From ccb0940e573e21ec6e9ea934dacafbee88159c1d Mon Sep 17 00:00:00 2001
From: 7c464d3f75d36d59ec46a9a19f550f91
<7c464d3f75d36d59ec46a9a19f550f91@app-learninglab.inria.fr>
Date: Tue, 7 Jun 2022 15:49:59 +0000
Subject: [PATCH] Exercise 3.2 -> tried but always threw AssertionError
---
module3/exo2/exercice.ipynb | 2191 ++++++++++++++++++++++++++++++++++-
1 file changed, 2188 insertions(+), 3 deletions(-)
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe37..35b221c 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2191 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202221 | \n",
+ " 7 | \n",
+ " 19602 | \n",
+ " 15607 | \n",
+ " 23597 | \n",
+ " 30 | \n",
+ " 24 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202220 | \n",
+ " 7 | \n",
+ " 23585 | \n",
+ " 19004 | \n",
+ " 28166 | \n",
+ " 36 | \n",
+ " 29 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202219 | \n",
+ " 7 | \n",
+ " 18593 | \n",
+ " 14181 | \n",
+ " 23005 | \n",
+ " 28 | \n",
+ " 21 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202218 | \n",
+ " 7 | \n",
+ " 17851 | \n",
+ " 13963 | \n",
+ " 21739 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202217 | \n",
+ " 7 | \n",
+ " 20314 | \n",
+ " 16001 | \n",
+ " 24627 | \n",
+ " 31 | \n",
+ " 24 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202216 | \n",
+ " 7 | \n",
+ " 19660 | \n",
+ " 14860 | \n",
+ " 24460 | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202215 | \n",
+ " 7 | \n",
+ " 17799 | \n",
+ " 13715 | \n",
+ " 21883 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202214 | \n",
+ " 7 | \n",
+ " 17005 | \n",
+ " 13162 | \n",
+ " 20848 | \n",
+ " 26 | \n",
+ " 20 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202213 | \n",
+ " 7 | \n",
+ " 15448 | \n",
+ " 11659 | \n",
+ " 19237 | \n",
+ " 23 | \n",
+ " 17 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202212 | \n",
+ " 7 | \n",
+ " 14702 | \n",
+ " 10794 | \n",
+ " 18610 | \n",
+ " 22 | \n",
+ " 16 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202211 | \n",
+ " 7 | \n",
+ " 11729 | \n",
+ " 8347 | \n",
+ " 15111 | \n",
+ " 18 | \n",
+ " 13 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202210 | \n",
+ " 7 | \n",
+ " 13314 | \n",
+ " 10036 | \n",
+ " 16592 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202209 | \n",
+ " 7 | \n",
+ " 10485 | \n",
+ " 7600 | \n",
+ " 13370 | \n",
+ " 16 | \n",
+ " 12 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202208 | \n",
+ " 7 | \n",
+ " 12088 | \n",
+ " 8741 | \n",
+ " 15435 | \n",
+ " 18 | \n",
+ " 13 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202207 | \n",
+ " 7 | \n",
+ " 14003 | \n",
+ " 10789 | \n",
+ " 17217 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202206 | \n",
+ " 7 | \n",
+ " 9798 | \n",
+ " 7048 | \n",
+ " 12548 | \n",
+ " 15 | \n",
+ " 11 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202205 | \n",
+ " 7 | \n",
+ " 10851 | \n",
+ " 7797 | \n",
+ " 13905 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202204 | \n",
+ " 7 | \n",
+ " 9547 | \n",
+ " 6721 | \n",
+ " 12373 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202203 | \n",
+ " 7 | \n",
+ " 13972 | \n",
+ " 10680 | \n",
+ " 17264 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202202 | \n",
+ " 7 | \n",
+ " 8495 | \n",
+ " 6026 | \n",
+ " 10964 | \n",
+ " 13 | \n",
+ " 9 | \n",
+ " 17 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202201 | \n",
+ " 7 | \n",
+ " 13793 | \n",
+ " 10597 | \n",
+ " 16989 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202152 | \n",
+ " 7 | \n",
+ " 13239 | \n",
+ " 9611 | \n",
+ " 16867 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202151 | \n",
+ " 7 | \n",
+ " 13326 | \n",
+ " 9629 | \n",
+ " 17023 | \n",
+ " 20 | \n",
+ " 14 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202150 | \n",
+ " 7 | \n",
+ " 14128 | \n",
+ " 10312 | \n",
+ " 17944 | \n",
+ " 21 | \n",
+ " 15 | \n",
+ " 27 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202149 | \n",
+ " 7 | \n",
+ " 13674 | \n",
+ " 10369 | \n",
+ " 16979 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202148 | \n",
+ " 7 | \n",
+ " 11549 | \n",
+ " 8503 | \n",
+ " 14595 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202147 | \n",
+ " 7 | \n",
+ " 11419 | \n",
+ " 8376 | \n",
+ " 14462 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202146 | \n",
+ " 7 | \n",
+ " 8216 | \n",
+ " 5724 | \n",
+ " 10708 | \n",
+ " 12 | \n",
+ " 8 | \n",
+ " 16 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202145 | \n",
+ " 7 | \n",
+ " 8965 | \n",
+ " 6468 | \n",
+ " 11462 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202144 | \n",
+ " 7 | \n",
+ " 8736 | \n",
+ " 5636 | \n",
+ " 11836 | \n",
+ " 13 | \n",
+ " 8 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1613 | \n",
+ " 199126 | \n",
+ " 7 | \n",
+ " 17608 | \n",
+ " 11304 | \n",
+ " 23912 | \n",
+ " 31 | \n",
+ " 20 | \n",
+ " 42 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1614 | \n",
+ " 199125 | \n",
+ " 7 | \n",
+ " 16169 | \n",
+ " 10700 | \n",
+ " 21638 | \n",
+ " 28 | \n",
+ " 18 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1615 | \n",
+ " 199124 | \n",
+ " 7 | \n",
+ " 16171 | \n",
+ " 10071 | \n",
+ " 22271 | \n",
+ " 28 | \n",
+ " 17 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1616 | \n",
+ " 199123 | \n",
+ " 7 | \n",
+ " 11947 | \n",
+ " 7671 | \n",
+ " 16223 | \n",
+ " 21 | \n",
+ " 13 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1617 | \n",
+ " 199122 | \n",
+ " 7 | \n",
+ " 15452 | \n",
+ " 9953 | \n",
+ " 20951 | \n",
+ " 27 | \n",
+ " 17 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1618 | \n",
+ " 199121 | \n",
+ " 7 | \n",
+ " 14903 | \n",
+ " 8975 | \n",
+ " 20831 | \n",
+ " 26 | \n",
+ " 16 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1619 | \n",
+ " 199120 | \n",
+ " 7 | \n",
+ " 19053 | \n",
+ " 12742 | \n",
+ " 25364 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1620 | \n",
+ " 199119 | \n",
+ " 7 | \n",
+ " 16739 | \n",
+ " 11246 | \n",
+ " 22232 | \n",
+ " 29 | \n",
+ " 19 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1621 | \n",
+ " 199118 | \n",
+ " 7 | \n",
+ " 21385 | \n",
+ " 13882 | \n",
+ " 28888 | \n",
+ " 38 | \n",
+ " 25 | \n",
+ " 51 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1622 | \n",
+ " 199117 | \n",
+ " 7 | \n",
+ " 13462 | \n",
+ " 8877 | \n",
+ " 18047 | \n",
+ " 24 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1623 | \n",
+ " 199116 | \n",
+ " 7 | \n",
+ " 14857 | \n",
+ " 10068 | \n",
+ " 19646 | \n",
+ " 26 | \n",
+ " 18 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1624 | \n",
+ " 199115 | \n",
+ " 7 | \n",
+ " 13975 | \n",
+ " 9781 | \n",
+ " 18169 | \n",
+ " 25 | \n",
+ " 18 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1625 | \n",
+ " 199114 | \n",
+ " 7 | \n",
+ " 12265 | \n",
+ " 7684 | \n",
+ " 16846 | \n",
+ " 22 | \n",
+ " 14 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1626 | \n",
+ " 199113 | \n",
+ " 7 | \n",
+ " 9567 | \n",
+ " 6041 | \n",
+ " 13093 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1627 | \n",
+ " 199112 | \n",
+ " 7 | \n",
+ " 10864 | \n",
+ " 7331 | \n",
+ " 14397 | \n",
+ " 19 | \n",
+ " 13 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1628 | \n",
+ " 199111 | \n",
+ " 7 | \n",
+ " 15574 | \n",
+ " 11184 | \n",
+ " 19964 | \n",
+ " 27 | \n",
+ " 19 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1629 | \n",
+ " 199110 | \n",
+ " 7 | \n",
+ " 16643 | \n",
+ " 11372 | \n",
+ " 21914 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1630 | \n",
+ " 199109 | \n",
+ " 7 | \n",
+ " 13741 | \n",
+ " 8780 | \n",
+ " 18702 | \n",
+ " 24 | \n",
+ " 15 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1631 | \n",
+ " 199108 | \n",
+ " 7 | \n",
+ " 13289 | \n",
+ " 8813 | \n",
+ " 17765 | \n",
+ " 23 | \n",
+ " 15 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1632 | \n",
+ " 199107 | \n",
+ " 7 | \n",
+ " 12337 | \n",
+ " 8077 | \n",
+ " 16597 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1633 | \n",
+ " 199106 | \n",
+ " 7 | \n",
+ " 10877 | \n",
+ " 7013 | \n",
+ " 14741 | \n",
+ " 19 | \n",
+ " 12 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1634 | \n",
+ " 199105 | \n",
+ " 7 | \n",
+ " 10442 | \n",
+ " 6544 | \n",
+ " 14340 | \n",
+ " 18 | \n",
+ " 11 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1635 | \n",
+ " 199104 | \n",
+ " 7 | \n",
+ " 7913 | \n",
+ " 4563 | \n",
+ " 11263 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1636 | \n",
+ " 199103 | \n",
+ " 7 | \n",
+ " 15387 | \n",
+ " 10484 | \n",
+ " 20290 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1637 | \n",
+ " 199102 | \n",
+ " 7 | \n",
+ " 16277 | \n",
+ " 11046 | \n",
+ " 21508 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1638 | \n",
+ " 199101 | \n",
+ " 7 | \n",
+ " 15565 | \n",
+ " 10271 | \n",
+ " 20859 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1639 | \n",
+ " 199052 | \n",
+ " 7 | \n",
+ " 19375 | \n",
+ " 13295 | \n",
+ " 25455 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1640 | \n",
+ " 199051 | \n",
+ " 7 | \n",
+ " 19080 | \n",
+ " 13807 | \n",
+ " 24353 | \n",
+ " 34 | \n",
+ " 25 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1641 | \n",
+ " 199050 | \n",
+ " 7 | \n",
+ " 11079 | \n",
+ " 6660 | \n",
+ " 15498 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1642 | \n",
+ " 199049 | \n",
+ " 7 | \n",
+ " 1143 | \n",
+ " 0 | \n",
+ " 2610 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1643 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202221 7 19602 15607 23597 30 24 \n",
+ "1 202220 7 23585 19004 28166 36 29 \n",
+ "2 202219 7 18593 14181 23005 28 21 \n",
+ "3 202218 7 17851 13963 21739 27 21 \n",
+ "4 202217 7 20314 16001 24627 31 24 \n",
+ "5 202216 7 19660 14860 24460 30 23 \n",
+ "6 202215 7 17799 13715 21883 27 21 \n",
+ "7 202214 7 17005 13162 20848 26 20 \n",
+ "8 202213 7 15448 11659 19237 23 17 \n",
+ "9 202212 7 14702 10794 18610 22 16 \n",
+ "10 202211 7 11729 8347 15111 18 13 \n",
+ "11 202210 7 13314 10036 16592 20 15 \n",
+ "12 202209 7 10485 7600 13370 16 12 \n",
+ "13 202208 7 12088 8741 15435 18 13 \n",
+ "14 202207 7 14003 10789 17217 21 16 \n",
+ "15 202206 7 9798 7048 12548 15 11 \n",
+ "16 202205 7 10851 7797 13905 16 11 \n",
+ "17 202204 7 9547 6721 12373 14 10 \n",
+ "18 202203 7 13972 10680 17264 21 16 \n",
+ "19 202202 7 8495 6026 10964 13 9 \n",
+ "20 202201 7 13793 10597 16989 21 16 \n",
+ "21 202152 7 13239 9611 16867 20 15 \n",
+ "22 202151 7 13326 9629 17023 20 14 \n",
+ "23 202150 7 14128 10312 17944 21 15 \n",
+ "24 202149 7 13674 10369 16979 21 16 \n",
+ "25 202148 7 11549 8503 14595 17 12 \n",
+ "26 202147 7 11419 8376 14462 17 12 \n",
+ "27 202146 7 8216 5724 10708 12 8 \n",
+ "28 202145 7 8965 6468 11462 14 10 \n",
+ "29 202144 7 8736 5636 11836 13 8 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1613 199126 7 17608 11304 23912 31 20 \n",
+ "1614 199125 7 16169 10700 21638 28 18 \n",
+ "1615 199124 7 16171 10071 22271 28 17 \n",
+ "1616 199123 7 11947 7671 16223 21 13 \n",
+ "1617 199122 7 15452 9953 20951 27 17 \n",
+ "1618 199121 7 14903 8975 20831 26 16 \n",
+ "1619 199120 7 19053 12742 25364 34 23 \n",
+ "1620 199119 7 16739 11246 22232 29 19 \n",
+ "1621 199118 7 21385 13882 28888 38 25 \n",
+ "1622 199117 7 13462 8877 18047 24 16 \n",
+ "1623 199116 7 14857 10068 19646 26 18 \n",
+ "1624 199115 7 13975 9781 18169 25 18 \n",
+ "1625 199114 7 12265 7684 16846 22 14 \n",
+ "1626 199113 7 9567 6041 13093 17 11 \n",
+ "1627 199112 7 10864 7331 14397 19 13 \n",
+ "1628 199111 7 15574 11184 19964 27 19 \n",
+ "1629 199110 7 16643 11372 21914 29 20 \n",
+ "1630 199109 7 13741 8780 18702 24 15 \n",
+ "1631 199108 7 13289 8813 17765 23 15 \n",
+ "1632 199107 7 12337 8077 16597 22 15 \n",
+ "1633 199106 7 10877 7013 14741 19 12 \n",
+ "1634 199105 7 10442 6544 14340 18 11 \n",
+ "1635 199104 7 7913 4563 11263 14 8 \n",
+ "1636 199103 7 15387 10484 20290 27 18 \n",
+ "1637 199102 7 16277 11046 21508 29 20 \n",
+ "1638 199101 7 15565 10271 20859 27 18 \n",
+ "1639 199052 7 19375 13295 25455 34 23 \n",
+ "1640 199051 7 19080 13807 24353 34 25 \n",
+ "1641 199050 7 11079 6660 15498 20 12 \n",
+ "1642 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 36 FR France \n",
+ "1 43 FR France \n",
+ "2 35 FR France \n",
+ "3 33 FR France \n",
+ "4 38 FR France \n",
+ "5 37 FR France \n",
+ "6 33 FR France \n",
+ "7 32 FR France \n",
+ "8 29 FR France \n",
+ "9 28 FR France \n",
+ "10 23 FR France \n",
+ "11 25 FR France \n",
+ "12 20 FR France \n",
+ "13 23 FR France \n",
+ "14 26 FR France \n",
+ "15 19 FR France \n",
+ "16 21 FR France \n",
+ "17 18 FR France \n",
+ "18 26 FR France \n",
+ "19 17 FR France \n",
+ "20 26 FR France \n",
+ "21 25 FR France \n",
+ "22 26 FR France \n",
+ "23 27 FR France \n",
+ "24 26 FR France \n",
+ "25 22 FR France \n",
+ "26 22 FR France \n",
+ "27 16 FR France \n",
+ "28 18 FR France \n",
+ "29 18 FR France \n",
+ "... ... ... ... \n",
+ "1613 42 FR France \n",
+ "1614 38 FR France \n",
+ "1615 39 FR France \n",
+ "1616 29 FR France \n",
+ "1617 37 FR France \n",
+ "1618 36 FR France \n",
+ "1619 45 FR France \n",
+ "1620 39 FR France \n",
+ "1621 51 FR France \n",
+ "1622 32 FR France \n",
+ "1623 34 FR France \n",
+ "1624 32 FR France \n",
+ "1625 30 FR France \n",
+ "1626 23 FR France \n",
+ "1627 25 FR France \n",
+ "1628 35 FR France \n",
+ "1629 38 FR France \n",
+ "1630 33 FR France \n",
+ "1631 31 FR France \n",
+ "1632 29 FR France \n",
+ "1633 26 FR France \n",
+ "1634 25 FR France \n",
+ "1635 20 FR France \n",
+ "1636 36 FR France \n",
+ "1637 38 FR France \n",
+ "1638 36 FR France \n",
+ "1639 45 FR France \n",
+ "1640 43 FR France \n",
+ "1641 28 FR France \n",
+ "1642 5 FR France \n",
+ "\n",
+ "[1643 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202221 | \n",
+ " 7 | \n",
+ " 19602 | \n",
+ " 15607 | \n",
+ " 23597 | \n",
+ " 30 | \n",
+ " 24 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202220 | \n",
+ " 7 | \n",
+ " 23585 | \n",
+ " 19004 | \n",
+ " 28166 | \n",
+ " 36 | \n",
+ " 29 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202219 | \n",
+ " 7 | \n",
+ " 18593 | \n",
+ " 14181 | \n",
+ " 23005 | \n",
+ " 28 | \n",
+ " 21 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202218 | \n",
+ " 7 | \n",
+ " 17851 | \n",
+ " 13963 | \n",
+ " 21739 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202217 | \n",
+ " 7 | \n",
+ " 20314 | \n",
+ " 16001 | \n",
+ " 24627 | \n",
+ " 31 | \n",
+ " 24 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202216 | \n",
+ " 7 | \n",
+ " 19660 | \n",
+ " 14860 | \n",
+ " 24460 | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202215 | \n",
+ " 7 | \n",
+ " 17799 | \n",
+ " 13715 | \n",
+ " 21883 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202214 | \n",
+ " 7 | \n",
+ " 17005 | \n",
+ " 13162 | \n",
+ " 20848 | \n",
+ " 26 | \n",
+ " 20 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202213 | \n",
+ " 7 | \n",
+ " 15448 | \n",
+ " 11659 | \n",
+ " 19237 | \n",
+ " 23 | \n",
+ " 17 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202212 | \n",
+ " 7 | \n",
+ " 14702 | \n",
+ " 10794 | \n",
+ " 18610 | \n",
+ " 22 | \n",
+ " 16 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202211 | \n",
+ " 7 | \n",
+ " 11729 | \n",
+ " 8347 | \n",
+ " 15111 | \n",
+ " 18 | \n",
+ " 13 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202210 | \n",
+ " 7 | \n",
+ " 13314 | \n",
+ " 10036 | \n",
+ " 16592 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202209 | \n",
+ " 7 | \n",
+ " 10485 | \n",
+ " 7600 | \n",
+ " 13370 | \n",
+ " 16 | \n",
+ " 12 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202208 | \n",
+ " 7 | \n",
+ " 12088 | \n",
+ " 8741 | \n",
+ " 15435 | \n",
+ " 18 | \n",
+ " 13 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202207 | \n",
+ " 7 | \n",
+ " 14003 | \n",
+ " 10789 | \n",
+ " 17217 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202206 | \n",
+ " 7 | \n",
+ " 9798 | \n",
+ " 7048 | \n",
+ " 12548 | \n",
+ " 15 | \n",
+ " 11 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202205 | \n",
+ " 7 | \n",
+ " 10851 | \n",
+ " 7797 | \n",
+ " 13905 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202204 | \n",
+ " 7 | \n",
+ " 9547 | \n",
+ " 6721 | \n",
+ " 12373 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202203 | \n",
+ " 7 | \n",
+ " 13972 | \n",
+ " 10680 | \n",
+ " 17264 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202202 | \n",
+ " 7 | \n",
+ " 8495 | \n",
+ " 6026 | \n",
+ " 10964 | \n",
+ " 13 | \n",
+ " 9 | \n",
+ " 17 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202201 | \n",
+ " 7 | \n",
+ " 13793 | \n",
+ " 10597 | \n",
+ " 16989 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202152 | \n",
+ " 7 | \n",
+ " 13239 | \n",
+ " 9611 | \n",
+ " 16867 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202151 | \n",
+ " 7 | \n",
+ " 13326 | \n",
+ " 9629 | \n",
+ " 17023 | \n",
+ " 20 | \n",
+ " 14 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202150 | \n",
+ " 7 | \n",
+ " 14128 | \n",
+ " 10312 | \n",
+ " 17944 | \n",
+ " 21 | \n",
+ " 15 | \n",
+ " 27 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202149 | \n",
+ " 7 | \n",
+ " 13674 | \n",
+ " 10369 | \n",
+ " 16979 | \n",
+ " 21 | \n",
+ " 16 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202148 | \n",
+ " 7 | \n",
+ " 11549 | \n",
+ " 8503 | \n",
+ " 14595 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202147 | \n",
+ " 7 | \n",
+ " 11419 | \n",
+ " 8376 | \n",
+ " 14462 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202146 | \n",
+ " 7 | \n",
+ " 8216 | \n",
+ " 5724 | \n",
+ " 10708 | \n",
+ " 12 | \n",
+ " 8 | \n",
+ " 16 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202145 | \n",
+ " 7 | \n",
+ " 8965 | \n",
+ " 6468 | \n",
+ " 11462 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202144 | \n",
+ " 7 | \n",
+ " 8736 | \n",
+ " 5636 | \n",
+ " 11836 | \n",
+ " 13 | \n",
+ " 8 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1613 | \n",
+ " 199126 | \n",
+ " 7 | \n",
+ " 17608 | \n",
+ " 11304 | \n",
+ " 23912 | \n",
+ " 31 | \n",
+ " 20 | \n",
+ " 42 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1614 | \n",
+ " 199125 | \n",
+ " 7 | \n",
+ " 16169 | \n",
+ " 10700 | \n",
+ " 21638 | \n",
+ " 28 | \n",
+ " 18 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1615 | \n",
+ " 199124 | \n",
+ " 7 | \n",
+ " 16171 | \n",
+ " 10071 | \n",
+ " 22271 | \n",
+ " 28 | \n",
+ " 17 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1616 | \n",
+ " 199123 | \n",
+ " 7 | \n",
+ " 11947 | \n",
+ " 7671 | \n",
+ " 16223 | \n",
+ " 21 | \n",
+ " 13 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1617 | \n",
+ " 199122 | \n",
+ " 7 | \n",
+ " 15452 | \n",
+ " 9953 | \n",
+ " 20951 | \n",
+ " 27 | \n",
+ " 17 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1618 | \n",
+ " 199121 | \n",
+ " 7 | \n",
+ " 14903 | \n",
+ " 8975 | \n",
+ " 20831 | \n",
+ " 26 | \n",
+ " 16 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1619 | \n",
+ " 199120 | \n",
+ " 7 | \n",
+ " 19053 | \n",
+ " 12742 | \n",
+ " 25364 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1620 | \n",
+ " 199119 | \n",
+ " 7 | \n",
+ " 16739 | \n",
+ " 11246 | \n",
+ " 22232 | \n",
+ " 29 | \n",
+ " 19 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1621 | \n",
+ " 199118 | \n",
+ " 7 | \n",
+ " 21385 | \n",
+ " 13882 | \n",
+ " 28888 | \n",
+ " 38 | \n",
+ " 25 | \n",
+ " 51 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1622 | \n",
+ " 199117 | \n",
+ " 7 | \n",
+ " 13462 | \n",
+ " 8877 | \n",
+ " 18047 | \n",
+ " 24 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1623 | \n",
+ " 199116 | \n",
+ " 7 | \n",
+ " 14857 | \n",
+ " 10068 | \n",
+ " 19646 | \n",
+ " 26 | \n",
+ " 18 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1624 | \n",
+ " 199115 | \n",
+ " 7 | \n",
+ " 13975 | \n",
+ " 9781 | \n",
+ " 18169 | \n",
+ " 25 | \n",
+ " 18 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1625 | \n",
+ " 199114 | \n",
+ " 7 | \n",
+ " 12265 | \n",
+ " 7684 | \n",
+ " 16846 | \n",
+ " 22 | \n",
+ " 14 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1626 | \n",
+ " 199113 | \n",
+ " 7 | \n",
+ " 9567 | \n",
+ " 6041 | \n",
+ " 13093 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1627 | \n",
+ " 199112 | \n",
+ " 7 | \n",
+ " 10864 | \n",
+ " 7331 | \n",
+ " 14397 | \n",
+ " 19 | \n",
+ " 13 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1628 | \n",
+ " 199111 | \n",
+ " 7 | \n",
+ " 15574 | \n",
+ " 11184 | \n",
+ " 19964 | \n",
+ " 27 | \n",
+ " 19 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1629 | \n",
+ " 199110 | \n",
+ " 7 | \n",
+ " 16643 | \n",
+ " 11372 | \n",
+ " 21914 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1630 | \n",
+ " 199109 | \n",
+ " 7 | \n",
+ " 13741 | \n",
+ " 8780 | \n",
+ " 18702 | \n",
+ " 24 | \n",
+ " 15 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1631 | \n",
+ " 199108 | \n",
+ " 7 | \n",
+ " 13289 | \n",
+ " 8813 | \n",
+ " 17765 | \n",
+ " 23 | \n",
+ " 15 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1632 | \n",
+ " 199107 | \n",
+ " 7 | \n",
+ " 12337 | \n",
+ " 8077 | \n",
+ " 16597 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1633 | \n",
+ " 199106 | \n",
+ " 7 | \n",
+ " 10877 | \n",
+ " 7013 | \n",
+ " 14741 | \n",
+ " 19 | \n",
+ " 12 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1634 | \n",
+ " 199105 | \n",
+ " 7 | \n",
+ " 10442 | \n",
+ " 6544 | \n",
+ " 14340 | \n",
+ " 18 | \n",
+ " 11 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1635 | \n",
+ " 199104 | \n",
+ " 7 | \n",
+ " 7913 | \n",
+ " 4563 | \n",
+ " 11263 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1636 | \n",
+ " 199103 | \n",
+ " 7 | \n",
+ " 15387 | \n",
+ " 10484 | \n",
+ " 20290 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1637 | \n",
+ " 199102 | \n",
+ " 7 | \n",
+ " 16277 | \n",
+ " 11046 | \n",
+ " 21508 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1638 | \n",
+ " 199101 | \n",
+ " 7 | \n",
+ " 15565 | \n",
+ " 10271 | \n",
+ " 20859 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1639 | \n",
+ " 199052 | \n",
+ " 7 | \n",
+ " 19375 | \n",
+ " 13295 | \n",
+ " 25455 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1640 | \n",
+ " 199051 | \n",
+ " 7 | \n",
+ " 19080 | \n",
+ " 13807 | \n",
+ " 24353 | \n",
+ " 34 | \n",
+ " 25 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1641 | \n",
+ " 199050 | \n",
+ " 7 | \n",
+ " 11079 | \n",
+ " 6660 | \n",
+ " 15498 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1642 | \n",
+ " 199049 | \n",
+ " 7 | \n",
+ " 1143 | \n",
+ " 0 | \n",
+ " 2610 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1643 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202221 7 19602 15607 23597 30 24 \n",
+ "1 202220 7 23585 19004 28166 36 29 \n",
+ "2 202219 7 18593 14181 23005 28 21 \n",
+ "3 202218 7 17851 13963 21739 27 21 \n",
+ "4 202217 7 20314 16001 24627 31 24 \n",
+ "5 202216 7 19660 14860 24460 30 23 \n",
+ "6 202215 7 17799 13715 21883 27 21 \n",
+ "7 202214 7 17005 13162 20848 26 20 \n",
+ "8 202213 7 15448 11659 19237 23 17 \n",
+ "9 202212 7 14702 10794 18610 22 16 \n",
+ "10 202211 7 11729 8347 15111 18 13 \n",
+ "11 202210 7 13314 10036 16592 20 15 \n",
+ "12 202209 7 10485 7600 13370 16 12 \n",
+ "13 202208 7 12088 8741 15435 18 13 \n",
+ "14 202207 7 14003 10789 17217 21 16 \n",
+ "15 202206 7 9798 7048 12548 15 11 \n",
+ "16 202205 7 10851 7797 13905 16 11 \n",
+ "17 202204 7 9547 6721 12373 14 10 \n",
+ "18 202203 7 13972 10680 17264 21 16 \n",
+ "19 202202 7 8495 6026 10964 13 9 \n",
+ "20 202201 7 13793 10597 16989 21 16 \n",
+ "21 202152 7 13239 9611 16867 20 15 \n",
+ "22 202151 7 13326 9629 17023 20 14 \n",
+ "23 202150 7 14128 10312 17944 21 15 \n",
+ "24 202149 7 13674 10369 16979 21 16 \n",
+ "25 202148 7 11549 8503 14595 17 12 \n",
+ "26 202147 7 11419 8376 14462 17 12 \n",
+ "27 202146 7 8216 5724 10708 12 8 \n",
+ "28 202145 7 8965 6468 11462 14 10 \n",
+ "29 202144 7 8736 5636 11836 13 8 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1613 199126 7 17608 11304 23912 31 20 \n",
+ "1614 199125 7 16169 10700 21638 28 18 \n",
+ "1615 199124 7 16171 10071 22271 28 17 \n",
+ "1616 199123 7 11947 7671 16223 21 13 \n",
+ "1617 199122 7 15452 9953 20951 27 17 \n",
+ "1618 199121 7 14903 8975 20831 26 16 \n",
+ "1619 199120 7 19053 12742 25364 34 23 \n",
+ "1620 199119 7 16739 11246 22232 29 19 \n",
+ "1621 199118 7 21385 13882 28888 38 25 \n",
+ "1622 199117 7 13462 8877 18047 24 16 \n",
+ "1623 199116 7 14857 10068 19646 26 18 \n",
+ "1624 199115 7 13975 9781 18169 25 18 \n",
+ "1625 199114 7 12265 7684 16846 22 14 \n",
+ "1626 199113 7 9567 6041 13093 17 11 \n",
+ "1627 199112 7 10864 7331 14397 19 13 \n",
+ "1628 199111 7 15574 11184 19964 27 19 \n",
+ "1629 199110 7 16643 11372 21914 29 20 \n",
+ "1630 199109 7 13741 8780 18702 24 15 \n",
+ "1631 199108 7 13289 8813 17765 23 15 \n",
+ "1632 199107 7 12337 8077 16597 22 15 \n",
+ "1633 199106 7 10877 7013 14741 19 12 \n",
+ "1634 199105 7 10442 6544 14340 18 11 \n",
+ "1635 199104 7 7913 4563 11263 14 8 \n",
+ "1636 199103 7 15387 10484 20290 27 18 \n",
+ "1637 199102 7 16277 11046 21508 29 20 \n",
+ "1638 199101 7 15565 10271 20859 27 18 \n",
+ "1639 199052 7 19375 13295 25455 34 23 \n",
+ "1640 199051 7 19080 13807 24353 34 25 \n",
+ "1641 199050 7 11079 6660 15498 20 12 \n",
+ "1642 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 36 FR France \n",
+ "1 43 FR France \n",
+ "2 35 FR France \n",
+ "3 33 FR France \n",
+ "4 38 FR France \n",
+ "5 37 FR France \n",
+ "6 33 FR France \n",
+ "7 32 FR France \n",
+ "8 29 FR France \n",
+ "9 28 FR France \n",
+ "10 23 FR France \n",
+ "11 25 FR France \n",
+ "12 20 FR France \n",
+ "13 23 FR France \n",
+ "14 26 FR France \n",
+ "15 19 FR France \n",
+ "16 21 FR France \n",
+ "17 18 FR France \n",
+ "18 26 FR France \n",
+ "19 17 FR France \n",
+ "20 26 FR France \n",
+ "21 25 FR France \n",
+ "22 26 FR France \n",
+ "23 27 FR France \n",
+ "24 26 FR France \n",
+ "25 22 FR France \n",
+ "26 22 FR France \n",
+ "27 16 FR France \n",
+ "28 18 FR France \n",
+ "29 18 FR France \n",
+ "... ... ... ... \n",
+ "1613 42 FR France \n",
+ "1614 38 FR France \n",
+ "1615 39 FR France \n",
+ "1616 29 FR France \n",
+ "1617 37 FR France \n",
+ "1618 36 FR France \n",
+ "1619 45 FR France \n",
+ "1620 39 FR France \n",
+ "1621 51 FR France \n",
+ "1622 32 FR France \n",
+ "1623 34 FR France \n",
+ "1624 32 FR France \n",
+ "1625 30 FR France \n",
+ "1626 23 FR France \n",
+ "1627 25 FR France \n",
+ "1628 35 FR France \n",
+ "1629 38 FR France \n",
+ "1630 33 FR France \n",
+ "1631 31 FR France \n",
+ "1632 29 FR France \n",
+ "1633 26 FR France \n",
+ "1634 25 FR France \n",
+ "1635 20 FR France \n",
+ "1636 36 FR France \n",
+ "1637 38 FR France \n",
+ "1638 36 FR France \n",
+ "1639 45 FR France \n",
+ "1640 43 FR France \n",
+ "1641 28 FR France \n",
+ "1642 5 FR France \n",
+ "\n",
+ "[1643 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec5esNwnZSQJhCUsSJEDYXBFEIqjICE4YFfRDUdzGZb4Z1PFzGRlxA0UHFAUBGQHBBWSTHQxLQtizEBJIyEoSsq/33nNOfX90V3d19VtLn+3e5Pbz+yXn3DrVVdXdVfXWu5MQAjly5MiRI4eKQk8PIEeOHDly9D7kxCFHjhw5cqSQE4ccOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwp5MQhR44cOXKkkBOHHDly5MiRQk4ccuTIkSNHCjlxyJEjR44cKbT09ACqxYgRI8TEiRN7ehg5cuTIsUfhmWeeeVMIMdJVb48lDhMnTsTcuXN7ehg5cuTIsUeBiF73qZeLlXLkyJEjRwo5cciRI0eOHCnkxCFHjhw5cqSQE4ccOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwp5MQhR44cOXKkkBOHHHsFtneWcPvzq3p6GDly7DXYY53gcuRQcfGfXsSdL67BQSMHYeq4IT09nBw59njknEOOvQJrtuwGAOzuLvfwSHLk2DuQE4ccOXLkyJFCThxy7FUQPT2AHDn2EjiJAxH1I6I5RPQCEc0nou+G5d8holVE9Hz473Tlmq8T0RIiWkREpynlxxDRS+FvVxARheXtRHRLWD6biCbW/1Zz7M2gnh5Ajhx7GXw4h04AJwshjgQwDcAMIjoh/O1yIcS08N/dAEBEkwHMBDAFwAwAVxJRMax/FYALAUwK/80Iyy8AsEkIcTCAywH8sPZby5EjR44c1cJJHESA7eGfreE/G/d+JoCbhRCdQoilAJYAOI6IxgLoEEI8KYQQAG4A8CHlmuvD77cBOEVyFTly5MiRo/nw0jkQUZGIngewDsD9QojZ4U9fIKIXiehaIhoWlo0DsEK5fGVYNi78rpcnrhFClABsATCcGceFRDSXiOauX7/e6wZz5MiRI0d2eBEHIURZCDENwHgEXMBUBCKigxCImtYA+GlYnTvxC0u57Rp9HFcLIaYLIaaPHOlMZJQjhxPPLd+EZW/u6Olh5MjR65DJWkkIsRnAIwBmCCHWhkSjAuA3AI4Lq60EMEG5bDyA1WH5eKY8cQ0RtQAYAmBjpjvJkaMKnHXlEzjpJ4/09DBy5Oh18LFWGklEQ8Pv/QG8B8DLoQ5B4iwA88LvdwCYGVogHYBA8TxHCLEGwDYiOiHUJ5wH4HblmvPD72cDeCjUS+TIkQn5rMmRoz7wCZ8xFsD1ocVRAcAfhRB3EtHviWgaAvHPMgCfAQAhxHwi+iOABQBKAD4vhJBuqxcBuA5AfwD3hP8A4BoAvyeiJQg4hpl1uLccfQi5+UKOHPWFkzgIIV4EcBRT/nHLNZcAuIQpnwtgKlO+G8A5rrHkyJEjR47mIPeQzrHXYc7SjfjAL2ahs5THWcqRo1rkxCHHXodv/uUlvLRqC17fsLOnh5Ijxx6LnDjk2KuQ2zHkyFEf5MQhx14ByqMr5chRV+TEIUeOBqNcEfi3W1/AK2u39fRQcuTwRk4ccux16G2CpcXrtuG2Z1bii394rqeHkiOHN3LikCNHjhw5UsiJQ44cOXLkSCEnDjn2WuQq6hw5qkdOHHLkyJEjRwo5cciRI0eOHCnkxGEPwBOvvonucqWnh7FHoLdZKuXIsaciJw69HM+8vhH/8pvZuOz+V3p6KDly5OhDyIlDL8f6bV0AgFfXbXfU7OPItc85ctQVOXHIsVdBiN4XX6mXDSdHDi/kxCHHXoGccei72LyzCzfNWZ6HaK8zcuKQI0eDkWepayyunbUUX//zS3hw4bqeHspehZw45Nhr0Vs25Vys1Fis3LQLALCrK+cc6gkncSCifkQ0h4heIKL5RPTdsHwfIrqfiBaHn8OUa75OREuIaBERnaaUH0NEL4W/XUEULF8iaieiW8Ly2UQ0sf63miNH38F3/zYfEy++q6eH0VTkNLi+8OEcOgGcLIQ4EsA0ADOI6AQAFwN4UAgxCcCD4d8goskAZgKYAmAGgCuJqBi2dRWACwFMCv/NCMsvALBJCHEwgMsB/LAO91ZX3Df/Dby2PrcY6u0QvXCL6AkO5nePL2t+pz2F8Pn2NkOEPR1O4iACyF2xNfwnAJwJ4Pqw/HoAHwq/nwngZiFEpxBiKYAlAI4jorEAOoQQT4rgLd6gXSPbug3AKZKr6C248PfP4OSfPtrTw8jhgshPkH0NMtFT/t7rCy+dAxEVieh5AOsA3C+EmA1gtBBiDQCEn6PC6uMArFAuXxmWjQu/6+WJa4QQJQBbAAyv5oZy9G3kG0TfQ3SMzF9+XeFFHIQQZSHENADjEXABUy3VuRO/sJTbrkk2THQhEc0lornr1693DTtHH4QQuVlrX0NMG3LqUE9kslYSQmwG8AgCXcHaUFSE8FPaka0EMEG5bDyA1WH5eKY8cQ0RtQAYAmAj0//VQojpQojpI0eOzDL0HL0M67btxu7u+luXiD6yRXSWyrjjhdW5nB29xyptb4OPtdJIIhoafu8P4D0AXgZwB4Dzw2rnA7g9/H4HgJmhBdIBCBTPc0LR0zYiOiHUJ5ynXSPbOhvAQ6KXzvr//OtL2NlV6ulh7PE47pIH8cnfPe1Vt7NUxj//+kk8v2Kzs25vnDWNGNNl97+CL930HB5ZlHPQEr3x3e/J8OEcxgJ4mIheBPA0Ap3DnQAuBXAqES0GcGr4N4QQ8wH8EcACAPcC+LwQQh4RLwLwWwRK6lcB3BOWXwNgOBEtAfBVhJZPvRE3PrW8LpYgpXLFa7Pbm/Hkaxu86i1eux2zl27EN/78krPu3r4/rNi4E69v2IH1WzsBABt3dPXwiHoeBcoV0o1Ai6uCEOJFAEcx5RsAnGK45hIAlzDlcwGk9BVCiN0AzvEYb69AuVL7NPzZA4vxy4eX4G9feDuOGD+kDqPKAQAvJAhu75A31FPs8Y4fPQwAOOeYQEJbquSh3CkyZe3ZcextyD2kq0A9JuHCNVsBAGu37q69sRyR/qI3hjZvxKbVUgx2xFIdDip7C/qGtql5yIlDFajHJJSnnUp+3KkLdnf3rRN0sRBMoHpwsXs+egeHuLchJw5VoB7rkXI5aWbYntUu1fKplz3URljTtBSCpetLHK6dtRT3zltT/4H0IuTnrPrCqXPIwaAOszCyzfZsK5/3djTCLLZeaMSmJTmHUjnd+IqNO5W+BYgI37tzAQBg2aVn1H8wPYyC1Dn07DD2OuScQxWoxyTMlWj1xdih/QEAQwe09gkpg0nn0FkqR0proG/Mr9hDug/cbBORE4cqUI+wT77md0+8+mbQZ8097rnwedzH7h8EBf7Y8fv3uiNkY8RKUueQ1LV0lZJ/97JH0VD0pXttBnLiUAVaC7Wvdl+F9A1Pvl5zX30BIvrsfVtEY8RKwdLtZsRKfQ1R4L38UdQVOXGoAq0ttT82yX3kxib1gdwYevMGUU8Ooig5T+2Gda62lwYaqCvy8BmNQU4cqkBLHTiHgmFx5zDD9qwkx6DW6G2bRj1fdcx5OvqsX5e9FlmNO3L4IScOPYRCRoV0Pu3tkM+xVK6/v8P371yAI77z90TZE6++iTe2+DkwNoJIxRY69pnRF/bLnAtvDHLiUAXqseDkfuHrBNcXFnk98Jt/LE36PNQBv521FNt2J4Mt/stvZuN9P3/M6/os727Lzm5cdt8i1n/hU9fHgQp9N8TeqIPJsWcgJw5VoB4LLhYrefaZUwcr1M10jeeJvlZs2tld9za/+7f5uOKhJXhg4drUbw8sXBd9v3VukE/LdbjoS9OmD91qU5AThypQlwWXMXzG3h5mo1IR+NkDr2DD9s6qrveNMbR+W2cUDXf5hp2O2vVBlle3syvgeiqO+1kmx753TwsvxD5D+cOoJ3LiUAXqQxuyhc/Ym+Sp3CJ+6rUN+NkDi3ExE5abPLw8fHUNZ/5yFj70P48DAN7544cdtesDldO8d94b+P2Ty4x15SHAV0+hHxr0Z7ujc+/PPeIzP3JkR04cqkA9DiiRwZNnW3sq5/Dwy+twxwurE2XcrciTf7VhMDgZPbdlrG6SyMmEz974DL51+3zj7/Fd+G14rmlxzPcfwD8W790JgfJoA41BThyqQE9EZd1TJ/4nr3saX7rpOe/61d5nN0McbE11N8CqyYQs9yTr+nMO7jofv2aO/wD2QMhHVQpFk9t2118X1BeRB96rAvXhHLKKlfZQ6sCAu5NazT31MBIu1NuiqX4IxUqetVNipTqPZk+AnDv3zFuDF1duwbptnfjvs47o2UHtBcg5Bw80QtGVlXPYm+L2+zizZQUXRsK2wTYziqu83UVrt3nXLfQ2D749ADKuVF/QszQDTuJARBOI6GEiWkhE84noX8Py7xDRKiJ6Pvx3unLN14loCREtIqLTlPJjiOil8LcrKDTWJqJ2IrolLJ9NRBPrf6v1Qz2IRVbHnb2IcWBRq1LRl3i2htFMd3f1zuRAkqOpXiFd7xGlMX/1lqaK5VzQCeledI7qUfhwDiUAXxNCHA7gBACfJ6LJ4W+XCyGmhf/uBoDwt5kApgCYAeBKIiqG9a8CcCGASeG/GWH5BQA2CSEOBnA5gB/Wfmv1g77g6qmQ9s/nsPfMeNudcI/DZ6P03azaisGU311qIueQ4d098eoGAP6cQ4rzbPA0WfbmDpxxxSxcctfCxnaUBeGjks/MZQacww9O4iCEWCOEeDb8vg3AQgDjLJecCeBmIUSnEGIpgCUAjiOisQA6hBBPimBHvAHAh5Rrrg+/3wbgFMlV9AboU60eUy+rE9zeNN9tBKBawuvLObSFQRN3dTVfrJQJnrO/2Rzlxp1dAIDnQl8RDh+/Zjb+8tzKZg0pQp56t77IpHMIxT1HAZgdFn2BiF4komuJaFhYNg7ACuWylWHZuPC7Xp64RghRArAFwPAsY2skGqJzCD/7os6BQ60nAR8nuL8+twpbdgWWLL05cxyQRSGd/LvRHGY0Lsu8/cfiN/GVW15o6DhU6CLJvX2tNAvexIGIBgH4E4AvCyG2IhARHQRgGoA1AH4qqzKXC0u57Rp9DBcS0Vwimrt+ffNst1OcQz1iK2XWOfTshF+3bTeue3xpXdqybWDVbm6u57NlZze+fMvz0fPeXWqiKWsV1/iKlW6asxyvKIruRk8TV+7znpin8lH5RqrN4Qcv4kBErQgIw/8KIf4MAEKItUKIshCiAuA3AI4Lq68EMEG5fDyA1WH5eKY8cQ0RtQAYAmCjPg4hxNVCiOlCiOkjR470u8MGoB6nMyne8JWV9/SE/8zvn8F3/ragLiEn2P2jRtbBtSeVNFPXOzXHvEaimg0zi1B15tVPZW6/WrgycnYp8/m2Z5ojWqLoMw+DX0/4WCsRgGsALBRCXKaUj1WqnQVgXvj9DgAzQwukAxAonucIIdYA2EZEJ4RtngfgduWa88PvZwN4SPSiN9wIhbS0mun2PME2U476txdW49M3zE2EpFi3NYh51GhNkO02rb95lknc2qSNq1pksd5S51CjZ0mkGzL0pKYp/bdbX2i4+O4Tv5uD3/4jydGWe8/WsUfDxwnubQA+DuAlIno+LPsGgHOJaBqC+bgMwGcAQAgxn4j+CGABAkunzwsh5Ay5CMB1APoDuCf8BwTE5/dEtAQBxzCzttvKjiXrtqOrVMHkfTtSv+kLoR5Tr7XYezmHL4YezVt3l7DPwDYA8YmwrQ5Z8DhkjTWloxedJVKoSh9dJRFu9HNwpeRsdtrSRxbF4mX5zHKdQ33gJA5CiFngmf67LddcAuASpnwugKlM+W4A57jG0ki857JHAQDLLj0j9VtqIdRhAcpNtstzMfXE5qdyK/JEWA/nrGrNVfdUVPPqeuvjcFmVdWmcsOve56/egsljO1LpTasam2efOfyQe0hXgXrMvbbMnEMPEIdKmjioXNSLKzfj5Te2Zm43q87GZ99gxUq9ZpOoRudQ3WbZLLGSaT7qxME2b2ctfhNnXDELNz71el0Hl5uy1gd5bKUqUI+5J/NQ90axEtdnNE6l7IO/DEJfc9xWVsQmktVd73onvchtxgvVpilvuLWSg6fRFf+2jfr1jTsAAAvWuMOKZEEuVqoPcs7BgK27uzHx4rtwzaylaYV0PTLBhatfP2mZ8JZxQ2ruMyvUhS39COqx7HixktQ5VGnKWsuAsvaVcQeuSqy0hxEziSwOo7EjaJ3enqjfHO2tmL96CyZefBeWvbmj4X3lxMGAdVuDuP9/mP16WiFdh9kn2+hycA7vmDQCADCqo1/tnWYEdwLLcu8ylWWqjWoHZAM7sN6xTTRVId1oJziHziF1kLJM70KdFcjSSqk3GyfUij89swoA2DSy9UZOHDxQ7/A1j76yHht2BGEISg6FtOy7WbGVfvnQ4lTf1UAIgf9724ve9WsNn+G6rJ7n8GbsPZn6UG+uxrHNWbrRqkcqODm8ZLlNrFTI6AjqQiT53HtpQ1OR6xwcKFcEVm/elSirZfLt7i7j/Gvj5CsusVIlOg1V32cW/OS+V1J9qxAQ2LijK/LTMMHur5D+0ScxntWzuokbQtauqhlbT51+P/LrJwG49UimDT3LQareYiVpQLE3K6SbmfUuJw5GBG9h2YadOPXyxxK/1HKK11lol0K60oOsMudMJARw9H/dj0Ht9qlj3+TrD+6d9JY9opp3V7W/R5XX+bdvn496qWmjFkLg9Q07rHUA4Ku3PI/J+3bgU+840Dk2mQGul7z2PR65WKkaVDn7dnSW8P5fzEqUuXQOkpb0xEbHbQCyZLsjoYq+4BuZunHJum2Ytyq7SW1WiCYS6qrFaw0eWizmTGLjji7s7i57RxO4ac4KXPHQEgCATbL65+dW4fue4cFlfvC92VipmWYKOXHQ4LPwq517s5duwFLNysDFOUQbUpV91oJaFpn+GL99+3zjb4DKLnMiJ/OSEELgPZc9Zvydw5gqlfumjdF5nWc9aQQRXNM7d7jo9WjDO/q/7sfMq59ijDfiv2e/tgETL74LL7+xNaHXqFYMZFyrvYVlbCCaMT9y4qChkfNqF5N9zBVuoCc5B95ayW8g+uTdvKtb/ZFBdeEz1m/rtIyBR7FKJ4KqRT2eF/7uiWVVdaa2X82msbu7jM1hngYXKpbDyvMrNqfuVZ1C98x7AwDwxJINCbGkz5x638//wYyFr7s3k4ZmWjjnxEGDnFi2l1CtWGFnV1oU4zo1xYux+VOeVUh7DqOexMx27wXPjV59n4UqZ30sVqru+kx9Zaircp/VjO3DVz2Bad+736uutLIz6hxSCmm+3kCFOFQ8XH0WrkmLDU1rZ29WSDcTOXHQ4CVWqnLuVeM30LM6h/q1lbS2rM7qiPutWMVRqtb4UFkJdaMJu0tv5cL81f76Gmlp12mwstPvlTvdEyXfQbVRVE3+EX2BNjTjHnPioMFHzv7bWUuraps75bq668l8uLU4wdlMGq06B4+2VNg2etN11RAUoAZxRRUXbttd8g53nRQrNQe+G7PpsKW+gmpJten9mpbMdY8vxbxVW6rsrXfAlWypnsiJg4ZGnvLYTclXrNTDUVmzwp7tLY1Gi1LVW/EVRZnayPpYfKur+pPP3vgMK2d39lXDO7s31An4wD+DIV9ej/dt4jhMz+A7f1uQshasFkIILFm3vS5tZUFurdRE/Oax13Ca4scg51UjXgKnCHVyDlVayNQD3AbgSzyr3qMy6jmqIebVcw6NewtCiFTmNN2yrdH47I3PpMrmrdqCl1amT9u+OgfTASPBOXi+Dp1b6Umx0o2zl+M9lz2KOUtTCSv3GvR54nDJ3QuxaG19o0KaUM2e1EwlqI6aFNK23yz+E1nhSzjUarVyDo24rl7xheo9T97/i1n4wC/Tp23jqb2KOGS+We/0iK9mRzx7p5ff/0rNnPiLKzYDQFMC4PUU+jxx0NHsTditkG6etdIzr29K9s3pHJjr7nwxnY/ZtvhsegX2tzrfe7HGWZ91jtzCBCDUn8+vH3utliE1Hb6ndiPnoBCEZnMOP39wsdOJs7cjV0j3AJptMurqz9da6ZpZSzHx4rvw7dvnGet0lsp4db1ZTvrhq55I/L3O4kOg4iVGydcIToCtX0UfVYuVIgKWrde/vZAmnuq+tr2zhB//fVFVY8qCyWPTKXCrxbbd/OaqPxn1PlWC6CNW0gmo7hNkYrY4gtQow46mm5g7cnjXEzlx0BDpHBrgbcJtfP6cgxnLN+zEf925AABw/ZPmrFrf/Ms8nPLTR7Fxh5/D06zFb6bKfD2Ys5qk2u7Q3pbfdWq9qsVKGRdkd7mCRxatM4wtbus3deQa7GK2+oLTiaTfBzdf9L/596Hv51t3dWu/m8RKaehiMB/fCht6Kt2GrwiuHnASByKaQEQPE9FCIppPRP8alu9DRPcT0eLwc5hyzdeJaAkRLSKi05TyY4jopfC3KyjcgYmonYhuCctnE9HE+t+qH+QUaoR1UDUy/NhCxiam8RvrU69tABDEePLBLXNXpDYA1tKIm68Zlcg+p3Je5JQdLRmIA2dO6js17nxxNT7xu6fZ39SNr19r0Xs8Lth9SOo7p9ds3oVKReDN7TGHaeMcVPgcvnSx0Vf/+LzWtr9YSa+r6y+qxd7sU+HDOZQAfE0IcTiAEwB8nogmA7gYwINCiEkAHgz/RvjbTABTAMwAcCURydl/FYALAUwK/80Iyy8AsEkIcTCAywH8sA73VhUaGcuI5Rwc1/iE7K7VqcsGXQ/hr5Cu7gk2arGpzba3+G/GVz7yatyGRS/CYeMOc7BBdbPq37qHMvAE/OyBVzD9+w9ERWk/B/7Sx5coXKlh+uob+tPLknPRrHPgxErJv2s1AGjmCV7Frx4N5mOv0DkIIdYIIZ4Nv28DsBDAOABnArg+rHY9gA+F388EcLMQolMIsRTAEgDHEdFYAB1CiCdF8PZu0K6Rbd0G4BRqhFzHAzHn0Li2E2Xefg7mOtWKSXzgY3zLMg6226qCSBqbyiy+Atpa/DdjNd9G1jH6vpWnNQJcC5p5ki0Q4YGFvNhMwnS6f+hl+3WA2/M7ixOcLlYq9aBz6Z6CTEeWUNxzFIDZAEYLIdYAAQEBMCqsNg6Aap6xMiwbF37XyxPXCCFKALYAGM70fyERzSWiuevXr88ydG/EaQ3rP3lYE06XzkFmt7KMp9Fe1PXOR8ATSVv/trb8xlbtpjm4XzpAnO/zsB1v1E3zrhfXVDc4BtbnXudpwt+erjROd3rDU0m9mOkxvbbebiZq5ByYp6DXdWVg9MXeTGK8iQMRDQLwJwBfFkLYgrGYJNA2ybSX1FoIcbUQYroQYvrIkSNdQ64KcTKTBrTNnpjtHfn4OTT6FJS0OEn/zjt+ZxtT1f4cVdz6qk273JUsXfl2WU1oj0ai3hYuhQKl3r2PWMm16Ut0OsKHmD2kubL66hx6Qq7R7CgJXsSBiFoREIb/FUL8OSxeG4qKEH5KPnElgAnK5eMBrA7LxzPliWuIqAXAEAA94nqYVa7M4bhLHsBHfvVkuu0qWvXxkK6XAxUHouTpj1VIewif1Imd1aKmav1Fwgku/p4lLIi6CWRdm76cQz1h2kDeN3VM3QlSgRhikBqP+TcJk4GAa1r7emkD/j4SvRm1BljMCh9rJQJwDYCFQojLlJ/uAHB++P18ALcr5TNDC6QDECie54Sip21EdELY5nnaNbKtswE8JBpIJs/85Sxc/dir7G/10Dms29aJOcvStK0mU1ZLvVo3GtujThEHT87BNibWWsk+REtb2VH185KE2vNy2+GyUZPb1C5RI/pM36HOlfkQ9haDV6LrWnWvPGzM4Pg65gU1SuewatOuhLVWI6H6ebzrkMZITlT4cA5vA/BxACcT0fPhv9MBXArgVCJaDODU8G8IIeYD+COABQDuBfB5IYTkDy8C8FsESupXAdwTll8DYDgRLQHwVYSWT41AuSLwwsot+O+7X2Z/j62V6r+U+FhFrmvc4/E5BT36ynqsZMQp2ztLOODrd0dWEBzUdfXCys3OvoKLkn+q9gVZiaT8jQt0Vs0+f9qUMd51Va4oegdKn8s37MTEi+/ig9bZxErNPQSCQHUXS3C39+VbdHNTdzsmzsH34AQALUVSyt1t1WytFHb3y4eXJKy1GgnVOGK/4QMa3p89SzwAIcQsmA9BpxiuuQTAJUz5XABTmfLdAM5xjaUecGW8snEOn3zbRPzu8WXW67mkJHHbzInZsQJKHnIl10Rfsm57FIdfx5rNAcG4lQnxIKEuwlc9I1HaxErW67LqKpSe3jFpBP6hOO4lmlK+H7XfMPjCJVa67Znguf3luZWYMTVJdGycQ+PESoYfGsA5FCitc9Dhc5+mzHyuS9V536JkcOLGpK8RV3re3gh1zI00X4/6aHgPvQyuxCKx01n6N1P4AfnSVmzcaQ2zXI2fQ7ksnPVcC3DLLjNB3NEVMHVqZi4VBEqcxO5gQkFkNWXNqldQf5l48V347T94j+KRg9rx/94/2dxxiCyWv7ylRDyiKx5aAoC3frEqpP2H4IXYWY9vmRrQqc9j9KGBRs7BaazhbkNCJw6m89Ttz6/C6V6h0pP9zV/d+DwRKufQQOv1uI/Gd9HL4FJySWslpmKBCOeduD+GDWiNyp58dQMmffMezF22MUqhmKlrx3gk52A7Ubs4B1ueauktPbDNzESqxGfNlt2p31sZmbH+/JJipSqopILv37VQaSsu39lVNsfpSYzF3v6OzhKO/q/7U+FDbFxlN/MOmqmQ/s+/mmNqBWOp/27i06RXZkVDuUvyUzaIlfi2ko2ZxvWvNz+PBWu2ZjYPn7usfr4qJqicQzOc8PoccXC+cgvnUCwQCpQ8ScvYOXNf3+RcCNWEqpYbfy2cg414yNOIyTGMyC0fb2c8fNMmjfwYHn1lfSL+kI8ZYuI35fuWXWaPZBfUPl5Zuw0bd3Thx/ct0sRK5ndRYsQUVoV02Ei9xBuvhGHns3JstcBPrORuxzSWemLBAAAgAElEQVRm13pS57V6QOGGpEdhdR2o1mdUMg9oq18IFBPUQ56LGNYDfY84ODkHM+RCUDdjyc63txSciy/rxgfE9ti2ajfPMesLgjZsm2vwW71PufoVDy+KnRbV5s6/dg4+8bunFR+CjDoHpbFtnd3GDVntM0ugQLWuLe9HqSzww3tfxk/vi6Or2p6pHHeXIRdztbCoHJpuJw+tT7NHM/+Dc62qnINDzrJi406tT76ebOb4/37Q2p7+bgdYOO96QT1IcNx6vdH3iINj87GZjkrOQW1id3fwwvq1FjNN5ng8SXSXKzjpxw/jvvlvoFIR0SQ2LaBSuYJbtQxiXB0XalGe8tYhWTd5y2+ebXSVKn7iE85pz1RVqXvr3OA5c/fWVa7gqkdexS9CHUTQjVvn0KztulZT1lMvexRXPrIkUebzqL04B2O5P+ewdqv9pK8vAdOcrlbR2wwdQGedDxIu9D3i4NzAg09u8hSIUNDs/jtLMefgWn6sIlYr3LSjC8s27MQ3/zovIVM1tfzj+9x5AGw6Bx+4nZHSZQ8sWFtVX1kPt2p9XSls5ga4doLKKzftxKX38GbO/ULxGdcsJ6bw4cb0eXbgyIHmizxgu2fTbz55Hhav244f3Zs954QPJ2jkKLS9UA1lAiTn5RIlTwl3QNDHUStx0Gs1w6eu2RZWfY84eP7O1SsQoVBI6hzkxttaLHjYZafLlm/cyYaFBrQNx9D2Cyvcfge1hgrwDQ6o4jf/WGppjymLDAH86nPorlQSG/L1Ty5LtW+CfNRv/+HDmB3mBdY3AFtobW7h2jYaUxKnf54+IV1Zw4kHpsKORTDJ0onI+Aw4nVG94PPuzOk+k9CVxOq8G2ywtjONw/ycrM0Y4bKCrAfkHBsxqK3hfQF9kTh4Ko25egVKewzL7wUiD50DX+OGJ5fFf8hMTyKpK6jFKW/zzuoVtUD9T0W2fA6Z21IJdUkkNvTbDOI27mRpOkk+rxDfwf1aU31GfTPEwXZL0VzQKvnKkn/1saPZ8u/cMZ8tt3EO1b5fn3fmo6/y1UXoG/DOrvhQ5cqJoXdh6rNasVIz9Dlyjl1z/rEN7wvok8TB73eumtQ5cG3UYinYlrC0kA2JyMdBHZcPSuUKfnTvy5H1jp75LUtbROTWOTC7S1Yl9ouh5zW/yPzasnFISYV0Gt3lCtv3nUrEVCl+4YgbF/fGtmHsCjc2vS3fcOIzpo7F8IHpEyQXtuXaT0wPnOCY4dy/YC1eecOsaK8VrmkwanC7t0Jaf73bdvsfevR3YeIcfHUHukl3o5waVXSVYilFM9DniIMvuHctdQ4JXUD41XYykzBNoCGK34QKdbPzsaaRuHveG7jykVfxg7sX4g+zl+MPs5cnfk8EpHOMmSzjjttjyiyXcL/95L5X7AMx9h031l0WXlSaq1Iqi9SGka5nvqntTE5l21M79fLHgjpapSwmkb6+CycfNtqoHP/0DXOxyxH91ASf/fDxV9OpZlUUC2aOO7Wha3+b8ljzbSX/rkXn8MN7X07lo6hTYjkrJOfQ1tKckLB9jjj4cg7c0i4UCC2FAsoVkYrB9JP7FkVpOLP2PaR/TBxkezs6y4nJn0Ws1B1aNXSWKvjGX17CG1uTp5xsnEN1RE8fr+o4aBe3+JVxv3WXK2ZTVkufQCDC0xX3Ro6LaWwrt1H5yNu1v7OYRDbDQsYGAeF0xvr1o7E3u8mx1OjnoP2tE29VV6f+xnEFvgppF7bs6sZVj6TjkDVD5xD5JBUb71MB9EXi4FixC8LYSDznECvvpFmZrPfq+h247H776dfUc1GJCyMr7eou46SfPBIXmzgHy9rMslGaTqFCAM8ut3t/Zt/QzT9mXWRqbd8ELtyGVqpUUqKh1zfwtvFcL64NqUDAUIZD1J/FwHb3wpftqqdcF50IiLz5+bzn8NHOflPjqHE/fM/ho6zj4oorCT1cDFU/x82hNOfAj0kt1t/pI4vW4cjv3sde14wQ4JJzaM05h8ZAnSQTL74r9bt0YuJedYEoyj8cEYcq+zbBZ9I6+3H8/pdn7X4RKv44dwX+9ebnrXV8/Dc2KUpx2zriN1k/6NZKiTaUMZrESi5TQdvBYsq+aXNQ9bFM2XcIPvPOg5g2k8jCOWTRcxHTl4rB/VoC3YQHJuzTH3C054NTJ4+2GnJwp3tOpAsAB44YqJS7iYNP/un3/2JWghi9uNIcP8nHl6hWRMQh1zk0Bq4JHYWrMOgc2lsk51A21jPBrHgTHnX8+4naM2weVzy0BCs37eR/1OCTtctX5/B0qCy1nWCzxrS5eU6sTxHCL+YMVyMQK9kXuMn8FOAdlETiu2CJi/6+XZ6+av8q5+B6ai7xYEuBImssF6LUtTWyDhSG3zDOeaaszFjw/eHTx+PKjx0d+UH4HDD+7dYXnH0uXLMVf1IOUhznJ9EMP4cuxWy+Geh7xMExoW2B7gqEmDh01++koPZkWigPLKzOqcyEeKO21/MLrsaWpkqWh2IaW5c+IgEVv36Mj9CaFeVKBd0l+8Ow5fqQh4VkfY+Owzr9Q1NM3dHLhixZ6ghmPwcgSLjjq8OQ/QrUZqVXILIacnBrUK6PzlI5cso7er9hGDGoHX//8jtxyOhBPHHQ2jJ5G+tdqvG6VN2gz1jrjUghnROHxsD1CiV7yNUrFgjtrVKsZA+RzPbtoXnLMse27OyONvmssJnsqvCx3uAImu0kZVMG1sqdm8VKaqX46wGhOKK7LJzOgrZ3wxEW3SrMlk71G6cfhju/+HYcOHKQdQwq1HfjUrC6OIfWIsEvCHfcrxC16R2KBbt/EKtzCMu+f2ccmVeOZ9+h/fH2g0canCz9YCOgNpFfUzykHUEy642+RxwcL3FYaDvO+zIQiuFELEesde19ZzEtVfGJ6+akLGyOHD8kas1HxOI68XhxDkyZNU1oRsLBjXH15nRWO8Bve1Ofy3/MOBRAIIpwPfrIi5vdfOwcjxD2OsVCAVPHDQEA7M9k+XqJkXcXsnAOjgfTUvDnHOJ6te2IQgCwiJX4Q0dQtkjxzVDvTTc1jzvzG5MtBItvdOBGoatcQYHMyZHqjT5HHFyv8e0HjwhrpesFTnBI/J5lUhiVzUq5GvLBhfmr01nnhg6IHaOyBEbT7bYlXJxDa5F3kuPW0ddCOa+dc/B7ok+8ajcbdmFMRz8A8SmsVBE1OUhWkwI2qBPUUh/z0Uymug/8claqTOccdnXZ/RVs42kpkn9coaq9iJN/lyrCGi1WLR4/LFSCM8ydOppigbxMWU2wRzA2oxlipa5ypWn6BsCDOBDRtUS0jojmKWXfIaJVWk5p+dvXiWgJES0iotOU8mOI6KXwtysonGFE1E5Et4Tls4loYn1vMQmXUi76manXWozj11ejlPOZoNc+vtS7Pa45tcgUPgJQn0NtnIMepTZuvzrOoRZrpSMnDPUiiETAXz//Nlz7ienRRheM196Tad94y/ghWL+NiQqqWtbAHiqcEmUO3Uf4qescPn3DXMtVZn8CIJBj++75kQ+/qE3nUK4IdjPfsrMba7bsig4Rd3/pHfjU2w8IrmH0PiqxCmKf+R1WdDzpOHBYDSmaoXMoiabpGwA/zuE6ADOY8suFENPCf3cDABFNBjATwJTwmiuJSBpuXwXgQgCTwn+yzQsAbBJCHAzgcgA/rPJeakahECRhF0LgX347O/X7pFGD480knJw28zY9oN68VXx+aV384AtjTuo6iLoOHuUn+y4YwmvYT1nm33w5B31POve4Cbjp08cbRWlqnwRgzJB+OPmw0dFpueIhPzfF3TJl0VNrCSFYsQ270duHEUEVLwgIzFpi9kYO2je33L+tmIFzkH3WhlJFoKVQSIly3v7Dh3DiDx6K2u/o3xLdKzfX1FEHUZPTfXFj1f13zv3NU6k6qoe3bWo2gTags1Rumr4B8CAOQojHAPhqPc8EcLMQolMIsRTAEgDHEdFYAB1CiCdFsLJuAPAh5Zrrw++3ATiFquVbPWB7h8XQW9M0CdpaColTU6UirKlBdS7gFUOyGNe8mjqugw2rwCvseJNJU5+mmkXPV1AwKToz6hVsv/H6n+TfYzr6e/sIJE6aUaBDD51DWEEX35hkwOq4SxWBj5+4P8YN7a/VkWIlYq/jGw4+VELooqmu8C5ZwnaoCulaUKkItBYplWJ1W5i1TX02RBbioDz+IhnESsxYP/KrJ51jfMSQpEpHMxTSu7rKGODhJFkv1EKGvkBEL4ZiJykkHQdATUu2MiwbF37XyxPXCCFKALYAMMckrhG2F1wIJSTqBJz1H+9O1CFlYexmzBdV7NY2kVK5gtOmjMbpR4zRxmSfWW3FgjfbKgTw+BJ/ebypWW8Rg5Y2VWJfbRNUUQ+dQ3oc8ku26zJxDuGufP61c5JtGIlD3GBnqYwBbS249MNHaHWCz4RYyTFmaSnHpTA1wZXsZ0A1nIOhz49MH+/VTqki0FosGB3I1GdjI0i6WAmwh/eW6J8xtafVyKIJKukdXSUMaG18xjmJaonDVQAOAjANwBoAPw3LudklLOW2a1IgoguJaC4RzV2/fj1XxQnbS6SIc4jrjA4VlxKqQtqlANR32IoAhvZvw8ThyYQurmnVWix4s8oVIXDHC6sdLapt8L1Hm6Zjsw42nXSd4w/cx9KnGayfA3OFaR8zbW9JGXW6vg/HJR/Fai0ip8lxTW1NZgxsKSSXXLQBJjgH+zheCEWZhQzcBoGs7fZrLaLguRtEGzX45+1LZMqVClqKZAx7Ip+3DHgZXGO/0YKBw+BMvjsMTn+HG5IfVSsqrRd27gmcgxBirRCiLISoAPgNgOPCn1YCULOVjAewOiwfz5QnriGiFgBDYBBjCSGuFkJMF0JMHzlyZDVDt75EQrCJqHV064A4j3QynjwHfc+oCIFCIb2xuSZWW0uBXdg+YQJMiOXn/O9yo3BlkTOJK2yLuFpltWsc1dRVOUFfayUdps1Qrd8Z6p/0xPCRtZK9axbTJ8ZWTV5+DqnxxSWtxYKX6XPyenNfPihXgn67Df4ltzy9PGqvoOkcTH1LEZ9+yLj9+fSBqd0gvzdlxqunZ3812N1dRr+WXk4cQh2CxFkApCXTHQBmhhZIByBQPM8RQqwBsI2ITgj1CecBuF255vzw+9kAHhINtAuzthzKz/VonIkqinWLKYNb3Fyac5DcSRa0FgvsZsvnbvZrU1ZzhS52ndSC++HGZtMr+I0xAidKMGxktgCCcZ34e0Ln4ClW0uHDORw6ZjBbN+Yc+Ots+M8zJuOwsF3XNfoIS+UKfv7g4uhv9XTuQsw58L0a34H2d7lSwcI1W/Hc8s1YzOjjJIdElBYrme435ngtNyDrGm7YpPS1i5Uaj1JFpA4XjYRTgEVENwE4CcAIIloJ4NsATiKiaQieyTIAnwEAIcR8IvojgAUASgA+L4SQO+hFCCyf+gO4J/wHANcA+D0RLUHAMcysx42ZYBUrhZ9vvfShRPmDX3sXtoZu9LEYgk/wokKfeyaLFdfUajOIlTh4m9S5xBDhInN5DUs9jQ5bhFTOoSsr9P1H/p116cQnUrfc2PQOioYFK4nmtZ+YjmP22yccp845ICyPy8qe0WXbWgo4fGwHXn5jW+aMa39+bhV+9kBMHIoFMm7qOqJqRk7KqxmUKgJvbg8OYvctWItJowfz/SEmXPI+TYcWyeibnsfdX3oHPnX901i9ZbfR6KLN+D7ZYmt/tUIIgdVbdmPc0P6oVETVmeqqgZM4CCHOZYqvsdS/BMAlTPlcAFOZ8t0AznGNo16wipUMp+CDlJAGBWVluOZDhxaLpSIEGy7A1U5reJIRQjgXcOZDuWnDC7sZNqAtWsAcTJnibKG3v3fngmxj9KiT7bmkrZUqHpyDqYIrWN70iftE8m19fkUWOcqYXIYOKmLlsKtecm7ryYlaCuQtDlJ1Dhx8Ld1GDY71eTu7zIl7VM5B0gTToUXqdExBFMcM6RcRc9MwiwblS0+Ysl792Gv4wT0v4xNvnYgXVm7ByYeNakxHDPqgh7QZLosOWQcIJorrtDBQS3peEXxyE1efrcXkwrAh6wnGpZC2BRsL6vEL48/Prso0jnrB1wku/m42kdRhev5cFrhEf5Y2OM7BJa780imTlLaDC9dtZZzwNKhd65tnoZDFQzpszyj3d28rP585DTOPjdWTd7/0hrFuW0sh4vAkx2DiTGXgQlOWOFVHllTox+2Z/MzsurLGUIcHw8gF1z2xDED1Oa6rQZ8jDk6FtOsEhlj26dqsy9rppiJE4J37XHLjdCqkw9nqY+bpL1VyKKSlzsHZYNqU1WnFlQGlcsUZSjsxGsPaSeRzUOtHv/sopPkKDxpCj3DV05xDOA5l4LsdEX/Vk7n86hJxUmBtEUEPE1Ekf3W0q16rQSyjKm1nTB0TEqTg7w3bzcStX0sxoRsCzJyB5NbVaKoq1MOZSsPUx+FjYKCDW5rPvL4J81a5Rai2w4AePbaJDtJ9kDi4TFkd5/ikAtNeV1+AIuQcUmk7o42ab09aTPnJlTNyDibiIGW3yj0cf0DaPDV4HslGvnjTs5nGYMOR370Pn/jd08561Z7cVOVqtToH45iiuEnpzTyqE4mVYkglswnqBuEdZhtJcWZXSecc0pui6Zm+VY0/xmykJqWpSsBkX/3CKMcHjBjIXlMsEFqVuE+xWIkf26CQW9/RaeDmEsYIPOdgon76+hvd0R5fz8ydD1/1BN7/i3RMLBW3zl2Bw751L1ZsNORX0fpsVtA9oC8SB+fp0NFAQqxkr6qf9CtGhXTcJgc5IXz2P98NzGX1Mag9OIGpi/Az7zowVY8obRnyj8X2pPJZsMPAhaQUu/IE7pPsJ+EhHVu3uK2VskF14pKYNiEwP5X5Gzix0nc+OAXHThwW1dGhim1c9yvTfxIlN0D95F2ktM6Bex7vnTwap4Ryb9Pz0n054j7T3JvrbfVrKYAorZA2iZUcuvLEc0j4lih1Fq/dzl7LtdkWHdwMHTpwzaylAGCMtKCb0q/YyEcjbgT6HnGw/KZP1OPYk3J80lyrcQA6dB8BqZBOjUnI+jyrbIsrk2rLcwuT4iJTm+OGBspCla3llL4FhtvylYu6TshZwG2y3O9AkmiTsum49dFZ9TnpMRULhA8cuS/GDOkXthnWUWZfv9Yijt5vmPHd+IoW/nTRififjx4Vtp98BvrJu6XIEAemzUH9WpyxlUxipS5F0Z7iUsJPfQ1IzkI3rTaKGh36EPU5qAc19Vmb5qX+PoQAnvj6ydb+XJDclEmJv98+yfDtL3mIqeqFvkccLG9RV0h/aNq4dJ2oHeBz/2sXn+zUWFvp5zBjShA+Qy4i2afZPC+D0tRTPB+dvAxNykW5ZJ1yimLqEtKnpmZwvnoXWRanGkE1GT7D3kjWDcDEzQS6rVCUGImektcSY9UmoW6sNjo8uqNflPNcr5cSK1FaIc3Nt6CO5GT5EZr8BxKcA8nPJFesy9+lo5ru52ASK0U6QYsPBsfRybKPnbAfvnLqIey1nDHBiEHt6NfKO6n6IFKwGxZue2vPbdF9jzhYf01aEnFzvJBBxPO3F5NemdLP4ZKzAoves48ZH5UDZlZZBkXz2fh9rZW6o4x3fH1fZxvOqc8kCjpm/3SegmZBHaN6GpMSEJ/FnTV+jmnjV31DuI0qquNwUHRBl0+rzaWslRjiwHVPQIJz4EZiOgWrfab9PYLOdGW8dEgraP4LJs7B5YNBShvccxw3dIA5Z4LhfRB4c24fyDVvOhja/IUajeZFceolsPs5AOqs4iaPLPGZDK9osktpyjp8UDsWfX8GVm7ahZvmxHEK1dPDA199F0Z3tOP1DTsxN4wLU09HGykuMvs5MOIvQ4wjn4312InDWAW9DpOcneuXG5tJ3q3i8LGx2CDBOTiuyypXljmzdai+IbG1UrJOEAqdb3fiiJi42eiEShx0Yws9vHd3uZJqy8Q5RNVMc8fAOXBWbHrNNOcgOZ8k91yTziH8rnI4sl3b8/zW7fMTf59wYBAf1BiZ2AMup75qA1HWA32Oc7BtAQG7r/zNTBSXvNUGVSHd3lJMiKiAJKt88KhBGNyvFVPHDUnFlXH14QMpVjDVbmFOT1zTthzAKga0tdTVT0MX1cjLzPJ4VaShbJpKvz7GCtc/scxrfABw89Mrwv6S5eo8eyLKF6CJnsj8LE4+bLTWGo+idp9qc69rhKuzlCYOHF5YuTmR08TnbZUrAk8v25gKza3CJFaSnENRIeIA8M5DRrDt6GKq1O+KdIBLs5pFIvrjs98S9VntHi43fyPnkBOH5sHFOSTFSgznEE2+uOJJh6aDAH7irRMT9WTsnqRZY7J9M6ucXBgcDhk9CKcfMcZ4f+ceNyHxt/TCfWRRbKM/RolAy53+WDGDZRNTwYlJqs3YxUFe5uOApSLe6OL/ZUpKHRUh8O075rO/xe0xZfqWo8yz79+1EEBahFlNDC4diXdI9gNNV6nCxAJLX7Gru5w61Lhw5cNLcM6vnsQSQz6ToK/gU7fr13UOckzDlHS4KuLDWzy4hI+LIh1ImLKGn1mczKReLuBGatU55JxDj8P2qANbcEWsxDwdbmF84d0H4yvvSSqxhg5oTdSLTytmcY1pIuhmfBxKZWEMZQEAHz1+/8TfnaFs9+/z18ZtKP1zISG4lvUTqU1Oro+NWxDeeSv00QgpVsqmDecC79XihcqFgU5zDuZDBzcuG7zFSg7qcOiYwUwssHS9If1bEx7SevejBrenrlkUEgVWF6U1oK8BqZCN1oDjpM2tz5QimXnPPmIlE7ioBz64de6KyIS1XAlSAFx04zNYvTk2V3XFNmsk+h5xqJFz4CJSCqRfoh5/ZumGHVEfUX/amEzhsYvaqSm4Jll3y67uaKNW5faRRZTWtH5C09vkOIdjJ6YVyrpYiWsXCFlv7adOxjPURRwOHDkwHCv/uznxjqG+8mxj7oNvwycssyuNZdBn+v2l67i5RRfUS12n232H9veyVmopkGIRlN6kj9pvqNEHBQAm7NMf15w/PT1Wg2m19CPQuWfTc+HEvrrp8lH7BfN42MCY+6iFS/PlnnX839tejL6XKgJ/n/8G7pn3Bi695+WoPOccmgjuJPani96Ked89LWULztn1R3bxykYnRPoUrCuuP319kPx91ab4VKCewAAb55DeKDbtTIYHGNXRL9qo1c1NjY2kxuTpZIK7SVEYwJ/Ah3KsvLYwOG7g1x8/Jsztm/xtlJZICUje4/zVaZtuqaBM2ZyHnyZLme/8jRcHcU5wHzshyWW1FOwbdYKYsKI3Tp+g19HHFXw6Q6Ybyqfs25HIbW07EF/2kSPZMbg2YCA9jzjCqr6rA0YMwimHxzoTvbbeZaRziKwEeSKijC5RT69LIPwo1BXIOExqx9VwjdVyDirKlQpL2HKdQxPBPeqB7UUMam9JyXlZU1aNIwCCiagvYn3j38FEnVRPYIDbPM92cr3+k8dGJ5jEYlAm+6FKSOROJn7PF04+GAeFJ/Oip6dVQTH/2LyzC88v35yqc9qUMewCmjRqUKouEC/sM65Ihx7IaGUYwZQ6NeEEFzaiO0HJDcoUZ2qAwqn5cA66+FIdh4TUnbjzafDld33pHVZT1mRfFLaly5WsXUMIkbLIszl5AjEnYKqjH97kYSAilg7rHm6D1Y1M9hnYhhGD2hPlzy7flLg+Cwi1WxJ+9sZnsaMzILRqWzs7k8T3v89KppltJPoecWDeoXpKTugcLDMlIeJB2rROtegI6gfl5cTGLceUnPDnnZg8uaqij93dZbz8xlY8rAV7izgHkRybvDUi4Iy3jMW9X34HJo/tYDkHIjImpTFBLgwhBKZ973587JrZbL1CIaj3swdeicrWbuODrdn2Q0lQv/mXeYny+DlnW6QqEZdX6nfepoRM1zFp1CD8+rxjlHGY+1D/1pvS/5biwHrJnFUTzr9paWTlXPUxZVXB/cqtGbUdPfua7Fuui/Rz4MVKJkId9a78nFhzUb9xJSEEPnmdOX6XfO9vO5hPbV+LtZKKF1aEByulrdfeTBJfqctsBvqenwMzpeUpLa1zSF+vcwTyu4zAes4x4/GxE/bH46GJoq6Q1j1TVciNQGW7g/HFC+Pfbn0Bd764hmXfY85BuVYz7TtsTAfaWwtG3YAkUL7EQRKkpW/usNaTynI1wcwbW/g4MRUhUDQIQuSwthsCq2UlDonAewbq0GqJivv9D03FvkNj6ya1+yPGDcGitdtYsZLeUipKqhaiWs5NVwh1E9Qc0l+86Tm2jimkhV4WeyunaxwyOs0NqrdmyrIm71N/xHIe6kYZJkW9fihTr1F/l/o5APiTEl6eS/1bEUF+k3ZDis7WImWKHGzCLXMD02d17FwInmahz3EO3IxvKcQnJ5NIRkJN9sM1e9jYDhw5YWgitLdag5tEsVgp+NZaSG8mQDC2ucsC9pfbqKQNt7pwOAVtS4EsTjdhHW8P6WBcLtkoJ1YayVi2AHYRkcl7VSfCvkg6wYUbsUYdZCIc7hb156TOn4HtRUwbPzR1DWemqnOe0s+kuyywavOuqL4U+2UFR5B0cDnP2XqRt3L6t4tOOpgJbRJX1MVKemgYfdMvRMQhSZAyWSupCmn5qRwEX16zNfp9KxPqW47N9DwGtbc4c3pkgWnswRjq1o0TfY44cM82krlquQl4P4fgU60nIDB9YhCkb2h4stPtrccNC7xaZ0wdk2pLDkpOeJ0rUBeGLWSvtIJRFw7LYVjc/WW5zV/gyAnxhmeLAaSPTe/zF+cejes+eSyOm5gMcGg7Hb3viDh9+eOKl6/MkJWdc1D6DC9NK4eJNcUNayfqqzWEMPk9pDdBXXzUonAObwvT1g4d0Iprzj9W7527LUOf/G9cNjo5fg6SG+UOBC6FtM45/OHTxwOIOSK9SUlLYk4qyPFhynnBcfZcTCc1YKSa5pWzGIyJA9slBvdrwbZOPuR4qV4AACAASURBVH9ENVCfVzrYXy/iHIjoWiJaR0TzlLJ9iOh+Ilocfg5Tfvs6ES0hokVEdJpSfgwRvRT+dgWFx3IiaieiW8Ly2UQ0sb63mIRN56BzDlaFdGIXAD545L649bMn4qyjxiWulfUmDOuP/YcPwJlKMD+dBZZche6dHEek5E/0v7/guKieHkrcROD0iX7jBcEi/c4HpuC9k0fjHQfzHqhzvnEKbrnwBHzybRPxi3OPijY615zlwkHsM7ANJx06KiVHtbX1L8ftF33/6G9j/YYkzllN/yjBOYRlWp2p4zoC3QrHrek6XFUXJczPX29JjwAs56TKaW7e2Z0wv+T6N8JSURVdqXCJbkoGUcqEMHaVzNGgtqITh8PGdODkw0bFnJ/2ZOTzU7nn06/4Bx59ZT0/Ns3IA0jmkVDFSvJ1tioHIbn+VUsmSbdNz2NQv9aGcQ66bqWJtMGLc7gOwAyt7GIADwohJgF4MPwbRDQZwEwAU8JrriQiKai7CsCFACaF/2SbFwDYJIQ4GMDlAH5Y7c34gNc5qHJIlThwp+4AqkJXXnHsxH0iNlhOUjnZOksVDGhLqnh0FlguUj3ksZo0nTuZvWNS4KHN2VsbCZwAngstNADgrQcFyrb9hg/A1edNR/82Xr46qqMf+rUW8e0PTMEHjtwXhYJU5tpnrc0W3Me+XkJXaOowiapM4JzgdHHiZR+ZZhQr6fUTIgEhDI6Usfx/v30G4KyjxmHskKRXtjwEuIidrw4inmvp9iQB8jFWCghe8F0VhanjOHXyaNz62RMjk2C1S07nQIjnjz48OTdU7lm3kEq0pbxPiW5Gv6aK9lwJdFxipbZiAV11DJCntqTbIxxssPBrBJzEQQjxGICNWvGZAK4Pv18P4ENK+c1CiE4hxFIASwAcR0RjAXQIIZ4UwVu7QbtGtnUbgFNIX511BM85xBYRXKx/FXJoqmySa1M1qRNCYP22TsZSI64DxCytPlnVoGO6aZuK19bvwDrNAoib+NJyaNmGHUpZdY9ciqh8OAdTHZ1zsBEH1ziP2m8YTj9ijLWOiujZVuJIQUTJkCgDQzNnblzjh/XH6MHtOPHA4Th24rCUSMDFOcjUsTrknPzlw0us4//8uw+2/q72aYKcdz7hM4B4Tqkn8r9/+Z2RiAgIDkpFbX4DvCmr6iDpIg7VyNxNyuI4WGN839w9R7lPDDrnthYyclHBddkGrR8wVEwdNyRTW7WgWp3DaCHEGgAIP0eF5eMArFDqrQzLxoXf9fLENUKIEoAtAHibsTqA1TkU06wmYNc57FS8e7nkJmoAsBufeh3Pr9icSg6kL8aYc+DFSkIAG3aYc+3OWabTcBP3E2x0NitJX2cgGX7aTRzMm81X35sMPVIR/IL6x7+/m71+jOZMd/R+/qHBCwkiHnwnANd98rhEvWBuJMe06PszMGpwP7QUC7jpwhNw4oHDk6c+wRs1CBGIiOR37llLa7LbnlmZ+k1Fv9YiOvr5Gx1yr0DOO53uSrHdOyaNwBXnhkmDKB6vuiGOGdIPbz0oKYrk4pBxnENBI5bJNoJPlXv2gazVVargze1BiArJHUftSs6haCcOopL+7SfnHBl9bykUUgRIPWQuXmfmdOyj98nh3jjUWyHN7SjCUm67Jt040YVENJeI5q5fz8scXeDY6ujkQMnfuf1RLozuUlyPyxinsvH3Lwx8EtZs4TPHyS6lUjKtkA4+yxXBbjYS3/3gFON4E2MLRSS2iZdFlq1a+uiQOSt0ha6aj3rEwKQoSAiBm55enmprgpYVS2ISYz7pC1Xn8JfnVoVl6XoFSlt4pUwbNe5I5u/Q8VDoo/Lm9k6YUscacwpb7sFah5HFS6i6rmEKF/fa+oCz/Mw7D8LoUFxHiJ+P20It+FSf26rNafNlCtddpSJSm2ws8uLFbOmAhcGnfA+f+f1cnPubpwAAn37ngYl68QaUFguqzerh1QEkuNPWYiGhyN6yqxv/enNsLuybuU9Cxlvy0eU1EtUSh7WhqAjhp/TIWglADf85HsDqsHw8U564hohaAAxBWowFABBCXC2EmC6EmD5yZDoSqg9YzkHRObg4B2mpYUtcEpQFn1c98ioeC5VnIwbxykS5sZYiU1aNc1DM/Wz21P2YrFH8SY0icZcJ3rTB0s6JBw6PTli6o9C3PxATMl1UVBHAuq1mDklHLQlRZNdrNu+KiAN397u6y+zGpkKX68v8HTo+fHTANO/qKhtFTx89PlC8H+hhuupDyDlZvMRpU+KN7oNH7pvSY4wf1j+a4wUiVqzE95leK1t2pq16pMjxe3cuwAVhmBkJ6XfAGYIcf8A+eO0HZyT71DI6PLwoPkSqIi1V78NZm6lPKXLQMzjItrUk/RyueuRV3PniGrauD55bvhlbdnU31WyVQ7XE4Q4A54ffzwdwu1I+M7RAOgCB4nlOKHraRkQnhPqE87RrZFtnA3hINNJei2lZbvi6XJl7p5IFdS6M8PPXj70WlY0Y1M7WSXEOmphKlbfqzmkzj41pMUekfnHuUbjwnQdiyr4dSnvhSc3ylH3VPrpVlgrd8sulmFSvu2lOmnMwQSeYWWYPFw7FdOuPLLJzq/oGZuIKJoZWPOWKMIqeRnX0w7sOGYnBTJRXHT5vKrllxmgtUoIjKxQoJdJrV9JgJsVK9gctbythHsrq8YJndd0Ty1K/DWoPRGZcZGKTIyjAzwFV55fkHGLI+xw/LH4mnCmruuHrYqV6bF87Oku4Z96aRNnPZ06rud0s8DFlvQnAkwAOJaKVRHQBgEsBnEpEiwGcGv4NIcR8AH8EsADAvQA+L4SQwvmLAPwWgZL6VQD3hOXXABhOREsAfBWh5VOjoFL/Y/Yfhme/dapiYeTmHOTmzEUUVcEpTlOWNoq8e9biN3HjU8GGqDvBqRY1n3zbAYnfhihiAC7o3IR9BuAbpx+eGI8kgjZLGF/9tGyLWw9Ce5auqK8SFSFSinUO8iS4XBPBZImtz51Is53zlOu0Dcy08Uc2+0IYRU+yPZ+NxkusZNg0f/3xYxJ/F4lS4sb2lmJCBCPb0nVoOiIRrLJxmnKkmO7y32ccmrgu4f1vIw4Arp21NPHbAC0QoW3O3vB/jotMcR95eX3YNz9/dbGSrrfg9BguJXWxQPjCH5Ke7B88cl/rNfWGU5MlhDjX8NMphvqXALiEKZ8LYCpTvhvAOa5xNAJtxQL2UezG9cVoC9ltCj8RtcWU6QQjYoGFSMQkMjnBlSsiRWC+oFir+Oa5KZCMQmrTOfhzDiZTVp1zcPmQSHDD+uy7DkqV7Td8AJas247NjFerL+RtlusQw0hVbgNmnYNqlhkQEFN7gbhl2IDWVBRerj0b5PucszQpsU1mlQvmXlq3UojfCcWHkP+dbefu5KhUDoMNSQOzollu6JFotWJfn3JNbdrZhe/duUBrK9YRqQRJbUaOY+TgdozuaMfSN3fgtmdX4iPHTtAOjvH3Vk2spO/7nG6mmmirDTTiZNH3YitZTh665zA3kSXnYIuRFDRmJiwumJzgAge3eHxTx3UkxA6+7cuFUQ+ZZmT5xLR16YfjCJK6zsE3qGFcP10vIm5CL7cOOQFOuSoX4U2fPiEV+MzeVqwbkp+2A0a5Yq4T1AuDGjr63bSzy3uMTzMWbYk+C2mT3faWQkT8C+Q/zyLOQSG87KHJYuYc1wk+XeszEmUx67OfEj034BxCUZkyKnWORjrAKCdKeo4AwSEzKVZK9suJ31xWVz2Zx0GiTxMHfY4TJW2ZWZFA0Y9z4CauLvZRWWAVumks56gFpENcZDvt28VKsp5rjlLIOaht/fDDR2DG1LEJxaZurWTzV+DWDR/tM6xviHPlA5Urk5A9nXjQcJx4kL9VtS66MSmkVbNMkylr0F5oCea4oSwbiWuKFBWrrKnjAj1VSzHmHAiU4RASfJbK/Kaq1nOJz7zFSuEndzIfNrA1UVHW+NuLcZRadRiRFVehgKde24AXV6bzi8jfK+EaKDLE1cU5fPT4/bBgzVY8p4S7b2aAPRP6dGwlbnKVHScTucFzIa9VcDFvdLGPrKHPg5RYSYnKqs4zXTltSnTDjU3P+8DW85RlC5Fc3APaWlIWL7pC2gaWc2BehuTeallHsVy89sWoB1s0ObipZpmmOkF7UvRUh7FRcowmBJxD0C+BMGpw4EMSEQfyF19yYTa4e+VCq3B1AJ1zMOscdIL5gSP3TZgeExBtBguVwHsJz2qFc5h59VPGsbW2JHUrOqHjRJbq+FqLhdRb6cHsoBH6HnGwTC7SlKb8qc9T52CRNav96WMCGFNWOeGFwK8efTU1Fr2eC4GHtPt04tOcDGDm5EKYE5UJPOeQLtsdGgXo1bNZKwWfauC7ah2PYp2DiMZhM4d2cQ5S3FIPEQOXatZeLzjdRhnYFO/xLA6SANDt1BO4jQhkW0++Gidt4q8ICZL2zA7Rwk6onOx7lBD56lWffNtEAMC0CcnIun/+3FsTf7dFEXQr7Lg4sZIeHFM/iPWk85tE3yMOyveUAw08/Bx8iQNTltZxpMcEpE/Jchy6nkPnHHzFSpII+p7W7G2lHer40zIfK58Dt4FxXFFEHCwLySWuiE63ysPw8Zv400UnMm0Fn7IpkymrnAcvrdqC7Z0lI1GXYU5q8eOQkIYMrrwDUuRVrgiUK5VUilQZoVbFnV98O9sWd4rnbpXLLw4Af/hUHI5D9vn8ilj0wr1bTpQFMMYgCierjk9tU8Ys20dz0tQ98OMgibGuSQVH3NWylgKl5oD6+zsPGYlllyb9OZqBvkccEjqH9IRx+jl4WivZFJG29m1t6fFbdGLjCiCmtic8OAcf1kGaqCY3APe928ARLU6stLvEn9TUTHo+p+4CJZ+tK/vaf505Bcfsz3nFJznBQGRkFn3IbHZ2nYOIFLr/poUZyYL2UBmrWux86/2TU/VUh0uVc5BzhYhSYqUOgy+GvC81JLtNFKTi/q+8E29VIgNzCYa46Sub0okgZ3zCZQ9MHA4loXSsk1aN8OpTjvOJShCHIlnjWv1UCdXRTPQ5hbS6lRyvhb2Qp2AJdoMPqbzbWildZNq73ZYaIedQtnMO3r4JQBhbqXaxEpD2aOZFasm/uXhUcXv2k5Zeplcf2B5P67IQzkmuB1x0EhTjZh58yqvLZT6KrimwYqq9cCxCAF95zyH4wsmT7OOyoE1JHiTBxWSSh5+AcxDxHIsU0tUfckx1ubhb+jORG7Vai3tLnFc2wBuDcJyDFCWp16jr5OL3HZbqs1UXK2n3sovhmFWCUywUUoutXBEY3dGOdx86KnOk4Xqhz3IOv/74Mbjg7QckflNd6gGz4q1YIA+FNH+d3h+QnORcnlo5r3WClFpAGWTBunKbg4s7kmMQANZvj4mDdB6yjU0qOiXu/8o78e0PBCdZTlyw2hG6wgQfxV6BsomVzE5r4fsM++yuCJYI6s/ClJK1QBS9c9/MfCa0h6FVdnbZ8w6oDnqlsogs4mymrCbLs4jjZcyEVcgMhokyrRrnrMiKlcJP/SA1qiO9wUZEXAQJrJZdegaOUkRGeqpWAAm/KAn5jrvLgVPj1l3JZ8yJU8vKHDv76PGsWMnmA9MM9D3iEH7uP3yAW6xkODsXC+TkHEyeoMmCcEz6KYLpD0hP+N2al7Zv2G2pRM7iiGNibaVZrPo8Dh/bkaqn3rue+Q0AJo0eHBEMblh6Lgxf+Cj2dM7B9VxM80JXSJfKlSj0drKenziwQPE7t3FaPpCWOju60nlIuLFVNM5BElmitHzcqDOJuJCKta7UrXDX6n8nc0On25KXdWsWUmcoGQTlfURWZRUB7vGqIjaJHUzucvmOS+UKrn18Ge56KRn2YicTTUHOy5/98zTsN3wAK1YSovmObyr6HnGI2GPuBBPnUAbMMvmWQqEqayWTn4M+Bh1xJNhkn/qJRF14/zHjsFRohLjfQAEo5eyqtQaH900dgw8fM579TQjgxZVbnIrOxKZg3EyCTzZscibvhRh/fW6Vs05XqYJ/LI5Tjrq8pW2mp0C8aakyexV6mY1zkPOMIzJZIInLTmVz22dA+hSsnpZLFRH59Ryz/zAMbCvicycdBCLCx0+I9TomYhkphxOcA1sztdHr1XRlP8BzQXIsatTkr516SMqxtLVIEeEtm96TImKT2GwIHAgExPb+BW+kft/FjFPOsSh0j9b97u5KaE7cc+h7xEExydMRhA5QTBoNJ0gfnQMrW9WeNjf5uPSHct46OQel0yPGDUlE29THJkTMOfzPR4/ibyIat3mKyvE+pmyubBvK2EytxYl30r9lTZgi8Z9/nZd6Ti4MH2SX8ZrGv3xjIPqaG3ohl8omsVLybz3QotpRd504B477POXwUal6BUWspForDRvYhvnfmxGlY1U3UzPnEHy6uPGgnp1ziExqlWpPL9sEHRznoHpGS4wb2h8rNwUxucoGL/VYGR+XbWc4h8jU3EBkOE5UDq/FQBy+d+d8CGQz5Kg3+h5xUBRrOlqKhcSmbyIOej0OPi9VTqQf3POytZ7cNPU+9fGpXdosl6TOobtcweD2lnReghDvmxoQFx/nOvfzUL/bT5qqU5KEKqpSlYY+OOxb92aqfywj9lJhehyPLwkI5J+eDRL0lCqV1IkVSBNbP52D/1K96KR0HKoiM4fYCAAKgTZxPvqYzaKPUOfgEb01xTkYdA6+MbBUIsillh3crwU7O8tYu3U35izdaLWiUonbeyenuWxV/MS1U2buX1rEmZww563aanWQbAb6nLWSfAXcQ28tUuIlmeTVqkI660alt+ODmHOw20+rm7idOAQ6h007uqyKThlW22ecrhpqDCjThJcL5eFF6xLlP/zwEfjI9Dg0+YRhfNKfZsElRimHQQ27yyIVYRfIbjgAmAkIh34MsZcbmEscKmnQnGUbsW13ydivyu2Y32fw6TKZ1iP2cm3KtmwBCNXrVM5hPJMkqlgIos9+5ZbnAQDzVqdDY6ic/YEjB2Ly2A4cf2DaYERVlrPEgbn/1zcEXIvkCPUozweNHIg3t3flnEMzEU/C9ENvKRQSJw4T51CkWEb6uZP4HL4mqwy9HR/IzVmX6+vsqnoitW3oRIS1Wzvx1+dXWxebNNHzmaAu661RijmeLdAcAGzbnWTdJ48dkniejVwvl33Ew6bc0H8s+oj9PrgTv/7eTQrwRM6ADGIlrq6v86bs80s3PRdex28RKtGweXgDyfv71DsOSNUjpDf9tLFIuo/9mE2fmJP4aM0yTo6tUhHR8+DWuqp/sXuyB5+mkz4nEv3c/z6b6EN/L2cdNa7HOYc+RxwkuIfeUqAEBR9lsC8uemzCbKl+GspgXQS4xUpqc3bi4NVtRBx8JBq7u4OxXf9/jmN/b1ey1Lk4B1MeYb1eI7Dv0P7OOkYhSviDQLwhcu9B3285sYPaHmBXSJ85LRnnv5ZQ874hWVSiYTbtDT7Vebr/8LSZ88tvbEu37/GOP8eIz+RV6loxGQWURWyNxTrUEUUWjCZvd0AVeQnMW5UUicp+TJBrLO1VHYzJFQurkehzxMGucyBsDU+tl5w1lZ3IgB9x4BYoJ/vU8Y3T0042sindjE735FX7tC0uXwlFW3gCtRGar50aeO12lsqYNGoQ3nUIn741efK3i2X0haJnjauFNpzDWF0dqPhleInQDAOQ86VfayEiDj5+DibOQe3HppCerJkO20J2uHRD+v2/Ych77qNz8M0YN391WsfkMs46+5jx+Kej0+9SDkWVALAEOjRfNm3O0bVhPVtodVl841PL8eb2ZJKqYoGsptFctFkg0K3YEkE1A32POETWSoxYSTkiHzl+aOr3qJ7yxkwyWW4e/T8mXIEP5ATauCMZt3+LluQmQRwcOgcf+IiVjtk/cBrq7K5YU3+S4Ts3Ll3n2F+zNqnF9nt0R1rEcKQSWM302D6tiENMvf/3WUH+isPGdESbMKfs19+NKVyHWs3GOfj4TUR6K4f4T2/rlXXpU73eh0Mf7fQ438GYero4h//3gcnsfItMWRXiwK3RYiEQK3FWUCpklNpKxU0EX1q1OfVbkdJpV5PXBp8pzkHkTnBNh41zaPXgCPTfbA5MKo4YNwRDGbtyH8g+7luwNlGun9LrThw8FNJywXSWKhExcfWZVaykhsMA3MpvGzh/iaRZJt+6GrrCNP7B4TgrQkQ6GI5b1B/nhu18sh5fnYOP2E2Wvbp+h7EdIP2u9QMIV8+lc3A5InI/u/w6TFw4p5C2iZUkR2biHAoeYiXT+vjW+yeH5vGmu1AMeJXuW4sBtyFg5laagb5nrSSJA/PMVc7BlzgYrTm0yd2/jTcX1cE65zFdzP7GKamcCUlTVq/urPDhHFQfDCvnoDTho9hTMUB7drUsGH4jcm90PiflSOcgAk4KSOpaTH3oecGj9pTvNsKrn2h9HO9M0Md20bt4g4vkMzO1FXxWE3LcJVZqc0xwqQMDeMJKFHADLVF4EB6qWMmoXzTc/wVvPwA/f+AVq7VW5KWt1GkpFFAuS86h54hDTVsIES0jopeI6HkimhuW7UNE9xPR4vBzmFL/60S0hIgWEdFpSvkxYTtLiOgKauATiW2VGLFSHTkHdUIePrYDV8y0O5rZwG1Yozv6pZx7kuPyF0OY0OY4VQFJpbpNp5LJCU7rTm9XH/6BI3ndEAfuTrJygrYoqkBgrdTpKVaaMWUMDh0z2NoeYDdl1X/iDB18iYNa77Axg/Evx+/nrGc07Y1yK9j1HGcdNc7aPtu26R2En2qwO5P3c0WIaJ0aRZ0FSRzcYiV1mcg4YVxObhVxZNi4rKUYcDViL7BWercQYpoQYnr498UAHhRCTALwYPg3iGgygJkApgCYAeBKIpIr5yoAFwKYFP6bUYdxsYjyxjIPPWEKankrPso4NWHPf8w4FGOGpGXdvvC3i/cbv7dCOtyUbZNbbct2mlO75LxM1bZUYrT0B6enT8bK35f+0xG49TPp3AomVMs5ZPFNEAAuvWchAJNYSenPsgJnLYm9zm1OcCmdg0Ws5ILajU2UlVwDpnEFnys22oMm/vuMQ5lrzX1buYbwMlWPwYmodGslG8dYCTdqH2sliX8+dkJ4fcEeq4vhHCRBCcxnzZc2Go3QOZwJ4Prw+/UAPqSU3yyE6BRCLAWwBMBxRDQWQIcQ4kkR7Nw3KNfUHTYG19cU1McEVV1Yvqc2E3z9IRLjtyxsXxNalyUHkCSOg5gQ0Fy92Uv5JPeRp6kjiufkfWPrnOMO2McZ7kIFp3NQn4dps07qTMzPT+ZgeHhREFaE4xwKHocLADh9ahz+xGatlNY5pOtUI1ayzbukKatJzubVJduPbbxW/UvY6c5OO+cgc5rI+zBGYKaYc3CJQ9UwLbJusWAP/SJ/UZdYSyEWZe3JpqwCwH1E9AwRXRiWjRZCrAGA8FMGcBkHYIVy7cqwbFz4XS9PgYguJKK5RDR3/fp0DCLvEcPAOXgqdH28VdXF7Lu5A2AT2pP2lg4ziCF8OR/fOEWSONg5h7gfk+kv4Gd1IYcvT1pjGMsivc+shLedOXW2eDy3pBjFjAIlFzqvc1DatTwY1YrKpqD10Tn4PiYfEVswHpXb4uvom+kV5/KiVVsYDw7DB5kNOzhTVpO1EhCHOjHpdGR6W5tCWo5/l0Ic5DiKZPdzmBSmL9VzY5crIoytZLy04ahVIf02IcRqIhoF4H4isgUJ4m5TWMrThUJcDeBqAJg+fXpVkdhspqxqiV3G68E5KIvZV4Uy77unYVB7+pWoc+vICUPx54vemqqjj8smrlAdocZZnL7aIuJgbkt9TL46BzOCOtLSRM/VG7WldGPawE46dCQeWZQ8QEzZtwMXMR7tqsjGLFdWRmm5FdIijHLPRN34bItf1SnZTst6G6aTsg98iUNSQc/X00s/eOS+bD3eUdDcNxdN1tSnqX297JYLedFkgQLFdbnCZ/WTdQBgzJD+kae3fN6FAm/KeuT4IRg2sA2jwgOQ+n5ai0GkBiHQo7asNXEOQojV4ec6AH8BcByAtaGoCOGnDJSzEsAE5fLxAFaH5eOZ8obAZspKic21OrZWwneRXfnRo6PvHGEAkhm7BrQWvZSmviGer/vkscbf9BSRfJ/qpPYXffBtBZ+dpQqG9G81eiv7cA6cBdCPzn4LazXmY8KccOKz8Q6UFF1xFlwJMZblwSSIg82cWBuP9D1Rod7XiEFtmPONU9i2Wj0t9tQ1YOQcvEVZXtUi2A5b3Jg5rkB/7qqoMtFeePKvVMxmpbLPIf3jdRqLlXjOoassEuOSRhWX//ORGNyvJUoYtEfqHIhoIBENlt8BvBfAPAB3ADg/rHY+gNvD73cAmElE7UR0AALF85xQ9LSNiE4IrZTOU66pO2yB9xJ25RkWIwf1xdtesM+JjogiURKXiYpry8aWq5PVpieQ9MWuc4i/2y2kjD8p1weVukoVb+sc0wbG3f/gdj7XcYvnu5KwvbICASsVBaxLOWzb6PopIim7D0n8fdmlZ7DiPfU5DRsQn1h1VGOx58Nt2eBLROL+zL9xz4nnHPz6kif/7opAa4vpPiXHq4qG4r51hfTDL6/DwjVbsUWJJzUwTGbV3lLE0AGteGBh4NP052fd+UgahVrESqMB/CWcGC0A/iCEuJeIngbwRyK6AMByAOcAgBBiPhH9EcACACUAnxdCSCHdRQCuA9AfwD3hv4bAluwnYa5ombCcR6eOxMmqRv0FEE9wK3HwUKwCSZ2DjThJC0S7n4Mf56Dyar89bzpbI15kFYfTl5sIcvfPyf8B/RTsIzK0HxyeXxF7ynLNFRPEwdyPutFlcYLjoEZq9X2ftnp+89aXc6jf8djma1NNn/LkXypXEhaIKmRTz7y+SSkLOQdKi5V+ct8iAMCKMJ8EEB8EOktlDO0fr/HlG3eip1A1cRBCvAYgFcJSCLEBAMuzCiEuAXAJUz4XwNRqx5IFtmQ/8fJwiwAAE35JREFUvgrd55an3eR1tPpYc8BfoSqJmp1ziL/bxEplX+JgMfvlrvcN9jeRyTGt1uksVdDRjz/l632a7pN7fyYTyDZPUUrUZwb5P3cfqoHB3S+twU8MKViTzpb+CmkOHarIw/M91apD8tXTZDHYcKGlEATLc2WH9YlzBgRjK4UOaab37lrfukGH9IhXOQ1p1dbZXcHQAea530zk4TMUJEUktU3YFk9rJd9+tnUGLKjNUsNXIV0WafaXg6zm4yENwHiy0ts4OLTQMNXpKtk5hySHx9fhnquJc0iKAN3vwyY+C3ITx8+XE9+o84FLPi+hns599D52nY/KERirJe7flAQKAN7YygfkM/X5xMUnm/vMuAvZDmdE5PSeBtzRaSVee3NHlBN65SbeX8PFienvTj47Nc6VzMo3Zd8hicgHP585zWucjUDfIw7yC/M+VVFTPYmDbfL79iMDuUnZJAd1ktoWiLdYKZzUtiGSL+cQfo7uMPskRMSh7NI5uE/U3Gna9Ex8lKuJ+o6Tt8uMrhpvZRvHKGu5NsX/PONwZ/++nIMeBNKFLIEDa4UqWvr+h3iBhC9xUPHc8nRaUsA+Z1qKac5BipDedvCIqOy9U8ZgwfdOwxHjhyQMEcYPc4eQbxT6XGwleRx26RyyZN7i0OIpVvJdF1HOWc8TtU3UoM5Vm4ihkpFzsI8t+M2mzJd7mxAuMYrSbgbOweRlbON4fNuOxga3SMP3navPwKaQluNxpRKN3oGnzsEmvz/AIBpUoeZGsbVVT7ESEBPJKft24GMn7F+3dk3v3WrUQWmF9JD+rZg4vC3l9zEgPPj5hsFpNPos5+CyVvKR417w9gOMv9XTQxqIw37YToe+JzBfsdIZR4zF9P2H4fPv5oOv6X36bujmOkpbHoTG1qe+4Rw6mnccBID3KHmBffwDrVxNgVgvbNvYjPU85418Vq4Djfy5n2eAxLmv8ydlwOyzoEJ1CtODRJr6rAekubLtefg6gqowra8Rg9qN9yDDb6golQWO2X+YkeAnI95mHmbd0PeIg0XnoKfhrAVJhXTt7ckJZo2x49lRuewnVhoyoBW3XfRWTGDSMXLX+4grbBtnMkS1HxE029gn//7umVOM7e0zsC3yxnblOwb8xGfVXq/Cl3uN4gO5iEP4+whDhkMgmVJz+26zVZ7P4UmGk3ivQnyrbSsL9h3SP+zfvJ7HemT802GMo1YsGEVwMvyGilJF1Oxk2wz0QeJg9pC++ekVqTJ7W+bfsppHuiDnl91c1LctP+LgA/Vyq0I03DZ9AwL6+jmYFqy+AZ/AJIZX8Z0PTsbwgW0Y4RGnySU/d4Wo9s2HbYuPxY3HRUxkv4MNzpYAMEzRbZgU+L7Yb59A9HTSoaMcNf3QYRHfqFiyfjsAYNFaPlERAHz4aDZCTwo/Ovst0fepBkc5wJztrlBIJ68qlSvWw0/ZEcW2WehzxMEGX1ZTTlI9d68Kn0ifWVDxECsJj1Ov2hbgbxduQtK3wiZuCT595d0u0Y0LWeXYM6aOxTPfOtX6POSYXBySNB649J+OcPZr03d4+8B4pHNV4cth9rNYK/lg8r4dmPPNU3DucRPclT3w2L+/26uer2Opz9xX59G3PmDO5Pj/2zv7YLuq6oD/1r3vhZcvEkhCEgIvLwYI5EMICYFg+JCRmGDpK36UdCQJRgfj2KLtdNqgLW1l1MhYKko7kanJYFtLx9GOURGlnSJDjQaifMUQIMhUMBZTTUwCJLxk9Y9zznsn956zz773nXvPPbz1m7lzz9v3vH3XOXvfs/Zee+210u5pV6UyGLJ836EjbNvzf7x+XJ1m07iLq+dPuiWMuAXpoXwO9fj+aLZ//G28evTYCaOsWny9eHyJOolrxBF5OZyd4ioaEY1sN9+4ePheWZ5KMJo5uNbX4vffN6tc6ve1YGYe1Zm1QS8K+uaarYwdVeXw0WPccX3yHgfw7zeRgsk8P+xEvopzuDMHgNPGNx6qPm3QlbXgHjG+p6sul3MSPmbk+D11eQp2VYQk/61KRYie9b+/aRvP7ztMtSJOxZ+V/6JdjDzl4IzK6ldHT3e1LtGOCx+lc8mbTnV+fnJPF4eODDhNNz3dVR6/dbnTewIY7Kx5zGh8onPGP/P1fHKnOc2W6+hA/kOuQMGlZwQLzhka+bmUSHdXBY4e48Le+jhIg+d4eqpUPWY0MDQo8O3nH7vmPOfn7182i3OmugcijXL/Ry9LdR4YrgdhLdGz4FrH4voJG2Nd4UTCfv3J6+az6qLeWPmQReL5fUGK1mPH1WmaTDNRtZuRpxzC9ySXyla5jeXRp2+9di4bv/O0c3EYgkXkLI4PPiRyUA7x3cUeLrt5hOLwWcA8mqNzQUS0mJ612S96CDtTe4bvWeaz0yf0nJC/OoluT2+l44MDI792P296uo0dghzJeTOqWvFeR8riS2uTw7TU0u9QDlGfzlrviJRId6VSF3QzaQ3KtU8kblbqc4TBbzUjTzk43JVa5TY21rEAGI0gRmfMRFbMn86K+dNzkSfqrHmYu+IP8dkZ5izI2lA3dOxe9M2Wa6LDdbJZoh+tO6nR0LF7s5yc8J7GD25Jjp4aJ2rHLGU/tKkxX2+pPHG1u6880W/cNwzFxY5Ze6TfxzvCuQTnJc/eknZIg3tnfNys5DPYaxUjdkE66ffRKg8yl3fI4pmncPNVZ3H7u9Ntz3lzrMGHhIv46HhqSqRP8NtQF595ODPZecjdN3lsy2LUpIVWB3933Dy7WrSfwBWPCuLhUPzqzWPw0Ciudved8USPYtfMDYb2vrge/FF7jkkI9Z50Xq0psburkjiLHT0qXbZoEJKW1KtdjMCZQ/Dejm5/W/88vvXEXreHTkX4k+X1OXRbyfEcZw6+o7ljHqasE8xKOfiBz5k6PjUlaTOcO208T//yoLeHl49pLGvDnA/RztqkLIJxfAIpxilCOfj0p5Wx9KlJRDb7LOXw7ZuXeYc6yVoMj+SunfmM7q7yWsIswWWCHQiVyTrHJtt2MPKUgyMTnG+CHF9WL+1j9dK+XOvMg2jm4BvT3oXvaG7QpOEbM8k16vZ8ZuW9rHfvTZfwi/3ugHPxLuTqT5+6bj6fum8XpziymvlywZkT+dqHLmVhLK1oEtE9fd1zwTPvsBZe35mhHJ746+WZJtg/uuosNnz9SWZOcq/P+Xg/VQYf+m650sxKo7urJ+wUj3D9bqLW8Qkg2EpGnnJwzBwmjO7mpf2vei9klZ127sT0MWnEQ1m73Ax9xb5yzhS25zhzmDhmFBMzHubx3eeumcPyedNYPs89Am6EpOxvtUQP1Vcd9u44jSbhyQOXuyhkm84AVi3p5fqLzsxl53WkILOU1kv7g4ittSakMaOqzvWFJDasPJfuaoWVC/LrH80w4tYcXLGVotHt9AnFRUJsB3dev5A1S2fy5jPcI81GyPrx+CyGxj/7xmPpmWJ9Z3jrL5/tdV6e/OLA0Mwi77AQwyWym7824H5YrUtIsdouktK4NkNe997XTTji5zXJeXq6qxwZOM4rNQnCXOJNHncSn37nAmfI9HYw4mYOK+dP45yp4xJv/ODo9g2uMnsnjeET/fnlVtpy40XMnuK38c71G4ubMVzT+GpFeGHjOzLlqlSCXbBHmwjP/EZkxfxpXPfMDP5shXuN69Zr53KrYzdwK/hE/zweeuZXbf1OH6Iu6WtiO6dmj0ak7M7/m++dUL7+ivYPXBplxCmHmZPGJubYBehfeDq337+7qV2dI5m3npsdOydaxJ3ieW833bBoWDJFbNtwFYeOZKd1zZsbLunNPqnN9HRX+bvri0se42LN0j7WdOD6XLTZNWu29eCfXsn2n/2aq2uCDO55OYjzFF/n+eDlb3J69nUKHaMcRGQFcCdQBf5RVTe2W4YPXTGbdW+Z1dDuZ8OPeadPYOM7F7DSsVcj7gV0fsbiqi+Txp3EJI9gennjuk6jPEQP8UmOUDkQuE4npb+tdW19+rYVpXm+dIRyEJEq8PfA1cCLwCMislVVf9pmOUrTcGVk1RL3aLpaEZadNZmHn9uXm+25KOJZvozyMmPiaL64ehFL+tzhbdKoXaso0/OlU6zrS4DnVPV5VT0K3Av0FyyTUQD/cMOFfHX9UudGM8NoJ2+fN80ZZNPFNQvKO4PslF/gDCCeTOFF4OKCZDEK5OSebi5qcpTWCXzlAxcPujUaxqWzJ/PCxnfwywOvDTs8frvpFOWQ5ApQt1NHRG4CbgLo7e28BT/DuNTMSUYC0yZ0/gJ0LZ2iyl4E4hlBzgDqHN1V9W5VXayqi6dMmdI24QzDMEYanaIcHgHOFpFZIjIKWAVsLVgmwzCMEUtHmJVUdUBE/hD4LoEr62ZV3VmwWIZhGCOWjlAOAKp6H3Bf0XIYhmEYnWNWMgzDMDoIUw6GYRhGHaYcDMMwjDpMORiGYRh1iCYkvy4DInIQ2J3wUS/wPx5VTAAO5HRennWB3zXk/Z15XmeebVDEdVofat151oda952+dc1R1ewE1apayhfwaEr5rzz//+68zsuzLt9raMF35nmdubVBQddpfaj467Q+1LrrTHx21r7eiGal/Z7nfTPH8/KsC/yuIe/vzPM682yDIq7T+lDrzrM+1Lrv9K3LizKblR5V1bpkz2nlZaLs12DyF0/Zr8Hkbx2+spV55nB3g+VlouzXYPIXT9mvweRvHV6ylXbmYBiGYbSOMs8cDMMwjBZRCuUgIptF5GUReSpWdr6IbBORJ0XkmyJyclg+SkS2hOWPi8iVsf9ZFJY/JyKfF5GkPBKdLP+DIrJbRB4LX6e1Sf4zReS/RGSXiOwUkY+E5aeKyAMi8mz4fkrsf24J7/NuEXl7rLztbZCz/KVoAxGZFJ5/SETuqqmr49sgQ/62t0ET8l8tIjvC+7xDRK6K1VXIc6hhfFyain4BlwMXAk/Fyh4BrgiP1wG3hccfBraEx6cBO4BK+Pd2YClBcqHvACtLJv+DwOIC7v904MLweDzwDDAXuB3YEJZvAD4THs8FHgdOAmYBe4BqUW2Qs/xlaYOxwDJgPXBXTV1laAOX/G1vgybkXwicHh7PB14q8v438yrFzEFVHwJ+XVM8B3goPH4AeFd4PBf4z/D/XiZwKVssItOBk1V1mwYt9GXg91oteyjHsOVvg5ipqOpeVf1xeHwQ2EWQ2rUfuCc87R6G7mc/cK+qHlHVnwHPAUuKaoO85G+1nC4avQZVPayqDwOvxespSxukyV8UTcj/E1WNEpbtBHpE5KQin0ONUgrlkMJTwO+Gx+9hKJPc40C/iHSJyCxgUfjZDIKMcxEvhmVF0aj8EVvCqfRfFjEdFZE+glHRj4CpqroXgh8PwUwHknOCz6AD2mCY8keUoQ3SKEsbZFFYGzQh/7uAn6jqETrg/vtSZuWwDviwiOwgmOYdDcs3E9zwR4HPAT8ABvDMU91GGpUf4L2qugC4LHytbqfAIjIO+BrwUVX9revUhDJ1lLeFHOSH8rRBahUJZZ3YBi4Ka4NG5ReRecBngA9GRQmndaTLaGmVg6o+rarLVXUR8K8EdmFUdUBV/1hVL1DVfmAi8CzBA/eMWBWJearbRRPyo6ovhe8Hga/QRlOHiHQT/Cj+RVW/Hhb/bzhNjswVL4flaTnBC2uDnOQvUxukUZY2SKWoNmhUfhE5A/h3YI2q7gmLO+o55KK0yiHyUBCRCvAXwKbw7zEiMjY8vhoYUNWfhlO+gyJySTgNXQN8oxjpG5c/NDNNDsu7gd8hME21Q1YBvgTsUtU7Yh9tBdaGx2sZup9bgVWhjXUWcDawvag2yEv+krVBIiVqg7R6CmmDRuUXkYnAt4FbVPW/o5M77TnkpKiV8EZeBCPrvcDrBJr3/cBHCDwGngE2MrShr48gWusu4D+AmbF6FhN0pD3AXdH/lEF+Au+NHcATBAtcdxJ60LRB/mUEU98ngMfC1zXAJILF82fD91Nj//Px8D7vJuaNUUQb5CV/CdvgBQJHiENhv5tbsjaok7+oNmhUfoIB3+HYuY8BpxV1/5t52Q5pwzAMo47SmpUMwzCM1mHKwTAMw6jDlINhGIZRhykHwzAMow5TDoZhGEYdphwMowWIyHoRWdPA+X0Si9prGEXTVbQAhvFGQ0S6VHVT0XIYxnAw5WAYCYTB1e4nCK62kGCz4hrgPOAOYBywD7hRVfeKyIMEcbDeAmwVkfHAIVX9rIhcQLADfgzBxqd1qvobEVlEEEvrFeDh9l2dYWRjZiXDSGcOcLeqvhn4LUGujS8A79YgJtZm4JOx8yeq6hWq+rc19XwZ+POwnieBvwrLtwA3q+rSVl6EYTSDzRwMI52f61BcnH8GPkaQuOWBMEp0lSAsSsS/1VYgIhMIlMb3w6J7gK8mlP8TsDL/SzCM5jDlYBjp1MaWOQjsdIz0DzdQtyTUbxgdg5mVDCOdXhGJFMEfAD8EpkRlItIdxutPRVUPAL8RkcvCotXA91V1P3BARJaF5e/NX3zDaB6bORhGOruAtSLyRYKom18Avgt8PjQLdREkZNqZUc9aYJOIjAGeB94Xlr8P2Cwir4T1GkbHYFFZDSOB0FvpW6o6v2BRDKMQzKxkGIZh1GEzB8MwDKMOmzkYhmEYdZhyMAzDMOow5WAYhmHUYcrBMAzDqMOUg2EYhlGHKQfDMAyjjv8HhtwI1A8A18YAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ " sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXecJGd95/9+OqfpyWF3Z3PUKiFpUUZIgBKYA4zxyXe2OJuzMAf+OXBng8PZd2f5wHdnbGzDnWwTjMEIMBhhEEFCIJBA0q7SalfaoI2zO7uTp3N+fn9UPdXVYWa6J3T3TD/v12tf01Nd1fN0bXd96puFlBKNRqPRaOw4mr0AjUaj0bQeWhw0Go1GU4EWB41Go9FUoMVBo9FoNBVocdBoNBpNBVocNBqNRlOBFgeNRqPRVKDFQaPRaDQVaHHQaDQaTQWuZi9gsfT19cktW7Y0exkajUazqjhw4MCElLJ/of1WrThs2bKF/fv3N3sZGo1Gs6oQQpyuZT/tVtJoNBpNBVocNBqNRlOBFgeNRqPRVKDFQaPRaDQVaHHQaDQaTQVaHDQajUZTgRYHjUaj0VSgxUGj0WhWAa+Ox3jy+ETD/p4WB41Go1kFfPIHr/JfvvJiw/6eFgeNRqNZBcTTOaKpbMP+nhYHjUajWQWksnmS2XzD/p4WB41Go1kFpLIFsnlJJldoyN/T4qDRaDSrAGU1JDK5hvw9LQ4ajUazCkhZ4tAY15IWB41Go1kFpE13krYcNBqNRmOhLId4WlsOGo1GozFJareSRqPRaMpJ6YC0RqPRaOxIKUllVcxBWw4ajUajoRiMBm05aDQajcYkZauM1gFpjUaj0QBYLiWgYS00tDhoNBpNi1NqOWi3kkaj0WgotRZ0QFqj0Wg0QKnloAPSmrpJZvL88Oh4s5eh0WiWGXvMIa4tB029fOPF87z7U08zFk01eykajWYZSeVsloOOOWjqJZrKlfzUaDRrg5RpLXT63TrmoKkf5ZdMNujDo9FoGoOyHHqCHi0OmvpJK3Fo4ChBjUaz8qiYgyEO2q2kqZNiv3ctDhrNWkJ5BbTloFkURbeSjjloNGsJ5Q3oDXp0EZymfpTpqd1KGs3aQn23uwIe3T5DUz8qaKXdShrN2iKdzeNzOwh5nWTzkoytS+tKocVhDZFWloMWB41mTZHM5vG5nQQ8LqAxVdILioMQYqMQ4jEhxMtCiENCiN8wt/cIIb4nhDhm/uy2HfNhIcRxIcQRIcSdtu3XCCEOms99XAghzO1eIcSD5vanhBBblv+trn205aDRrA0mY2l++dNPMzqbBIx4os/lJOBxAo35jtdiOeSAD0opLwGuB94vhNgLfAh4VEq5E3jU/B3zuXuAS4G7gE8IIZzma30SuA/Yaf67y9z+HmBaSrkD+Bjw0WV4b21HSqeyajRrgm8fusBjR8Z59vQMYMQcfG4HAW8LWQ5SylEp5bPm4yjwMrABeBvwWXO3zwJvNx+/DfiilDItpTwJHAeuFUKsA8JSyp9IKSXwD2XHqNf6CvBGZVVoakelsmq3kkazunnc7JE2ncgApuXgdhJwG/fZjRj4U1fMwXT3XAU8BQxKKUfBEBBgwNxtA3DWdtiIuW2D+bh8e8kxUsocMAv01rM2DbYZszqVVaNZreTyBZ48PgnAbDIL2GIO3tZyKwEghAgB/wz8ppQyMt+uVbbJebbPd0z5Gu4TQuwXQuwfH9fdR8tRFdI65qDRrF6ePztD1KxlmI4blkPadCsFWykgDSCEcGMIw+ellF81N180XUWYP8fM7SPARtvhw8B5c/twle0lxwghXEAnMFW+DinlA1LKfVLKff39/bUsva1QbqWUjjloNKuWx4+O4xBGk73phGE5pHIqW6mFLAfT9//3wMtSyj+3PfUQ8G7z8buBr9u232NmIG3FCDw/bbqeokKI683XvLfsGPVaPwd834xLaOogpS0HjWbV88ypaS7b0Mlwt58ZW8zB73Y2NCDtqmGfm4BfAg4KIZ43t/0e8BHgS0KI9wBngHcBSCkPCSG+BBzGyHR6v5RSXa3eB3wG8AMPm//AEJ/PCSGOY1gM9yzxfbUlWhw0mtXPxUiKS9aHmUlkrIC0ijl0+FzcurufgQ7fiq9jQXGQUv6Y6jEBgDfOccz9wP1Vtu8HLquyPYUpLprFk9LZShrNqmcsmuaWkBeA0RkjvKtSWcM+N5/55Wsbsg5dIb1GyOUL5AuGJ67WOofZZJaf+asfceRCdCWXptFoaiSRyRFL5xgIe+kOuJkxs5VS2Txel3OBo5cXLQ5rhJSt10qtbqVXx2O8dC7C4dHZlVqWRqOpg7FIGoCBDh/dAQ8ziQyFgjRiDh4tDppFoOINHqej5pbdKtiVzq58Ey+NRrMwY1ElDl46/W4KEmaSWbJ5iU9bDprFoNJYu4Nuktk8tSR7TcWzJccCjM4meerE5MosUqPRzMtYNAVgupU8AFyYNbb53I29XGtxWCMoy6E74KEgSy/4c2FZDrmiG+qPHzrEfZ87sDKL1Gg081LiVgq6Aazmez63thw0i0CJQ1fA+EDVkrE0XeZWiqVzPHZknNlktkQwNBpNYxiPpXE7BV1+N12m5TBqWg5+LQ6axWAfQA6QqCFjSVVfZvLGsY++fNEaIjJtupw0Gk3jGIuk6Qt5cTgMgQA4OREHIOitpSxt+dDisEZQd/rqbqMmy0H1bTEF4VsHR63nJuPp5V6iRqNZgLFoioEOo8ZBxRweffkiAFcMdzZ0LVoc1gjKNdS9KLdSnmQmzw+OjLN3Xdh4TlsOGk3DGY+m6Tern8N+N0LAqckEG7r8bOwJNHQtWhzWCPaANNTWe2UmUcxWmoilSecKvG5XH6AtB42mGYxF0wyEDcvB6RB0mq6la7f2NHwtWhzWCMo1VF/MoehWUuKyoctvPGe6nDQaTWPI5ApMxTOWWwmKN3taHDSLptxySC3gVpJSWgHpdC5vtdwYDPsQAqa0OGg0DUVZ6/amespyuE6Lg2axlKeyLtRCI5HJW5lJmVzBynYKelx0BzxManHQaBpKscahaDn0Bj30hbxs7Qs2fD2NzY3SrBj1upWUS0kdq8TF53bQHXCXPK/RaFaeExMxAIZ7/Na237p9F5FUFmMETmPR4rBGUHf+Xf753UqpbJ5P/OBVbtxeHNGdzhYst5LP7aQ36GUypsVBo2kkB05PE/K62DnQYW27bENj01ftaHFYI6RyedxOQXCBAeRPnZzi448e4/iY0aY75HWRzuVtloOT7qDbKrzRaDSN4cDpGa7a1IXT0XgroRo65rBGSGXz+FxOXE4HHqeDRLZ6KuuZqQQAj70yDhgNvsrdSj1Brw5IazQNJJrKcuRChKs3dTd7KRZaHFYBL5ydsYLH5Xz30AXe9Oc/JJrK4TV7r/g9zjmL4EZMcVBupKGwzxQH4/X9bic9QWOweaGgx3hrNI3g+bMzFCRcs1mLg6ZGpuIZ3vGJJ/jGC+erPv/S+QjHx2K8ciGC12X8dwY8zjndSmenEyW/D4Z9ZrZS0a3UE/SSL0giKV0lrdE0ggOnpxECrtrU1eylWGhxaHFiqRwFCROx6hXLUfMCfuRC1Or33t/htXrAl3N2KmmlxXX4XAQ8zpI6ByMgbQS1dTqrRtMYDpyeZvdgBx0+d7OXYqHFoYE8fHCU58/O1HVMJm9ctOPp6jGEWMrYns1Lq9/7lt4gpyarB5TPTie4cXsv6zt99AQ9eF1O0lnDreRxOnA6BN2mOOgqaY2mMZyciLNnqGPhHRuIFocG8ifffJk//ebLdR2TyRl+/+gc4hBNFbcrt9KWviDnZ5IVMxkiqSwziSwbewL80g1buGPvIF63wwpIe03LQ1sOGk3jyBckF2ZTrO/yL7xzA9Hi0ECS2TwHzkwzm6jdl69mLcxlOUTTxddSlsPWvgAFCWfN4PN4NM1/+vwBXjCtlo3dAd5363Z+/y178bocZPIFEpmcNUxEWw4aTeMYj6bJFaQWh3Ymnc2TL0h+dHy85mNUllI8XT3AbLcclDhs7jViCicnDHE4cHqabx28wP/6zhEANtla/3rNoeWRZM46XrX9nq5DxDQazeI4b44B3aDFoX1JmRd6VWNQC1nTcpjLrRRL5VCV9cqttNUUh9Nm3EFlHb04MgvARlt5vsc8ZjaZtSwHnykYelSoRrPynJ8xxGFdl2+BPRuLFocGkc0XyJt1Az88OlZzDUHRcqguDpFUjl1mub3P5hbq9BernCPJogXQ4XVZnR6hKCizyayV7eRwCDxOh1X7oNFoVg4lDtqt1KaoOoLLN3QyEcvw8EsXajouvYA4RFNZXrPRyI1WF3cwgtIqYymSzCIEhH0uhnsCJU287OLgtQ0w97oc1po1Gs3KcX4mRYfXRbiF0lhB91ZqGOoi/46rNiCR/PE3DnHzjj46A/N/ICy3UqpSHDK5AulcgY09fvYMdbCtL2Q9t6U3wP5T04BhXXR4Xdz/jstxlfVtUYIwm8yyYyBUsj09R1W2RqNZPs7NJFvOpQTacmgY6i485HXxkZ+9gql4ho9//9iCx1lupSpjP2OmNRHyunj4N17Hr96yzXpuS2+Q87NJUtk8kWSWsN/NW69cz92Xryt5DWU5xNK5EsvD63KQ1paDRrPijM4mW86lBFocGoby33vdDi7b0MllGzo5ejG64HFZWyqrlKVxClUd3eFzV/R739IXQEoYmU4ym8zOabIqcQCsgDQYLiptOWg0K8/5mdarcQAtDg1DZf6o1NGQd+7meHZUnUM2Lysu1srV1OGr9A4OmqMGx6NpIqlsSRDajloPFAPa6rGOOWg0K0syk2cqnmF9p3YrtS3KclCum4DHRbwWcbAJQnlQOmKzHMrpDRmjBifjaSLJHGF/9fCS1+ZK8pUHpHUqq0azoqgaB205tDFpW2M7UJ1Tq2cg2VGWA1QWws1nOfSGzBYYsQyRVG1upXLLIa1TWTWaFWV0xmiQuSrFQQjxKSHEmBDiJdu2PxZCnBNCPG/+e7PtuQ8LIY4LIY4IIe60bb9GCHHQfO7jwnSSCyG8QogHze1PCSG2LO9bbA2US6jYVts1Z1ttO3bLwd4qA4pN96qJQ3fAg0MY3Vxnk/O5leziUCoU2nLQaFaWl0cjAGzrDzZ5JZXUYjl8BriryvaPSSlfY/77FoAQYi9wD3CpecwnhBDqdvSTwH3ATvOfes33ANNSyh3Ax4CPLvK9tDSpMssh6HGSmKN2wU6pW6nccpjbreR0CHqCHi7Mpkhk8oRriDn4K+octOWg0awkT52cYmtfkIGOVRhzkFI+DkzV+HpvA74opUxLKU8Cx4FrhRDrgLCU8ifSSLn5B+DttmM+az7+CvBGUZ56swZQd+GWW8nrIpHNL1gpnbW5lWJllsN8biWAvpDXKoQLz7HPvG4lbTloNCtGoSB55tQU127pafZSqrKUmMMHhBAvmm4nNdtuA3DWts+IuW2D+bh8e8kxUsocMAv0LmFdLUllQNqJlCzourFbDrFyy8GsTXA7q/839oY8nBg3xaGmbKVSF5O2HDSalePoWJTZZJZrt64tcfgksB14DTAK/B9ze7U7fjnP9vmOqUAIcZ8QYr8QYv/4eO3N61oBFZBWF+Ogx/i5UNwhky+eivJspWgqR8g7d4V1b9BrzWSYM+YwZ7aSTmXVaFaSZ04aDpk1JQ5SyotSyryUsgD8LXCt+dQIsNG26zBw3tw+XGV7yTFCCBfQyRxuLCnlA1LKfVLKff39/YtZetNQHVntqawAiTlacSsyuYJ1YY+lysUhO6e7CAy3kmIuy8HjnEMcdBGcRrOiPHVyinWdPoa7Wy9TCRYpDmYMQfEOQGUyPQTcY2YgbcUIPD8tpRwFokKI6814wr3A123HvNt8/HPA92V5KfAawApIu4qprFC9LYadTL5Al9l/KVbFcpgr3gDFdFZgzlRW1YEVyiqkXU4yuULN3WM1Gk19vHRulqs3dVd0N2gVFmy8J4T4J+BWoE8IMQL8EXCrEOI1GO6fU8B7AaSUh4QQXwIOAzng/VJKdWv8PozMJz/wsPkP4O+BzwkhjmNYDPcsxxtrNdI5Y0azw2x8F/CalsMCbqVsroDP5STgcVZxK2XnHUjeX2I5zP1frabBlVsOat1+j3OuQzUazSKZSWZLbuBajQXFQUr5C1U2//08+98P3F9l+37gsirbU8C7FlrHaieVzZdkBhVjDgtbDh6Xg6DXVWE5xNI5BsNzp8DZP3hzxRzAEIJouiwgbRv4o8VBo1lepJREU7mWa9NtR1dIN4hUtlAyL0HFHOYa/6nI5gu4nYKOKuJgBKTncysZloPLIUpcRuVUdSuZj3XGkkaz/CQyxsjg+dzCzUaLQ4NIZ/Mld+aBGi2HdK5oOVTLVprPrdRnWg5hf2XXVjtKtMp7KwE6Y0nT9mRyBb767Ig1yXE5UH3R5koUaQW0ODSIdK7Upx/w1pjKmivgcTkJeV1ciKR51/99kh8eHSeVzRNL5+ieZ1iQylaaL6MJikJQXgSn1q3RtDNffOYMv/2lF/jBkbGqz+fyhao3UdPxDAdOV68fjiSNGz3tVtJUiTmogPT8lkM2X8DjFAS9Ll4ejfDMqWl+fGzcmju7YZ40OJ/bEJX54g1gF4fKPkvactC0M1JKvvDUGQAOnJ6uus///u5R7nngpxXbP/fT09zzwE9Luhwoiq1vtFup7Unl8iV35sq/v1DMIWO6lewforNTSc4pcVigm2NvyLOg6aoK88qL4ECLg6a9ef7sDK9ciCIEPHumKA6PHx3nX180SrVGphOMTCcqjp1JZMnmJZOxTMVzq8Gt1LqytcZIZwsld+YOM0icXODim8kbKbCdfjdOh2BrX5Cz0wnOTS9sOQDce8MWeoILiIPbgcshStpw+GyprGuBs1MJBsM+PC59P6SpnS8+fZaAx8lbLl/Hv744SjZfwOUQ/NFDh3A7BT9zxXpS2UJV93Aya3gFxqNphsqG+Si3krYcNIbl4CrNGAp6K2sXFJOxNFJKsrkCbqeD975+G//4nuu4YVsvZ6cSnJtJ4nQIhuZJZQV4z81becdVw/Pu43U5SqwGsGcrrX7LIZXNc8fHHufLB84uvLPGIpbO8Sf/epgjFxYeZ7tWOXBmmpt39HHLrn6S2TyvjEY5cjHKyYm4lcmXzuVJZvMVY3yVYIxFUxWvq9xKrRxzaF3ZWmMYqaylWjzXTIcT4zHu+NjjfOaXr7XqHNZ1+lnX6efguRkiqRyHz0cYCvtwzdF0rx68LmeFOKg4xFqwHGaTWZLZPOPRdLOXsmoYj6b5D59+mkPnIwS9LnYPdTR7SU1hMpbmhm29XLPZ6C367Jlpq1+ZunFKZwtIWZl0or7b1T53kQU6KrcCrbuyNUYqW2k5VKt6Bvjh0XFyBcm5mQQZ03JQbOwOAPD0qSkuWRdelrV1BtwVWU9ryXJQrc0XcuFpivzNY8c5djGGx+VgOlHpM28HcvkC04ksPUEP67v8DIV9fPPgKBMx42JviYPZWTmZKY0rJquIwzdeOM/OwRCRVBZPFYu9ldDi0CDSudIiODDEodoF6yevTgLGRS2TL5RkOW3sCVjPDS/TaMEP3r7LuoAqlJWTWgOWgzLhUzVM3tMYHLkQ5dINYWYSWabi7SkOU6Yoqnqhd9+4hT/7zitIaaSHK6tauZcS2TzdtuNVJuJ4rCgOv/e1g9yxdwiPy9HSLiXQ4tAwylNZgaqFbfmC5KcnbOJgZisp7B0cl6ubY2/Ia1VTK1S2UnoN3G2rynJtOdTOiYkYN+/o5+RErG0tByWK6rvxvlu3c+elg3z38EUmY2n+9kcnkVKWWA52yt1K+YLRMmN0Nkl30LNg/VGz0QHpBmFkK5VaDn63syLm8PJoxPJHziazFCQlbqVOv5sOs2XGQplKS2EtZSsV3Uqr/700gng6x8VImm39QXqCnqqpmO2Aet+9wWKPsm39IX7t9dvpNrelcwXrO1IuDupmRImDsmBHZ1NGd4MWTmMFLQ4NoVCQZtfTSsuhXByefHUCMIRD3bnYLQchBMOma2lDV2DF1uxxOhBibcQc1ByM8i+vpjonJ4zpgdv6DHFoV8tBxRaqdU611wGp70i5ZWpZDubrqPTV8zNJIsn5Z7G0AlocGkDaGvRTGXMor5B++uQU2/qDrO/yFcWhLCNpo2kxrKTlIITA61obA3+ipltpLQhdI3h1PAYYd8ndQQ/T8WxFmmY7ULQcvBXPFTsIFC2H8u+yuhkZixhp6arwLZ0rcGYq0fIxBy0OK8yf/Othq5Kyesyh9IL10rkIV2zoJORzW+LgLjtuc28Ah4B1nfPXOCwVn3ttjApV5ryOOdTGifE4Qhifs56Ah0y+UNERuB2YimdwOkTV9jO+KpaD/bsipSSRyeFxOUhm88QzeWaT2ZLXnm/GSivQ2qtbA3zh6TPsGjRyxKvFHJLZPIWCxOEQTMbSXIikuHR9JxOxDMdnjTs4b5nl8J6bt3Hd1t4VT4PzrZE50tqtVB8nJuIMd/vxuZ30mL716fj8g6XWIpPxND1BjzWgy4767sXSOVSzVvvNRzpXoCBhU0+A42MxxqNpIjZxAFr+fGrLYQWRUpLM5jk8GgGoEnMwPmDqQ/XyqFGJund9mJDXZbMcSj+cQ50+3rR3cEXXDmtnjrQKSK8FoWsEJydibOsLAVjiMNWGcYeJWKYkGG1HeQHsF3x7/FDdiGw244Pj0bTlVlLomEMbk84ZlZMZFXOoKIIzB/6YvspD52cB2LsuTMjnImN2c/Q4m1Mos2YsB53KWjNSSk6Ox9naFwSwsnKm27DWYTKWnnOMp7Ic7K4iu2WaMD9rm3qL4qD2VaNVtOXQxpRfWCvbZ5gzHcy4w+HRCOs7fXQHPSUT3prVLM7ndqyJSXARHXOomX96+izxTJ49ZruMnoBxcZxsQ3GYimeqBqOh6AWYSxyS5g1f0XJIEUnmcDqEVZ/U6jEHLQ4rSPnFaC7LQZmjh85H2LveaIlh77nids49xW0l8bqcVoHPasayHNo85pDM5PmLR47y4DNnuBipbAb38MFRfu9rB7ltdz/vuHoDAD2hlbccpJT8t28csiznVmEylqnPcrB931WiyfouPy6H4KJpOYR9LqvNfqtnK7W2dK1yymsYyttnqJhDPJMjmclzYjzGmy8bAmgJy8HrdlS01ViNqIB0Olewgv/tyA+PjvEXjxwD4MbtvXzhV68vef6bB0cZDHv55C9eY+Xxd3hduBxiRWMOs8ksn37iFJ1+N5eu71yxv1MPqWyeaDpnTVMsR8UcZuaIOajHIa+LwbCPC7MpClIS9rtZ32mIg3YrtTHld6rlAWklALF0juNjMQoSq5me/YNTngLbKNZOKmtR4FJrwBJaLCPmDJBbd/dbhW52oqkcg2FfSRacEILuoIepFaySVsVhM4nsAns2DpUM0jNHQLqa5WD/rqhZDn6Pk3WdPqvwrdPvZl2XkYKu3UptjPqwqHYX3jK3knIdxVI5qwq1v8O4UwmVuJWaZDm4HFYwfTUTS+esQsJ2di2NTCfp8Lq4YriLC5FUxf9tNJWt2kK6N+hZUctBxYTKUz2bSbXWGXa8VWIO1SyHgMfFui4/o7Mp063kZmtfCIeoXlzXSmhxWEGUD/LyYcNUrtY+A4yLl/KLK1HoaAG30lqwHPIFSSyds0S3nYPSI9MJNnT72djtR0oYnU2WPB9N5ejwVro6ugOeqjGHVDZvtXtZCkoUZltIHE5NGpZVeUNKhbIcInPEHIri4GR9p+FWmklmCftdvO0163noAzdbn8lWRYvDCqI+IO+8epi3XL6OwbKpbcqtFE/nLL+42tYKloNvDdQ5qDThPvOLuNrFbimMTCcZ7g4wbM4EUW4mRSydq2o59AQ9Vdt2P/T8ef7d3z7F+ZlkxXP1oCyHVhGHL+8/ywe/9ALrOn3sGgxV3Ue5etWa/W5nWbaS8Vi5lTL5AiNTSTr9btxOB5dtaI3Yyny0ttNrlaMuRK/Z1MU7r6kc1Rk0s5XsPnEVaygJSDfNrbT6LQd1bgeU5ZBZ3WK3WKSUjEwnuX5br5VKeW66iuVQJUjaHXRXdSuNzqbMn0nWL2G2iBVzaBFx+ItHjrF7qIPP/sq1cwaNVWNKFSfpDrjntBzWmecmky+0fIaSHW05rCDW3cMcbS4cDkHQ4yx1KynLwSYOzQpIq2FEq1kglEXW7m6l2WSWWDrHcLefoU4fDmG4mRTK/VbNctjYHWAmkeW5M9Ml2yfjRrfRi5E0FyMpPvCFZ/nZTzzB5586XdfaWs1yiKSyXLO5e85gNBiBep/Laa25M+CpWufgczmt7CSAcIu36bajxWEFUReiucQBDPeRcisFPE6cZpplRwu4la7e3E1Bwk/M4UOrkVja+PIOtLk4KBfScHcAt9OYSW53K6mbk2ri8O+u28RAh5c/+JeXyOWLlpcqjBuLpHjslTH+9cVRDp2P8N1DF+tam31+SbO7v0o5t0iW43M7LGGrZjn43U4cDmFlJ4EWB42JJQ6eucUh6HURTedMk95Vsl3RrID0Ddt6CXicPHK4vi97KxEptxzaNFtJWQnDtnbvdnFQnWurXRQ7fG7+6K2Xcuh8hK8cGLG2T5pzCi5G05ybSeJ0CPauD9ed4aaCuplcoekV+fFMHilLLfe58LqcKC3rLrMcEtm81QGhJ+CxXMOt3k/JjhaHFSSZySPE/G6hDq+LWMpwK9k/kG6nw8puama20i07+3nk5YtNv6NbLDEr5mDcva1mF9lSKFoOfuun3a2kYjNz+djffPkQnX43L9mqmFW651gkzbnpJENhH0GPq+6qentDuma7lmILnAc79uzDroCbRCbHk8cn+Nj3jpLM5K2bQodDMNSpahu05aDBEAe/24kQc1fkKrdSNJ0jVPaBDJlpha4mVvTevneQi5E0L52LNG0NSyGqYw6AIQ4hr8uaTTDcHeBCJEXWdBMVxaH6na0QgoEOrzXyEoqFYmPRFCPTSTZ0+fG4HFbDyFpRAWlovjgoCypUk1vJvPgLQ0xS2QIP7j/Lx79/jMl4xrIcoDh7pdpsiFZFi8MKkszm5403gJGxFEvniKYqxwZ2+Fx4XI55xWWluW3PAEIfzywuAAAgAElEQVQYrRdWIxUxhzZ2Kw13+63P0nC3n4KEC2bGkTpP890x99vEIV+QVgbTxUiKczNJNnT78TjrL5yMpLJWp9Kmi8M8sZdyVDscr8tJwOMkky9wYjyOlPDSuVn8nuJrrF8l/ZTsaHFYQZLZ/IIDeUI+F9GUEZAu93OGvK6mpbEqeoIe+kLeipz41UIslUOIYhuEdrUcRmdTJZMDh82L1VnTtbSQ5QCGOEyYrqTpRAYpDat2dCbFhUiK4W7TclhEzGHQdPvNNHluhHUeaoo5GN9Nn9thWQlHLxozWabiGQJubTlo5iCVzc8bjAZDAFQqa1VxaFK8wc5g2Fu1i+dqIJLK0eF14XU5cIj2jTlEU7kSf7eq/FWuoUgt4hAyLAcppXXcjoEQ0XSOfEEW3Up1ikM0lWNjjyFWzbYcrGLUOtxKXpfTemwvGrW7ld6wZ4A79g7Omx7baix45RFCfEoIMSaEeMm2rUcI8T0hxDHzZ7ftuQ8LIY4LIY4IIe60bb9GCHHQfO7jwrRvhRBeIcSD5vanhBBblvctNo9EJl/yAalGyGvGHKoUIIV8zbccAAY7fFyMpBfesQU5P5NkXafhTlFVrJOx9JroGVUP8XSuJANO3cGqi7Hytc/n9ujv8FrzkCfMTCXVYh6MDKhFxRxSWTaacw+aLg41uNcUviqWgx37jeG+LT08cO8+K1V9NVDLleczwF1l2z4EPCql3Ak8av6OEGIvcA9wqXnMJ4QQ6gx9ErgP2Gn+U6/5HmBaSrkD+Bjw0cW+mVYjmanNrZQzC5DK71Y2dPkZCDe//8pA2MdYdHWKw8i04QsH48saS+d405//kE8/cbLJK2sssXSuxFVSKQ45XA4xb2adCuqPR9NWptLedTZx6PLjdTlI15GOWjA/+xu6/AjR/OZ70bI2NvNhtxzssUU1KGmhG8NWZ0FxkFI+DkyVbX4b8Fnz8WeBt9u2f1FKmZZSngSOA9cKIdYBYSnlT6SRE/kPZceo1/oK8EbRzAjsMpKqISBt/xCW+zl/9649fO5XrluRtdXDYNjLZDxtZbasJlQgFowv87GxGNOJbNWW1WuVbL5AOlcosRx8bgcep6PEcujwueZNfrCLg3IrXWITh/WmWyldx+ckms4hpSFWYZ+76S006hEHJaRetwOfTQhuN+e7Bzyrp6ahGov1WQxKKUcBzJ8D5vYNwFnbfiPmtg3m4/LtJcdIKXPALNBb7Y8KIe4TQuwXQuwfHx9f5NIbRy3ZSiXiUGY5+D1OOgPND2ANhn1IieVKaAVqiR1EUlkiqZw1ecvvdvLyqJGSO7GC8wlajbiZgWMXByEEYb/bulOfq6+SnVLLIY1DwK7BDus5n9uJ18xWqrUuRv39sN9Np9/ddLdSNJUjaOtUMB/KcvC5nFbwuS/k5apNXcD8xa+rgeV2aFc7o3Ke7fMdU7lRygeklPuklPv6+/sXucTGkczWFnOwHrdo9aRKA22VuMNL52a57I++s+Dd/zlbywgwvqyqIZrqC9QOFPt2lX4WO/2uErfSQumb/SElDikm4hm6Ax76Qh7cTmEJsEqgyOZrFAdbrKMrUCkOI9MJa/2NIJbO1jyhTRXBed0OSwi29AYswQwscGPY6ixWHC6ariLMnyoJfgTYaNtvGDhvbh+usr3kGCGEC+ik0o21Kklm8iXmZjVKxKEGU7YZqFbjrZKxdORClFxBcnYqMe9+Shw22NxKism2shzUyMrSi579Tj1Wgzh0Bzw4HYLxWJopc76yEIYwbOk1BFiJQ61BaVUAF/a5KiyHXL7Av/nrJ/irR4/V9FrLQTRVGfubCzW8S9U5AGzuDbKhy89vvWkXd1++bsXW2QgWKw4PAe82H78b+Lpt+z1mBtJWjMDz06brKSqEuN6MJ9xbdox6rZ8Dvi9Xa6+GMlSF9HzYP4itOlNWBcXHWkQcVHB8oTvK8n5C9v+LVnKRrTQxy61Ubjm4rYtzJLXwHbPDIegLeQy3UjxtTTJ74N59fPjNlwDFC2a6xpRhy3Lwuwn73czaRoW+dD7CVDzDhQZ+7mptugelloO68djcG0AIwW+8aSc7BqrPglgt1JLK+k/AT4DdQogRIcR7gI8AtwshjgG3m78jpTwEfAk4DHwbeL+UUn1K3gf8HUaQ+lXgYXP73wO9QojjwG9jZj6tdqSUS445tAq9QS9Oh2gZt5Kq0lU56XMxMp3E53ZYox7t/xeJTJ5EpnHuimZS3g5eYb9Tj6ZyNRV+qSrpyViGnpBxXncNdljWZb2WgwoAh32VMYefvDpZss9y8eSrE/zOV16oGheJVilGnQt7zGEo7ONtr1nPnZcOLetam8mCZ0FK+QtzPPXGOfa/H7i/yvb9wGVVtqeAdy20jtVGJl+gIBcOSq0GcXA6BP2h1imEG4sa64jOYTlMxzNEUlmjpUNXsWWE+r/Y1hfkxEScyViGQE9rnvPlpFpAGsrFofr86HL6Q16OXIgyEcvwJjMrx46qy6m1jqQYkHbRZa5HSokQwmoVv9zprY8fneBL+0f40N2XVBSlRVNZK36yEFb7DLcDl9PBX95z1bKus9k0v8JqjZIyJ47V41Zq1ZgDmFXSLVLrsJDl8EcPHeJn/urHHDofsYLRULzTe+2WHqA4j2CtM5/lEEllbYN+FnZr9nd4OT+bAgH33rC54nnLcqhVHFSjO6+LnqCHXEESSebI5Ao8c3KqZJ/lQnWNPT1ZmdBQrVPBXFjtM1yrO/A8F1ocVohE1vhCLmQ5+N1OHAKEKI4NbUUGwr6WiTmMx1TMofKiIaXkyVcniaZynJlKWMFoKAr1tVsNcZhoEbFbaeJziEPY70ZKwxIryNosV5XO+ss3bikRXoUSh1pnj0eSRuqoy+mgz8yGmoineXFkhmQ2T3fAXdK1dTlQMyNOT1YmNNSStaXw2SyHtcjafFctwEIjQhVCCIJeFyGPC0cLl9a3Un+l8cjcAelTkwkmYmk2me0Yhm3i0Bvy4HM7uHqz0e2lXdJZ53IrqV5LqqliLZbDvs09XLo+zH+6dUfV5+uNOSQyOQLmunrNGMZkLMOz5kjS2/YMrJjlcMq0HHL5Ar//tYN8+6VREpl8zdlKqn1Gs8b4rjSte6u6ylHdPxdqnwFGZXSrp2cNdviYTmRJ1dBpdiVJZvJWrKFaoFK5Ij7+C1fx6SdO8oY9A9Zz775xC7fvHbQ6ZLZLIVw0ncPjdFQ0cVQtNE6OGxfJrhoKLm/bM8BttnNajrpQ1tpCw95/zLIcYmlGZ1MEPU429wRJZPLk8gVcy9RnTK3tjGk5/Nl3jvD5p85w8JwxyKj2Ogdnyc+1xtqUvAYgpeTTT5y0RiXaOT0ZZ8ZMyaulSjLodbV0vAGwGqPZp4c1A/uwmWqWw9OnpugOuLlyuJO/vOcq9gwV2zuEvC52DXbgczsJeV1tU+sQr9K3C4ri8NxZ4y59a19wyX/LW6flYM/oK1oOaS5GUgx2+gj7jXUvZ8aSqq4/NRnnB0fGeODxE3T4XLw4YopDnTGHtWo5rM131QBGZ1P8t28c5ovPnC3Zni9I3vLxH3P/N18Gamu+FfK5WrY6WrHZLHI6OdFkcYgZri0hqgeknzk1xb4tPQsOSOoNedqm1iGezlfUOEBRHPafmsYhlkccPE7j79QakE5mSmctC2FYdBcjaQY7fFaX2OV0Lal4yOnJBF/eP0J/h5f/8bZiImXNbqU1bjm09hWphVF+3MOjpeMzx6NpYumctX2hmAPAe2/ZtvwLXGbUhaNahkcjGTPjDcPd/grL4WIkxenJBL94XWUWTTl9IW/bxBxi6VzVZAclDsfGYmzpDSzLRa7ebKVEJmdZ1y6ng+6AIdoXZlNcu7XHiossZ1BaWQ6T8Qzff2WMt1+1gRt3FNu51R2Q1paDxk7cDDi/fL5UHM7Plk5Mq+ULd9dl67jrstYute8KeOgKuJvezVRlKm3tC1W4Gh4+OArA63cv3HerN+hpG7dStSmDUDqVbLmqeYsB6doqpBOZPH53cW29QaMCeyyaYjDss0bnRpfZclCGZTKb5/a9Awx0+Nhm3gDV6uLd1h/kl2/aws07+5Ztba2EFodFoqprT07GLSsCijN5Fau9M6Odzb1BK8OjWYxFjG6gm3oqLYevv3CeS9aFrcZn89Eb8raPWymTq8hUAsPl6TIz5HYMLHzOasFTZ0A6Vdacsjfk4fh4jGxeMhj2WsHh5XQrpbJ5NpsxNL/byY3bjYu7qn+pNSDtdjr4o7deykCHb+GdVyFaHBZJwmxmJiW8cqFoPYya4rDTvBOrxa20WtjaG+BUs2MO0TR9IS+dfjexdM5qgXBmMsFzZ2Z422vW1/Q6/SEPU/EM+UKr54ktnWqDpMBIo1bWw3JZDvUGpMunJfaFvJZ1OhQuBqSX062UzhXYad5A3LKrz7Lu77psiO6Am8EWGLDVCmhxWCQJW2OxwzbX0uiM0c/nPTdvpSfoafkspHrY0hfk/GyyqXOYx2Np+ju8hLxu8gVpFTQ99MI5AN56ZW3iMNwToCBpupusEcTTOUJzFFgqcdi53G6lOgLS/jJxUC2PBsK+YsxhmS2HnoCHD929hw/cttPaftueAZ79w9tbtgFmo1k7V64GkzTdSg5RGpQejaRY1+nn3752I++8Zhh3C8yAXi629AaR0khnXS43RL2MRVOGOChfdDqL3+PkmVPT7F0XrrkvztWbjEK4Z09Pr/rumQthZCtV/6qri+/25RIHZ+0V0lJKEmXNKftCxV5HQ50+Qh7Xso8PTecK+NwOfu312yueWyNDKJeFtXPlajCqR/4l68IcKrMc1nX6EEKsKWEAw3KA5qazTsYy9IW8Vi66Smcdj6at4rZa2NYXpCvg5sDp6RVZZ6ugZjSXD/pRdAXcrOv0LZuFW0/jvWxeki/IsphD0aXTH/LicAg6vC4iy1zn4F1D7t6VYm1dvRqIqoC+dXc/L47M8pTZQfLCbIqhOi5Sqwk10KVZ6axSSibNITPqYqaC0hOxtFVhWwsOh+DqTd0cOLO2xUG5P+fK3b/vlm384c/sXba/53AI3E5RU8zBajHjKc1WAsOCUC6qDp972dxKUkrDclij6afLiT5DiySezuF0CN5/2w429wb4L195kWgqy8U672BXE10BDx0+l9WLZyU4MR7jY987WrXXfiydI5Mv0BcsupViqRyFgmQynrEqbGvlms3dHB+LMZNYuymtc/VVUty4vY83L/PEMo/TMWe20unJuPV/q5pTlgSkzcZ+9gygsH/5mu8pd5e2HBZGi8MiUVkWAY+LP3vnFZyZSvA/H36FfEGyrrM2v/dqJOxzr+hM34dfusBfPnqsat8jVZdgD/RH0zlmk0bb6XosByjGHZ47M7PEVbcuc7XrXkm8bmfVOodXx2Pc+r9/wPcOXwSw5nmXxBzM6XJ26zvscy2b5WCJg7YcFkSfoUViL/u/blsvt+zq50GzlcZatRzAqNtYyQlqKhOqWg2CqmjuDXmsKtZYKmftq+46a+XKjZ04HcLqALoWUTGZRraD9zgdVWMOz5ycQko4ejEK2N1KpXUOUJxbDoblsFy9ldJ1NMRsd7Q4LJJ4prQlwS9et8nKmV/LlkPQ47SC8SvBfOKgrIm+kLck5qCqpvvqdCsFPK6WmnC3ElizHBrYu8vjqi4OykI7M2UkNKi4nd2tFPS6eN3OPm6ytbMI+9xEkln+4pGjfPulC0tam7YcakefoUVSnp/9hj0DrDcthrVsOQQ8LuuObyVQdQtVLQdTHHpDnmLMIZ2zRKO/TrcSQNDrXFE3WbNphlvJ43JUDUir7q9np4yYlXIrlTen/Nx7ruNnrijWq3T4XFyIpPiLR47xtedGlrS2lLYcakaLwyKJZ3IlH2qX08Gv3bqdXYOhmvrir1YCHifxFXQrqbvJiWi1mIMhGD1BD16XE4/TQTSVsya61RtzAOOiGVtBS6jZzKgZzQ0s7KoWkI6mshwbiwFw1mz7XhyINb9whf1uyyqfTiwt9qBuPrTlsDC6CG6RJDN5ugKlbox7b9jCvTdsac6CGkTA67Lu+FaC+WMOGTp8LrzmzN6Qz0UsncUhwOkQJY3kaiXkc5X0xlprKGurr6M+l9tS8LorLYcXR2aREq4c7uSl8xFy+QLJGkfphm0usaVmlqkpcNpyWBgtn4ukvCdMuxBsUEB6vMp858l4psQ6CHldVkC6N+hZ1JjVoMdVdS7Eaiaezlm++YlY2sqqaxQep6OiQvo5M+j/1ivXky9IRmdTc7qVytk91EFfyMPrd/UzFdeWQ6NouzP0xafP8Pr/9Zh1B7FYEmUxh3bB73FaTQdXAvXlHY+l+emJSe742A85Zma3TJoioDBcQkbMYTEuJVDWx9oSh68+d45f+8cDnJ1K1F0cuBxUC0gfOh9hW1+QveuNyXxnpxJVs5Wq8bqd/Tzz+2/i0vVhZhKZqjUwtaIth9ppO3FIZvOcnkwsOeMmkak+QGWtE/S4SGTzS/qCzocVc4hlePzoOEcvxrj3U09zbibJZCxDj00cugJuLkbSTMbSdaexKpTArCXOzxgBX3XO6i0OXCreKuIwGc/Q3+FlY7dRZX/GLg41XKiFEHQHPOTMdiCLxbIc3G136aubtjtDKmtjqX7meJu6lfweJ/mCrKmx2mKwxxyOXozR3+Elmsrxp998mcl4uqT3zg3bejl4bpYT4/G601gVIa8Rc1gpsWsGaqbIhdlU8yyHsphDJJkl7Df6ODkdgrPTCRLZPG5n7T3IVKLHzBKC0pbl4Gq/7269tJ04dFiTpRYvDvmCJJMrNNSP2yoETUFcbFA6ls5x3Z8+wuNHx6s+ryyHqXiGIxcjXLulh7deuZ4fHBljKp4pEYG7LhsCjCrpxaSxgpFXn1tBsWsGShxGmyUOTkeF23Y2maXT78bldLC+y8fZqaSRDl6He6fbTACZii8+KK0th9ppuzOkeswsJR1TBWTb0XIImOdvsUHpc9NJLkbS7J+jG6pKgcwXJGenkuwcDPGmSwaIZ/IUJCUxhx0DIbb1G51iFx1zKGvgtxa4YBb1nZ9JVghqI/C6nBVuJSUOAJt6AoblkMnVdYPVbf7fTy8hY0lbDrXTduIQKmv1vBgSNQbS1iKBJVoOqlZhZLp62+9UNl8SV9g12MFNO/rwmXd6dreSEII7Lx0yty/erQRLdzO2ClJKy3J4eTRCQS5eOBdLeUA6my+QyORLxOHMZIJktlDXDVb3MriVtOVQO213hiy30hIuBurCGJyjR/5aRgXhF3sxnTRdAnN1dk1m8wx3F9uP7BwI4XM7uXmHMee3XATe9pr1eF0Odg8tbviQsiSXq3dPs4kkc5ZrTg2harY4qEE9Shw29waZjGcYi6TqusFaDreSshy82nJYkLYTh+Ay3CmqYxeq7FyLqC/zYltoKMvhnCkOB05PWy4dKSWpbN7KaHE7hTVg6A7TQlhf1rdqz1CYw//9Li5d37mo9aibhbViOSiXUoetWLHR2UrlAenZMnFQc0FeHo3UFXMI+904xNIK4VLZAm6nwLmImph2o+3EYTncStUahrULluWwSHFQd32js0kuzKZ41/99ks/95DRgDKUvSCzLYWtf0Mpk+bmrh/nGB262xMLOUr7oyxGDaiVGZw3RvWJjUSybEZDO5iUFs+VFuThs7jX+DyOpXF2Wg6qCX0oLjXQur+MNNdJ24qAubtqttDgCXhVzWNz5mzDFoSDhu4cvUJBwbMwoclP+4P4OLx6ng52DRVeRwyG4fHhx1sF8hNaYW0l1mL1qY7e1bbGZXItFTXBT1oMSh7DfONebTcsB6r/B6g54lhSQTmULOt5QI23nF3E4hNl2egni0MZupaUGpKdsQ3wePmi0eDg5YYwdVTUOfo+T37lrN1cMdy1lqTVRDEivjeZ7F2YNt90VppC6ncK6KDcK1ZoinSvgczsrLIeAx8VAh5exaLrudPCugHvJ2Uo63lAbS5JQIcQpIcRBIcTzQoj95rYeIcT3hBDHzJ/dtv0/LIQ4LoQ4IoS407b9GvN1jgshPi6EWFGHYMi3tH46tfaEWYsElhyQTrOhy3AbPXXSmLt9qkwcfC4n//F127h2a89Sl7sgyvqLpZdn0lizuRBJ0hfysMm8O+8Nelnhr1MFShxUUDpiftfCtsaIyj1YbxuLnqCH6SX0V0pnC1bmm2Z+luMs3SalfI2Ucp/5+4eAR6WUO4FHzd8RQuwF7gEuBe4CPiGEUJ+MTwL3ATvNf3ctw7rmJOR1EVuOOod2dCstNSAdz3Dp+jAOYbiWhDDaMM8kMlYsp5EpwsrNuFbadl+YTTHU6WNd2BDgRnZjVZS7lcqzlaAYlK73Bqsr4FliQFpbDrWyEhL6NuCz5uPPAm+3bf+ilDItpTwJHAeuFUKsA8JSyp9Io4fBP9iOWRFUN8/FUrQc2s+t5HY68Dgdiw5IT8YyDHX6GDLHQN643Zj4dXIibsUcGnlntxxuxlZidDbFUNhH2O/C73bSG2xsvAFs4pArxhx8bkfJRVkFpeuPObiZWpJbSVsOtbLUsySB7wohDggh7jO3DUopRwHMnwPm9g3AWduxI+a2Debj8u0rxlI7cVYbjN5OBLyLa9udzReYTWbpDXoZNtNV/82VxsQvQxyaU726VDdjKzFqWg5CCK7Z3G3FHhqJx2n8/6magtlEtmLWxhZTHOq1EruDHlLZgvVZqRdtOdTOUsXhJinl1cDdwPuFELfMs281x6ecZ3vlCwhxnxBivxBi//h49d48taCarS2WRCaHz+1o21zpgNu5qID0tJmp1BPyMNztxyHgzkuHcAgj7qDcSr4Gx3KCS3QztgoziQyzySybe4wL7z/+x+v44B27G74OKyCdLVoO5ZPotvSZbqU6b7BUIdxig9LacqidJZ0lKeV58+cY8DXgWuCi6SrC/Dlm7j4CbLQdPgycN7cPV9le7e89IKXcJ6Xc19/fv+h1B72uJaUuGoN+2s+lpDCmwdV//tSs576gh3933SY+fPcldAU8DHcHODERJ90ky6FjiW7GVkFlfVWrBWkkwz1GvOO9nzvAY6+MlfRVUuwYCHH3ZUNcu7W3rtceMuezq/daL9pyqJ1Fi4MQIiiE6FCPgTuAl4CHgHebu70b+Lr5+CHgHiGEVwixFSPw/LTpeooKIa43s5TutR2zInQssYd/LJ1ry0wlRcCzOMtBFcD1BD3s29LDr96yDTAuZqcm400JSINxs7AWYg6nJo0L5ta+wAJ7rix7hsL8069eT8Dj5L//62EiqUpx8LqcfPIXr7GG/9TKvs3dOB2CJ49PLmpt2nKonaWcpUHgx0KIF4CngW9KKb8NfAS4XQhxDLjd/B0p5SHgS8Bh4NvA+6WU6grzPuDvMILUrwIPL2FdC6LmBi+2h/9YJM3AIofLrAUCi5wGNxk3cvB7y4qytvYGODkeJ5lpfEAaTLfSKhSHXL5A1tam4uR4HIeAjT3NFQeAG7b38vOv3cjJiThnphKLmu9djQ6fmyuHO3ni1Ym6jjs7leCxV8a05VAHi/aNSClPAFdW2T4JvHGOY+4H7q+yfT9w2WLXUi/2Hv6LGRd4MZLiknX13fGsJYIel9XDpx7UsHt7222A9V1+4pk8E2bfpUYH+pdqSTaaWDrHLzzwUw6em2Uo7ONHv3sbbqeDk5MJNnT7W+bi99otRolTNJUrqXFYKjft6ONvHjtOJFUZy7BzfCzGWCTFjTv6eODxE3z+qdO4HA5tOdRIW56ljiW0TJDSGI4+aKZitiN+j7OuOodCQfKZJ06y//SU1R/HzkDYsCROTxptvBs933e1uZU+/9PTHDw3y52XDnIhkuLFkRnACOqrLKBW4LINnVZa63JZDmCIQ0HCT1+d37X0N48d57e/9AIA49E0BWnUXnjbNMuwXtpSHEJL6MQZSRktkdd1tq84BD2uuhrVPT8ywx9/4zDfOniB7oAHR1mW10CHcS7PThnioLJdGsVSU5sbSSqb529/dJKbd/TxkZ+9AoAnj08ipeTURJytTQ5G2/G6nFxpptIupzhctakLn9vBj47N71qaiKUZj6UpFGRJm29fgz9fq5W2PEvFqtj6LwiqsdlgG4tDwFtfzOHoBaOx3q+/YQcfuntPxfMqfnNmKoHP7Wh4u4eQ10U2LytGW7YaX312hPf94wEmYmnef9sOuoMe9q4L88SrE0zGM0TTuZayHAD2bTFaoCynW8nrcnLnpUM8uP8sJ8Zjc+43nciQL0hmklkm4mnWm99ZbTnURluKg7IcYulcSUBvPp49M83jR8cZNadstbPlEPA4SWTzNQf0j16M4Xc7+a037eLnrhmueF5ZDhciqaYUFi5HG/eVZnQ2yW9/6QVeGJnlV27ayvXbjIvuTTt6efb0DK+MGgLcSpYDFOMOPcHlEweA33/zJfhcDj70zwet1uDlqB5Mk7E0U/EMb7xkkPvfcRlvv2pFa2zXDG0pDh1e44P64DNn2f0HD3Pvp57m4MjsvMf8r28f4UP//CIXTXEYauOYQ8DjIm8G9Gvh2FiUHQOhCneSIux3Wb7pRscboOjymEm2bvM9dVPyv991Bf/1rXst6+rGHX1k8gX++rFjQPNrHMp5/a4B/s+7ruTmHYuvS6rGQNjH79y1h6dPTfG8GXMpRxXKXYikmElk6Q15+PfXbbYaP2rmpy3FQXXi/MYL5wn73Txzcoq/+/GJeY85NRnn/GyKQ+cNEVFB1Hak3rbdRy9G2TkYmvN5IYTlWmqG5dBv/u3xaLrhf7tW1NqUlaW4dksPXpeDn56YYt/mbjZ2t9aFz+kQvPOaYUv8l5PXbDRauk9U+X9LZfPW5/PoRcP1VJ5CrZmftizzVW6lXEHyjqs2cOD0tNVzvhqpbN66c3vk5TF6g56WSRdsBtv6jQv9I4cv8vOv3TjvvrPJLBcjaXYNzj/jeaDDy8h0sin+YCUOKpW2FdsDhyYAABIWSURBVBkzL4D9ZfU1Qa+Lhz5wMwGPsyXqGxpJV8Cw+Kq10pixTYs7csGYpV2eQq2Zn7a0HJRbCeCOvUN0+t1WW+FqqBRLgHMzSauEv125ZWcfVw538pePHlswiHvsouEL3zWP5QDFO2J/E3LQ1RjNVrcchKh+gds91NF2wgD2PkvF7+793zzM+z//bEl20hFlOWhxqIu2FAef24FDGHcer93STdjntgaSVEO1JXCZPvN2jjeA4Qb64B27OTeT5MFnzs67rzLpdw4sYDmYbrpmxBy6/G5cDtHi4pCiN+jB5WzLr2xVAh4nHpejxHL47uGL/OTEZMk2dYPSG9LiUA9t+UkzfNw+7tw7hMvpIOx3LWA5GOJw884+gLa3HABet7OP7f1Bfnhk7u64qWyep05OEvA4FwwCqphDM8TB4RD0hjwt7VYaj6bp79CfOztCCLoDbmbMrKSZRIbTkwmm4hnOzSQBY7aEij00Y7bFaqYtYw4AD773eitAFfa55405nJxI0BP0cNP2Pn5wZLztLQcwvpg7Bzo4Nhat+vy5mSR3/8XjRFI5Xr+rf85MJUXRrdScWE5/h7elLYexaLoi3qAxXEtq+M+LtozDQ+eMx9v7Q7w8Gqlama+Zn7a0HMCYRKXy28N+N+nc3ANETk/G2dwb4HKz2lNbDgab+wKcnUqSr5JnfuxilEgqx5++43L+7t37qhxdSr/pVvI2qe9NX8hrtRRvRdq92eNcdNvGhh48VxQH9XjnQMjab6EbFE0pbSsOdsK++XstnZ5MsKU3yGu39PB7b97DnZcNNXJ5LcuW3iCZfIHR2WTFc6rJ3k07enHX4CdvZiorQH+odS2HQkEyEdPiUI3uoNsKSL9wdoYO87t8eDRCh89l3cjpYHT9aHGgWNofSVW6llLZPOdnk2zpDeJ0CO67Zfu8nSDbic3mkHh7Npdirvbcc6HcSs2IOQD0dXiZjKfnrLZdTk5PxpmsI74xnciQK0jtVqpCV5nlcOvuAdxOQSpboCfooc8MQutgdP1occAmDlXiDofOR5CyONZQU0T18VHZXHYmYxm8LgfBGgf39AY9dPhcTbsA9oe8ZPNy3tjTcvHuTz3Nn37rlZr3H49VL4DTQHfAsBzGIilGZ1O8ZmMX6zqN5IeugMcKQvdoy6Fu2jYgbUdZAuXprCfGY7zvHw/QF/Jww7b6xhm2A0NhHx6Xo6rlMBHL0Bfy1txEz+EQfPs3b2ma+W8vhOtewTWkc3lOTyXoDNT+N8Yi1QvgNEYsIV+QPH1qCoBL14fZ0OXnzFSCnoCbPvOc9enq6LrRlgPQ6Tc0svyu8YNffoFcQfKFX72eAZ2hVIHDIdjcE+BUlXm+k/F03XdrG7r8zXMrNagQ7tx0EilhxGxPnskVyC3Q/LHYOkNf4MpRhXD7T00DRgB62Gwh0h0oupW05VA/WhywWQ42cTg5Eee5MzO87/XbF2z90M5s7g1WjznEMqvKz2v1V1rhWofTpihMxjPE0jl+5TPP8HtfO1ix359/12j0CHO3ztAYAWmAp09O0R1w0xvyskGJQ9DDhi4/Xpej5brVrga0OFA9IP0vz51DCHjrleubtaxVwZbeAKen4hWB3MlYelUVHfU3yHJQA43AmNz29KkpDp6LlOwjpeQLT5/l24cuADAWTRH0OAl6tRe4nC7TcnjlQoQdZtqqKrjsDrjpCnj48e++gbdcvq5pa1ytaHHAyJDxuBxEkkbMQUrJ158/x/Vbe3VNwwJs7guSyha4GC3OlJZSMhHPWCb9aiDsd+FxOlbccjhjs7J+eHScTK7AyHSp5fXKhSgTsTQziaxR7Tut+3nNRY8pDgVpFLwBDHcbySMqdtTf4dU1DotAi4OJ0V/JsBwOnY9wajLB26/SVsNCbDfN9eNjxYlcsXSOTK6wqtxKQgj6O7xW8HelOD2VYNAs+PuOaRlEU7mSeNePbeMvT4zHOHIxyu4h7dqsRrctsK8sh0vWdbCtP8iVw13NWtaaQIuDib2/0uFRw8y/XmcoLchOMx6jGuxBsQBuNbmVwKjbOFkluL6cnJ1KcPmGLsI+V0m7B7v18Pixcasw89D5CGemEuweDK/oulYrHT4XyijYbopDV8DD9z94K5dt6GziylY/WhxM7P2VzkwmcDoE6/XEqAXpC3noDritzpdgL4BbPZYDGG6JE+Oxmsef1ouUkjNTCTb1BNhkFhCqITgj00aVeSqb5+mTU7z9qg24nYLvHLqAlGjLYQ4cDmFZDzv6528Lr6kPLQ4mYX+xbffpqQTru3w1tX1od4QQ7Bzs4KhNHFSPotWWW769P0gklVuxHksTsQyJTJ5NPX42mn7xm7Yb1qkSh/2npknnCty6u59NPQF+emISgD1aHOakK+DG53bo8Z/LjL76mYR9LqLKcphKsLlHp77Vyq7BEMcuFu+4LbfSarMcTLfEq+OxBfasn8/99DT/74evAkb67yZzOM+N2/sIepyWW+lHx8dxOwXXbe1la1+IgjT6TW1qw2E+tdIb8rK9f+4Z5ZrFoXPjTDr9xYD0mck4d+vUt5rZNdhBNJ3j4LlZvvqskQIMq6/wSGW7vDoeW9Z401gkxX/9+ksob9XGnoA1b+CSdWGGuwOcMy2HHx2d4OpN3QS9Lrb3B3nkZUN89YVvbv7gLZfQgJZYbYcWB5Ow300kmSOSyjKdyLJZ36nVjJry9ptffJ4TE3GcDkGHz7Xq5mwPhX0EPE5eHVveoPTDLxlxg4++83ISmTzb+4128S+dm2Xflm6Gu/2MTCeZiKU5PBrhP9+xC8Aq3NLxhvm5QmclrQhaHEzCPjeZfIGjFwzfuTbja0fNhz4xEac36GEynll18QYwgpvb+oNLdivl8gUmYhmrNuGbB0fZNRji3752k7XPUKePj7zzCgCGu/08c2qKJ44bKayv29kPwDbTktk9pDOVNI1HxxxMwmZ/JTUkRGWTaBamN+SlN+jB63Lw5V+7gf4Or5XLv9rY3h8qEYeF+h5V4z9/+QVu+bPHOHw+wlgkxTOnpnjzPG7K4e4AkVSOzz91hk6/20rBvGK4k39/3SbefLmeH6JpPNpyMFHtE7754ihgBA01tfMrN28l7HOxrT/Eg/dd3+zlLJrt/SEeeuE8yUyew6MRfuFvf8q//Keb6Al6+OCXn+eDd+zm6k3dcx7/42MT/Mvz53EI+M0Hn2NTTwApmbd9g2oU98ypKX7rTbtwmvEFn9vJ/e+4fHnfoEZTI1ocTG7bM8D2/iD7T0/TG/RYI0Q1tfH+23ZYj7et4nzzXYMhpITnz87w8EujZHIFvvbcCGGfmyeOT3LkwgG+8es3WTMD7OTyBf7w6y+xtS/Ih+7ew3s/d4BTkwk+fPceq1iwGrfuHuCDt+/ijkuHdHxB0zJot5KJ2+ngD35mL2Bkk2jak1t29RP0OPnqsyN899BFAL518AL/8vw5dgyESGXz/PoXnkNKyZOvTvDpJ05aTQd/cGSckxNxfveu3dx56RD/8CvX8t3fvIX3vn77vH/T73Hy62/cqYVB01Lo22Mbt+0e4Jeu38wW3d63bQl4XLz58nV89blz5AuSG7f38uSrRiHa/e+4DLfDwe/884t89slTfOyRY8wmsxw8N8tH33kFD+4/S1/IyxsvGQQModFoVistYzkIIe4SQhwRQhwXQnyoWev4H2+/jPfcvLVZf17TArzzmmHyBYnTIfjIz16Bx+nA5RC8+bJ1vPOaYfYMdfDH3zhMMpPn3hs289Vnz/HLn36G778yxs9dM6wr6zVrgpawHIQQTuBvgNuBEeAZIcRDUsrDzV2Zph25dksPm3sDbOw2eiC9a98wBVlsAf0Hb9nLL/79U/x/b9zBB95guIP+8F9eoiDh5/cNN3n1Gs3yIFaqyVhdixDiBuCPpZR3mr9/GEBK+T/nOmbfvn1y//79DVqhpt0YnU3icTronaNe4/xMknWdPmtG9mOvjPHqeIz/+LptjVymRlM3QogDUsp9C+3XEpYDsAE4a/t9BLiuSWvRaKpmI9kp79h7254BbtszsJJL0mgaSqs4R6s1jqkwaYQQ9wkh9gsh9o+PjzdgWRqNRtOetIo4jAAbbb8PA+fLd5JSPiCl3Cel3NffrzNBNBqNZqVoFXF4BtgphNgqhPAA9wAPNXlNGo1G07a0RMxBSpkTQnwA+A7gBD4lpTzU5GVpNBpN29IS4gAgpfwW8K1mr0Oj0Wg0reNW0mg0Gk0LocVBo9FoNBVocdBoNBpNBS1RIb0YhBBR4Mg8u3QCs8v8Z5f7NfuAiWV8veVeXyu/nj53S0Ofv6WxnOevUe9VrXmzlHLhWgAp5ar8B+xf4PkHVuBvLutrLvQeWmB9Lft6+tzp87dWzl+j3mu9a17LbqVvrJLXXE6We32t/nrLSau/11Y+d9D677eVz19LvtfV7FbaL2toHtXKrIX30Cz0uVsa+vwtjdV4/upd82q2HB5o9gKWgbXwHpqFPndLQ5+/pbEaz19da161loNGo9FoVo7VbDloNBqNZoXQ4rCMCCE2CiEeE0K8LIQ4JIT4DXN7jxDie0KIY+bPbnN7r7l/TAjx12Wv9W+FEC+ar/NnzXg/jWQR5+52IcQBIcRB8+cbbK91jbn9uBDi40JN5FnDLPP5u18IcVYIEWvW+2k0y3X+hBABIcQ3hRCvmK/zkWa+ryWxnClU7f4PWAdcbT7uAI4Ce4E/Az5kbv8Q8FHzcRC4Gfg14K9tr9MLnAH6zd8/C7yx2e+vxc7dVcB68/FlwDnbaz0N3IAxJ+Rh4O5mv79Vdv6uN18v1uz3tdrOHxAAbjMfe4AfrdbPX9MXsJb/AV/HmIt9BFhnblsHHCnb7z+UicNrgUdsv/8S8Ilmv59WPHfmdgFMAl5zn1dsz/0C8P+a/X5Wy/kr29424rAS58987i+BX232+1nMP+1WWiGEEFsw7i6eAgallKMA5s+F5kkeB/YIIbYIIVzA2ykdhrSmWcS5eyfwnJQyjTFydsT23Ii5rW1Y4vlre5br/AkhuoC3Ao+u5HpXipZp2b2WEEKEgH8GflNKGanX5S2lnBZCvA94ECgATwJtMbm+3nMnhLgU+Chwh9pUZbe2SclbhvP3/7d3PyFWVXEAx78/0k0kWaAgRLQTJaJIsKhwnWsXSTST0SIKol0UQS1sEyWiLUbxD/1DIjCwgiKEBIWWUtosZCQokCJMM132a3HOw8fc9xrfeG/vOfP9wOU9zr1zOPfH4/3uOXPf7y5rbcWvXtQdAfZk5vmOhtspZw4ti4iVlA/XJ5l5tDb/FhHr6v51wO8L9ZOZX2Tm5sx8lDK1PdfVmCfFqLGLiHuAz4GpzJyrzb9SHjPbM/CRs0tRS/FbtlqO337gXGbu7n7k3TA5tKjeFXMQmM3MXX27jgHT9f00ZT1zob7W1te7gBeBA+2OdrKMGrs6Zf8KeC0zT/UOrlP/KxHxSO1zihuI962urfgtV23GLyJ2UorfvdL1uDs17n96LKWNcudRAj8Ap+u2lXL30XHK1f9x4O6+v/kZuAj8Tbnq3VjbjwA/1e2pcZ/bpMUOeAO42nfsaWBt3bcJOAPMAe9Tf+y5lLeW4/dO/Sz+U1/fGvf53Srxo8xUE5jta39+3Oe3mM1fSEuSGlxWkiQ1mBwkSQ0mB0lSg8lBktRgcpAkNZgcpA5ExAsRMTXC8fdFxJkuxySNwvIZUssiYkVmzox7HNLNMDlIA9Tia19Tiq89RCnhPAVsAHYBdwB/AM9m5oWI+I5SA+sx4FhErKJUNX03Ih4EZijlnOeA57LUz3oYOARcA07+f2cnLcxlJWm49cD+zHwA+At4CdgLbMvM3hf7233Hr87MLZn53rx+PgRerf38CLxZ2w8DL2epnyVNFGcO0nC/5PW6OR8Dr1Me7PJtrdZ5G3Ch7/hP53cQEXdSksaJ2vQB8NmA9o+AJ9s/BWlxTA7ScPNry1wBzv7Hlf7VEfqOAf1LE8NlJWm4eyOilwi2A98Da3ptEbGy1vMfKjMvA39GxBO16RngRGZeAi5HxOO1/en2hy8tnjMHabhZYDoi9lGqcu4FvgH21GWhFcBu4OwC/UwDMxFxO3Ae2FHbdwCHIuJa7VeaGFZllQaodyt9mZn3j3ko0li4rCRJanDmIElqcOYgSWowOUiSGkwOkqQGk4MkqcHkIElqMDlIkhr+BeZhTTwWX8QYAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "AssertionError",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m first_september_week[1:]):\n\u001b[1;32m 5\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mAssertionError\u001b[0m: "
+ ]
+ }
+ ],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2202,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-
--
2.18.1