{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ " data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02022217198891589623882302436FRFrance
12022207235851900428166362943FRFrance
22022197185931418123005282135FRFrance
32022187178511396321739272133FRFrance
42022177203141600124627312438FRFrance
52022167196601486024460302337FRFrance
62022157177991371521883272133FRFrance
72022147170051316220848262032FRFrance
82022137154481165919237231729FRFrance
92022127147021079418610221628FRFrance
10202211711729834715111181323FRFrance
112022107133141003616592201525FRFrance
12202209710485760013370161220FRFrance
13202208712088874115435181323FRFrance
142022077140031078917217211626FRFrance
1520220679798704812548151119FRFrance
16202205710851779713905161121FRFrance
1720220479547672112373141018FRFrance
182022037139721068017264211626FRFrance
192022027849560261096413917FRFrance
202022017137931059716989211626FRFrance
21202152713239961116867201525FRFrance
22202151713326962917023201426FRFrance
232021507141281031217944211527FRFrance
242021497136741036916979211626FRFrance
25202148711549850314595171222FRFrance
26202147711419837614462171222FRFrance
272021467821657241070812816FRFrance
2820214578965646811462141018FRFrance
292021447873656361183613818FRFrance
.................................
16131991267176081130423912312042FRFrance
16141991257161691070021638281838FRFrance
16151991247161711007122271281739FRFrance
1616199123711947767116223211329FRFrance
1617199122715452995320951271737FRFrance
1618199121714903897520831261636FRFrance
16191991207190531274225364342345FRFrance
16201991197167391124622232291939FRFrance
16211991187213851388228888382551FRFrance
1622199117713462887718047241632FRFrance
16231991167148571006819646261834FRFrance
1624199115713975978118169251832FRFrance
1625199114712265768416846221430FRFrance
162619911379567604113093171123FRFrance
1627199112710864733114397191325FRFrance
16281991117155741118419964271935FRFrance
16291991107166431137221914292038FRFrance
1630199109713741878018702241533FRFrance
1631199108713289881317765231531FRFrance
1632199107712337807716597221529FRFrance
1633199106710877701314741191226FRFrance
1634199105710442654414340181125FRFrance
16351991047791345631126314820FRFrance
16361991037153871048420290271836FRFrance
16371991027162771104621508292038FRFrance
16381991017155651027120859271836FRFrance
16391990527193751329525455342345FRFrance
16401990517190801380724353342543FRFrance
1641199050711079666015498201228FRFrance
16421990497114302610205FRFrance
\n", "

1643 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 7 19889 15896 23882 30 24 \n", "1 202220 7 23585 19004 28166 36 29 \n", "2 202219 7 18593 14181 23005 28 21 \n", "3 202218 7 17851 13963 21739 27 21 \n", "4 202217 7 20314 16001 24627 31 24 \n", "5 202216 7 19660 14860 24460 30 23 \n", "6 202215 7 17799 13715 21883 27 21 \n", "7 202214 7 17005 13162 20848 26 20 \n", "8 202213 7 15448 11659 19237 23 17 \n", "9 202212 7 14702 10794 18610 22 16 \n", "10 202211 7 11729 8347 15111 18 13 \n", "11 202210 7 13314 10036 16592 20 15 \n", "12 202209 7 10485 7600 13370 16 12 \n", "13 202208 7 12088 8741 15435 18 13 \n", "14 202207 7 14003 10789 17217 21 16 \n", "15 202206 7 9798 7048 12548 15 11 \n", "16 202205 7 10851 7797 13905 16 11 \n", "17 202204 7 9547 6721 12373 14 10 \n", "18 202203 7 13972 10680 17264 21 16 \n", "19 202202 7 8495 6026 10964 13 9 \n", "20 202201 7 13793 10597 16989 21 16 \n", "21 202152 7 13239 9611 16867 20 15 \n", "22 202151 7 13326 9629 17023 20 14 \n", "23 202150 7 14128 10312 17944 21 15 \n", "24 202149 7 13674 10369 16979 21 16 \n", "25 202148 7 11549 8503 14595 17 12 \n", "26 202147 7 11419 8376 14462 17 12 \n", "27 202146 7 8216 5724 10708 12 8 \n", "28 202145 7 8965 6468 11462 14 10 \n", "29 202144 7 8736 5636 11836 13 8 \n", "... ... ... ... ... ... ... ... \n", "1613 199126 7 17608 11304 23912 31 20 \n", "1614 199125 7 16169 10700 21638 28 18 \n", "1615 199124 7 16171 10071 22271 28 17 \n", "1616 199123 7 11947 7671 16223 21 13 \n", "1617 199122 7 15452 9953 20951 27 17 \n", "1618 199121 7 14903 8975 20831 26 16 \n", "1619 199120 7 19053 12742 25364 34 23 \n", "1620 199119 7 16739 11246 22232 29 19 \n", "1621 199118 7 21385 13882 28888 38 25 \n", "1622 199117 7 13462 8877 18047 24 16 \n", "1623 199116 7 14857 10068 19646 26 18 \n", "1624 199115 7 13975 9781 18169 25 18 \n", "1625 199114 7 12265 7684 16846 22 14 \n", "1626 199113 7 9567 6041 13093 17 11 \n", "1627 199112 7 10864 7331 14397 19 13 \n", "1628 199111 7 15574 11184 19964 27 19 \n", "1629 199110 7 16643 11372 21914 29 20 \n", "1630 199109 7 13741 8780 18702 24 15 \n", "1631 199108 7 13289 8813 17765 23 15 \n", "1632 199107 7 12337 8077 16597 22 15 \n", "1633 199106 7 10877 7013 14741 19 12 \n", "1634 199105 7 10442 6544 14340 18 11 \n", "1635 199104 7 7913 4563 11263 14 8 \n", "1636 199103 7 15387 10484 20290 27 18 \n", "1637 199102 7 16277 11046 21508 29 20 \n", "1638 199101 7 15565 10271 20859 27 18 \n", "1639 199052 7 19375 13295 25455 34 23 \n", "1640 199051 7 19080 13807 24353 34 25 \n", "1641 199050 7 11079 6660 15498 20 12 \n", "1642 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 36 FR France \n", "1 43 FR France \n", "2 35 FR France \n", "3 33 FR France \n", "4 38 FR France \n", "5 37 FR France \n", "6 33 FR France \n", "7 32 FR France \n", "8 29 FR France \n", "9 28 FR France \n", "10 23 FR France \n", "11 25 FR France \n", "12 20 FR France \n", "13 23 FR France \n", "14 26 FR France \n", "15 19 FR France \n", "16 21 FR France \n", "17 18 FR France \n", "18 26 FR France \n", "19 17 FR France \n", "20 26 FR France \n", "21 25 FR France \n", "22 26 FR France \n", "23 27 FR France \n", "24 26 FR France \n", "25 22 FR France \n", "26 22 FR France \n", "27 16 FR France \n", "28 18 FR France \n", "29 18 FR France \n", "... ... ... ... \n", "1613 42 FR France \n", "1614 38 FR France \n", "1615 39 FR France \n", "1616 29 FR France \n", "1617 37 FR France \n", "1618 36 FR France \n", "1619 45 FR France \n", "1620 39 FR France \n", "1621 51 FR France \n", "1622 32 FR France \n", "1623 34 FR France \n", "1624 32 FR France \n", "1625 30 FR France \n", "1626 23 FR France \n", "1627 25 FR France \n", "1628 35 FR France \n", "1629 38 FR France \n", "1630 33 FR France \n", "1631 31 FR France \n", "1632 29 FR France \n", "1633 26 FR France \n", "1634 25 FR France \n", "1635 20 FR France \n", "1636 36 FR France \n", "1637 38 FR France \n", "1638 36 FR France \n", "1639 45 FR France \n", "1640 43 FR France \n", "1641 28 FR France \n", "1642 5 FR France \n", "\n", "[1643 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02022217198891589623882302436FRFrance
12022207235851900428166362943FRFrance
22022197185931418123005282135FRFrance
32022187178511396321739272133FRFrance
42022177203141600124627312438FRFrance
52022167196601486024460302337FRFrance
62022157177991371521883272133FRFrance
72022147170051316220848262032FRFrance
82022137154481165919237231729FRFrance
92022127147021079418610221628FRFrance
10202211711729834715111181323FRFrance
112022107133141003616592201525FRFrance
12202209710485760013370161220FRFrance
13202208712088874115435181323FRFrance
142022077140031078917217211626FRFrance
1520220679798704812548151119FRFrance
16202205710851779713905161121FRFrance
1720220479547672112373141018FRFrance
182022037139721068017264211626FRFrance
192022027849560261096413917FRFrance
202022017137931059716989211626FRFrance
21202152713239961116867201525FRFrance
22202151713326962917023201426FRFrance
232021507141281031217944211527FRFrance
242021497136741036916979211626FRFrance
25202148711549850314595171222FRFrance
26202147711419837614462171222FRFrance
272021467821657241070812816FRFrance
2820214578965646811462141018FRFrance
292021447873656361183613818FRFrance
.................................
16131991267176081130423912312042FRFrance
16141991257161691070021638281838FRFrance
16151991247161711007122271281739FRFrance
1616199123711947767116223211329FRFrance
1617199122715452995320951271737FRFrance
1618199121714903897520831261636FRFrance
16191991207190531274225364342345FRFrance
16201991197167391124622232291939FRFrance
16211991187213851388228888382551FRFrance
1622199117713462887718047241632FRFrance
16231991167148571006819646261834FRFrance
1624199115713975978118169251832FRFrance
1625199114712265768416846221430FRFrance
162619911379567604113093171123FRFrance
1627199112710864733114397191325FRFrance
16281991117155741118419964271935FRFrance
16291991107166431137221914292038FRFrance
1630199109713741878018702241533FRFrance
1631199108713289881317765231531FRFrance
1632199107712337807716597221529FRFrance
1633199106710877701314741191226FRFrance
1634199105710442654414340181125FRFrance
16351991047791345631126314820FRFrance
16361991037153871048420290271836FRFrance
16371991027162771104621508292038FRFrance
16381991017155651027120859271836FRFrance
16391990527193751329525455342345FRFrance
16401990517190801380724353342543FRFrance
1641199050711079666015498201228FRFrance
16421990497114302610205FRFrance
\n", "

1643 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 7 19889 15896 23882 30 24 \n", "1 202220 7 23585 19004 28166 36 29 \n", "2 202219 7 18593 14181 23005 28 21 \n", "3 202218 7 17851 13963 21739 27 21 \n", "4 202217 7 20314 16001 24627 31 24 \n", "5 202216 7 19660 14860 24460 30 23 \n", "6 202215 7 17799 13715 21883 27 21 \n", "7 202214 7 17005 13162 20848 26 20 \n", "8 202213 7 15448 11659 19237 23 17 \n", "9 202212 7 14702 10794 18610 22 16 \n", "10 202211 7 11729 8347 15111 18 13 \n", "11 202210 7 13314 10036 16592 20 15 \n", "12 202209 7 10485 7600 13370 16 12 \n", "13 202208 7 12088 8741 15435 18 13 \n", "14 202207 7 14003 10789 17217 21 16 \n", "15 202206 7 9798 7048 12548 15 11 \n", "16 202205 7 10851 7797 13905 16 11 \n", "17 202204 7 9547 6721 12373 14 10 \n", "18 202203 7 13972 10680 17264 21 16 \n", "19 202202 7 8495 6026 10964 13 9 \n", "20 202201 7 13793 10597 16989 21 16 \n", "21 202152 7 13239 9611 16867 20 15 \n", "22 202151 7 13326 9629 17023 20 14 \n", "23 202150 7 14128 10312 17944 21 15 \n", "24 202149 7 13674 10369 16979 21 16 \n", "25 202148 7 11549 8503 14595 17 12 \n", "26 202147 7 11419 8376 14462 17 12 \n", "27 202146 7 8216 5724 10708 12 8 \n", "28 202145 7 8965 6468 11462 14 10 \n", "29 202144 7 8736 5636 11836 13 8 \n", "... ... ... ... ... ... ... ... \n", "1613 199126 7 17608 11304 23912 31 20 \n", "1614 199125 7 16169 10700 21638 28 18 \n", "1615 199124 7 16171 10071 22271 28 17 \n", "1616 199123 7 11947 7671 16223 21 13 \n", "1617 199122 7 15452 9953 20951 27 17 \n", "1618 199121 7 14903 8975 20831 26 16 \n", "1619 199120 7 19053 12742 25364 34 23 \n", "1620 199119 7 16739 11246 22232 29 19 \n", "1621 199118 7 21385 13882 28888 38 25 \n", "1622 199117 7 13462 8877 18047 24 16 \n", "1623 199116 7 14857 10068 19646 26 18 \n", "1624 199115 7 13975 9781 18169 25 18 \n", "1625 199114 7 12265 7684 16846 22 14 \n", "1626 199113 7 9567 6041 13093 17 11 \n", "1627 199112 7 10864 7331 14397 19 13 \n", "1628 199111 7 15574 11184 19964 27 19 \n", "1629 199110 7 16643 11372 21914 29 20 \n", "1630 199109 7 13741 8780 18702 24 15 \n", "1631 199108 7 13289 8813 17765 23 15 \n", "1632 199107 7 12337 8077 16597 22 15 \n", "1633 199106 7 10877 7013 14741 19 12 \n", "1634 199105 7 10442 6544 14340 18 11 \n", "1635 199104 7 7913 4563 11263 14 8 \n", "1636 199103 7 15387 10484 20290 27 18 \n", "1637 199102 7 16277 11046 21508 29 20 \n", "1638 199101 7 15565 10271 20859 27 18 \n", "1639 199052 7 19375 13295 25455 34 23 \n", "1640 199051 7 19080 13807 24353 34 25 \n", "1641 199050 7 11079 6660 15498 20 12 \n", "1642 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 36 FR France \n", "1 43 FR France \n", "2 35 FR France \n", "3 33 FR France \n", "4 38 FR France \n", "5 37 FR France \n", "6 33 FR France \n", "7 32 FR France \n", "8 29 FR France \n", "9 28 FR France \n", "10 23 FR France \n", "11 25 FR France \n", "12 20 FR France \n", "13 23 FR France \n", "14 26 FR France \n", "15 19 FR France \n", "16 21 FR France \n", "17 18 FR France \n", "18 26 FR France \n", "19 17 FR France \n", "20 26 FR France \n", "21 25 FR France \n", "22 26 FR France \n", "23 27 FR France \n", "24 26 FR France \n", "25 22 FR France \n", "26 22 FR France \n", "27 16 FR France \n", "28 18 FR France \n", "29 18 FR France \n", "... ... ... ... \n", "1613 42 FR France \n", "1614 38 FR France \n", "1615 39 FR France \n", "1616 29 FR France \n", "1617 37 FR France \n", "1618 36 FR France \n", "1619 45 FR France \n", "1620 39 FR France \n", "1621 51 FR France \n", "1622 32 FR France \n", "1623 34 FR France \n", "1624 32 FR France \n", "1625 30 FR France \n", "1626 23 FR France \n", "1627 25 FR France \n", "1628 35 FR France \n", "1629 38 FR France \n", "1630 33 FR France \n", "1631 31 FR France \n", "1632 29 FR France \n", "1633 26 FR France \n", "1634 25 FR France \n", "1635 20 FR France \n", "1636 36 FR France \n", "1637 38 FR France \n", "1638 36 FR France \n", "1639 45 FR France \n", "1640 43 FR France \n", "1641 28 FR France \n", "1642 5 FR France \n", "\n", "[1643 rows x 10 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec5esNwnZSQJhiUASJEDYXBFEIqjICE4YFfRDUdzGZb4Z1PFzGRnBBRQdUBQEZAQEF5BNdjAsCWHPQkggIStJyL7ee8859f3RXd3V1W8tfbZ7k9vP75ecc+tUV1V3V9Vb705CCOTIkSNHjhwqCj09gBw5cuTI0fuQE4ccOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwp5MQhR44cOXKkkBOHHDly5MiRQk4ccuTIkSNHCjlxyJEjR44cKeTEIUeOHDlypNDS0wOoFiNGjBATJ07s6WHkyJEjxx6FZ5555k0hxEhXvT2WOEycOBFz587t6WHkyJEjxx4FInrdp14uVsqRI0eOHCnkxCFHjhw5cqSQE4ccOXLkyJFCThxy5MiRI0cKOXHIkSNHjhwp5MQhR44cOXKkkBOHHDly5MiRQk4ccuwV2N5Zwu3Pr+rpYeTIsddgj3WCy5FDxUV/ehF3vrgGB40chKnjhvT0cHLk2OORcw459gqs2bIbALC7u9zDI8mRY+9AThxy5MiRI0cKOXHIsVdB9PQAcuTYS+AkDkTUj4jmENELRDSfiL4Xln+XiFYR0fPhv9OUa75BREuIaBERnaqUH01EL4W/XUFEFJa3E9EtYflsIppY/1vNsTeDenoAOXLsZfDhHDoBnCSEOALANAAziOj48LfLhRDTwn93AwARTQYwE8AUADMAXElExbD+VQAuADAp/DcjLD8fwCYhxMEALgdwae23liNHjhw5qoWTOIgA28M/W8N/Nu79DAA3CyE6hRBLASwBcCwRjQXQIYR4UgghANwA4MPKNdeH328DcLLkKnLkyJEjR/PhpXMgoiIRPQ9gHYD7hRCzw5++SEQvEtG1RDQsLBsHYIVy+cqwbFz4XS9PXCOEKAHYAmA4M44LiGguEc1dv3691w3myJEjR47s8CIOQoiyEGIagPEIuICpCEREByEQNa0B8NOwOnfiF5Zy2zX6OK4WQkwXQkwfOdKZyChHDieeW74Jy97c0dPDyJGj1yGTtZIQYjOARwDMEEKsDYlGBcBvABwbVlsJYIJy2XgAq8Py8Ux54hoiagEwBMDGTHeSI0cVOPPKJ3DiTx7p6WHkyNHr4GOtNJKIhobf+wN4L4CXQx2CxJkA5oXf7wAwM7RAOgCB4nmOEGINgG1EdHyoTzgXwO3KNeeF388C8FCol8iRIxPyWZMjR33gEz5jLIDrQ4ujAoA/CiHuJKLfE9E0BOKfZQA+CwBCiPlE9EcACwCUAHxBCCHdVi8EcB2A/gDuCf8BwDUAfk9ESxBwDDPrcG85+hBy84UcOeoLJ3EQQrwI4Eim/BOWay4GcDFTPhfAVKZ8N4CzXWPJkSNHjhzNQe4hnWOvw5ylG/HBX8xCZymPs5QjR7XIiUOOvQ7f+stLeGnVFry+YWdPDyVHjj0WOXHIsVcht2PIkaM+yIlDjr0ClEdXypGjrsiJQ44cDUa5IvBvt76AV9Zu6+mh5MjhjZw45Njr0NsES4vXbcNtz6zEl/7wXE8PJUcOb+TEIUeOHDlypJAThxw5cuTIkUJOHHLstchV1DlyVI+cOOTIkSNHjhRy4pAjR44cOVLIicMegCdefRPd5UpPD2OPQG+zVMqRY09FThx6OZ55fSP+5Tezcdn9r/T0UHLkyNGHkBOHXo7127oAAK+u2+6o2ceRa59z5KgrcuKQY6+CEL0vvlIvG06OHF7IiUOOvQI549B3sXlnF26aszwP0V5n5MQhR44GI89S11hcO2spvvHnl/DgwnU9PZS9CjlxyLHXordsyrlYqbFYuWkXAGBXV8451BNO4kBE/YhoDhG9QETzieh7Yfk+RHQ/ES0OP4cp13yDiJYQ0SIiOlUpP5qIXgp/u4IoWL5E1E5Et4Tls4loYv1vNUeOvoPv/W0+Jl50V08Po6nIaXB94cM5dAI4SQhxBIBpAGYQ0fEALgLwoBBiEoAHw79BRJMBzAQwBcAMAFcSUTFs6yoAFwCYFP6bEZafD2CTEOJgAJcDuLQO91ZX3Df/Dby2PrcY6u0QvXCL6AkO5nePL2t+pz2F8Pn2NkOEPR1O4iACyF2xNfwnAJwB4Pqw/HoAHw6/nwHgZiFEpxBiKYAlAI4lorEAOoQQT4rgLd6gXSPbug3AyZKr6C244PfP4KSfPtrTw8jhgshPkH0NMtFT/t7rCy+dAxEVieh5AOsA3C+EmA1gtBBiDQCEn6PC6uMArFAuXxmWjQu/6+WJa4QQJQBbAAyv5oZy9G3kG0TfQ3SMzF9+XeFFHIQQZSHENADjEXABUy3VuRO/sJTbrkk2THQBEc0lornr1693DTtHH4QQuVlrX0NMG3LqUE9kslYSQmwG8AgCXcHaUFSE8FPaka0EMEG5bDyA1WH5eKY8cQ0RtQAYAmAj0//VQojpQojpI0eOzDL0HL0M67btxu7u+luXiD6yRXSWyrjjhdW5nB29xyptb4OPtdJIIhoafu8P4L0AXgZwB4DzwmrnAbg9/H4HgJmhBdIBCBTPc0LR0zYiOj7UJ5yrXSPbOgvAQ6KXzvr//OtL2NlV6ulh7PE49uIH8anfPe1Vt7NUxj//+kk8v2Kzs25vnDWNGNNl97+CL9/0HB5ZlHPQEr3x3e/J8OEcxgJ4mIheBPA0Ap3DnQAuAXAKES0GcEr4N4QQ8wH8EcACAPcC+IIQQh4RLwTwWwRK6lcB3BOWXwNgOBEtAfA1hJZPvRE3PrW8LpYgpXLFa7Pbm/Hkaxu86i1eux2zl27EN//8krPu3r4/rNi4E69v2IH1WzsBABt3dPXwiHoeBcoV0o1Ai6uCEOJFAEcy5RsAnGy45mIAFzPlcwGk9BVCiN0AzvYYb69AuVL7NPzZA4vxy4eX4G9ffAcOHz+kDqPKAQAvJAhu75A31FPs8c4fPQwAOPvoQEJbquSh3CkyZe3ZcextyD2kq0A9JuHCNVsBAGu37q69sRyR/qI3hjZvxKbVUgx2xFIdDip7C/qGtql5yIlDFajHJJSnnUp+3KkLdnf3rRN0sRBMoHpwsXs+egeHuLchJw5VoB7rkXI5aWbYntUu1fKplz3URljTtBSCpetLHK6dtRT3zltT/4H0IuTnrPrCqXPIwaAOszCyzfZsK5/3djTCLLZeaMSmJTmHUjnd+IqNO5W+BYgI379zAQBg2SWn138wPYyC1Dn07DD2OuScQxWoxyTMlWj1xdih/QEAQwe09gkpg0nn0FkqR0proG/Mr9hDug/cbBORE4cqUI+wT77md0+8+mbQZ8097rnwedzH7B8EBf74cfv3uiNkY8RKUueQ1LV0lZJ/97JH0VD0pXttBnLiUAVaC7Wvdl+F9A1Pvl5zX30BIvrsfVtEY8RKwdLtZsRKfQ1R4L38UdQVOXGoAq0ttT82yX3kxib1gdwYevMGUU8Ooig5T+2Gda62lwYaqCvy8BmNQU4cqkBLHTiHgmFx5zDD9qwkx6DW6G2bRj1fdcx5OvqsX5e9FlmNO3L4IScOPYRCRoV0Pu3tkM+xVK6/v8MP7lyAw7/790TZE6++iTe2+DkwNoJIxRY69pnRF/bLnAtvDHLiUAXqseDkfuHrBNcXFnk98Jt/LE36PNQBv521FNt2J4Mt/stvZuP9P3/M6/os727Lzm5cdt8i1n/h09fHgQp9N8TeqIPJsWcgJw5VoB4LLhYrefaZUwcr1M10jeeJvlZs2tld9za/97f5uOKhJXhg4drUbw8sXBd9v3VukE/LdbjoS9OmD91qU5AThypQlwWXMXzG3h5mo1IR+NkDr2DD9s6qrveNMbR+W2cUDXf5hp2O2vVBlle3syvgeiqO+1kmx753TwsvxD5D+cOoJ3LiUAXqQxuyhc/Ym+Sp3CJ+6rUN+NkDi3ERE5abPLw8fHUNZ/xyFj78P48DAN7144cdtesDldO8d94b+P2Ty4x15SHAV0+hHxr0Z7ujc+/PPeIzP3JkR04cqkA9DiiRwZNnW3sq5/Dwy+twxwurE2XcrciTf7VhMDgZPbdlrG6SyMmEz934DL59+3zj7/Fd+G14rmlx9A8ewD8W790JgfJoA41BThyqQE9EZd1TJ/6nrnsaX77pOe/61d5nN0McbE11N8CqyYQs9yTr+nMO7jqfuGaO/wD2QMhHVQpFk9t2118X1BeRB96rAvXhHLKKlfZQ6sCAu5NazT31MBIu1NuiqX4IxUqetVNipTqPZk+AnDv3zFuDF1duwbptnfjvMw/v2UHtBcg5Bw80QtGVlXPYm+L2+zizZQUXRsK2wTYziqu83UVrt3nXLfQ2D749ADKuVF/QszQDTuJARBOI6GEiWkhE84noX8Py7xLRKiJ6Pvx3mnLNN4hoCREtIqJTlfKjieil8LcrKDTWJqJ2IrolLJ9NRBPrf6v1Qz2IRVbHnb2IcWBRq1LRl3i2htFMd3f1zuRAkqOpXiFd7xGlMX/1lqaK5VzQCeledI7qUfhwDiUAXxdCHAbgeABfIKLJ4W+XCyGmhf/uBoDwt5kApgCYAeBKIiqG9a8CcAGASeG/GWH5+QA2CSEOBnA5gEtrv7X6QV9w9VRI++dz2HtmvO1OuMfhs1H6blZtxWDK7y41kXPI8O6eeHUDAH/OIcV5NniaLHtzB06/YhYuvmthYzvKgvBRyWfmMgPO4QcncRBCrBFCPBt+3wZgIYBxlkvOAHCzEKJTCLEUwBIAxxLRWAAdQognRbAj3gDgw8o114ffbwNwsuQqegP0qVaPqZfVCW5vmu82AlAt4fXlHNrCoIm7upovVsoEz9nfbI5y484uAMBzoa8Ih09cMxt/eW5ls4YUIU+9W19k0jmE4p4jAcwOi75IRC8S0bVENCwsGwdghXLZyrBsXPhdL09cI4QoAdgCYHiWsTUSDdE5hJ99UefAodaTgI8T3F+fW4UtuwJLlt6cOQ7IopBO/t1oDjMal2Xe/mPxm/jqLS80dBwqdJHk3r5WmgVv4kBEgwD8CcBXhBBbEYiIDgIwDcAaAD+VVZnLhaXcdo0+hguIaC4RzV2/vnm22ynOoR6xlTLrHHp2wq/bthvXPb60Lm3ZNrBqNzfX89mysxtfueX56HnvLjXRlLWKa3zFSjfNWY5XFEV3o6eJK/d5T8xT+ah8I9Xm8IMXcSCiVgSE4X+FEH8GACHEWiFEWQhRAfAbAMeG1VcCmKBcPh7A6rB8PFOeuIaIWgAMAbBRH4cQ4mohxHQhxPSRI0f63WEDUI/TmRRv+MrKe3rCf/b3z+C7f1tQl5AT7P5RI+vg2pNKmqnrnZpjXiNRzYaZRag68+qnMrdfLVwZObuU+XzbM80RLVH0mYfBryd8rJUIwDUAFgohLlPKxyrVzgQwL/x+B4CZoQXSAQgUz3OEEGsAbCOi48M2zwVwu3LNeeH3swA8JHrRG26EQlpazXR7nmCbKUf92wur8Zkb5iZCUqzbGsQ8arQmyHab1t88yyRubdLGVS2yWG+pc6jRsyTSDRl6UtOU/tutLzRcfPfJ383Bb/+R5GjLvWfr2KPh4wT3dgCfAPASET0fln0TwDlENA3BfFwG4LMAIISYT0R/BLAAgaXTF4QQcoZcCOA6AP0B3BP+AwLi83siWoKAY5hZ221lx5J129FVqmDyvh2p3/SFUI+p11rsvZzDl0KP5q27S9hnYBuA+ETYVocseByyxprS0YvOEilUpY+ukgg3+jm4UnI2O23pI4ti8bJ8ZrnOoT5wEgchxCzwTP/dlmsuBnAxUz4XwFSmfDeAs11jaSTee9mjAIBll5ye+i21EOqwAOUm2+W5mHpi81O5FXkirIdzVrXmqnsqqnl1vfVxuKzKujRO2HXv81dvweSxHan0plWNzbPPHH7IPaSrQD3mXltmzqEHiEMlTRxULurFlZvx8htbM7ebVWfjs2+wYqVes0lUo3OobrNslljJNB914mCbt7MWv4nTr5iFG596va6Dy01Z64M8tlIVqMfck3moe6NYieszGqdS9qFfBqGvOW4rK2ITyequd72TXuQ244Vq05Q33FrJwdPoin/bRv36xh0AgAVr3GFFsiAXK9UHOedgwNbd3Zh40V24ZtbStEK6HpngwtWvn7RMeOu4ITX3mRXqwpZ+BPVYdrxYSeocqjRlrWVAWfvKuANXJVbaw4iZRBaH0dgRtE5vT9RvjvZWzF+9BRMvugvL3tzR8L5y4mDAuq1B3P8/zH49rZCuw+yTbXQ5OId3ThoBABjV0a/2TjOCO4FluXeZyjLVRrUDsoEdWO/YJpqqkG60E5xD55A6SFmmd6HOCmRppdSbjRNqxZ+eWQUAbBrZeiMnDh6od/iaR19Zjw07gjAEJYdCWvbdrNhKv3xocarvaiCEwP+97UXv+rWGz3BdVs9zeDP2nkx9qDdX49jmLN1o1SMVnBxestwmVipkdAR1IZJ87r20oamGG7nOwYFyRWD15l2Jslom3+7uMs67Nk6+4hIrVaLTUPV9ZsFP7nsl1bcKAYGNO7oiPw0T7P4K6R99EuNZPaubuCFk7aqasfXU6fejv34SgFuPZNrQsxyk6i1WkgYUe7NCupkWWTlxMCJ4Dcs27MQplz+W+KWWU7zOQrsU0pUeZJU5ZyIhgKP+634MardPHfsmX39w76S37BHVvLuq/T2qvM6/fft81EtNG7UQAq9v2GGtAwBfu+V5TN63A59+54HOsckMcL3kte/xyMVK1aDK2bejs4QP/GJWosylc5C0pCc2Om4DkCXbHQlV9AXfyNSNS9Ztw7xV2U1qs0I0kVBXLV5r8NBiMWcSG3d0YXd32TuawE1zVuCKh5YAAGyS1T8/two/8AwPLvOD9wVjpWaImXPioMFn4Vf7WmYv3YClmpWBi3OINqQq+6wFtSwy/TF+5/b5xt8AVefAiZzMIiwhBN572WPG3zmMqVK5b9oYndd51pNGEME1vXOHi16PNryj/ut+zLz6KcZ4I/579msbMPGiu/DyG1sTeo1qxUDGtdpbWMYGoFbdXBbkxEFDIx/6Lib7mCvcQE9yDry1kt9A9E1i865u9UcG1YXPWL+t0zIGHsUqnQiqFvV4Xvi7J5ZV1ZnafjVEZXd3GZvDPA0uVCyHledXbE7dqzqF7pn3BgDgiSUbEmJJnzn1/p//gxkLX3fvJQ3NNXHOiYMGObFs76BascLOrrQoxnVqihdj86c8q5D2HEY9iZnt3gueG736PgtVzvpYrFTd9Zn6ylBX5T6rGdtHrnoC075/v1ddaWVn1DmkFNJ8vYEKcah4uPosXJMWG5rWzt6skJZoxh3mxEGDl1ipyjdTjd9Az+oc6tdW0tqyOqsj7rdiFSepWuNDZSXUjSbsLr2VC/NX++trpKVdp8HKTr9X7nRPlHwH1UZRNflH7M20oZmukTlx0OAjZ//trKVVtc2dcl3d9WQ+3Fqc4GwmjVadg0dbKmwbvem6aggKUMNprYoLt+0ueYe7ToqVmgPfjdl02FJfQbUbnun9mpbMdY8vxbxVW6rsrXch1zn0ABp5ymM3JV+xUg9HZc0Ke7a3NBp9IlJvxVcUZWoj62Pxra7qTz534zOsnN3ZVw3v7N5QJ+AD/wyGfHk93reJ4zA9g+/+bUHKWrBaCCGwZN32urSVCY58GvVEnycOv3nsNZyq+DHIedWIzYpThDo5hyotZOoBbgPwnZRV71EZ9RzVLJLqOYfGvQUhRCpzmm7Z1mh87sZnUmXzVm3BSyvTp21fnYPpgJHgHDxfh86t9KRY6cbZy/Heyx7FnKWphJUNRZYkULWizxOHi+9eiEVr6xsV0oRq9qRmKkF11KSQtv1m8Z/ICl/CoVarlXNoxHX1ii9U73nygV/Mwgd/mT5tG0/tVcQh893w9IivZkc8e6eX3/9KzZz4iys2A0BTAuD1FPo8cdDR7E3YrZBunrXSM69vSvbN6RyY6+58MZ2P2bb4bHoF9rc633uxxlmfdY7cwgQg1J/Prx97rZYhNR2+p3Yj56AQhGZzDj9/cLHTibO3I9c59ACabTLq6s/XWumaWUsx8aK78J3b5xnrdJbKeHW9WU76kaueSPy9zuJDoOIlRsnXCE6ArV9FH1WLlSIClq3Xv72QJp7qvra9s4Qf/31RVWPKgslj0ylwq8W23fzmqj8Z9T5VgugjVtIJqO4TZGK2OILUKMOOZu8XzQy8lxMHDZHOoQFvgdv4/DkHM5Zv2In/unMBAOD6J81Ztb71l3k4+aePYuMOP4enWYvfTJX5ejBnNUm13aG9Lb/r1HpVi5UybgTd5QoeWbTOMLa4rd/UkWuwi9nqC04nkn4f3HzR/+bfh76fb93Vrf1uEiuloYvBfHwrbOipdBu9ypSViCYQ0cNEtJCI5hPRv4bl+xDR/US0OPwcplzzDSJaQkSLiOhUpfxoInop/O0KCndgImonolvC8tlENLH+t+oHOYUaYR1UjQw/tpCxiWn8xvrUaxsABDGefHDL3BWpDYC1NOJmbEYlss+pnBc5ZUdLBuLAmZP6To07X1yNT/7uafY3dePr11r0Ho8Ldh+S+s7pNZt3oVIReHN7zGHaOAcVPocvXWz0tT8+r7XtL1bS6+r6i2rRUz4VzbBe9OEcSgC+LoQ4DMDxAL5ARJMBXATgQSHEJAAPhn8j/G0mgCkAZgC4kojk7L8KwAUAJoX/ZoTl5wPYJIQ4GMDlAC6tw71VhUbGMmI5B8c1PiG7a3XqskHXQ/grpKt7go2a82qz7S3+m/GVj7wat2HRi3DYuMMcbFDdrPq37qEMPAE/e+AVTP/BA1FR2s+Bv/TxJQpXapi++ob+9LLkXDTrHDixUvLvWg0Ammk1pELOx16hcxBCrBFCPBt+3wZgIYBxAM4AcH1Y7XoAHw6/nwHgZiFEpxBiKYAlAI4lorEAOoQQT4rg7d2gXSPbug3AydQIuY4HYs6hcW0nyrz9HMx1qhWT+MDH+JZlHGy3VQWRNDaVWXwFtLX4b8Zqvo2sY/R9K09rBLgWNPMkWyDCAwt5sZmE6XT/0Mv26wC353cWJzhdrFTqQefSPQWZjiyhuOdIALMBjBZCrAECAgJgVFhtHADVPGNlWDYu/K6XJ64RQpQAbAEwnOn/AiKaS0Rz169fn2Xo3ojTGtZ/8rAmnC6dg8xuZRlPo72o652PgCeStv5tbfmNrdpNc3C/dIA43+dhO96om+ZdL66pbnAMrM+9ztOEvz1daZzu9Ianknox02N6bb3dTNTIOTBPQa/rysDoi54iMc3o15s4ENEgAH8C8BUhhC0Yi0kCbZNMe0mthRBXCyGmCyGmjxw50jXkqhAnM2lA2+yJ2d6Rj59Do09BSYuT9O+843e2MVXtz1HFra/atMtdydKVb5fVhPZoJOptWVMoUOrd+4iVXJu+RKcjfIjZQ5orq6/OoSfkGuo9jO5ob3h/XsSBiFoREIb/FUL8OSxeG4qKEH5KPnElgAnK5eMBrA7LxzPliWuIqAXAEADNdT0MkVWuzOHYix/AR3/1ZLrtKlr18ZCulwMVB6Lk6Y9VSHsIn9SJndWipmr9RcIJLv6eJSyIuglk3dB9OYd6wkSU3z91TN0JUoEYYpAaj/k3CZOBgGta+3ppA/4+Er0Zqpjt1CljGt6fj7USAbgGwEIhxGXKT3cAOC/8fh6A25XymaEF0gEIFM9zQtHTNiI6PmzzXO0a2dZZAB4SDVTHn/HLWbj6sVfZ3+qhc1i3rRNzlqVpW02mrJZ6tW40tkedIg6enINtTKy1kn2Ilrayo+rnJQm15+W2w2WjJrepXaJG9Jm+Q50r8yHsLQavRNe1qkri0DGD4+uYF9QoncOqTbsS1lqNhOrn0QyFuA/n8HYAnwBwEhE9H/47DcAlAE4hosUATgn/hhBiPoA/AlgA4F4AXxBCSP7wQgC/RaCkfhXAPWH5NQCGE9ESAF9DaPnUCJQrAi+s3IL/vvtl9vfYWqn+S4mPVeS6xj0en1PQo6+sx0pGnLK9s4QDvnE3fvUoTyyB5Gb4wsrNzr6Ci5J/qvYFWYmk/I0LdFbNPp/l1KUuwugdKH0u37ATEy+6iw9aZxMr1ceS0hsEqrv5I3d7X7lFNzd1t2PiHHwPTgDQUiSl3N1WzdZKYXe/fHhJwlqrkVCNI6gJBm72LPEAhBCzYD4EnWy45mIAFzPlcwFMZcp3AzjbNZZ6wJXxysY5fOrtE/G7x5dZr+eSksRtMydmxwooeciVXBN9ybrtURx+HWs2BwTjVibEg4S6CF/1jERpEytZr8uqq1B6euekEfiH4riXaEr5fuR+w+ALl1jptmeC5/aX51ZixtQk0bGd7RonVjL80ADOoUBpnYMOn/s0ZeZzXarO+xYlgxM3Jn2NuNLz9kaoY26k+XrUR8N76GVwJRaJnc7Sv5nCD8iXtmLjTmuY5Wr8HMpl4aznWoBbdpkJ4o6ugKlTM3OpIFDiJHYHEwoiqylrVr2C+svEi+7Cb//BexSPHNSO//eByeaOQ2Sx/OUtJeIRXfHQEgC89YtVIe0/BC/Eznp8y9SATn0eow8NNHIOTmMNdxsSOnEwnaduf34VTvMKlZ7sb/7qxueJUDmHBlqvx300voteBpeSS1orMRULRDj3hP0xbEBrVPbkqxsw6Vv3YO6yjVEKxUxdO8YjOQfbidrFOdjyVEtv6YFtZiZSJT5rtuxO/d7KyIz155cUK1VBJRX84K6FSltx+c6usjlOT2Is9vZ3dJZw1H/dnwofYuMqu5l30EyF9H/+1RxTKxhL/XcTnya9Misayl2Sn7JBrMS3lWzMNK5/vfl5LFizNbN5+Nxl9fNVMUHlHHqLzmGvgvOVWziHYoFQoORJWsbOmfv6JudCqCZUtdz4a+EcbMRDnkZMjmFEbvl4O+PhmzZp5Mfw6CvrE/GHfMwQE78p37fsMnsku6D28crabdi4ows/vm+RJlYyv4sSI6awKqTDRuol3nglDDsrD3CWAAAgAElEQVSflWOrBX5iJXc7pjG71pM6r9UDCjckPQqr60C1PqOSeUBb/UKgmKAe8lzEsB7oe8TByTmYIReCuhlLdr69peBcfFk3PiC2x7ZVu3mOWV8QtGHbXIPf6n3K1a94eFHstKg2d961c/DJ3z2t+BBk1DkojW3r7DZuyGqfWQIFqnVteT9KZYFL730ZP70vjq5qe6Zy3F2GXMzVwqJyaEo8Hh0+JsxZYiSZ2naJlVZs3Kn1ydeTzRz33w9a29Pf7QAL510vqAcJjluvN/oecXBsPjbTUck5qE3s7g5eWL/WYqbJHI8nie5yBSf++GHcN/8NVCoimsSmBVQqV3CrlkGMq+NCLcpT3jok6yZv+c2zja5SxU98wjntmaoqdW+dGzxn7t66yhVc9cir+EWogwi6cescmrVd12rKesplj+LKR5YkynwetRfnYCz35xzWbrWf9PUlYJrT1Sp6m6ED6KzzQcKFvkccnBt48MlNngIRCprdf2cp5hxcy49VxGqFm3Z0YdmGnfjWX+clZKqmln98nzsPgE3n4AO3M1K67IEFa6vqK+vhVq2vK4XN3ADXTlB55aaduOQe3sy5Xyg+45rlxBQ+3Jg+zw4cOdB8kQds92z6zSfPw+J12/Gje7PnnPDhBI0chbYXqqFMgOS8XKLkKeEOCPo4aiUOeq1m+NQ128Kq7xEHz9+5egUiFApJnYPceFuLBQ+77HTZ8o072bDQgLbhGNp+YYXb76DWUAG+wQFV/OYfSy3tMWWRIYBffQ7dlUpiQ77+yWWp9k2Qj/odlz6M2WFeYH0DsIXW5haubaMxJXH65+kT0pU1nHBgKuxYBJMsnYiMz4DTGdULPu/OnO4zCV1JrM67wQZrO9M4zM/J2owRLivIekDOsRGD2hreF9AXiYOn0pirV6C0x7D8XiDy0DnwNW54cln8B8m6SV1BLU55m3dWr6gF6n8qsuVzyNyWSqhLIrGh32YQt3EnS9NJ8nmF+A7u15rqM+qbIQ62W4rmglbJV5b8q48fxZZ/9475bLmNc6j2/fq8Mx99la8uQt+Ad3bFhypXTgy9C1Of1YqVmqHPkXPsmvOOaXhfQJ8kDn6/c9WkzoFroxZLwbaEpYVsSEQ+Duq4fFAqV/Cje1+OrHf0zG9Z2iIit86B2V2yKrFfDD2v+UXm15aNQ0oqpNPoLlfYvu9UIqZK8QtH3Ljw0rYNY1e4selt+YYTnzF1LIYPTJ8gubAt135yeuAExwzn/gVr8cobZkV7rXBNg1GD270V0vrr3bbb/9CjvwsT5+CrO9BNuhvl1KiiqxRLKZqBPkccfMG9a6lzSOgCwq+2k5mEaQINUfwmVKibnY81jcTd897AlY+8ih/evRB/mL0cf5i9PPF7IiCdY8xkGXfcHlNmuYT77Sf3vWIfiLHvuLHusvCi0lyVUlmkNox0PfNNbWdyKtue2imXPxbU0SplMYn09V046dDRRuX4Z26Yi12O6Kcm+OyHj7+aTjWrolgwc9ypDV3725THmm8r+XctOodL7305lY+iTonlrJCcQ1tLc0LC9jni4Ms5cEu7UCC0FAooV0QqBtNP7lsUpeHM2veQ/jFxkO3t6CwnJn8WsVJ3aNXQWargm395CW9sTZ5ysnEO1RE9fbyq46Bd3OJXxv3WXa6YTVktfQKBCE9X3Bs5LqaxrdxG5SNv1/7OYhLZDAsZGwSE0xnr14/G3uwmx1Kjn4P2t068VV2d+hvHFfgqpF3YsqsbVz2SjkPWDJ1D5JNUbLxPBdAXiYNjxS4IYyPxnEOsvJNmZbLeq+t34LL77adfU89FJS6MrLSru4wTf/JIXGziHCxrM8tGaTqFCgE8u9zu/Zl9Qzf/mHWRqbV9E7hwG1qpUkmJhl7fwNvGc724NqQCAUMZDlF/FgPb3Qtftquecl10IiDy5ufz3sNGO/tNjaPG/fC9h42yjosrriT0cDFU/Rw3h9KcAz8mtVh/p48sWocjvncfe10zQoBLzqE15xwaA3WSTLzortTv0omJe9UFoij/cEQcquzbBJ9J6+zH8ftfnrX7Raj449wV+Nebn7fW8fHf2KQoxW3riN9k/aBbKyXaUMZoEiu5TAVtB4sp+6bNQdXHMmXfIfjsuw5i2kwiC+eQRc9FTF8qBvdrCXQTHpiwT3/A0Z4PTpk82mrIwZ3uOZEuABw4YqBS7iYOPvmnP/CLWQli9OJKc/wkH1+iWhERh1zn0Bi4JnQUrsKgc2hvkZxD2VjPBLPiTXjU8e8nas+weVzx0BKs3LST/1GDT9YuX53D06Gy1HaCzRrT5uY5sT5FCL+YM1yNQKxkX+Am81OAd1ASie+CJS76+3Z5+qr9q5yD66m5xIMtBYqssVyIUtfWyDpQGH7DOOeZsjJjwfeHzxyHKz9+VOQH4XPA+LdbX3D2uXDNVvxJOUhxnJ9EM/wcuhSz+Wag7xEHx4S2BborEGLi0F2/k4Lak2mhPLCwOqcyE+KN2l7PL7gaW5oqWR6KaWxd+ogEVPz6MT5Ca1aUKxV0l+wPw5brQx4WkvU9Og7r9A9NMXVHLxuyZKkjmP0cgCDhjq8OQ/YrUJuVXoHIasjBrUG5PjpL5cgp76j9hmHEoHb8/SvvwltGD+KJg9aWydtY71KN16XqBn3GWm9ECumcODQGrlco2UOuXrFAaG+VYiV7iGS2bw/NW5Y5tmVnd7TJZ4XNZFeFj/UGR9BsJymbMrBW7twsVlIrxV8PCMUR3WXhdBa0vRuOsOhWYbZ0qt887VDc+aV34MCRg6xjUKG+G5eC1cU5tBYJfkG4436FqE3vUCzY/YNYnUNY9oM748i8cjz7Du2Pdxw80uBk6QcbAbWJ/JriIe0Ikllv9D3i4HiJw0Lbcd6XgVAMJ2I5Yq1r7zuLaamKT143J2Vhc8T4IVFrPiIW14nHi3NgyqxpQjMSDm6Mqzens9oBftub+lz+Y8YhAAJRhOvRR17c7OZj53iEsNcpFgqYOm4IAGD/4QNS9V5i5N2FLJyD48G0FPw5h7hebTuiEAAsYiX+0BGULVJ8M9R7003N4878xmQLweIbHbhR6CpXUCBzcqR6o88RB9drfMfBI8Ja6XqBExwSv2eZFEZls1KuhnxwYf7qdNa5oQNix6gsgdF0u20JF+fQWuSd5Lh19PVQzmvnHPye6BOv2s2GXRjT0Q9AfAorVURNDpLVpIAN6gS11Md8FJOp7oO/nJUq0zmHXV12fwXbeFqK5B9XqGov4uTfpYqwRotVi8cPC5XgDHOnjqZYIC9TVhPsEYzNaIZYqatcaZq+AfAgDkR0LRGtI6J5Stl3iWiVllNa/vYNIlpCRIuI6FSl/Ggiein87QoKZxgRtRPRLWH5bCKaWN9bTMKllIt+Zuq1FuP49dUo5Xwm6LWPL/Vuj2tOLTKFjwDU51Ab56BHqY3br45zqMVa6YgJQ70IIhHw1y+8Hdd+cnq00QXjtfdk2jfeOn4I1m9jooKqljWwhwqnRJlD9xF+6jqHz9ww13KV2Z8ACOTYvnt+5MMvatM5lCuC3cy37OzGmi27okPE3V9+Jz79jgOCaxi9j0qsgthnfocVHU86DhxWQ4pm6BxKomn6BsCPc7gOwAym/HIhxLTw390AQESTAcwEMCW85koikobbVwG4AMCk8J9s83wAm4QQBwO4HMClVd5LzSgUgiTsQgj8y29np36fNGpwvJmEk9Nm3qYH1Ju3is8vrYsffGHMSV0HUdfBo/xk3wVDeA37Kcv8my/noO9J5xw7ATd95jijKE3tkwCMGdIPJx06OjotVzzk56a4W6YsemotIQQrtmE3evswIqjiBQGBWUvM3shB++aW+7cVM3AOss/aUKoItBQKKVHOOy59CCf88KGo/Y7+LdG9cnNNHXUQNTndFzdW3X/nnN88laqjenjbpmYTaAM6S+Wm6RsAD+IghHgMgK/W8wwANwshOoUQSwEsAXAsEY0F0CGEeFIEK+sGAB9Wrrk+/H4bgJOpWr7VA7Z3WAy9NU2ToK2lkDg1VSrCmhpU5wJeMSSLcc2rqeM62LAKvMKON5k09WmqWfR8BQWTojOjXsH2G6//Sf49pqO/t49A4qQZBTr00DmEFXTxjUkGrI67VBH4xAn7Y9zQ/lodKVYi9jq+4eBDJYQumuoK75IlbIeqkK4FlYpAa5FSKVa3hVnb1GdDZCEOyuMvkkGsxIz1o7960jnGRwxJqnQ0QyG9q6uMAR5OkvVCLWToi0T0Yih2kkLScQDUtGQrw7Jx4Xe9PHGNEKIEYAsAc0ziGmF7wYVQQqJOwFn/8Z5EHVIWxm7GfFHFbm0TKZUrOHXKaJx2+BhtTPaZ1VYseLOtQgCPL/GXx5ua9RYxaGlTJfbVNkEV9dA5pMchv2S7LhPnEO7K5107J9mGkTjEDXaWyhjQ1oJLPnK4Vif4TIiVHGOWlnJcClMTXMl+BlTDORj6/Oj08V7tlCoCrcWC0YFMfTY2gqSLlQB7eG+J/hlTe1qNLJqgkt7RVcKA1sZnnJOoljhcBeAgANMArAHw07Ccm13CUm67JgUiuoCI5hLR3PXr13NVnLC9RIo4h7jO6FBxKaEqpF0KQH2HrQhgaP82TByeTOjimlatxYI3q1wRAne8sNrRotoG33u0aTo262DTSdc57sB9LH2awfo5MFeY9jHT9paUUafr+3Bc8lGs1iJymhzX1NZkxsCWQnLJRRtggnOwj+OFUJRZyMBtEMjabr/WIgqeu0G0UYN/3r5EplypoKVIxrAn8nnLgJfBNfYbLRg4DM7ku8Pg9HeYIflRtaLSemHnnsA5CCHWCiHKQogKgN8AODb8aSUANVvJeACrw/LxTHniGiJqATAEBjGWEOJqIcR0IcT0kSNHVjN060skBJuIWke3DojzSCfjyXPQ94yKECgU0huba2K1tRTYhe0TJsCEWH7O/y43ClcWOZO4wraIq1VWu8ZRTV2VE/S1VtJh2gzV+p2h/klPDB9ZK9m7ZjF9YmzV5OXnkBpfXNJaLHiZPievN/flg3Il6Lfb4F9yy9PLo/YKms7B1LcU8emHjNufTx+Y2g3ye1NmvHp69leD3d1l9Gvp5cQh1CFInAlAWjLdAWBmaIF0AALF8xwhxBoA24jo+FCfcC6A25Vrzgu/nwXgIdFAuzBry6H8XI/GmaiiWLeYMrjFzaU5B8mdZEFrscButnzuZr82ZTVX6GLXSS24H25sNr2C3xgjcKIEw0ZmCyAY14m/J3QOnmIlHT6cwyFjBrN1Y86Bv86G/zx9Mg4N23Vdo4+wVK7g5w8ujv5WT+cuxJwD36vxHWh/lysVLFyzFc8t34zFjD5OckhEabGS6X5jjtdyA7Ku4YZNSl+7WKnxKFVE6nDRSDgFWER0E4ATAYwgopUAvgPgRCKahuCZLAPwWQAQQswnoj8CWACgBOALQgi5g16IwPKpP4B7wn8AcA2A3xPREgQcw8x63JgJVrFS+Pm2Sx5KlD/49Xdja+hGH4sh+AQvKvS5Z7JYcU2tNoNYiYO3SZ1LDBEuMpfXsNTT6LBFSOUcurJC33/k31mXTnwidcuNTe+gaFiwkmhe+8npOHq/fcJx6pwDwvK4rOwZXbatpYDDxnbg5Te2Zc649ufnVuFnD8TEoVgg46auI6pm5KS8mkGpIvDm9uAgdt+CtZg0ejDfH2LCJe/TdGiRjL7pedz95Xfi09c/jdVbdhuNLtqM75MttvZXK4QQWL1lN8YN7Y9KRVSdqa4aOImDEOIcpvgaS/2LAVzMlM8FMJUp3w3gbNc46gWrWMlwCj5ICWlQUFaGaz50aLFYKkKw4QJc7bSGJxkhhHMBZz6Umza8sJthA9qiBczBlCnOFnr7+3cuyDZGjzrZnkvaWqniwTmYKriC5U2fuE8k39bnV2SRo4zJZeigIlYOu+ol57aenKilQN7iIFXnwMHX0m3U4Fift7PLnLhH5RwkTTAdWqROxxREccyQfhExNw2zaFC+9IQp69WPvYYf3vMyPvm2iXhh5RacdOioxnTEoA96SJvhsuiQdYBgorhOCwO1pOcVwSc3cfXZWkwuDBuynmBcCmlbsLGgHr8w/vzsqkzjqBd8neDi72YTSR2m589lgUv0Z2mD4xxc4sovnzxJaTu4cN1WxglPg9q1vnkWClk8pMP2jHJ/97by85nTMPOYWD1590tvGOu2tRQiDk9yDCbOVAYuNGWJU3VkSYV+3J7Jz8yuK2sMdXgwjFxw3RPLAFSf47oa9Dni4FRIu05giGWfrs26rJ1uKkIE3rnPJTdOp0I6nK0+Zp7+UiWHQlrqHJwNpk1ZnVZcGVAqV5yhtBOjMaydRD4HtX70u49Cmq/woCH0CFc9zTmE41AGvtsR8Vc9mcuvLhEnBdYWEfQwEUXyV0e76rUaxDKq0nbG1DEhQQr+3rDdTNz6tRQTuiHAzBlIbl2NpqpCPZypNEx9HD4GBjq4pfnM65swb5VbhGo7DOjRY5voIN0HiYPLlNVxjk8qMO119QUoQs4hlbYz2qj59qTFlJ9cOSPnYCIOUnar3MNxB6TNU4PnkWzkSzc9m2kMNhzxvfvwyd897axX7clNVa5Wq3MwjimKm5TezKM6kVgphlQym6BuEN5htpEUZ3aVdM4hvSmanunb1PhjzEZqUpqqBEz21S+McnzAiIHsNcUCoVWJ+xSLlfixDQq59R2dBm4uYYzAcw4m6qevv9Ed7fH1zNz5yFVP4AO/SMfEUnHr3BU49Nv3YsVGQ34Vrc9mBd0D+iJxcJ4OHQ0kxEr2qvpJv2JUSMdtcpATwmf/893AXFYfg9qDE5i6CD/77gNT9YjSliH/WGxPKp8FOwxcSEqxK0/gPsl+Eh7SsXWL21opG1QnLolpEwLzU5m/gRMrffdDU3DMxGFRHR2q2MZ1vzL9J1FyA9RP3kVK6xy45/G+yaNxcij3Nj0v3Zcj7jPNvbneVr+WAojSCmmTWMmhK088h4RviVJn8drt7LVcm23Rwc3QoQPXzFoKAMZIC7op/YqNfDTiRqDvEQfLb/pEPZY9KccnzbUaB6BD9xGQCunUmISsz7PKtrgyqbY8tzApLjK1OW5ooCxU2VpO6VtguC1fuajrhJwF3CbL/Q4kiTYpm45bH51Vn5MeU7FA+OAR+2LMkH5hm2EdZfb1ay3iqP2GGd+Nr2jhTxeegP/52JFh+8lnoJ+8W4oMcWDaHNSvxRlbySRW6lIU7SkuJfzU14DkLHTTaqOo0aEPUZ+DelBTn7VpXurvQwjgiW+cZO3PBclNmZT4++2TDN/+koeYql7oe8TB8hZ1hfSHp41L14naAT7/v3bxyU6NtZV+DjOmBOEz5CKSfZrN8zIoTT3F89HJy9CkXJRL1imnKKYuIX1qagbnq3eRZXGqEVST4TPsjWTdAEzcTKDbCkWJkegpeS0xVm0S6sZqo8OjO/pFOc/1eimxEqUV0tx8C+pITpYfocl/IME5kPxMcsW6/F06qul+DiaxUqQTtPhgcBydLPv48fvhq6e8hb2WMyYYMagd/Vp5J1UfRAp2w8Jtb+25LbrvEQfrr0lLIm6OFzKIeP72YtIrU/o5XHxmYNF71tHjo3LAzCrLoGg+G7+vtVJ3lPGOr+/rbMM59ZlEQUfvn85T0CyoY1RPY1IC4rO4s8bPMW38qm8It1FFdRwOii7o8mm1uZS1EkMcuO4JSHAO3EhMp2C1z7S/R9CZroyXDmkFzX/BxDm4fDBIaYN7juOGDjDnTDC8DwJvzu0DueZNB0Obv1Cj0bwoTr0Edj8HQJ1V3OSRJT6T4RVNdilNWYcPaseiH8zAyk27cNOcOE6henp44GvvxuiOdry+YSfmhnFh6uloI8VFZj8HRvxliHHks7EeM3EYq6DXYZKzc/1yYzPJu1UcNjYWGyQ4B8d1WeXKMme2DtU3JLZWStYJQqHz7U4cERM3G51QiYNubKGH9+4uV1JtmTiHqJpp7hg4B86KTa+Z5hwk55PknmvSOYTfVQ5Htmt7nt++fX7i7+MPDOKDGiMTe8Dl1FdtIMp6oM9xDrYtIGD3lb+ZieKSt9qgKqTbW4oJERWQZJUPHjUIg/u1Yuq4Iam4Mq4+fCDFCqbaLczpiWvalgNYxYC2lrr6aeiiGnmZWR6vijSUTVPp18dY4fonlnmNDwBufnpF2F+yXJ1nT0T5AjTRE5mfxUmHjtZa41HU7lNt7nWNcHWW0sSBwwsrNydymvi8rXJF4OllG1OhuVWYxEqScygqRBwA3vWWEWw7upgq9bsiHeDSrGaRiP74rLdGfVa7h8vN38g55MSheXBxDkmxEsM5RJMvrnjiIekggJ9828REPRm7J2nWmGzfzConFwaHt4wehNMOH2O8v3OOnZD4W3rhPrIottEfo0Sg5U5/rJjBsomp4MQk1Wbs4iAv83HAUhFvdPH/MiWljooQ+M4d89nf4vaYMn3LUebZD+5aCCAtwqwmBpeOxDsk+4Gmq1RhYoGlr9jVXU4daly48uElOPtXT2KJIZ9J0Ffwqdv16zoHOaZhSjpcFfHhLR5cwsdFkQ4kTFnDzyxOZlIvF3Ajteoccs6hx2F71IEtuCJWYp4OtzC++J6D8dX3JpVYQwe0JurFpxWzuMY0EXQzPg6lsjCGsgCAjx23f+LvzlC2+/f5a+M2lP65kBBcy/qJ1CYn18fGLQjvvBX6aIQUK2XThnOB92rxQuXCQKc5B/OhgxuXDd5iJQd1OGTMYCYWWLrekP6tCQ9pvftRg9tT1ywKiQKri9Ia0NeAVMhGa8Bx0ubWZ0qRzLxnH7GSCVzUAx/cOndFZMJargQpAC688Rms3hybq7pimzUSfY841Mg5cBEpBdIvUY8/s3TDjqiPqD9tTKbw2EXt1BRck6y7ZVd3tFGrcvvIIkprWj+h6W1ynMMxE9MKZV2sxLULhKy39lMn4xnqIg4HjhwYjpX/3Zx4x1BfebYx98G34ROW2ZXGMugz/f7Sddzcogvqpa7T7b5D+3tZK7UUSLEISm/SR+431OiDAgAT9umPa86bnh6rwbRa+hHo3LPpuXBiX910+cj9gnk8bGDMfdTCpflyzzr+720vRt9LFYG/z38D98x7A5fc83JUnnMOTQR3EvvThW/DvO+dmrIF5+z6I7t4ZaMTIn0K1hXXn7k+SP6+alN8KlBPYICNc0hvFJt2JsMDjOroF23U6uamxkZSY/J0MsHdpCgM4E/gQzlWXlsYHDfw608cHeb2Tf42SkukBCTvcf7qtE23VFCmbM7DT5OlzHf/xouDOCe4jx+f5LJaCvaNOkFMWNEbp0/Q6+jjCj6dIdMN5VP27UjktrYdiC/76BHsGFwbMJCeRxxhVd/VASMG4eTDYp2JXlvvMtI5RFaCPBFRRpeop9clEH4U6gpkHCa142q4xmo5BxXlSoUlbLnOoYngHvXA9iIGtbek5LysKavGEQDBRNQXsb7x72CiTqonMMBtnmc7uV7/qWOiE0xiMSiT/RAlJHInE7/niycdjIPCk3nR09OqoJh/bN7ZheeXb07VOXXKGHYBTRo1KFUXiBf26VekQw9ktDKMYEqdmnCCCxvRnaDkBmWKMzVA4dR8OAddfKmOQ0LqTtz5NPjyu778Tqspa7IvCtvS5UrWriGESFnk2Zw8gZgTMNXRD2/yMBARS4d1D7fB6kYm+wxsw4hB7YnyZ5dvSlyfBYTaLQk/d+Oz2NEZEFq1rZ2dSeL732cm08w2En2PODDvUD0lJ3QOlpmSEPEgbVqnWnQE9YPycmLjlmNKTvhzT0ieXFXRx+7uMl5+Yyse1oK9RZyDSI5N3hoRcPpbx+Ler7wTk8d2sJwDERmT0pggF4YQAtO+fz8+fs1stl6hENT72QOvRGVrt/HB1mz7oSSo3/rLvER5/JyzLVKViMsr9TtvU0Km65g0ahB+fe7RyjjMfah/603pf0txYL1kzqoJ59+0NLJyrvqYsqrgfuXWjNqOnn1N9i3XRfo58GIlE6GOeld+Tqy5qN+4khACn7rOHL9Lvve3H8yntq/FWknFCyvCg5XS1mtvJomv1GU2A33Pz4GZ0vKUltY5pK/XOQL5XUZgPfvo8fj48fvj8dBEUVdI656pKuRGoLLdwfjihfFvt76AO19cw7LvMeegXKuZ9h06pgPtrQWjbkASKF/iIAnS0jd3WOtJZbmaYOaNLXycmIoQKBoEIXJY2w2B1bISh0TgPQN1aLVExf3Bh6di36GxdZPa/eHjhmDR2m2sWElvKRUlVQtRLeemK4S6CWoO6S/d9BxbxxTSQi+LvZXTNd4yOs0NqrdmyrIm71N/xHIe6kYZJkW9fihTr1F/l/o5APiTEl6eS/1bEUF+k3ZDis7WImWKHGzCLXMD02d17FwInmahz3EO3IxvKcQnJ5NIRkJN9sM1e+jYDhwxYWgitLdag5tEsVgp+NZaSG8mQDC2ucsC9pfbqKQNt7pwOAVtS4EsTjdhHW8P6WBcLtkoJ1YayVi2AHYRkcl7VSfCvkg6wYUbsUYdZCIc7hb156TOn4HtRUwbPzR1DWemqnOe0s+kuyywavOuqL4U+2UFR5B0cDnP2XqRt3L6twtPPJgJbRJX1MVKemgYfdMvRMQhSZAyWSupCmn5qRwEX16zNfp9KxPqW47N9DwGtbc4c3pkgWnswRjq1o0TfY44cM82krlquQl4P4fgU60nIDB9YhCkb2h4stPtrccNC7xaZ0wdk2pLDkpOeJ0rUBeGLWSvtIJRFw7LYVjc/WW5zV/giAnxhmeLAaSPTe/zF+cches+dQyOnZgMcGg7Hb3/8Dh9+eOKl6/MkJWdc1D6DC9NK4eJNcUNayfqqzWEMPk9pDdBXXzUonAObw/T1g4d0IprzjtG7527LUOf/G9cNjo5fg6SG+UOBC6FtM45/OEzxwGIOSK9SUlLYk4qyPFhynnBcfZcTCc1YKSa5pWzGIyJA8vYiUIAACAASURBVNslBvdrwbZOPn9ENVCfVzrYXy/iHIjoWiJaR0TzlLJ9iOh+Ilocfg5TfvsGES0hokVEdKpSfjQRvRT+dgWFx3IiaieiW8Ly2UQ0sb63mIRN56BzDlaFdGIXAD50xL649XMn4MwjxyWulfUmDOuP/YcPwBlKMD+dBZZche6dHEek5E/0vz//2KieHkrcROD0iX7j+cEi/e4Hp+B9k0fjnQfzHqhzvnkybrngeHzq7RPxi3OOjDY615zlwkHsM7ANJx4yKiVHtbX1L8fuF33/2G9j/YYkzllN/yjBOYRlWp2p4zoC3QrHrek6XFUXJczPX29JjwAs56TKaW7e2Z0wv+T6N8JSURVdqXCJbkoGUcqEMHaVzNGgtqITh0PHdOCkQ0fFnJ/2ZOTzU7nn0674Bx59ZT0/Ns3IA0jmkVDFSvJ1tioHIbn+VUsmSbdNz2NQv9aGcQ66bqWJtMGLc7gOwAyt7CIADwohJgF4MPwbRDQZwEwAU8JrriQiKai7CsAFACaF/2Sb5wPYJIQ4GMDlAC6t9mZ8wOscVDmkShy4U3cAVaErrzhm4j4RGywnqZxsnaUKBrQlVTw6CywXqR7yWE2azp3M3jkp8NDm7K2NBE4Az4UWGgDwtoMCZdt+wwfg6nOno38bL18d1dEP/VqL+M4Hp+CDR+yLQkEqc+2z1mYL7mNfL6ErNHWYRFUmcE5wujjxso9OM4qV9PoJkYAQBkfKWP6/3z4DcOaR4zB2SNIrWx4CXMTOVwcRz7V0e5IA+RgrBQQv+K6KwtRxnDJ5NG793AmRSbDaJadzIMTzRx+enBsq96xbSCXaUt6nRDejX1NFe64EOi6xUluxgK46BshTW9LtEQ42WPg1Ak7iIIR4DMBGrfgMANeH368H8GGl/GYhRKcQYimAJQCOJaKxADqEEE+K4K3doF0j27oNwMmkr846guccYosILta/Cjk0VTbJtama1AkhsH5bJ2OpEdcBYpZWn6xq0DHdtE3Fa+t3YJ1mAcRNfGk5tGzDDqWsukcuRVQ+nIOpjs452IiDa5xH7jcMpx0+xlpHRfRsK3GkIKJkSJSBoZkzN67xw/pj9OB2nHDgcBwzcVhKJODiHGTqWB1yTv7y4SXW8X/hPQdbf1f7NEHOO5/wGUA8p9QT+d+/8q5IRAQEB6WiNr8B3pRVdZB0EYdqZO4mZXEcrDG+b+6eo9wnBp1zWwsZuajgumyD1g8YKqaOG5KprVpQrc5htBBiDQCEn6PC8nEAVij1VoZl48LvenniGiFECcAWALzNWB3A6hyKaVYTsOscdirevVxyEzUA2I1PvY7nV2xOJQfSF2PMOfBiJSGADTvMuXbnLNNpuIn7CTY6m5WkrzOQDD/tJg7mzeZr70uGHqkIfkH949/fw14/RnOmO2o//9DghQQRD74TgOs+dWyiXjA3kmNa9IMZGDW4H1qKBdx0wfE44cDhyVOf4I0ahAhERPI796ylNdltz6xM/aaiX2sRHf38jQ65VyDnnU53pdjunZNG4IpzwqRBFI9X3RDHDOmHtx2UFEVyccg4zqGgEctkG8Gnyj37QNbqKlXw5vYgRIXkjqN2JedQtBMHUUn/9pOzj4i+txQKKQKkHjIXrzNzOvbR++RwbxzqrZDmdhRhKbddk26c6AIimktEc9ev52WOLnBsdXRyoOTv3P4oF0Z3Ka7HZYxT2fj7FwY+CWu28JnjZJdSKZlWSAef5YpgNxuJ731oinG8ibGFIhLbxMsiy1YtfXTInBW6QlfNRz1iYFIUJITATU8vT7U1QcuKJTGJMZ/0hapz+Mtzq8KydL0CpS28UqaNGnck83foeCj0UXlzeydMqWONOYUt92Ctw8jiJVRd1zCFi3ttfcBZfvZdB2F0KK4jxM/HbaEWfKrPbdXmtPkyheuuUhGpTTYWefFitnTAwuBTvofP/n4uzvnNUwCAz7zrwES9eANKiwXVZvXw6gAS3GlrsZBQZG/Z1Y1/vTk2F/bN3Cch4y356PIaiWqJw9pQVITwU3pkrQSghv8cD2B1WD6eKU9cQ0QtAIYgLcYCAAghrhZCTBdCTB85Mh0J1Qcs56DoHFycg7TUsCUuCcqCz6seeRWPhcqzEYN4ZaLcWEuRKavGOSjmfjZ76n5M1ij+pEaRuMsEb9pgaeeEA4dHJyzdUeg7H4wJmS4qqghg3VYzh6SjloQosus1m3dFxIG7+13dZXZjU6HL9WX+Dh0fOSpgmnd1lY2ip48dFyjeD/QwXfUh5JwsXuLUKfFG96Ej9k3pMcYP6x/N8QIRK1bi+0yvlS0701Y9UuT4/TsX4PwwzIyE9DvgDEGOO2AfvPbD05N9ahkdHl4UHyJVkZaq9+GszdSnFDnoGRxk21qSfg5XPfIq7nxxDVvXB88t34wtu7qbarbKoVricAeA88Lv5wG4XSmfGVogHYBA8TwnFD1tI6LjQ33Cudo1sq2zADwkGmmvxbQsN3xdrsy9U8mCOhdG+Pnrx16LykYMamfrpDgHTUylylt157SZx8S0mCNSvzjnSFzwrgMxZd8Opb3wpGZ5yr5qH90qS4Vu+eVSTKrX3TQnzTmYoBPMLLOHC4diuvVHFtm5VX0DM3EFE0MrnnJFGEVPozr64d1vGYnBTJRXHT5vKrllxmgtUoIjKxQoJdJrV9JgJsVK9gctbythHsrq8YJndd0Ty1K/DWoPRGZcZGKTIyjAzwFV55fkHGLI+xw/LH4mnCmruuHrYqV6bF87Oku4Z96aRNnPZ06rud0s8DFlvQnAkwAOIaKVRHQ+gEsAnEJEiwGcEv4NIcR8AH8EsADAvQC+IISQwvkLAfwWgZL6VQD3hOXXABhOREsAfA2h5VOjoFL/o/cfhme/fYpiYeTmHOTmzEUUVcEpTlOWNoq8e9biN3HjU8GGqDvBqRY1n3r7AYnfhihiAC7o3IR9BuCbpx2WGI8kgjZLGF/9tGyLWw9Ce5auqK8SFSFSinUO8iS4XBPBZImtz51Is53zlOu0Dcy08Uc2+0IYRU+yPZ+NxkusZNg0f/2JoxN/F4lS4sb2lmJCBCPb0nVoOiIRrLJxmnKkmO7y32cckrgu4f1vIw4Arp21NPHbAC0QoW3O3vB/jo1McR95eX3YNz9/dbGSrrfg9BguJXWxQPjiH5Ke7B86Yl/rNfWGU5MlhDjH8NPJhvoXA7iYKZ8LYCpTvhvA2a5xNAJtxQL2UezG9cVoC9ltCj8RtcWU6QQjYoGFSMQkMjnBlSsiRWC+qFir+Oa5KZCMQmrTOfhzDiZTVp1zcPmQSHDD+ty7D0qV7Td8AJas247NjFerL+RtlusQw0hVbgNmnYNqlhkQEFN7gbhl2IDWVBRerj0b5PucszQpsU1mlQvmXlq3UojfCcWHkP+dbefu5KhUDoMNSQOzollu6JFotWJfn3JNbdrZhe/fuUBrK9YRqQRJbUaOY+TgdozuaMfSN3fgtmdX4qPHTNAOjvH3Vk2spO/7nG6mmmirDTTiZNH3YitZTh665zA3kSXnYIuRFDRmJiwumJzgAge3eHxTx3UkxA6+7cuFUQ+ZZmT5xLR1yUfiCJK6zsE3qGFcP10vIm5CL7cOOQFOuSoX4U2fOT4V+MzeVqwbkp+2A0a5Yq4T1AuDGjr63bSzy3uMTzMWbYk+C2mT3faWQkT8C+Q/zyLOQSG87KHJYuYc1wk+XeszEmUx67OfEj034BxCUZkyKnWORjrAKCdKeo4AwSEzKVZK9suJ31xWVz2Zx0GiTxMHfY4TJW2ZWZFA0Y9z4CauLvZRWWAVumks56gFpENcZDvt28VKsp5rjlLIOahtXfqRwzFj6tiEYlO3VrL5K3Drho/2GdY3xLnygcqVScieTjhoOE44yN+qWhfdmBTSqlmmyZQ1aC+0BHPcUJaNxDVFiopV1tRxgZ6qpRhzDgTKcAgJPktlflNV67nEZ95ipfCTO5kPG9iaqChr/O3FOEqtOozIiqtQwFOvbcCLK9P5ReTvlXANFBni6uIcPnbcfliwZiueU8LdNzPAngl9OrYSN7nKjpOJ3OC5kNcquJg3uthH1tDnQUqspERlVeeZrpw2JbrhxqbnfWDrecqyhUgu7gFtLSmLF10hbQPLOTAvQ3JvtayjWC5e+2LUgy2aHNxUs0xTnaA9KXqqw9goOUYTAs4h6JdAGDU48CGJiAP5iy+5MBvcvXKhVbg6gM45mHUOOsH84BH7JkyPCYg2g4VK4L2EZ7XCOcy8+inj2FpbkroVndBxIkt1fK3FQuqt9GB20Ah9jzhYJhdpSlP+1Oepc7DImtX+9DEBjCmrnPBC4FePvpoai17PhcBD2n068WlOBjBzciHMicoEnnNIl+0OjQL06tmslYJPNfBdtY5Hsc5BROOwmUO7OAcpbqmHiIFLNWuvF5xuowxsivd4FgdJAOh26gncRgSyrSdfjZM28VeEBEl7Zm/Rwk6onOx7lRD56lWfevtEAMC0CcnIun/+/NsSf7dFEXQr7Lg4sZIeHFM/iPWk85tE3yMOyveUAw08/Bx8iQNTltZxpMcEpE/Jchy6nkPnHHzFSpII+p7W7G2lHer40zIfK58Dt4FxXFFEHCwLySWuiE63ysPw8Zv404UnMG0Fn7IpkymrnAcvrdqC7Z0lI1GXYU5q8eOQkIYMrrwDUuRVrgiUK5VUilQZoVbFnV96B9sWd4rnbpXLLw4Af/h0HI5D9vn8ilj0wr1bTpQFMMYgCierjk9tU8Ys20dz0tQ98OMgibGuSQVH3NWylgKl5oD6+7veMhLLLkn6czQDfY84JHQO6Qnj9HPwtFayKSJt7dva0uO36MTGFUBMbU94cA4+rIM0UU1uAO57t4EjWpxYaXeJP6mpmfR8Tt0FSj5bV/a1/zpjCo7en/OKT3KCgcjILPqQ2ezsOgcRKXT/TQszkgXtoTJWtdj59gcmp+qpDpcq5yDnChGlxEodBl8MeV9qSHabKEjF/V99F96mRAbmEgxx01c2pRNBzviEyx6YOBxKQulYJ60a4dWnHOcTlSAORbLGtfqpEqqjmehzCml1KzlOC3shT8ES7AYfUnm3tVK6yLR3uy01Qs6hbOccvH0TgDC2Uu1iJSDt0cyL1JJ/c/Go4vbsJy29TK8+sD2e1mUhnJNcD7joJCjGzTz4lFeXy3wUXVNgxVR74ViEAL763rfgiydNso/LgjYleZAEF5NJHn4CzkHEcyxSSFd/yDHV5eJu6c9EbtRqLe4tcV7ZAG8MwnEOUpSkXqOuk4vef2iqz1ZdrKTdyy6GY1YJTrFQSC22ckVgdEc73nPIqMyRhuuFPss5/PoTR+P8dxyQ+E11qQfMirdigTwU0vx1en9AcpJzeWrlvNYJUmoBZZAF68ptDi7uSI5BAFi/PSYO0nnINjap6JS4/6vvwnc+GJxkOXHBakfoChN8FHsFyiZWMjuthe8z7LO7IlgiqD8LU0rWAlH0zn0z85nQHoZW2dllzzugOuiVyiKyiLOZsposzyKOlzETViEzGCbKtGqcsyIrVgo/9YPUqI70BhsRcREksFp2yek4UhEZ6alaAST8oiTkO+4uB06NW3clnzEnTi0rc+yso8azYiWbD0wz0PeIQ/i5//ABbrGS4excLJCTczB5giYLwjHppwimPyA94XdrXtq+YbelEjmLI46JtZVmserzOGxsR6qeeu965jcAmDR6cEQwuGHpuTB84aPY0zkH13MxzQtdIV0qV6LQ28l6fuLAAsXv3MZp+UBa6uzoSuch4cZW0TgHSWSJ0vJxo84k4kIq1rpSt8Jdq/+dzA2dbkte1q1ZSJ2uZBCU9xFZlVUEuMeritgkdjC5y+U7LpUruPbxZbjrpWTYi51MNAU5L3/2z9Ow3/ABrFhJiOY7vqnoe8QhYo+5E0ycQxkwy+RbCoWqrJVMfg76GHTEkWCTfeonEnXh/ceMQ1OhEeJ+AwWglLOr1hoc3j91DD5y9Hj2NyGAF1ducSo6E5uCcTMJPtmwyZm8F2L89blVzjpdpQr+sThOOerylraZngLxpqXK7FXoZTbOQc4zjshkgSQuO5XNbZ8B6VOwelouVUTk13P0/sMwsK2Iz594EIgInzg+1uuYiGWkHE5wDmzN1EavV9OV/QDPBcmxqFGTv37KW1KOpa1Fighv2fSeFBGbxGZD4EAgILb3L3gj9fsuZpxyjkWhe7Tud3dXQnPinkPfIw6KSZ6OIHSAYtJoOEH66BxY2ar2tLnJx6U/lPPWyTkonR4+bkgi2qY+NiFizuF/PnYkfxPRuM1TVI73MWVzZdtQxmZqLU68k/4ta8IUif/867zUc3Jh+CC7jNc0/uUbA9HX3NALuVQ2iZWSf+uBFtWOuuvEOXDc58mHjUrVKyhiJdVaadjANsz//owoHau6mZo5h+DTxY0H9eycQ2RSq1R7etkm6OA4B9UzWmLc0P5YuSmIyVU2eKnHyvi4bDvDOUSm5gYiw3GicngtBuLw/TvnQyCbIUe90feIg6JY09FSLCQ2fRNx0Otx8HmpciL98J6XrfXkpqn3qY9P7dJmuSR1Dt3lCga3t6TzEoR4/9SAuPg417mfh/rdftJUnZIkVFGVqjT0waHfvjdT/WMYsZcK0+N4fElAIP/0bJCgp1SppE6sQJrY+ukc/JfqhSem41AVmTnERgBQCLSJ89HHbBZ9hDoHj+itKc7BoHPwjYGlEkEutezgfi3Y2VnG2q27MWfpRqsVlUrc3jc5zWWr4ieunTJz/9IizuSEOW/VVquDZDPQ56yV5CvgHnprkRIvySSvVhXSWTcqvR0fxJyD3X5a3cTtxCHQOWza0WVVdMqw2j7jdNVQY0CZJrxcKA8vWpcov/Qjh+Oj0+PQ5BOG8Ul/mgWXGKUcBjXsLotUhF0gu+EAYCYgHPoxxF5uYC5xqKRBc5ZtxLbdJWO/Krdjfp/Bp8tkWo/Yy7Up27IFIFSvUzmH8UySqGIhiD771VueBwDMW50OjaFy9geOHIjJYztw3IFpgxFVWc4SB+b+X98QcC2SI9SjPB80ciDe3N6Vcw7NRDwJ0w+9pVBInDhMnEORYhnp50/kc/iarDL0dnwgN2ddrq+zq+qJ1LahExHWbu3EX59fbV1s0kTPZ4K6rLdGKeZ4tkBzALBtd5J1nzx2SOJ5NnK9XPZRD5tyQ/+x6CP2++BO/Pp7NynAEzkDMoiVuLq+zpuyzy/f9Fx4Hb9FqETD5uENJO/v0+88IFWPkN7008Yi6T72YzZ9Yk7iozXLODm2SkVEz4Nb66r+xe7JHnyaTvqcSPTz//tsog/9vZx55Lge5xz6HHGQ4B56S4ESFHyUwb646LEJs6X6aSiDdRHgFiupzdmJg1e3EXHwkWjs7g7Gdv3/OZb9vV3JUufiHEx5hPV6jcC+Q/s76xiFKOEPAvGGyL0Hfb/lxA5qe4BdIX3GtGSc/1pCzfuGZFGJhtm0N/hU5+n+w9Nmzi+/sS3dvsc7/jwjPpNXqWvFZBRQFrE1FutQRxRZMJq83QFV5CUwb1VSJCr7MUGusbRXdTAmVyysRqLPEQe7zoGwNTy1XnzmVHYiA37EgVugnOxTxzdPSzvZyKZ0Mzrdk1ft07a4fCUUbeEJ1EZovn5K4LXbWSpj0qhBePdb+PStyZO/XSyjLxQ9a1wttOFsxurqQMUvw0uEZhiAnC/9WgsRcfDxczBxDmo/NoX0ZM102Bayw6Ub0u//DUPecx+dg2/GuPmr0zoml3HWWUePxz8dlX6XciiqBIAl0KH5smlzjq4N69lCq8viG59ajje3J5NUFQtkNY3mos0CgW7FlgiqGeh7xCGyVmLESsoR+YjxQ1O/R/WUN2aSyXLz6P8x4Qp8ICfQxh3JuP1btCQ3CeLg0Dn4wEesdPT+gdNQZ3fFmvqTDN+5cek6x/6atUkttt+jO9IihiOUwGqmx/YZRRxi6v2/zwzyVxw6piPahDllv/5uTOE61Go2zsHHbyLSWznEf3pbr6xLn+r1Phz6aKfH+Q7G1NPFOfy/D05m51tkyqoQB26NFguBWImzglIho9RWKm4i+NKqzanfipROu5q8NvhMcQ4id4JrOmycQ6sHR6D/ZnNgUnH4uCEYytiV+0D2cd+CtYly/ZRed+LgoZCWC6azVImIiavPrGIlNRwG4FZ+28D5SyTNMvnW1dAVpvEPDsdZESLSwXDcov44N2znk/X46hx8xG6y7NX1O4ztAOl3rR9AuHounYPLEZH72eXXYeLCOYW0TawkOTIT51DwECuZ1se3PzA5NI833YViwKt031oMuA0BM7fSDPQ9ayVJHJhnrnIOvsTBaM2hTe7+bby5qA7WOY/pYvY3T07lTEiasnp1Z4UP56D6YFg5B6UJH8WeigHas6tlwfAbkXuj8zkpRzoHEXBSQFLXYupDzwsetad8txFe/UTr43hngj62C9/NG1wkn5mpreCzmpDjLrFSm2OCSx0YwBNWooAbaInCg/BQxUpG/aLh/s9/xwH4+QOvWK21Ii9tpU5LoYByWXIOPUccatpCiGgZEb1ERM8T0dywbB8iup+IFoefw5T63yCiJUS0iIhOVcqPDttZQkRXUAOfSGyrxIiV6sg5qBPysLEduGKm3dHMBm7DGt3RL+XckxyXvxjChDbHqQpIKtVtOpVMTnBad3q7+vAPHMnrhjhwd5KVE7RFUQUCa6VOT7HSjCljcMiYwdb2ALspq/4TZ+jgSxzUeoeOGYx/OW4/Zz2jaW+UW8Gu5zjzyHHW9tm2Te8g/FSD3Zm8nytCROvUKOosSOLgFiupy0TGCeNycquII8PGZS3FgKsRe4G10nuEENOEENPDvy8C8KAQYhKAB8O/QUSTAcwEMAXADABXEpFcOVcBuADApPDfjDqMi0WUN5Z56AlTUMtb8VHGqQl7/mPGIRgzJC3r9oW/Xbzf+L0V0uGmbJvcalu205zaJedlqralEqOlPzwtfTJW/r7knw7HrZ9N51YwoVrOIYtvggBwyT0LAZjESkp/lhU4a0nsdW5zgkvpHCxiJRfUbmyirOQaMI0r+Fyx0R408d9nHMJca+7byjWEl6l6DE5EpVsr2TjGSrhR+1grSfzzMRPC6wv2WF0M5yAJSmA+a7600WiEzuEMANeH368H8GGl/GYhRKcQYimAJQCOJaKxADqEEE+KYOe+Qbmm7rAxuL6moD4mqOrC8j21meDrD5EYv2Vh+5rQuiw5gCRxHMSEgObqzV7KJ7mPPE0dUTwn7xtb5xx7wD7OcBcqOJ2D+jxMm3VSZ2J+fjIHw8OLgrAiHOdQ8DhcAMBpU+PwJzZrpbTOIV2nGrGSbd4lTVlNcjavLtl+bOO16l/CTnd22jkHmdNE3ocxAjPFnINLHKqGaZF1iwV76Bf5i7rEWgqxKGtPNmUVAO4jomeI6IKwbLQQYg0AhJ8ygMs4ACuUa1eGZePC73p5CkR0ARHNJaK569enYxB5jxgGzsFToevjraouZt/NHQCb0J60t3SoQQzhy/n4ximSxMHOOcT9mEx/AT+rCzl8edIaw1gW6X1mJbztzKmzxeO5JcUoZhQoudB5nYPSruXBqFZUNgWtj87B9zH5iNiC8ajcFl9H30yvOIcXrdrCeHAYPshs2MGZspqslYA41IlJpyPT29oU0nL8uxTiIMdRJLufw6QwfameG7tcEWFsJeOlDUetCum3CyFWE9EoAPcTkS1IEHebwlKeLhTiagBXA8D06dOrisRmM2VVS+wyXg/OQVnMviqUed87FYPa069EnVtHTBiKP1/4tlQdfVw2cYXqCDXO4vTVFhEHc1vqY/LVOZgR1JGWJnqu3qgtpRvTBnbiISPxyKLkAWLKvh24kPFoV0U2ZrmyMkrLrZAWYZR7JurGZ1v8qk7JdlrW2zCdlH3gSxySCnq+nl76oSP2ZevxjoLmvrlosqY+Te3rZbdcwIsmCxQorssVPqufrAMAY4b0jzy95fMuFHhT1iPGD8GwgW0YFR6A1PfTWgwiNQiBHrVlrYlzEEKsDj/XAfgLgGMBrA1FRQg/ZaCclQAmKJePB7A6LB/PlDcENlNWSmyu1bG1Er6L7MqPHRV95wgDkMzYNaC16KU09Q3xfN2njjH+pqeI5PtUJ7W/6INvK/jsLFUwpH+r0VvZh3PgLIB+dNZbWasxHxPmhBOfjXegpOiKs+BKiLEsDyZBHGzmxNp4pO+JCvW+Rgxqw5xvnsy21eppsaeuASPn4C3K8qoWwXbY4sbMcQX6c1dFlYn2wpN/pWI2K5V9Dukfr9NYrMRzDl1lkRiXNKq4/J+PwOB+LVHCoD1S50BEA4losPwO4H0A5gG4A8B5YbXzANwefr8DwEwiaieiAxAonueEoqdtRHR8aKV0rnJN3WELvJewK8+wGDmoL972gn1OdEQUiZK4TFRcWza2XJ2sNj2BpC92nUP83W4hZfxJuT6o1FWqeFvnmDYw7v4Ht/O5jls835WE7ZUVCFipKGBdymHbRtdPEUnZfUji78suOZ0V76nPadiA+MSqoxqLPR9uywZfIhL3Z/6Ne0485+DXlzz5d1cEWltM9yk5XlU0FPetK6QffnkdFq7Zii1KPKmBYTKr9pYihg5oxQMLA5+mPz/rzkfSKNQiVhoN4C/hxGgB8AchxL1E9DSAPxLR+QCWAzgbAIQQ84nojwAWACgB+IIQQgrpLgRwHYD+AO4J/zUEtmQ/CXNFy4TlPDp1JE5WNeovgHiCW4mDh2IVSOocbMRJWiDa/Rz8OAeVV/vtudPZGvEiqzicvtxEkLt/Tv4P6KdgH5Gh/eDw/IrYU5ZrrpggDuZ+1I0uixMcBzVSq+/7tNXzm7e+nEP9jsc2X5tq+pQn/1K5krBAVCGbeub1TUpZyDlQWqz0k/sWAQBWhPkkgPgg0FkqY2j/eI0v37gTPYWqiYMQ4jUAqRCWQogNAFieVQhxMYCLmfK58rNsnQAAE4dJREFUAKZWO5YssCX78VXoPrc87Savo9XHmgP+ClVJ1OycQ/zdJlYq+xIHi9kvd71vsL+JTI5ptU5nqYKOfvwpX+/TdJ/c+zOZQLZ5ilKiPjPI/7n7UA0M7n5pDX5iSMGadLb0V0hz6FBFHp7vqVYdkq+eJovBhgsthSBYnis7rE+cMyAYWyl0SDO9d9f61g06pEe8ymlIq7bO7gqGDjDP/WYiD5+hICkiqW3CtnhaK/n2s60zYEFtlhq+CumySLO/HGQ1Hw9pAMaTld7GwaGFhqlOV8nOOSQ5PL4O91xNnENSBOh+HzbxWZCbOH6+nPhGnQ9c8nkJ9XTuo/ex63xUjsBYLXH/piRQAPDGVj4gn6nPJy46ydxnxl3IdjgjIqf3NOCOTivx2ps7opzQKzfx/houTkx/d/LZqXGuZFa+KfsOSUQ++PnMaV7jbAT6HnGQX5j3qYqa6kkcbJPftx8ZyE3KJjmok9S2QLzFSuGktg2RfDmH8HN0h9knISIOZZfOwX2i5k7Tpmfio1xN1HecvF1mdNV4K9s4RlnLtSn+5+mHOfv35Rz0IJAuZAkcWCtU0dIPPswLJHyJg4rnlqfTkgL2OdNSTHMOUoT09oNHRGXvmzIGC75/Kg4fPyRhiDB+mDuEfKPQ52IryeOwS+eQJfMWhxZPsZLvuohyznqeqG2iBnWu2kQMlYycg31swW82Zb7c24RwiVGUdjNwDiYvYxvH49t2NDa4RRq+71x9BjaFtByPK5Vo9A48dQ42+f0BBtGgCjU3iq2teoqVgJhITtm3Ax8/fv+6tWt671ajDkorpIf0b8XE4W0pv48B4cHPNwxOo9FnOQeXtZKPHPf8dxxg/K2eHtJAHPbDdjr0PYH5ipVOP3wspu8/DF94Dx98Te/Td0M311Ha8iA0tj71DeeQ0bzjIAC8V8kL7OMfaOVqCsR6YdvGZqznOW/ks3IdaOTP/TwDJM59nT8pA2afBRWqU5geJNLUZz0gzZVtz8PXEVSFaX2NGNRuvAcZfkNFqSxw9P7DjAQ/GfE28zDrhr5HHCw6Bz0NZy1IKqRrb09OMGuMHc+OymU/sdKQAa247cK3YQKTjpG73kdcYds4kyGq/Yig2cY++ff3zphibG+fgW2RN7Yr3zHgJz6r9noVvtxrFB/IRRzC30cYMhwCyZSa23ebrfJ8Dk8ynMT7FOJbbVtZsO+Q/mH/5vU81iPjnw5jHLViwSiCk+E3VJQqomYn22agDxIHs4f0zU+vSJXZ2zL/ltU80gU5v+zmor5t+REHH6iXWxWi4bbpGxDQ18/BtGD1Dfh4JjG8iu9+aDKGD2zDCI84TS75uStEtW8+bFt8LG48LmIi+x1scLYEgGGKbsOkwPfFfvsEoqcTDxnlqOmHDov4RsWS9dsBAIvW8omKAOAjR7ERelL40Vlvjb5PNTjKAeZsd4VCOnlVqVyxHn7Kjii2zUKfIw42+LKacpLquXtV+ET6zIKKh1hJeJx61bYAf7twE5K+FTZxS/DpK+92iW5cyCrHnjF1LJ759inW5yHH5OKQpPHAJf90uLNfm77D2wfGI52rCl8Os5/FWskHk/ftwJxvnYxzjp3gruyBx/79PV71fB1Lfeb+/2/v7IPtqqoD/lv3vhdevkggCUkIvLwYIJAPISQEguFDpsQEi6+olXQkCcYOxrFF2+m0QSttZbSRqShKO5GpyWBbpeNox6iIolNkqGkDqXzFECDIVDAWU01MAiS8ZPWPc857J/ees8++9517zz289Zu5c8/b97x91zl737P2XnvtteL96OPXpmdyTLunXZXKYMjyfYeOsG3P//H6cXWaTeMurp4/6ZYw4hakh/I51OP7o9n+sd/h1aPHThhl1eLrxeNL1ElcI47Iy+HsFFfRiGhku/nGxcP3yvJUgtHMwbW+Fr//vlnlUr+vBTPzqM6sDXpR0DfXbGXsqCqHjx7jjuuT9ziAf7+JFEzm+WEn8lWcw505AJw2vvFQ9WmDrqwF94jxPV11uZyT8DEjx++py1OwqyIk+W9VKkL0rH/Ppm08v+8w1Yo4FX9W/ot2MfKUgzMqq18dPd3VukQ7LnyUziVvOtX5+ck9XRw6MuA03fR0V3n81uVO7wlgsLPmMaPxic4Z/8zX88md5jRbrqMD+Q+5AgWXnhEsOGdo5OdSIt1dFTh6jAt76+MgDZ7j6alS9ZjRwNCgwLeff/Sa85yfv3/ZLM6Z6h6INMr9H7ks1XlguB6EtUTPgmsdi+snbIx1hRMJ+/Unr5vPqot6Y+VDFonn9wUpWo8dV6dpMs1E1W5GnnII35NcKlvlNpZHn7712rls/O7TzsVhCBaRszg++JDIQTnEdxd7uOzmEYrDZwHzaI7OBRHRYnrWZr/oIexM7Rm+Z5nPTp/Qc0L+6iS6Pb2Vjg8OjPza/bzp6TZ2CHIk582oasV7HSmLL61NDtNSS79DOUR9Omu9I1Ii3ZVKXdDNpDUo1z6RuFmpzxEGv9WMPOXgcFdqldvYWMcCYDSCGJ0xE1kxfzor5k/PRZ6os+Zh7oo/xGdnmLMga0Pd0LF70TdbrokO18lmiX607qRGQ8fuzXJywnsaP74lOXpqnKgds5T90KbGfL2l8sTV7r7yRL9x3zAUFztm7ZF+H+8I5xKclzx7S9ohDe6d8XGzks9gr1WM2AXppN9HqzzIXN4hi2eews1XncXt7063PefNsQYfEi7io+OpKZE+wW9DXXzm4cxk5yF33+SxLYtRkxZaHfzdcfPsatF+Alc8KoiHQ/GrN4/BQ6O42t13xhM9il0zNxja++J68EftOSYh1HvSebWmxO6uSuIsdvSodNmiQUhaUq92MQJnDsF7O7r9bf3z+PYTe90eOhXhT5fX59BtJcdznDn4juaOeZiyTjAr5eAHPmfq+NSUpM1w7rTxPP3Lg94eXj6msawNcz5EO2uTsgjG8QmkGKcI5eDTn1bG0qcmEdnss5TDd25e5h3qJGsxPJK7duYzurvKawmzBJcJdiBUJuscm2zbwchTDo5McL4JcnxZvbSP1Uv7cq0zD6KZg29Mexe+o7lBk4ZvzCTXqNvzmZX3st69N13CL/a7A87Fu5CrP33quvl86r5dnOLIaubLBWdO5OsfvJSFsbSiSUT39HXPBc+8w1p4fWeGcnjir5dnmmD/+Kqz2PCNJ5k5yb0+5+P9VBl86LvlSjMrje6unrBTPML1u4laxyeAYCsZecrBMXOYMLqbl/a/6r2QVXbauRPTx6QRD2XtcjP0FfvKOVPYnuPMYeKYUUzMeJjHd5+7Zg7L501j+Tz3CLgRkrK/1RI9VF912LvjNJqEJw9c7qKQbToDWLWkl+svOjOXndeRgsxSWi/tDyK21pqQxoyqOtcXktiw8ly6qxVWLsivfzTDiFtzcMVWika30ycUFwmxHdx5/ULWLJ3Jm89wjzQbIevH47MYGv/sm4+lZ4r1neGtv3y213l58osDQzOLvMNCDJfIbv7agPthtS4hxWq7SErj2gx53XtfN+GIn9ck5+nprnJk4Div1CQIc4k3edxJ/O07FzhDpreDETdzWDl/GudMHZd44wdHt29wldk7aQyf6M8vt9KWGy9i9hS/jXeu31jcjOGaxlcrwgsb354pV6US7II92kR45jciK+ZP47pnZvDnK9xrXLdeO5dbHbuBW8En+ufx0DO/aut3+hB1SV8T2zk1ezQiZXf+33z/hPL1V7R/4NIoI045zJw0NjHHLkD/wtO5/f7dTe3qHMm89dzs2DnRIu4Uz3u76YZFw5IpYtuGqzh0JDuta97ccElv9kltpqe7ymevLy55jIs1S/tY04Hrc9Fm16zZ1oN/diXbf/Zrrq4JMrjn5SDOU3yd5wOXv8np2dcpdIxyEJEVwJ1AFfhHVd3Ybhk+eMVs1r1lVkO7nw0/5p0+gY3vXMBKx16NuBfQ+RmLq75MGncSkzyC6eWN6zqN8hA9xCc5QuVA4DqdlP621rX16dtWlOb50hHKQUSqwN8DVwMvAo+IyFZV/Wmb5ShNw5WRVUvco+lqRVh21mQefm5fbrbnoohn+TLKy4yJo/ni6kUs6XOHt0mjdq2iTM+XTrGuLwGeU9XnVfUocC/QX7BMRgH8ww0X8rX1S50bzQyjnbxt3jRnkE0X1ywo7wyyU36BM4B4MoUXgYsLksUokJN7urmoyVFaJ/CVP7x40K3RMC6dPZkXNr6dXx54bdjh8dtNpyiHJFeAup06InITcBNAb2/nLfgZxqVmTjISmDah8xega+kUVfYiEM8IcgZQ5+iuqner6mJVXTxlypS2CWcYhjHS6BTl8AhwtojMEpFRwCpga8EyGYZhjFg6wqykqgMi8kfA9whcWTer6s6CxTIMwxixdIRyAFDV+4D7ipbDMAzD6ByzkmEYhtFBmHIwDMMw6jDlYBiGYdRhysEwDMOoQzQh+XUZEJGDwO6Ej3qB//GoYgJwIKfz8qwL/K4h7+/M8zrzbIMirtP6UOvOsz7Uuu/0rWuOqmYnqFbVUr6AR1PKf+X5/3fndV6edfleQwu+M8/rzK0NCrpO60PFX6f1odZdZ+Kzs/b1RjQr7fc871s5npdnXeB3DXl/Z57XmWcbFHGd1odad571odZ9p29dXpTZrPSoqtYle04rLxNlvwaTv3jKfg0mf+vwla3MM4e7GywvE2W/BpO/eMp+DSZ/6/CSrbQzB8MwDKN1lHnmYBiGYbSIUigHEdksIi+LyFOxsvNFZJuIPCki3xKRk8PyUSKyJSx/XESujP3PorD8ORH5vIgk5ZHoZPkfFJHdIvJY+DqtTfKfKSL/LiK7RGSniHw4LD9VRB4QkWfD91Ni/3NLeJ93i8jbYuVtb4Oc5S9FG4jIpPD8QyJyV01dHd8GGfK3vQ2akP9qEdkR3ucdInJVrK5CnkMN4+PSVPQLuBy4EHgqVvYIcEV4vA64LTz+ELAlPD4N2AFUwr+3A0sJkgt9F1hZMvkfBBYXcP+nAxeGx+OBZ4C5wO3AhrB8A/Dp8Hgu8DhwEjAL2ANUi2qDnOUvSxuMBZYB64G7auoqQxu45G97GzQh/0Lg9PB4PvBSkfe/mVcpZg6q+hDw65riOcBD4fEDwLvC47nAD8P/e5nApWyxiEwHTlbVbRq00JeB32u17KEcw5a/DWKmoqp7VfW/w+ODwC6C1K79wD3hafcwdD/7gXtV9Yiq/gx4DlhSVBvkJX+r5XTR6DWo6mFVfRh4LV5PWdogTf6iaEL+n6hqlLBsJ9AjIicV+RxqlFIohxSeAt4RHv8+Q5nkHgf6RaRLRGYBi8LPZhBknIt4MSwrikblj9gSTqU/XsR0VET6CEZF/wVMVdW9EPx4CGY6kJwTfAYd0AbDlD+iDG2QRlnaIIvC2qAJ+d8F/ERVj9AB99+XMiuHdcCHRGQHwTTvaFi+meCGPwp8DvgxMIBnnuo20qj8AO9V1QXAZeFrdTsFFpFxwNeBj6jqb12nJpSpo7wt5CA/lKcNUqtIKOvENnBRWBs0Kr+IzAM+DXwgKko4rSNdRkurHFT1aVVdrqqLgK8S2IVR1QFV/RNVvUBV+4GJwLMED9wzYlUk5qluF03Ij6q+FL4fBL5CG00dItJN8KP4F1X9Rlj8v+E0OTJXvByWp+UEL6wNcpK/TG2QRlnaIJWi2qBR+UXkDODfgDWquics7qjnkIvSKofIQ0FEKsBfApvCv8eIyNjw+GpgQFV/Gk75DorIJeE0dA3wzWKkb1z+0Mw0OSzvBn6XwDTVDlkF+BKwS1XviH20FVgbHq9l6H5uBVaFNtZZwNnA9qLaIC/5S9YGiZSoDdLqKaQNGpVfRCYC3wFuUdX/iE7utOeQk6JWwht5EYys9wKvE2je9wMfJvAYeAbYyNCGvj6CaK27gB8AM2P1LCboSHuAu6L/KYP8BN4bO4AnCBa47iT0oGmD/MsIpr5PAI+Fr2uASQSL58+G76fG/udj4X3eTcwbo4g2yEv+ErbBCwSOEIfCfje3ZG1QJ39RbdCo/AQDvsOxcx8DTivq/jfzsh3ShmEYRh2lNSsZhmEYrcOUg2EYhlGHKQfDMAyjDlMOhmEYRh2mHAzDMIw6TDkYRgsQkfUisqaB8/skFrXXMIqmq2gBDOONhoh0qeqmouUwjOFgysEwEgiDq91PEFxtIcFmxTXAecAdwDhgH3Cjqu4VkQcJ4mC9BdgqIuOBQ6r6dyJyAcEO+DEEG5/WqepvRGQRQSytV4CH23d1hpGNmZUMI505wN2q+mbgtwS5Nr4AvFuDmFibgU/Gzp+oqleo6mdq6vky8BdhPU8CfxWWbwFuVtWlrbwIw2gGmzkYRjo/16G4OP8MfJQgccsDYZToKkFYlIh/ra1ARCYQKI0fhUX3AF9LKP8nYGX+l2AYzWHKwTDSqY0tcxDY6RjpH26gbkmo3zA6BjMrGUY6vSISKYI/AP4TmBKViUh3GK8/FVU9APxGRC4Li1YDP1LV/cABEVkWlr83f/ENo3ls5mAY6ewC1orIFwmibn4B+B7w+dAs1EWQkGlnRj1rgU0iMgZ4HnhfWP4+YLOIvBLWaxgdg0VlNYwEQm+lb6vq/IJFMYxCMLOSYRiGUYfNHAzDMIw6bOZgGIZh1GHKwTAMw6jDlINhGIZRhykHwzAMow5TDoZhGEYdphwMwzCMOv4fp08O1Co7TIwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ " sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYZFd9p/+eyqmrc5iZnhw1SkgalBESoERYwBhb9tpibWxhDP45sGuDw9q7a3lxWIOxDbuyTTAGI8BghEEECYFAAo1mlEYz0gRN7Jnu6dyV8/n9ce+5Fbu7qkNVddV5n2eerr51b/WpO1X3c79ZSCnRaDQajaYQW6MXoNFoNJrmQ4uDRqPRaMrQ4qDRaDSaMrQ4aDQajaYMLQ4ajUajKUOLg0aj0WjK0OKg0Wg0mjK0OGg0Go2mDC0OGo1GoynD0egFLJW+vj65ZcuWRi9Do9Fo1hQHDx6clFL2L7bfmhWHLVu2cODAgUYvQ6PRaNYUQogz1eyn3UoajUajKUOLg0aj0WjK0OKg0Wg0mjK0OGg0Go2mDC0OGo1GoylDi4NGo9FoytDioNFoNJoytDhoNBrNGuCViQhPnpis29/T4qDRaDRrgE98/xX+25dfqNvf0+Kg0Wg0a4BoMkMoka7b39PioNFoNGuARDpLLJVFSlmXv6fFQaPRaNYAiXSObE6SzOTq8ve0OGg0Gs0aIJ7OAhBJZury97Q4aDQazRogYYpDLJmty9/T4qDRaDRrAOVO0paDRqPRaCwsyyGlxUGj0Wg0JjrmoNFoNJoy8paDjjloNBqNBpBSkkjrmINGo9FoCiisbYhpcdBoNBoN5F1KAFHtVtJoNBoNYLmUwOixVA+0OGg0Gk2TU2Q5aHHQaDQaDeTTWEG7lTQajUZjoi0HzbKIp7L84NhEo5eh0WhWmKKYg7YcNLXy9Rcu8K5P7mc8nGj0UjQazQqSyBiC4HfZteWgqZ1wIlP0U6PRtAYJ01roDbi1OGhqR/kl43UyOzUaTX1QlkNvwEVUN97T1EpSiUNai4NG00qomEOv363nOWhqR5XY16sxl0ajqQ/KK9AXcOneSpraybuVdMxBo2kllDegx+8imcmRya7+HGktDi2EMj21W0mjaS3Ud7vH7wLqk86qxaGFUEEr7VbSaFqLZDqLx2kj4HYA9ZkGp8WhhUgqy0GLg0bTUsTTWTxOOz5THOqRzrqoOAghNgohHhNCvCSEOCyE+E1ze48Q4rtCiOPmz+6CYz4khDghhDgqhLizYPs1QohD5nMfE0IIc7tbCPGguf0pIcSWlX+rrY+2HDSa1mAqkuSXPrWf0bk4YMQTPQ47AbcdgGgdMpaqsRwywAeklJcA1wPvE0LsBT4IPCql3Ak8av6O+dw9wKXAXcDHhRB287U+AdwH7DT/3WVufzcwI6XcAXwE+PMVeG9tR0Knsmo0LcG3Do/x2NEJnjkzCxgxB4/Ths/VRJaDlHJUSvmM+TgMvARsAN4KfMbc7TPA28zHbwW+IKVMSilPASeAa4UQ64CglPLHUkoJ/HPJMeq1vgy8XlkVmupRqazaraTRrG0eN3ukzcRSgGk5OO1WzKEe6aw1xRxMd89VwFPAoJRyFAwBAQbM3TYA5woOGzG3bTAfl24vOkZKmQHmgN5a1qbJZzTUI1il0WhWh0w2x5MnpgCYi6eBfMzBbwWkm8OtBIAQIgD8G/BbUsrQQrtW2CYX2L7QMaVruE8IcUAIcWBiQncfLUVVSOuYg0azdnnu3Cxh0zKYiRqWQ9J0K/ldhoe+aSwHIYQTQxg+J6X8irn5oukqwvw5bm4fATYWHD4MXDC3D1fYXnSMEMIBdALTpeuQUj4gpdwnpdzX399fzdLbCuVWSuiYg0azZnn82AQ2AZ1eJzMxw3JIZAzLodvv4tO/9Gpef8nAIq+yfKrJVhLAPwEvSSn/uuCph4B3mY/fBXytYPs9ZgbSVozA837T9RQWQlxvvua9Jceo1/pp4HtmXEJTAwltOWg0a56nT89w2YZOhru9zBbEHLxOO067jVt3D7Cu07vq63BUsc9NwC8Ch4QQz5nbfh/4MPBFIcS7gbPAOwGklIeFEF8EjmBkOr1PSqmuVu8FPg14gYfNf2CIz2eFECcwLIZ7lvm+2hItDhrN2udiKMEl64PMxlJWQFrFHOrJouIgpfwRlWMCAK+f55j7gfsrbD8AXFZhewJTXDRLJ6GzlTSaNc94OMktATcAo7NGeFelstYTXSHdImSyObI5wxNXbZ3DXDzNm//2hxwdC6/m0jQaTZXEUhkiyQwDQTfdPiezZrZSIp3F7aiv5aDFoUVQVgNU71Z6ZSLCi+dDHBmdW61laTSaGhgPJQEY6PDQ7XMxG0uRy0kj5uDS4qBZAire4LLbqm7ZrYJdyfTqt//VaDSLMx5W4uCm0+skJ2E2niadlXi05aBZCiqNtdvvJJ7OUk2y13Q0XXQswOhcnKdOTq3OIjUazYKMhxMAplvJaM89Nmds0zEHzZJQlkO3z0VOFl/w58OyHDJ5N9SfPHSY+z57cHUWqdFoFqTIreR3AljN9+qdraTFoUVQ4tDlMz5Q1WQszZS4lSLJDI8dnWAuni4SDI1GUx8mIkmcdkGX10mXaTmMmpaDV4uDZimUToqKVZGxpKovU+bIwUdfukjKtDhmTJeTRqOpH+OhJH0BNzabIRAApyajAFZfpXqhxaFFUHf66m6jKstB9W0xBeGbh0at56aiyZVeokajWYTxcIKBDqPGQcUcHn3pIgBXDHfWdS1aHFoE5RrqXpJbKUs8leX7RyfYuy5oPKctB42m7kyEk/R3eAAIep0IAaenYmzo8rKxx1fXtWhxaBEKA9JQXdvu2Vg+W2kykiSZyfGaXX2Athw0mkYwHk4yEDQsB7tN0Gm6lq7d2lP3tWhxaBGUa6i2mEPeraTEZUOX0dBLuZw0Gk19SGVyTEdTllsJ8jd7Whw0S6bUckgs4laSUloB6WQma7XcGAx6EAKmtThoNHVFWesDplsJsCyH67Q4aJZKaSrrYi00YqmslZmUyuSsbCe/y0G3z8WUFgeNpq7kaxzylkOv30VfwM3WPn/d11Pf3CjNqlGrW0m5lNSxSlw8ThvdPmfR8xqNZvU5ORkBYLgnP6vht2/fRSiRxhiBU1+0OLQI6s6/y7uwWymRzvLx77/CjdvzI7qT6ZzlVvI47fT63UxFtDhoNPXk4JkZAm4HOwc6rG2Xbahv+mohWhxahEQmi9Mu8LuNKsr53EpPnZrmY48e58S40aY74HaQzGQLLAc73X6nVXij0Wjqw8Ezs1y1qQu7rf5WQiV0zKFFSKSzeBx2HHYbLruNWLpyKuvZ6RgAj708ARgNvkrdSj1+tw5IazR1JJxIc3QsxNWbuhu9FAstDmuA58/NWsHjUr5zeIw3/PUPCCcyuM3eK16Xfd4iuBFTHJQbaSjoMcXBeH2v006P3xhsnsvpMd4aTT147twsOQnXbNbioKmS6WiKt3/8Cb7+/IWKz794IcSJ8Qgvj4VwO4z/Tp/LPq9b6dxMrOj3waDHzFbKu5V6/G6yOUkooaukNZp6cPDMDELAVZu6Gr0UCy0OTU4kkSEnYTJSuWI5bF7Aj46FrX7v/R1uqwd8Keem41ZaXIfHgc9lL6pzMALSRlBbp7NqNPXh4JkZdg920OFxNnopFloc6sjDh0Z57txsTcekssZFO5qsHEOIJIzt6ay0+r1v6fVzeqpyQPncTIwbt/eyvtNDj9+F22EnmTbcSi67DbtN0G2Kg66S1mjqw6nJKHuGOhbfsY5ocagjf/qNl/izb7xU0zGpjOH3D88jDuFEfrtyK23p83NhNl42kyGUSDMbS7Oxx8cv3rCFO/YO4nbarIC027Q8tOWg0dSPbE4yNpdgfZd38Z3riBaHOhJPZzl4doa5WPW+fDVrYT7LIZzMv5ayHLb2+chJOGcGnyfCSX79cwd53rRaNnb7eO+t2/mDN+3F7bCRyuaIpTLWMBFtOWg09WMinCSTk1oc2plkOks2J/nhiYmqj1FZStFk5QBzoeWgxGFzrxFTODVpiMPBMzN889AYf/ntowBsKmj96zaHlofiGet41fZ7pgYR02g0S+OCOQZ0gxaH9iVhXuhVjUE1pE3LYT63UiSRQVXWK7fSVlMczphxB5V19MLIHAAbC8rzXeYxc/G0ZTl4TMHQo0I1mtXnwqwhDuu6PIvsWV+0ONSJdDZH1qwb+MGx8aprCPKWQ2VxCCUy7DLL7T0FbqFOb77KORTPWwAdbofV6RHygjIXT1vZTjabwGW3WbUPGo1m9VDioN1KbYqqI7h8QyeTkRQPvzhW1XHJRcQhnEjzqo1GbrS6uIMRlFYZS6F4GiEg6HEw3OMrauJVKA7uggHmbofNWrNGo1k9Lswm6HA7CDZRGivo3kp1Q13k337VBiSSP/n6YW7e0Uenb+EPhOVWSpSLQyqTI5nJsbHHy56hDrb1BazntvT6OHB6BjCsiw63g/vffjmOkr4tShDm4ml2DASKtifnqcrWaDQrx/nZeNO5lEBbDnVD3YUH3A4+/FNXMB1N8bHvHV/0OMutVGHsZ8S0JgJuBw//5mv41Vu2Wc9t6fVzYS5OIp0lFE8T9Dp5y5XrufvydUWvoSyHSDJTZHm4HTaS2nLQaFad0bl407mUQItD3VD+e7fTxmUbOrlsQyfHLoYXPS5dkMoqZXGcQlVHd3icZf3et/T5kBJGZuLMxdPzmqxKHAArIA2Gi0pbDhrN6nNhtvlqHECLQ91QmT8qdTTgnr85XiGqziGdlWUXa+Vq6vCUewcHzVGDE+EkoUS6KAhdiFoP5APa6rGOOWg0q0s8lWU6mmJ9p3YrtS3KclCuG5/LQbQacSgQhNKgdKjAciilN2CMGpyKJgnFMwS9lcNL7gJXkqc0IK1TWTWaVUXVOGjLoY1JFjS2A9U5tXIGUiHKcoDyQriFLIfegNkCI5IilKjOrVRqOSR1KqtGs6qMzhoNMtekOAghPimEGBdCvFiw7U+EEOeFEM+Z/95Y8NyHhBAnhBBHhRB3Fmy/RghxyHzuY8J0kgsh3EKIB83tTwkhtqzsW2wOlEso31bbMW9b7UIKLYfCVhmQb7pXSRy6fS5swujmOhdfyK1UKA7FQqEtB41mdXlpNATAtn5/g1dSTjWWw6eBuyps/4iU8lXmv28CCCH2AvcAl5rHfFwIoW5HPwHcB+w0/6nXfDcwI6XcAXwE+PMlvpemJlFiOfhddmLz1C4UUuxWKrUc5ncr2W2CHr+LsbkEsVSWYBUxB29ZnYO2HDSa1eSpU9Ns7fMz0LEGYw5SyseB6Spf763AF6SUSSnlKeAEcK0QYh0QlFL+WBopN/8MvK3gmM+Yj78MvF6Upt60AOou3HIruR3E0tlFK6XTBW6lSInlsJBbCaAv4LYK4YLz7LOgW0lbDhrNqpHLSZ4+Pc21W3oavZSKLCfm8H4hxAum20nNttsAnCvYZ8TctsF8XLq96BgpZQaYA3qXsa6mpDwgbUdKFnXdFFoOkVLLwaxNcNor/zf2BlycnDDFoapspWIXk7YcNJrV49h4mLl4mmu3tpY4fALYDrwKGAX+j7m90h2/XGD7QseUIYS4TwhxQAhxYGKi+uZ1zYAKSKuLsd9l/Fws7pDK5k9FabZSOJEh4J6/wrrX77ZmMswbc5g3W0mnsmo0q8nTpwyHTEuJg5TyopQyK6XMAf8AXGs+NQJsLNh1GLhgbh+usL3oGCGEA+hkHjeWlPIBKeU+KeW+/v7+pSy9YaiOrIWprACxeVpxK1KZnHVhjyRKxSE9r7sIDLeSYj7LwWWfRxx0EZxGs6o8dWqadZ0ehrubL1MJligOZgxB8XZAZTI9BNxjZiBtxQg875dSjgJhIcT1ZjzhXuBrBce8y3z808D3ZGkpcAtgBaQd+VRWqNwWo5BUNkeX2X8pUsFymC/eAPl0VmDeVFbVgRVKKqQddlKZXNXdYzUaTW28eH6Oqzd1l3U3aBYWbbwnhPhX4FagTwgxAvwxcKsQ4lUY7p/TwHsApJSHhRBfBI4AGeB9Ukp1a/xejMwnL/Cw+Q/gn4DPCiFOYFgM96zEG2s2khljRrPNbHznc5uWwyJupXQmh8dhx+eyV3ArpRccSN5fZDnM/1+tpsGVWg5q3V6Xfb5DNRrNEpmNp4tu4JqNRcVBSvlzFTb/0wL73w/cX2H7AeCyCtsTwDsXW8daJ5HOFmUG5WMOi1sOLocNv9tRZjlEkhkGg/OnwBV+8OaLOYAhBOFkSUC6YOCPFgeNZmWRUhJOZJquTXchukK6TiTSuaJ5CSrmMN/4T0U6m8NpF3RUEAcjIL2QW8mwHBw2UeQyKqWiW8l8rDOWNJqVJ5YyRgYv5BZuNFoc6kQynS26M/dVaTkkM3nLoVK20kJupT7Tcgh6y7u2FqJEq7S3EqAzljRtTyqT4yvPjFiTHFcC1RdtvkSRZkCLQ51IZop9+j53lamsmRwuh52A28FYKMk7/++T/ODYBIl0lkgyQ/cCw4JUttJCGU2QF4LSIji1bo2mnfnC02f5nS8+z/ePjld8PpPNVbyJmommOHimcv1wKG7c6Gm3kqZCzEEFpBe2HNLZHC67wO928NJoiKdPz/Cj4xPW3NkNC6TBeZyGqCwUb4BCcSjvs6QtB007I6Xk80+dBeDgmZmK+/zVd45xzwM/Kdv+2Z+c4Z4HflLU5UCRb32j3UptTyKTLbozV/79xWIOKdOtVPghOjcd57wSh0W6OfYGXIuarqowr7QIDrQ4aNqb587N8vJYGCHgmbN5cXj82AT/8YJRqjUyE2NkJlZ27GwsTTormYqkyp5bC26l5pWtFiOZzhXdmdvMIHF8kYtvKmukwHZ6ndhtgq19fs7NxDg/s7jlAHDvDVvo8S8iDk4bDpsoasPhKUhlbQXOTccYDHpwOfT9kKZ6vrD/HD6XnTddvo7/eGGUdDaHwyb444cO47QL3nzFehLpXEX3cDxteAUmwkmGSob5KLeSthw0huXgKM4Y8rvLaxcUU5EkUkrSmRxOu433vHYb//Lu67hhWy/npmOcn41jtwmGFkhlBXj3zVt5+1XDC+7jdtiKrAYozFZa+5ZDIp3ljo88zpcOnlt8Z41FJJnhT//jCEfHFh9n26ocPDvDzTv6uGVXP/F0lpdHwxy9GObUZNTK5EtmssTT2bIxvkowxsOJstdVbqVmjjk0r2y1GEYqa7EWzzfT4eREhDs+8jif/qVrrTqHdZ1e1nV6OXR+llAiw5ELIYaCHhzzNN2rBbfDXiYOKg7RCpbDXDxNPJ1lIpxs9FLWDBPhJP/lU/s5fCGE3+1g91BHo5fUEKYiSW7Y1ss1m43eos+cnbH6lakbp2Q6h5TlSSfqu13pcxdapKNyM9C8K2sxEulyy6FS1TPAD45NkMlJzs/GSJmWg2Jjtw+A/aenuWRdcEXW1ulzlmU9tZLloFqbL+bC0+T5+8dOcPxiBJfDxkys3GfeDmSyOWZiaXr8LtZ3eRkKevjGoVEmI8bF3hIHs7NyPFUcV4xXEIevP3+BnYMBQok0rgoWezOhxaFOJDPFRXBgiEOlC9aPX5kCjItaKpsrynLa2OOznhteodGCH7h9l3UBVSgrJ9ECloMy4RNVTN7TGBwdC3PphiCzsTTT0fYUh2lTFFW90Ltu3MJffPtlpDTSw5VVrdxLsXSW7oLjVSbiRCQvDr//1UPcsXcIl8PW1C4l0OJQN0pTWYGKhW3ZnOQnJwvEwcxWUhR2cFypbo69AbdVTa1Q2UrJFrjbVpXl2nKonpOTEW7e0c+pyUjbWg5KFNV34723bufOSwf5zpGLTEWS/MMPTyGlLLIcCil1K2VzRsuM0bk43X7XovVHjUYHpOuEka1UbDl4nfaymMNLoyHLHzkXT5OTFLmVOr1OOsyWGYtlKi2HVspWyruV1v57qQfRZIaLoSTb+v30+F0VUzHbAfW+e/35HmXb+gP82mu3021uS2Zy1nekVBzUzYgSB2XBjs4ljO4GTZzGCloc6kIuJ82up+WWQ6k4PPnKJGAIh7pzKbQchBAMm66lDV2+VVuzy25DiNaIOag5GKVfXk1lTk0a0wO39Rni0K6Wg4otVOqcWlgHpL4jpZapZTmYr6PSVy/MxgnFF57F0gxocagDSWvQT3nMobRCev+pabb1+1nf5cmLQ0lG0kbTYlhNy0EIgdvRGgN/wqZbqRWErh68MhEBjLvkbr+LmWi6LE2zHchbDu6y5/IdBPKWQ+l3Wd2MjIeMtHRV+JbM5Dg7HWv6mIMWh1XmT//jiFVJWTnmUHzBevF8iCs2dBLwOC1xcJYct7nXh03Aus6FaxyWi8fZGqNClTmvYw7VcXIiihDG56zH5yKVzZV1BG4HpqMp7DZRsf2Mp4LlUPhdkVISS2VwOWzE01miqSxz8XTRay80Y6UZaO7VtQCf33+WXYNGjnilmEM8nSWXk9hsgqlIkrFQgkvXdzIZSXFizriDc5dYDu++eRvXbe1d9TQ4T4vMkdZupdo4ORlluNuLx2mnx/Stz0QXHizVikxFk/T4XdaArkLUdy+SzKCatRbefCQzOXISNvX4ODEeYSKcJFQgDkDTn09tOawiUkri6SxHRkMAFWIOxgdMfaheGjUqUfeuDxJwOwosh+IP51CnhzfsHVzVtUPrzJFWAelWELp6cGoywra+AIAlDtNtGHeYjKSKgtGFKC9A4QW/MH6obkQ2m/HBiXDScispdMyhjUlmjMrJlIo5lBXBmQN/TF/l4QtzAOxdFyTgcZAyuzm67I0plGkZy0GnslaNlJJTE1G29vkBrKycmTasdZiKJOcd46ksh0JXUaFlGjM/a5t68+Kg9lWjVbTl0MaUXljL22eYMx3MuMOR0RDrOz10+11FE94a1SzO47S1xCS4kI45VM2/7j9HNJVlj9kuo8dnXByn2lAcpqOpisFoyHsB5hOHuHnDl7ccEoTiGew2YdUnNXvMQYvDKlJ6MZrPclDm6OELIfauN1piFPZccdrnn+K2mrgddqvAZy1jWQ5tHnOIp7J89JFjPPj0WS6GypvBPXxolN//6iFu293P26/eAEBPYPUtBykl/+Prhy3LuVmYiqRqsxwKvu8q0WR9lxeHTXDRtByCHofVZr/Zs5WaW7rWOKU1DKXtM1TMIZrKEE9lOTkR4Y2XDQE0heXgdtrK2mqsRVRAOpnJWcH/duQHx8b56CPHAbhxey+f/9Xri57/xqFRBoNuPvEL11h5/B1uBw6bWNWYw1w8zaeeOE2n18ml6ztX7e/UQiKdJZzMWNMUS1Exh9l5Yg7qccDtYDDoYWwuQU5Kgl4n6zsNcdBupTam9E61NCCtBCCSzHBiPEJOYjXTK/zglKbA1ovWSWXNC1yiBSyhpTJizgC5dXe/VehWSDiRYTDoKcqCE0LQ7XcxvYpV0qo4bDaWXmTP+qGSQXrmCUhXshwKvytqloPXZWddp8cqfOv0OlnXZaSga7dSG6M+LKrdhbvEraRcR5FExqpC7e8w7lQCRW6lBlkODpsVTF/LRJIZq5CwnV1LIzNxOtwOrhjuYiyUKPu/DSfSFVtI9/pdq2o5qJhQaapnI6nUOqMQd4WYQyXLwedysK7Ly+hcwnQrOdnaF8AmKhfXNRNaHFYR5YO8fNgwlSu1zwDj4qX84koUOprArdQKlkM2J4kkM5botnNQemQmxoZuLxu7vUgJo3PxoufDiQwd7nJXR7fPVTHmkEhnrXYvy0GJwlwTicPpKcOyKm1IqVCWQ2iemENeHOys7zTcSrPxNEGvg7e+aj0Pvf9m6zPZrGhxWEXUB+QdVw/zpsvXMVgytU25laLJjOUXV9uawXLwtECdg0oT7jO/iGtd7JbDyEyc4W4fw+ZMEOVmUkSSmYqWQ4/fVbFt90PPXeDn/+EpLszGy56rBWU5NIs4fOnAOT7wxedZ1+lh12Cg4j7K1avW7HXaS7KVjMfKrZTK5hiZjtPpdeK027hsQ3PEVhaiuZ1eaxx1IXrVpi7ecU35qE6/ma1U6BNXsYaigHTD3Epr33JQ53ZAWQ6ptS12S0VKychMnOu39VqplOdnKlgOFYKk3X5nRbfS6FzC/Bln/TJmi1gxhyYRh48+cpzdQx185pevnTdorBpTqjhJt885r+Wwzjw3qWyu6TOUCtGWwypi3T3M0+bCZhP4XfZit5KyHArEoVEBaTWMaC0LhLLI2t2tNBdPE0lmGO72MtTpwSYMN5NCud8qWQ4bu33MxtI8e3amaPtU1Og2ejGU5GIowfs//ww/9fEn+NxTZ2paW7NZDqFEmms2d88bjAYjUO9x2K01d/pcFescPA67lZ0EEGzyNt2FaHFYRdSFaD5xAMN9pNxKPpcdu5lm2dEEbqWrN3eTk/Bjc/jQWiSSNL68A20uDsqFNNztw2k3ZpIXupXUzUklcfj56zYx0OHmD//9RTLZvOWlCuPGQwkee3mc/3hhlMMXQnzn8MWa1lY4v6TR3V+lnF8kS/E4bZawVbIcvE47NpuwspNAi4PGxBIH1/zi4Hc7CCczpknvKNquaFRA+oZtvfhcdh45UtuXvZkIlVoObZqtpKyE4YJ274XioDrXVroodnic/PFbLuXwhRBfPjhibZ8y5xRcDCc5PxvHbhPsXR+sOcNNBXVTmVzDK/KjqSxSFlvu8+F22FFa1l1iOcTSWasDQo/PZbmGm72fUiFaHFaReCqLEAu7hTrcDiIJw61U+IF02m1WdlMjs5Vu2dnPIy9dbPgd3VKJWDEH4+5tLbvIlkPecvBaPwvdSio2M5+P/Y2XD9HpdfJiQRWzSvccDyU5PxNnKOjB73LUXFVf2JCu0a6lyCLnoZDC7MMun5NYKsOTJyb5yHePEU9lrZtCm00w1KlqG7TloMEQB6/TjhDzV+Qqt1I4mSFQ8oEMmGmFjgZW9N6+d5CLoSQvng81bA3LIaxjDoAhDgG3w5pNMNztYyyUIG26ifLiUPnOVgjBQIfbGnkJ+UKx8XCCkZk4G7q8uBw2q2FktaiANDReHJQFFajKrWRe/IUhJol0jgcPnONj3zvOVDRlWQ6Qn71SaTZEs6LFYRWJp7MLxhvAyFiKJDPAEcM7AAAgAElEQVSEE+VjAzs8DlwO24ListrctmcAIYzWC2uRsphDG7uVhru91mdpuNtLTsKYmXGkztNCd8z9BeKQzUkrg+liKMH52Tgbur247LUXToYSaatTacPFYYHYSymqHY7bYcfnspPK5jg5EUVKePH8HF5X/jXWr5F+SoVocVhF4unsogN5Ah4H4YQRkC71cwbcjoalsSp6/C76Au6ynPi1QiSRQYh8G4R2tRxG5xJFkwOHzYvVOdO1tJjlAIY4TJqupJlYCikNq3Z0NsFYKMFwt2k5LCHmMGi6/WYbPDfCOg9VxRyM76bHabOshGMXjZks09EUPqe2HDTzkEhnFwxGgyEAKpW1ojg0KN5QyGDQXbGL51oglMjQ4XbgdtiwifaNOYQTmSJ/t6r8Va6hUDXiEDAsBymlddyOgQDhZIZsTubdSjWKQziRYWOPIVaNthysYtQa3Epuh916XFg0WuhWet2eAe7YO7hgemyzseiVRwjxSSHEuBDixYJtPUKI7wohjps/uwue+5AQ4oQQ4qgQ4s6C7dcIIQ6Zz31MmPatEMIthHjQ3P6UEGLLyr7FxhFLZYs+IJUIuM2YQ4UCpICn8ZYDwGCHh4uh5OI7NiEXZuOs6zTcKaqKdSqSbImeUbUQTWaKMuDUHay6GCtf+0Juj/4OtzUPedLMVFIt5sHIgFpSzCGRZqM596Dh4lCFe03hqWA5FFJ4Y7hvSw8P3LvPSlVfC1Rz5fk0cFfJtg8Cj0opdwKPmr8jhNgL3ANcah7zcSGEOkOfAO4Ddpr/1Gu+G5iRUu4APgL8+VLfTLMRT1XnVsqYBUildysburwMBBvff2Ug6GE8vDbFYWTG8IWD8WWNJDO84a9/wKeeONXgldWXSDJT5CopF4cMDptYMLNOBfUnwkkrU2nvugJx6PLidthI1pCOmjM/+xu6vAjR+OZ74ZI2NgtRaDkUxhbVoKTFbgybnUXFQUr5ODBdsvmtwGfMx58B3law/QtSyqSU8hRwArhWCLEOCEopfyyNnMh/LjlGvdaXgdeLRkZgV5BEFQHpwg9hqZ/z9+7aw2d/+bpVWVstDAbdTEWTVmbLWkIFYsH4Mh8fjzATS1dsWd2qpLM5kplckeXgcdpw2W1FlkOHx7Fg8kOhOCi30iUF4rDedCsla/ichJMZpDTEKuhxNryFRi3ioITU7bThKRCC28357j7X2qlpqMRSfRaDUspRAPPngLl9A3CuYL8Rc9sG83Hp9qJjpJQZYA7orfRHhRD3CSEOCCEOTExMLHHp9aOabKUicSixHLwuO52+xgewBoMepMRyJTQD1cQOQok0oUTGmrzlddp5adRIyZ1cxfkEzUbUzMApFAchBEGv07pTn6+vUiHFlkMSm4Bdgx3Wcx6nHbeZrVRtXYz6+0Gvk06vs+FupXAig7+gU8FCKMvB47Bbwee+gJurNnUBCxe/rgVW2qFd6YzKBbYvdEz5RikfkFLuk1Lu6+/vX+IS60c8XV3MwXrcpNWTKg20WeIOL56f47I//vaid//nC1pGgPFlVQ3RVF+gdiDft6v4s9jpdRS5lRZL3+wPKHFIMBlN0e1z0Rdw4bQLS4BVAkU6W6U4FMQ6unzl4jAyE7PWXw8iyXTVE9pUEZzbabOEYEuvzxJM3yI3hs3OUsXhoukqwvypkuBHgI0F+w0DF8ztwxW2Fx0jhHAAnZS7sdYk8VS2yNysRJE4VGHKNgLVarxZMpaOjoXJ5CTnpmML7qfEYUOBW0kx1VaWgxpZWXzRK7xTj1QhDt0+F3abYCKSZNqcryyEIQxbeg0BVuJQbVBaFcAFPY4yyyGTzfGf/u4J/vbR41W91koQTpTH/uZDDe9SdQ4Am3v9bOjy8ttv2MXdl69btXXWg6WKw0PAu8zH7wK+VrD9HjMDaStG4Hm/6XoKCyGuN+MJ95Yco17rp4HvybXaq6EEVSG9EIUfxGadKauC4uNNIg4qOL7YHWVpP6HC/4tmcpGtNhHLrVRqOTiti3Mosfgds80m6Au4DLdSNGlNMnvg3n186I2XAPkLZrLKlGHLcvA6CXqdzBWMCn3xQojpaIqxOn7uqm26B8WWg7rx2NzrQwjBb75hJzsGKs+CWCtUk8r6r8CPgd1CiBEhxLuBDwO3CyGOA7ebvyOlPAx8ETgCfAt4n5RSfUreC/wjRpD6FeBhc/s/Ab1CiBPA72BmPq11pJTLjjk0C71+N3abaBq3kqrSVTnp8zEyE8fjtFmjHgv/L2KpLLFU/dwVjaS0Hbyi8E49nMhUVfilqqSnIil6AsZ53TXYYVmXtVoOKgAc9JTHHH78ylTRPivFk69M8rtffr5iXCRcoRh1PgpjDkNBD2991XruvHRoRdfaSBY9C1LKn5vnqdfPs//9wP0Vth8ALquwPQG8c7F1rDVS2Rw5uXhQai2Ig90m6A80TyHceNhYR3gey2EmmiKUSBstHbryLSPU/8W2Pj8nJ6NMRVL4eprznK8klQLSUCoOledHl9IfcHN0LMxkJMUbzKycQlRdTrV1JPmAtIMucz1SSoQQVqv4lU5vffzYJF88MMIH776krCgtnEhb8ZPFsNpnOG047Db+5p6rVnSdjabxFVYtSsKcOFaLW6lZYw5gVkk3Sa3DYpbDHz90mDf/7Y84fCFkBaMhf6f36i09QH4eQauzkOUQSqQLBv0s7tbs73BzYS4BAu69YXPZ85blUK04qEZ3bgc9fheZnCQUz5DK5Hj61HTRPiuF6hp7Zqo8oaFSp4L5sNpnONZ24Hk+tDisErG08YVczHLwOu3YBAiRHxvajAwEPU0Tc5iIqJhD+UVDSsmTr0wRTmQ4Ox2zgtGQF+prtxriMNkkYrfaROcRh6DXiZSGJZaT1VmuKp31l27cUiS8CiUO1c4eD8WN1FGH3UafmQ01GU3ywsgs8XSWbp+zqGvrSqBmRpyZKk9oqCZrS+EpsBxakdZ8V03AYiNCFUII/G4HAZcDWxOX1jdTf6WJ0PwB6dNTMSYjSTaZ7RiGC8ShN+DC47Rx9Waj20u7pLPO51ZSvZZUU8VqLId9m3u4dH2QX791R8Xna405xFIZfOa6es0YxlQkxTPmSNLb9gysmuVw2rQcMtkcf/DVQ3zrxVFiqWzV2UqqfUajxviuNs17q7rGUd0/F2ufAUZldLOnZw12eJiJpUlU0Wl2NYmnslasoVKgUrkiPvZzV/GpJ07xuj0D1nPvunELt+8dtDpktkshXDiZwWW3lTVxVC00Tk0YF8muKgoub9szwG0F57QUdaGstoVGYf8xy3KIJBmdS+B32dnc4yeWypLJ5nCsUJ8xtbazpuXwF98+yueeOsuh88Ygo+rrHOxFP1uN1pS8OiCl5FNPnLJGJRZyZirKrJmSV02VpN/taOp4A2A1RiucHtYICofNVLIc9p+eptvn5MrhTv7mnqvYM5Rv7xBwO9g12IHHaSfgdrRNrUO0Qt8uyIvDs+eMu/Stff5l/y13jZZDYUZf3nJIcjGUYLDTQ9BrrHslM5ZUdf3pqSjfPzrOA4+fpMPj4IURUxxqjDm0quXQmu+qDozOJfgfXz/CF54+V7Q9m5O86WM/4v5vvARU13wr4HE0bXW0YrNZ5HRqssHiEDFcW0JUDkg/fXqafVt6Fh2Q1BtwtU2tQzSZLatxgLw4HDg9g02sjDi47MbfqTYgHU8Vz1oWwrDoLoaSDHZ4rC6xK+laUvGQM1MxvnRghP4ON//rrflEyqrdSi1uOTT3FamJUX7cI6PF4zMnwkkiyYy1fbGYA8B7btm28gtcYdSFo1KGRz0ZN+MNw93eMsvhYijBmakYv3BdeRZNKX0Bd9vEHCLJTMVkByUOx8cjbOn1rchFrtZspVgqY1nXDruNbp8h2mNzCa7d2mPFRVYyKK0sh6loiu+9PM7brtrAjTvy7dxqDkhry0FTSNQMOL90oVgcLswVT0yr5gt312XruOuy5i617/K56PI5G97NVGUqbe0LlLkaHj40CsBrdy/ed6vX72obt1KlKYNQPJVspap58wHp6iqkY6ksXmd+bb1+owJ7PJxgMOixRueGV9hyUIZlPJ3l9r0DDHR42GbeAFXr4t3W7+eXbtrCzTv7VmxtzYQWhyWiqmtPTUUtKwLyM3kVa70zYyGbe/1WhkejGA8Z3UA39ZRbDl97/gKXrAtajc8Wojfgbh+3UipTlqkEhsvTYWbI7RhY/JxVg6vGgHSipDllb8DFiYkI6axkMOi2gsMr6VZKpLNsNmNoXqedG7cbF3dV/1JtQNppt/HHb7mUgQ7P4juvQbQ4LJGY2cxMSnh5LG89jJrisNO8E6vGrbRW2Nrr43SjYw7hJH0BN51eJ5FkxmqBcHYqxrNnZ3nrq9ZX9Tr9ARfT0RTZXLPniS2fSoOkwEijVtbDSlkOtQakS6cl9gXclnU6FMwHpFfSrZTM5Nhp3kDcsqvPsu7vumyIbp+TwSYYsNUMaHFYIrGCxmJHClxLo7NGP59337yVHr+r6bOQamFLn58Lc/GGzmGeiCTp73ATcDvJ5qRV0PTQ8+cBeMuV1YnDcI+PnKThbrJ6EE1mCMxTYKnEYedKu5VqCEh7S8RBtTwaCHryMYcVthx6fC4+ePce3n/bTmv7bXsGeOaPbm/aBpj1pnWuXHUmbrqVbKI4KD0aSrCu08vPvnoj77hmGGcTzIBeKbb0+pHSSGddKTdErYyHE4Y4KF90Mo3XZefp0zPsXResui/O1ZuMQrhnzsys+e6Zi2FkK1X+qquL7/aVEgd79RXSUkpiJc0p+wL5XkdDnR4CLseKjw9NZnJ4nDZ+7bXby55rkSGUK0LrXLnqjOqRf8m6IIdLLId1nR6EEC0lDGBYDtDYdNapSIq+gNvKRVfprBPhpFXcVg3b+vx0+ZwcPDOzKutsFtSM5tJBP4oun5N1nZ4Vs3BrabyXzkqyOVkSc8i7dPoDbmw2QYfbQWiF6xzcLeTuXS1a6+pVR1QF9K27+3lhZI6nzA6SY3MJhmq4SK0l1ECXRqWzSimZMofMqIuZCkpPRpJWhW012GyCqzd1c/Bsa4uDcn/Ol7t/3y3b+KM3712xv2ezCZx2UVXMwWox4yrOVgLDglAuqg6Pc8XcSlJKw3Jo0fTTlUSfoSUSTWaw2wTvu20Hm3t9/Lcvv0A4keZijXewa4kun4sOj8PqxbManJyI8JHvHqvYaz+SzJDK5ujz591KkUSGXE4yFU1ZFbbVcs3mbk6MR5iNtW5K63x9lRQ3bu/jjSs8scxlt82brXRmKmr936rmlEUBabOxX2EGUNC7cs33lLtLWw6Lo8VhiagsC5/LwV+84wrOTsf43w+/TDYnWddZnd97LRL0OFd1pu/DL47xN48er9j3SNUlFAb6w8kMc3Gj7XQtlgPk4w7Pnp1d5qqbl/nada8mbqe9Yp3DKxMRbv2r7/PdIxcBrHneRTEHc7pcofUd9DhWzHKwxEFbDouiz9ASKSz7v25bL7fs6udBs5VGq1oOYNRtrOYENZUJVakGQVU09wZcVhVrJJGx9lV3ndVy5cZO7DZhdQBtRVRMpp7t4F12W8WYw9OnppESjl0MA4VupeI6B8jPLQfDclip3krJGhpitjtaHJZINFXckuAXrttk5cy3suXgd9mtYPxqsJA4KGuiL+Auijmoqum+Gt1KPpejqSbcrQbWLIc69u5yOSqLg7LQzk4bCQ0qblfoVvK7HbxmZx83FbSzCHqchOJpPvrIMb714tiy1qYth+rRZ2iJlOZnv27PAOtNi6GVLQefy2Hd8a0Gqm6houVgikNvwJWPOSQzlmj01+hWAvC77avqJms0jXAruRy2igFp1f313LQRs1JupdLmlJ9993W8+Yp8vUqHx8FYKMFHHznOV58dWdbaEtpyqBotDkskmsoUfagddhu/dut2dg0GquqLv1bxuexEV9GtpO4mJ8OVYg6GYPT4Xbgddlx2G+FExproVmvMAYyLZmQVLaFGM6tmNNexsKtSQDqcSHN8PALAObPte34g1sLCFfQ6Lat8Jra82IO6+dCWw+LoIrglEk9l6fIVuzHuvWEL996wpTELqhM+t8O641sNFo45pOjwOHCbM3sDHgeRZBqbALtNFDWSq5aAx1HUG6vVUNZWX0dtLrfl4HaWWw4vjMwhJVw53MmLF0JksjniVY7SDRa4xJabWaamwGnLYXG0fC6R0p4w7YK/TgHpiQrznaeiqSLrIOB2WAHpXr9rSWNW/S5HxbkQa5loMmP55icjSSurrl647LayCulnzaD/W65cTzYnGZ1LzOtWKmX3UAd9ARev3dXPdFRbDvWi7c7QF/af5bV/+Zh1B7FUYiUxh3bB67JbTQdXA/XlnYgk+cnJKe74yA84bma3TJkioDBcQkbMYSkuJVDWR2uJw1eePc+v/ctBzk3Hai4OXAkqBaQPXwixrc/P3vXGZL5z07GK2UqVeM3Ofp7+gzdw6fogs7FUxRqYatGWQ/W0nTjE01nOTMWWnXETS1UeoNLq+F0OYunssr6gC2HFHCIpHj82wbGLEe795H7Oz8aZiqToKRCHLp+Ti6EkU5FkzWmsCiUwrcSFWSPgq85ZrcWBy8VdQRymoin6O9xs7Daq7M8WikMVF2ohBN0+FxmzHchSsSwHZ9td+mqm7c6QytpYrp852qZuJa/LTjYnq2qsthQKYw7HLkbo73ATTmT4s2+8xFQ0WdR754ZtvRw6P8fJiWjNaayKgNuIOayW2DUCNVNkbC7ROMuhJOYQiqcJeo0+Tnab4NxMjFg6i9NefQ8ylegxu4ygtGU5ONrvu1srbScOHdZkqaWLQzYnSWVydfXjNgt+UxCXGpSOJDNc92eP8PixiYrPK8thOpri6MUQ127p4S1Xruf7R8eZjqaKROCuy4YAo0p6KWmsYOTVZ1ZR7BqBEofRRomD3Vbmtp2Lp+n0OnHYbazv8nBuOm6kg9fg3uk2E0Cmo0sPSmvLoXra7gypHjPLScdUAdl2tBx85vlbalD6/Eyci6EkB+bphqpSILM5ybnpODsHA7zhkgGiqSw5SVHMYcdAgG39RqfYJcccShr4tQJjZlHfhdl4maDWA7fDXuZWUuIAsKnHZ1gOqUxNN1jd5v/9zDIylrTlUD1tJw6BklbPSyFWZSCtFfEt03JQtQojM5XbfifS2aK4wq7BDm7a0YfHvNMrdCsJIbjz0iFz+9LdSrB8N2OzIKW0LIeXRkPk5NKFc6mUBqTT2RyxVLZIHM5OxYinczXdYHWvgFtJWw7V03ZnyHIrLeNioC6M/nl65LcyKgi/1IvplOkSmK+zazydZbg7335k50AAj9POzTuMOb+lIvDWV63H7bCxe2hpw4eUJblSvXsaTSiesVxzaghVo8VBDepR4rC5189UNMV4KFHTDdZKuJWU5eDWlsOitJ04+FfgTlEdu1hlZyuivsxLbaGhLIfzpjgcPDNjuXSklCTSWSujxWkX1oChO0wLYX1J36o9Q0GO/M+7uHR955LWo24WWsVyUC6ljoJixXpnK5UGpOdKxEHNBXlpNFRTzCHodWITyyuES6RzOO0C+xJqYtqNthOHlXArVWoY1i5YlsMSxUHd9Y3OxRmbS/DO//skn/3xGcAYSp+TWJbD1j6/lcny01cP8/X332yJRSHL+aKvRAyqmRidM0T3io15sWxEQDqdleTMlhel4rC51/g/DCUyNVkOqgp+OS00kpmsjjdUSduJg7q4abfS0vC5Vcxhaedv0hSHnITvHBkjJ+H4uFHkpvzB/R1uXHYbOwfzriKbTXD58NKsg4UItJhbSXWYvWpjt7VtqZlcS0VNcFPWgxKHoNc415tNywFqv8Hq9rmWFZBOpHM63lAlbecXsdmE2XZ6GeLQxm6l5QakpwuG+Dx8yGjxcGrSGDuqahy8Lju/e9durhjuWs5SqyIfkG6N5ntjc4bb7gpTSJ12YV2U64VqTZHM5PA47WWWg8/lYKDDzXg4WXM6eJfPuexsJR1vqI5lSagQ4rQQ4pAQ4jkhxAFzW48Q4rtCiOPmz+6C/T8khDghhDgqhLizYPs15uucEEJ8TAixqg7BgGd5/XSq7QnTiviWHZBOsqHLcBs9dcqYu326RBw8Dju/8pptXLu1Z7nLXRRl/UWSKzNprNGMheL0BVxsMu/Oe/1uVvnrVIYSBxWUDpnftWBBY0TlHqy1jUWP38XMMvorJdM5K/NNszArcZZuk1K+Skq5z/z9g8CjUsqdwKPm7wgh9gL3AJcCdwEfF0KoT8YngPuAnea/u1ZgXfMScDuIrESdQzu6lZYbkI6muHR9EJswXEtCGG2YZ2MpK5ZTzxRh5WZslbbdY3MJhjo9rAsaAlzPbqyKUrdSabYS5IPStd5gdflcywxIa8uhWlZDQt8KfMZ8/BngbQXbvyClTEopTwEngGuFEOuAoJTyx9LoYfDPBcesCqqb51LJWw7t51Zy2m247LYlB6SnIimGOj0MmWMgb9xuTPw6NRm1Yg71vLNbCTdjMzE6l2Ao6CHodeB12un11zfeAAXikMnHHDxOW9FFWQWla485OJlelltJWw7VstyzJIHvCCEOCiHuM7cNSilHAcyfA+b2DcC5gmNHzG0bzMel21eN5XbirDQYvZ3wuZfWtjudzTEXT9PrdzNspqv+pyuNiV+GODSmenW5bsZmYtS0HIQQXLO524o91BOX3fj/UzUFc7F02ayNLaY41GoldvtdJNI567NSK9pyqJ7lisNNUsqrgbuB9wkhbllg30qOT7nA9vIXEOI+IcQBIcSBiYnKvXmqQTVbWyqxVAaP09a2udI+p31JAekZM1OpJ+BiuNuLTcCdlw5hE0bcQbmVPHWO5fiX6WZsFmZjKebiaTb3GBfef/mV6/jAHbvrvg4rIJ3OWw6lk+i29JlupRpvsFQh3FKD0tpyqJ5lnSUp5QXz5zjwVeBa4KLpKsL8OW7uPgJsLDh8GLhgbh+usL3S33tASrlPSrmvv79/yev2ux3LSl00Bv20n0tJYUyDq/38qVnPfX4XP3/dJj509yV0+VwMd/s4ORkl2SDLoWOZbsZmQWV9VaoFqSfDPUa84z2fPchjL48X9VVS7BgIcPdlQ1y7tbem1x4y57Or91or2nKoniWLgxDCL4ToUI+BO4AXgYeAd5m7vQv4mvn4IeAeIYRbCLEVI/C833Q9hYUQ15tZSvcWHLMqdCyzh38kmWnLTCWFz7U0y0EVwPX4Xezb0sOv3rINMC5mp6eiDQlIg3Gz0Aoxh9NTxgVza59vkT1Xlz1DQf71V6/H57LzP//jCKFEuTi4HXY+8QvXWMN/qmXf5m7sNsGTJ6aWtDZtOVTPcs7SIPAjIcTzwH7gG1LKbwEfBm4XQhwHbjd/R0p5GPgicAT4FvA+KaW6wrwX+EeMIPUrwMPLWNeiqLnBS+3hPx5KMrDE4TKtgG+J0+CmokYOfm9JUdbWXh+nJqLEU/UPSIPpVlqD4pDJ5kgXtKk4NRHFJmBjT2PFAeCG7b38zKs3cmoyytnp2JLme1eiw+PkyuFOnnhlsqbjzk3HeOzlcW051MCSfSNSypPAlRW2TwGvn+eY+4H7K2w/AFy21LXUSmEP/6WMC7wYSnDJutrueFoJv8th9fCpBTXsvrDtNsD6Li/RVJZJs+9SvQP9y7Uk600kmeHnHvgJh87PMRT08MPfuw2n3capqRgbur1Nc/F79RajxCmcyBTVOCyXm3b08fePnSCUKI9lFHJiPMJ4KMGNO/p44PGTfO6pMzhsNm05VElbnqWOZbRMkNIYjj5opmK2I16XvaY6h1xO8uknTnHgzLTVH6eQgaBhSZyZMtp413u+71pzK33uJ2c4dH6OOy8dZCyU4IWRWcAI6qssoGbgsg2dVlrrSlkOYIhDTsJPXlnYtfT3j53gd774PAAT4SQ5adReuNs0y7BW2lIcAsvoxBlKGC2R13W2rzj4XY6aGtU9NzLLn3z9CN88NEa3z4WtJMtroMM4l+emDXFQ2S71YrmpzfUkkc7yDz88xc07+vjwT10BwJMnppBScnoyytYGB6MLcTvsXGmm0q6kOFy1qQuP08YPjy/sWpqMJJmIJMnlZFGbb0+dP19rlbY8S/mq2NovCKqx2WAbi4PPXVvM4diY0VjvN163gw/evafseRW/OTsdw+O01b3dQ8DtIJ2VZaMtm42vPDPCe//lIJORJO+7bQfdfhd71wV54pVJpqIpwslMU1kOAPu2GC1QVtKt5HbYufPSIR48cI6TE5F595uJpcjmJLPxNJPRJOvN76y2HKqjLcVBWQ6RZKYooLcQz5yd4fFjE4yaU7ba2XLwuezE0tmqA/rHLkbwOu389ht28dPXDJc9ryyHsVCiIYWFK9HGfbUZnYvzO198nudH5vjlm7Zy/TbjonvTjl6eOTPLy6OGADeT5QD5uEOPf+XEAeAP3ngJHoeND/7bIas1eCmqB9NUJMl0NMXrLxnk/rdfxtuuWtUa25ahLcWhw218UB98+hy7//Bh7v3kfg6NzC14zF9+6ygf/LcXuGiKw1Abxxx8LgdZM6BfDcfHw+wYCJS5kxRBr8PyTdc73gB5l8dsvHmb76mbkr965xX897fstayrG3f0kcrm+LvHjgONr3Eo5bW7Bvg/77ySm3csvS6pEgNBD7971x72n57mOTPmUooqlBsLJZiNpekNuPjP1222Gj9qFqYtxUF14vz68xcIep08fWqaf/zRyQWPOT0V5cJcgsMXDBFRQdR2pNa23ccuhtk5GJj3eSGE5VpqhOXQb/7tiXCy7n+7WtTalJWluHZLD26HjZ+cnGbf5m42djfXhc9uE7zjmmFL/FeSV200WrpPVvh/S6Sz1ufz2EXD9VSaQq1ZmLYs81VupUxO8varNnDwzIzVc74SiXTWunN75KVxev2upkkXbATb+o0L/SNHLvIzr9644L5z8TQXQ0l2DSb7J34AABIrSURBVC4843mgw83ITLwh/mAlDiqVthkZNy+A/SX1NX63g4fefzM+l70p6hvqSZfPsPgqtdKYLZgWd3TMmKVdmkKtWZi2tByUWwngjr1DdHqdVlvhSqgUS4Dzs3GrhL9duWVnH1cOd/I3jx5fNIh7/KLhC9+1gOUA+TtibwNy0NUYzWa3HISofIHbPdTRdsIAhX2W8t/d+79xhPd97pmi7KSjynLQ4lATbSkOHqcNmzDuPF69pZugx2kNJKmEakvgMH3m7RxvAMMN9IE7dnN+Ns6DT59bcF9l0u8cWMRyMN10jYg5dHmdOGyiycUhQa/fhcPell/ZivhcdlwOW5Hl8J0jF/nxyamibeoGpTegxaEW2vKTZvi4Pdy5dwiH3UbQ61jEcjDE4eadfQBtbzkAvGZnH9v7/fzg6PzdcRPpLE+dmsLnsi8aBFQxh0aIg80m6A24mtqtNBFO0t+hP3eFCCHo9jmZNbOSZmMpzkzFmI6mOD8bB4zZEir20IjZFmuZtow5ADz4nuutAFXQ41ww5nBqMkaP38VN2/v4/tGJtrccwPhi7hzo4Ph4uOLz52fj3P3RxwklMrx2V/+8mUqKvFupMbGc/g53U1sO4+FkWbxBY7iW1PCfFwoyDg+fNx5v7w/w0mioYmW+ZmHa0nIAYxKVym8Pep0kM/MPEDkzFWVzr4/LzWpPbTkYbO7zcW46TrZCnvnxi2FCiQx/9vbL+cd37atwdDH9plvJ3aC+N30Bt9VSvBlp92aP89FdMDb00Pm8OKjHOwcC1n6L3aBoimlbcSgk6Fm419KZqRhbev28eksPv//GPdx52VA9l9e0bOn1k8rmGJ2Llz2nmuzdtKMXZxV+8kamsgL0B5rXcsjlJJMRLQ6V6PY7rYD08+dm6TC/y0dGQ3R4HNaNnA5G144WB/Kl/aFEuWspkc5yYS7Oll4/dpvgvlu2L9gJsp3YbA6JL8zmUszXnns+lFupETEHgL4ON1PR5LzVtivJmakoUzXEN2ZiKTI5qd1KFegqsRxu3T2A0y5IpHP0+F30mUFoHYyuHS0OFIhDhbjD4QshpMyPNdTkUX18VDZXIVORFG6HDX+Vg3t6/S46PI6GXQD7A27SWblg7GmleNcn9/Nn33y56v0nIpUL4DTQ7TMsh/FQgtG5BK/a2MW6TiP5ocvnsoLQPdpyqJm2DUgXoiyB0nTWkxMR3vsvB+kLuLhhW23jDNuBoaAHl8NW0XKYjKToC7irbqJnswm+9Vu3NMz8LyyE617FNSQzWc5Mx+j0Vf83xkOVC+A0Riwhm5PsPz0NwKXrg2zo8nJ2OkaPz0mfec76dHV0zWjLAej0GhpZetf4gS89TyYn+fyvXs+AzlAqw2YTbO7xcbrCPN+paLLmu7UNXd7GuZXqVAh3fiaOlDBitidPZXJkFmn+mG+doS9wpahCuAOnZwAjAD1sthDp9uXdStpyqB0tDhRYDgXicGoyyrNnZ3nva7cv2vqhndnc668cc4ik1pSf1+qvtMq1DmdMUZiKpogkM/zyp5/m9796qGy/v/6O0egR5m+doTEC0gD7T03T7XPSG3CzQYmD38WGLi9uh63putWuBbQ4UDkg/e/PnkcIeMuV6xu1rDXBll4fZ6ajZYHcqUhyTRUd9dfJclADjcCY3Lb/9DSHzoeK9pFS8vn95/jW4TEAxsMJ/C47frf2ApfSZVoOL4+F2GGmraqCy26fky6fix/93ut40+XrGrbGtYoWB4wMGZfDRihuxByklHztufNcv7VX1zQswuY+P4l0jovh/ExpKSWT0ZRl0q8Fgl4HLrtt1S2HswVW1g+OTZDK5BiZKba8Xh4LMxlJMhtLG9W+M7qf13z0mOKQk0bBG8Bwt5E8omJH/R1uXeOwBLQ4mBj9lQzL4fCFEKenYrztKm01LMZ201w/MZ6fyBVJZkhlcmvKrSSEoL/DbQV/V4sz0zEGzYK/b5uWQTiRKYp3/ahg/OXJiQhHL4bZPaRdm5XoLgjsK8vhknUdbOv3c+VwV6OW1RJocTAp7K90ZNQw86/XGUqLstOMx6gGe5AvgFtLbiUw6jZOVQiuryTnpmNcvqGLoMdR1O6h0Hp4/PiEVZh5+EKIs9Mxdg8GV3Vda5UOjwNlFGw3xaHL5+J7H7iVyzZ0NnBlax8tDiaF/ZXOTsWw2wTr9cSoRekLuOj2Oa3Ol1BYALd2LAcw3BInJyJVjz+tFSklZ6djbOrxscksIFRDcEZmjCrzRDrL/lPTvO2qDTjtgm8fHkNKtOUwDzabsKyHHf0Lt4XX1IYWB5OgN9+2+8x0jPVdnqraPrQ7Qgh2DnZwrEAcVI+itZZbvr3fTyiRWbUeS5ORFLFUlk09XjaafvGbthvWqRKHA6dnSGZy3Lq7n009Pn5ycgqAPVoc5qXL58TjtOnxnyuMvvqZBD0OwspymI6xuUenvlXLrsEAxy/m77gtt9JasxxMt8QrE5FF9qydz/7kDP/vB68ARvrvJnM4z43b+/C77JZb6YcnJnDaBddt7WVrX4CcNPpNbWrDYT7V0htws71//hnlmqWhc+NMOr35gPTZqSh369S3qtk12EE4meHQ+Tm+8oyRAgxrr/BIZbu8MhFZ0XjTeCjBf//aiyhv1cYenzVv4JJ1QYa7fZw3LYcfHpvk6k3d+N0Otvf7eeQlQ3z1hW9+/vBNl1CHllhthxYHk6DXSSieIZRIMxNLs1nfqVWNmvL2W194jpOTUew2QYfHsebmbA8FPfhcdl4ZX9mg9MMvGnGDP3/H5cRSWbb3G+3iXzw/x74t3Qx3exmZiTMZSXJkNMR/vWMXgFW4peMNC3OFzkpaFbQ4mAQ9TlLZHMfGDN+5NuOrR82HPjkZpdfvYiqaWnPxBjCCm9v6/ct2K2WyOSYjKas24RuHRtk1GOBnX73J2meo08OH33EFAMPdXp4+Pc0TJ4wU1tfs7Adgm2nJ7B7SmUqa+qNjDiZBs7+SGhKiskk0i9MbcNPrd+F22PjSr91Af4fbyuVfa2zvDxSJw2J9jyrxX7/0PLf8xWMcuRBiPJTg6dPTvHEBN+Vwt49QIsPnnjpLp9dppWBeMdzJf75uE2+8XM8P0dQfbTmYqPYJ33hhFDCChprq+eWbtxL0ONjWH+DB+65v9HKWzPb+AA89f4F4KsuR0RA/9w8/4d9//SZ6/C4+8KXn+MAdu7l6U/e8x//o+CT//twFbAJ+68Fn2dTjQ0oWbN+gGsU9fXqa337DLuxmfMHjtHP/2y9f2Teo0VSJFgeT2/YMsL3fz4EzM/T6XdYIUU11vO+2HdbjbWs433zXYAAp4blzszz84iipTI6vPjtC0OPkiRNTHB07yNd/4yZrZkAhmWyOP/rai2zt8/PBu/fwns8e5PRUjA/dvccqFqzErbsH+MDtu7jj0iEdX9A0DdqtZOK02/jDN+8FjGwSTXtyy65+/C47X3lmhO8cvgjANw+N8e/PnWfHQIBEOstvfP5ZpJQ8+cokn3rilNV08PtHJzg1GeX37trNnZcO8c+/fC3f+a1beM9rty/4N70uO7/x+p1aGDRNhb49LuC23QP84vWb2aLb+7YtPpeDN16+jq88e55sTnLj9l6efMUoRLv/7ZfhtNn43X97gc88eZqPPHKcuXiaQ+fn+PN3XMGDB87RF3Dz+ksGAUNoNJq1StNYDkKIu4QQR4UQJ4QQH2zUOv7X2y7j3TdvbdSf1zQB77hmmGxOYrcJPvxTV+Cy23DYBG+8bB3vuGaYPUMd/MnXjxBPZbn3hs185Znz/NKnnuZ7L4/z09cM68p6TUvQFJaDEMIO/D1wOzACPC2EeEhKeaSxK9O0I9du6WFzr4+N3UYPpHfuGyYn8y2g//BNe/mFf3qK/+/1O3j/6wx30B/9+4vkJPzMvuEGr16jWRnEajUZq2kRQtwA/ImU8k7z9w8BSCn/93zH7Nu3Tx44cKBOK9S0G6NzcVx2G73z1GtcmI2zrtNjzch+7OVxXpmI8Cuv2VbPZWo0NSOEOCil3LfYfk1hOQAbgHMFv48A1zVoLRpNxWykQko79t62Z4Db9gys5pI0mrrSLM7RSo1jykwaIcR9QogDQogDExMTdViWRqPRtCfNIg4jwMaC34eBC6U7SSkfkFLuk1Lu6+/XmSAajUazWjSLODwN7BRCbBVCuIB7gIcavCaNRqNpW5oi5iClzAgh3g98G7ADn5RSHm7wsjQajaZtaQpxAJBSfhP4ZqPXodFoNJrmcStpNBqNponQ4qDRaDSaMrQ4aDQajaaMpqiQXgpCiDBwdIFdOoG5Ff6zK/2afcDkCr7eSq+vmV9Pn7vloc/f8ljJ81ev96rWvFlKuXgtgJRyTf4DDizy/AOr8DdX9DUXew9NsL6mfT197vT5a5XzV6/3WuuaW9mt9PU18poryUqvr9lfbyVp9vfazOcOmv/9NvP5a8r3upbdSgdkFc2jmplWeA+NQp+75aHP3/JYi+ev1jWvZcvhgUYvYAVohffQKPS5Wx76/C2PtXj+alrzmrUcNBqNRrN6rGXLQaPRaDSrhBaHFUQIsVEI8ZgQ4iUhxGEhxG+a23uEEN8VQhw3f3ab23vN/SNCiL8rea2fFUK8YL7OXzTi/dSTJZy724UQB4UQh8yfryt4rWvM7SeEEB8TaiJPC7PC5+9+IcQ5IUSkUe+n3qzU+RNC+IQQ3xBCvGy+zocb+b6WxUqmULX7P2AdcLX5uAM4BuwF/gL4oLn9g8Cfm4/9wM3ArwF/V/A6vcBZoN/8/TPA6xv9/prs3F0FrDcfXwacL3it/cANGHNCHgbubvT7W2Pn73rz9SKNfl9r7fwBPuA287EL+OFa/fw1fAGt/A/4GsZc7KPAOnPbOuBoyX7/pUQcXg08UvD7LwIfb/T7acZzZ24XwBTgNvd5ueC5nwP+X6Pfz1o5fyXb20YcVuP8mc/9DfCrjX4/S/mn3UqrhBBiC8bdxVPAoJRyFMD8udg8yRPAHiHEFiGEA3gbxcOQWpolnLt3AM9KKZMYI2dHCp4bMbe1Dcs8f23PSp0/IUQX8Bbg0dVc72rRNC27WwkhRAD4N+C3pJShWl3eUsoZIf7/9u4nxKoqDuD490e6iaQ/kCCItIv+EIVBRoW7oNYtCmkmo0V/INxJEdSiFkWJqItJyuiPiAQFVlCEkFDRUkqbhYwEBVJEpaZLfy3OefiY+17jm+7tPed9P3B5w3lnDuf+eMzvnjP3/W48BRwELgDfAlPx5PpRYxcRtwCvAvf3mgZ0m5pb8lqI31RrK371ou4AsCszT3Y03U65cmhZRKymfLj2Z+ZHtfnXiFhX318H/LbUOJn5SWbelZl3U5a2J7qa86QYNXYRsR74GJjJzIXa/AvlMbM9Ax85uxK1FL+p1XL89gInMnNn9zPvhsmhRfWumLeB+czc0ffWIWC2/jxL2c9caqy19fVa4GngrXZnO1lGjV1dsn8GPJeZ3/Q616X/2YjYVMec4RLifblrK37Tqs34RcTLlOJ327qed6fG/U+PlXRQ7jxK4HvgaD0epNx9dJhy9X8YuK7vd34C/gD+plz13lzbDwA/1uPhcZ/bpMUOeAE419f3KLC2vncncAxYAPZQv+y5ko+W4/da/SxeqK8vjfv8Lpf4UVaqCcz3tT8x7vNbzuE3pCVJDW4rSZIaTA6SpAaTgySpweQgSWowOUiSGkwOUgci4smImBmh/w0RcazLOUmjsHyG1LKIWJWZc+Oeh/RfmBykAWrxtc8pxdfuoJRwngFuAnYAVwG/A49l5qmI+IpSA+se4FBErKFUNX09Im4H5ijlnBeAx7PUz9oI7APOA1//f2cnLc1tJWm4G4G9mXkbcAZ4BtgNPJSZvT/sr/T1vyYzN2fmG4vGeQ/YXsf5AXixtr8DPJulfpY0UVw5SMP9nBfr5nwAPE95sMuXtVrnFcCpvv4HFw8QEVdTksaR2vQu8OGA9veBB9o/BWl5TA7ScItry5wFjv/Llf65EcaOAeNLE8NtJWm4DRHRSwSPAN8B1/faImJ1rec/VGaeBv6MiPtq06PAkcz8CzgdEffW9i3tT19aPlcO0nDzwGxEvEmpyrkb+ALYVbeFVgE7geNLjDMLzEXElcBJYGtt3wrsi4jzdVxpYliVVRqg3q30aWbeOuapSGPhtpIkqcGVgySpwZWDJKnB5CBJajA5SJIaTA6SpAaTgySpweQgSWr4B3eoSrv7J9+zAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGOlJREFUeJzt3X+QndV52PHvI6288g/J5ofkIAkQGTPUAo+x2ZFI3abGrhHEGUQmtkeFgNrQoXVI66SZgijqkLHVGdPJxImGmsIU29gYY0rMmBbLtizHE5pSiVVsF4OsSA5kkZGtZURBeEYLi57+cc9aV0LaPbvavb/2+5m5s+899z3vffZIe5/3/HjfG5mJJEk15rQ7AElS9zBpSJKqmTQkSdVMGpKkaiYNSVI1k4YkqZpJQ5JUzaQhSapm0pAkVetrdwDT7fTTT8/ly5e3OwxJ6io7dux4PjMXTbRfzyWN5cuXMzg42O4wJKmrRMTf1+zn8JQkqZpJQ5JUzaQhSapm0pAkVTNpSJKqmTQkVdn/0iE+dudj7D94qN2hqI1MGpKqbNq6m8efOcCm7+xudyhqo567TkNH7H/pEL//le9z+1XvYfGC+e0OR13qvA2bGRk9/Mvn924b4t5tQ/T3zWHXxsvbGJnawZ5GD/PMUNPh0Rsv4YoLlzB/XuPjYv68Oay5cAmP3nTJUfs5fDU72NPoQZ4ZajotXjifBf19jIwepr9vDiOjh1nQ3/e63mvzScrG33pXm6LVTDNp9KBHb7yEjd/Yybef/BmHXj3M/HlzWH3+r3DLh9/Z7tDUpZ5/eYSrV53NVSvP4r7tQww39SY8SZldTBo9qPbMUKp15zUDv9zeeOUFR73mScrsYtLoUeOdGUrTyZOU2cWk0aPGOzOUppsnKbNHZGa7Y5hWAwMD6a3RJWlyImJHZg5MtF/VktuI+MOIeDIifhQRX4mI+RFxakRsiYjd5ecpTfvfHBF7ImJXRKxuKr8oIp4or22KiCjl/RHx1VK+LSKWN9VZV95jd0Ssm0wjSJKm14RJIyKWAv8WGMjMC4C5wFpgPbA1M88FtpbnRMSK8vr5wGXAZyNibjncHcD1wLnlcVkpvw54ITPfAXwGuK0c61TgVmAVsBK4tTk5SZJaq/bivj7gjRHRB7wJeA5YA9xTXr8HuLJsrwHuz8yRzHwa2AOsjIgzgIWZ+Vg2xsS+eEydsWM9CHyw9EJWA1sy80BmvgBs4UiikSS12IRJIzN/CvwJMATsA17MzG8Db8/MfWWffcDiUmUp8GzTIfaWsqVl+9jyo+pk5ijwInDaOMc6SkRcHxGDETE4PDw80a8kSZqimuGpU2j0BM4BlgBvjojfGa/KccpynPKp1jlSkHlXZg5k5sCiRRN+L7okVfHWKK9XMzz1T4GnM3M4M18Fvgb8Q+DnZciJ8nN/2X8vcGZT/WU0hrP2lu1jy4+qU4bA3gocGOdYUtfzA6nzef+216tJGkPAxRHxpjLP8EFgJ/AwMLaaaR3w9bL9MLC2rIg6h8aE9/YyhHUwIi4ux7n2mDpjx/oI8N0y7/Et4NKIOKX0eC4tZVLX8wOpc523YTPL1z/CvduGyGzcGmX5+kc4b8PmdofWdhNe3JeZ2yLiQeBvgFHg+8BdwFuAByLiOhqJ5aNl/ycj4gHgqbL/DZn5Wjncx4EvAG8ENpcHwN3AlyJiD40extpyrAMR8Sng8bLfJzPzwEn9xlKbea+mzuetUU7Mi/ukFtv/0qETfiB5643OcctDT3Df9iHeMHcOr7x2mKtXntXTd++tvbjP24hILea9mrqDt0Y5PpOGekonfVvheLH4gdT5vH/b8Zk01FM66YuAxovFDyR1K+c01BOOnVwe047J5U6KpVYn9dDUHtN6w0Kp09V+j/Vsi6WWy39Vy+Ep9YROmlzupFgm4vJfTZY9DfWMscnlh37vfVy96myGXx4xlgl0Y69I7WVPQz2jkyaXOymW8XRTr0idwaQhzXIu/9VkuHpKkuTqKUnS9DNpSD3OW7BrOpk0pB7nNRiaTk6ESz3KazA0E+xpSD3KazA0E0waUo/q1WswnKNpL5OG1MO65cr0yXCOpr28TkNSV+jGuwd3E6/TkNRTJjNH4xDWzDFpqCP4R66JTGaOxiGsmeOSW3WEmm/c84uCNNF9slxmPPOc01BbTWacesNDT/Dl7UNcvfKstn+VqzrT/pcOsfEbO/n2kz/j0KuHmT9vDqvP/xVu+fA7PdGYQO2chj0NtdWjN15ywj/yMZ49qlavLjPuJM5pqK1q/si9SE2T0YvLjDuJPQ2NqxXzCBONU3v2qMnoli/A6lYmDY2rZoL6ZNX8kftFQVJncCJcxzWZCWpXNUndz4v7dFImM4/gmnhp9jBpzHInuqiuZh7hvA2bWb7+Ee7dNkRmY1XT8vWPcN6Gza3+NdQlvIiz+5k0ZrnxegkTrUJxVZMmy15p93NOY5aarpu/3fLQE9y3fYg3zJ3DK68d9sK7NuiGOSVvNtj5nNPQuKarl+Ca+JlVM5zTDWfv9kp7h0tuZ6npuvbBNfEza7wlz910pfxk/r91Q89pNjNpzGJe+9C5ahJCzS1YOknt/7dWXBukqXNOQ7NKzVlsJ5zp1t54r5fmlJz3aC/nNKTjqBn/74Q5gtrhnF6aU3Leozs4PKVZoWa4p9PmCGqGc3ppTsl7jHWHqp5GRLwtIh6MiB9HxM6I+LWIODUitkTE7vLzlKb9b46IPRGxKyJWN5VfFBFPlNc2RUSU8v6I+Gop3xYRy5vqrCvvsTsi1k3fr67ZpOYsttPOdO+8ZoCNV17AiiUL2XjlBUcliF7Vyp6TFxpOTe3w1J8D38zMfwC8G9gJrAe2Zua5wNbynIhYAawFzgcuAz4bEXPLce4ArgfOLY/LSvl1wAuZ+Q7gM8Bt5VinArcCq4CVwK3NyUmqVXMW65lu+7UyUXbCMGQ3mnB4KiIWAr8O/HOAzHwFeCUi1gDvL7vdA3wPuAlYA9yfmSPA0xGxB1gZEc8ACzPzsXLcLwJXAptLnT8ux3oQuL30QlYDWzLzQKmzhUai+cpJ/M6apWqGe1xR1vs6bRiy29TMafwqMAx8PiLeDewAPgG8PTP3AWTmvohYXPZfCvyfpvp7S9mrZfvY8rE6z5ZjjUbEi8BpzeXHqSNNSs34fy/NEej4um2pcqepGZ7qA94L3JGZ7wF+QRmKOoE4TlmOUz7VOkfeMOL6iBiMiMHh4eFxQpM02zkMeXJqksZeYG9mbivPH6SRRH4eEWcAlJ/7m/Y/s6n+MuC5Ur7sOOVH1YmIPuCtwIFxjnWUzLwrMwcyc2DRokUVv5Kk2azTlip306T8hEkjM38GPBsR55WiDwJPAQ8DY6uZ1gFfL9sPA2vLiqhzaEx4by9DWQcj4uIyX3HtMXXGjvUR4LvZuOrwW8ClEXFKmQC/tJRJ0pR12sq0bpqUr71O498AX46INwB/B/wLGgnngYi4DhgCPgqQmU9GxAM0EssocENmvlaO83HgC8AbaUyAj33xwt3Al8qk+QEaq6/IzAMR8Sng8bLfJ8cmxSWp23XjpLy3EZGkNqm9XUwreBsRdZRuGrOVWqUbJ+VNGmqJbhqzlVqp0yblJ+LwlGaUdy6VuoPDUz2uW4Z7Ou1+TpJOjkmjS3XLcE83jtlKtbrl5G06eWv0LtONS/S8n5N61Wz8lkHnNLpMJy3Rk2aryczVdcI3QdZwTqNHOdwjtd9k5uq6ZSi5lsNTXcjhHqm9ak7eunEouYZJowt5+26p/SY6eevVW7CbNCRpCiY6eevVoWSThiTNkF4cSnb1lDQF3bIiRqrl6ilpBvXaihiplsNT0iT06ooYqZY9DWkSvJeWZjuThjQJvboiRqrl8JQ0Sb24Ikaq5eopSZKrpyRJ08+kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFWrThoRMTcivh8R/7M8PzUitkTE7vLzlKZ9b46IPRGxKyJWN5VfFBFPlNc2RUSU8v6I+Gop3xYRy5vqrCvvsTsi1k3HLy1JmprJ9DQ+Aexser4e2JqZ5wJby3MiYgWwFjgfuAz4bETMLXXuAK4Hzi2Py0r5dcALmfkO4DPAbeVYpwK3AquAlcCtzclJktRaVUkjIpYBHwb+W1PxGuCesn0PcGVT+f2ZOZKZTwN7gJURcQawMDMfy8wEvnhMnbFjPQh8sPRCVgNbMvNAZr4AbOFIopEktVhtT+PPgBuBw01lb8/MfQDl5+JSvhR4tmm/vaVsadk+tvyoOpk5CrwInDbOsSRJbTBh0oiI3wT2Z+aOymPGccpynPKp1mmO8fqIGIyIweHh4cowJUmTVdPTeB9wRUQ8A9wPfCAi7gV+XoacKD/3l/33Amc21V8GPFfKlx2n/Kg6EdEHvBU4MM6xjpKZd2XmQGYOLFq0qOJXkiRNxYRJIzNvzsxlmbmcxgT3dzPzd4CHgbHVTOuAr5fth4G1ZUXUOTQmvLeXIayDEXFxma+49pg6Y8f6SHmPBL4FXBoRp5QJ8EtLmSSpDU7mOo1PAx+KiN3Ah8pzMvNJ4AHgKeCbwA2Z+Vqp83Eak+l7gJ8Am0v53cBpEbEH+HeUlViZeQD4FPB4eXyylEmSmux/6RAfu/Mx9h88NKPvE40T+t4xMDCQg4OD7Q5Dklpqw0NP8OXtQ1y98iw2/ta7Jl0/InZk5sBE+/VNKTpJUkc4b8NmRkaPLGy9d9sQ924bor9vDrs2Xj7t7+dtRCSpiz164yVcceES5s9rfJzPnzeHNRcu4dGbLpmR9zNpSFIXW7xwPgv6+xgZPUx/3xxGRg+zoL+PxQvmz8j7OTwlSV3u+ZdHuHrV2Vy18izu2z7E8AxOhjsRLkmqngh3eEqSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqS1OH2v3SIj935GPsPHmp3KCYNSep0m7bu5vFnDrDpO7vbHQp97Q5AknR8523YzMjo4V8+v3fbEPduG6K/bw67Nl7elpjsaUhSh3r0xku44sIlzJ/X+KieP28Oay5cwqM3XdK2mCZMGhFxZkT8ZUTsjIgnI+ITpfzUiNgSEbvLz1Oa6twcEXsiYldErG4qvyginiivbYqIKOX9EfHVUr4tIpY31VlX3mN3RKybzl9ekjrZ4oXzWdDfx8joYfr75jAyepgF/X0sXjC/bTHV9DRGgT/KzHcCFwM3RMQKYD2wNTPPBbaW55TX1gLnA5cBn42IueVYdwDXA+eWx2Wl/Drghcx8B/AZ4LZyrFOBW4FVwErg1ubkJEm97vmXR7h61dk89Hvv4+pVZzP88khb45lwTiMz9wH7yvbBiNgJLAXWAO8vu90DfA+4qZTfn5kjwNMRsQdYGRHPAAsz8zGAiPgicCWwudT543KsB4HbSy9kNbAlMw+UOltoJJqvnMwvLUnd4s5rBn65vfHKC9oYScOk5jTKsNF7gG3A20tCGUssi8tuS4Fnm6rtLWVLy/ax5UfVycxR4EXgtHGOJUlqg+qkERFvAf4C+IPMfGm8XY9TluOUT7VOc2zXR8RgRAwODw+PE5ok6WRUJY2ImEcjYXw5M79Win8eEWeU188A9pfyvcCZTdWXAc+V8mXHKT+qTkT0AW8FDoxzrKNk5l2ZOZCZA4sWLar5lSRJU1CzeiqAu4GdmfmnTS89DIytZloHfL2pfG1ZEXUOjQnv7WUI62BEXFyOee0xdcaO9RHgu5mZwLeASyPilDIBfmkpkyS1Qc3Ffe8DrgGeiIgflLL/AHwaeCAirgOGgI8CZOaTEfEA8BSNlVc3ZOZrpd7HgS8Ab6QxAb65lN8NfKlMmh+gsfqKzDwQEZ8CHi/7fXJsUlyS1HrROKHvHQMDAzk4ONjuMCSpq0TEjswcmGg/rwiXJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKlaVySNiLgsInZFxJ6IWN/ueCRptur4pBERc4H/AlwOrAD+WUSsmIn32v/SIT5252PsP3hoSq9P1z41x5Ckduj4pAGsBPZk5t9l5ivA/cCamXijTVt38/gzB9j0nd1Ten269qk5hiS1Q2Rmu2MYV0R8BLgsM/9leX4NsCozf/94+w8MDOTg4OCk3uO8DZsZGT38uvL+vjns2nj5hK/XHGO63keSZkJE7MjMgYn264aeRhyn7KhMFxHXR8RgRAwODw9P+g0evfESrrhwCfPnNZpj/rw5rLlwCY/edEnV69O1T80xJKmduiFp7AXObHq+DHiueYfMvCszBzJzYNGiRZN+g8UL57Ogv4+R0cP0981hZPQwC/r7WLxgftXr07VPzTEkqZ362h1AhceBcyPiHOCnwFrgqul+k+dfHuHqVWdz1cqzuG/7EMPHTEJP9Pp07VNzDElql46f0wCIiN8A/gyYC3wuM//TifadypyGJM12tXMa3dDTIDO/AXyj3XFI0mzXDXMakqQOYdKQJFUzaUiSqpk0JEnVTBqSpGpdseR2MiJiGPj7E7x8OvB8C8M5Gd0UK3RXvN0UK3RXvN0UK3RXvDMd69mZOeHV0T2XNMYTEYM165A7QTfFCt0VbzfFCt0VbzfFCt0Vb6fE6vCUJKmaSUOSVG22JY272h3AJHRTrNBd8XZTrNBd8XZTrNBd8XZErLNqTkOSdHJmW09DknQSujppRMTnImJ/RPyoqezdEfFYRDwREf8jIhaW8nkRcU8p3xkRNzfV+V5E7IqIH5TH4g6I9w0R8flS/sOIeH9TnYtK+Z6I2BQRx/uiqk6JdcbbNiLOjIi/LP+uT0bEJ0r5qRGxJSJ2l5+nNNW5ubTfrohY3VTeiradznhntH0nG2tEnFb2fzkibj/mWB3XthPE22lt+6GI2FHacEdEfKDpWDPetr+UmV37AH4deC/wo6ayx4F/UrZ/F/hU2b4KuL9svwl4Blhenn8PGOiweG8APl+2FwM7gDnl+Xbg12h8q+Fm4PIOjnXG2xY4A3hv2V4A/C2wAvjPwPpSvh64rWyvAH4I9APnAD8B5rawbacz3hlt3ynE+mbgHwH/Grj9mGN1YtuOF2+nte17gCVl+wLgp61s27FHV/c0MvOvgAPHFJ8H/FXZ3gL89tjuwJsjog94I/AK8FIr4hwzyXhXAFtLvf3A/wMGIuIMYGFmPpaN/y1fBK7sxFinO6YTycx9mfk3ZfsgsBNYCqwB7im73cORdlpD4wRiJDOfBvYAK1vYttMS73THNR2xZuYvMvN/AUd9e1intu2J4m2FKcT6/cwc+9bSJ4H5EdHfqrYd09VJ4wR+BFxRtj/Kka+KfRD4BbAPGAL+JDObPxQ/X7qg/3FGu3avd6J4fwisiYi+aHxr4UXltaU0vgJ3zN5S1omxjmlZ20bEchpnZNuAt2fmPmj8gdLoBUGjvZ5tqjbWhi1v25OMd0xL2rcy1hPp1LadSKe27W8D38/MEVrctr2YNH4XuCEidtDo8r1SylcCrwFLaHTx/ygifrW8dnVmvgv4x+VxTQfE+zka//iDNL618H8DozS6n8dq1RK4ycYKLWzbiHgL8BfAH2TmeL3IE7VhS9t2GuKFFrXvJGI94SGOU9YJbTuejmzbiDgfuA34V2NFx9ltxtq255JGZv44My/NzIuAr9AY/4XGnMY3M/PVMoTy15QhlMz8afl5ELiPFnX9x4s3M0cz8w8z88LMXAO8DdhN48N5WdMhlgHPHXvcDom1ZW0bEfNo/OF9OTO/Vop/XrruY8Mj+0v5Xo7uCY21YcvadpribUn7TjLWE+nUtj2hTmzbiFgGPARcm5ljn20t/UzouaQxtsIhIuYAG4D/Wl4aAj4QDW8GLgZ+XIZUTi915gG/SWMYpq3xRsSbSpxExIeA0cx8qnRXD0bExaW7fC3w9U6MtVVtW9rhbmBnZv5p00sPA+vK9jqOtNPDwNoyHnwOcC6wvVVtO13xtqJ9pxDrcXVw257oOB3XthHxNuAR4ObM/OuxnVv+mTDdM+utfNA4290HvEoj214HfILGKoS/BT7NkQsY3wL8dxoTSE8B/z6PrJ7YAfzf8tqfU1amtDne5cAuGpNj36FxB8qx4wzQ+A/8E+D2sTqdFmur2pbG6pcs7/OD8vgN4DQaE/S7y89Tm+rcUtpvF00rTVrUttMSbyvad4qxPkNjEcXL5f/Oig5v29fF24ltS+NE7RdN+/4AWNyqth17eEW4JKlazw1PSZJmjklDklTNpCFJqmbSkCRVM2lIkqqZNCRJ1UwakqRqJg1JUrX/D0iOz+zDVXKUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ " yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1986 0\n", "1987 0\n", "1988 0\n", "1989 0\n", "1990 0\n", "2020 221186\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1991 553090\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEdJJREFUeJzt3X2QXXV9x/H3l0TbwGJEg4sN6lLHUh2jImvxYYq7QVsRH1rHVigqqQ9xxqoZm840dXSoVcdMlY4Og+2kVaGFcavBFgRrYdTFZyQB64JRoRAxQYMUiS5FQuTbP85J3QTYmz3nZs/d375fMzu55+4593z3m7Of/d1zz0NkJpKkhe+wrguQJPWHgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqxNL5XNmKFStyZGSk0bJ33303RxxxRH8LKoj96c0ezc7+zK7L/mzduvWOzDy613zzGugjIyNs2bKl0bKTk5OMjY31t6CC2J/e7NHs7M/suuxPRPzgYOZzl4skFcJAl6RCGOiSVAgDXZIKYaBLUiF6BnpEfCwibo+I62c896iIuDIibqz/PerQlilJ6uVgRujnAy864LkNwOcz80nA5+tpSVKHegZ6Zn4JuPOAp18OXFA/vgD4gz7XJUmaoziYe4pGxAhwWWY+tZ6+KzMfOeP7P83MB93tEhFrgbUAw8PDJ05MTDQqdHp6mqGhoUbLLgb2pzd7tL+pnbv3mx5eBrvumZ91r1q5fH5W1Eddbj/j4+NbM3O013yH/EzRzNwEbAIYHR3NpmdaeRbb7OxPb/Zof2s2XL7f9PpVezlnan5OHt9+5ti8rKefFsL20/Qol10R8ViA+t/b+1eSJKmJpoF+KXBW/fgs4JL+lCNJaupgDlv8BPB14PiI2BERrwc2Ai+MiBuBF9bTkqQO9dxhlplnPMS3TulzLZKkFjxTVJIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSIVoEeEW+PiBsi4vqI+ERE/Hq/CpMkzU3jQI+IlcDbgNHMfCqwBDi9X4VJkuam7S6XpcCyiFgKHA7c1r4kSVITjQM9M3cCHwRuBX4E7M7MK/pVmCRpbiIzmy0YcRRwMfAq4C7gU8DmzLzwgPnWAmsBhoeHT5yYmGi0vunpaYaGhhotuxjYn97s0f6mdu7eb3p4Gey6Z37WvWrl8vlZUR91uf2Mj49vzczRXvMtbbGOFwC3ZOZPACLi08Bzgf0CPTM3AZsARkdHc2xsrNHKJicnabrsYmB/erNH+1uz4fL9ptev2ss5U20i4eBtP3NsXtbTTwth+2mzD/1W4NkRcXhEBHAKsK0/ZUmS5qrNPvSrgc3AtcBU/Vqb+lSXJGmOWr2/ysyzgbP7VIskqQXPFJWkQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQ83O/KUmaYeSA29/Nl+0bT+tkvfPFEbokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVolWgR8QjI2JzRHw3IrZFxHP6VZgkaW7a3oLuw8DnMvOVEfFw4PA+1CRJaqBxoEfEI4CTgTUAmbkH2NOfsiRJcxWZ2WzBiGcAm4DvAE8HtgLrMvPuA+ZbC6wFGB4ePnFiYqLR+qanpxkaGmq07GJgf3ob1B5N7dzddQkADC+DXfd0XcXgatufVSuXN152fHx8a2aO9pqvTaCPAt8AnpeZV0fEh4GfZea7HmqZ0dHR3LJlS6P1TU5OMjY21mjZxcD+9DaoPRrZcHnXJQCwftVezplquxe2XG37s33jaY2XjYiDCvQ2H4ruAHZk5tX19GbgmS1eT5LUQuNAz8wfAz+MiOPrp06h2v0iSepA2/dXbwUuqo9wuRn40/YlSZKaaBXomfktoOd+HUnSoeeZopJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBViwdxAcGrnbtZ0dO/FNvcClKT54ghdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSI1oEeEUsi4rqIuKwfBUmSmunHCH0dsK0PryNJaqFVoEfEscBpwD/1pxxJUlORmc0XjtgMvB84EviLzHzJg8yzFlgLMDw8fOLExESjdd1+52523dO41FZWrVzezYrnYHp6mqGhoa7LGGiD2qOpnbu7LgGA4WV09ju2ELTtT5scGR8f35qZo73ma3yT6Ih4CXB7Zm6NiLGHmi8zNwGbAEZHR3Ns7CFnndW5F13COVPd3NN6+5ljnax3LiYnJ2na28ViUHvU1c3PD7R+1d7OfscWgrb9mY8cabPL5XnAyyJiOzABrI6IC/tSlSRpzhoHemb+VWYem5kjwOnAFzLz1X2rTJI0Jx6HLkmF6MsOs8ycBCb78VqSpGYcoUtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEaB3pEPC4ivhgR2yLihohY18/CJElzs7TFsnuB9Zl5bUQcCWyNiCsz8zt9qk2SNAeNR+iZ+aPMvLZ+/HNgG7CyX4VJkuYmMrP9i0SMAF8CnpqZPzvge2uBtQDDw8MnTkxMNFrH7XfuZtc97epsatXK5d2seA6mp6cZGhrquoyBNqg9mtq5u+sSABheRme/YwtB2/60yZHx8fGtmTnaa77WgR4RQ8BVwPsy89OzzTs6OppbtmxptJ5zL7qEc6ba7CFqbvvG0zpZ71xMTk4yNjbWdRkDbVB7NLLh8q5LAGD9qr2d/Y4tBG370yZHIuKgAr3VUS4R8TDgYuCiXmEuSTq02hzlEsBHgW2Z+Xf9K0mS1ESbEfrzgNcAqyPiW/XXi/tUlyRpjhrvEMrMrwDRx1okSS14pqgkFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmF8AaCA2wu95pcv2ova/p0b8ou76F6KO+vOVuPFsJ9Y6VeHKFLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgrRKtAj4kUR8b2IuCkiNvSrKEnS3DUO9IhYApwHnAo8BTgjIp7Sr8IkSXPTZoT+O8BNmXlzZu4BJoCX96csSdJcRWY2WzDilcCLMvMN9fRrgJMy8y0HzLcWWFtPHg98r2GtK4A7Gi67GNif3uzR7OzP7LrszxMy8+heM7W5SXQ8yHMP+OuQmZuATS3WU60sYktmjrZ9nVLZn97s0ezsz+wWQn/a7HLZATxuxvSxwG3typEkNdUm0K8BnhQRx0XEw4HTgUv7U5Ykaa4a73LJzL0R8RbgP4ElwMcy84a+VfZArXfbFM7+9GaPZmd/Zjfw/Wn8oagkabB4pqgkFcJAl6RCLJhAj4iY+a8kaX8DHegRsSQi1kXEZuDPANKd/n0TEasj4riu6xhU9qc3ezS7+e5PmxOL5sMLgN8HPgRsqK8fc1FmejZbC/U1dyaAu4D7I+LszLyq47IGhv3pzR7Nrqv+DPQIHXgtcEVmXgG8E3gs8LJuS1p4IuLYiHjEjKdeBVycmSdTbXRnRMRzuqmue3Ppz2Ld5ec2NLtB6c+gB/rXgZH68XXAjcAJ9UhdPUTEkyPis8BXgL+JiH0XT/sFcHj9+JNU16d49mILqyb9WWy7/NyGZjdo/Rn0QL8ZGIqIR2fmPfU0VJfr1YOIiCNmTD4D2JGZI8AXgA/Wz98J3BsRR2bmncD3gWF+9cezWLP054s8sD9DdX9uZJH0B9yGehnk/gx6oE8B9wKn1NM/pWrKTzqraABFxFERcX5EXANsjIij65HA04Cv1iPLS4G7IuI0qo3rSGBV/RI3Ul1Jbk8X9R9qs/RnFb/qzyU8sD9Pq1/i+xTcH3Ab6mWh9GfQA30n8A3gbfX0T6gC/eedVTSYTgb2Ai+mugrmO4BHUP3/HjNjN8EFwJ8A36Tq4akAmfl1YDXws/kte948VH+WYH/2cRua3cLoT2YO/BdwEXA5cDvwVmBp1zV11IclwJuAq6iuMb+ifv6TwNvqx8cBG+vvP4tq396S+ntDVH8UlwArgW3AW4CPAx8BDu/6Z7Q/9sj+NP8a9BH6Pmuo/iI+ITPPzcy9HdfTlZdQHeXzbuA5wN/Wz18JPLd+/EPgy8CpmXkN1WhiHCAzp4GrgWdl5k7gNVTveH4MvDMz/3eefo5Dxf70Zo9mt6D7M+jHoQOQmfcB/9V1HfNh35EUEfEsqrduXwYuz8x7gd8Cbs7ML0TELcAHIuL3gK3AH0bEisy8IyJuBO6OiMcD5wKvjojHUF2z/n+o3g6SmVuALfP+Q7Zgfw6ePXpwJW9DC2WEvijM2NBOBj5GdejTC4D317PcD3w/IpZl5i1Ub+eeRrWv7jaqY18Bfkn1lu8w4GKqy36eCZwIbMrM++fpR+qr+ufOiBjD/jyoiHh0/e9zgfOxR/uJiIfX29DzqXaDFNWfBTFCL1lEHE51AtXJwBcj4nzgmcA/ZOZ5EXEUcFVEnEB1l6gTqN7Cbad6a/cyqqN//h14f0RcCDwBWA7cVr+7+VpEvHQB/xIeSXVyxi7gdVQ9sD/sNwj4I2AdsDci3kR1E/eP2COIiIcBb6T6gHJHRJxDdbjh35fWH0foHYqIY4DLgDHgX6g+ZHkF1b67vQCZ+VPgEqojfa4EHgM8uX6JLwHPB/Zk5mXAR4HNwHlUn7bft29dXW9oLS0Dfg14YkSsAJ5INTpa9P2pw3w58MfAhzJzLDO/RzVS3DfPou4R1XWgVlNdQiSpfsdWU42yy+rPofzE1a+en6gvA06aMb2G6kOYs4Bvznj+N6hGAlBtnBPAUfXynwEeP2PeFV3/XIegT2cBHwDeBbweeClwjf35/5/pzcB76sf7blrzCuBqe5TUP99r68evpzpS7lUl/o45Qu/WL4Bvzjgd+NtUAX8B1Wj0GIDMvA24ISJOyszzgJuAf6V6e/iVzLx13wtmQRcum9GXw4D/Bm4AVmfmZ4DjImIYFm9/ZrgD+N2IOBPYGhEXUI0+f7t+R7PYe/QfwFkR8Sngr4GnA9dT3RP5aCinP+5D71DuG1L9KrjWAZ+uH38WeDvwlxHxKOAHwI/q770bOB64KTN/MX8Vz699/aE6meN0qmN810XEO6kOA1sLvGex9meG66h2SZ1EdVb1qdS7CYDXRcQHgUeySHuUmR+JiD1Uhx2eQHVc+Cupzmt5Y0RspJD+OEIfAJmZEXEscAzVaAKqkQQRcRnweaoTF26t578vM69fSBtaUxExRDUC/Ufgc1RHHJwEnAEcFRGfYRH3p3YrVXgvzWp/8GX1c5dRXSDqUuzRU4DJenT9carPYD5BtUulmP44Qh8cJ1Bdu+aWiHgD1Vu9d1Dt6/tuZl7bZXEd2ksVSvdRXUL5l8A7MnMK+POIeDVwQ2Ze12GNncrMe+tR5nvrpw6j+mB9Y2Zet9h7FNXVWXdQHUn2z8DdVGd4vjkzbympP/s+QFHHIuKrwG9SHSp1G/DuzPx2p0UNoPpEjlcAE5n5467rGSQR8T6qbegE4Arg7HrEvuhFxBOpjhXfQ9WjfwPem9WZncUw0AdAfZzs2cAtwIVZnbGmGepR1v3pBjuriDge+MFC21UwH+rBwJOAr2V1Oe7iGOiSVAg/FJWkQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRD/B8X2DsvczJ/6AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }