQMoBg05VzHYr7fjnz+5UbdE7QBGtAG7BN59kmS1MRIUJ0YDjrK4T1azaZoVPJGLoHgZ4B80acodGNPt8RikrMXnMULsh1VH0jTqAIIV6G/5fSz/bJcz2A6w3pywEcZ0gfgBRIhmOLASyO2t5iUS9aMkbm3YZD/AIqfNY3rt3vi43qhS7C2Wu3KyuQjOf+zoaUDQTsNhwi6PQ63ejXGvQ55aiCOcgp735W+SykC4rmC1uZ7SHCcwrbhiTovjivy1u2+q5HkMPedPzN7fvlOeY2OzUUv3Os/023TN9RwHSLghz6YWuKhrP+5jRdmzI952nN9WjrGcKWfebw23AfijncPipKHuQ7AVU+lGp9mZhXykdE11CMqrk+WzI5c+Xrku8sLhee63dc+x064zYLhRc2+Ee/2bsN+zpc86vTnRbU5qABPyi6TQQ8i7DgidD6heM/DyafkfV3uERxaF0BIctmH4r+219DCTqmWqrTKvckixI27G/y8h9UdQ3FGO4csOeWs+8briujt81fQwlaN9Y/VJjJy2/Loqj4BXco/OSUqq9aW8KwQImM1FDiZHRQhznlbVt0nlFe+WgooT4Btz9BO39Ta09g3uG0OW+4huJtp3NQNwjfSBqK/lu4juX+ds9w9ftfyOaQoRpKMVFeIfvFqeaEmrxMGkqQUz4gyiuoPYBb2/TJa1utvGUMaj6GQN+Pqe6waw7oZ/o1By1U9hcowQO+72cfImIvkPUVKD4aSsZqr3vvskrBAiUitoYSi4W+lGazgjzPV0Mx16uS/Sc60WdA7omiXmfY4FroXl6mCJ+wj1zl7N7+7QoyeQXNmqMMnqY63HmimIAc+YKr8rQnaAFivpFazrzBwsivH/qlO32HPhpKwOCrh+WartlPM3aXl6+gdK7Q95/UhEV5+U3iqEinvBJEBZu8qqSisECJiHqAiTiZFzaGzLrD4vnDOk7QgN9QF5fn+J7iaaM7QyJu7gqqvZ51KK72+WGO3PGW7yxbBB53p7vr0O3WHg0l5Dk5z42WppOrz3W/IkiUsEitIM1NX9UfNFs3OuW1Z+v/mQS/56BtYeKrxfgLM/1ZBfl+wtpkdugHaCi6FmuoQ92nMA3Frz8U60MJ2ntNb58b9dmEKikoLFCiovpfMh4z27cjmrz8TVd+6f5lquNR+47X5KUf89mVVebxRHnZWkTwSGkKGQ3a6sMqUzs35L64fwNOM0OQ7Txo0DblBcJNfeo+eWR3BB0lLGJKXVYhWkYmwITi3FbIp22+gt3823GOLN9kWhpKh/hQAiLbHFqZ6Z4ECZSQ4AyVFhY27NcP/BYER0X1YT9Nw9Q/2noG8b2HV6sWFFRvsbBAiYjqOMk4mV/2kMEgLHIp1OQVYEqxd6E1F+Fpg+lvv46vBI13MJADa8gELMicYB335nGafsLLdZtKdDOKe/YZJszuW5bb0SfQ5BXiQ/G215jsPCfrf016nUEasNVG/+NhGqPfffU1eUVwygctVB0O2RwyaD+3sI0lgyYPYU55lfTqO/uMddtal8+NsTWUIk1efpjqfVeLSGMNpYbZ3t6H59ZZC/4TMWsdivulzWRF7ot6gfZvnwHHV6IE5xN5qCjeb3T4H1OoF8+vgxeyUj7MPBjmnLbymX+72xokRE1FP74qt6utaSwLWznuO5OPYPoI21Jdtd0k/EM1lID+5/c8zrn5BWO6f5uNp9jnmExLDh+KUdj596+gbfet4/5b42cCzKLutgQHZ5jblttqqTinvB+mNukh2CNuHcqBxDk3vWBHoyTiuY8cxbVnlhXC0l6yItDkFbbFN2B1fvfHlCJpKBEHdz2vwndm7TMY5Gvy8kszf1smOL+7Xvdg4tBQXPn9ZuOmNKOGYh8zNktbKW9ODyJM0AZpuc7T/e+50b+i3RT93m3em5vx+n7HxzHwBptNTZODoUwWqUQMg+ms2Q8SMLCGmS+dzzoob3A/2N83hElNKddx/7xAbo5XqIaiBJGfXDDdS93fwxpKDaOHNibkk3K/1NaiQet2BnXQKB/Y0k9Rg2XQuB11MuIuwxFe6/dlO6Wh+ER5hY2TpqACh0nLkN+xi2wEn5P7lKGA9Qehm3zqM+6A5xjFSa0T9Alec9tMQkGWZdyWJdp1mc21ud8mJ3IyTtFMXj7nBAnCoXQW9Un/oJKoYcOBq+wNx0O1wWzuWfUOev0oQQIa0MOGwycSJobSwf3F1M10f0+Mw4ZHBmr3U48pJQvUSYFiGpvDNA0/m67tlA9wTquuE9Z1vVFe5vodefw0FFvQhWko3rZF3XrF2GY7n/Y7Hx9KyCAU5mNRSX5X7edEVuXGAySKc7bvPa7K3NPl/byrI1IrYGA2Tna0azYNgHU+i3nd5YVNlkx9bFhqKH5tCwobjnrN7t/utviZtBrrLAOOyTEftuu0vcNEoSavkHxGDUUXKBw2PDLImbycD3Tp1nZ7IDN1hmzADBFwhkea7PxB0WE5k1dw2wNNXoaBRAiRi/IqUENR+fQOHm7a8W+zKZ/7njqjvILWoZgGuOBBPWxiYEdTudLV/Q1acBauoVhprd0DvgLLqts/rzFEVivLZKJJJeMBUW259LCPUZm0N11DMTrWA2b4YabTqOtQ/MyyKhx/wCBQwvpB2Er7MFT7yMdBarreQa2dfhaHcsMCJU/iBpPXzv39AIDuQWsjOdMsL5/vSphUeX/TT3T11qtVBQ8GepVDnpXy5jLd2FtB6HlD/RTBL7u7be5zhtJZxMgyTwatQzE1XR88zL6KaM/RXbYaTAcDbOqhviVNiOsOWL1e/TxH2bJBJoGh12sKvggyeTmd1+ZzciHz3mNDIRqKaq9Js3N8jz6gXlPZYetnsgJoTPlrKKFOednjf/zEOvMJIeTChrU6Q56T3s5Ct80vFhYoeZKwI7lyaX1Dzh1JTbODsHUoYTbdoN1ecy9bcCfKV0PRX1hfDSWk46p74dBQdGepaRCKoKHoQsn9cg1nskjGY4jHvCHeYTsa6AOuMfxW+ZR8Rk+/56wP+Ot3d5vz6tcd4ijuGXT1uYCIJr1+02xbb6tJ4AxnRMQoL7974n982OFDMQgUw8CqCPeh+B93mLx8tPNgDUXY55nQNdH2Aj4DbJqUDjk0b+/x/iHr+KcXHsIaykhBrSjPBMx0TbODoNXC7vIcTnnhTXOUK0TkfXuCwobN+xlpGoyP6SHMzGZyRocNBFFWswctJB3KZFGXiCERI89gEea/6ejLvfxBW+/7+Zz8wqz183d3DRjzhq1DcQz87vJD/Qn+GlJQuQDQO5iGEMECFvB3yithZ1zY6NBQvHmDthLRtWbTNat7GKPgKC+/dWXKh2IUKAGLTN3phfhR7CgvLU1/dqYxpn84g7p4DKlELDTsuFywQMkTW0NxdBjX7MfwUqoX1V9DMe9pFPaBrWwWkHECee9NFdbpg0whUTeHNK34DYtI0pM65be53ah8dfGY5/4PpbOokxpK0Pb1pgFyxoQxgW3TTZfmAda63qFM1lcgmwYoq77g+6I/g0FXGWE+lMHh3KDu7p96vSYN5cwjp/i2SdVbF4/59lE7bNgkUBw+FP9ZuXHdhbbK3tR/Vb3JeMzzrByLIn0mgA0pq12FmLz0fldI6HBu1+Dce6OX87V7V3ruycBwBvXJmLWBLZu8RgZj661ZSzagw5jMIeocP03U4SQ0DCxB294HRQ7pRF0kZkrzdNAQzUlhf5LUYWsP1hL0pJaOfmO5jp0LXLOxYaWhGD6GFrZ9/WGTm3LHQ+6JySyh+1C6NGGoTxj8Bpiw3RZ07cGjoTgmJN6y9UHRraX4TRwmNtbhM6ccghNmjrPK9ZnJA9Ync/1m4ukAoRBVQzGVrQvVwWH/CVGdoR84zbkmLRmahmIoO8S3qQvtQkKH7YmYljaYdgq2fb3OaL+B4QzG1MWRiPs/i3LDAiVPJjTUAch1qDe278eFP3/FcY6pA6k0PzvzsM+MKcz3khXCdsqHddugl8rU5kFH+K1bQ8nVH4QSlM7V69B+m15mYQ8y3QN+GooUKAmzhpL00VBM2p+O/tKGmeOMs2LtPurms7CFdEDOlh+PkXGg0st2CyXnBo9edK3IrSH5+VDS0helZsnm9Ro5geI3hqUz/n14OCOCfShKoBj6Z5CQ1OtLJb19JMrCRuVDMUVq5UzR/lqZ6sOFaChGK4erHLdvpn84g/pkHMkYYThj1qDLDQuUPJk1sQFArrO+vDH3caoffHweAJ8tJtQszecZ7+/PdQ6979vbWBteRiEEsiJ4bYOpDYowh2qf9iJ5dhu2nZLBdap8jhc4xDEuADSPSQIAuvrNn2BV5dUn4p627+wcwFA6iziRIWzY+j8eM0cuqQgx69zgQT1IQwGAjj5dQ9EGfJ97puzifus+dKHsHly6tU/VmgaS/qEMxsqoJZOGotZQuTfWTMTI9tGZ2p3W2uw3K1bX5W6z2lVCCRSjI9rWUEzXZB0b35D0zN71PPXJuKfstOs63WSFsKO8Bgxlh5q8MjmBVMg3UcKc8oDl29IZGM5gTDKe8/NWwezFAiUPLnvfbHvWoV6ueCx3C997yAQQeWeur2/el1tY5vOQN2iRP6attY0Dr92GaOtQvC9VzqFvemFV9FrMcE2RNRSZT/8uRNhGhhCWaZHIX0NRs/lUMuZxUC7d0o7dXQNmH4rQtABD3YPpLBqkqSNoDyfAL5ovl7bfR0Pxe9GHMznfj2kMChIoX7xnuf3bfVlCCPQPZzC+0RLSHg1F0wj1XQbSWYF4nGwBG6SxJRPk75SX7XbXq65BmZFNQkFds+leKw1l/Jik2SzlECj+QRLmT3pb+YiAAYOGErRQ1Coz148K2cLeFMjgNuv959MbHX/3D1v+qKB3utywQMmDI6eN9axD0T8jkkrGkIzFPAP3397+Z/u3n9ng/97Y6fhboTpW0A7Hud2GDefo9nH3DFEI1MuBxKRVKQ2leUzSc1wVG3Udij5QRdl4L06EproEugbMGooSIqlEzPebGYm413SUzQrEyBKSpqYPprMYJ7Uj08w00K/kStOjudIB/g/9nIQcwM0Oam1wCRikPHubZbLICmD8GMtc6x58s1nLbFqXiHn2QUvEyO5fQVFvySCnvGx333DGMYFQ90FpoybTkrpO071WAmpcQ52PhmLlrU/GPAIpkxWoU74bvz4YszRgk1M+7IuKA8NZW1Dma/ISQtiaeVAE3ksb2+zfV/3+Lby4YS/GJONIxov7WmQxsECJwPvnTgYAXHLyrJxAsWe6uVsYJ7I+wOV6kCfPngDAUs1Ng1Sby7mmdwQ1IAdtZx4UNqy/aO4OlskKpKS5wayhSIFSn/S8VGomHjYJUvfC4UMJMXmls5bmNLY+4TDluOtPxAiJmNc+DgBnHTnFV0OJy0HSfU+FEFjxbof94vaY9nAymCOd7RKYMX4MknHCxj25zyo7Z5rmKK/hjMitnzH5G9JZNEozinuQWjhnov3bnXVAMw0BXk1ACY66eMwRRJHJCsRjMVugGP06DpOXj+aVVWU6zW3qGprrzaY4/RzThGdgOIMYWfmD8jbWJYzaudLK/CZrMSLUJ2NG7SdnwjZf88BwBs311v3Od2C/7YV38Ks/v+vJawo8UM9EfXahLhFDU8qq1+/dKScsUCJww6eOxwvf+gBicgADtK00tLH8sClNxtXZY+uTOG5GM/b3DWPltv3ocplxfvWa1Xk+fsLBAJwvlr7uwT0QqL4cCzB56S+DNzJI11AMJgVp8po6NoXdXQOOQUx/QYOcf6Z1GWFRXpmsQCJOGFuf9DV5KXNdIu71k6QSMRw9fay1DsWooVgCxV3z1n19AHJfvesb9L6Qel3mxaAC9ckYpjSlHIsPlaAB/DWUIekEj5HZHDecyaIhZZ71Tm6qs30k7qy2aajBR0MRXg3F1jxipM14zdo1YN1zPw1F1zx0s5fqE00py7xpCqdWaSb/TP+Q5YROJeLGwVa1tzGVMEbFpRJxx7Xq1ySEpfmPSZo1FHWfzDskZ5HOCjSPSTiuMyp3vbJVa6euoVjtuOvzJ9tpPa5F1cOZLCY2Ws9ZOe1X7+zE9Y+tQWu3ef1TKWGBEoEZ48fg0EmNAGDHpvfKB6k66uFTGhGPEZLaLE/RN5RGQzL3pQA1YAFWZ/7vZzcBAN4zo9kq0zFw52alnX3OwTUXFukfhaO/pB6naCZYQ1G7rB4zvRlCOHcECFtxbtdp0FD0usz7aWWRiMUCNRQ1q3ZrIUIIDKatwSIR8z6L4YyWL+BFJwJ6DSYYp1PeoKFkBBKxGBpTCcf9SmdzTlrT4AdYGkgyToj5+HeGM1k0+QiUgeGs3TfdJi81IE7w0VAyWcvEmIxTzmehTLpxsk1DJrNSlLBhvQ/qgR7qGuoSMcu0ZLjfyvFsdMpLJ3R9MmbU/NW1NNTFPc/aoaG4owTlualkDPXJuFHQqXthWvA5YPuGko7rjEqrNj6kDRrKtOZ6XHiiNfl0O+Z3dQ5gcpMlUPb1DmFVSyfueGkL/velLeipgMbCAiVP1AutHuTTa6wPbz30ldMByG/Ou2Zynf1p205s/Z0TDHpo6RFTrTUQSkPJZgWGMlkcedBYAMBa15YdatBRMy3TAOecEbrUfi200TTbVjOcmXKxnz6zjRIGa5WrBEoujFGfLf7xrV2YfdVj2OPwN1jflhlbn0D3oI9TPiuQiMc8Woi6d6lEDA11cccAZtWdQSoZt7/BoaNHywkB3PKM0+kJOLc8MUW+bW7rQSxGaEglHCazvqE0xtYnECN/DUUNkFZ0mkmgCDRKoeEuo38oYzuB3VnbeqwBKqehuAWKZTZNJXKDp6o/IdMB88CoBrkGg1nJfV3qd+56rLzJeMxXKKhJjRDegX9AOqH9NZQAk1fWX6CoflEX9xcozi16nMfU+cqUN+RzX6Kgv2cvbLAiSusSMZxzzDQA8AiJzv5hTUMZxMd/9jIeWrnDzlduWKDkiZplbmq17ONLt7YDAMbJ2V9jyjsIdvQOYUJDEn/4h/cByEX/pDNZLPi3p+3zlO1TzX6+/OsVEAJ47yzLB6N/4hPIOeXUi2F6oT/0H7mv7nl9KGqdgTlsuLV7AKlEDFPGWh8X0l8sfeYUtM1Dv/ai2yHE2vnqGvT9raxw1RjG1id9Z1WWFqM0Da9AqU/G0ZBKeLSMobS1kC6V9AoUk2DUtcJ0JovVO7vsSYV7Rv7qO/uwYU8P1u7qQlMq7jCZtXUPYXJTCnUGQQZY9/aPb+3C5rZe35BmS1v10VDSGV8n8CUyKGSi7KP3a585VnXXJ2NoSiVsganuaYxyGorftiwAMLkpZRx4ewfT2NM1aPv5dC1EPZv6ZFwO3N7ydQHuvt/9w2nUJ83PEsj1hYaUKcora1+XaXNRwHqv6pMxo8lrvzYpdNet7kOhGoqzneqdyeb8JPEYmuSz7h5MOzSkRIwwqdF6X3UfHsACpSZRg8kPH12D59e3eo7PnNDgGBz7htLY3TWACY119qLI/XKQ+v1fWhx565PStCBfrD+t2QMgF0nmXmvwD7/5C4BcR/Gq9c6/3R27b8iaOSZj3tBbANiwpwdTm1P2OgHnVhe5890bFTrK0O7FsGb+ihFsUx4Auw7AcuIm4sFO+UEpGCynvG4WsNqYSsTQWBf3+EEG01nbxOIeAD9/1zIA1grxw6dYJs69PTnN6X9f2uK4XvfCsrW7uuzfDXUJx31p6xnEpKYUmlLma1I7VgMwmuN2dfZjY2tugHCbn/qHMpgivyro9jupAVNpKM+t3+s43jeURkNdAk31CXvtjBpEG+oS9hoVvwE/lbDMkyaB8rCMXlT3Qh+ct7VbPqtDJjagMZUwTh56dbOha+Ly7r4+HDx+DOoTcWOgQ0tHH8aNSUoNJcDkJdwaiupDcYypMwu6vd2Ddn53/1fnm3woz6zdg417zJuDus+12mn9vbcnZwZrTCVsf1nPQNpxT+/6/EI0j0kgESOseLfDUZbSNMsJC5Q8UWYFALjsTmsA+ujx0+20E2aOw5a2XnvwPvVHzwAA3t7RaUfZqJd29c7cAATkHrh7JnjBcQehLh5zDET7tZmzEnJuoeDehLB70Ksej29IIhknw8rrLF7e1IazjpySM1dos0t9VucOMlA8+fZuRxvUyzKUySIRj9nhuYDTDp2Wfg7LKe8dZFZu68CDK1rQkEp4IqIcGkpdwmvy8tFQMlmBLW2WBnj9J4/D9z42T96jXP36oA/ktFS73Vo7mlK5ujNZgfa+IUxpqsOkxhTae70fyNK/CthQF/doVj95cj0AYJSiamAAABr6SURBVLkcJLw+lAwaUwk0pRK+i0HnHzrBmN47lEFDXRyHT2nEBjnYqUGyMRXHzImWyfMd1/Wq85pSCV8NQwn7L515GABnH1K+xGnNKRzUXO/pr0II9AyktQmTq393DmDWxAZfDWV/3zCmNVtaYdZlMnOsN8qYTV6pZMxyyrueRc9gGn1DGcyZ3Gj/rbN0i2W1cEd5CSFw+d3Lce7NL3raqnhunXOSmhXWGPK/L26x08aNSeY0lIE09vVYE5sbP/UezDu4GUSECY11BoHCGkrNoYSCjm57nzWhAVlhdfY9XQP2OoqFcyaiuT6JGAGd0uR1j4zuUqQ056cQlh/h8jPmYP6hE9GYijsccLrjTg3M7lnt9nbnAKj7BF7fvA/rdndj3JgkJjTWocM12/78XcuQyQocM70ZqaR3hqrPpLoMGzi2dg/gy79e4UizHfRpa2X2ODljBnKOTFV2Im7NeocyWc/MV63r2dTaYwlDbUBQM9oxyTiaUnHHDHfFu+1Yv6fbqKHos/p4jOxV0rpjXd3nY6Y3o7k+gXdlVJjdbjtMNW4JBfm83tjeYX+3ZlJTnT0A6Dz6Vm4d0th652x9OJO1TSyLTptt3UuDU35MMo7m+oRHQzlv3jQcOa0JsyY24IRZ4+3NHhVd/cNoHpPE1LH16B5II5MVuPnpDQAswTh3quXDe3GjU7MBpECpT6A+GfNsiAkA3394NQDg1MMnAXBqKG09g0jGCePGJDG+IemZmLR09COdFZgpo+OcWwVlpZBOIZXw1i2EwBNv70b3QNr+KJ7eZweGM/ag7NZQ1CSmKZXAmLqE5/MUrVLwHT7F8nm6Nat//cMqAMAE6ctQz0rXMvx44u3dnrTdXQNY/IolUE46ZDziMbKtHR19Q9jeYfXDmRMa7DxHTmvyBDLUxVmg1BzJeAyLTjvU9qUAljlCoXarbdnfh+3tuQHnqx+ai1jMenlWbt+PN7fv95RtR9MMZzGYzmI4I2wHW1O904SiR4oph39Hn/uFtOo/qLneU5calPuHM5jUWIc2TaB0Dwzbvo05kxptQbdc+osAyzY+rdkysZgWH173x7X27ys/eLh9XYAlMN2zJV2gdfUPo7k+afsE3FqKPpg2j0naAq2zbxjX/XENAGBCYxINqQT6tJn/p257DZv39iKViCOVjDkEih4oMZwRtla2+GXrRb5/2Tb87DkrGu/Oy07GoZMabZONQj2f3//D+9CUStjC7J1WS/M5ctpYTGuux/J3OxzX8LNnN+L2FzcDAB772hlo1PJmswLn3vQCnpUz1+9+9BikEjGP5tUvNwYcW5/07NDcO5S27fkmM+De7kFMGZvCVPk8t7T14LG3dgEApo6tt/0fD2uLb+1rHkijsS5h3y/9nuphxAePs94Lfbbf1j2ISY0pEJFHiALAI29a9S2Q67j0AfL1ze0QApg8NmVrArogXSdNrbs6B+yBVNf8+4czaKyLIxHzaueqnOYxSUxoSHreKzWZO2yKWUNRqCAbVe8SacIGLPPoF+9ehp8+td5OG0xn8NLGNrxXCg0Tiy+zQoYnNNShLhHD6p2d9gaqszSB8rHjD/bkrcR35lmgFMBZR01xvNDvO3yy/VtFRLV09GOHNJHc+/en2h1kfEMdXtrYhgt//orD5APkHP57uwft2a3yMzTWJbBPG3R12/7Js61Fbf/8uzftfM+tb8W3HnwLAPDitz+IC449CNPHeQVL31AGk5pS2KfNnnTN5siDxtqmgbulRtXZN4x39vbasyRduCn0AAIVVLCvdwj7egbxuxUtGFMXd/gc9MFZmeKUQFGCUV2X4tMLZ2FSYx127O/H2zs6cf3ja/DKpn0ALD9IY10cQ5msZ8DoHUxbdnctXR+EN+zptvdse279Xjy3vhX/8vtV9vGDxtXj8CmNWLuryzbVDaYz+MWLmzG2PoGjD2pGQ10CA8NZpDNZe+Z9+uGTMUv2j6/ft9Iu76d/2mD/PvbgcZZzXA6u6/d02+tjVEjxIRMb7DQAOPPfn0Nn/zBSyRhmTBjjuJerd3bilU377M8uuCPf0tpM/4SZ4wE4TXlzp+V2X3bzwoa9eGZdKyY21tk+MF0DOexfH7d/q76ujt/5yhb8bkWLrfE3unxOAPATOdieJrWbrdIk2dLRh8/e8ToAYEpTCpO0MFnACnpREwsgt7WLmngIIbC/bxiNqYQxElCZDJvrk5jQUIfO/mGH9v+GnAwqDUXfYiebFWiuT+BTJ83EHLnUQGn23/nD2/Z5H/6vl/D02lZ7kgIA3/u/t9HWM4i6eAxrr70Aiy9b4GhXKpEzE9clYjhx5njcu3Q73mntQYysfqlY4DJvqoizcjOiBQoRXUBE64loExFdVal61QCu+NrZc+3f0+VM7PsPv23PHE6YNc4+ruz0gDWDOe2wSfbf4xvqcPzMcfjTmj2aDdvqCOt2d+PFDXtxxo3PoncwjdYuaxB/8VsftF84IBciet2juReqLhHDQePqsatzAC0dfY6Z4/c+Ng+TGusc28QrYfDTi0/A5KYUjplurY/51EkzAACfvNXaXXlg2Ios0jfI3Ns9iFN+9DTeaunEtOYU3vnRR+yO/sc3d+LGJ9dhKJ1FS0c/fnnpAltgqkFwYDiD3iGrXGVq+atbX4UQVtjx56XfasrYFH7818djooxo+dh/v4y1u3LOzokNdbYgdJss1u3uRioZw+qdXbjlmY3oHUw7fFJfOuswjBuTtDVRVafOew+ZgNbuQZx+w7PY1zOIo777JICcNqXCe/uGM3h5UxuScULzmATq5fU+8fZu3z29mlIJ29+lC+sPH2f56uZMbsS2dusZ9Q6m7Xs3dWw9Dh5f7wjB/ugtLwPICYkxdQnHoL+3ZxBCWPdTzXCXbbVs76cfMckWFJ8/fTYAp79s0eKlAIA1u7o8frYXN+T6xOVnzPEc/6Hsn0qTaKq3fE6zr3oMHb1DePiNHXb+Dx1lhciulAP5Nk2YTh9XnzP/SIFy85INePUda2Jx22dOsqOelKnxp39aj87+YbxnxjjpZ8v1j79s68CVv7WCXcbWJ2wLgR7VpQJNlOlws/ZOt3T0o2sgjQWzJyAWI8wYP8YTnelGvesPLLeCdFLJOOoSMYcJC7DWw+nfR5k81mrbL17cjKxwRnGpvDECfnLR8bjvitMC21AqRqxAIaI4gJ8D+DCAeQA+TUTzKlH32Pok/vfS3OxBV0/VQx0YztozLN2Rf7RcUwIAK97twOzJzk5zwszxWLWjE2f95HkAsGdfR02z8rV09OPYa57CH1buQDxGmCUdpl8+yzIrPbV6N9bt7rJND9f/1XEAcg7ZC3/2CrbKDv6Dj8/DnMmNmNZcj87+YfxhpdWh32jZj3iM8OHjDrLbNaEhid++vg2vbmpDmxzkFl92Mk4/fDKWbe3Avp5BDAxnsLG1G3uksPuXC45GPEY4WNrAf/nyFttsMbY+gXPmTcPqay/AgkMn2NrK0d+zBuY9XYM4bkZOELf1DNkaH5ALRJjUmPPDrNrRCcDyc6mIKsByzv7ypc2O+/z4KstWfdOSDfjQfzxvayjXXXis/bxOOnSCZ/aqZogqlHpn54A9aAPA5049FEBuIvC75S3Y2z2IcWPqQEQ4ZU5O+J9+w7N49M2cGemfzzsSgDXT3Ns9iE2tPXa7DpvciKs/cjQAS8vYsKcHfUNp/HnzPjv/xQtmYnJTCh19w3hZ2+cJAG777HwA1n3f0dGPdCaLrW29+OBPnwdg2ddVVNId0synRyuqwfOlDW1Y8W4HdnfmhFZ775Bt/lEOaTWgA8B3PnIMxkhB2jOYdpjFVD71rACr/339vjcAAItOOxTjGpJork9g9c4uDKYz9qaIY5JxzDu42R70d3cNQAhha9LnHDMNH37PdPsdau8dwnAmi58/9w4A4Ay5pdIDy1ts4f5dTYuY1FTnWXW+Y38/Hlq5A++fOxkTG+swfVy9HayQzQqc+ZPnAABHyff8qIPGYvVOS5NNJWK2GUzn3te3YfZVj9l/X/uJYwFYJlIdfc0aAFzz8WPt3yfMGu84NqYujh98fB4e//r7cfGCWZh3cLOn3nJQGT2oPCwEsEkIsRkAiOg+ABcCWBOYq0Scc8xUAMBcQwf51vlH2cLEzZ2fPxmn/fhZ++9505ux/Lvn2B364gUz7X18AGC2VJsf/eoZOPK7T9jpamanZiz/fN6R+J8X3sGPHl+HHz2+DlPGpvDh4w7CZ06xBriPvmc6vnrvSuzrHbLXpiizzhffPwc/e24T/vH+N/GP979p19GoveTprED3YBp/90vL1HDR/Jk4bEoTjpjahCdX78Z8bT0NAHzlA4fjE3IrmYmNdZh/6ASseLcDT6/Zg6MPGosnv3Gmfe6ZR07BTUs22BFx6h4CwClzJuL1Le04+Xpn+Vd92Bpcx7mCJE4/YhIWX3Yy4jHCbBmF8wE5aCoue99sTGysw01LLFPTnq5BfPVeywR1viZE3TPE42eOwy/lRGKqFCiAM5ruh3IwOETeW2V6+Wup3c0/dAImN9WhrWcIu7sG7Hp/eekCnDPPmomrQeecm3JriB756hn2oKuiA+d9/ymcJ/OMrU+guT6JyTJ0WJmEAEu7UHt9nThrPH77+jYc8Z1cXwKAT5x4MIgIkxrrbNPRE1/PPaMFh05AIkb27F3nF5+bb09Yvvm7N/HN3+X60IUnHmxt6yInXTct2WDf91PmTMT9X7JmznO1wVPXCP/pXKsfdA2k8eibOx0C+I1rzkUyHrOF0v/77Uq8dWanXfbP/u69AHJ+TRUWDlgCdMb4Mfjg0VNx79JtuOzOpegaSGONnNi8Z8Y4pBJxW6Ccd/OL+Oa5R+I/ZNsXHGrdz8OmNOKhlTswf/YE7NGE7Dyp1c8/dAKeXdeKOVdb5r+L5s9EXdzaGmje9GaceO0SXP94zt/4xNffb/dbAHj6n87CYDqDj97yMi6aP9Nx36c11+PaC4/Fb1/fhls/c5LnuVx2+hxPWrkZsRoKgBkA9BVaLTKtIhAR3v7h+fjj187wHLvyg0fYv//9ouMdx6aPG4Ml/2i9qMfPHIe/OXkWJjelME06zo+fOR6fXngIAOADR03BYdJOW5eIYesNH8V/XXKiXdbXPpSrJ+GK4NjbPegIE43FCE98/f2Oc5QNeHxDnaMswDL76PzDB5zHP3midas/5erkim+cM9fRpm+fnxsYzpWDoEL9rQbm2z5zkv0i/+Jz821zieKN75+L84+1Bv7TDp+Ei7U2fOqkmXb49dHTnTM8AFh33QX4wSeOxdfOnmsLJR21lgMAjnXN6n7wiWMxVT6n+YdO8AQ7rLvuAtvxeapmygTg8F+9+O0PespWs2UAti9DR5/Bf+ejx9i//7RmD+riMbz5/fMAwGH+VKjnDMBeYa3zmy+eYpu2Xrv6bJx99FTc+pmTbC0MsLTyey5f6Mm74rvn4PxjDwIR2aHBis+eegh+evEJ9t8numbRP/u73CDotvkDwDPfPMueMHzo6KmOY986/yj7OesWABXc8K3zj7KvaerY3FYliqXfORtEhCtkm1/a2GYHylw0fybu/9KpAJxaghImX/nA4fb7cdzBlhb9nT+8jVue3YS6RAzLvnOOXfcF2gRFXccXzpiD9x0+GeMb6nDDX78HAPCJEw7G0/90lm1eVhwxtQnHHjwOf776bHz7Am9/vfS02XjyG2fa+8RVG6rGV71KARFdDOB8IcQX5d+fA7BQCPFV13lXALgCAA455JD57777rqesctDaNYAnV+/GpxcegqQhXE8tJiuEVS2daEzFbWGj2Lm/Hw+uaMHqnZ2oT8Zx46eOdywYBCyH5B0vb8EpcybhPTPHOY6lM1nE5dfeTKtq05ks1u3uxrEy1l3n9hffwbKtHTjjiMn425NneeoFrMiWP2/eh8+eeqjnnuzq7McdL21BYyqBr50912FG3N05gM1tPXh2bSu++P7DHM5HRUtHH97Z24sz5052tG0wnUFdPIaXN7XhlDmTjNd19UOr8Jd3O3DP5Qttwa4YzmRx39JtaOnox9UfOcaTd0/XAB59cyeOmd6M04+Y7DjWPTCMDXt68MqmNlx62qH2wkKdHfv7kc0KW1tUDAxnsHlvL/60Zjc+e+qhtuahEELg7+9ZjqfXtuLR/3eG41m29w7hpY178W+PrcUHjpyCay88zjY5AVbfvPu1rVg4ZxLG1idw0iHm9Skm3t7RicZUAne8vBmfOeVQxwCYzQrs6x3CgytacNrhkzwCpGcwja1tvUhnBY6Y2uQQkgDw6qY2DGWy2N7Rj/fOGu8weQJWMEj/cAY9g2kcOqnB04f29Qzi5U1taOnox5fPOtwTKdXeO4THV+3CmXOn4JBJuft996tbsW53F047fDJOmDkOsyY0OCKinl/fiufX77XWZNXFHZOF4UwW9y/bjtU7uzBzwhh86OipHqHw8sY2ZITAIRMb7LUrOurzAbUMEa0QQiwIPW8EC5TTAPxACHG+/PtqABBC/Ngvz4IFC8Ty5cv9DjMMwzAGogqUkWzyWgZgLhHNIaI6AJcAeKTKbWIYhjlgGbFOeSFEmoj+H4CnAMQBLBZCrK5ysxiGYQ5YRqxAAQAhxOMAHg89kWEYhik7I9nkxTAMw9QQLFAYhmGYksAChWEYhikJLFAYhmGYksAChWEYhikJI3ZhYyEQUTeA3QA6A04bF3D8EADbCswbdryYvGFtG43tCjteTLuKLXsktivs+GhsV9jxWu371WjXUUII715GbtS24AfCPwDLAdweco7vcQB7C80boeyC84a1bTS2qwTtLvhZjsZ2RSh71LWrAu0eNe8kgOVBZap/B6LJ69Eijns/s1i6sovJCwS3bTS2K+x4Me0qtuyR2K6w46OxXWHHa7XvV7NdgRxoJq/lIsJ+NOXKX05qtW3crvzgduVHrbYLqN22FdKuqHkONA3l9irnLye12jZuV35wu/KjVtsF1G7bCmlXpDwHlIbCMAzDlI8DTUNhGIZhysQBL1CIaDERtRLR21raCUT0GhGtIqJHiahZpieJ6G6ZvlZ9g0Uee56I1hPRG/LfVFN9ZWpXHRHdKdPfJKIPaHnmy/RNRHQLub+MVb12lfp+zSKi5+RzWU1EX5fpE4loCRFtlP9P0PJcLe/LeiI6X0sv2T0rcbtKds/ybRcRTZLn9xDRz1xlVe1+hbSrqn2MiM4lohXy3qwgog9pZVXzngW1q7h7FiUUbDT/A3AmgJMAvK2lLQNwlvz9BQDXyd9/B+A++bsBwFYAs+XfzwNYUKV2XQngTvl7KoAVAGLy76UATgNAAJ4A8OEaaVep79d0ACfJ32MBbAAwD8C/A7hKpl8F4Eb5ex6ANwGkAMwB8A6AeKnvWYnbVbJ7VkC7GgGcAeDLAH7mKqua9yuoXdXuY+8FcLD8fRyAHTVyz4LaVdQ9K8mNHun/AMyGc4DsQs6/NAvAGvn707DC6hIAJskHN7EcnTfPdv0cwGe1854BsFB2tHVa+qcB/KLa7SrX/XK18WEA5wJYD2C6TJsOYL38fTWAq7Xzn5IveFnuWbHtKvc9C2uXdt5l0Abuat8vv3bVQh9znUsA9sGaKNTEPXO3qxT37IA3efnwNoBPyN8XwxokAeBBAL0AdsFaafpTIUS7lu9OqSZ+rxgVtoB2vQngQiJKENEcAPPlsRkAWrT8LTKt2u1SlOV+EdFsWLOw1wFME0LsAgD5v1LhZwDYrmVT96Zs96zIdilKfs8itsuPat+vMKrZx3Q+BWClEGIQtXXP9HYpCr5nLFDMfAHAlUS0ApYKOSTTFwLIADgYljnim0R0mDz2GSHEewC8X/77XAXbtRhWp1wO4D8BvAogDWv24aYcYX35tgso0/0ioiYAvwfwDSFEV9CphjQRkF7tdgFluGd5tMu3CENaJe9XENXuY+r8YwHcCOBLKslwWsXvmaFdQJH3jAWKASHEOiHEeUKI+QDuhWXHBiwfypNCiGEhRCuAVwAskHl2yP+7AfwWlvCpSLuEEGkhxD8KIU4UQlwIYDyAjbAG85laETMB7KyBdpXlfhFREtYL9RshxEMyeQ8RTZfHpwNolektcGpL6t6U/J6VqF0lv2d5tsuPat8vX2qgj4GIZgL4A4BLhRBqHKn6PfNpV9H3jAWKARXZQEQxAN8F8D/y0DYAHyKLRgCnAlgnTTqTZZ4kgI/BMgNVpF1E1CDbAyI6F0BaCLFGqrndRHSqVF0vhWVfrWq7ynG/5PXdAWCtEOIm7dAjABbJ34uQu/5HAFxCRClpjpsLYGmp71mp2lXqe1ZAu4zUwP3yK6fqfYyIxgN4DJZP7BV1crXvmV+7SnLPSuUIGqn/YM2odwEYhjVzuBzA12E53DcAuAE5h3MTgN8BWA1gDYBvyfRGWBFMb8lj/wUZmVOhds2G5YBbC+BpAIdq5SyQneIdAD9TearZrjLdrzNgmQ3eAvCG/PcRWMETz8DSjJ6BDKKQeb4j78t6aFE2pbxnpWpXqe9Zge3aCqAdQI989vNq5H552lULfQzW5KpXO/cNAFOrfc/82lWKe8Yr5RmGYZiSwCYvhmEYpiSwQGEYhmFKAgsUhmEYpiSwQGEYhmFKAgsUhmEYpiSwQGGYGoGIvkxEl+Zx/mzSdn1mmGqTqHYDGIaxFpUJIf4n/EyGqV1YoDBMiZAb8z0Ja2O+98Ja6HkpgGMA3ARrYWwbgMuEELuI6HlY+5udDuARIhoLoEcI8VMiOhHWjgMNsBa/fUEI0UFE82HtkdYH4OXKXR3DhMMmL4YpLUcBuF0IcTysbf2vBPDfAC4S1l5niwFcr50/XghxlhDiP1zl3APgX2Q5qwBcI9PvBPA1IcRp5bwIhikE1lAYprRsF7n9kX4N4F9hfcRoidwJPA5r6xrF/e4CiGgcLEHzgky6G8DvDOm/AvDh0l8CwxQGCxSGKS3uvYy6AawO0Ch68yibDOUzTM3AJi+GKS2HEJESHp8G8GcAU1QaESXldyh8EUJ0AuggovfLpM8BeEEI8f/bu0MbhIIgCoBvExS1UAKdIAgtgQFDFbRCcNQABvsR/zwJ2QTEjDxxWfeym8veI8mzqtbjfNNfPnxPhwK9bkm2VXXKvOX1kPkb3/0YWS0yfzZ2/XDPNsmxqpZJ7kl243yX5FxVr3Ev/A3bhqHJeOV1maZp9eNS4CeMvABooUMBoIUOBYAWAgWAFgIFgBYCBYAWAgWAFgIFgBZvdD8QMNse8ScAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYXHWZt38/tXRX71uSzr5vkECCiQkIKIgsOiouoDCO4DY4I/5Gf+Ms6Dvv6KiMy4iOOiOKgOI2wCAgCojIvoeEBELI1tn33reqrv37/lHnVFd319adqq4lz31dfXXlW+ecPnXSfT7n2cUYg6IoiqJkg6PQJ6AoiqKUDioaiqIoStaoaCiKoihZo6KhKIqiZI2KhqIoipI1KhqKoihK1qhoKIqiKFmjoqEoiqJkjYqGoiiKkjWuQp9ArpkyZYqZP39+oU9DURSlpNi0aVOnMWZqpu3KTjTmz5/Pxo0bC30aiqIoJYWIHMhmO3VPKYqiKFmjoqEoiqJkjYqGoiiKkjUZRUNE5ojIEyKyXUS2icjnrPWviMgREdlifb0rYZ8vikibiOwUkUsT1teIyFbrvR+IiFjrlSJyl7X+kojMT9jnWhHZbX1dm8sPryiKooyPbALhYeALxphXRKQO2CQij1rvfc8Y853EjUXkdOAqYAUwE/iziCw1xkSAm4HrgBeBh4DLgIeBTwI9xpjFInIV8C3gwyLSDHwZWAsY62c/YIzpObmPrSiKokyEjJaGMeaYMeYV6/UAsB2YlWaXy4E7jTEBY8w+oA1YJyIzgHpjzAsmNvnpF8D7Eva5w3p9D3CRZYVcCjxqjOm2hOJRYkKjKIqiFIBxxTQst9FZwEvW0mdF5DURuV1Emqy1WcChhN0OW2uzrNej10fsY4wJA31AS5pjKYqiKAUga9EQkVrgt8DnjTH9xFxNi4DVwDHgJnvTJLubNOsT3Sfx3K4TkY0isrGjoyPt51CUUsMbCHPvK4czb6gok0BWoiEibmKC8WtjzL0AxpgTxpiIMSYK/BRYZ21+GJiTsPts4Ki1PjvJ+oh9RMQFNADdaY41AmPMLcaYtcaYtVOnZixoVJSS4r7NR/j7u1/lcI+v0KeiKFllTwlwG7DdGPPdhPUZCZu9H3jdev0AcJWVEbUAWAJsMMYcAwZE5GzrmNcAv0vYx86MugJ43Ip7PAJcIiJNlvvrEmtNUU4ZDnR5AfCHogU+E0XJLnvqXOCjwFYR2WKtfQm4WkRWE3MX7Qc+DWCM2SYidwNvEMu8ut7KnAL4W+DnQBWxrKmHrfXbgF+KSBsxC+Mq61jdIvI14GVru68aY7on9lEVpTQ52B2zMMJRFQ2l8GQUDWPMsySPLTyUZp8bgRuTrG8EViZZ9wNXpjjW7cDtmc5TUcqVA12WaETGhPMUZdLRinBFKWKMMRyyLI1QRC0NpfCoaChKEdPtDeINxry74ahaGkrhUdFQlCLmQPdwxlQorJaGUnhUNBSliDmUKBpqaShFgIqGohQxB7uGRSOsMQ2lCFDRUJQiZoR7SrOnlCJARUNRipiD3T4aq92AZk8pxYGKhqIUMUd6hlgwpQbQ4j6lOFDRUJQixhsM01xdAah7SikOVDQUpYgJhqNUV8YaN2hFuFIMqGgoShETDEepqXACGtNQigMVDUUpUqJRQzhqqLEsDRUNpRhQ0VCUIiVoiYRtaWgbEaUYUNFQlCLFFo2qCjumoZaGUnhUNBSlSAlavaaq4zENtTSUwqOioShFii0alS4HLodoTEMpClQ0FKVIsUWjwuXA5RSNaShFgYqGohQpdkyjwuXA7XCopaEUBSoailKkxC0Np2VpaExDKQJUNBSlSBlhaTjV0lCKAxUNRSlSEmMaMdFQS0MpPCoailKkjHFPaZfbvPHEznbufeVwoU+jJHAV+gQURUnOiOwph8Y08sWJfj9/95vNNNa4+cCbZhf6dIoeFQ1FKVJGxzSCGtPIC1/9/RsMBMKFPo2SQd1TilKkJLqn3E6HthHJA3s7Bnlw6zFaaioYCIQ12SALVDQUpUjR4r780+0NAnDW3CYA+oZChTydkkBFQ1GKFC3uyz9DoQgAMxo8APT6VDQyoaKhKEVKvPeU06nFfXliKGiJRqMtGsFCnk5JoKKhKEWKbWm4XaLFfXnCbwmzWhrZo6KhKEXKyEC4aHFfHvBblsb0+ioAetTSyIiKhqIUKcFwFIeAy+nA5XBocV8eGB3T0EB4ZlQ0FKVICUaiVLhif6Ia08gPtmhMravE6RC1NLIgo2iIyBwReUJEtovINhH5nLXeLCKPishu63tTwj5fFJE2EdkpIpcmrK8Rka3Wez8QEbHWK0XkLmv9JRGZn7DPtdbP2C0i1+bywytKMRMMR6lwxv5EK7S4Ly/4LdGocjtprHLTozGNjGRjaYSBLxhjTgPOBq4XkdOBG4DHjDFLgMesf2O9dxWwArgM+JGIOK1j3QxcByyxvi6z1j8J9BhjFgPfA75lHasZ+DKwHlgHfDlRnBSlnAmEo1S4Yn86amnkh6FQhAqXA4dDaKx206eikZGMomGMOWaMecV6PQBsB2YBlwN3WJvdAbzPen05cKcxJmCM2Qe0AetEZAZQb4x5wRhjgF+M2sc+1j3ARZYVcinwqDGm2xjTAzzKsNAoSlkTikSpjLunNKaRD/zBCFXumDA3VVeoeyoLxhXTsNxGZwEvAa3GmGMQExZgmrXZLOBQwm6HrbVZ1uvR6yP2McaEgT6gJc2xRp/XdSKyUUQ2dnR0jOcjKUrREgxHcTsFALdDs6fywVBoWDQaq92acpsFWYuGiNQCvwU+b4zpT7dpkjWTZn2i+wwvGHOLMWatMWbt1KlT05yaopQOwfBwIFzrNPKDPxSlqsIWjQot7suCrERDRNzEBOPXxph7reUTlssJ63u7tX4YmJOw+2zgqLU+O8n6iH1ExAU0AN1pjqUoZc/I7CmHxjTywFAogse2NKrc9GrKbUayyZ4S4DZguzHmuwlvPQDY2UzXAr9LWL/KyohaQCzgvcFyYQ2IyNnWMa8ZtY99rCuAx624xyPAJSLSZAXAL7HWFKXsScyecjuFkMY0co4/FMHjjl3jppoKfMEIgXCkwGdV3GQzT+Nc4KPAVhHZYq19CfgmcLeIfBI4CFwJYIzZJiJ3A28Qy7y63hhj/y/8LfBzoAp42PqCmCj9UkTaiFkYV1nH6haRrwEvW9t91RjTPcHPqiglRaJ7yuVwYAxEoganI5nXVpkIQwmB8IYqNxBrJdJa70y32ylNRtEwxjxL8tgCwEUp9rkRuDHJ+kZgZZJ1P5boJHnvduD2TOepKOVGIBKloSJ2I3NZAfFQJIrToTe0XOEPR+Ji0VRdAdii4SnkaRU1WhGuKEXK6OI+QIPhOWYoGMFTYafcxsRD027To6KhKEVKKBKlwhWzMGxLQ4PhucUfiuKxCigbqofdU0pqVDQUpUhJtDRctqWhwfCcMhSKUFURu7b1npho9PtVNNKhoqGULIOBMG8cTVcyVNqMqNNwqKWRD/wJxX12vUYgpNlT6VDRUEqWX7ywn/f/6Lmy9fMn1mm4NaaRc4wxIyrC7XqNIRWNtKhoKCVLe3+AQDhatjMQYu6p4YaFgLYSySGBcBRjiAfCPZZA+0MqzOlQ0VBKFrvlQ1mLxihLQ5sW5g67Lbon3kk4NiHRr5ZGWlQ0lJLFFotyzHYxxoxsI6IxjZxjWxR2LANiAqLuqfSoaCgli90nqG+o/PLqbTdUhd3l1hIPHcSUO4YSBjDZVLqd6p7KgIqGUrLYA3PK0T1li8Nw9pTlnlJLI2cMBS33VIJoVFU4NHsqAyoaSslSzu6pYNgSjXidhu2e0qfgXGFbGnbDQlD3VDaoaCgliTEmwT1VxqJhBWntYUyhqFoauSKQxD3lcTs1EJ4BFQ2lJPEGI0SsG2hZWxoJXW5BLY1cEo9pJATCqzSmkREVDaUkSZyw1l+OlkYkdkPT4r78kTwQ7lD3VAZUNJSSJNG6KMdpa4FRMQ23FvflnGSBcHVPZUZFQylJbOuiwuko85iG3eVWi/tyjd+6xiOyp9zOuGAryVHRUEoS27qY3Vw1wlVVLgzXaVjVyg61NHKNPzg2puFxO+IWiJIcFQ2lJLHdU/Oaq+kbChf4bHLP6EC4/V1jGrkjnnLrSki5dTvx64zwtKhoKCWJ7ZKa11JD31AQY8rrCXx0IFzbiOSeoVCECqcj7voDO3tKRSMdKhpKSdI7FKTC6aC13kMoYsou42VscZ9aGrnGH4pQ6R55C7TbiJTbQ0guUdFQSpI+X4iGajeNZTqiMzDKPWVnT4W1uC9nJA5gsrGrwzUYnhoVDaUk6RsK0VjlprHKHf93OWFbGpWj6zT0ZpYzhoKREUFwGK7Z0GB4alQ0lJKk1xeiocpNQ1V5Whp2w0JbLOLZU2pp5IyhpJZG7N8aDE+NioZSkvQOhWisdtNQXd6Whu2eEhFcDtE2IjlkKBSlMoV7SluJpEZFQylJ+odC1CdYGuU2U8MO7FcnuE9cTtGYRg7xBsLUVbpGrKl7KjMqGkpJ0usL0lhVQWN1hfXv8rI0fIEIDhmOaUBspkZQYxo5Y9AfpnaUaFSqeyojKhpKyRGORPEGIzRUuampcOJySNm5p3zBCNUVLkQkvuZ2ObSNSA4Z8Ieo9YwUDXteuNZqpEZFQyk5fNYfdE2lExGhqsKJr8zcCb5geIRrCrBiGuqeyhUDgbGWhp1NpaKRGhUNpeQYGtUzyON2Eigzd4I3GKFm1A3N7XRo76kcYYxhMBCmfrSloYHwjKhoKCVHXDTctmiUX5O5oWB4TDpoLBCuN7Nc4AtGMAZ1T00AFQ2l5PCNFg1X+U1b8wYi1FSOSgd1aV+kXDHgjzW5rK10j1i3rddya0uTSzKKhojcLiLtIvJ6wtpXROSIiGyxvt6V8N4XRaRNRHaKyKUJ62tEZKv13g/EivCJSKWI3GWtvyQi8xP2uVZEdltf1+bqQyulzegxnVUV5deZ1BeKBcITqfW4GAyUX0ffQjAYiCVOpLY0yushJJdkY2n8HLgsyfr3jDGrra+HAETkdOAqYIW1z49ExH5cuhm4DlhifdnH/CTQY4xZDHwP+JZ1rGbgy8B6YB3wZRFpGvcnVMoOfyiZpVFmohEYGwivrXTFn5CVk8O+jnWe0Sm3dkyjvH6fcklG0TDGPA10Z3m8y4E7jTEBY8w+oA1YJyIzgHpjzAsm1j7yF8D7Eva5w3p9D3CRZYVcCjxqjOk2xvQAj5JcvJRTDNs9ZT+Jx+Y6l9eToZ1ym0idx8WgikZOiIvG6DoNlwMRFY10nExM47Mi8prlvrItgFnAoYRtDltrs6zXo9dH7GOMCQN9QEuaYymnOMPuqdivr8ftJFBmf+S+YHhMTKPO42JA3VPjpn3Ajy848rrZbr7R7ikRKUvLNZdMVDRuBhYBq4FjwE3WuiTZ1qRZn+g+IxCR60Rko4hs7OjoSHfeShkwZN0Aqqwn8XIcnONN0oG1zuNmwF9eRYz54mCXjzue38/HfraB9f/+GF/7wxsj3h+MB8JdY/b1uB0a00jD2CuWBcaYE/ZrEfkp8Afrn4eBOQmbzgaOWuuzk6wn7nNYRFxAAzF32GHgglH7PJnifG4BbgFYu3atJrKXOclSbsvpjzwciRIMR6kZHQivdOEPRQlFovHut0py/vLWFzncM8SMBg8NVW6O9PpHvG9bbHUe95h9q9xOzZ5Kw4R+86wYhc37ATuz6gHgKisjagGxgPcGY8wxYEBEzrbiFdcAv0vYx86MugJ43Ip7PAJcIiJNlvvrEmtNOcXxjWrmV25znUd/Phs7aKtxjfQYYzje5+evz1/A8ze8nZUzGxgcZaHZFltyS6P8LNdcktHSEJH/IfbEP0VEDhPLaLpARFYTcxftBz4NYIzZJiJ3A28AYeB6Y4x99f+WWCZWFfCw9QVwG/BLEWkjZmFcZR2rW0S+BrxsbfdVY0y2AXmljPEHI0hCMz+P21lWxX2+wMhAv419gxsMhGmqqZj08yoV+ofChKOG1noPIkKdx8WJ/pGWxqA/lp3mdIz1gtsjX5XkZBQNY8zVSZZvS7P9jcCNSdY3AiuTrPuBK1Mc63bg9kznqJxa2MNz7GZ+sTYisbnOiQ3+ShWvFbMZGwiPuVL6Na6Rli5vAICW2piw1laOrW8ZTNJ3yqbK7VBLIw3qGFVKDl9w5MS1cpvrPDpmY6Puqezo8cVmqzTXVAJ2AsHIazbgD4+p0bBR91R6VDSUkmMoFImP5YTy6xfkDdiWRmr3lJKarkFLNKxZK3YlfSRhgNVAIExtkiA4WO7OMvldygcqGkrJMRSMjAgS2wJSLn/omQLhWhWenm6vJRqWe8ruZOtNqNUY9IfGFPbZlGMKdy5R0VBKjqHQyBoGu8ivXIKXKQPhtmiopZGWLks0WmqGYxowUmzTxTQqyyyFO9eoaCglx5iYRrm5p6wn4tGWRr3lTtECv/R0e4NUVzjjFqidQJAYC0oX06iucI6pIFeGUdFQSg7/KEvDvjmUi2jYgfDRMY1KlwOXQzQQnoEeb5Cm6uGU5GG33rDYDvrDY1qIDG/vZjAQJlYupoxGRUMpOUbHNOzOpOUS00hladg1BxrTSE+XNxhPt4UEt5513aJRw2AwnDKmUVvpIhQxZZONl2tUNJSSwxcclT1lvQ6UiR/aF4jgSCheTERnamSm2xukOaH4sX5ULMgbDCed2jdmexXnpKhoKCWHPzTS0qgqM/eULxihpsKVtFCxrlKbFmZitGjY0/ns6zaYpu8UJFomep2ToaKhlBxji/ss0SiT/lO+YHhMh1ubWnVPZaTLG4hnTsHYosh0HW4hJsyg9TCpUNFQSgpjTLyNiI3HXV4pt95gZEwQ3KZe3VNpGQpG8IeiI3pzVVc4cciwu2kgxSwNm9ExEGUkKhpKSWEHJ6sSahjslNtyaVo4FBw76tVGR76mJ953KkE0RMS6bjF308EuHwDT6z1Jj6FFlOlR0VBKCl+8L9Pwr67tyikX95Q3EEkpGnY6qJKceDW41XfKps7jjlsYmw/2UF3hZGlrXdJj1FVqPUw6VDSUkmIoNLZa2s4yKhf3lC80dj64TSymEdIaghR0xUVjZOv4xFTlzYd6WTW7MWlbdHtb0JhGKlQ0lJLCHvXqSXgSFxEqXY6ymRPuC4ydD25T59EagnR0D6YWjUF/GH8owhtH+zlrbmPKY2hMIz0qGkpJMRSM3SyrR7UNL6fOpLHssFSZPXpDS0f7QCymMaV2pGjUVroYCIR4/Ugf4ajhrLlNKY/hdjrwuB1qaaRARUMpKeyeQKNTUsupM6kvmNrSqFXXSVoOdHlpqakYU4Nhz9TYfLAXgNVzUlsaEKvt0JhGclQ0lJLCtiZGi4anTDqTGmMYDIRTxzQqxzbfU4bZ1+ll/pSaMeu1lnvqlYM9zGmuYmpdZZK9h6nXepiUqGgoJYVtTYyealcu09a8wQihiKGpOnm1sp1VpV1Yk3Ogy8f8lrGiUedx0e8P8ezuTs5e0JLxOFpEmZqMM8IVpZjwpRiFWlkmMY0eK/unaVQg18a2sHxl8FlzzVAwwvF+P/Nbqse8V+9xE4oYQpEwl6+elfFYdVpEmRK1NJSSYijFVLsqt6MsGhb2+mJ+9MTW3onUWG6rcilkzCX7u7wAyd1TVgLBtLpKzlmUhaWRUAyojERFQykp7JulZ0xMw1kWxX09PsvSyOieKv3PmmsOWKKxIIlo2LUX7101M2V9xsjt3Ro3SoGKhlJSDKVwT3lc5RHTsEWjMYWlUaUxjZTs64y1B5mXxD01r6UGt1O4Yu3srI6l7VpSozENpaQYCkVwOwW3c+TzTrlkT8VjGmppjJv9nV6m1I5NtwVYM6+JrV+5dMQclnTUe1wMBsNEowZHFpbJqYRaGkpJ4U2RjlpVUSaBcCum0VCVXDTs5owqGmPZ3+VNmjllk61gQCx7ypjhKYrKMCoaSkkxEAjH/dOJVJaJe6rXF6Shyo3LmfxP0+EQqtzOeDsVZZj9XclrNCaCba1oBtVYVDSUkmLAH046PMfjdpZF9lSPL5TSNWVTXeFUS2MU0aihfSDAjIbk7c7HS622a0mJioZSUgz4Q9Qn8Vl73A6CkSiRaGl3f+3xBVMGwW2qK52acjuKAX9s7nema5ctOlMjNSoaSkkx4E/unvKUyZzwHl8ws6XhdqmvfRS9Q1bWWYpY0Hip0znhKVHRUEqKwUA46ZjOqnIRDW8oZWGfTZW6p8ZgF0U2ZhDcbNGYRmpUNJSSIrWlYQ1iKvE5E73ZuKcq1D01mr6h9Fln40VjGqnJKBoicruItIvI6wlrzSLyqIjstr43Jbz3RRFpE5GdInJpwvoaEdlqvfcDERFrvVJE7rLWXxKR+Qn7XGv9jN0icm2uPrRSmhhjGPCHkubhl4N7KhCO4A1GaK7RQPh46R3KtaVhtaBX0RhDNpbGz4HLRq3dADxmjFkCPGb9GxE5HbgKWGHt8yMRsZOjbwauA5ZYX/YxPwn0GGMWA98DvmUdqxn4MrAeWAd8OVGclFOPQDhKKGKSZk9VukpfNIZdLJncU66yqEnJJX1WJX1DVW4C4TUVLkQ0ppGMjKJhjHka6B61fDlwh/X6DuB9Cet3GmMCxph9QBuwTkRmAPXGmBdMbLjxL0btYx/rHuAiywq5FHjUGNNtjOkBHmWseCmnELaroD5ZTKOi9EVjuO9UBveU26ltREbRm6Eocrw4HEJthYsBjWmMYaIxjVZjzDEA6/s0a30WcChhu8PW2izr9ej1EfsYY8JAH9CS5ljKKYr91JcsEO5xWTGNEq7V6PHaHW4zuKcqnfgCpSuO+aB3KERNhZMKV+7CtPbgJmUkuQ6EJ2vSYtKsT3SfkT9U5DoR2SgiGzs6OrI6UaX0sDNZ6irLM6bRm6FZoU11hRNfKELMaFcgZmnkqkbDpk4HMSVloqJxwnI5YX1vt9YPA3MStpsNHLXWZydZH7GPiLiABmLusFTHGoMx5hZjzFpjzNqpU6dO8CMpxY79B5y+TqOELQ3LxdKcYgCTTXWFi0jUEIyM/KzGGG59Zi///URb3s6xWOkbCubMNWVTW6mDmJIxUdF4ALCzma4FfpewfpWVEbWAWMB7g+XCGhCRs614xTWj9rGPdQXwuBX3eAS4RESarAD4JdaacoqSzj1l12mUcoB4uC16+ptf/LOOyqC66U+7+PqD2/n+Y7tL2uKaCDFLI7eiUedxayA8Cdmk3P4P8AKwTEQOi8gngW8CF4vIbuBi698YY7YBdwNvAH8ErjfG2L+9fwvcSiw4vgd42Fq/DWgRkTbg77EysYwx3cDXgJetr69aa8opynAgPHkbESht91TfUIhKlyNjN9Zk7dF3nRjgv55o4/QZ9QTDUbYc6s3ruRYbvUO5F41ajwbCk5FxnoYx5uoUb12UYvsbgRuTrG8EViZZ9wNXpjjW7cDtmc5ROTVI556qLIOYRp8vlJWLpSqJaBzuiQ0guuGdy/nYzzbwwp4uzl6YeaxpudDrC+Us3damXmMaSdGKcKVksP+Aa5J2uY39KgdKuCK8byg70bDniSSm3XYMBABYOLWGFTMbeGFvV35OsggxxtA3FMy9pVGp2VPJUNFQSobBQIgqt3PM1D6ACqcDh4z185cS2YpGTRJLo3MwFg+ZUlvJOYta2HKwt6StrvHgC0YIRUzOmhXa1HncDIUihCKl+yCSD1Q0lJIhVd8pABHB4y7tQUzZiobtnkoUyI6BAHUeFx63k7MXNhOMRHnlQE/ezrWYyHULERu784BX4xojUNFQSoYBf/IOtzYetxN/uPxFY9g9NVI0ptZVArB6TqzbzvbjA3k4y+KjN95CJNeWhjYtTIaKhlIy9KdoVmjjcTlKuk6jfyhEfVaiYbunEmIagwGm1MZEo6naTV2li4Nd3vycaJEx3OE298V9oKIxGhUNpWQYDIST9p2y8VSUrnsqEjUMBMLjc08lfNbOBEtDRJjbUs2Bbl9+TrbI6MvxLA0b+wFFazVGoqKhlAyp5oPbeFylKxr945gHYVsa3oT+Ux2DAaZalgbAvJZqDnadGqKR75iGVoWPREVDKRliszTSxTRK1z01niFCHpcdCI/dzPyhCAP+cNzSAJjTXM2hHl/Jz0zPhh6NaUwqKhpKyTDoD6ePaZRw9lS/P3vRcDhkxCCmzsFYjcYIS6O5hlDEcKxvKA9nW1wc7PLRXFMRTxDIFXbShVaFj0RFQykJIlGDNxhJ754q4eypuKWRpYvF7nQLw4V9U+qGA8HzWqoBTgkXVVv7IIun1ub8uPUa00iKioZSEgymaSFiU+Uu3dnZ451xXZUwJ9wWjam1nvj7c5tjolHuwXBjDG0dgyyalnvRqHQ5cDlEq8JHoaKhlASDwcyiUXmKxDQAqt2ueMptvBo8wdKY2ViF2ykcKHNLo9sbpNcXYnEeRENEdKZGElQ0lJJgME3fKRuP20mgxN1TyTr4JqOh2h23MOzvLTXDMQ2nQ5jdVM3B7vKu1WhrHwTIi2iANb1PYxojUNFQSgL7DzetaLicJW1pVDgd8caLmThjVgPbjvYTikTpHAzQWO0eM+p0bnN13NJ4eOsxPv6zDXRZQfNyoa0jJhqLptbk5fh1lTpTYzQqGkpJ4I2Pek0T06hwlOwQJrsaPDajLDNnzW0kEI6y49hArIVIQuaUjV2rYYzhT2+c4ImdHVx1y4uc6Pfn+vQLRlv7IFVuJzMbqvJy/Fp1T41BRUMpCbK1NCJRU5JdSWN9p7JPGT1rbqy/1Mv7u9l4oJulrXVjtpnbXM1AIEyPL8Shbh+zGqs40jvEh37yQnz+RqnT1j7Iomk1OBzZie140ZkaY1HRUEoCWzQypdxCaQ5iyrZZoc3MBg/T6iq59Zm9dA4Gec+qmWO2mdcSc9kc6PJysNvHuYtb+NWn1tPjDfKXP32JcJGL68v7uzMWJ+7t8OYl3dZG54SPRUVDKQm8WYmGPfK1uG+GyRivaIgIZ81t5Gifn3qPiwuXTx2zjV2rsevEAO0DAeY2V/OmuU382+UrONjtY/ux4u2Cu/lgD1f++AX+6/G2lNsEwhGO9A6xYEr+REPnhI9FRUMpCbJGYnN7AAAgAElEQVTNnoJTw9KAYRfVX5w5g0rX2Lnidq3Gc22xKX5zrH+fs3AKAC/tK97pfhv3x2aB/PeTbRxI0a23y0o1nlY/Np6TK6bWVdI7FBrRUfhUR0VDKQkGg2EqnI4xGUKJlLRoZDkfPJHzFk/B5RCuXDsn6fset5PW+kqea+sEhkVkeoOHuc3VvLy/++ROOo9sOdTLlNoKKpwO/v2h7Um3sUWjpSa3LdETWdpahzHDqb2KioZSYP74+nF+9eKBjP51byD9ACZIFI3Sck9Fx9EWPZGVsxrY+pVLeZNlcSRjbnM1Xd5g/LXNm+c3s2FfN8YUZ0PDLYd6OXthCx940yye3d1JNElso9Nr1ackyRzLFcumxxIMdp4iA62yQUVDKSj/8cgO/uX+13n3D5+l27q5JWPQH6amcqwLJpF4TKPECvx6h0IYA00TeGK2Z2ukYm5zLBheU+GkOeH46xc00+MLFeUTdHu/nyO9Q6ye08jpM+rxBiMc7hnbeLErPhc9f5bG3OZqKl0Odp1Q0bBR0VAKhjGGwz1DrJnXxI7jA9z7yuGU2w4GItRk6GJaVaLuKbvgLh9PzHYwfE5z9YgakDcvaAbgpX3F56LafKgXiNWiLJ9RD8D24/1jtrOv25Q8WhpOh7CktZadJ4pPXAuFioZSMDoHgwTCUd67aiZnzGrg968eTbmtNxBO23cKht1Tpda00HYf5cM3b4tGomsKYH5LNfUeFzuS3IwLzZZDvbgcwoqZDSxtrUUEdiTJ9OryBvG4HfGhVPliaWsdu9Q9FUdFQykYR3pjLofZTVW8Z9UMXj3cx/7O5Jkyg4Fw2swpSHRPlVZMIx7QzYObxRaL0aIhIsxsrOJYb/FVh79+pI9l0+vwuJ1UV7iY31KTVNw6BwO01FRmXUU/UZa11nG83x8fK3uqo6KhFAy7KnlWUxXvPjNWnPaH15JbG94sRMNOOy0595R3bMPBXLFwai3VFU5WzKof897MxiqO9hWfaOzv8rIwoWBv+fQ6diR50u8aDOY1nmGz1AqG72pXawNUNJQCYgc3ZzVWMbOxirPmNvLEzo6k2w4Gwmn7TsFwUDhQaqJhWRpNOZ5xDbFW6y/ccBGXr5o15r0ZDR6OF9lkv1AkytFeP/MSLKPl0+vZ3+UdUyvR5Q3kNXPKZpnVoiWZcBUTR3qHaJ+EvmIqGkrBONzjo7HaHR/hunBKLcd6k9/EsnNPWTGNUhMNb4CmajcuZ37+HBuq3Ul7M81o8NDjCxVVDOhYr59I1Ixwpy2fEauV2DUqGN01GMxrjYbNjAYPDVVuth8rvvhPIl+6dyuf+sXGvP8cFQ2lYBzuGWJ203B30ukNlbQPBMbk5EejBl8wklk0XKXZRqRrMDgpT8yjmWF1hi2mOeIHrPkfcxJE48zZDTgdwv+5b2vcpWmMmbTrJiKsmFnPtiN9ef9ZJ0OvL0hjdf5FVEVDKRhHeoaY3Th8c2it9xCOmnjRlo03mLktOoDLGRvPWXoxjeCIGorJYkZjbDzssSKKaxy0xtPaWV8QE7efXrOGg90+PvHzlwEYCIQJRqKTEtOAWCHl9uMDRd1BuXcolBcX52hUNJSCYNdozEqwNFrrYzex9v6RopFNW3Qbj7v0BjF1DQYm7eaXiD2D4mgKl2AhONjto8LpiP8u2Lx9eSt/87ZF7DoxiDcQzmvGWTJWzKwnGI5OSjGkMWZCHYh7vEEax9lVYCKclGiIyH4R2SoiW0Rko7XWLCKPishu63tTwvZfFJE2EdkpIpcmrK+xjtMmIj8QK4dORCpF5C5r/SURmX8y56sUB/98z2v8w/++xlAoMtI9Zd0ojo968vXGRSNzPn5VhZOhUGk1l+vyBvOSOZWJ6Q1FaGl0+ZjdXIUzSQxmkZVRtadjcLggcpKu28pZDUAsHTjf/Oqlg5z9jcfHZdWEI1H6/eGScU9daIxZbYxZa/37BuAxY8wS4DHr34jI6cBVwArgMuBHImLfBW4GrgOWWF+XWeufBHqMMYuB7wHfysH5KgWkczDA3ZsO8Vur+nt200j3FMDxURkgg4GYuylTcR/EqoPtmdmlQDgSpdcXKoh7yuN20lJTUVyi0e0bU1NiY88Bb2sfpHOSLY0FLTXUVDjZdjT/wfCHXjtG52BgXDU09oz5UnVPXQ7cYb2+A3hfwvqdxpiAMWYf0AasE5EZQL0x5gUT6572i1H72Me6B7hI8l3Jo+SVJ3d2YAxctmI6AEumDefjT6mtwCGMSRuMt0XP0EYEoLW+khP9pSMa3b78909Kx4xGT9EEwo0xHOxKLRrzWqpxOYS29sF4bUs+W4gk4nAIp8+sz7ul4QuG2Xgg1trl0DimK/baojEJDx/Zz5dMjgH+JCIG+Ikx5hag1RhzDMAYc0xEplnbzgJeTNj3sLUWsl6PXrf3OWQdKywifUAL0HmS560UiMd3nKC1vpKb/+pNdHtHZr+4nA6m1lUmsTSyj2m01nl4YxKeBnPFsG9+8t1TEAsyH+wqjtGvvb4QA4FwStFwOx3Mn1JDW/tgPL26aRLcMTYrZjZw98ZDRKImqfssF7y0t5tQJJY9eKh7HKJhPXyMt1PyRDhZS+NcY8ybgHcC14vIW9Nsm+wqmzTr6fYZeWCR60Rko4hs7OhIXhymFJ5gOMrTuzp5+/JpiEjSG+X0eg/HR1kKdkwjG/dUa4OHzsFA0Y0y3dMxyFO7Osa0Irc7+xbCPQWxsbFHi8TSOGDdJFOJBsDiqbW0dQyy6UAPs5uq0s5XyTUrZtbjC0bYl6LVTS54ZncnFS4HTock7eybih6v7Z4q8piGMeao9b0duA9YB5ywXE5Y39utzQ8DidNiZgNHrfXZSdZH7CMiLqABGNOW0xhzizFmrTFm7dSpY8deKsXBxv3dDAbCvH15a8ptptV7xrin7JTbrCyN+kqihrjPu1j44r1bufb2DXzk1pdGfL7OeKfWQrmnqhjwh4tipKmdmbQwzczvxdNqOdDl4+ndHXzgrLFV7vnEDoZvO5pbF9UrB3viaeLP7O5g/YJmZjR4xuWe6vHZXQWKWDREpEZE6uzXwCXA68ADwLXWZtcCv7NePwBcZWVELSAW8N5gubIGRORsK15xzah97GNdATxuinVqjJKR1yx/8DqrLXcyYpbGSNEY8GeeD27TWhcLpp+YhHYK2dI3FGLTgR7WzW9m88FePn/XlngB4/D0ucK4p+yMpN1FMFdj5/F+KlwO5reksTSm1RKJGoyBK9Ykn1iYLxZPq6XC5chpMPxAl5cP/Oh5vnTfVp7a1cHu9kEuWj6NOU3V43JP2YHwxpridk+1As+KyKvABuBBY8wfgW8CF4vIbuBi698YY7YBdwNvAH8ErjfG2FVYfwvcSiw4vgd42Fq/DWgRkTbg77EysZTSZG/HIFNqK9P6Xac3eOj1hUYU6HkDYVwOoTILV0SqDKxC8lxbJ5Go4R8vW8ZX3ns6z+/p4rZn9wGxFiJOh0yKLzoZy61mfMlaj082O44PsGRabdp2KnYG1dkLm5mbRlzygdvp4LTpdTkNhv9p2wkA7n3lCF+4ewsLptRw9fq5zGmu4tB43FO+IE6HZCyAzQUT/gnGmL3AqiTrXcBFKfa5EbgxyfpGYGWSdT9w5UTPUSku9nZ4WTS1Ju020+piT9zt/YH4TcHucJtN4lxrg71/8YjGkzvbqfO4OGtOI2vnNfHw68f57yfb+NT5C9jf6WNmoydpb6jJYHZTFbWVxTFXY+fxAc5bMiXtNoun1bJiZj2ffuuiSTqrkayY1cAfXj2KMSYnLdn/9MZxlkyrJRw17Ov0ctOHVlPpcjKnqZqOgQD+UCQe9E9Hjy9EY5U7723iQSvClUlkT8dgWn81DBecJVoK3b4QjVnmn7fUVOJ0SNGk3RpjeGpXB+cvmYLL6UBEeMdprfT6QhzpHWLH8X5Omz62bflkISKx1uMFtjR6vEHaBwJxyycVHreTB//ufC5cPi3tdvli5cwG+v3hcQWpU9E5GGDjgR7edcYMfnrNWm66chVvWxqLyc5ujhW9Zvtz+sbxN3KyqGgok0KPN0iPL5TR0pjVGPtjOdA1nKFypMcXb3mRCadDmFo7Nm23UDzw6lFO9Ae4YNnwTe70mTGReOVgL/s6vfGRpoVi+Yw6th/vH5PZNZnstGZwLyuggGbDCuv/Lhcuqse3t2MMXLKilcXTavngmuF8oDlW0Wu2wfAeX3DS0o9VNJRJYW+nnRmTXjTmtdRQ6XKw68Twk++R3pE9qjLR2uApikD407s6+MLdr/Lm+U28d9XM+Pry6XWIwANbjhA1cFqGp+t8s2x6PQP+cEEHMu20ZlVksjQKzbLpdbgcwhZrjvnJ8Ietx5jdVMXpSR4a7C6/h7MMhveopaGUG3s6YpbDogzuKadDWNJaGx94EwxHaR8IxC2QbGitqxzT9LAQfP+x3cxuquK2j715hF+6usLFgik1PGkNnCq0pXFaPBheuLjGjuMDNFa74zGtYsXjdnLOohYefv34SVlm7QN+nt3dweWrZyaNQ0ytraTK7WTD/p6sjjdZbdFBRUOZJPZ0DFLhdIzoNZWKpa11cUvjWN8QxjA+SyNJ2u5kY4xh1/EB3rp0KvWesU+AK2Y2EI4aqtzOtMVsk4E9zrSQk+neONrH0ta6SQnknizvPnMGB7t9bD0JF9UDW44SNfD+s2Ynfd/hED5+7nx+/+pRNu4fU5o2hl7f5LRFBxUNZZLY2+FlXkt1Vu0Xlk+v40R/gF5fkCNWIHD2OCyN6Q0e+oZCE56r8cbRfgLhk5vJcazPz0AgzJLW5O4W2yWxtLU2by0psqXe42ZOc1XB2q90e4O8dqSPcxa2FOTnj5dLV0zH7RR+/2ryefbZcN/mI5w5uyGeQpyMz759MTMbPPzf320bM5gsEX8owlAoopaGUroMBsK8sKcr3sqjYyDA60f6MsYzbJZaN9qdxwc4bM16GI+lYbdYH09xlM2hbh/v/uEz3PXyoXHvm0g8sJtKNKyA6vIiCfyunNnA6zmudM6Wp3fFmli+vUAZUeOlsbqC85dM5cHXjqW9mafi3lcOs+1of8aK9uoKF9e/fTHbj/WzN03rkl6fVdinloZSqnzz4e1c/dMXeeu3n+ATP3+Zy/7zabq8QT60NrsK3mWWu2TXiQGO9AwhMjyaNBtWzYm1e9g8gWDlEzvbiZrhwOxE2WXtv7Q1+ZPkGbMaqHA5OGtu40n9nFyxclYDB7p88criyeSJne201FRwhtWmoxS4Ys1sjvb5ueeVw5k3TuDZ3Z380z2v8ZZFLVy9fm7G7VfPif1+pJtPPpktREBFQ8kx3kCY+zcfZf2CZpbPqKd9wM/pM+v5/WfP46LTUvecSmR6vYd6j4sdxwc40jvEtLrKcTWmWzilloYqN5sPZhdETOSJHbFWaXs7Tq4p3a4Tg0yrq0zpMmiuqeCpf7yAK7MU0nwT76s0yXOwI9FYHcvblk0tWIHjRHjnyum8aW4j3/7jznH17frpM3tprffwk4+uodKVuWhv8bRaXA5JKxq2C7dlkppe5r/mXDml+P2rRxkMhPmny5axZl7qHlPpEBGWTa/jjWP9eFxOZo4jngGxIOJZcxvZdGB8ouEPRXhhbxfASXcy3XViIG4xpWI81lO+WWnXHxzt4y2L01dl55LNB3vo9YW4cFlpuKZsRIQvv2cFl//3c3zpvtf5zpVnZiUCbe2DrJnXRF2S5IhkVLqcLJ5Wm1Y0HtvRTk2Fk1VzJsdqVUtDySm/2XCQZa11vGluU+aN03DBsmlsPtjLlkO940q3tVkzt4ldJwbH5W55cW8X/lCUdfObOd7vj7dkHy/RqGF3+0A8NlMKtNRWMrPBw9YjkxsMv3/LESpdDt62rPS6U6+a08g/XrqM3796lL+69aUxY4pH4w2EOdI7lDb4nYzl0+vYnqJiPxI1PPrGCS5YPi2rdiO5QEVDyRn7O728driPK9fOPunUyY+9ZT5TaisYCkXGFQS3WTMvJlrjcVE9ubMDj9vB1etjLqOJWhuHenz4Q9GU8YxiZeWshkmZgW3jD0V4YMtR3rlyetK05FLg+gsX88Orz2Lb0X4u/c+neXzHiZTb2i7PJeMUjdNm1HO830+Pd2y7/80He+gcDHDJ6dm5fnOBioaSM/68PfYHc6k1yvVkqKl0cf2Fi4HxpdvarJrTiEPglXG4qJ7Y2c5bFk3hNCsdNl3GSjpePRy78Z5W4KK98XLGrAb2dXp5aOsxIhPIChovf95+gn5/eNJbnOea96yayYN/dz5zmqv4619sSpmK29YRsxbGa2nYv0ejXVTRqOG+zUdwO2VSe3GpaBSIUCRakEyVfPLn7SdYPr0u3gLhZPnL9XP5/9+xlMtWzhj3vjWVLpZNr4/fwDOxr9PLgS4fFyybyvyWGkRg3wSD4S/s6aTO40raHqKYuXz1LOY2V/OZX7/C1x98I+8/755Nh5nZ4OGcRaVRn5GOBVNquPO6c1gzt4nP3bk5aQyirX0Qp0OY15Jd6rmNLRpvJBzzQJeX87/9BL9+6SAXn946qZaaikaB+M6fdnLhd54sG+Ho84V4eX8PF52WuyeeSpeTz71jCVMn2FritBl1aQOIidhZUxcsjfmGZzZUxftljZfn93SxfkFL2rkQxcjclmqe+IcLeMdprTz42rG8NjD0hyI8v6eLd54xo+DFjbmittLFLdesocLl4JcvHhjzflv7IPNaqsc9onZqXSUzGjw8mGAB3vXyIY73+/n+Vav57odW5+T8s6W0fqvLhGjU8LvNR+n2BuPDeEqdJ3e1E4ka3pFlWu1kcPqMetoHAnQNZu5D9cTOdhZNrYnP8Fg4tWZCMY3DPT4OdPl4S4k+PTsdwiWnt9I+EMjrNL9XDvYQDEdL9jqlorG6gvecOZP7Nx8Zk4rb1j7I4gy911LxD5csY/PBXn72XOx+8ac3TrB+QTOXr541aQFwGxWNHHH3xkM8vPVYVttuPtTD8X4/U2oruP3ZffT6imuedTpePdTLY9vHBvue3tVJc00Fq2YXR7EaDFdbZ+qpNBgI89Le7hHtyxdNrY1VpI9jTjPErAyAcycxbTXXnGsNQnpmd2fefsaLe7txCLw5zejfUuUjZ8/DF4xw/+Yj8bVQJMqBLt+44xk2H3jTLC5aPo3/eGQnf9p2nLb2wUkNfieiopEDthzq5Z9/+xr/8L+v0p0kw2E0D209ToXTwU8+uobBQJg7nh9ryhYj/lCET/9yE3/zq01jnsI3HehmzbymoirQOm1GLOU1k4vq58/tIxiJ8p6E9uWfOHcBbqeDz925Jd4OJRte2NNFS01FyWVOJTKrsYqFU2p4dndH3n7Gi3u6WDmroWSzptKxanYDp8+o594E0XhiRzvhqGHJBH8vRIRvfOAMaitdfObXrwBwcQ4STiaCisZJEopE+eK9W2mursAXinDL03vxhyIpm+UZY/jj68c5f8kU1sxr5vwlU7h746FJyVY5WX7z0kGO9/sRhH9/aHt8vXMwwP4uH2vnnVxtRq5pqa1kWl3liADiaHq8QX7y1F4uPr013rIBYv79G9+/kk0HepL6p5NhjOH5PZ2cs6ilJLq1puPcxVN4aV83wXD2gpktQ8EIWw71cnaJNCgcLyLCRadN49VDvfQNhXiurZPP/s9mTptRf1Lu22n1Hm760CrCUcPKWfUTql/KBSoaE+DVQ7185NYX6RoM8OsXD7D9WD83vn8l7101k9uf3ceZ//Yn1nztUb5039Yxge77txzhSO8Q710de6r98JvncKR3iGfb8ucKyAX7O7386Mk9nLOwhc9fvIRH3zjBi1b1tF15vabIRANimSepCqMAvv3ITrzBMP946bIx712+ehZnzGrgd1uy62a6t9PLif4Ab1lUuq4pmwuXT8UXjHBvkt5KJxsg33Sgh2AkWjJdbSfCeYunEDWxTLov3beVuc3V/OZT67OuBE/FBcum8Z8fXs3//YvTc3Sm40dFYwLc/OQenmvr4v/c9zo/eLyNcxa2cOmK6Xzh4mWsntvIX62fxzvPmMHdLx/iC3e/Gv8jGwyE+cZDOzhzdgPvOTMmGhef3kpTtZu7Xj5YyI+Ulh8+tpuLvvsU3kCYf37ncj5x7gKm1Fbyoyf3ALGbQIXTEe9fVEycNqOetvYBXtrbReeogPitz+zlfzYc5FPnL0xZvX3ZyulsOdTLkd7Ms5qft4T/3MWlfzO8cNk01i1o5hsP7xhx3R7aeow1X/8zz++Z+EPOva8cpqbCyboyjGfYnDW3ieoKJ999dBcHunz8f29fTFOOekO976xZrC+g4KpojJMT/X4e3X6C6fUe/rjtON3eIF9813JEhLkt1dz96XP41/eczneuXMWX3nUaf95+gp8+sxeAHz3RRvtAgK+8d0Xc91/pcnLFmtn88fXj3Ld5fB0zJ4NNB7r57p93cemKVp7+pwtZPacRj9vJx8+dz9O7Oth+rJ9NB3o4Y3bDpGdxZMPKWfWEIoYP3/Iin/nVK/H159s6+fqD23nXGdO54bLlKfd/58qY3/iPrx/P+LOe39PFrMaqgg9VygUiwr+/fyW+YJhrbtvAL17Yz7f+uIPP/uYVur1Bvvforgkdt2swwB9eO8YH18ymprJ8W99VuBycvbCFXScGaa6p4LKVhYk/5AMVjQR+9ty+jIHsu16OxR9+8cl1nDm7gavXzeXMFBlDHz93PpeuaOU7f9rFpgM9/Oy5/bx31cwxfZk+/46lrF/Qwt/f/SoPnMRgl1wTCEf4p3teY2ZDFf9xxaoR9RJ/tX4e1RVOPn/nFl473FuUrimIVaf/+K/WcPW6uWzY383R3iF8wTA33LuV+S3VfPdDq9MG7xdOrWX59DoeypAZF40aXtjbVRbxDJvF0+q46UOrGQpF+NffbePmJ/fw1qVT+cdLl/Hy/h427Ms8Uc5m94kBvvHwdv7jkZ0EI1GuOWd+/k68SDjPyqC7cs3srJoZlgoqGhZt7YP8+0Pbuew/n+bZFKmG/lCE37x0kPMWT2Fpax33f+Zc/v39K1MeU0T46uUrcTuEj9z6IsFIlM+/Y8mY7WoqXfzs42/mrDmN/OvvXs8qA2sy+OULB9jT4eXr71855qmwodrNp9+6iC5vkPULWrhiTfKxlYXG7XRw2crp/M3bFgLw4GvH+I9HdnKw28c3P3hmVtbR+86axaYDPdz0p50p/flvHOun1xcqu7qD966ayeNfeBtP/sMFbPu3S/n5x9fxiXMX0FxTwQ8f351VfONQt4+P3PoSP3lqL3e+fIhzF7dMOPW0lPiLM2fwtqVTufYt8wt9KjlFRcNi8bRa7r/+XOqr3HzsZxt4YU8XfUMhXtzbxYl+P8YYfm1lD/3tBYuAWAvuTE+VrfUePveOJfhDUT5w1iwWpiju8bidfPODZzLoD/ONhMykQjEYCPOjJ/dw3uIpKdtWf+4dS9j4L+/gV59aX/QdXee11HDGrAZufmoPP3tuPx97y/yss3c+dd4CPrx2Dj98vI1P3bGRtvaxgfXfv3YUp0M4b0npB8FHIyLMn1ITf3CoqnDymQsW8czuTh7amt5t1zEQ4JrbN+APRbj/+nO55aNr+PYVqybjtAtOa72HOz6xbtyt/Yud8nUqToAVMxu49zNv4QM/ep5P/3IjBhjwx9pjr1vQTFv7IOctnjLuwq2Pn7uAKreTvzhzZtrtlrbW8anzF/Ljp/bwqfMXZpzHkE9ufWYv3d4g/5Akq6hUefeZM/jGwzs4a24jX3rXaVnv53I6+OYHz2DRtBp+8Fgb7/nhczz5jxfQao2VDUWi/HbTYd6+fBrT6jz5Ov2i4mNvmc/9W47w5Qe2sX5hM1Nqx7Z66fOF+OhtsZbhv/rUuhEpzUrpopbGKOo9bm6/9s3UV7lZv6CZn16zlhveuZy29kG6vcGkqZmZcDsdfPSc+TRnkT3x6bcuxON2cNuzeydy+mm5c8NB/vKnL9Len77v/50bDvL9x3bzF2fMKKs/9A+/eQ6fOHcBN39kzbj7/4gI1711Eb/77LkMhSLcuWF4hvhj29vpHAxy1ZtLu1vreHA5HXzzA2fSPxTi4u8+xZ0bDo6Yl+0NhPnYzzewt8PLLdesmfBALqX4kHw2JSsEa9euNRs3bsz5cfv9IQ52+SYlrfT/3v86d718iGdvuPCkn1yNMRzs9vHi3i5uuHcrxsT6+d953dm01FbSNxQiGjXxdMDbnt3H1/7wBhcsm8rNH1lDVUX5BPByxUdve4ndJwZ59p8vxAAf+elLHOz28ew/X1hyTQpPlh3H+/nX+7exYX83q+Y08uZ5TYQiUTYe6GHH8QH++y/fVFaZQ+WMiGwyxqzNuJ2KRvGxr9PL2296kivXzOabHzgTh0PwBcNsPzbAm+Y2Zp2dY4zhC//7Kve+Emtn8Ob5TXzmwsX8zS83sWhqLZ9/xxI+f9cW/KEIK2c10FJTwRM7O3jnyul8/6qzxv00fqrwyLbjfPqXm/jshYvZdrSPJ3Z28I0PnMHV6+YW+tQKgjGG+7cc4aY/7aJrMIjLKUyrq+Rz71jKe1eld8kqxYOKRonzzYd38OOn9nDJ6a00VLl5ZNtx+v1h/vr8BXzpXadlJRx3v3yIf/rta3z07Hmct2QKb10ylaoKJ0/t6uCv79hIMBJl8bRa3nXGDF7e182R3iHetnQqX37P6afcE/N4CEeivP2mpzjY7UMEvv6+lXxk/bxCn5ainBQqGiWOMYbvP7ab/3q8jcZqN+sXtlDldnLPpsO8+8wZ/M3bFiV1lRlj+Nlz+/nNhoPs6RjkLYta+MUn1o+ZWfDEjnbu2XSYr7x3xYTnVZzK+EMR2vsDeNwOptWfGsFvpbxR0SgTIlETv+EbY/juo7u49Zl9DIUirJ3XxDVvmc9lK6bT7w/x8r5u7tl0mMd2tLNufqwZ4kfPmUdjdW7aFyiKUr6UlWiIyGXA93ggXXAAAAaDSURBVAEncKsx5pupti030UhG31CIezYd5pcv7Gd/l4+aCifeYKyrbpXbyRcuWconz1tQNpXJiqLkn7IRDRFxAruAi4HDwMvA1caYpEOMTwXRsIlGDU/v7uCRbceZ11LDugXNrJzZoAFsRVHGTbaiUQrFfeuANmPMXgARuRO4HEgqGqcSDodwwbJpIybOKYqi5JNSeCSdBRxK+Pdhay2OiFwnIhtFZGNHR/6mjSmKopzqlIJoJHPMj/CpGWNuMcasNcasnTp16iSdlqIoyqlHKYjGYSCxP8NsoHj6hyuKopxClIJovAwsEZEFIlIBXAU8UOBzUhRFOSUp+kC4MSYsIp8FHiGWcnu7MWZbgU9LURTllKToRQPAGPMQ8FChz0NRFOVUpxTcU4qiKEqRoKKhKIqiZE3RV4SPFxEZAHaOWm4A+nL4Y6YAyQeJT4xcn18uj6fXrriOp9fv5NFrOJYpQI0xJnPNgjGmrL6AjUnWbsn3zzjJ4+X6/HJ2PL12RXc8vX56DXN+vPFck1PFPfX7Qp9ABnJ9frk8nl674jperin2z1vs1w+K/zPn9Hjl6J7aaLJoulXsP6Nc0Wt3cuj1O3n0Go5lPNekHC2NW8rkZ5Qreu1ODr1+J49ew7FkfU3KztJQFEVR8kc5WhqKoihKnlDRAERkjog8ISLbRWSbiHzOWm8WkUdFZLf1vclav1hENonIVuv72xOOdaOIHBKRwUJ9nskkV9dORKpF5EER2WEdJ+V0xnIix797fxSRV63j/NgaYFb25PIaJhzzARF5fbI/S0mQ63S2UvwCZgBvsl7XEZsUeDrwbeAGa/0G4FvW67OAmdbrlcCRhGOdbR1vsNCfq5SuHVANXGi9rgCeAd5Z6M9XKtfP+ne99V2A3wJXFfrzldo1tNY+APwGeL3Qn60Yvwp+AsX4BfyO2HjZncAMa20GsDPJtgJ0AZWj1k8J0cjHtbPe+z7w14X+PKV4/QA3sTTLDxf685TaNQRqgWct0VHRSPKl7qlRiMh8Yk8iLwGtxphjANb3ZHNVPwhsNsYEJusci5VcXTsRaQTeAzyWz/MtNnJx/UTkEaAdGADuyfMpFx05uIZfA24CfHk/2RJFRSMBEaklZtZ/3hjTn8X2K4BvAZ/O97kVO7m6diLiAv4H+IGx5sKfCuTq+hljLiX2VF0JjPHVlzMnew1FZDWw2BhzX15PtMRR0bAQETexX7hfG2PutZZPiMgM6/0ZxJ7g7O1nA/cB1xhj9kz2+RYTOb52twC7jTH/mf8zLw5y/btnjPETG1R2eb7PvVjI0TU8B1gjIvuJuaiWisiTk/MJSgcVDUBEBLgN2G6M+W7CWw8A11qvryXmK7XdJw8CXzTGPDeZ51ps5PLaicjXiTVX+3y+z7tYyNX1E5HahBukC3gXsCP/n6Dw5OoaGmNuNsbMNMbMB84DdhljLsj/JygxCh1UKYYvYr8gBngN2GJ9vQtoIeZX3219b7a2/xfAm7DtFmCa9d63ic01j1rfv1Loz1cK147Y7HcDbE9Y/1ShP18JXb9WYqORXwO2AT8EXIX+fKV0DUcdcz4aCE/6pRXhiqIoStaoe0pRFEXJGhUNRVEUJWtUNBRFUZSsUdFQFEVRskZFQ1EURckaFQ1FmWRE5G9E5JpxbD9fO64qxYKr0CegKKcSIuIyxvy40OehKBNFRUNRxonVFO+PxJrinUWsFfc1wGnAd4l1Su0EPmaMOWa1ongeOBd4QETqiHVB/o7V7+jHxFrD7wE+YYzpEZE1wO3EGuc9O3mfTlHSo+4pRZkYy4BbjDFnAv3A9cSqsK8wxtg3/BsTtm80xrzNGHPTqOP8Avhn6zhbgS9b6z8D/s4Yc04+P4SijBe1NBRlYhwyw32LfgV8idhAn0djrZBwAscStr9r9AFEpIGYmDxlLd0B/G+S9V8C78z9R1CU8aOioSgTY3T/nQFgWxrLwDuOY0uS4ytKUaDuKUWZGHNFxBaIq4EXgan2moi4rXkNKTHG9AE9InK+tfRR4CljTC/QJyLnWesfyf3pK8rEUEtDUSbGduBaEfkJsS6qPwQeAX5guZdcwH8S6zibjmuBH4tINbAX+Li1/nHgdhHxWcdVlKJAu9wqyjixsqf+YIxZWeBTUZRJR91TiqIoStaopaEoiqJkjVoaiqIoStaoaCiKoihZo6KhKIqiZI2KhqIoipI1KhqKoihK1qhoKIqiKFnz/wCsNQkNwtamhAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG45JREFUeJzt3X+Q1PWd5/HnCweHrEEFBMMPdbgKy0aTO12n0JR7d2JOILspMbcmx+pFqtYqXGOq3HPrFCpcmYvsrVxdxT3OiqsVzZr4A91sLLk1SBCh4u5xwHBqFA07eGGRlTjDgYKpgs3I+/7oz2hPZ6anZ+bTv6Zfj6qu7v705/PpT3+mu9/z+fH9tiICMzOzsZpQ7waYmdn44IBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZdFW7wbU0jnnnBMdHR31boaZWVPZvXv34YiYPly+lgooHR0ddHV11bsZZmZNRdI/VJLPU15mZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDSoPoOXaCLz+wnZ7jJ+rdFDOzUXFAaRDrtnSza/8R1j3fXe+mmJmNSksdh9KI5q/eyMm+Ux/ef3THAR7dcYD2tgnsXfP5OrbMzGxkPEKpsxfvWMg1F89i0sTCn2LSxAksvXgWL965sM4tMzMbGQeUOptx5iQmt7dxsu8U7W0TONl3isntbcyYPKneTTMzGxFPeTWAw++f5IbLLuD6Befz+M4D9Hph3syakCKi3m2omc7OzvC5vMzMRkbS7ojoHC6fp7zMzCwLBxQzM8vCAcXMzLJwQGkSPpLezBqdA0qT8JH0ZtbovG24wflIejNrFh6hNDgfSW9mzcIBpcH5SHozaxYOKBWo94J4/5H0T3/1Cm647AJ63z9Zl3aYmZXjI+UrsPrpV3ls5wFuWHA+a774mSq0zMyscVV6pLwX5cvwgriZWeU85VWGF8TNzCpXUUCRtF/Sq5JeltSV0qZK2iypO11PKcq/StI+SXslLS5KvzTVs0/SOklK6e2SnkzpOyR1FJVZnp6jW9LyovS5KW93Knv62LtjIC+Im5lVbiQjlIURcXHRPNpKYEtEzAO2pPtIuhBYBlwELAG+Lem0VOZ+YAUwL12WpPSbgKMR8UngXmBtqmsqcBdwGbAAuKsocK0F7k3PfzTVkZ0XxM3MKlPRoryk/UBnRBwuStsLXBkRhyTNBLZFxHxJqwAi4s9Svk3AN4D9wNaI+K2U/gep/M39eSJiu6Q24BfAdAqB6cqIuDmVeQDYBqwHeoFPRESfpM+m8h+Ohgbj09ebmY1c7tPXB/BjSbslrUhp50bEIYB0PSOlzwbeKip7MKXNTrdL0weUiYg+4D1gWpm6pgHvpryldZmZWR1Uusvrioh4W9IMYLOkn5XJq0HSokz6aMqUq2tgYwoBcAXA+eefP1gWMzPLoKIRSkS8na57gKcprGe8k6a6SNc9KftB4Lyi4nOAt1P6nEHSB5RJU15nAUfK1HUYODvlLa2rtO0PRkRnRHROnz69kpdrZmajMGxAkXSGpMn9t4FFwGvABqB/19Vy4Jl0ewOwLO3cmkth8X1nmhY7LunytLvrxpIy/XVdB7wQhcWdTcAiSVPSYvwiYFN6bGvKW/r8ZmZWB5VMeZ0LPJ12+LYBj0fEc5J2AU9Jugk4AHwJICL2SHoKeB3oA26NiA9SXbcAfwl8DNiYLgAPAd+XtI/CyGRZquuIpLuBXSnfNyPiSLp9J7Be0hrgpVSHmZnViU+9YmZmZeXe5WVmZlaWA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmDann2Am+/MB2eo6fqHdTrEIOKGbWkNZt6WbX/iOse7673k2xCrXVuwFmZsXmr97Iyb5TH95/dMcBHt1xgPa2Cexd8/k6tsyG4xGKmY1YNaejXrxjIddcPItJEwtfT5MmTmDpxbN48c6F2Z/L8nJAMbMRq+Z01IwzJzG5vY2Tfadob5vAyb5TTG5vY8bkSdmfy/LylJeZVaxW01GH3z/JDZddwPULzufxnQfo9cJ8U1BE1LsNNdPZ2RldXV31boZZ0+o5doI1P3qDH+/5BSd+dYpJEyew+KJP8PXf+5RHEOOYpN0R0TlcvoqnvCSdJuklSX+T7k+VtFlSd7qeUpR3laR9kvZKWlyUfqmkV9Nj6yQppbdLejKl75DUUVRmeXqObknLi9Lnprzdqezplb4WMxsdT0dZOSNZQ7kNeKPo/kpgS0TMA7ak+0i6EFgGXAQsAb4t6bRU5n5gBTAvXZak9JuAoxHxSeBeYG2qaypwF3AZsAC4qyhwrQXuTc9/NNVhZlXWPx319Fev4IbLLqD3/ZP1bpI1iIqmvCTNAR4B/hS4PSK+IGkvcGVEHJI0E9gWEfMlrQKIiD9LZTcB3wD2A1sj4rdS+h+k8jf354mI7ZLagF8A0ykEpisj4uZU5gFgG7Ae6AU+ERF9kj6byn84GhqMp7zMzEYu95TXnwN3AKeK0s6NiEMA6XpGSp8NvFWU72BKm51ul6YPKBMRfcB7wLQydU0D3k15S+syM7M6GDagSPoC0BMRuyusU4OkRZn00ZQpV9fAxkgrJHVJ6urt7R0si40jPl2HWf1UMkK5ArhG0n4KU01XSXoUeCdNdZGue1L+g8B5ReXnAG+n9DmDpA8ok6a8zgKOlKnrMHB2ylta1wAR8WBEdEZE5/Tp0yt4udbMfLoOs/oZNqBExKqImBMRHRTWNF6IiH8PbAD6d10tB55JtzcAy9LOrbkUFt93pmmx45IuT7u7biwp01/Xdek5AtgELJI0JS3GLwI2pce2prylz28taP7qjXSsfJZHdxwgonB8RMfKZ5m/emO9m2bWMsZypPw9wNWSuoGr030iYg/wFPA68Bxwa0R8kMrcAnwH2Ae8CfR/2h8CpknaB9xO2jEWEUeAu4Fd6fLNlAZwJ3B7KjMt1WEtyqfrMKu/ER0pHxHbKOyyIiL+H/C5IfL9KYUdYaXpXcCnB0k/AXxpiLoeBh4eJP3/UthKbFbx8RE9x07wtSde4r7rL2nYYyeaoY1mg/G5vGzcqOT4iGZYY2mGNpoNxqdesZZQeg6qfo10SvRmaKO1puynXjFrZs2wxtIMbTQrxwHFWkIznIOqGdpoVo5PX28toxlOid4MbTQbitdQzMysLK+hmFnL86l4assBxczGLW/Bri2voVhD8UF9lkOtfqrYBvIIxRqK/6O0HLwFuz48QrGG0Er/UXoUVn3egl0fHqFYzZRbIG2l/yg9CqsN/1Rx7XmEYhUb63/WxV+ka774mQGPtcJ/lK00CmsED3zlo12ua679tXPSWhU4oFjFygWEcir9Ih3vB/W9eMdC1vzoDX685xec+NUpJk2cwOKLPsHXf+9T9W6aWRYOKDassf5nXekX6Xj/j7IVRmHW2ryGYsMa6/qGv0g/0izz+j4g0EbDIxQbVo6AMN6nsyrVLKOw0U5vWmvzubysIjd/v4vpkycNCAjFX442Pvg3WWwwlZ7LywHFzD7Uc+zEkOtdrThFaQU+OaSZjZjXu2wsvIZiZgN4vctGy1NeZmZWlqe8zMysphxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxSzEfKJE80G54BiNkL+xUWzwflIebMK+RcXzcrzCMWsQq30u/dmo+GAYk2lnusXPnGiWXnDBhRJkyTtlPSKpD2S/nNKnypps6TudD2lqMwqSfsk7ZW0uCj9UkmvpsfWSVJKb5f0ZErfIamjqMzy9BzdkpYXpc9NebtT2dPzdIk1snqvXzTLLy6a1cOwJ4dMX/pnRMT7kiYCfwvcBvxb4EhE3CNpJTAlIu6UdCHwBLAAmAU8D/xmRHwgaWcq+7+BHwHrImKjpK8C/zwi/kjSMuCLEfHvJE0FuoBOIIDdwKURcVTSU8API2K9pL8AXomI+8u9Fp8csnn5h5/M6ifbySGj4P10d2K6BLAUeCSlPwJcm24vBdZHxMmI+DmwD1ggaSZwZkRsj0IU+15Jmf66fgB8LgWyxcDmiDgSEUeBzcCS9NhVKW/p89s45PWLvLz12aqhojUUSadJehnoofAFvwM4NyIOAaTrGSn7bOCtouIHU9rsdLs0fUCZiOgD3gOmlalrGvBuyltaV2nbV0jqktTV29tbycu1BuT1i7zqPXVo41NF24Yj4gPgYklnA09L+nSZ7BqsijLpoylTrq6BiREPAg9CYcprsDzWHPzDT2Pnrc9WTSM6DiUi3pW0DVgCvCNpZkQcStNZPSnbQeC8omJzgLdT+pxB0ovLHJTUBpwFHEnpV5aU2QYcBs6W1JZGKcV12Tj1wFc+msJdc225/2lsKC/esXDI34w3G6tKdnlNTyMTJH0M+DfAz4ANQP+uq+XAM+n2BmBZ2rk1F5gH7EzTYsclXZ7WQG4sKdNf13XAC2mdZROwSNKUtItsEbApPbY15S19fjMbQi2nDpthnaYZ2jhWtXyNlayhzAS2SvopsIvCGsrfAPcAV0vqBq5O94mIPcBTwOvAc8CtacoM4BbgOxQW6t8ENqb0h4BpkvYBtwMrU11HgLvT8+4CvpnSAO4Ebk9lpqU66qIV3pQ2ftRq63MzrNM0QxvHqpav0b8pn8Hqp1/lsZ0HuGHB+az54mey12/WTJphi3cztHGscr7GSrcNO6CMQSu8Kc1GqufYiSHXaRplV14ztHGscr7GbMeh2NAqPTbCU2JWaz5FTXnN0MaxqsdrdEAZg0r/YK0wT2uNpd7vuWY4RU0ztHGsav0aPeU1Rjd/v4vpkycNODaif3urp8Ss1vyes2rwGsogan0ur2abp+05doKvPfES911/SUO2z4bXbO+5ZtcqnxmvoTSAZpunrfc0iY1ds73nmp0/MwP5FxurrBlOF+LTcYwvzfCea3b+zAzOU17maRKzEWq1z4ynvKxiniYxGxl/ZgbngNIihjsuoRW2UJrl5M/Mr/OUV4vw6WHMbLQqnfLyovw458XDkWmVbaBm1eApr3HOP507Mt4GajZ6HqGMc148rIxHcmZj5xFKC/Di4fA8kjMbO49QWoB/Ond4HsmZjZ0DilniI8zNxsbbhs3MrCwfKW9mZjXlgGJmZlk4oJg1If+sdG24n0fGAcWsCfkAzNpwP4+MF+XNmoh/4rc23M8DeVHebBzyAZi1kbOfW2nazAHFLLNqfoH4AMzayNnPrTRt5gMbzTIr/gKpxk8F+ADM2hhrP7fi+eG8hmKWiefdR2a8/1TAePqZYK+hmNWY1zdGZrxPBbXi9KSnvMwyacUvkNFopamgVpuedEAxy6jVvkBG48U7Fg45FTTetNqZvh1QzDJqtS+Q0fBIbvzyGoqZ1Zx/9C2fRjrOxbu8zMya2OqnX+WxnQe4YcH5VdmmDhl3eUk6T9JWSW9I2iPptpQ+VdJmSd3pekpRmVWS9knaK2lxUfqlkl5Nj62TpJTeLunJlL5DUkdRmeXpObolLS9Kn5vydqeyp1faOWZmjWK0I4z5qzfSsfJZHt1xgIjC5oaOlc8yf/XGKrV0eJVMefUBfxIRnwIuB26VdCGwEtgSEfOALek+6bFlwEXAEuDbkk5Ldd0PrADmpcuSlH4TcDQiPgncC6xNdU0F7gIuAxYAdxUFrrXAven5j6Y6zMyaymi3TzfiNvVhF+Uj4hBwKN0+LukNYDawFLgyZXsE2AbcmdLXR8RJ4OeS9gELJO0HzoyI7QCSvgdcC2xMZb6R6voBcF8avSwGNkfEkVRmM7BE0nrgKuD6ouf/BoWAZWbW8Ma6fboRNzeMaFE+TUVdAuwAzk3Bpj/ozEjZZgNvFRU7mNJmp9ul6QPKREQf8B4wrUxd04B3U97SukrbvEJSl6Su3t7ekbxcM7OqyTHCaLTNDRVvG5b0ceCvgT+OiGNp+WPQrIOkRZn00ZQpV9fAxIgHgQehsCg/WB4zs1rLMcJotG3qFY1QJE2kEEwei4gfpuR3JM1Mj88EelL6QeC8ouJzgLdT+pxB0geUkdQGnAUcKVPXYeDslLe0LjOzptBoI4yxGnaEktYyHgLeiIhvFT20AVgO3JOunylKf1zSt4BZFBbfd0bEB5KOS7qcwpTZjcD/KKlrO3Ad8EJEhKRNwH8pWohfBKxKj21NedeXPL+ZWVNotBHGWFUyQrkC+ApwlaSX0+V3KQSSqyV1A1en+0TEHuAp4HXgOeDWiPgg1XUL8B1gH/AmhQV5KASsaWkB/3bSjrG0GH83sCtdvtm/QE9hA8Dtqcy0VIfVUSMdYGVmtecDGy2bWhxgZWa1V+mBjT6Xl41ZK5091syG5nN52Zg14gFWZlZ7Dig2Zo14gJWZ1Z6nvCwL/w6ImXlR3szMyvJvypuZWU05oIwTPgbEzOrNAWWcGO0psM3McvGifJPzMSDWqnqOneBrT7zEfddf4h2FDcIjlCbnY0CsVXlU3ng8QmlyPgbEWo1H5Y3LI5RxYLydAtusHI/KG5dHKOPAeDsFtlk5HpU3LgcUM2s6PjNDY/KR8mZmVpaPlDczs5pyQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLIYNKJIeltQj6bWitKmSNkvqTtdTih5bJWmfpL2SFhelXyrp1fTYOklK6e2SnkzpOyR1FJVZnp6jW9LyovS5KW93Knv62LvCzMzGopIRyl8CS0rSVgJbImIesCXdR9KFwDLgolTm25JOS2XuB1YA89Klv86bgKMR8UngXmBtqmsqcBdwGbAAuKsocK0F7k3PfzTVYWZmdTRsQImInwBHSpKXAo+k248A1xalr4+IkxHxc2AfsEDSTODMiNgeEQF8r6RMf10/AD6XRi+Lgc0RcSQijgKbgSXpsatS3tLnNzOzOhntGsq5EXEIIF3PSOmzgbeK8h1MabPT7dL0AWUiog94D5hWpq5pwLspb2ldv0bSCkldkrp6e3tH+DLNzKxSuRflNUhalEkfTZlydf36AxEPRkRnRHROnz59qGxmZjZGow0o76RpLNJ1T0o/CJxXlG8O8HZKnzNI+oAyktqAsyhMsQ1V12Hg7JS3tC4zM6uT0QaUDUD/rqvlwDNF6cvSzq25FBbfd6ZpseOSLk9rIDeWlOmv6zrghbTOsglYJGlKWoxfBGxKj21NeUuf38zM6qRtuAySngCuBM6RdJDCzqt7gKck3QQcAL4EEBF7JD0FvA70AbdGxAepqlso7Bj7GLAxXQAeAr4vaR+FkcmyVNcRSXcDu1K+b0ZE/+aAO4H1ktYAL6U6zMysjlT4h781dHZ2RldXV72bYWbWVCTtjojO4fL5SHkzM8vCAcXMzLJwQDEza2A9x07w5Qe203P8RL2bMiwHFDOzBrZuSze79h9h3fPd9W7KsIbd5WVmZrU3f/VGTvad+vD+ozsO8OiOA7S3TWDvms/XsWVD8wjFzKwBvXjHQq65eBaTJha+pidNnMDSi2fx4p0L69yyoTmgmJk1oBlnTmJyexsn+07R3jaBk32nmNzexozJk+rdtCF5ysvMrEEdfv8kN1x2AdcvOJ/Hdx6gt8EX5n1go5mZleUDG83MrKYcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsi5baNiypF/iHIR4+h8LPCzcytzEPtzGPZmgjNEc7G72NF0TE9OEytVRAKUdSVyX7rOvJbczDbcyjGdoIzdHOZmhjJTzlZWZmWTigmJlZFg4oH3mw3g2ogNuYh9uYRzO0EZqjnc3QxmF5DcXMzLLwCMXMzLIYtwFF0sOSeiS9VpT2LyRtl/SqpP8p6cyUPlHSIyn9DUmrispsk7RX0svpMqNObTxd0ndT+iuSriwqc2lK3ydpnSQ1YBur2Y/nSdqa/nZ7JN2W0qdK2iypO11PKSqzKvXXXkmLi9Kr0peZ21iVvhxpGyVNS/nfl3RfSV3VfE/mbGej9OXVknanPtst6aqiuqrWl9lFxLi8AP8K+G3gtaK0XcC/Trf/ELg73b4eWJ9u/wawH+hI97cBnQ3QxluB76bbM4DdwIR0fyfwWUDARuDzDdjGavbjTOC30+3JwN8DFwL/FViZ0lcCa9PtC4FXgHZgLvAmcFo1+zJzG6vSl6No4xnA7wB/BNxXUlc135M529kofXkJMCvd/jTwj7Xoy9yXcTtCiYifAEdKkucDP0m3NwO/358dOENSG/Ax4J+AYw3WxguBLalcD/Au0ClpJnBmRGyPwrvve8C1jdTGXG0p08ZDEfF/0u3jwBvAbGAp8EjK9ggf9ctSCv9AnIyInwP7gAXV7MtcbczRllxtjIhfRsTfAgN+9akG78ks7aymUbTxpYh4O6XvASZJaq92X+Y2bgPKEF4Drkm3vwScl27/APglcAg4APy3iCj+Ev1uGg7/pxoMN4dq4yvAUkltkuYCl6bHZgMHi8ofTGmN1MZ+Ve9HSR0U/tvbAZwbEYeg8AGnMGqCQv+8VVSsv89q0pdjbGO/qvZlhW0cSs3ek2NsZ79G68vfB16KiJPU5/M9aq0WUP4QuFXSbgrD0H9K6QuAD4BZFKYX/kTSP0uP3RARnwH+Zbp8pU5tfJjCm6kL+HPgfwF9FIbBpaq9dW+kbYQa9KOkjwN/DfxxRJQbYQ7VZ1XvywxthCr35QjaOGQVg6Rlf09maCc0WF9KughYC9zcnzRItobdmttSASUifhYRiyLiUuAJCvPSUFhDeS4ifpWmav6ONFUTEf+Yro8Dj1P9aYdB2xgRfRHxHyLi4ohYCpwNdFP4Ap9TVMUc4O3Seuvcxqr3o6SJFD64j0XED1PyO2nKoH8apielH2TgyKm/z6ral5naWNW+HGEbh1L192SmdjZUX0qaAzwN3BgR/d9NNf98j0VLBZT+HRySJgCrgb9IDx0ArlLBGcDlwM/S1M05qcxE4AsUpntq3kZJv5HahqSrgb6IeD0Nm49LujwN128EnmmkNla7H9Prfgh4IyK+VfTQBmB5ur2cj/plA7AszVHPBeYBO6vZl7naWM2+HEUbB1Xt92SudjZSX0o6G3gWWBURf9efuR6f7zHJvcrfKBcK/zkfAn5FIcrfBNxGYbfF3wP38NGBnR8H/orCYtjrwH+Mj3aH7AZ+mh7776SdNnVoYwewl8Li3vMUzv7ZX08nhQ/Cm8B9/WUapY016MffoTAN8FPg5XT5XWAahU0C3el6alGZr6f+2kvRrplq9WWuNlazL0fZxv0UNm28n94fF9bgPZmlnY3UlxT+MftlUd6XgRnV7svcFx8pb2ZmWbTUlJeZmVWPA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFv8fpJr4KXuy0UkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2021 743449\n", "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2020 2010315\n", "2022 2060304\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2023 2873501\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFJpJREFUeJzt3XuUJGV5x/Hv4y7CwnAzK4Mu6HohRmQFZFDRqLPgBQHvHEFBWY+6mnghuJ4EPSpRY8QL5qjxkvXKUWSOgokKRiWQwWuQXbysiIIHVmEREBB0gYgrT/54a0O7sMxMd8/U9Nvfzzl7tru6uut9qnt+XfXWW12RmUiSBt+92m6AJKk/DHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJRbO5cIWL16cS5cunctF/plbbrmFHXbYobXlt23Y6wfXgfUPZv1r1669PjPvO9V8cxroS5cuZc2aNXO5yD8zOTnJ+Ph4a8tv27DXD64D6x/M+iPil9OZzy4XSaqEgS5JlTDQJakSBrokVcJAl6RKTBnoEfHJiLguIn7SMe0+EXFORFzW/L/r7DZTkjSV6Wyhfxo4dItpJwLnZuZewLnNfUlSi6YM9Mz8JnDjFpOfBZza3D4VeHaf2yVJmqGYzjVFI2IpcFZm7tPcvykzd+l4/LeZebfdLhGxElgJMDo6esDExEQfmt2djRs3MjIy0try2zYI9a/bcPOsvv7oIrj2trtOX7Zk51ld7nwxCJ+B2TSo9S9fvnxtZo5NNd+snymamauB1QBjY2PZ5llag3qWWL8MQv0rTjx7Vl9/1bJNnLLurh/79ceMz+py54tB+AzMptrr73aUy7URcT+A5v/r+tckSVI3ug30LwPHNbePA77Un+ZIkro1nWGLpwPfAx4WEVdFxEuBk4GnRMRlwFOa+5KkFk3Zh56ZL9jKQ4f0uS2SpB54pqgkVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEj0FekScEBEXR8RPIuL0iNiuXw2TJM1M14EeEUuA1wJjmbkPsAA4ul8NkyTNTK9dLguBRRGxENgeuLr3JkmSuhGZ2f2TI44H3gHcBnwjM4+5m3lWAisBRkdHD5iYmOh6eb3auHEjIyMjrS2/bYNQ/7oNN8/q648ugmtvu+v0ZUt2ntXlzheD8BmYTYNa//Lly9dm5thU83Ud6BGxK3AmcBRwE/AF4IzM/OzWnjM2NpZr1qzpann9MDk5yfj4eGvLb9sg1L/0xLNn9fVXLdvEKesW3mX6+pMPn9XlzheD8BmYTYNaf0RMK9B76XJ5MnBFZv4mM/8IfBF4XA+vJ0nqQS+B/ivgsRGxfUQEcAhwSX+aJUmaqa4DPTMvAM4ALgLWNa+1uk/tkiTN0F07E2cgM08CTupTWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirR0++hq06zfV1PSbPDLXRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqRE+BHhG7RMQZEfGziLgkIg7qV8MkSTPT6yXo3g98LTOPjIh7A9v3oU2SpC50HegRsRPwRGAFQGbeDtzen2ZJkmYqMrO7J0bsB6wGfgrsC6wFjs/MW7aYbyWwEmB0dPSAiYmJnhrci40bNzIyMtLa8ts23frXbbh5DlrTjtFFcO1td52+bMnOc9+YFvg3MJj1L1++fG1mjk01Xy+BPgb8D/D4zLwgIt4P/C4z37y154yNjeWaNWu6Wl4/TE5OMj4+3try2zbd+peeePbsN6Ylq5Zt4pR1d90xXX/y4S20Zu75NzCY9UfEtAK9l4OiVwFXZeYFzf0zgEf18HqSpB50HeiZeQ1wZUQ8rJl0CKX7RZLUgl5HubwGOK0Z4XI58JLemyRJ6kZPgZ6ZPwSm7NeRJM0+zxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEr1e4EKqQs3XUe20atkmVjS1Dst1VIeJW+iSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEr0HOgRsSAifhARZ/WjQZKk7vRjC/144JI+vI4kqQc9BXpE7AEcDny8P82RJHUrMrP7J0ecAbwT2BF4fWYecTfzrARWAoyOjh4wMTHR9fJ6tXHjRkZGRlpbftumW/+6DTfPQWvaMboIrr2t7Va0p7P+ZUt2brcxLRjUDFi+fPnazBybar6uLxIdEUcA12Xm2ogY39p8mbkaWA0wNjaW4+NbnXXWTU5O0uby2zbd+ldUfMHkVcs2ccq64b02emf9648Zb7cxLag9A3rpcnk88MyIWA9MAAdHxGf70ipJ0ox1HeiZ+YbM3CMzlwJHA+dl5rF9a5kkaUYchy5JlehLZ2JmTgKT/XgtSVJ33EKXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEsN7ccUBsLTP1/ZctWxT1dcLlaaybsPNrf0NrD/58FlfhlvoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVImuAz0i9oyI/46ISyLi4og4vp8NkyTNTC+XoNsErMrMiyJiR2BtRJyTmT/tU9skSTPQ9RZ6Zv46My9qbv8euARY0q+GSZJmJjKz9xeJWAp8E9gnM3+3xWMrgZUAo6OjB0xMTPS8vG5t3LiRkZGRGT9v3YabZ6E1c290EVx7W9utaNewr4P5Uv+yJTu3stzrbry5tfp7qXn58uVrM3Nsqvl6DvSIGAHOB96RmV+8p3nHxsZyzZo1PS2vF5OTk4yPj8/4eUtbukp4v61atolT1vXSyzb4hn0dzJf61598eCvL/eBpX2qt/l5qjohpBXpPo1wiYhvgTOC0qcJckjS7ehnlEsAngEsy8339a5IkqRu9bKE/HngRcHBE/LD5d1if2iVJmqGuO5My89tA9LEtkqQeeKaoJFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SapE+9eimqZ+XAZu1bJNrKjkcnKStCW30CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSPQV6RBwaET+PiF9ExIn9apQkaea6DvSIWAB8CHg6sDfwgojYu18NkyTNTC9b6I8GfpGZl2fm7cAE8Kz+NEuSNFORmd09MeJI4NDMfFlz/0XAYzLz1VvMtxJY2dx9GPDz7pvbs8XA9S0uv23DXj+4Dqx/MOt/YGbed6qZFvawgLibaXf5dsjM1cDqHpbTNxGxJjPH2m5HW4a9fnAdWH/d9ffS5XIVsGfH/T2Aq3trjiSpW70E+oXAXhHxoIi4N3A08OX+NEuSNFNdd7lk5qaIeDXwdWAB8MnMvLhvLZsd86Lrp0XDXj+4Dqy/Yl0fFJUkzS+eKSpJlTDQJakSBrokVcJAn6aIWBIRS9puR1si4sERcUJEHNx2W9ow7PWD62AQ6jfQpxARSyPifOBrwHsi4gltt2muRcRfA+dQfrPnlRHxNy03aU4Ne/3gOhiU+g30uxER23XcfRRwYWYuowzRfG1ELGvmu7uzZQdeRBwcEQ9qbgdwMHBSZr4cOAU4LCLGOx6vyrDXD66DQa3fQG9ExE4R8dGIuBR4b0Q8sHnoOcCvmtsTwC+Al21+2hw3c1ZFxN4R8WPgH4FPRcTBWca17g3sDpCZFwDfBV6y+WlttHU2DHv94DoY9PoN9DsdCmxHeeNuB94SEYsou1nPAMjMPwBnAE9o7t/RTlP7IyL2iIidOiYdBZyZmU+kfHm9MCL2Aj5Hsw4a/w7sExHbDvI6GPb6wXVQW/1DFehRLIyIl0bEtyLi+Ih4SPPwQ4HbM3MT8C/Ab4FjgW8A94uI+zTzXQpcGREHzXkBfRIRD4+IrwLfBt4WEZt/9vh/ge2b258HrgEOp2yN/EXHXsuNlF/N3HfuWt0/w14/uA5qrX+oAr3ZdXoS8GLg3cC2wMeah68Brmu+ca+kvFkPobzBP+XOnwDeBrihmT4wImKHjrv7AVdl5lLgPOC9zfQbgT9ExI6ZeSNwGXB/Sq3fBV7XzHdv4E/A+tlveX8Me/3gOhiG+qsO9Ig4KCLeFRErmvsBPBz4WmZ+JTPfDTwwIh4HbKB8Mz+8efolwEgz7V8pB0GeQfkyGAV+NKfFdCEido2IT0fEhcDJEXHfZh0sA74TEZGZXwZuiojDKXsfOzaP09zfDbiDsteyW0R8DDgd2JSZ1811TTMx7PWD62DY6q820CPiEcBHgN8Dz4+I11HqXQL8vuPI9KeBF1ICehPwuGb6RZQj27dm5jeBE4EVwOOBt2fmHfPp6PZWPJFS02GUAzdvBHai/Jja7nnnD/mcSlkH36esr6cDZOb3mtdYmJmXAK8ALgb+OTNfwvw37PWD62C46s/Mgf9H2ZJ+GWU3amEz7X3A8c3tMeADwJHAk4Gvdzx3T8quF5QA/wHlykr7A18C7tcxb7Rd61bqX0D5oJ1P6Rpa3Ez/PPDa5vaDgJObxw+k9B0u6Fh/v2leZwll7+TVwKeADwM7tF2j9bsOrH/qfwO/hR4R+1IOXD4LOAl4U/PQBsp1T6F8o34HeB5wLrB7RDwyIrbJ0l++ISKekJnnUX5e813AF4HTM/PXm5eVzTs/Dx0BPBN4K3AQ5fgAlBE6m/c4rgS+BTw9My+kbK0sB8jMjcAFwIGZuQF4EaVb6RrgTZl5yxzV0a1hrx9cB8NeP9DbJehaERH7A7dk5qXNpEcDl2bmioh4FPCOiBgDJoGnRcT2mXlrRPwIeD5lLOnngJcDH4iI24B1wBXN630U+Fxm3jx3VU2t6evLiDiQsmv4LeDsLEMp/xK4PDPPi4grKGe0PhVYCzwnIhZn5vURcRlwS0Q8APggcGxE7Ea52tQNlN1NMnMNsGbOi7wHw14/uA6Gvf7pGJgt9Ih4aER8m9Ln/ZaIeHHz0B3A+mZr+yLKrtJBwK3cOeQI4I+UXardKVvhP2le63zg+sy8CspW+DwO8ycCn6QccX8y8M5mljuASyNiUWZeQVkHj6T0BV5NGVsL5aj8Asr7fiZlPRwDHACsznk0nrZTRCxo6n8SZRd4qOoHaGrLKGcnDuNnYKdhrn/a2u7z2do/YAfgoI77RwDvb24/hvLt+UDgOMpu1pLmsSMp/eWbHzu/mb4dpbtlccdr7g/cu+1at1L/9sAruXNvYhvg74BXNY/vCvy4qeEoSt/g0o51tZpyhfMjKHsgO1OOEXy1s2bgXm3Xeg/v/8sof3SrKAeyhqb+jvbtCJxNuSIYwAnDsg6av4Hjmr/bM4et/m7+zcst9Ih4I3A58NWIGG0mP40yNpwsp95+H3gNZQzpnpQx41D6yvejjE45FfhtRHyGcrDz58D/94Vl5g8y8/bZr2hmImJ34CxgHPgM5SDOcyl7HpsAMvO3lIO2r6X0E+7GnUMuv0kZb397Zp4FfIJyhuuHKEfz/7h5WTkPt0ia8cLnUv74PgY8lXL840DKlljV9W9hEeV8iYdExGLK53wB1L0OImIbyrGvI4H3ZObzmof23zxPzfV3re1vlK18M49Tdpc+Dqxqpr2O0l+2eZ69gSub2+8A3tbx2IXA/s3tbSlDlg5su64Z1L8IeEzH/RWUgzzHAd/vmH5/4Orm9qsopyrv2jz/K8ADOuZdPBdt7+M62KXj9t9T/miPGZb6O9p9HPAe4M3ASymnn184DOuAMjDhmC2mHQVcMAz1d7XO2m7AVt7IzUOJjuLOLpNdgJuA7Trmu5Dyjb0L8AXKLtZ/Ur6Bt227jh7qj83/mvuP6lgPN1DGz26e95zN4Q/8E2XEzw3AP7RdRx/Ww06U4xzXAm9r7t8AjNZef8d7/xJK19tzgdOaadcPyTo4gnJizymUQQ5voXSl3gjsVnv93fybl10umfmn5uZ/ATtGxL6ZeROl3/wVHbNeBOzYPPYaSrfKfwArsxz5HkjZ6Jh0PGVrBUr/3wkAUX5f5pfA5qGVb6XsySzJzHfNUXNnTWb+jtK19ljKweznU7rNXhFFtfV3vP+HUbqdzgX2iIg3UQ72r4S6PwNZukquoITzi4BHAM+mfAZeWftnoBvx57kx/0TEhyn94a9vRnn8LSXYd6WcMHRYxxdAdSJiD0r/32sy89IoPya2kvLhXgL8MOfjGWt9FhH7Ub7Mv0fpJ92HMtSs2vojYoTS3bItpea/opwM80bKlvte1L8Ots/MW5vb+1I++9+hnJpf/WdgpgYh0PejjFo5hPKhvpVyGv5twEcz8+IWmzfrovx+zJOAN1D6U6+i7GIeBfwsy1DN6kXEnpQvthdk5g0RcSxwcWb+oOWmzZooF1r5N8oBvNMpQ+7emJlPbR6vfh10ivJLhx8HjsrMG4et/ukYhEA/mjJ071bg7ZQj3vUclZ5CRHwHeDDlV92uBt6amT9utVFzJCJ2pnyRv5ByEHw18KHM/OM9PrFSzckwzwUmMvOattszFyJiW8q1CjZ3uXwE+HCWn7nWFuZ1oEfEIymn4Z9BOSA0UD9Z26tm6NZJlH7Ezw7ycYFuRMRCSjfLHyj1D9X7v1lELADuyPn8xzqLIuIVlOGqnxnWz8B0zetAlyRN37wc5SJJmjkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXi/wBtahKTuq4SNAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }