diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 57aea10ad39f4312cc7007accfc073b4452d3f04..a642e9e1d7ffcf603af6d77d97051d57b7c84871 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -12,18 +12,29 @@ Mon ordinateur m’indique que π vaut **approximativement** pi ``` -## Quelques explications - -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . - -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +#En utilisant la méthode des aiguilles de Buffon +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` -```{r cars} -summary(cars) +#Avec un argument “fréquentiel” de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80) sur Wikipedia). Le code suivant illustre ce fait: +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1: +```{r} +4*mean(df$Accept) ``` -Et on peut aussi aisément inclure des figures. Par exemple: -```{r pressure, echo=FALSE} -plot(pressure) -```