diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 19b72bb4a7356a695e5950b18709b5f51a0945f3..48c505e55aa2573d4c8d1b8b6a696026aa365233 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -4,16 +4,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "March 28, 2019" + "# 1 On the computation of π\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 1 On the computation of π\n", "\n", - "### 1.1 Asking the maths library" + "## 1.1 Asking the maths library" ] }, { @@ -38,8 +37,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.2 Buffon’s needle\n", - "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" + "## 1.2 Buffon’s needle\n", + "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -71,8 +70,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.3 Using a surface fraction argument \n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then $P[X^2 + Y^2 ≤ 1]$ = π/4 (see \"[Monte Carlo method\"\n", + "## 1.3 Using a surface fraction argument \n", + "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see \"[Monte Carlo method\"\n", "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, @@ -136,13 +135,6 @@ "source": [ "4*np.mean(accept)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..9b8647249480e00d572f884ca7d7d9f547f83713 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -1,5 +1,51 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14.113000000000001, 4.312369534258399, 23.4, 2.8, 14.113000000000001, 14.5)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(a), np.std(a), max(a), min(a), np.average(a), np.median(a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +62,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -