diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 3ecd35549cdbc33ade1071dc71c5cd5ba34f909d..e4d479e73674ea0c35ef448976061e4613a00987 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "metadata": { "hideCode": false, "hidePrompt": false @@ -64,10 +64,10 @@ { "data": { "text/plain": [ - "3.1289111389236548" + "3.128911138923655" ] }, - "execution_count": 10, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -99,6 +99,7 @@ "hideCode": false, "hidePrompt": false }, + "outputs": [], "source": [ "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", @@ -121,21 +122,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" + "Il est alors aisé d’obtenir une approximation (pas terrible) de p en comptant combien de fois, en moyenne, $X^2 +Y^2$ est inférieur à 1 :" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3.1120000000000001" + "3.112" ] }, - "execution_count": 8, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -143,6 +144,13 @@ "source": [ "4*np.mean(accept)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {